
A BRANCH, PRICE, AND CUT APPROACH TO SOLVING THE

MAXIMUM WEIGHTED INDEPENDENT SET PROBLEM

A Dissertation

by

DEEPAK WARRIER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2007

Major Subject: Industrial Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/147127324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A BRANCH, PRICE, AND CUT APPROACH TO SOLVING THE

MAXIMUM WEIGHTED INDEPENDENT SET PROBLEM

A Dissertation

by

DEEPAK WARRIER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Wilbert E. Wilhelm
Committee Members, Illya V. Hicks
 Sergiy Butenko

Jianer Chen
Head of Department, Brett A. Peters

May 2007

Major Subject: Industrial Engineering

iii

ABSTRACT

A Branch, Price, and Cut Approach to Solving the Maximum

Weighted Independent Set Problem. (May 2007)

Deepak Warrier, B.Tech., R.E.C Calicut;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Wilbert Wilhem

The maximum weight-independent set problem (MWISP) is one of the most

well-known and well-studied NP-hard problems in the field of combinatorial

optimization.

 In the first part of the dissertation, I explore efficient branch-and-price (B&P)

approaches to solve MWISP exactly. B&P is a useful integer-programming tool for

solving NP-hard optimization problems. Specifically, I look at vertex- and edge-disjoint

decompositions of the underlying graph. MWISP’s on the resulting subgraphs are less

challenging, on average, to solve. I use the B&P framework to solve MWISP on the

original graph G using these specially constructed subproblems to generate columns. I

demonstrate that vertex-disjoint partitioning scheme gives an effective approach for

relatively sparse graphs. I also show that the edge-disjoint approach is less effective than

the vertex-disjoint scheme because the associated DWD reformulation of the latter

entails a slow rate of convergence.

 In the second part of the dissertation, I address convergence properties associated

with Dantzig-Wolfe Decomposition (DWD). I discuss prevalent methods for improving

iv

the rate of convergence of DWD. I also implement specific methods in application to the

edge-disjoint B&P scheme and show that these methods improve the rate of

convergence.

In the third part of the dissertation, I focus on identifying new cut-generation

methods within the B&P framework. Such methods have not been explored in the

literature. I present two new methodologies for generating generic cutting planes within

the B&P framework. These techniques are not limited to MWISP and can be used in

general applications of B&P. The first methodology generates cuts by identifying faces

(facets) of subproblem polytopes and lifting associated inequalities; the second

methodology computes Lift-and-Project (L&P) cuts within B&P. I successfully

demonstrate the feasibility of both approaches and present preliminary computational

tests of each.

v

DEDICATION

To my family and friends for their patience, love and support

vi

ACKNOWLEDGMENTS

 I would like to acknowledge and express my gratitude towards my advisor Dr.

Wilbert Wilhelm for his continuous support and guidance throughout my graduate study.

He has been a source of encouragement and motivation through my endeavor. I would,

also, like to extend a special thanks to Dr. Hicks. His input to my dissertation has been

invaluable. I would also like to thank Dr. Butenko and Dr. Chen. They were a constant

source of inspiration for me. I would also like to thank Judy for being helpful at all

times.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

DEDICATION ...v

ACKNOWLEDGMENTS...vi

TABLE OF CONTENTS ...vii

LIST OF FIGURES..x

LIST OF TABLES ..xi

CHAPTER

I INTRODUCTION ..1

 1.1 Background ..2
 1.2 Specifications of the research...3
 1.2.1 Goal…………………………………………………………………..…3

 1.2.2 Research objectives ...4
 1.3 Motivation ..4
 1.4 Method of approach ...5
 1.5 Organization of the dissertation ...9

II LITERATURE REVIEW ..10

 2.1 MWISP...10
 2.2 Solving MWISP ...13
 2.3 B&P: convergence issues ...13
 2.4 Cut generation techniques ..15

III VERTEX-DISJOINT B&P SCHEME FOR MWISP ..17

 3.1 Introduction ..17
 3.2 MWISP – formulations ..17

 3.2.1 Vertex-Disjoint formulations (VD)...18
 3.3 Vertex-Disjoint partitioning ...21
 3.4 RMP ...22
 3.5 Branching ...23
 3.6 Computational results...24

viii

CHAPTER Page

 3.7 Conclusions ..28

IV EDGE-DISJOINT B&P SCHEME FOR SOLVING MWISP39

 4.1 Introduction ..39
 4.2 MWISP – formulations ..40

 4.2.1 Edge-Disjoint formulation (ED)..40
 4.3 Bounds analysis..43

 4.3.1 Bounds analysis: vertex-disjoint vs. vertex-cloning44
 4.3.2 Bounds analysis: vertex-disjoint vs. edge-disjoint45
 4.3.3 Example...50
 4.3.4 Example: vertex-disjoint vs. edge-cover ...51

 4.4. Edge-Disjoint partitioning...53
 4.5 RMP ...55
 4.6 Computational benchmarks..56
 4.7 Conclusions ..58

V IMPROVING THE RATE OF CONVERGENCE OF DWD.................................64

 5.1 Introduction ..64
 5.2 DWD – overview ...65
 5.3 DWD: the dual perspective ..67
 5.4 DWD: convergence issues ...69
 5.5 Techniques for improving convergence of DWD ..71

 5.5.1 Initializing RMP..71
 5.5.2 Stabilizing DWD ...71
 5.5.3 A new non-parameteric approach for stabilizing73

 5.6 Improving convergence of edge-disjoint DWD ...76
 5.6.1 An improving initial set of columns..76
 5.6.2 Defining optimal bounds on the dual variables.....................................77
 5.6.3 A relaxation scheme ..78

 5.7 Computational benchmarks..80
 5.8 Conclusions ..82

VI CUT GENERATION WITHIN B&P – A LIFTING TECHNIQUE.......................84

 6.1 Introduction ..84
 6.2 B&P formulations ..85
 6.3 Lifting technique ..88

 6.3.1 Facet generation procedure ...89
 6.3.2 Lifting subproblem faces...91

ix

CHAPTER Page

 6.3.3 Example of lifting..92
 6.4 Computational evaluation ..95
 6.5 Conclusions ..96

VII CUT GENERATION WITHIN B&P – INVOKING LIFT & PROJECT99

 7.1 Introduction ..99
 7.2 Cut generation scheme ...100

 7.2.1 Example of a C-G cut in B&P...101
 7.2.2 Implementing C-G cuts within B&P...101

 7.3 Lift & project..102
 7.3.1 Lift & project using the binary disjunction ...102
 7.3.2 Compact representation of the convex hull...104
 7.4 Generating L&P cuts within B&P..106
 7.4.1 Solving CGLP using column generation: master problem..................106

 7.4.2 Solving CGLP using column generation: pricing subproblem108
 7.4.3 Solving the pricing problem..109

 7.5 Computational benchmarks..110

VIII CONCLUSION AND FUTURE RESEARCH ...113

REFERENCES...115

APPENDIX A ..125

VITA ..127

x

LIST OF FIGURES

FIGURE Page

1 A graph and its vertex-disjoint partition ..44

2 Vertex-Cloning: vertices 3 and 5 are cloned. ...45

3a An arbitrary vertex-disjoint partition………………………………………………46

3b An arbitrary edge-disjoint partition.…………..46

4 Step 1: Cloning vertices in the given vertex-disjoint partitioning to obtain an
 edge disjoint partition………………………………………………………….......46

5 Step 2: Adding edges to transform the edge-disjoint partitioning of Figure 4 to

obtain the given edge disjoint partition (Figure 3b). ..47

6 Construction for bounds analysis between Vertex-Disjoint and Edge-Cover..........52

7a Vertex-Disjoint Partitioning and…………………………………………………...52

7b Edge-Cover Partitioning……………...52

8 Non-Parametric approach to stabilization ..74

9a The solution space corresponding to the equality constraints involving a
 vertex and its clones………………………………………………………………...80

9b Relaxing the solution space...80

10 A graph and a vertex-disjoint partition into two subgraphs92

11a Vertex disjoint subgraph 1…………………………………………………………93

11b Vertex disjoint subgraph 2………………………. ..93

xi

LIST OF TABLES

TABLE Page

1 Comparison of methods (m1) and (m2) ...30

2 Comparison of methods (p1) and (p2) ...31

3 Comparison of methods (b1) and (b2) ...32

4 Instances taken from the Second DIMACS Implementation Challenge solved

using the (m2)-(p2)-(b2) combination of methods...33

5 Randomly generated graphs ...36

6 Test results on randomly generated graphs ..37

7 Comparison of methods (p1) and (p2) ...60

8 Comparison of methods (m1) and (m2) ...61

9 Results for different number of partitions ..62

10 Comparison of methods ED and VD on DIMACS instances63

11 Comparison of methods (m1), (m2), (m3), (m4) and (m5)......................................83

12 Preliminary results for lifting ...98

13 Results of Lift & Project Cut generation scheme within B&P112

1

CHAPTER I

INTRODUCTION

The maximum weight-independent set problem (MWISP) is one of the most

well-known and well-studied NP-hard problems in combinatorial optimization. In the

first part of this dissertation, we explore approaches based on branch-and-price (B&P) to

solve MWISP exactly. In the second part of this dissertation, we address convergence

properties of DWD and present specific techniques for improving the rate of

convergence of DWD in application to our B&P scheme. In the final section of the

dissertation, we focus on identifying new generic cut-generation methods for the B&P

approach. These cut-generation methods are not limited to MWISP and can be used in

general applications of the B&P.

In this chapter we introduce the notation that will be used in this dissertation. We

also present some relevant background and a brief overview of the research. We begin

section 1.1 by defining the notation and presenting some background on MWISP. We

specify this research in section 1.2 in terms of its goals and objectives. We present our

research motivation in section 1.3. We describe our method of approach in section 1.4.

Finally, we conclude by presenting the organization of the dissertation in section 1.5.

This dissertation follows the format and style of Discrete Applied Mathematics.

2

1.1 Background

An independent set S in a graph is a subset of its vertices such that no two

vertices in S are connected by an edge. Given a weighting of vertices, the maximum

weight independent set problem (MWISP), which is NP-hard [58], is to prescribe an

independent set of the graph that has maximum weight. The maximum weight-

independent set problem (MWISP) is one of the most well-known and well-studied

problems in the field of combinatorial optimization. It has many important applications,

including combinatorial auctions [126], graph coloring [92], coding theory [88],

geometric tiling [38], fault diagnosis [25], pattern recognition [70], molecular biology

[57, 66, 93], and scheduling [72].

This dissertation deals with finite, simple undirected graphs. Graph G = (V , E),

comprises vertex set V and edge set E . An edge in E joining vertices u , v ∈ V is

denoted uv . The neighbors and nonneighbors of vertex v ∈ V

are)(vN = }:{ EuvVu ∈∈ and)(vN = }){)((\(vvNV � , respectively. This notation is

extended to a set W ⊆ V by defining)(WN = � Wv
WvN

∈
\)(and)(WN =

))(\(WWNv � . For any W ⊆ V , we denote the subgraph induced by W as G [W]; and

for any F ⊆ E , we denote the subgraph induced by F as G [F]. For 1V , 2V ⊂ V the

incidence of 1V in 2V is defined as 2V (1V) = 2V � N (1V). We use S ⊆ V to denote an

independent set of G and subgraph K to denote a clique of G (i.e., a complete subgraph

of G).

3

The family of all independent sets is denoted GS . For S ⊆ V and c ∈ nR , where

n =|V | we define)(Sc =�
∈Sv

j
j

c . MWISP corresponds to determining

{ max)(Sc | GSS ∈ }. We assume jc ≥ 0 ∀ jv ∈ V . MWISP can be formulated as a 0-1

integer program:

max c x

..ts A x ≤ 1, x binary (1)

where A : nm × edge-incidence matrix of G , n = |V | and m = | E |.

In this formulation, a binary characteristic vector x represents a unique independent set

from the set GS . We are interested in the convex hull of these characteristic vectors,

which is denoted)(GSconv . The corresponding Linear Program or the fractional

maximum weighted independent set problem (FMWISP) is obtained by relaxing the

binary restrictions on x to x ≥ 0 . The corresponding convex hull is represented by GL .

A special case of MWISP is the maximum independent set problem (MISP) for which

jc = 1 ∀ jv ∈ V . The corresponding linear relaxation will be referred to as MISLP.

1.2 Specifications of the research

 This section describes the goals and objectives of this research.

1.2.1 Goal

This research has two primary goals. The first goal is to investigate approaches

based on B&P to solve MWISP exactly. Specifically, our goal is to investigate two B&P

4

schemes: vertex- and edge-disjoint. Our aim is to determine the effectiveness of these

two schemes in solving challenging instances of MWISP.

The second primary goal is to explore new generic approaches to generating

cutting planes within the B&P framework. Such techniques have not been explored. We

aim to provide a generic framework for generating cutting planes within the B&P

approach. These techniques will be applied to MWISP in this dissertation but are not

limited to it.

1.2.2 Research objectives

The objectives of this research are to present a rationale for using price-directed

decomposition to solve MWISP, to investigate effective implementation techniques, and

to conduct computational tests to identify strengths and weaknesses of the approach. The

research comprises the following main tasks:

(1) Developing an effective vertex-disjoint B&P approach to solve MWISP exactly.

(2) Developing an effective edge-disjoint B&P approach to solve MWISP exactly.

(3) Developing insights into stabilizing column generation within B&P.

(4) Developing a generic cut-generation framework for B&P.

1.3 Motivation

MWISP is one of the most well-known and well-studied NP-hard problems in the

field of combinatorial optimization. This research offers new approaches based on B&P

to solve MWISP exactly. Specifically, the research presents two B&P schemes: vertex-

and edge-disjoint. Our research evaluates the efficiency of these schemes

5

computationally, provides insights into the advantages and disadvantages of each, and

offers guidelines for using each. Every solver developed for MWISP aims at being able

to solve the entire spectrum of instances of MWISP but, often, the efficiency of a solver

is limited to a certain range of instances. This research provides a scheme for embedding

arbitrary MWISP solvers within our B&P framework. More importantly, this research

shows that our B&P approach (using the embedded MWISP solver) is able to perform

better on instances that were considered challenging for the embedded MWISP solver.

Thus, our research provides a scheme for augmenting the performance of existing

MWISP solvers.

Traditional methods for improving the rate of convergence of DWD involve

parameters that are difficult to estimate a priori. Our research explores the convergence

issues associated with DWD and attempts to provide insights into developing non-

parametric methods to accelerate the rate of convergence of DWD.

Finally, this research lays the foundation for a generic framework for generating

cutting planes within B&P. Cutting plane techniques are not used routinely within B&P

because of the challenge in generating cutting planes in terms of the original decision

variables. This research shows how to overcome this challenge and invoke cutting plane

techniques within the B&P framework.

1.4 Method of approach

In this section, we discuss our method of approach.

6

Vertex disjoint B&P scheme. An approach that involves a DWD reformulation of the

edge inequality formulation (1) of MWISP was developed by our research team and

reported in [126]. It begins by partitioning the vertex set of the graph based on a vertex-

disjoint partitioning. This approach employs a clustering heuristic-based partitioning

scheme (METIS) and compares it to a chordal partitioning scheme. The METIS

partitioning scheme aims at partitioning the vertex set equally among all partitions while

attempting to minimize the number of edges that have ends in different sets [75-77]. The

chordal partitioning scheme employs the procedure of Balas and Yu [13] to partition the

vertex set such that each partition induces a chordal subgraph. This approach also

employs two methods for managing the size of the restricted master problem (RMP)

using either the basic edge-inequality formulation or a clique-based formulation. The

latter aims at identifying a minimal set of cliques that cover all cross-edges (edges whose

ends lie in different partitions) thus tightening the formulation and reducing degeneracy.

Finally, two branching rules are explored–traditional variable-dichotomy branching and

a special-purpose, branching on fractional-weighted cliques.

Edge disjoint B&P scheme. It has been shown that an arbitrary vertex-disjoint

partitioning can be transformed to a corresponding edge-disjoint partitioning that yields

a tighter bound [131]. We investigate whether this property can be extended to show that

an arbitrary edge-disjoint partition always yields a tighter bound than an arbitrary vertex-

disjoint partition having the same number of partitions. We employ a partitioning

scheme based on branch decomposition [68] to create edge-disjoint subgraphs. We

explore both edge partitioning and edge covering. The edge-disjoint formulation is

7

similar to the vertex cloning formulation described in [131] and involves invoking

equality constraints among decision variables associated with a cloned vertex and each

of its clones. Although these equalities tighten the formulation, they lead to higher orders

of degeneracy and poor convergence. We adapt stabilization methods in an attempt to

improve the rate of convergence. In addition, we invoke a clique cover of the cloned

vertices and use these inequalities to tighten our formulation and to reduce degeneracy.

We also explore problem-specific strategies to improve the rate of convergence and

conduct a computational evaluation of these methods.

Stabilization techniques for B&P. The slow rate of convergence associated with the

DWD reformulation affects the time spent at each node in the B&P tree and, hence, is

critical to the efficiency of the approach. We develop insights into the instability issues

that accompany column generation. Specifically, we discuss the convergence properties

of DWD and prevalent techniques for improving the rate of convergence. We also

present preliminary research towards developing a non-parametric approach to

stabilizing DWD. Finally, we present techniques for improving the rate of convergence

of the edge-disjoint B&P scheme.

Cut generation within B&P. Bounds obtained from the DWD relaxation are tighter than

those given by the LP relaxation but are not tight enough to solve challenging instances

effectively. In the second part of our research we focus on generating valid linear

inequalities that can be incorporated in the B&P framework to tighten the formulation.

Note that traditional generic cutting planes techniques– Gomory cutting planes and Lift-

and-Project (L&P) cutting planes - are derived from the optimal simplex tableau, which

8

in a DWD reformulation will generate cutting planes in terms of the decision variables in

the reformulated master problem. A cutting plane in terms of the master-problem

variables can distort the subproblem structure. Hence, the challenge is to present

techniques for generating cutting planes in terms of the original problem variables. This

is the precise reason why cutting plane techniques are not used routinely in the B&P

framework. We introduce a generic method for deriving cutting planes in the B&P

framework in terms of the original problem variables. Although implemented

specifically for MWISP, our approach will be useful in generic applications of B&P. We

begin by identifying faces (facets) of the subproblem that are tight at the current DWD

solution using a modification of the facet generation procedure (FGP) [102]. These valid

inequalities, however, are of no use if incorporated in the master problem since they are

implicitly invoked by the DWD reformulation, which optimizes over the convex hull of

the feasible integer solutions to each subproblem. However, we show that these valid

inequalities - when lifted across other subproblems- can potentially generate valid

inequalities that cut off the current fractional solution in the master problem. Within the

context of MWISP, this method identifies those facets of G that are obtained by lifting

facets of polytopes associated with the subgraphs of G . However, we cannot guarantee

that we will always be able to cut off the current fractional solution. In order to

guarantee that a cut is always generated, we propose to use faces (facets) of the

subproblem polytopes in conjunction with master problem inequalities in a Chvatal-

Gomory (C-G) fashion to generate valid cutting planes. However a practical

implementation of the C-G cut relies on identifying the C-G multipliers which is not

9

straightforward. We overcome this challenge by exploring the L&P technique and show

how to invoke L&P cuts within a B&P framework. This is the basis of our cut generation

scheme, which we evaluate in computational tests.

1.5 Organization of the dissertation

The dissertation is organized in eight chapters. Chapter II reviews literature

relevant to this research. Chapter III addresses objective (1) and presents the vertex-

disjoint scheme. Chapter IV addresses objective (2) and presents the edge-disjoint

scheme. In Chapter V we focus on objective (3) and present techniques for improving

the rate of convergence of DWD. Chapters VI and VII address objective (4) and each

present a generic cut generation strategy for B&P. In Chapter VIII we present our

conclusions and some recommendations for future research.

 10

CHAPTER II

LITERATURE REVIEW

In this chapter we review literature relevant to this research. Section 2.1 presents

some theoretical background of MWISP. A brief literature review of existing solvers for

MWISP is given in section 2.2. In section 2.3 we present some background about B&P

and review existing techniques towards improving the rate of convergence of DWD.

Finally section 2.4 presents a brief review on cutting planes techniques.

2.1 MWISP

An important motivation for studying MWISP is that two classical combinatorial

problems - set packing and set partitioning - can be transformed into MWISP on a

corresponding intersection graph [100, 96]. One of the earliest attempts to explore the

complete characterization of the convex hull of the independent set problem was by

Padberg [100], who explored the facets of the set packing problem by equating it to

MWISP on the underlying intersection graph. Padberg showed that maximal clique

inequalities represent facets of)(GSconv and, further, that the only canonical

inequalities (inequalities with 0-1 coefficients for its left-hand-side and a 1 for its right-

hand-side) that are facets of)(GSconv correspond to maximal clique inequalities.

Padberg also identified one other important family of facets of)(GSconv : lifted odd-

hole inequalities.

11

Nemhauser and Trotter [96] provided a complete characterization of the extreme

points of)(GLconv . They showed that, if x is an extreme point of)(GLconv , then

jx equals 1 ,
2
1

 ,0 ∀ j ∈ V . For P ⊆ V let Px ∈)(GLconv be defined by { P
jx =

2
1

if j ∈ P ; P
jx = 0 else}. If Px as defined above is an extreme point in)(GLconv and

][PG is connected, then Px is said to be an elementary fractional extreme point. They

showed that Px is an elementary fractional extreme point IFF][PG contains an odd-

cycle. They stated that x is an extreme point of)(GLconv IFF x = 0x + 1x +…+ kx ,

where 0x is an integer extreme point of)(GLconv , 1x … kx are elementary fractional

extreme points of)(GLconv and 0x , 1x ,…, kx are mutually disjoint. This implies that an

arbitrary extreme point of)(GLconv can be represented uniquely as the sum of an

integer extreme point and elementary fractional extreme points, and conversely, that any

such sum of extreme points, which produce a feasible solution to MWISLP, produces an

extreme point of)(GLconv . They generalized the procedure of lifting odd-hole

inequalities introduced by Padberg [100] and showed how to construct facets of

)(GSconv from arbitrary facets associated with vertex-generated subgraphs of G . They

made an important observation that the facets of)(GSconv can be divided into two

distinct categories: those associated with subgraphs of G , which are obtained by lifting

facets of polytopes associated with these subgraphs, and those uniquely associated with

G . They emphasized that certain facets cannot be generated by simply lifting facets of

subgraphs. In addition to the cliques and odd holes introduced by Padberg, they

12

introduced the odd anti-hole (an edge compliment of an odd hole). Finally, they showed

that the facets obtained from lifting odd holes and cliques cut off all the fractional

extreme points of)(GLconv , noting at the same time that introducing these inequalities

generally produces new fractional vertices.

Trotter [116] introduced other classes of facet-producing graphs called webs and

anti-webs, subsuming cliques, odd holes and odd anti-holes. A sufficient local optimality

condition for MWISP was presented by Nemhauser and Trotter [97]. They defined the

concept of an augmenting set. Given S ∈ GS , a vertex set I ⊆ SV \ is called an

augmenting subset to S if I ∈ GS and)())(\)((ScISISc >� . They show that S ∈ GS

is not an optimal independent set IFF ∃ some I ⊆ SV \ which is augmenting to S . This

implies, that given S ∈ GS , we need to examine only those I ∈ GS for which I ⊆ SV \

in order to improve upon S or verify its optimality. They also show that S ∈ GS is an

optimal independent set in G IFF, for every maximal independent set I ⊆ SV \ , S (I)

is an optimum independent set in the bipartite subgraph Ĝ induced by I � S (I).

Further, if S is an optimal independent set in the subgraph induced by S �)(SN , then

S ⊆ *S , where *S is an optimum independent set in G . They introduced the concept of

persistency, showing that those variables that assume binary values in an optimum

MWISLP solution retain the same values in an optimum solution. Suppose *x is an

optimal (1 ,
2
1

 ,0) - valued solution to MWISLP and P = { jv : *
jx =1}; then, there exists an

optimal independent set in G that contains P .

13

Chvatal [37] investigated the problem of finding a minimal description for

)(GSconv . They showed that)(GSconv can be represented by maximal clique and non-

negativity inequalities IFF G is a perfect graph.

2.2 Solving MWISP

Different approaches for solving MISP exactly have been proposed. Explicit

enumeration was proposed by Bron and Kerbosch [31]. B&B based approaches were

explored by Balas and Yu [13] and, Carraghan and Pardalos [33], triggering the

development of optimization methods for solving MWISP exactly [7, 11, 12, 26, 30, 32,

48, 67, 73, 89, 38–41, 47]. Nemhauser and Sigismondi [36] have proposed a cutting

plane approach for MWISP. Mehrotra and Trick [92] proposed column generation to

solve the minimum coloring problem employing MWISP subproblems.

2.3 B&P: convergence issues

Implementing column generation using Dantzig-Wolfe decomposition (DWD)

within branch-and-bound (B&B) is referred to as branch-and-price (B&P) [16, 130].

Many NP-hard integer optimization problems have been approached using B&P [15, 16,

41, 42, 130].

Although a significant amount of research reports the successful use of B&P in

various applications, it encounters difficulties in some applications. The bound obtained

from DWD can be weak in comparison with the optimal objective value and lead to a

14

large B&B tree. The column-generation scheme could also be unstable, leading to a slow

rate of convergence.

Recent research has focused on improving the rate of convergence of DWD,

typically exploiting the dual space. A column in a primal linear program is equivalent to

a row in the dual. Thus, column generation is equivalent to generating supporting

hyperplanes to the epigraph of the piecewise linear dual function and solving the DWD

is identical to solving the dual problem by Kelley's cutting plane method [78]. One

reason for the slow rate of convergence observed in column generation is instability -

upon adding a new cut in the dual space, the resulting dual solution can be far away from

the current dual solution (irrespective of the fact that the current solution could be near-

optimal or, in fact optimal) [40, 43]. Another component contributing to slow

convergence is the tailing-off effect - the objective value improves rapidly early on but

only slowly towards the end [40, 43]. Degeneracy, which is particularly significant for

set partitioning problems, also affects convergence –column generation may require

many iterations without improving the objective value [40, 43].

Many approaches work to stabilize the dual in an attempt to improve the rate of

convergence. In the Boxstep method, optimization in the dual space is explicitly

restricted to a trust region around the current dual solution. This trust region is redefined

appropriately as the algorithm converges [90]. A trust region has been combined with a

penalty function to prevent excessive dual oscillations [43]. In the analytic center cutting

plane method (ACCPM) a central point relative to the current approximation of the dual

function is used instead of the current optimal dual solution to generate columns

15

[61,62,63]. Smoothing approaches have also been proposed to capture the history of the

column generation process by using some combination of all previously generated dual

solutions along with the current dual optimal solution [129]. In a related approach, the

next dual vector used to generate columns is obtained by taking a step away from the

current dual solution in the direction of the best dual vector (the one corresponding to the

best dual bound) obtained so far [129].

2.4 Cut generation techniques

Strong cutting plane methods form another, capable approach for solving 0-1

Integer programs. These methods aim at improving the current approximation of the

integer convex hull by generating valid inequalities that cut off the current fractional

solution of the linear programming relaxation. Dantzig, Fulkerson and Johnson were the

first to employ a cutting plane approach when they solved the Traveling Salesman

Problem (TSP). Gomory was the first to propose a cutting-plane approach as a generic

solution procedure for solving pure 0-1 integer programs [64, 65]. Cutting plane

algorithms can be broadly classified into two categories. The first is generic in the sense

that the cutting planes generated don’t rely on knowledge of the underlying

combinatorial structure of the problem, whereas the second exploits the underlying

combinatorial structure. Embedding cutting planes within B&B yields the branch-and-

cut (B&C) approach.

 A lot of interest has recently been regenerated in the area of generic cutting-

plane methods. Gomory’s cutting plane techniques, which were considered

16

computationally inefficient for some time, have recently been shown to be quite efficient

if implemented within B&C and have been successfully incorporated within commercial

software [5]. The disjunctive principle developed by Balas [2, 3, 4] has been explored

further, leading to a new generic, cutting-plane method – lift and project (L&P), which is

based on tightening the linear relaxation of an integer program by lifting the problem

into a higher dimensional space where a tighter formulation is obtained. This higher

dimension polyhedron, when projected back onto the original space, provides a tighter

approximation of the integer convex hull [5, 6, 114]. L&P utilizes this higher dimension

polyhedron to derive strong cutting planes for the original polyhedron [5, 6].

17

CHAPTER III

VERTEX-DISJOINT B&P SCHEME FOR MWISP

3.1 Introduction

This chapter presents the B&P scheme for solving MWISP on a given graph G

that our research team developed and reported in [127]. It also notes the contributions

made by the author of this dissertation. This scheme involves a vertex-disjoint

decomposition of G and entails solving MWISP’s on vertex-disjoint subgraphs of G

within a B&P framework. MWISP’s on the subgraphs are less challenging - in the

average case - to solve than the MWISP on the original graph G . This study presents a

rationale for using vertex-disjoint decompositions to solve MWISP exactly. This chapter

comprises six sections. Section 3.2 presents the vertex-disjoint decomposition and the

associated formulations. Sections 3.3, 3.4 and 3.5 present methods to deal with

complexity of MWISP. Section 3.6 presents results of our computational tests and

Section 3.7 presents our conclusions.

3.2 MWISP – formulations

The B&P approach uses the following edge-inequality based Integer Program (IP) to

formulate MWISP:

*
MWISPZ = Max }:{ Qxxw

Vv
vv ∈�

∈

 (3.1)

in which the inequalities corresponding to edges of G define Q :

18

Q = },1:{ EuvxxBx vu
V ∈∀≤+∈ , (3.2)

where VB denotes the set of binary vectors of dimension || V and binary variable vx = 1

if vertex v is included in the independent set; else, vx = 0. The set of feasible integral

solutions to (3.2) represents the family of all independent sets in the graph G and is

denoted GS . We are interested in the convex hull of GS , which is denoted by GH (i.e.,

GH =)(GSconv). The corresponding linear relaxation of (3.1) is obtained by relaxing

the binary restrictions on vx to 10 ≤≤ vx . This LP is referred to as the fractional

maximum weighted independent set problem (FMWISP). The corresponding convex

hull is represented by GL . In the next section we present formulations based on our

vertex-disjoint decomposition.

3.2.1 Vertex-Disjoint formulations (VD)

We partition the vertex set of the graph G = (V , E) into P parts PVV ,..,1 ,

yielding subgraph pG =][pVG with edge set pE =)(pGE for each },..,1{ Pp ∈ . The

partition containing vertex v is denoted vp . Edges of G whose end-points lie in disjoint

partitions constitute set Ê = �
P

p pEE
1

\
=

, which induces subgraph]ˆ[EG . V̂ denotes the

vertex set of]ˆ[EG . Based on this vertex-disjoint partitioning, MWISP can be formulated

as:

*
MWISPZ =Max

��

�
�
�

��

�
�
�

∈∀∈∈∀≤+��
= ∈

P

p Vv
p

p
vuvv

p

PpQxEuvxxxw
1

},..,1{,,ˆ,1: , (3.3)

where pQ corresponds to edge-inequalities associated with pG :

19

 pQ ={ }pvu
V EuvxxBx p ∈∀≤+∈ ,1:|| . (3.4)

Our B&P approach exploits the block-diagonal structure embedded within formulation

(3.3):

*
MWISPZ =Max�

∈Vv
vv xw = Max�

=

P

p

pp xw
1

subject to

	
	
	
	
	
	

�

�
�
�
�
�
�

�

P

P

D

D

D

AAA

�

����

�

�

�

00

00
00

2

1

21

�
�
�
�
�

�

�

�
�
�
�
�

�

�

Px

x

x

�

2

1

1≤ (3.5)

|| pVp Bx ∈ ∀ },..,1{ Pp ∈ ,

where pA is the matrix of coefficients in inequalities associated with edges Euv ˆ∈ , pD

is matrix of coefficients in inequalities associated with edges pEuv ∈ , px pVB∈ is the

vector of decision variables associated with vertices pVv ∈ and pw pVR∈ is the

corresponding vector of weights.

 The set of integral solutions feasible with respect to pE and Ê are denoted

pS and
E

S ˆ , respectively:

pS = ∈∀≤+∈),(,1:{ || vuxxBx vu
V

pE } (3.6)

E
S ˆ = ∈∀≤+∈),(,1:{ || vuxxBx vu

V Ê } (3.7)

20

The corresponding integer convex hulls are denoted pH (= conv (pS)) and
E

H ˆ (=

conv (
E

S ˆ)). The convex hull of the corresponding linear relaxations are denoted pL and

E
L ˆ , respectively.

We reformulate MWISP by applying DWD [39] to the linear relaxation of (3.5).

Within this scheme, a subproblem corresponds to each subgraph pG , },..,1{ Pp ∈ , while

the master problem corresponds to the induced subgraph]ˆ[EG . We solve MWISP’s on

the subgraphs to generate columns that populate the master problem. Each column in the

master problem is hence associated with an extreme point in the corresponding

subproblem polytope. The restricted master problem (RMP) involves a subset of such

columns:

*
VDRMPZ =Max)(

1

jpp
P

p Jj
jp xw

p

��
= ∈

λ (3.8)

subject to

1)(
1

≤��
= ∈

jp
p

P

p Jj
jp xA

p

λ (3.9)

1=�
∈ pJj

jpλ ∀ },..,1{ Pp ∈ (3.10)

0≥jpλ ∀ },..,1{ Pp ∈ , pJj ∈ , (3.11)

where pJ is the set of integer extreme points of pQ , jpx pVB∈ is the vector defining

extreme point pJj ∈ , and jpλ is the RMP decision variable corresponding to extreme

point pJj ∈ . MWISP subproblem p for },..,1{ P is of the form:

21

()α*
pZ = Max (){ }p

ppT
p

p QxxAw ∈− :α , (3.12)

 where α E
R

ˆ
∈ is the vector of dual variables associated with the rows of constraint set

(3.9). A column corresponding to jpx is deemed improving if () 0>−− p
jpT

p
p xAw βα ,

where pβ is the dual variable corresponding to the thp convexity constraint (3.10).

B&P solves RMP to optimality at each node of the B&B tree using column

generation. Variable fixing within child nodes of the B&B tree is enforced by inclusions

(or exclusions) of the corresponding vertices in the subgraph
vpG . The author of this

dissertation implemented a generic B&P solver (see Appendix A) and adapted it for the

above vertex-disjoint B&P scheme. In the next section we describe the partitioning

scheme employed in this research.

3.3 Vertex-Disjoint partitioning

Our research team explore two alternative methods for partitioning the vertex set

)(GV . The first method employs METIS [75-77], a clustering heuristic, to partition the

vertex set)(GV into a pre-specified number of subsets P . The author of this

dissertation was involved in invoking METIS from the B&P solver. The METIS

partitioning scheme (p1) aims at partitioning the vertex set)(GV equally among all

partitions while attempting to minimize the number of edges that have ends in different

sets. We specify the number of partitions P primarily based upon the size and density of

a subproblem that can typically be solved in an acceptable amount of time. The

advantage of (p1) is that it allows the resulting density of]ˆ[EG to be controlled.

22

However, one disadvantage of (p1) is that the induced subgraphs do not have any special

structure and, thus, there is no guarantee that they can be solved in polynomial time.

We compare this scheme to a chordal partitioning scheme which was developed

by another member of our research team. The chordal partitioning scheme (p2) employs

the procedure of Balas and Yu [13] to partition the vertex set such that each partition

induces a chordal subgraph. The primary advantage of (p2) is that MWISP can be solved

on each chordal subgraph in polynomial time. However (p2) results in a large Ê for a

given number of partitions P ; consequently, RMP is also large and requires substantial

computational effort.

To solve MWISP on these subgraphs, another member of our research team

adapted Carraghan-Pardalos algorithm [17]. In the next section we discuss methods for

handling the associated RMP.

3.4 RMP

A large RMP affects the computational effectiveness of our B&P approach. Thus, the

size of Ê is critical for our approach. Another issue observed, especially with more

dense graphs, is degeneracy. Our research team employ two alternative methods to deal

with RMP. The first method (m1) simply uses the constraints associated with edges in

Ê . The primary advantage of (m1) is its simplicity. However, it suffers from

computational disadvantages due to the resulting size of RMP and its associated

degeneracy. The second method (m2) aims at identifying a minimal set of cliques that

23

cover all edges in Ê . This method employs a best-in greedy heuristic (devised and

implemented by another member of our research team) to identify a set of cliques in

]ˆ[EG . This method entails solving a set-covering problem to select a minimal set of

clique and edge inequalities that covers all edges in Ê . This method offers the

advantages of a tighter formulation due to the clique inequalities, thus providing a better

bound in comparison with method (m1). It also reduces the order of degeneracy in

comparison with (m1).

3.5 Branching

Our research team explored two alternative rules to branch upon obtaining a

fractional RMP solution – traditional variable-dichotomy branching and a special-

purpose branching on fractional-weighted cliques. The variable-dichotomy branching

(b1) branches on the most fractional variable vx = v

vp

v

jp

Jj
jp x�

∈

λ , where Vv ∈ , resulting in

two child B&B nodes: one corresponding to vertex v being excluded (vx = 0), and the

other corresponding to vertex v being included (vx = 1).

The second rule (b2) employed by our research team branches on the vertices of

a clique in graph G . Weights are assigned to each vertex equivalent to the fractional

value of its associated variable – specifically, vertex v is assigned a weight of (0.5−| vx

−0.5 |). This rule employs a greedy heuristic (implemented by another member of the

research team) to identify a fractional-weighted clique K of large weight. We ensure that

all vertices whose associated variables are fixed in the current B&B node are excluded

24

from clique K . Branching on clique K results in 1)(+KV child nodes: nodes

)(,,1 KV� correspond to a single new vertex)(KVv ∈ being included (vx = 1), while

child node 1)(+KV corresponds to all vertices in K being excluded simultaneously (vx

= 0)(KVv ∈∀). Note that since K contains only fractional vertices, it need not be

maximal. Also, the current fractional solution need not violate K (i.e. K need not cut off

the current fractional solution).

3.6 Computational results

This section describes the results of our computational tests. We conduct our

tests on two sets of instances. The first set comprises unweighted instances from the

Second DIMACS Implementation Challenge (we actually use the complements of the

listed graphs). The second set comprises randomly generated π graphs. The parameter

π defines the probability of an edge connecting two vertices in the graph (10 ≤≤ π).

The weight of each vertex is generated from a discrete uniform distribution on the

interval [1, M], with M = 1, 20, 40, 60, or 100. The M = 1 case corresponds to the

unweighted case. For a given number of vertices)(GV and a value of π , we generate

25 independent instances (each using a unique random number seed), comprising five

subsets, each with a different value of M and each comprising five instances.

Table 1 compares performances of (m1) and (m2) using methods (p2) and (b2).

The first six columns in Table 1 specify the instance: graph designation, the number of

vertices, V ; the number of edges, E ; the % Density, ∆ ; the number of partitions (P);

25

and the corresponding Ê . The last five columns give the method [(m1) or (m2)] and the

results of each: the number of rows in RMP (RMP Rows); the number of B&B nodes

required to find the optimal solution (B&B Nodes); the total number times RMP is

solved (MP Sols); and the CPU run time for our B&P approach to prescribe an optimal

solution (B&P Time). Results show that (m2) solves 7 of these 13 instances faster than

(m1) (including three of the four most challenging instances), ties on five of the

instances, and is substantially slower on only one instance (brock200-3). (m2) is at a

disadvantage in terms of the additional time spent in identifying cliques. However, this

disadvantage is overcome by the fact that (m2) typically yields a tighter model as

indicated by comparing the number of B&B nodes with the corresponding number that

(m1) achieves. (m2) also yields a smaller RMPs (see RMP Rows), requiring less

computational effort. Overall, (m2) performs better than (m1) and, based on this

comparison, we select (m2) as a default to use on other tests.

Table 2 compares performances of (p1) and (p2) using methods (m2) and (b2).

Results show that (p2) solves 12 of the 13 instances faster than (p1) and essentially ties

(p1) on the 13th instance (hamming8-2). Method (p1) typically results in larger Ê ,

reflecting the fact that subproblems contain fewer edges. This affects the tightness of the

bound, consequently, resulting in larger solution times. (p2) outperforms (p1) because it

yields smaller RMPs, thus providing tighter bounds (see B&B Nodes). Based on this

comparison, we prefer (p2) over (p1).

26

Table 3 compares the performances of (b1) and (b2) using methods (p2) and

(m2). Results show that method (b2) is faster than (b1) on 10 of the 13 instances; it is

significantly faster on the more challenging instances. Method (b2) incurs an overhead

due to the time involved in finding cliques. However, (b2) makes up for this

disadvantage since it requires much smaller B&B search-trees than (b1), on average (see

B&B Nodes). We conclude that (b2) is superior because cliques provide better

partitioning of the solution space. Based on these tests, we conclude that the (m2)-(p2)-

(b2) combination is appropriate. We now evaluate (m2)-(p2)-(b2) combination further.

Table 4 compares the performance of our B&P approach to that of CPAA on the

set of 13 DIMACS instances. The first four columns in Table 4 specify the instance:

graph designation, V , E , and ∆ . Columns 5-7 specify the number of partitions

employed (P) and the resulting Ê and RMP Rows, respectively. To evaluate tightness

of the formulation columns 8-10 list the upper bound corresponding to the optimal

solution of RMP at the root node ()LPZ , the lower bound obtained from the heuristic

()HZ , and the optimal MWISP solution ()IPZ . Finally, columns 11-14 present relevant

performance metrics: B&B Nodes; MP Sols; B&P Time; and CPAA Time, the CPU run

time for CPAA to solve the instance. We evaluate the sensitivity of our B&P approach to

the number of partitions by testing three different values of P on each instance. Our

results show that the performance of our B&P approach is indeed sensitive to P and that

it is more effective than CPAA on graphs with densities less than 40%. Our run times to

solve these DIMACS instances are quite reasonable. CPAA can handle dense subgraphs

27

effectively; however, on large, sparse subgraphs, CPAA does not perform well. CPAA

can efficiently handle sparse subgraphs with up to only 30-50 vertices. We select the

value of P such that CPAA can efficiently solve the resulting subproblems. Thus, for

sparse subgraphs we use larger values of P to make subgraphs smaller. However, as P

increases, Ê also increases, weakening the bound provided by RMP. Smaller Ê is good

in two ways: RMP requires less computational effort and subproblems contain more

edge inequalities so that RMP provides tighter bounds.

Table 5 describes the random � graphs generated for testing; all graphs use |V| =

100 and P = 4. Column 1 specifies the value of �. Columns 2-4, 5-7, and 8-10, give

minimum, maximum, and average values (over five instances) for the resulting E ,

Ê , and RMP Rows. Table 6 reports the results of test on these random graphs.

Columns 1 in Table 6 specifies the value of �, and Column 2 specifies M. Columns 3-6

gives performance measures: ** / IPLP ZZ , ** / IPH ZZ , B&B Nodes, and RMP iterations.

Columns 7-9, 10-12 specify the minimum, maximum, and average run times for our

B&P approach and CPAA, respectively to solve a set of five random instances. As �

increases, the upper bounds from the linear relaxations (** / IPLP ZZ in column 3) as well as

the lower bounds from the heuristic (** / IPH ZZ values in column 4) degrade. The tightness

of *
LPZ the optimal solution at the root node, reduces as � increases because subgraphs

contain fewer edges. Weaker bounds make denser problems more challenging (note

B&B Nodes in column 5, RMP iterations in column 6 and run times in columns 7–9).

Results in columns 5–12 show that, for a given �, the set of unweighted instances is

28

consistently more challenging than the set of related, weighted instances. Weighted

instances (i.e., with M = 20, 40, 60, 100) have comparable run times for most values of �

(exceptions are for � = 0.05 and for M = 100 with � = 0.10 and � = 0.15). Our B&P

approach solves MWISP at the root node of the B&B tree in each instance with � = 0.01.

CPAA failed to solve any instance with 0.01 � � � 0.10, because each exceeded memory

capacity (512 MB). Our B&P approach gives better run times for instances with 0.01 � �

� 0.20, but CPAA requires less run time on denser instances with � ≥ 0.30.

3.7 Conclusions

In this chapter we present an approach developed by our research team for

solving MWISP by utilizing a vertex-disjoint decomposition within a B&P framework.

Tests conducted by our team indicate that this B&P approach is more effective on sparse

graphs, which result in small RMPs. The tests on random � graphs also show that the

unweighted maximum independent set problem is more challenging computationally

than the corresponding weighted problem. Run time is sensitive to P, the number of

vertex-disjoint partitions of the graph. The associated Ê is critical in defining the size

of the master problem and the associated tightness of the bound. Overall, this B&P

approach performs well on very sparse graphs, the category of instances that is most

challenging for earlier approaches, including CPAA. Every approach developed for

MWISP aims at being able to solve the entire spectrum of instances of MWISP but,

often, the efficiency of a solver is limited to a certain range of instances. This research

provides a scheme for embedding arbitrary MWISP solvers (CPAA in our case) within a

29

B&P framework. Further, this B&P approach (using the embedded MWISP solver) is

able to perform better on instances that were considered challenging for the embedded

MWISP solver. Thus, this research also provides a scheme for enhancing the

performance of existing MWISP solvers such as CPAA.

 30
Table 1
Comparison of methods (m1) and (m2)

Graph ||V || E ∆ P |ˆ| E Method RMP

Rows
B&B

Nodes
MP

Sols.
B&P

Time (sec.)
(m1) 626 1 3 0.6 hamming8-2 256 1,024 3.1 20 626
(m2) 626 1 3 0.6
(m1) 26 98 2,091 2.4 MANN_a9 45 72 7.3 5 26
(m2) 20 19 527 0.5
(m1) 96 1 3 0.3 hamming6-2 64 192 9.5 8 96
(m2) 96 1 3 0.3
(m1) 240 6 89 0.9 johnson8-4-4 70 560 23.2 3 240
(m2) 127 1 23 0.6
(m1) 1,082 >3,500 >76,809 * johnson16-2-4 120 1,680 23.5 8 1,082
(m2) 42 1 14 0.6
(m1) 3,293 21,067 405,073 4,557.1 keller4 171 5,100 35.1 5 3,293
(m2) 1,995 12,523 307,029 1,812.2
(m1) 6,528 1 6 4.4 hamming8-4 256 11,776 36.1 4 6,528
(m2) 3,707 1 12 6.1
(m1) 3,463 775 15,331 1,671.5 brock200-3 200 7,852 39.5 2 3,463
(m2) 2,736 3,624 62,432 2,537.4
(m1) 137 136 1,962 1.3 johnson8-2-4 28 168 44.4 8 137
(m2) 23 8 126 0.2
(m1) 9,523 45 1,321 86.1 c-fat200-5 200 11,427 57.4 7 9,523
(m2) 9,393 33 1,238 86.3
(m1) 16,580 712 9,802 705.7 p_hat300-1 300 33,917 75.6 2 16,580
(m2) 10,441 1,086 11,564 479.4
(m1) 12,261 17 233 20.9 c-fat200-2 200 16,665 83.7 4 12,261
(m2) 11,406 8 127 19.2
(m1) 8,999 6 53 7.5 c-fat200-1 200 18,366 92.3 2 8,999
(m2) 7,453 6 68 8.9

(m1) edge constraints only in master problem
(m2) clique constraints replace edge constraints in master problem
* exceeded memory capacity of 512 MB

 31
Table 2 Comparison of methods (p1) and (p2)

(p1) partitioning the graph into chordal subgraphs
 (p2) partitioning the graph using METIS
 * exceeded memory capacity of 512 MB

Graph ||V || E ∆ P Method |ˆ| E RMP
Rows

B&B
Nodes

MP
Sols.

B&P
Time (sec.)

(p1) 846 846 1 3 0.6 hamming8-2 256 1,024 3.1 20
(p2) 626 626 1 3 0.6
(p1) 32 26 40 904 2.7 MANN_a9 45 72 7.3 5
(p2) 26 20 19 527 0.5
(p1) 156 156 1 3 0.3 hamming6-2 64 192 9.5 8
(p2) 96 96 1 3 0.3
(p1) 433 295 79 2,882 11.5 johnson8-4-4 70 560 23.2 3
(p2) 240 127 1 23 0.6
(p1) 1,243 108 16 400 1.7 johnson16-2-4 120 1,680 23.5 8
(p2) 1,082 42 1 14 0.6
(p1) 4,499 3,226 >26,370 >853,215 * keller4 171 5,100 35.1 5
(p2) 3,293 1,995 12,523 307,029 1,812.2
(p1) 10,650 7,434 >3,500 >38,126 * hamming8-4 256 11,776 36.1 4
(p2) 6,528 3,707 1 12 6.1
(p1) 7,325 6,738 >9,334 >200,240 * brock200-3 200 7,852 39.5 2
(p2) 3,463 2,736 3,624 62,432 2,537.4
(p1) 113 22 8 99 1.1 johnson8-2-4 28 168 44.4 8
(p2) 137 23 8 126 0.2
(p1) 11,201 11,077 >13 6,396 * c-fat200-5 200 11,427 57.4 7
(p2) 9,523 9,393 33 1,238 86.3
(p1) 31,511 24,833 >2,170 >84,660 * p_hat300-1 300 33,917 75.6 2
(p2) 16,580 10,441 1,086 11,564 479.4
(p1) 15,912 15,156 25 1,293 261.1 c-fat200-2 200 16,665 83.7 4
(p2) 12,261 11,406 8 127 19.2
(p1) 16,696 14,504 90 2,047 158.5 c-fat200-1 200 18,366 92.3 2
(p2) 8,999 7,453 6 68 8.9

 32

Table 3
Comparison of methods (b1) and (b2)

(b1) branch on most fractional variable
(b2) branch on vertices (i.e., nodes) of a clique
* exceeded memory capacity of 512 MB

Graph ||V || E ∆ P |ˆ| E RMP
Rows

Method B&B
Nodes

B&P
Time (sec.)

626 (b1) 1 0.7 hamming8-2 256 1,024 3.1 20 626
626 (b2) 1 0.6

20 (b1) 13 0.6 MANN_a9 45 72 7.3 5 26
20 (b2) 19 0.5
96 (b1) 1 0.2 hamming6-2 64 192 9.5 8 96
96 (b2) 1 0.3

127 (b1) 1 0.6 johnson8-4-4 70 560 23.2 3 240
127 (b2) 1 0.6

42 (b1) * * johnson16-2-4 120 1,680 23.5 8 1,082
42 (b2) 1 0.6

1,995 (b1) 16,579 12,793.5 keller4 171 5,100 35.1 5 3,293
1,995 (b2) 12,523 1,812.2
3,707 (b1) 1 6.0 hamming8-4 256 11,776 36.1 4 6,528
3,707 (b2) 1 6.1
2,736 (b1) >7,500 * brock200-3 200 7,852 39.5 2 3,463
2,736 (b2) 3,624 2,537.4

23 (b1) 7 0.7 johnson8-2-4 28 168 44.4 8 137
23 (b2) 8 0.2

9,393 (b1) 51 293.2 c-fat200-5 200 11,427 57.4 7 9,523
9,393 (b2) 33 86.3

10,441 (b1) >2,000 * p_hat300-1 300 33,917 75.6 2 16,580
10,441 (b2) 1,086 479.4
11,406 (b1) 13 41.5 c-fat200-2 200 16,665 83.7 4 12,261
11,406 (b2) 8 19.2
7,453 (b1) 9 9.5 c-fat200-1 200 18,366 92.3 2 8,999
7,453 (b2) 6 8.9

33
Table 4
Instances taken from the Second DIMACS Implementation Challenge solved using the (m2)-(p2)-(b2) combination of methods

Graph ||V || E ∆ P |ˆ| E RMP

Rows LPZ HZ IPZ B&B
Nodes

MP
Sols.

B&P
Time
(sec.)

CPAA
Time
(sec.)

hamming8-2 256 1,024 3.1 11 493 493 128.0 128 128 1 3 1.0 *
hamming8-2 256 1,024 3.1 20 626 626 128.0 128 128 1 3 0.6 *

hamming8-2 256 1,024 3.1 24 716 716 128.0 128 128 1 3 0.6 *

MANN_a9 45 72 7.3 5 26 20 18.0 16 16 19 527 0.5 620.8

MANN_a9 45 72 7.3 6 29 22 18.0 16 16 25 687 0.5 620.8

MANN_a9 45 72 7.3 8 35 31 18.5 16 16 43 1,363 0.7 620.8

hamming6-2 64 192 9.5 4 64 64 32.0 32 32 1 3 0.3 *
hamming6-2 64 192 9.5 6 114 114 32.0 32 32 1 3 0.3 *
hamming6-2 64 192 9.5 8 96 96 32.0 32 32 1 3 0.3 *

johnson8-4-4 70 560 23.2 2 140 62 14.0 14 14 1 22 1.7 14.9

johnson8-4-4 70 560 23.2 3 240 127 14.8 14 14 1 23 0.6 14.9

johnson8-4-4 70 560 23.2 6 348 217 16.4 14 14 13 492 0.8 14.9

johnson16-2-4 120 1,680 23.5 6 1,088 15 8.0 8 8 1 9 0.6 *

johnson16-2-4 120 1,680 23.5 8 1,082 42 8.5 8 8 1 14 0.6 *

johnson16-2-4 120 1,680 23.5 10 1,234 128 10.5 8 8 11 335 0.9 *

* exceeded memory capacity of 512 MB

34
Table 4 continued

* exceeded memory capacity of 512 MB

Graph ||V || E ∆ P |ˆ| E RMP
Rows LPZ HZ IPZ B&B

Nodes
MP

Sols.
B&P
Time
(sec.)

CPAA
Time
(sec.)

keller4 171 5,100 35.1 4 3,003 1,853 17.8 8 11 14,456 329,556 1,934.2 3,075.4
keller4 171 5,100 35.1 5 3,293 1,995 18.1 8 11 12,523 307,029 1,812.2 3,075.4

keller4 171 5,100 35.1 8 3,744 2,554 20.7 8 11 24,690 694,846 12,831.5 3,075.4

hamming8-4 256 11,776 36.1 4 6,528 3,707 16.0 16 16 1 12 6.1 *

hamming8-4 256 11,776 36.1 5 7,707 4,505 20.8 16 16 440 21,373 536.5 *

hamming8-4 256 11,776 36.1 8 8,774 6,529 23.5 16 16 2,332 97,283 2,357.9 *

brock200-3 200 7,852 39.5 2 3,463 2,736 20.0 11 15 3,624 62,432 2,537.4 *
brock200-3 200 7,852 39.5 3 4,709 3,964 24.0 11 -- >10,024 >50,049 >14,400 *
johnson8-2-4 28 168 44.4 4 100 12 4.0 4 4 1 7 0.53 0.0

johnson8-2-4 28 168 44.4 5 124 32 5.3 4 4 6 95 0.45 0.0

johnson8-2-4 28 168 44.4 8 137 23 5.0 4 4 8 126 0.23 0.0

35
Table 4 continued

Graph ||V || E ∆ P |ˆ| E RMP

Rows LPZ HZ IPZ B&B
Nodes

MP
Sols.

B&P
Time
(sec.)

CPAA
Time
(sec.)

c-fat200-5 200 11,427 57.4 4 8,118 7,985 66.7 58 58 33 1,328 157.8 41.4
c-fat200-5 200 11,427 57.4 7 9,523 9,393 66.7 58 58 33 1,238 86.3 41.4
c-fat200-5 200 11,427 57.4 8 9,787 9,655 66.7 58 58 33 1,599 112.1 41.4
p_hat300-1 300 33,917 75.6 2 16,580 10,441 12.9 5 8 1,086 11,564 479.4 3.9
p_hat300-1 300 33,917 75.6 3 21,972 13,968 16.0 5 8 4,032 44,928 2,302.3 3.9

p_hat300-1 300 33,917 75.6 5 26,448 17,813 20.7 5 8 8,834 122,254 6,411.4 3.9

c-fat200-2 200 16,665 83.7 4 12,261 11,406 26.2 24 24 8 127 19.2 1.2

c-fat200-2 200 16,665 83.7 5 13,156 12,300 25.5 24 24 8 138 22.6 1.2

c-fat200-2 200 16,665 83.7 8 14,504 13,783 26.9 24 24 26 685 56.6 1.2

c-fat200-1 200 18,366 92.3 2 8,999 7,453 13.0 12 12 6 68 8.9 1.0
c-fat200-1 200 18,366 92.3 3 12,137 9,996 14.0 12 12 19 219 19.4 1.0
c-fat200-1 200 18,366 92.3 6 15.232 12,807 13.3 12 12 13 181 24.6 1.0

* exceeded memory capacity of 512 MB

36

Table 5
 Randomly generated graphs

π E
Ê

 RMP Rows
 Min Max Avg Min Max Avg Min Max Avg

0.01 37 62 50.0 0 3 0.4 0 3 0.4
0.05 219 276 246.2 67 107 91.4 67 107 86.6
0.10 461 534 497.2 224 281 252.7 195 243 220.5
0.15 704 780 742.6 390 453 419.2 332 397 361.8
0.20 949 1,040 983.1 549 629 591.6 462 538 503.2
0.30 1,405 1,530 1,471.9 883 977 939.0 747 819 786.4
0.40 1,919 2,089 1,981.6 1,268 1,407 1,321.4 1,025 1,143 1,079.4
0.50 2,395 2,586 2,475.8 1,622 1,779 1,697.2 1,231 1,362 1,325.2

 37

Table 6
Test results on randomly generated graphs

* exceeded memory capacity of 512 MB

 Overall measures B&P Run Times CPAA Run Times

π M

* /LPZ

*
IPZ

/HZ

*
IPZ B&B Nodes RMP Iterations Min Max Avg Min Max Avg

0.01 1 1.00 1.00 1.0 3.0 0.3 0.6 0.4 * * *

 20 1.00 0.91 1.0 3.0 0.2 0.5 0.3 * * *

 40 1.00 0.98 1.0 3.0 0.2 0.5 0.3 * * *

 60 1.00 0.98 1.0 3.0 0.2 0.5 0.3 * * *

 100 1.00 0.98 1.0 3.0 0.2 0.4 0.3 * * *

0.05 1 1.03 0.93 11.2 553.4 25.1 65.8 36.8 * * *

 20 1.01 0.94 6.2 350.8 3.5 27.9 10.2 * * *

 40 1.00 0.91 0.6 56.2 0.8 7.7 4.5 * * *

 60 1.00 0.93 1.2 74.6 0.3 7.3 3.3 * * *

 100 1.01 0.94 7.0 453.4 0.3 52.2 19.6 * * *

0.10 1 1.21 0.86 696.4 31,760.6 88.5 437.3 261.0 * * *

 20 1.06 0.92 22.6 1,348.6 13.8 46.3 27.1 * * *

 40 1.11 0.91 106.0 6,224.4 29.8 137.3 72.7 * * *

 60 1.10 0.93 72.8 4,459.2 27.7 97.7 55.3 * * *

 100 1.13 0.90 182.6 11,423.2 66.9 295.0 128.5 * * *

0.15 1 1.33 0.87 365.0 69,322.0 138.4 538.5 311.3 11,125.0 16,046.0 12,745.0

 20 1.24 0.91 384.6 17,263.0 29.7 135.9 84.1 1,688.6 5,281.4 3,100.2

 40 1.23 0.90 331.6 16,167.8 28.6 129.84 79.8 1,772.4 4,011.2 2,879.2

 60 1.24 0.89 247.2 11,392.4 44.0 76.9 59.2 1,992.0 4,626.9 2,998.8

 100 1.26 0.92 365.4 25,243.6 45.1 225.5 112.6 1,844.8 3,355.2 2,845.3

0.20 1 1.43 0.82 3,516.8 109,975.4 179.1 548.9 362.3 836.6 1,991.5 1,527.6

 20 1.30 0.90 403.8 15,594.6 35.7 83.2 63.9 245.4 1,032.8 570.6

 40 1.30 0.90 483.8 17,932.6 30.3 82.5 69.1 321.4 772.9 529.1

 60 1.31 0.91 447.0 17,645.2 46.3 83.3 67.4 212.6 1,141.9 437.8

 100 1.32 0.87 505.4 19,118.6 41.8 92.1 72.7 356.9 595.7 471.3

0.30 1 1.55 0.85 2,142.4 49,392.2 77.7 220.1 148.5 58.1 73.2 66.7

 20 1.43 0.88 351.2 9,881.2 25.2 45.2 34.4 15.2 30.3 20.6

 40 1.46 0.90 455.6 13,170.4 21.2 69.1 43.8 18.7 34.0 24.1

 60 1.46 0.86 687.8 18,199.4 38.7 122.9 59.6 19.6 40.9 28.7

 100 1.40 0.88 351.2 10,186.8 20.5 48.5 33.9 12.7 35.5 22.7

38

Table 6 Continued

 Overall measures B&P Run Times CPAA Run Times

π M

* /LPZ

*
IPZ

/HZ

*
IPZ B&B Nodes RMP Iterations Min Max Avg Min Max Avg

0.40 1 1.68 0.83 1,327.2 25,159.8 35.3 114.8 84.4 4.3 8.6 6.6

 20 1.57 0.86 444.6 9,500.2 19.5 43.9 33.8 2.5 3.7 3.1

 40 1.64 0.87 590.0 12,355.0 33.9 53.8 41.3 2.6 3.8 3.3

 60 1.51 0.87 353.2 7,780.8 19.3 37.1 27.2 3.2 4.4 3.8

 100 1.59 0.87 548.2 11,431.0 20.6 56.3 39.6 2.9 4.2 3.6

0.50 1 1.66 0.73 605.6 10,261.4 26.2 52.0 39.0 1.1 1.4 1.2

 20 1.68 0.78 377.0 6,637.4 18.2 35.7 25.1 0.7 1.0 0.8

 40 1.61 0.76 287.4 5,117.8 9.6 28.8 19.7 0.6 0.8 0.7

 60 1.56 0.75 227.6 4,100.2 12.9 20.1 16.3 0.6 0.8 0.7

 100 1.64 0.87 370.6 6,441.4 23.1 30.8 27.4 0.6 0.8 0.7
* exceeded memory capacity of 512 MB

 39

CHAPTER IV

EDGE-DISJOINT B&P SCHEME FOR SOLVING MWISP

4.1 Introduction

It has been shown that an arbitrary vertex-disjoint partitioning can be

transformed to a corresponding edge-disjoint partitioning that yields a tighter bound

[131]. In the first half of this chapter we investigate whether this property can be

extended further to show whether an arbitrary edge-disjoint partition yields a tighter

bound than an arbitrary vertex-disjoint partition having the same number of partitions.

We show that this is not guaranteed for an arbitrary partition. In the second half of the

chapter we present a B&P scheme for solving MWISP based on an edge-decomposition

of the original graph. We compare it with the vertex-disjoint scheme discussed in

Chapter III. This study presents a rationale for using edge-based decompositions to solve

MWISP exactly.

This chapter comprises seven sections. Section 4.2 presents the edge-disjoint

decomposition and the associated formulations. Section 4.3 presents an analysis of

bounds comparing arbitrary vertex and edge-disjoint decompositions. Sections 4.3, 4.4

and 4.5 present methods to manage the complexity of MWISP. Section 4.6 presents the

results of our computational tests and section 4.7 gives our conclusions. In the next

section we describe the edge-disjoint formulation. Relevant MWISP formulations from

Chapter III are referenced and are not duplicated here.

40

4.2 MWISP – formulations

We refer to the edge-inequality based Integer Programming (IP) formulation for

MWISP described in Chapter III. The vertex-disjoint formulation described in Chapter

III is also referenced.

4.2.1 Edge-Disjoint formulation (ED)

We begin by partitioning the edge set of the graph G = (V , E) into P parts

PEE ,..,1 , defining subgraph pG =][pEG with edge set pE for each },..,1{ Pp ∈ . The

partition containing edge uv is denoted uvp . Vertices of G whose incident edges lie in

more than one partition constitute set V
~

, which induces subgraph]~[VG . E
~ denotes the

edge set of]~[VG . For each Vv
~∈ we define } with |},..,1{{

~
pv EuvVuPpP ∈∈∃∈= ,

the set of partitions containing vertex v . A distinct decision variable is used to represent

a vertex Vv
~∈ in every partition vPp

~∈ in which it appears. Thus, corresponding to

each such vertex Vv
~∈ , we introduce vP

~
 decision variables },..,1{, vv Pkx

k
∈ so that

the edge-disjoint formulation has v
Vv

PVVV
~~~

\
~
�
∈

×+  decision variables. The edge-

disjoint formulation invokes equality constraints to equate the decision variables 
kvx  that 

correspond to each vertex Vv
~∈ .  Based on this edge-disjoint partitioning, MWISP can 

be expressed as:  

*
MWISPZ =Max 

�
�
�

��
�

�

�
�
�

��
�

�

∈∀∈∈∈∀=−

+� ��
∈ ∈∈

},..,1{,,
~

},
~

,..,2{,0

:

'1

~
.}~,..,1{

PpQxVvPkxx

xwxw

p
p

vvv

Vv Pk
vv

Vv
vv

k

v

kk

,    (4.1) 



                               

   

41 

where pQ  corresponds to edge-inequalities associated with pG : 

pQ ={ }pvu
V EuvxxBx p ∈∀≤+∈ ,1:|| .         (4.2) 

Similar to the vertex-disjoint formulation, the edge-disjoint formulation (4.1) has 

a block-diagonal structure, which is exploited by B&P: 

*
MWISPZ =Max�

∈Vv
vv xw = Max�

=

P

p

pp xw
1

 

subject to 

	
	
	
	
	
	




�

�
�
�
�
�
�



�

P

P

D

D

D

AAA

�

����

�

�

�

00

00
00

2

1

21

�
�
�
�
�

�

�

�
�
�
�
�

�

�

Px

x

x

�

2

1

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

≤

≤
≤
=

�

	
	
	
	
	
	




�

�
�
�
�
�
�



�

1

1
1
0

�

           (4.3) 

|| pVp Bx ∈  ∀ },..,1{ Pp ∈ , 

where pA is matrix of coefficients in equalities associated with vertices Vv
~∈ in partition 

Pp ∈ , pD  is matrix of coefficients in inequalities associated with edges pEuv ∈ , 

px pVB∈ is the vector of decision variables representing vertices in ][ pEG , and 

pw pVR∈  is the corresponding vector of weights. 

 The set of integral solutions feasible with respect to pE is denoted pS  and the set 

of integral solutions feasible with respect to the equality constraints corresponding to 

each Vv
~∈  is denoted 

V
S ~ : 



                               

   

42 

pS =
�
�
�

�
�
�

∈∀≤+
�

∈
×+

pvu

PVVV

EvuxxBx v
v

),(,1:
'1

~~\

       (4.4) 

and 

vS~ = 
�
�
�

�
�
�

∈∈∀=−
�

∈
×+

VvPkxxBx vvv

PVVV

k

v
v ~

},
~

,..,2{,0:
'1

~~\

.     (4.5) 

The corresponding integer convex hulls are denoted pH (= conv ( pS )) and 
V

H ~ (= 

conv (
V

S ~ )) and the convex hulls of the corresponding linear relaxations are denoted 

pL and 
V

L~ , respectively. 

We reformulate MWISP by applying DWD [39] to the linear relaxation of (4.3). 

Within this scheme, we have a subproblem corresponding to each subgraph 

pG , },..,1{ Pp ∈ . The master problem comprises the equality constraints corresponding 

to each Vv
~∈ .  We solve MWISP’s on the subgraphs to generate columns that populate 

the master-problem basis. Each column in the master problem is thus associated with an 

extreme point in the corresponding subproblem polytope. The restricted master problem 

(RMP) involves a subset of such columns: 

*
EDRMPZ =Max )(

1

jpp
P

p Jj
jp xw

p

��
= ∈

λ          (4.6) 

subject to  

0)(
1

=��
= ∈

jp
p

P

p Jj
jp xA

p

λ            (4.7) 

1=�
∈ pJj

jpλ  ∀ },..,1{ Pp ∈           (4.8) 



                               

   

43 

0≥jpλ  ∀ },..,1{ Pp ∈ , pJj ∈         (4.9) 

where pJ is the subset of integer extreme points of pQ  that form columns in RMP, jpx  

pVB∈  is the vector defining extreme point pJj ∈ , and jpλ is the RMP decision variable 

corresponding to extreme point pJj ∈ . MWISP subproblem p  for },..,1{ P  is of the 

form: 

( )α*
pZ  = Max ( ){ }p

ppT
p

p QxxAw ∈− :α ,       (4.10) 

where α E
R

ˆ
∈  is the vector of dual variables associated with the rows of constraint set 

(4.7). A column corresponding to jpx  is deemed improving if ( ) 0>−− p
jpT

p
p xAw βα , 

where pβ is the dual variable corresponding to the thp  convexity constraint (4.8).  

 

4.3 Bounds analysis 
 

Sachdeva & Wilhelm [131] introduced vertex cloning to transform a given 

vertex-disjoint partition into an edge-disjoint partition. Vertex cloning involves 

duplicating vertices in ]ˆ[EG . Specifically, it replaces every edge-inequality 1≤+ vu xx  

(where Euv ˆ∈ ) in the master problem by an equality cv xx =  (vertex v  in partition vp  

is cloned as vertex c in partition up ) and an inequality corresponding to clone cx , 

1≤+ cu xx  (associated with edge uc ) in partition up . Cloning thus transforms a given 

vertex-disjoint partition into an edge-disjoint partition. They show that the bound 

obtained from the resulting edge-disjoint partitioning is not weaker than that associated 

with the corresponding vertex-disjoint partitioning. Their result thus implies that, an 



                               

   

44 

arbitrary vertex disjoint partitioning can be transformed to an edge disjoint partitioning 

that yields a tighter bound. This leads us to the question of whether this result can be 

generalized to - ‘does an arbitrary edge-disjoint partition yield a tighter bound than an 

arbitrary vertex-disjoint partition having the same number of partitions?’ We investigate 

this question in this section. We first illustrate why a tightening is guaranteed with 

vertex-cloning. We then present insight into why tightening is not guaranteed with an 

arbitrary edge-disjoint partitioning and finally provide an example, which answers the 

question in the negative.  

4.3.1 Bounds analysis: vertex-disjoint vs. vertex-cloning 

In this section we illustrate vertex cloning and provide an insight that rationalizes 

the observed tightness. Figure 1 depicts an arbitrary graph with 6 vertices and 8 edges 

and an arbitrary vertex-disjoint partition of this graph into 2 partitions. Following 

Sachdeva and Wilhelm [131], Figure 2 shows the transformation of the vertex-disjoint 

partition to an edge-disjoint partition through vertex-cloning. 

 

 

 

 

 

 

Figure 1: A graph and its vertex-disjoint partition 

 

1

2

56

3

41

2

56

3

4 1

2

56

3

41

2

56

3

4



                               

   

45 

Note that, during this cloning transformation, the original vertex-disjoint subgraphs are 

augmented by adding more edges into them (in Figure 2 we add edges (2, 3) and (6, 5) 

into the subgraph on the left). Thus, the corresponding subproblem polytopes now more 

closely represent the polytope of the original MWISP. This is the primary reason that 

allows vertex cloning to provide tighter bounds. In addition, equalities invoked in the 

master problem ensure that the feasible region of the edge-disjoint formulation is  

Figure 2: Vertex-Cloning: vertices 3 and 5 are cloned 

 

contained within the feasible region of the vertex-disjoint formulation. 

4.3.2 Bounds analysis: vertex-disjoint vs. edge-disjoint 

 In this section we investigate the relationship between arbitrary vertex and edge-

disjoint partitions. We begin with an arbitrary edge-disjoint partition and an arbitrary 

vertex-disjoint partition with the same number of partitions. We employ a two - step 

process to transform the given vertex-disjoint partition into the given edge-disjoint 

partition. We show that the first step weakens the bound obtained from the vertex-

disjoint partition and that the second step subsequently tightens this bound. However, 

1

2

56

3

41

2

56

3

4

5

3

4

5

3

41

2

6 5’

3’

1

2

6 5’

3’



                               

   

46 

due to a lack of comparability between the first and second steps of the transformation, 

we cannot guarantee that this will result in a tightening of the bound.  Figure 3 depicts 

arbitrary vertex and edge-disjoint partitions of the graph in Figure 1, each with two 

partitions. Figures 4 and 5 show Step 1 and Step 2, respectively, which transform the 

given vertex-disjoint partition into the given edge-disjoint partition. 

 

Figure 3a: An arbitrary vertex-disjoint partition   Figure 3b:An arbitrary edge-disjoint partition  

 

 

Figure 4: Step 1: Cloning vertices in the given vertex-disjoint partitioning to obtain an edge disjoint 
partitioning 
 
  
 
 

1

2

56

3

41

2

56

3

4

 

1’ 

2’ 

6 

1’ 

2’ 

6 5 

3’ 

4’ 

5 

3’ 

4’ 

1 

2 

1 

2 

4 

3 

4 

3 

1

2

56

3

41

2

56

3

4

1’

2’

56

3’

4’1’

2’

56

3’

4’

41

2 3

41

2 3



                               

   

47 

 
Figure 5: Step 2: Adding edges to transform the edge-disjoint partitioning of Figure 4 to obtain the 
given edge disjoint partition (Figure 3b) 
 
 

We describe our analysis in further detail here. An arbitrary vertex-disjoint partitioning 

of a graph G  = (V , E ) is defined by sets pV  for },..,1{ Pp ∈  and set Ê  (refer to 

Chapter II). Likewise, an arbitrary edge-disjoint partitioning is defined by sets PE  for 

},..,1{ Pp ∈ and set V
~

. The premise for this analysis is that the vertex - and edge-disjoint 

partitions are provided to us a priori. Our analysis is based on transforming the vertex-

disjoint partition into the given edge-disjoint partition while monitoring the effect of the 

transformation on the associated bounds. Note that the bound obtained from solving the 

DWD reformulation associated with the vertex-disjoint partition is equal to the bound 

obtained from solving the fractional maximum weighted independent set problem 

(FMWISP) on the feasible region defined by 
��

�
�
�

��

�
�
�

�
�
�

�
�
�
�

�
� �

p

VD
pE

HL ˆ  [131]. We refer to this 

bound as the vertex-disjoint bound (VDB). For ease of notation we denote the 

intersection of the convex hulls of the vertex-disjoint subproblem polytopes ( �
p

VD
pH ) 

1’

2’

56

3’

4’1’

2’

56

3’

4’

41

2 3

41

2 3 

1’ 

2’ 

6 

1’ 

2’ 

6 5 

3’ 

4’ 

5 

3’ 

4’ 

1 

2 

1 

2 

4 

3 

4 

3 



                               

   

48 

by VD
PH . This is equivalent to considering the vertex-disjoint subgraphs as one subgraph 

comprising disjoint components. From a theoretical point of view, this does not distort 

our analysis. Henceforth, we will refer to VD
PH  as the vertex-disjoint subproblem 

polytope. Thus VDB is equal to { }�
VD
PE

HL ˆ .  Similarly, the bound obtained from 

solving the DWD reformulation associated with the edge-disjoint partition is equal to the 

bound obtained from solving FMWISP on a feasible region defined by 

��

�
�
�

��

�
�
�

�
�
�

�
�
�
�

�
� �

p

ED
PV

HL~  [131]. We refer to this bound as the edge-disjoint bound (EDB). 

Again we denote the intersection of the convex hull of the edge-disjoint subproblem 

polytopes ( �
p

ED
pH ) by ED

PH . Thus EDB is equal to { }�
ED
PV

HL~ . Henceforth, we will 

refer to ED
PH  as the edge-disjoint subproblem polytope.  

We begin by identifying the set V
~

corresponding to the given edge-disjoint 

partition (V
~

= {1,2,3,4} for the edge-disjoint partition depicted in Figure 3) and the 

corresponding set vPp
~∈ for each Vv

~∈  ( in our example }2,1{
~~~~

4321 ==== PPPP).

The first step (Figure 4) begins by using the above information to create ()1
~ −vP clones

for each vertex Vv
~∈ in the given vertex-disjoint subgraphs. The vertex-disjoint

subproblem polytope VD
PH is modified accordingly by introducing decision variables

corresponding to clones and constraints equating decision variables corresponding to a

vertex Vv
~∈ and its clone. Introducing decision variables corresponding to clones

increases the dimension of the subproblem polytope. This higher dimension subproblem

49

polytope is denoted *VD
PH . However, adding equality constraints reduces the dimension

of the subproblem polytope. We denote the convex hull of the feasible integer variables

satisfying the equality constraints by
V

H ~ . The linear relaxation of
V

H ~ is denoted
V

L~ .

The polytope corresponding to the subproblem with new decision variables

corresponding to clones and the associated cloning equalities is thus denoted

� V
VD
P HH ~

* . Note that invoking equality constraints within the subproblem ensures that

VD
PH is equal to � V

VD
P HH ~

* . Thus at this point, the bound obtained from DWD

reformulation which is equivalent to the bound obtained by solving FMWISP on the

feasible region defined by the set (){ }� � V
VD
PE

HHL ~
*

ˆ , is equal to VDB (since VD
PH =

� V
VD
P HH ~

*). To complete the first step, we relegate the equality constraints to the

master problem. Accordingly the subproblem polytope now corresponds to *VD
PH . At

this point, the bound obtained from DWD reformulation corresponds to the bound

obtained by solving FMWISP on the feasible region defined by the set

{ }� �
*

~ˆ
VD
PVE

HLL . This bound is no stronger than VDB since we have replaced
V

H ~ with

its linear relaxation
V

L~ . We refer to this bound as VDBSTEP1 (VDBSTEP1 ≤ VDB).

In the second step (Figure 5), we relegate edges Ê to the subgraphs.

Correspondingly edge-inequalities associated with Ê are introduced into to the

subproblem. The subproblem polytope now corresponds to { }��
*VD

PE HH . The bound

obtained from the DWD reformulation at the end of this step corresponds to the bound

obtained by solving FMWISP on the feasible region defined by the set

50

(){ }� �
*

ˆ~
VD
PEV

HHL and is tighter than VDBSTEP1 since we have replaced
E

L ˆ with its

integer convex hull
E

H ˆ . We refer to this bound as VDBSTEP2. Note that at the end of step

2 we obtain the edge-disjoint formulation associated with the given edge-disjoint

partition (Figure 3b). Thus VDBSTEP2 = EDB. We summarize the bounds associated with

the two steps as follows:

VDB ≥ VDBSTEP1

VDBSTEP2 ≥ VDBSTEP1

EDB = VDBSTEP2 ≥ VDBSTEP1

However, because (VDB - VDBSTEP1) may not be equal to (EDB - VDBSTEP1), it

is not possible to specify the sign of (VDB - EDB) so that it is not possible to say that

EDB ≤ VDB in all cases.

In the next section we provide a example, which shows that the bound obtained

from an arbitrary edge-disjoint partition is weaker than that obtained from an arbitrary

vertex-disjoint partition with the same number of partitions.

4.3.3 Example

The graph in Figure 1 provides the example which answers our initial question -

‘does an arbitrary edge-disjoint partition yield a tighter bound than an arbitrary vertex-

disjoint partition having the same number of partitions?’- in the negative. Solving the

DWD reformulation on the vertex-disjoint partition depicted in Figure 3a we get an

upper bound on the MWISP of 2. However, solving the DWD reformulation on the

edge-disjoint partition depicted in Figure 3b, we obtain an upper bound of 3.

51

The optimal feasible bases for the associated DWD reformulations are as

follows:

Vertex-disjoint:

• The optimal basis consists of columns associated with decision variables 1
1λ , 2

1λ ,

which both have the optimal value of 1. The respective cost coefficient for each

of these columns is 1. Thus, the optimal solution (*
VDRMPZ) is equal to 2.

• The column associated with 1
1λ corresponds to the independent set containing

vertex {1} from subgraph 1 while that for 2
1λ corresponds to the independent set

containing vertex {3} from subgraph 2.

Edge-disjoint:

• The optimal basis consists of columns associated with decision variables 1
1λ , 1

2λ ,

2
1λ , 2

2λ , each of which have the optimal value of 0.5. The cost coefficients for

decision variables 1
1λ and 1

2λ are each 1, while the cost coefficients for decision

variables 2
1λ , 2

2λ are each 2. The optimal solution (*
EDRMPZ) is equal to 3.

• The columns associated with 1
1λ and 1

2λ correspond to independent sets

containing vertices {1,3} and {2,4}, respectively, from subgraph 1, while those

for 2
1λ and 2

2λ correspond to independent sets containing vertices {1’,2’,5} and

{3’,4’,6}, respectively, from subgraph 2.

4.3.4 Example: vertex-disjoint vs. edge-cover

 While in an edge-disjoint partitioning, an edge is present in only one subgraph in

an edge-cover partitioning, an edge is replicated in every subgraph that contains both of

52

its end-points. In a later section we will show that edge-cover partitioning provides a

tighter bound than the edge-disjoint partitioning. In this section, we answer the question

-‘does an arbitrary edge-cover partition yield a tighter bound than an arbitrary vertex-

disjoint partition having the same number of partitions?’- in the negative by providing an

example (Figure 6). The intuition behind the construction of this example is to obtain an

optimal vertex-disjoint partitioning but a sub-optimal edge-cover partitioning.

Figure 6: Construction for bounds analysis between Vertex-Disjoint and Edge-Cover

 Figure 7a: Vertex-Disjoint Partitioning Figure 7b: Edge-Cover Partitioning

Note that the graph in Figure 6 is not facet producing and hence all facets of the

corresponding MWISP polytope can be generated by lifting facets of polytopes

5

1

34

2 10

6

89

75

1

34

2 10

6

89

7

5

1

34

2 10

6

89

75

1

34

2 10

6

89

7
5’

34

2’ 10’

89

7’

5

1

2 10

6

7

5’

34

2’ 10’

89

7’

5

1

2 10

6

7

53

corresponding to subgraphs. We make leverage of this fact while partitioning the graph.

The vertex-disjoint partitioning specified in Figure 7a provides an optimal bound of 4

upon solving the corresponding DWD reformulation whereas the edge-cover partitioning

specified in Figure 7b provides a sub-optimal bound of 4.5. Note that the vertex-disjoint

partitioning results in two subgraphs both of which are facet producing (odd-holes).

Moreover, the subgraph induced by the corresponding cross-edges is a bipartite

subgraph. This is the reason that the bound obtained is optimal. On the other hand, the

edge-cover partitioning does not yield any special structure in its subgraphs. Moreover

the subgraph induced the cloned vertices does not yield a clique. Hence, the edge-cover

partitioning does not produce an optimal bound. Thus this example demonstrates that we

can not guarantee that an arbitrary edge-cover partition will yield a tighter bound than an

arbitrary vertex-disjoint partition having the same number of partition.

4.4. Edge-Disjoint partitioning

We use a tree decomposition approach [68] to partition the edge set)(GE

(suggested and implemented by a member of our research team). Given a graph G , the

tree decomposition approach constructs a tree T that has)(GE leaves. In addition, every

non-leaf vertex in T has degree three. A bijective function υ maps the leaves of T to the

edges of G . ()υ,T is referred to as the branch decomposition of G . Removing an edge

e of T produces a vertex-disjoint partition of T into two subtrees. This consequently

produces an edge-disjoint partition of G comprising two subgraphs - eA and eB , which

54

are induced by the edges incident to the leaves of the left and right trees, respectively.

This is the basis for the edge-disjoint partitioning we employ.

We use two approaches for partitioning a graph – (p1) and (p2). (p1) is an edge-

disjoint decomposition in which each edge appears in only one partition. In (p2) we

replicate an edge in every subgraph that contains both of its end-points. This is referred

to as the edge-cover approach since an edge can now be covered by more than one

partition. (p2) offers two advantages. The first advantage is that the bound obtained from

DWD reformulation associated with edge-cover decomposition is tighter than that

obtained from edge-disjoint decomposition. This is because, in the edge-disjoint case

since an edge appears in only one partition, it is possible that an edge (uv) is not

invoked for a subgraph p which contains both u (or a clone of u) and v (or a clone of

v). In such a case, a column entering RMP from subproblem p could incorrectly invoke

both u and v (or their respective clones) as members of an independent set. By

invoking an edge in all subgraphs that contain both its end-points, edge-cover

decomposition eliminates this problem and guarantees that all columns entering RMP

correspond to feasible independent sets of the original graph. Thus subproblem

polytopes generated by edge-cover are contained within subproblem polytopes generated

by edge-disjoint decomposition. The second advantage is that subproblem polytopes

corresponding to edge-cover have fewer extreme points and consequently have fewer

columns to be priced in comparison with edge-disjoint, thus reducing the computational

effort.

55

4.5 RMP

RMP associated with DWD reformulation involves equality constraints and thus

resembles a set-partitioning problem. Set-partitioning problems are much more

challenging to solve than set-covering or set-packing problems. The size of RMP is

critical to the computational effort required in solving an instance. Computational effort

increases as the number of equalities increase. Thus, the size of V
~

 is crucial for our

approach. Moreover, set-partitioning constraints typically lead to a poor rate of

convergence. We observe a similar behavior with our approach. We employ two

alternative methods to deal with RMP. The first method (m1) simply invokes cloning

equalities associated with V
~

 in RMP. The primary advantage is its simplicity; however,

it suffers computational disadvantages due to the resulting size of RMP and its

degeneracy. The second method (m2) aims at identifying a minimal set of cliques of

]~[VG that cover all vertices in V
~

. We employ a best-in greedy heuristic to identify a set

of cliques in]~[VG . We aim to cover all vertices in V
~

by at least one clique. This method

exploits a tighter formulation that results from incorporating clique inequalities, thus

providing a better bound in comparision with (m1). It also reduces degeneracy in

comparison with (m1).

56

4.6 Computational benchmarks

This section describes the results of our computational tests. We conduct our

tests on unweighted instances from the Second DIMACS Implementation Challenge,

(we actually use the complements of the listed graphs).

Table 7 compares (p1) and (p2) using (m1). The first five columns in Table 7

specify the instance: graph designation, the number of vertices, V ; the number of edges,

E ; the % Density, ∆ ; and the number of partitions (P). The last five columns give the

method [(p1) or (p2)] and the results of each: the total number of times RMP is solved

(MP Sols); the number of B&B nodes required to find the optimal solution (B&B

Nodes); the upper bound corresponding to the optimal solution of RMP at the root node

()LPZ ; and the CPU run time for our B&P approach to prescribe an optimal solution

(B&P Time). Results show that (p2) outperforms (p1). As discussed earlier (p2) offers

two advantages. First, (p2) provides a better bound (see ()LPZ). Second, it has a better

rate of convergence (see NMP). Based on this comparison, we select (p2) as the default

for the remainder of our tests.

Table 8 compares performances of (m1) and (m2) using (p2). The first five

columns in Table 8 specify the instance: graph designation, V , E , ∆ , and P . The last

six columns give the method [(m1) or (m2)] and the results of each: the number of

cloning equalities, the number of clique inequalities, MP Sols, B&B Nodes, LPZ , and

B&P Time. (m2) is at a disadvantage because it must expend time to identify cliques.

Moreover, for sparser graphs, no cliques exist in]~[VG and, hence, no improvement in

57

the bound is observed. For more dense instances, cliques are identified. For the three

instances for which cliques were generated, there were marginal improvements in the

computational effort in two (see Column 11), while there was no improvement in the

remaining one (although the run-time using (m1) was low and did not provide much of

an opportunity for improvement). Since the time required to generate cliques is not

substantial and since, theoretically, there is sufficient advantage in generating cliques,

we select (m2) as a default to use on other tests.

Based on this preliminary analysis, we henceforth use the (p2)-(m2)

combination. Table 9 evaluates the sensitivity of our approach with respect to the

number of partitions employed. The first four columns in Table 9 specify the instance:

graph designation, V , E , and ∆ . Columns 5-7 give the value of P employed, and the

resulting V
~

 and RMP rows, respectively. The last five columns presents relevant

performance metrics: MP Sols, B&B Nodes, LPZ , IPZ , and B&P Time. Results are quite

sensitive to the number of partitions. The computation effort is proportional to the

number of equality constraints involved; hence, partitions resulting in fewer equality

constraints tend to be more effective. Preliminary results also indicate that cloning fewer

vertices tends to provide a tighter bound.

Table 10 evaluates our edge-disjoint approach further and compares it to the

vertex-disjoint approach discussed in Chapter II. The first five columns in Table 10

specify the instance: graph designation, V , E , ∆ , and P . The last six columns give

the approach (edge-disjoint or vertex-disjoint) and the results of each: MP Sols, B&B

58

Nodes, LPZ , IPZ , and B&P Time. Results indicate that the vertex-disjoint approach is

significantly better over most of the instances. The vertex-disjoint approach outperforms

the edge-disjoint approach markedly on the denser instances (>30% density). This is

primarily because, for denser instances, the rate of convergence for edge-disjoint DWD

is extremely slow, due to the large number of equality constraints involved in RMP. A

related difficulty for extremely dense graphs (>80%) is that the tree decomposition

approach runs out of memory. For sparser graphs, our results indicate that the run time

for the edge-disjoint approach is comparable to that required by the vertex-disjoint

approach, primarily due to the fact that the former approach involves fewer equality

constraints and thus the rate of convergence for DWD is better in application to sparser

instances.

4.7 Conclusions

In this chapter we present an approach for solving MWISP by utilizing an edge-

disjoint decomposition within a branch-and-price framework. We evaluate the

effectiveness of this scheme computationally, providing insights into the advantages and

disadvantages associated with it. We demonstrate that our approach is sensitive to

parameters V
~

 and VvPv
~

~ ∈∀ as they govern the computational effort involved and the

tightness of the bounds provided by the model. A small number of cloned vertices yields

a tighter bound and is desirable. The computational effort is proportional to the number

of equality constraints in RMP, each of which is associated with a cloned vertex. A

larger number of equality constraints results in a slower rate of convergence for DWD.

59

Since denser graphs inevitably result in more equality constraints, our approach is more

suitable for sparser graphs. The tree-decomposition partitioning scheme is not able to

tackle large, dense graphs due to memory requirements. To be able to perform

effectively over a wider spectrum of instances, we need to reduce the number of cloned

vertices and substantially improve the rate of convergence of edge-disjoint DWD. In the

next chapter we discuss convergence properties associated with DWD and adapt

available techniques to improve the convergence performance of the edge-disjoint

solver.

60

Table 7
Comparison of methods (p1) and (p2)

(p1) edge disjoint
(p2) edge cover
** exceeded run time limit of 1 hour

Instance |V| |E| ∆ P Method
MP

Sols.
B&B
Nodes LPZ

B&P Time
(seconds)

hamming8-2 256 1024 3.1 20 (p1) >612 ** ** **
 (p2) 495 1 128 4661.83
MANN_a9 45 72 7.3 5 (p1) 235 19 18.5 0.64
 (p2) 103 7 18 0.39
hamming6-2 64 192 9.5 8 (p1) 71 1 32 1.03
 (p2) 76 1 32 0.91
johnson8-4-4 70 560 23.2 3 (p1) 1109 12 16.21 40.08
 (p2) 164 1 14 8.4
johnson16-2-4 120 1680 23.5 8 (p1) >23,945 >335 13.75 **
 (p2) 84 1 8 7.29
johnson8-2-4 28 168 44.4 8 (p1) 873 79 6.13 3.453
 (p2) 29 1 4 0.19

61

Table 8
Comparison of methods (m1) and (m2)

(m1) no clique constaints
(m2) clique constraints

Instance |V| |E| ∆ P Method # Equalities
Clique

rows
MP

Sols. LPZ
B&P Time
(seconds)

hamming8-2 256 1024 3.1 2 (m1) 78 0 3 128 0.23
 (m2) 78 0 3 128 0.23
MANN_a9 45 72 7.3 2 (m1) 8 0 15 17.5 0.09
 (m2) 8 0 15 17.5 0.09
hamming6-2 64 192 9.5 2 (m1) 21 0 3 32 0.03
 (m2) 21 0 3 32 0.03
Johnson8-4-4 70 560 23.2 2 (m1) 36 0 10 14 0.14
 (m2) 36 28 7 14 0.08
Johnson16-2-4 120 1680 23.5 2 (m1) 67 0 42 8 8.94
 (m2) 67 9 42 8 6.92
Johnson8-2-4 28 168 44.4 2 (m1) 17 0 16 4 0.03
 (m2) 17 5 19 4 0.03

62

Table 9
Results for different number of partitions

Instance |V| |E| ∆ P

V
~

RMP
Rows MP Sols.

B&B
Nodes

LPZ

IPZ

B&P Time
(seconds)

hamming8-2 256 1024 3.1 2 78 78 55 1 128 128 107.86
 20 197 557 495 1 128 128 4654.23
MANN_a9 45 72 7.3 2 8 8 256 21 17.5 16 0.89
 5 16 22 103 7 18 16 0.38
hamming6-2 64 192 9.5 2 21 21 6 1 32 32 0.34
 8 47 101 75 1 32 32 0.89
Johnson8-4-4 70 560 23.2 2 36 36 9 1 14 14 0.48
 3 51 66 145 1 14 14 6.83
Johnson16-2-4 120 1680 23.5 2 67 67 5 1 8 8 1.39
 8 111 375 88 1 8 8 6.94
Johnson8-2-4 28 168 44.4 2 17 17 5 1 4 4 0.08
 8 26 85 26 1 4 4 0.19

 63

Table 10
Comparison of methods ED and VD on DIMACS instances

(ED) Edge-Disjoint Approach
(VD) Vertex-Disjoint Approach
** exceeded run time limit of 1 hour
*** exceeding memory limit

Instance |V| |E| ∆ P Approach MP Sols.
B&B
Nodes

LPZ

IPZ

B&P Time
(seconds)

hamming8-2 256 1024 3.1 2 (ED) 55 1 128 128 107.86
 20 (VD) 8 1 128 128 0.44
MANN_a9 45 72 7.3 2 (ED) 256 21 17.5 16 0.89
 5 (VD) 187 22 18 16 0.41
hamming6-2 64 192 9.5 2 (ED) 6 1 32 32 0.34
 8 (VD) 4 1 32 32 0.06
Johnson8-4-4 70 560 23.2 2 (ED) 9 1 14 14 0.48
 3 (VD) 19 1 14 14 0.25
Johnson16-2-4 120 1680 23.5 2 (ED) 5 1 8 8 1.39
 8 (VD) 11 1 8 8 1.28
keller4 171 5100 35.1 2 (ED) ** ** ** ** **

 5 (VD) 129613 14069
18.0

5 11 2367.05
hamming8-4 256 11776 36.1 2 (ED) ** ** ** ** **
 8 (VD) 11 1 16 16 15.25
brock200-3 200 7852 39.5 2 (ED) ** ** ** ** **
 2 (VD) 24734 2224 20 15 3451.84
Johnson8-2-4 28 168 44.4 2 (ED) 5 1 4 4 0.08
 8 (VD) 41 8 4 4 0.13
c-fat200-5 200 11427 57.4 2 (ED) ** ** ** ** **

 7 (VD) 379 33
66.6

7 58 18.28
c-fat200-2 200 16665 83.7 2 (ED) *** *** *** *** ***
 4 (VD) 103 16 26.5 24 10.38
c-fat200-1 200 18366 92,3 2 ED *** *** *** *** ***
 2 VD 34 6 13 12 15.5

64

CHAPTER V

IMPROVING THE RATE OF CONVERGENCE OF DWD

5.1 Introduction

The slow rate of convergence associated with a DWD reformulation affects the

time spent at each node in the B&P-tree and, hence, is critical to the efficiency of the

approach. In this chapter, we develop insights into the convergence issues that

accompany column generation. Specifically, we discuss the convergence properties of

DWD and available techniques for improving the rate of convergence. We also present

preliminary research towards developing a non-parametric approach to stabilizing DWD.

Finally, we present techniques for improving the rate of convergence of the edge-disjoint

B&P scheme discussed in Chapter IV. We present a computational evaluation of these

specific techniques by conducting experiments on the linear relaxation associated with

the root node of the edge-disjoint B&P scheme.

This chapter comprises six sections. Section 5.2 presents a brief overview of

DWD and section 5.3 presents a dual perspective of DWD. Section 5.4 presents a brief

discussion on DWD convergence issues. Section 5.5 discussed available techniques for

improving the rate of convergence of DWD and presents insight into a non-parametric

approach for stabilizing DWD. Section 5.6 presents specific techniques for improving

the rate of convergence associated with the edge-disjoint B&P scheme and Section 5.7

presents a computational evaluation of these techniques.

65

5.2 DWD – overview

DWD entails decomposing the original problem into smaller subproblems and

employing a master problem to coordinate the solutions proposed by these subproblems.

The coordination is achieved in a price - directive fashion through the dual solutions

provided by the master problem to the subproblems.

Below, we present an arbitrary linear formulation having a block diagonal

structure, which is subsequently reformulated using DWD:

*Z = Max �
∈Pp

pp xw (5.1)

bxA
Pp

p
p ≤�

∈

 (5.2)

pp
p dxD ≤ Pp ∈∀ (5.3)

pnp Rx ∈ , },,1{ Pp �∈∀ , (5.4)

where pA is the matrix of coefficients corresponding to px in inequalities associated

with master problem constraints, pD is matrix of coefficients corresponding to px in

inequalities associated with subproblem constraints, px pnR∈ is the vector of decision

variables associated with subproblem Pp ∈ , pw pnR∈ is the corresponding vector of

weights, and pn is the corresponding number of decision variables. This model is

referred to as the original formulation.

The block-diagonal structure is exploited in the DWD reformulation (DWD) as

follows:

66

*Z = Max)(
1

jpp
P

p Jj
jp xw

p

��
= ∈

λ (5.5)

bxA jp
p

P

p Jj
jp

p

≤��
= ∈

)(
1

λ (5.6)

1=�
∈ pJj

jpλ ∀ },..,1{ Pp ∈ (5.7)

0≥jpλ ∀ },..,1{ Pp ∈ , pJj ∈ , (5.8)

where pJ is the set of integer extreme points of subproblem polytope

pQ ={ }pp
p

np dxDBx p ≤∈ :|| , jpx pVB∈ is the vector defining extreme point pJj ∈ , and

jpλ is the decision variable corresponding to extreme point pJj ∈ .

DWD (5.5-5.8) reformulation is solved using a column generation approach,

which entails solving a restricted master problem (RMP) comprising a subset of

columns. Pricing subproblems are solved to identify improving columns, which are

entered into RMP in the subsequent simplex iteration. Pricing subproblems },..,1{ Pp ∈

are integer problems of the form:

()α*
pZ = Max (){ }p

ppT
p

p QxxAw ∈− :α , (5.9)

where α E
R

ˆ
∈ is the vector of dual variables associated with the rows of constraint set

(5.6) in RMP. A column corresponding to jpx is deemed improving if

() 0>−− p
jpT

p
p xAw βα , where pβ is the dual variable corresponding to the thp

convexity constraint (5.7).

67

At column generation iteration k the current solution obtained from RMP,

denoted by
kRMPZ , provides a lower bound (referred to as the primal bound). Note that,

from strong duality,
kRMPZ = bα +�

∈Pp
pβ . Upon solving each of the pricing subproblems,

an upper bound (referred to as the dual bound) is obtained:
kRMPZ + ()�

∈

−
Pp

ppZ)(* βα

[17]. Thus,
kRMPZ ≤ *Z ≤

kRMPZ + ()�
∈

−
Pp

ppZ)(* βα . Optimality is guaranteed when no

improving column is identified by any pricing subproblem; i.e.

() PpxAw p
jpT

p
p ∈∀≤−− 0βα . Thus, the column generation scheme maintains primal

feasibility and terminates upon achieving dual feasibility. While the primal bound is

guaranteed to improve monotonically (except for degenerate iterations), the dual bounds

are not guaranteed to improve monotonically. In fact, the erratic nature of the dual bound

is a concern. To lend further insight into the principles of DWD, we describe the dual

perspective in the next section.

5.3 DWD: the dual perspective

The dual of RMP can be formulated as follows:

00 ,,0
min

wvu≥
b α + �

∈Pp
pβ (5.10)

s.t.

jpp xw - α ()jp
p xA ≥ pβ ∀ pJj ∈ , Pp ∈ (5.11)

This can alternatively, be written as [43]

68

0

min
≥u

b α +)(α�
∈

Θ
Pp

p (5.12)

where)(αpΘ = (){ }jp
p

jpp xAxw α− } ∀ Pp ∈ . (5.13)

Note that (5.12) has the form of a non-differentiable optimization problem.

Specifically, dual problem (5.12)-(5.13) represents the minimization of a convex,

piecewise-linear function. At a differentiable point, the epigraph of this function has a

unique supporting hyperplane and the corresponding slope of this hyperplane is the

gradient [108]. At a non-differentiable point (a point at which two or more of the

piecewise functions intersect), the epigraph has an infinite set of supporting hyperplanes

[108]. The slope of a supporting hyperplane is referred to as the sub-gradient and the set

of all such sub-gradients is called the sub-differential [108].

Cutting plane algorithms are widely used for solving non-differentiable

optimization problems. Such an algorithm uses an oracle to dynamically generate

supporting hyperplanes to approximate the epigraph of the non-differentiable function.

From a dual perspective, DWD column generation represents such a cutting plane

algorithm, specifically Kelley’s cutting plane algorithm [78]. The optimal dual solution

obtained at each iteration of DWD column generation corresponds to the minimum of

the current (i.e., employing the cutting planes generated so far) piecewise approximation

of the dual function (5.12). Columns in the primal correspond to hyperplanes that

support the epigraph of the dual function (5.12). Thus, from the dual perspective, at

every iteration a new supporting hyperplane is generated to cut off the current optimal

dual solution. For the dual function (4.12), the sub-gradient of the supporting hyperplane

69

is given by ()
�
�
�

�
�
�

−�
∈Pp

jp
p xAb . Optimality is guaranteed when no cut can be generated at

the current dual solution, implying that the minimum of function (5.12) has been

attained. This is exactly Kelley’s cutting plane algorithm.

This dual point of view provides significant insights into the functioning of

DWD. The convergence issues observed with DWD are similar to the convergence

issues observed with Kelley’s cutting plane algorithm; in fact, both use the current

optimal dual solution to generate an improving column. Using the current optimal dual

solution is critical in defining the convergence of the algorithm. The primary concern is

that, if the primal RMP is degenerate, the dual has alternative optimal solutions. DWD

employs extreme point dual solutions to generate columns for RMP but they may not

facilitate convergence. Previous research has shown that in the case of primal

degeneracy, an inner point with respect to the optimal dual face could be more suitable

for generating improving columns. Such variants of cutting plane algorithms that use

alternative dual points are prevalent for non-differentiable optimization problems (e.g.,

the Analytic Center Cutting Plane method (ACCPM) chooses the analytic center of the

current approximation of the epigraph to generate improving columns). In the next

section, we describe the primary issues affecting the rate of convergence of DWD.

5.4 DWD: convergence issues

Typically, DWD converges slowly. Four main phases that affect the rate of

convergence are defined as follows:

70

Heading-In relates to the number of iterations required to identify an initial feasible basis

and is a pronounced issue for set partitioning problems for which column generation

spends a substantial amount of time to identify an initial feasible basis.

Oscillation occurs when dual solutions obtained from solving RMP oscillate with no

well-defined pattern. This results in erratic changes of the corresponding dual bounds.

The optimal dual solution obtained from RMP corresponds to the minimum of the

current approximation of the dual function, which is refined by including the cutting

plane generated by this dual solution. Oscillation occurs because the new minimum of

the refined dual function is not guaranteed to be close to the previous minimum. It

appears that DWD would converge more rapidly if successive dual solutions progressed

smoothly to an optimal solution. This would also provide successive dual bounds that

improve monotonically.

Primal degeneracy results when an improving column enters the RMP basis but does

improve the primal bound. A degenerate primal solution corresponds to alternative

optimal dual solutions in the dual space. A column newly entered in the primal model

corresponds to a new cut in the dual space. This cut renders the current extreme point

dual solution infeasible but does not necessarily cut off all alternative dual optima.

Consequently, the primal bound does not improve on a degenerate iteration.

Tailing-off effect is the phenomenon that occurs as DWD approaches an optimal

solution; it requires a substantial amount of time to close the gap between primal and

dual bounds. The slow rate of convergence due to tailing-off is notably severe for set

partitioning problems.

71

5.5 Techniques for improving convergence of DWD

In this section we discuss prevalent techniques for accelerating the rate of

convergence of DWD and present a theoretical insight into a non-parametric method for

stabilizing DWD.

5.5.1 Initializing RMP

 Artificial variables are used in the initial RMP basis for the case in which a

master problem incorporates equality constraints. Since the value “Big M”, which is

assigned to the objective function coefficient associated with each artificial variable

corresponds to a bound on the associated dual variable, a tight estimate of Big M often

aids in the rapid convergence to a feasible (primal) solution that does not include

artificial variables. The rate of convergence can also be accelerated if an initial set of

columns can be generated to provide a good approximation of the epigraph of function

(5.12) near its minima. A good heuristic solution to the integer problem does not

necessarily provide a good estimate of the optimal DWD primal bound; hence, adding

columns prescribed by a heuristic do not necessarily improve the rate of convergence.

5.5.2 Stabilizing DWD

Stabilization seeks to avoid erratic oscillation of dual variable values. The main

idea behind stabilization is to restrict each dual variable to take values within a specified

trust-region. The optimization of the dual function is restricted within this trust-region,

which is redefined appropriately as the algorithm converges. Smoothing approaches

have also been proposed to capture the history of the column generation process by

72

using some combination of previously generated dual solutions along with the current

dual optimal solution. In this section we describe these techniques in more detail.

Boxstep method: In the Boxstep method [90], optimization in the dual space is

explicitly restricted to a box obtained by enforcing upper and lower bounds on dual

variable values. Solving a series of optimization problems, each around a more refined

box, stabilizes the column generation process. If the optimal dual solution associated

with a particular box does not lie completely within it, the center of the box is updated to

the current optimal dual solution and the revised problem is optimized. If the current

optimal dual solution lies completely within the box, we have attained global optimality

and primal feasibility is guaranteed. Our preliminary analysis of the Boxstep method

reveals that the box width is critical - a box-size that is too small may require more

frequent updates, while one that is too large may not improve convergence. However,

the best box-size is relative to the instance at hand. Preliminary analysis also show that

different box sizes, each containing the optimal dual solution, need not lead to similar

convergence rates. Ideally, the smallest box containing the optimal dual is the desired

option because it provides the least opportunity for oscillation and will thus require just

one problem to be optimized (i.e., one box). The important concerns affecting the

efficiency of the Boxstep method are to provide a good starting dual solution (which is

close to the optimal dual solution) and to prescribe good box-sizes a priori. A successful

implementation of Boxstep requires effective resolution of these concerns. In the last

section we present our adaptation of Boxstep, addressing these concerns relative to the

edge-disjoint scheme.

73

3-Piece: In the Boxstep method, dual variable values are not permitted to violate the

trust-region; they must lie within the box. However, in a related approach [43], a linear

penalty function comprising three pieces is invoked and dual variables are allowed to a

take values outside the box, but at the expense of incurring a penalty. Similar to the

Boxstep method, deciding the parameters of the penalty function defines the efficiency

of this approach.

Wentges smoothing approach: The main idea of the smoothing approach is to maintain

proximity to the best dual solution obtained so far (the one corresponding to the best

dual bound). In the Wentges approach [129], the next dual vector used to generate

improving columns is obtained by taking a step away from the current dual solution in

the direction of the best dual solution. As the algorithm converges, it places an

increasing emphasis on the best dual solution found.

5.5.3 A new non-parameteric approach for stabilizing

All previously developed techniques involve parameters for which it is difficult

to determine effective values. In this section we explore a non-parametric approach for

stabilizing DWD and discuss some concerns related to it. Our approach is based on

insights from interior point approaches that have been used to stabilize DWD

convergence. Most interior point algorithms (e.g analytical center, volumetric center,

etc.) use a central point with respect to the current approximation of the epigraph of the

dual objective function. A central point is deemed useful because it summarizes dual

74

Figure 8: Non-Parametric approach to stabilization

information accumulated during the progress of the algorithm. Therefore, calculating a

central point, which is not easy, is the focus of most research in this area. In addition,

interior point algorithms do not apply to DWD, which uses the Simplex method. In this

section we explore an alternative method that employs the idea of a central point within

the framework of the Simplex method. Our approach uses a projection of the current

optimal dual solution provided by RMP (Figure 8). This optimal dual solution

corresponds to an intersection of hyperplanes in the dual space. We refer to a hyperplane

that intersects at the current optimal dual solution as an active hyperplane. Each

hyperplane supports the dual epigraph at a point corresponding to the dual solution

which was used in generating this hyperplane. We refer to this point corresponding to an

active hyperplane as an active dual point. We construct the affine hull of all the active

dual points and project the optimal dual solution obtained from RMP onto it. The

motivation for this approach is that the dual solution corresponding to this projected

2

3

1

Dual (u) u1 u2 u3
u
 u*

F(u1)
F(u3)

F(u2)

Dual Bound F(u)

75

point has a central property because it captures information provided by the set of active

dual points obtained in previous iterations. More importantly, the projected point tends

to be close to the better dual values (“better” in the sense of the dual bounds associated

with each). The optimal dual solution provided by RMP is indifferent to the quality of

previous dual solutions but is dependent (only) on the slopes of supporting hyperplanes

generated by these dual solutions. In using the slope of the affine hull, our goal is to

implicitly force dual solutions to be close to one another on subsequent iterations, thus

preventing excessive oscillation. Finally, the projected dual point can be obtained within

a Simplex-method framework as shown below.

Calculating the projected dual: The projection of point x� on to the affine hull of k

points ix , ki ,..1= is obtained by solving the following minimization problem:

min { || �
= ki ..1

iλ ix - x� || } 2) (4.14)

s.t.

�
= ki ..1

iλ = 1. (4.15)

Model (4.14)-(4.15) can be solved using the Karush-Kuhn-Tucker conditions [17]. The

corresponding lagrange function can be formulated as follows:

),(µλL = �
j

(�
= ki ..1

(iλ ijx) - jx�) 2 + µ (1- �
= ki ..1

iλ),

where jx� is the jth component of vector x� ; and ijx is the jth component of vector ix . The

associated KKT conditions are

iλ∂
∂

(),(µλL) = �
j

2*(�
= ki ..1

(iλ ijx) - jx�) ijx - µ = 0 for ki ,,1 �=

76

and

µ∂
∂

(),(µλL) = 1 - �
= ki ..1

iλ = 0.

Solving these (k + 1) equations in (k+1) unknowns (µ and iλ for ki ,,1 �=) we obtain

the projected dual.

 Our primary concern is that, often, we use columns generated a priori (e.g., by a

primal heuristic) to initiatize RMP. The dual points that correspond to such columns are

not known. Thus, when hyperplanes corresponding to these columns are active in

defining the current optimal dual, the corresponding affine hull is not well-defined

because it does not include any dual points corresponding to these columns. Our future

research will try to overcome these difficulties and explore non-parametric approaches

further.

5.6 Improving convergence of edge-disjoint DWD

 In this section we describe specific techniques we implemented to improve the

convergence of the DWD reformulation of the edge-disjoint partitioning scheme (see

Chapter IV).

5.6.1 An improving initial set of columns

 We draw insight for generating a set of initial columns from the unique structure

of the master problem constraints for the edge-disjoint scheme. Each equality constraint

involves two decision variables: one related to a cloned vertex; and the other, to its

clone. The coefficient of the former is +1 while that of the latter is -1. This implies that

77

every hyperplane that supports the epigraph of the dual function will have values +1, 0,

or -1 as components of its gradient. The component of the gradient corresponding to an

equality constraint will take a value of +1 if the corresponding generated columns

involve the cloned vertex but not the clone. The component takes a value of -1 if the

corresponding generated columns do not involve the cloned vertex but does the clone.

Finally the gradient has a component value of 0 if the corresponding generated columns

involve both a cloned vertex and its clone.

We use this insight to generate useful columns apriori. A hyperplane that has a

gradient component of +1 associated with an equality constraint can be obtained by

generating a column that involves the cloned vertex. Similarly, by generating a column

that involves a clone, we can generate a hyperplane with a gradient component of -1,

which is associated with the equality constraint. We initiate RMP with columns based on

this criterion. Preliminary tests show that such initial columns indeed accelerate the

convergence of DWD.

5.6.2 Defining optimal bounds on the dual variables

 An ideal implementation of the boxstep method would utilize the optimal box-

width. In this section we exploit an observation regarding the edge-disjoint scheme to

create tight dual bounds. Our scheme is based on the insight obtained from observing the

structure of master problem constraints. We illustrate our insight using an example.

Assuming a vertex v has 2 clones 'v and ''v , the associated equality constraints are as

follows: 0'=− vv xx and 0'' =− vv xx . The cost coefficients of the decision variables vx ,

78

'vx , ''vx are
3

vw
 each, where vw is the original weight associated with vertex v . Let 'δ

and ''δ denote the dual variables associated with the cloning equalities. Employing

duality we have the following constraints on the dual variables: 'δ + ''δ ≤
3

vw
,

'δ− ≤
3

vw
, and ''δ− ≤

3
vw

. These constraints imply that dual variables 'δ and ''δ are

bounded within the interval [-
3

vw
, 2

3
vw

]. In general, for a cloned vertex with 1
~ −vP

clones, the dual variables associated with the corresponding equality constraints are

bounded within the interval [-
3

vw
,

v

v
v

P

w
P ~*)1
~

(−]. We use this observation to enforce

bounds on the dual variables within the Boxstep method. Preliminary tests show that

these dual bounds promote convergence.

5.6.3 A relaxation scheme

For denser instances, the tailing-off effect is severe and convergence typically

takes a number of hours at the root node for the edge-disjoint approach. The last method

aims at solving a relaxation of RMP in order to improve performance. Standard

techniques for relaxing constraints of the set-partitioning type involve penalizing a

violation of the equality constraint by using surplus and slack variables or by perturbing

the equations. We explore a related relaxation for the edge-disjoint scheme, which offers

the potential of allowing better control and involving fewer parameters.

79

The equality constraints that relate each vertex Vv ˆ∈ and its clones (see Chapter

III) contribute substantially to the computational effort required to solve the edge-

disjoint DWD formulation:

vS~ =
�
�
�

�
�
�

∈∈∀=−
�

∈
×+

VvPkxxBx vvv

PVVV

k

v
v ~

},
~

,..,2{,0:
'1

~~\

. (4.5)

Thus, RMP can be decomposed into disjoint sets of equality constraints, each set

involving a cloned vertex Vv ˆ∈ and its clones. We focus on each such set individually.

For each Vv ˆ∈ , we have 1
~ −vP equality constraints; for example, a vertex v having two

clones 'v and ''v is associated with two equality constraints: 0'=− vv xx and

0'' =− vv xx . The solution space associated with these equality constraints corresponds

to the diagonal of the unit hypercube formed by the binary variable vx and its clones, 'vx

and ''vx (Figure 9a). Since such a feasible region is highly restrictive, extensive

computational effort is entailed. Based on this observation, we relax the solution space to

a box of width δ around this diagonal (Figure 9b). This relaxation has the advantage that

it is both intuitive and simple to implement. Moreover, the relaxation is easy to control –

we can enlarge or reduce the boxsize, depending on how challenging an instance is.

80

Figure 9a: The solution space corresponding to the Figure 9b: Relaxing the solution space

equality constraints involving a vertex and its clones

5.7 Computational benchmarks

 In this section we present a computational evaluation of our stabilization methods

in application to the edge-disjoint B&P approach for MWISP (see Chapter IV), focusing

on instances from the Second DIMACS Implementation Challenge (we actually use the

complements of the listed graphs). We present results based on applying our stabilization

methods at the RMP root node. Table 11 presents results; column 1 identifies the graph

involved in each test and columns 2-7 describe the instance, giving, respectively, the

number of vertices V ; the number of edges, E ; the % Density, ∆ ; the number of

partitions (P), the corresponding V
~

; and the number of equality constraints in RMP

(Equalities). Column 8 identifies the stabilization method. Columns 9-11 present

relevant performance metrics with respect to the rate of convergence of DWD: the root

''vx
'vx''vx
'vx

vx

'vx''vx

vx

'vx''vx

81

node solution (LPZ), the total number times RMP is solved (MP Sols), and the CPU run

time for our B&P approach to prescribe the root node RMP optimal solution (Time).

Table 11 compares the performances of the techniques described in section 5.6.1,

5.6.2 and 5.6.3 in comparison with the unstabilized version. For each instance, five rows

present results obtained from applying (m1): the unstabilized DWD, (m2): the initial set

of columns as discussed in section 5.6.1, (m3): the dual bounds within a Boxstep method

as described in section 5.6.2 in addition to employing the initial set of columns, and the

relaxation described in section 5.6.3 using box-widths of 0.1 (m4) and 0.05 (m5). Note

that (m4)-(m5) relax the problem and hence the upper bounds obtained from the linear

relaxation (LPZ) are weaker than that obtained from (m1)-(m3).

Results indicate that the time expended in generating the initial set of columns

for (m2) is more than offset by the improvement in the rate of convergence. By

employing the dual bounds within a Boxstep method, (m3) improves the rate of

convergence of DWD. For instance keller4 (a large, dense instance), inspite of

employing (m2) and (m3) techniques, convergence was not attained at the root node

within a realistic amount of time. The main reason for this poor performance was the

tailing-off effect, which was addressed by the relaxation strategy using (m4) and (m5).

However, the relaxation resulted in a weaker upper bound (see LPZ). For sparser

instances, the upper bounds obtained by (m4) and (m5) are tight in comparison with that

obtained by (m1)-(m3), but the bound weakens as density increases. With respect to run

time, (m4) and (m5) together provide the best results for 5 of the 8 instances and the

worst only on instance johnson16-2-4. This is intuitive since (m4) and (m5) solve a

82

relaxation of the original problem. Instances MANN_a9, hamming6-2, and johnson8-2-4

do not provide much opportunity to make improvements with respect to run time.

5.8 Conclusions

 In this chapter we describe available techniques employed to accelerate

convergence of DWD. We present preliminary research to explore a new non-parametric

approach for stabilizing DWD. Finally, we demonstrated adaptations of available

techniques in application to the edge-disjoint B&P formulation. Our results indicate that

our implementations were successful in improving the rate of convergence. Our future

research will explore more generic strategies for set-partitioning problems and explore

efficient techniques for improving the convergence of the edge-disjoint B&P

formulation.

83

Table 11
Comparison of methods (m1), (m2), (m3), (m4) and (m5)

(m1) unstabilized
(m2) employing starting set of columns
(m3) employing dual bounds with Boxstep
(m4) 0.1 relaxation
(m5) 0.05 relaxation
** exceeds run-time limit of 3 hours

Instance |V| |E| ∆ P V
~

Equalities Method LPZ MP sols.
Time

(seconds)
MANN_a27 378 702 0.01 25 70 284 (m1) 135 101 5.88
 (m2) 135 61 2.68
 (m3) 135 84 9.34
 (m4) 137.4 29 3.17
 (m5) 136.25 28 2.77
hamming8-2 256 1024 3.1 20 197 557 (m1) 128 495 4547.45
 (m2) 128 403 3442.38
 (m3) 128 292 1741.8
 (m4) 128.925 21 4.67
 (m5) 128.47 35 6.86
MANN_a9 45 72 7.3 5 16 22 (m1) 18 21 0.06
 (m2) 18 12 0.06
 (m3) 18 10 0.05
 (m4) 18.37 7 0.03
 (m5) 18.18 8 0.05
hamming6-2 64 192 9.5 8 47 101 (m1) 32 75 0.58
 (m2) 32 67 0.86
 (m3) 32 4 0.05
 (m4) 32.33 3 0.06
 (m5) 32.12 3 0.04
johnson8-4-4 70 560 23.2 3 51 66 (m1) 14 145 6.57
 (m2) 14 142 6.74
 (m3) 14 172 9.15
 (m4) 14.43 4 0.39
 (m5) 14.22 5 0.47
johnson16-2-4 120 1680 23.5 8 111 375 (m1) 8 88 5.36
 (m2) 8 56 4.96
 (m3) 8 46 5.37
 (m4) 12.784 35 37.57
 (m5) 11.58 75 12.89
keller4 171 5100 35.1 8 157 621 (m1) 13.63 >500 **
 (m2) 13.63 >500 **
 (m3) 13.63 373 4446.52
 (m4) 16.79 55 648.59
 (m5) 15.95 101 757.43
johnson8-2-4 28 168 44.4 8 26 85 (m1) 4 26 0.11
 (m2) 4 14 0.05
 (m3) 4 11 0.06
 (m4) 5.53 10 0.09
 (m5) 4.938 13 0.09

84

CHAPTER VI

CUT GENERATION WITHIN B&P – A LIFTING TECHNIQUE

6.1 Introduction

DWD reformulation can provide a tighter bound than that given by the LP

relaxation of a model. However, in a typical implementation of B&P, the bound obtained

may not tight enough to solve challenging instances effectively. B&P can potentially be

enhanced by incorporating cutting planes to form a branch-and-cut-and- price (BCP)

approach. However, incorporating cutting planes within B&P is challenging. In this

chapter we focus on generating valid linear inequalities that can be incorporated in RMP

to tighten the formulation. Note that traditional techniques for deriving generic cutting

planes from the optimal Simplex tableau – Gomory and L&P cutting planes – will, within

a DWD framework, generate cutting planes in terms of the RMP decision variables. A

cutting plane in terms of RMP decision variables entails the disadvantage that it can

distort subproblem structure. Hence, the challenge is to present techniques for generating

cutting planes in terms of the original problem variables. This is the precise reason why

cutting plane techniques are not used routinely in the B&P framework.

In this chapter we introduce a generic lifting technique for deriving cutting planes

in the B&P framework in terms of the original problem variables. Moreover, our

technique does not rely on the polyhedral properties of the underlying problem. Although

we discuss a specific application to MWISP, our approach is useful in generic

applications of B&P. We begin our approach by identifying faces/facets of the

subproblem that are tight at the current DWD solution using a modification of the facet

generation procedure (FGP) [102]. These valid inequalities, however, are of no use if

85

incorporated in RMP because they have been implicitly invoked; DWD reformulation

optimizes over the integer convex hull of each subproblem. However, we show that these

valid inequalities - when lifted over variables associated with other subproblems- can

potentially generate valid inequalities that cut off the current fractional solution. Within

the context of MWISP, this method corresponds to identifying facets of the polytopes

associated with G that are obtained by lifting facets of polytopes associated with

subgraphs of G . This is the basis of our cut generation scheme.

This chapter has five sections. Section 6.2 presents relevant formulations for our

method; and section 6.3 discusses the lifting scheme. Sections 6.4 and 6.5 present

computational results and conclusions, respectively.

6.2 B&P formulations

In this section we present a generic formulation having a block diagonal structure,

which is amenable to DWD. The corresponding feasible region is thus represented by the

following set of constraints:

bxAxAxA P
P ≤+++ �

2
2

1
1

pp
p dxD ≤ Pp ∈∀ (6.1)

pnp Bx ∈ Pp ∈∀ ,

where pA is the matrix of coefficients corresponding to px in master problem

constraints, pD is the matrix of coefficients corresponding to px in inequalities

associated with subproblem p , px pnB∈ is the vector of decision variables associated

86

with the pn variables in partition Pp ∈ , and pw pnR∈ is the corresponding vector of

weights.

The block-diagonal structure of formulation (6.1) is exploited in the following

DWD reformulation (DWD):

bxA jp
p

P

p Jj
jp

p

≤��
= ∈

)(
1

λ (6.2)

1=�
∈ pJj

jpλ ∀ },..,1{ Pp ∈ (6.3)

0≥jpλ ∀ },..,1{ Pp ∈ , pJj ∈ , (6.4)

where pJ is the set of integer extreme points of pQ = { }pp
p

np dxDBx p ≤∈ :|| , jpx pVB∈

is the vector defining extreme point pJj ∈ , and jpλ is the RMP decision variable

corresponding to extreme point pJj ∈ . Subproblem },..,1{ Pp ∈ is an integer problem of

the form:

()α*
pZ = Max (){ }p

ppT
p

p QxxAw ∈− :α , (6.5)

in which α E
R

ˆ
∈ is the vector of dual variables associated with the rows of constraint set

(6.2). A column corresponding to jpx is deemed improving if () 0>−− p
jpT

p
p xAw βα ,

where pβ is the dual variable corresponding to the thp convexity constraint (6.3).

This DWD reformulation involves jpλ decision variables, which differ from those

in original formulation (6.1). Consequently, the optimal Simplex tableau corresponding

to the DWD reformulation is in terms of jpλ rather than px . Traditional cutting plane

techniques - Gomory and L&P cutting planes – exploit the optimal Simplex tableau.

87

Relative to the DWD reformulation, this results in cutting planes involving jpλ decision

variables. The disadvantage of such a scheme is that resulting cutting planes might

change the subproblem structure, posing a challenge to the subproblem solver and

affecting the overall performance of B&P. To improve the B&P approach, the challenge

is to present techniques for generating cutting planes in terms of the original problem

variables. Invoking such cutting planes in RMP will not distort subproblem structure.

We next describe a formulation that provides insight into our lifting technique.

The DWD reformulation implicitly invokes the integer convex hull of each subproblem

polytope. Assuming that we have a minimal representation of the integer convex hull of

each subproblem polytope, an equivalent representation (DWD”) is as follows:

bxAxAxA P
P ≤+++ �

2
2

1
1 (6.6)

pp
p dxD

~~ ≤ Pp ∈∀ (6.7)

pnp Rx ∈ },,1{ Pp �∈∀ , (6.8)

where (6.7) is the minimal representation of pQ ={ }pp
p

np dxDBx p ≤∈ :|| . Formulation

(6.6) – (6.8) provides the same bound as formulation (6.2) – (6.4). Moreover, the optimal

feasible bases of these formulations correspond to each other. The difference between the

two formulations is that, while DWD reformulation invokes the convex hulls of integer

subproblem polytopes implicitly, DWD” invokes them explicitly in (6.7). In the next

section we describe our lifting technique, which generates cutting planes in terms of the

original variables.

88

6.3 Lifting technique

 Let x ([1x , 2x , � , Px]T) denote the current DWD fractional solution obtained

by the transformation px = jp
jpJj x

p
λ� ∈ , in which λ is the vector of the optimal basic

variables in RMP. Since x corresponds to an optimal feasible basis for DWD”, a subset

of constraints (6.6) and (6.7) are tight at x . Note that, while it is easy to determine the

subset of constraints (6.6) that are tight at x , we can not do the same for constraints (6.7)

because we do not know them explicitly. Further, we reiterate that constraint set p in

(6.7) includes decision variables associated with only one partition. The following

theorem presents the basis for our lifting technique.

Theorem 6.1: Suppose that inequality βα ≤ii pp x from constraint set (6.7) is tight at x

for some partition Ppi ∈ . Further, suppose that lifting βα ≤ii pp x over fractional

variable kx (i.e., 10 << kx) generates the valid inequality βαα ≤+ kk
pp xx ii with

0>kα . Then, βαα ≤+ kk
pp xx cuts off x .

Proof: Since, as βα ≤ii pp x is tight at x , we have βα =ii pp x . Since 0>kα and

10 << kx , we have 0>kk xα . Thus, βαα >+ kk
pp xx ii and x violates valid inequality

βαα ≤+ kk
pp xx .

This theorem implies that we can generate cuts by lifting subproblem faces that

are tight at the current fractional solution x . These cuts can be incorporated in RMP

without changing the subproblem structure. Note that Theorem 6.1 guarantees that a cut

can be generated in this way only if it is possible to lift the face successfully (i.e., ∃ kx

such that 10 << kx and 0>kα).

89

Lifting is a prevalent concept in the literature. Our contribution here is in

providing a mechanism for identifying and generating potential inequalities to be lifted.

For each subproblem, we apply FGP to identify faces (facets) of the corresponding

polytope that are tight at the current DWD fractional solution x . Having identified an

inequality representing a subproblem face (facet), we attempt to lift it over variables

associated with other subproblems in order to generate cuts successfully. Next, we

describe FGP within this context.

6.3.1 Facet generation procedure

Gadidov et.al. [102] introduced FGP, which identifies a facet of a full-

dimensional integer polytope nR∈Ρ by separating a given fractional point Ρ∉*f . This

procedure relies on an oracle to solve an optimization problem over Ρ . They embedded

FGP within a B&B framework and generated cuts derived from facets of underlying

knapsack polytopes. Here, we adapt FGP to identify whether a given fractional point *f

is an interior point or an inner point relative to a subproblem polytope. Further, if *f is

an inner point, FGP provides a face (facet) containing *f . We describe this adaptation

of FGP below.

Objective: Identify if a fractional point *f is an inner point or an interior point w.r.t. to

an underlying full-dimensional polytope nR∈Ρ . In case *f is an inner point, identify a

face of Ρ containing *f .

FGP Assumptions:

(A1) nR∈Ρ is a full dimensional polytope and Ρ∈0 .

(A2) Ρ∈*f .

90

(A3) There exists a set 1E of n vectors representing linearly independent extreme points

of Ρ such that *f belongs to the convex cone generated by 1E .

(A4) There exists an oracle to solve an integer program over Ρ .

FGP solves the following LP problem to optimality using column generation:

*z = Min �
∈)(PExti

iα (6.9)

s.t.

�
∈)(PExti

iα ix = *f (6.10)

 iα ≥ 0 i ∈)(PExt , (6.11)

where)(PExt represents the set of extreme point of the polytope Ρ . The optimal solution

*z provides the following information:

• If *z = 1, then Pf ∈* and *f is an inner point.

• If *z < 1, then Pf ∈* and *f is an interior point.

For the case *z = 1, the face (facet) containing *f is generated by constructing the

affine hull of the extreme points corresponding to the optimal basis. Note that *z > 1

implies Pf ∈* and violates (A2).

In our adaptation, we use px for some Pp ∈ as fractional point *f . Our oracle

corresponds to the solver for subproblem Pp ∈ . In addition, we know a priori that px ∈

pQ , thus guaranteeing *z ≤ 1. Moreover, since px = jp

Jj
jp x

p

�
∈

λ , the extreme points

used in the representation of px are known a priori. This provides an initial basis for the

FGP column generation problem. If the solution to (6.9) - (6.11) gives *z < 1, then px is

91

an interior point and we conclude that no subproblem face (facet) is tight at px .

However, if *z = 1, px is an inner point and we construct the affine hull of the extreme

points corresponding to the optimum basis of (6.9) - (6.11) to generate the valid

inequality representing the subproblem face (facet) containing px . Note that a degenerate

optimal basis would imply that the inner point px lies on a face of dimension less than

that of a facet and that FGP identifies the corresponding face. In the next section we

describe our lifting step.

6.3.2 Lifting subproblem faces

After having identified subproblem faces that are tight at px , we attempt to lift

each sequentially over variables associated with other sub-problems. Based on Theorem

6.1, we need only to lift with respect to variables that are fractional in the current

solution. Our lifting problem is an integer problem and can be solved using the same

B&P scheme used for the original problem. We now describe the lifting problem.

Assume that FGP has identified face βα ≤jj pp x of the polytope associated with

subproblem },...,1{, Pjp j ∈ . Let T be the set of the decision variables to be lifted:

T = },10|{ jii pixx ∉<< . We do not need to lift with respect to all variables in T . In

fact, the lifting process can be terminated at any iteration after having obtained at least

one positive coefficient for a lifted variable since such an inequality represents a cut. At

iteration k , let TLk ⊂−1 represent the set of variables already lifted and let 1\ −∈ kk LTx

be the next variable to be lifted. The lifting problem is represented as follows:

92

kz = Max j
Lj

j
pp xx

k

jj �
−∈

+
1

αα

s.t.

bxAxAxA P
P ≤+++ �

2
2

1
1

pp
p dxD ≤ Pp ∈∀ (6.12)

pnp Rx ∈ },,1{ Pp �∈∀

 1=kx .

The lifting coefficient for kx is obtained from kk z−= βα , where β is the right hand

side of the inequality representing the face to be lifted. According to Theorem 6.1, if

0>kα for any Txk ∈ , a cut has been generated successfully. In the next section we

illustrate an example of our lifting technique:

6.3.3 Example of lifting

We demonstrate our cutting plane methodology in application to the vertex-

disjoint B&P approach for MWISP (see Chapter III). Figure 10 depicts a graph G and a

vertex-disjoint partitioning of G into two subgraphs.

Figure 10: A graph and a vertex-disjoint partition into two subgraphs

1

6 7

4

2
3

5

1

6 7

4

1

6 7

4

2
3

5

1

6 7

4

93

Figure 11a: Vertex disjoint subgraph 1 Figure 11b: Vertex disjoint subgraph 2

The corresponding formulation for MWISP is as follows:

 121 ≤+ xx

162 ≤+ xx

156 ≤+ xx

143 ≤+ xx

2x + 5x ≤ 1

2x + 3x ≤ 1

5x + 3x ≤ 1

1x + 6x ≤ 1

1x + 4x ≤ 1

4x + 7x ≤ 1

7x + 6x ≤ 1

 1x , 2x , 3x , 4x , 5x , 6x , 7x ∈ { }1,0 .

The optimal RMP solution at the root node is fractional:

2
3

5

Subgraph 1

2
3

5

Subgraph 1

1

6 7

4

1

6 7

4Subgraph 2

constraints that will be relegated to the master problem

constraints that will be used to form subproblem 1

constraints that will be used to form subproblem 2

94

1x = 2x = 4x = 5x = 6x = 7x = 0.5, 3x = 0, and *
VDRMPZ = 3.0.

A minimal description of 1Q for subproblem p = 1 (corresponding to subgraph 1 in

Figure 11a) is as follows:

2x + 5x ≤ 1

2x + 3x ≤ 1 (6.13)

5x + 3x ≤ 1

2x + 3x + 5x ≤ 1

0 ≤ 2x , 3x , 5x ≤ 1

Similarly, a minimal description of 2Q for subproblem p = 2 (corresponding to subgraph

2 in Figure 11b) is as follows:

1x + 6x ≤ 1

1x + 4x ≤ 1

4x + 7x ≤ 1 (6.14)

7x + 6x ≤ 1

0 ≤ 1x , 4x , 6x , 7x ≤ 1 .

 Note that subproblem 1 face 2x + 5x ≤ 1 is tight at the current fractional solution.

Lifting this face over the decision variables associated with subproblem 2 entails lifting

with respect to variables related to vertices 1, 6, and 4. Note that the variable related to

vertex 7 need not be lifted since it is not adjacent to either vertex 2 or 5. Moreover,

variables 1x , 4x , 6x are all fractional; we can lift with respect to each one of them.

Lifting produces zero coefficients 01 =α and 04 =α for 1x and 4x ; however, it

95

produces a positive coefficient 16 =α for variable 6x , generating the clique-inequality

2x + 5x + 6x ≤ 1. Note that this inequality cuts off the current fractional solution

(2x + 5x + 6x = 1.5 > 1) ! Thus, we have successfully generated a cut using our scheme.

The next section describes our computational tests.

6.4 Computational evaluation

 We evaluate our cut-generation methodology in application to the vertex-disjoint

B&P approach for MWISP (see Chapter III), focusing on instances from the Second

DIMACS Implementation Challenge (we actually use the complements of the listed

graphs). Table 12 describes each test instance and presents results. The first five columns

specify the instance, the associated number of vertices V , the number of edges E , the

% Density ∆ , and the number of partitions P used in the vertex-disjoint scheme.

 For each instance we generate one round of cuts at the root node. If an RMP

solution is fractional, we use FGP in an attempt to identify a face (facet) from each

subproblem that is tight at the fractional solution. Each such face is then lifted in an

attempt to generate a cut. If a cut is identified, we incorporate it in RMP, which is then

reoptimized. The bound obtained after one iteration of cut generation is denoted)1(LPZ .

To evaluate the tightness obtained from cut generation, we compare)1(LPZ (column 8)

with the optimal root node solution of RMP,)0(LPZ (column 6). Columns 7 and 9 record

run times to obtain)0(LPZ and)1(LPZ , respectively.

 Results show that our cut generation methodology improves the bound obtained

in 9 of these 11 instances; it did not identify a valid cut for 2 instances. The failure in

96

both of these cases was because lifting the subproblem faces did not yield a positive

coefficient for any fractional variable. Our results indicate that substantial computational

effort may be required to generate a cut using this approach. Lifting entails most of the

computational effort because it involves solving an integer program for each lifted

variable. We lifted each identified subproblem face over all decision variables in the

associated set T . Thus, the computational effort we report is related to both the number

of partitions P and the number of vertices V̂ . Finally, the improvement in the bound at

the end of just one round of cut generation is not substantial. It is possible that additional

rounds of cuts could yield additional, tighter bounds. However, there is no guarantee that

our approach will generate the deepest possible cuts.

6.5 Conclusions

 In this chapter we present a new technique for generating cuts within B&P. We

also provide a preliminary computational evaluation. Although lifting is a prevalent

technique, our contribution is in providing a mechanism for identifying potential

inequalities to be lifted within B&P to yield cuts that do not destroy subproblem

structure.

We have three primary concerns. First, we are unable to guarantee that the

identified subproblem face will yield a cut when lifted. Second, the cut obtained is not

guaranteed to be the deepest cut possible (which affects the % improvement achieved in

the bound). Third, lifting may require a prohibitive run. While the first and the second

concerns are inherent and cannot be resolved, there is scope for reducing the

computational effort. Specifically, we can avoid lifting all the relevant decision variables

97

and terminate upon achieving a positive coefficient for any lifted variable. We could also

explore problem-specific techniques for identifying a priori decision variables which will

yield a cut upon lifting. Further, we need to evaluate our approach in other IP

applications besides MWISP. Our future research will be directed along these lines.

98

Table 12
Preliminary results for lifting

Instance |V| |E| � P)0(LPZ Time)1(LPZ

Time
MANN_a9 45 72 7.3 5 18 1.781 18 5.945

johnson8-4-4 70 560 23.2 6 16.5 0.452 16.1684 35.431
johnson16-2-4 120 1680 23.5 10 10.5 2.046 9.25 91.421

keller4 171 5100 35.1 4 17.7533 14.171 17.5842 520.089
hamming8-4 256 11776 36.1 5 20.827 43.999 20.7556 3984.37
brock200-3 200 7852 39.5 4 27.5205 40.484 27.2219 1280.76

johnson8-2-4 28 168 44.4 5 5.25 0.233 4.375 6.978
c-fat-2005 200 11.427 57.4 5 66.667 8.906 66.667 6591.31
p_hat300-1 300 33.917 75.6 2 12.867 533.14 12.85 2836.19
c-fat-2002 200 16665 83.7 4 26.5 20.593 26.3846 761.766
c-fat-2001 200 18366 92.3 3 14 41.342 13.8 859.062

99

CHAPTER VII

CUT GENERATION WITHIN B&P – INVOKING LIFT & PROJECT

7.1 Introduction

DWD reformulation can provide a tighter bound than that given by the LP

relaxation of a model. However, in a typical implementation of B&P, the bounds

obtained may not tight enough to solve challenging instances effectively. B&P can

potentially be enhanced by incorporating cutting planes to form a branch-and-cut-and-

price (BCP) approach. However, incorporating cutting planes within B&P is challenging.

Chapter VI mentions the challenges involved in implementing traditional cutting plane

methods within a B&P framework. Further, it presents a lifting technique for generating

cutting planes in terms of the original problem variables. However, this technique suffers

several drawbacks. Primarily, there is no guarantee that the lifting technique can identify

a cut. Moreover, any cut obtained from lifting is not guaranteed to be the deepest.

Addressing these concerns, we now explore generic (i.e., without relying on the

polyhedral properties of the underlying problem) cutting plane methods within a B&P

framework. We emphasize that, although we implement it specifically for MWISP, our

approach is useful in generic applications of B&P.

As in Chapter VI, our approach relies on identifying faces (facets) of a

subproblem polytope using a modification of FGP [102]. We emphasize that resulting

valid inequalities are of no use if incorporated in RMP, since DWD reformulation

invokes them implicitly as it optimizes over the integer convex hull of each subproblem.

We begin by presenting a theoretical framework for generating valid cutting planes in a

Chvatal-Gomory (C-G) fashion by combining faces (facets) generated from the

100

subproblems in conjunction with master problem inequalities. However a practical

implementation of the C-G cut relies on identifying the C-G multipliers which is not

straightforward. We overcome this challenge by exploring the L&P technique and show

how to invoke L&P cuts within a B&P framework. This is the basis of our cut generation

scheme, which we evaluate through computational tests. Our goal is to present a

framework for generating generic cutting planes within the B&P approach.

This chapter has five sections. The B&P formulations discussed in Chapter VI are

referenced instead of duplicating them here. In section 7.2 we present the insight for

generating a C-G cut within B&P. Section 7.3 presents L&P with respect to DWD

reformulation while section 7.4 describes our cut generation scheme. Section 7.5 presents

our computational tests.

7.2 Cut generation scheme

 Let x ([1x , 2x , � , Px]T) denote the current DWD fractional solution obtained

by the transformation px = jp
jpJj x

p
λ� ∈ where λ is the vector representing the optimal

basic variables in RMP. From the principles of DWD, we know that x corresponds to an

optimal feasible basis for DWD” (see Chapter VI). This implies that, at x , a subset of

constraints (6.7) and (6.8) is tight. Note that, while it is easy to determine the subset of

constraints (6.7) that are tight at x , we can not do the same for constraints (6.8) because

we don’t know them explicitly. Moreover, there could be exponential number of

constraints in set (6.8). However, if constraint set (6.8) were available explicitly, we

could generate a C-G cut by taking a combination of selected constraints in (6.7) and

(6.8). In the next section we illustrate an example of such a procedure.

101

7.2.1 Example of a C-G cut in B&P

We demonstrate an example based on the vertex-disjoint B&P approach for

MWISP. We refer to Figure 10 from Chapter VI, which depicts a graph and a vertex-

disjoint partition into two subgraphs. We also refer to the corresponding formulations

from Chapter VI.

 The optimal RMP solution at the root node using the vertex-disjoint B&P scheme

is fractional:

 1x = 2x = 4x = 5x = 6x = 7x = 0.5 and 3x = 0 and *
RMPZ = 3.0.

Referring to the DWD” reformulation for this example (Chapter VI), we derive a C-G cut

using a linear combination of the following inequalities:

2x + 6x ≤ 1 (Master constraint)

6x + 5x ≤ 1 (Master constraint)

2x + 3x + 5x ≤ 1 (face of subproblem polytope 1=p).

Using a coefficient of 0.5 for each constraint, a linear combination results in

 2x +0.5 3x + 5x + 6x ≤ 1.5

Integer rounding generates the clique inequality 2x + 5x + 6x ≤ 1. Note that this inequality

cuts off the current fractional solution (2x + 5x + 6x = 1.5 > 1)! The next section

summarizes our C-G scheme for B&P.

7.2.2 Implementing C-G cuts within B&P

Our approach is based on the fact that x corresponds to an optimal feasible basis

for DWD”. We seek to identify the set of hyperplanes that are tight at x . This set

comprises a subset of master problem constraints and a subset of subproblem faces

102

(facets). We use FGP (see section 6.3) to identify the subproblem faces that are tight at

x . For each subproblem, we apply FGP to identify faces (facets) of the corresponding

polytope that are tight at the current DWD fractional solution x . A C-G cut can then be

derived by taking a linear combination of the identified subproblem faces (facets) and the

master problem constraints that are tight at x .

However, the challenge involved is in identifying the multipliers for the linear

combination used to derive the C-G cut. Although our simple example demonstrates the

feasibility of invoking C-G cuts within B&P theoretically, a practical implementation is

not straightforward. In the next section we present a theoretical framework for using L&P

within B&P while addressing our concerns about C-G cuts.

7.3 Lift & project

L&P tightens the linear relaxation of an integer program by lifting it into a higher

dimensional space where a tighter formulation is obtained. This higher dimension

polyhedron, when projected back onto the original space, provides a tighter

approximation of the integer convex hull [6, 7, 114]. L&P utilizes this higher dimension

polyhedron to derive strong cutting planes for the original polyhedron [6, 7]. In the next

section we present our L&P scheme for B&P.

7.3.1 Lift & project using the binary disjunction

We begin by invoking L&P for DWD”. Recall that the DWD” reformulation is

obtained by explicitly invoking the integer convex hull of each subproblem polytope.

Assuming that a DWD” reformulation is available, we show how to invoke L&P. Later,

103

we address the concern that the DWD” reformulation is not explicitly available. We start

with the following 0-1 program, which corresponds to the DWD” reformulation:

max �
∈Pp

pp xc (7.1)

s.t.

bxA
Pp

p
p ≤�

∈

 (7.2)

pp
p dxD

~~ ≤ Pp ∈∀ (7.3)

pnp Bx ∈ , },,1{ Pp �∈∀ , (7.4)

where pA represents the matrix of coefficients associated with master problem

constraints, pD
~

represents the matrix of coefficients associated with constraints

representing the integer convex hull of subproblem polytope Pp ∈ , pnp Bx ∈ is the

vector of binary decision variables associated with subproblem Pp ∈ , and pnp Rc ∈ is

the corresponding vector of cost coefficients.

The corresponding linear relaxation is obtained by relaxing binary restriction

(7.4). A disjunctive relaxation of (7.2) - (7.4) is obtained by imposing the 0-1 disjunction

on a single variable }1,0{∈jx as in () ()10 ≥∨≤ jj xx . The conjunctive normal form for

the disjunctive set is represented as

bxA
Pp

p
p ≤�

∈

pp
p dxD

~~ ≤ Pp ∈∀ (7.5)

() ()10 ≥∨≤ jj xx

pnp Rx ∈ },,1{ Pp �∈∀ ,

104

and the disjunctive normal form is represented as

bxA
Pp

p
p ≤�

∈

 bxA
Pp

p
p ≤�

∈

pp
p dxD

~~ ≤ Pp ∈∀ pp
p dxD

~~ ≤ Pp ∈∀ (7.6)

()0≤jx ()1≥jx

pnp Rx ∈ , },,1{ Pp �∈∀ pnp Rx ∈ , },,1{ Pp �∈∀

7.3.2 Compact representation of the convex hull

L&P invokes the convex hull representation of the union of two polyhedra, each

of which corresponds to a disjunctive set [6, 7]. Let H
~ denote this closed convex hull.

H
~ is thus the set of points pnp Rx ∈ Pp ∈∀ for which there exist vectors

()PpRyRy pnp ∈∀∈∈ ,1
0 and ()PpRzRz pnp ∈∀∈∈ ,1

0 such that

0

~~

1

0

0

00

=

∈∀≤

≤

=+

∈∀+=

�
∈

j

p
p

p

Pp
p

ppp

y

PpydyD

byyA

zy

Ppzyx

 (7.7)

PpzdzD

bzzA

p
p

p

Pp
p

∈∀≤

≤�
∈

~~

0

0

.,

00

pnpp

j

Rzy

zz

∈

=−

L&P exploits the observation that x ∉ H
~ and, thus, facets of H

~ can be used to cut off x

[6, 7]. L&P uses the reverse polar *~
H of H

~ in order to generate these cuts:

 ∨

105

*~
H =

�
�
�
�

�

�
�
�
�

�

�

≥
−+≥

+≥

−+≤

++≤

∈∈∈

,0,u,v,,u,

~

~

~

~
:,,

00

0

0

0

121 21

v

vdvb

dub

evDvA

euDuA

RRR

j

j

nn

υµ
υβ
µβ

υα

µα
βαα

where []

	
	
	
	
	

�

�
�
�
�
�

�

=

	
	
	
	
	

�

�
�
�
�
�

�

==

PP

P

d

d
d

d

D

D

D

DAAAA

~

~
~

~
 and ,

~
00

0
0

~
0

00
~

~
 , 2

1

2

1

21
����

�

�

�

If H
~ is full-dimensional, inequality βα ≤�

∈Pp

pp x defines a facet of H
~ IFF

()βααα ,,,, 21 p
� is an extreme ray of *~

H [6, 7]. In order to generate the extreme rays of

*~
H , L&P solves a linear program over a normalized version of the cone *~

H [6, 7]. This

linear program identifies the facet of H
~ that is most violated by the current fractional

point x = ()Pxxx �,, 21 and is called the cut generating linear program (CGLP) [6, 7]:

Min �
�
�

�
�
�
�

�
−�

∈

p

Pp

p xαβ

s.t.

0,u,v,,u,
11-

~

~

~

~

00

0

0

0

≥
≤≤

−+≥

+≥

−+≤

++≤

v

vdvb

dub

evDvA

euDuA

j

j

υµ
β

υβ
µβ

υα

µα

 (CGLP)

106

In CGLP, we use a normalization that restricts []1,0∈β , allowing us to deal with

a polyhedron instead of the cone *~
H . Different normalization forms can be used [6, 7]

but care must be taken to assure that the normalization does not distort the cone; that is,

extreme points of the CGLP polyhedron should still correspond to facets of H
~ . Note that

we need not solve CGLP to optimality; we can stop anytime the objective function value

is positive. However, this would not guarantee the deepest cut.

7.4 Generating L&P cuts within B&P

In section 7.3 we showed that a L&P cut can be derived assuming that the DWD”

reformulation is explicitly available. However, DWD” is not explicitly available.

Moreover, even if it were available, the minimal representation could involve a large

number of facets, so that solving CGLP with all facets invoked explicitly could take a

prohibitive amount of time.

We overcome these challenges by posing CGLP as a column generation problem

in which each generated column is associated with a facet of a subproblem polytope. The

next section describes our column generation framework in more detail.

7.4.1 Solving CGLP using column generation: master problem

Our approach eliminates the need for a priori explicit information defining all

facets of each subproblem polytope. Instead, we use a column generation scheme to

identify required facets dynamically. We emphasize that CGLP is a linear program and

we use a column generation approach to solve it. Moreover, our column generation

approach does not invoke DWD but is a Type II column generation [130], analogous to

that used for cutting stock problems [59]. Our column generation scheme entails solving

107

a RMP comprising columns representing master problem constraint set A and a subset of

the subproblem facets D
~ . The dual solution provided by RMP is used by an oracle to

generate improving columns corresponding to subproblem facet defining equalities,

which are entered into RMP in the subsequent Simplex iteration. Optimality for CGLP is

achieved when no improving column is identified by the oracle. We now present RMP

for CGLP:

CGLPZ = Min �
�
�

�
�
�
�

�
−�

∈

p

Pp

p xαβ (7.8)

s.t.

jeuDuA 0'
~

' ++≤ µα (7.9)

jevDvA 0'
~

' −+≤ υα (7.10)

'
~

'dub µβ +≥ (7.11)

0'
~

' vdvb −+≥ υβ (7.12)

11- ≤≤ β (7.13)

0,u,'v,,'u, 00 ≥vυµ (7.14)

where, 'µ and 'υ correspond to the subset of oracle-prescribed (i.e., generated) columns

that populate the current RMP. In CGLP, columns associated with decision variables µ

and υ correspond to facets of subproblem polytopes, while those associated with

decision variables u and v correspond to the master problem constraints. Since master

problem constraints are known, we initiate RMP for CGLP with columns corresponding

to decision variables u and v . Optimal dual values from the solution of RMP are used by

the oracle to generate columns corresponding to decision variables µ and υ .

108

Our column generation scheme for CGLP need not be solved to optimality and

can be stopped anytime the objective function value is greater than zero. We next

describe the pricing problem used for generating columns corresponding to facets of

subproblem polytopes.

7.4.2 Solving CGLP using column generation: pricing subproblem

Since each generated column is associated with a facet of a subproblem polytope,

each pricing problem is an IP over the polar of a subproblem polytope. We use δ , η , 0δ ,

and 0η , the optimal solution to the dual of RMP ((7.8) – (7.14)), to price out columns µ

and υ . 'µ , 'υ , δ and η are partitioned to correspond with the subproblems in the forms

	
	
	
	

�

�
�
�
�

�

=

'

'
'

' 2

1

Pµ

µ
µ

µ
�

 ,

	
	
	
	

�

�
�
�
�

�

=

'

'
'

' 2

1

Pυ

υ
υ

υ
�

,

	
	
	
	

�

�
�
�
�

�

=

Pδ

δ
δ

δ 2

1

 and

	
	
	
	

�

�
�
�
�

�

=

Pη

η
η

η 2

1

 ,

respectively. We denote the polar of pQ = { }pp
p

np dxDBx p ≤∈ :|| by ∗
pQ . Pricing

subproblems),(0δδ pSP and),(0ηη pSP have the following forms:

),(0δδ pSP :),(0
* δδ pZ = Max { pδ− py + 0δ , where py ∈ ∗

pQ }. (7.15)

and

),(0ηη pSP :),(0
* ηη pZ = Max { pη− py + 0η , where py ∈ ∗

pQ }. (7.16)

Both these pricing subproblems are integer programs over the polar ∗
pQ . A column

obtained by solving),(0δδ pSP (or),(0ηη pSP) corresponds to extreme point of ∗
pQ and,

thus, represents a facet of pQ . A column obtained by solving),(0δδ pSP (or),(0ηη pSP)

is considered improving if),(0
* δδ pZ 0> (or),(0

* ηη pZ > 0). At the optimal solution,

109

no improving column can be identified by any subproblem. In the next section we

describe an approach to solve the pricing problem.

7.4.3 Solving the pricing problem

We begin by giving a theorem that provides insight into FGP (see Chapter VI):

Theorem 7.1 Solving an IP over the polar ∗
pQ is dual to solving FGP on pQ .

Proof: We begin by stating the FGP problem on pQ :

Primal FGP(pQ): Min �
∈)(PExti

iα

 s.t.

�
∈)(PExti

iα ix = *f (Primal)

 iα ≥ 0 i ∈)(pQExt

The dual to FGP(pQ) is given by

Dual {FGP(pQ)}: Max *f Ty

s.t.

Ty ix ≤ 1)(pQExti ∈∀

Ty free

Assuming that pQ is a bounded polytope containing the origin, we know from Theorem

9.1, Schrijver 1986 [111] that the set { Ty pnR∈ | Ty ix ≤ 1)(pQExti ∈∀ } represents the

polar ∗
pQ of pQ . Thus, the linear programming dual to FGP(pQ) can be represented as

Dual {FGP(pQ)}: Max *f Ty | Ty ∈ ∗
pQ ,

which corresponds to solving an IP over the polar ∗
pQ . [QED].

110

Theorem 7.1 shows that, in the column generation framework, solving the pricing

problem is equivalent to solving FGP(pQ) with *f corresponding to pδ− (or pη−).

The next section describes preliminary computational tests of our approach.

7.5 Computational benchmarks

 We apply our cut generation scheme to the vertex-disjoint formulation of MWISP

discussed in Chapter III. We focus our preliminary tests on instances from the Second

DIMACS Implementation Challenge (we actually use the complements of the listed

graphs). Table 7.1 describes each test instance and presents results. The first five columns

specify the instance, the associated number of vertices, V ; the number of edges, E ; the

% Density, ∆ ; and the number of partitions, P ; used in the vertex-disjoint scheme.

 For each instance we generate ten rounds of cuts at the root node. If an RMP

solution is fractional, we select the most fractional variable and generate an L&P cut

using a disjunction based on this fractional variable. We solve CGLP to optimality for

each such iteration to optimality. The resulting cut is then incorporated in RMP, which is

then reoptimized. The bound obtained after 10 such iterations is denoted)10(LPZ . To

evaluate the tightness obtained from cut generation, we compare)10(LPZ (column 7) with

the optimal root node solution of RMP,)0(LPZ (column 6).

 Table 13 shows (columns 6 and 7) that cut generation improves the bound

obtained in each of the 11 instances. Unlike the lifting scheme presented in Chapter V,

solving CGLP to optimality guarantees that L&P prescribes the deepest cut. In addition,

our L&P scheme is guaranteed to generate a cut.

111

Our main concern is the time consumed to obtain each cut – especially for larger

instances. One option for reducing run time is to terminate CGLP as soon as a cut is

obtained, rather than solving it to optimality. More time can then be spent on additional

cut-generating iterations, compensating for the depth of the cut obtained on each

iteration. A second improvement for larger instances would involve invoking only the

RMP constraints that are tight instead of all RMP constraints, thus reducing the size of

CGLP. Finally, recent research has shown that a L&P cut can be generated from the

optimal Simplex tableau without solving CGLP, thus reducing run time substantially. A

similar technique within the B&P framework could be explored. Our research continues

along these lines.

112

 Table 13

Results of Lift & Project Cut generation scheme within B&P

Instance |V| |E| � P)0(LPZ)10(LPZ
MANN_a9 45 72 7.3 5 18 17.33
johnson8-4-4 70 560 23.2 6 16.5 15.9853
johnson16-2-4 120 1680 23.5 10 10.5 10.0
keller4 171 5100 35.1 4 17.7533 17.2579
hamming8-4 256 11776 36.1 5 20.827 20.2495
johnson8-2-4 28 168 44.4 5 5.25 4.9167
p_hat300-1 300 33.917 75.6 2 12.867 12.8286
c-fat-2002 200 16665 83.7 4 26.5 25.3623
c-fat-2001 200 18366 92.3 3 14 13.9022

113

CHAPTER VIII

CONCLUSION AND FUTURE RESEARCH

In this research, we have explored B&P approaches for solving MWISP, one of

the most well-known and well-studied NP-hard problems in the field of combinatorial

optimization. In the first part of this research, we explored vertex and edge-disjoint

decompositions of the underlying graph to develop B&P approaches for MWISP. We

demonstrated that vertex-disjoint partitioning scheme gives an effective approach for

relatively sparse graphs (i.e., density less than 30%). We showed that the edge-disjoint

approach is less effective than the vertex-disjoint scheme because the associated DWD

reformulation of the latter entails a slow rate of convergence. Further research can

explore avenues for enhancing the effectiveness of the edge-disjoint approach for

MWISP. Also, future research can explore methods for determining an optimal

partitioning of a graph for MWISP. An ideal partitioning should yield an optimal integer

solution at the root node of the B&B tree. However, this does not appear practical. A

more realistic goal would be to identify optimal partitionings for both vertex and edge-

disjoint approaches with the goal of minimizing the run time required to prescribe an

optimal integral solution.

In the second part of this research, we addressed convergence properties of DWD.

We described available techniques for improving the rate of convergence and presented

preliminary research towards exploring non-parametric approaches for stabilizing DWD.

We also demonstrated our efforts for improving the rate of convergence associated with

the edge-disjoint B&P approach. Future research can explore more generic stabilization

114

techniques, especially for challenging set partitioning problems. Also, future research can

continue to explore non-parametric approaches for stabilizing DWD.

In the third part of this research, we explored more fundamental concepts towards

enhancing the strength of B&P as a useful integer programming tool. A primary

challenge posed in B&P is in generating cuts that do not distort subproblem structure.

Traditional implementations of C-G and L&P cuts can not be successful within a B&P

framework. We presented two new methodologies for generating generic cutting planes

within the B&P framework. The first methodology generates cuts by using FGP to

identify faces (facets) of subproblem polytopes and lifting associated inequalities; the

second methodology computes L&P cuts within B&P. We successfully demonstrated the

feasibility of our approaches and presented preliminary computational tests of each.

Future research can focus on devising more effective methods to implement the proposed

cut-generation approaches with the ultimate goal of building a generic Branch-and-Price-

and-Cut framework.

115

REFERENCES

[1] I. Adler, A. Ülkücü, On the number of iterations in Dantzig-Wolfe Decomposition
Algorithm, in: Decomposition of Large Scale Problems, D.M. Himmelblau (Ed.), North-
Holland, Amsterdam, 1972, pp. 181-187.

[2] E. Balas, Intersection cuts: A new type of cutting planes for integer programming,
Operations Research. 19 (1971) 19-39.

[3] E. Balas, Disjunctive programming, Annals of Discrete Mathematics. 5 (1979) 3-51.

[4] E. Balas, Disjunctive programming: Properties of the convex hull of feasible points,
Discrete Applied Mathematics. 89 (1998) 1-44.

[5] E. Balas, S. Ceria, G. Cornuejols, N. Natraj, Gomory cuts revisited, Operations
Research Letters. 19 (1996) 1-9.

 [6] E. Balas, S. Ceria, G. Cornuejols, A Lift-and-Project cutting plane algorithm for
mixed 0-1 programs, Mathematical Programming. 58 (1993) 295-324.

[7] E. Balas, S. Ceria, G. Cornuejols, Mixed 0-1 programming by Lift-and-Project in a
Branch-and-Cut framework, Management Science. 42 (1996) 1229-1246.

[8] E. Balas, R. Jeroslow, Strengthening cuts for mixed integer programs, European
Journal of Operations Research. 4 (1980) 224-234.

[9] E. Balas, M. Perregaard, Lift-and-project for mixed 0-1 programming: Recent
progress, Discrete Applied Mathematics. 123 (2002) 129-154.

[10] E. Balas, M. Perregaard, A precise correspondence between Lift-and-Project cuts,
simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming,
Mathematical Programming, Ser. B. 94 (2003) 221-245.

[11] E. Balas, J. Xue, Minimum weighted coloring of triangulated graphs with
applications to maximum weight vertex packing and clique finding in arbitrary graphs,
SIAM J Comp. 20 (1991), 209–221 [Addendum, SIAM J Comp. 21 (1992) 1000].

[12] E. Balas, J. Xue, Weighted and unweighted maximum clique algorithms with upper
bounds from fractional coloring, Algorithmica. 15 (1996) 397–412.

[13] E. Balas, C.S. Yu, Finding a maximum clique in an arbitrary graph, SIAM J Comp.
15 (1986) 1054–1068.

[14] F. Barahona, R. Anbil, The volume algorithm: Producing primal solutions with a
subgradient method, Mathematical Programming. 87 (2000) 385-399.

116

[15] C. Barnhart, C.A. Hane, P.H. Vance, Using Branch-and-Price-and-Cut to solve
origin-destination integer multi-commodity flow problems, Operations Research. 48 (2)
(2000) 318-326.

[16] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, P.H. Vance, Branch
and Price: Column generation for solving huge integer programs, Operations Research. 46
(3) (1998) 316-329.

[17] M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear programming and network flows,
Third edition, John Wiley & Sons, NewYork, 2005.

[18] E.M.L. Beale, Branch-and-bound methods for mathematical programming systems,
in: Discrete Optimization, P.L. Hammer, E.L. Johnson, B.H. Korte (Eds.), Annals of
Discrete Mathematics, Number 5, North-Holland, Amsterdam, 1979, pp. 201–219.

[19] E.M.L. Beale, Branch-and-bound methods for numerical optimization, in: M.M.
Barritt, D.Wishart (Eds.), COMPSTAT 80: Proceedings in computational statistics,
Physica-Verlag, Heidelberg, 1980, pp. 11–20.

[20] E.M.L. Beale, Integer programming, in compututational mathematical programming,
in: K. Schittkowski (Ed.), Applications of Mathematical Programming, Springer-Verlag,
Berlin, 1985, pp. 1–24.

[21] E.M.L. Beale, J.A. Tomlin, Special facilities in a general mathematical programming
system for non-convex problems using ordered sets of variables, in: Proceedings of the
Fifth International Conference on Operations Research, in: J. Lawrence (Ed.), 1970, pp.
447–454.

[22] N. Beaumont, An algorithm for disjunctive programming, European Journal Of
Operations Research. 48 (1990) 362–371.

[23] H. Ben-Amor, J. Desrosiers, A. Frangioni, Stabilization in column generation, Les
Cahiers du GERAD G-2004-62, Canada, 2004.

[24] H. Ben-Amor, J. Desrosiers, A Proximal Trust Region Algorithm for Column
Generation Stabilization, Computers and Operations Research. 33 (2006) 910-927.

[25] P. Berman, A. Pelc, Distributed fault diagnosis for multiprocessor systems, in:
Proceedings of the 20th Annual International Symposium on Fault-tolerant Computing,
Newcastle, UK, 1990, pp. 340–346.

[26] I.M. Bomze, M. Budinich, P.M. Pardalos, M. Pelillo, The maximum clique problem,
in: Handbook of Combinatorial Optimization, Kluwer Academic Publishers, Boston,
MA, 1999, pp. 1–74.

117

[27] J. Bramel, D. Simchi-Levi, On the effectiveness of set covering formulations for the
vehicle routing problem with time windows, Operations Research. 45 (1997) 295–301.

[28] O. Briant, P. Meurdesoif, K. Monneris, N. Perrot, F. Vanderbeck, C. Lemarechal, C.
Tadonki, J.P. Vial, C. Beltran, Comparison of various approaches for column generation,
Presented at the Eighth Aussois Workshop on Combinatorial Optimization, Aussois,
France (2004a)

[29] O. Briant, P. Meurdesoif, N. Perrot, C. Lemarechal, S. Michel, and F. Vanderbeck,
Comparison of Bundle Classical Column Generation, Presentation at the
INFORMS/CORS Joint International Meeting, Banff, Alberta, Canada (2004b).

[30] D. Brélaz, New methods to color the vertices of a graph, Commun ACM. 22 (1979)
1–256.

[31] C. Bron, J. Kerbosch, Algorithm 457: Finding all cliques of an undirected graph,
Commun ACM. 16 (1973) 575–577.

[32] S. Burer, R.D.C. Monteiro, Y. Zhang, Maximum stable set formulations and
heuristics based on continuous optimization, Math Program Series A. 94 (2002) 137–166.

[33] R. Carraghan, P.M. Pardalos, An exact algorithm for the maximum clique problem,
Operations Research Letters. 9 (1990) 375–382.

[34] J.M.V. de Carvalho, Using extra dual cuts to accelerate column generation,
INFORMS Journal on Computing, 17 (2) (2005) 175-182.

[35] D. Cattrysse, M. Salomon, L.N. Van Wassenhove, A set partitioning heuristic for the
generalized assignment problem, European Journal of Operational Research. 72 (1994)
167-174.

[36] V. Chvatal, Edmonds Polytopes and a hierarchy of combinatorial problems, Discrete
Mathematics. 5 (1973) 305-337.

[37] V. Chvatal, On certain polytopes associated with graphs, Centre de Recherches
Mathematiques -238, Universite de Montreal, Canada, 1972.

[38] K. Corradi, S. Szabo, A combinatorial approach for Keller’s Conjecture, Period
Math Hung. 21 (1990) 95–100.

[39] G.B. Dantzig, P. Wolfe, Decomposition principle for linear programs, Operations
Research. 8 (1960) 101-111.

118

[40] G. Desaulniers, J. Desrosiers, M.M. Solomon, Accelerating strategies in column
generation methods for vehicle routing and crew scheduling problems, in: Metaheuristics,
C.C. Ribeiro, P. Hansen (Eds.), Kluwer, Norwell, MA, 2002, pp, 309-324.

[41] M.Desrochers, J. Desrosiers, M. Solomon, A new optimization algorithm for the
vehicle routing problem with time windows, Operations Research. 40 (2) (1992) 342-354.

[42] J. Desrosiers, F. Soumis, M. Desrochers, Routing with time windows by column
generation, Networks. 14 (1984) 545-565.

[43] O. du Merle, D. Villeneuve, J. Desrosiers, P. Hansen, Communication stabilized
column generation, Discrete Mathematics. 194 (1999) 229-237.

[44] J. Edmonds, Minimum partition of a matroid into independent subsets, J. Res. Nat.
Bur. Standards Sect. B. 69 (1965) 67-72.

[45] J. Edmonds, Maximum matching and a polyhedron with 0, l-vertices., J. Res. Nat.
Bur.Standards Sect B. 169 (1965) 125 - 130.

[46] J. Edmonds, Paths, tree and flowers, Canadian Journal of Mathematics. 17 (1965)
449-467.

[47] S. Elhedhli, J.L. Goffin, The Integration of an interior-point cutting plane method
within a Branch-and-price algorithm, Mathematical Programming.100 (2004) 267-294.

[48] L.F. Escudero, S. Muñoz, On identifying dominant cliques, European Journal Of
Operations Research. 149 (2003) 65–76.

[49] I.R. de Farias, E.L. Johnson, G.L. Nemhauser, Branch-and-cut for combinatorial
optimization without auxiliary 0-1 variables, Knowledge Eng Rev. 16 (2001) 25–39.

[50] L.R. Ford, Jr., D.R. Fulkerson, Flows in Networks, Princeton University Press,
Princeton, 1962.

[51] A. Frank, Some polynomial algorithms for certain graphs and hypergraphs, in
Proceedings of 5th British Combinatorial Conference, Winnipeg, Manitoba, Canada,
1975, pp. 211–226.

[52] A. Frangioni, Generalized bundle methods, SIAM Journal on Optimization. 13 (1)
(2002) 117-156.

[53] A. Frangioni, G. Gallo, A bundle type dual-ascent approach to linear
multicommodity min-cost flow problems, INFORMS Journal on Computing, 11 (4)
(1999) 370-393.

119

[54] D.R. Fulkerson, Blocking polyhedra, in: Graph Theory and its Applications, B.
Harris (Ed.), Academic Press, New York, 1970, pp, 93-112.

[55] D.R. Fulkerson, Blocking and antiblocking pairs of polyhedra, Mathematical
Programming. 1 (1971) 168-194.

[56] D.R. Fulkerson, Anti-blocking polyhedra, Journal of Combinatorial Theory B. 12
(1972) 50-71.

[57] E.J. Gardiner, P.J. Artymiuk, P.Willett, Clique-detection algorithms for matching
three-dimensional molecular structures, J Mol Graph Model. 15 (1998) 245–253.

[58] M. Garey, D. Johnson, Computers and Intractability,W.H. Freeman and Company,
New York, 1979.

[59] P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting stock
problem, Operations Research. 9 (1961) 849-859.

[60] P.C. Gilmore, R.E. Gomory A linear programming approach to the cutting stock
problem- part II, Operations Research. 11 (6) (1963) 863-888.

[61] J.L. Goffin, A. Haurie, J.P. Vial, Decomposition and nondifferentiable optimization
with the projective algorithm, Management Science. 38 (2) (1992) 284-302.

[62] J.L. Goffin, A. Haurie, J.P. Vial, D.L. Zhu, Theory and methodology: Using central
prices in the decomposition of linear programs, European Journal of Operations
Research. 64 (1993) 393-409.

[63] J.L. Goffin, J.P. Vial, Cutting planes and column generation techniques with the
projective algorithm, Journal of Optimization Theory and Applications. 65 (3) (1990)
409-429.

[64] R.E. Gomory, Outline of an algorithm for integer solutions to linear programs,
Bulletin of the American Mathematical Society.64 (1958) 275-278.

[65] R.E. Gomory, An Algorithm for the mixed integer problem, Technical Report RM-
2597, The RAND Corporation, 1960.

[66] H.M. Grindley, P.J. Artymiuk, D.W. Rice, P.Willett, Identification of tertiary
structure resemblance in proteins using a maximal common subgraph isomorphism
algorithm, J Mol Biol. 229 (1993) 707–721.

[67] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin, 1988.

120

[68] I.V. Hicks, Branch decompositions and minor containment, Networks. 43 (1), 2004
1-9.

[69] S. Holm, J. Tind, A unified approach for price directive decompostion procedures in
integer programming, Discrete Applied Mathematics. 20 (1988) 205-219.

[70] R. Horaud, T. Skordas, Stereo correspondence through feature grouping and
maximal cliques, IEEE Trans Pattern Anal Machine Intell. 11 (1989) 1168–1180.

[71] D. Huisman, R. Jans, M. Peeters, A.P.M. Wagelmans, Combining Column
Generation and Lagrangian Relaxation, in: G. Desaulniers, J.Desrosiers, and M.
M.Solomon (Eds), Column Generation, SpringerLink, US, 2006, pp. 247-270.

[72] K. Jansen, P. Scheffler, G. Woeginger, The disjoint cliques problem, Operations
Research. 31 (1997) 45–66.

[73] D. Johnson, M. Trick (Editors), Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, AMS, Providence, RI, 1996.

[74] R.G. Jeroslow, Cutting Plane Theory: Disjunctive Methods, Annals of Discrete
Mathematics. 1 (1977) 293-330.

[75] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM J Sci Comput. 20 (1998) 359–392.

[76] G. Karypis, V. Kumar, Multilevel algorithms for multiconstraint graph partitioning,
Technical Report 98-019, Army HPC Research Center, Department of Computer
Science, University of Minnesota, Minneapolis, 1998.

[77] G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irregular
graphs, J Parallel Distrib Comput. 48 (1998) 96–129.

[78] J.E. Kelley Jr., The Cutting-plane Method for solving convex programs, Journal for
Society of Industrial Applied Mathematics. 8 (4) (1960) 703-712.

[79] S. Kim, K.N. Chang, J.-Y. Lee, A descent method with linear programming
subproblems for nondifferentiable convex optimization, Mathematical Programming. 71.
(1995) 17-28.

[80] K. Kim, J.L. Nazareth, The decomposition principle and algorithms for linear
programming, Linear Algebra and Its Applications. 152 (1991) 119-133.

[81] L. Ladányi, T.K. Ralphs, L.E. Trotter Jr, Branch, cut, and price: Sequential and
parallel, Computational Comb. Optimization LNCS. 2241 (2001) 223-260.

121

[82] C. Lemaréchal, Bundle methods in nonsmooth optimization, vol. 3 of IIASA
Proceedings Series, C. Lemaréchal and R. Miffin (eds), Pergamon Press, Oxford, 1978.

[83] C. Lemaréchal, A. Nemirovskii, Y. Nesterov, New variants of bundle methods,
Mathematical Programming, 69 (1995) 111-147.

[84] C. Lemaréchal, C. Sagastizabál, Variable metric bundle methods: From conception
to implementation, Mathematical Programming. 76(3) (1997) 393-410.

[85] L.A.N. Lorena, E.L.F. Senne, A column generation approach to capacitated p-
median problems, Computers and Operations Research. 31 (2004) 863-876.

[86] L. Lovasz, A. Schrijver, Cones of matrices and set functions and 0-1 optimization,
SIAM Journal of Optimization. 1 (1991) 166-190.

[87] M.E. Lübbecke, J. Desrosiers, Selected topics in column generation, Optimization
Online.
http://www.optimization-online.org/DB_HTML/2002/12/580.html (Last Modified 2005).

[88] J. MacWilliams, N.J.A. Sloane, The Theory of ErrorCcorrecting Codes, North-
Holland, Amsterdam, 1979.

[89] C. Mannino, A. Sassano, An exact algorithm for the maximum stable set problem,
Comput Optimizat Appl. 3 (1994), 243–258.

[90] R. E Marsten, W.W. Hogan, J.W. Blankenship, The boxstep method for large-scale
optimization, Operations Research. 23 (3) (1975) 389-405.

[91] R.K. Martinson, J. Tind, An interior point method in Dantzig-Wolfe decomposition,
Computers and Operations Research. 26 (12) (1996) 1195-1216..

[92] A. Mehrotra, M.A. Trick, A column generation approach for graph coloring,
INFORMS J Comput. 8 (1996) 344–354.

[93] E.M. Mitchell, P.J. Artymiuk, D.W. Rice, P. Willet, Use of techniques derived from
graph theory to compare secondary structure motifs in proteins, J Mol Biol. 212 (1989)
151–166.

[94] L. Nazareth, Numerical behavior of LP algorithms based upon the decomposition
principle, Linear Algebra and Its Applications. 57, (1984) 181-189.

[95] G.L. Nemhauser, G. Sigismondi, A strong cutting plane/branch-and-bound algorithm
for node packing, Journal Of Operational Research Society. 43 (1992) 443–457.

[96] G.L. Nemhauser, L.E. Trotter, Properties of vertex packings and independence
system polyhedra, Mathematical Programming. 6 (1974) 48-61.

122

[97] G.L. Nemhauser, L.E. Trotter, Vertex packings: Structural properties and
algorithms, Mathematical Programming. 8 (1975) 232-248.

[98] G.L. Nemhauser, L.A.Wolsey, Integer and Combinatorial Programming, John Wiley
and Sons, New York, 1988.

[99] P.R.J. Ostergard, A fast algorithm for the maximum clique problem, Discrete Appl
Math. 120 (2002) 197–207.

[100] M.Padberg, On the facial structure of the set packing polyhedra, Mathematical
Programming. 5 (1973) 199-216.

[101] P.M. Pardalos, G.P. Rodgers, A branch and bound algorithm for the maximum
clique problem, Comput Oper Res. 19 (1992), 363–375.

[102] G.R. Parija, R. Gadidov, W. E. Wilhelm, A facet generation procedure for solving
0/1 integer programs, Operations Research. 47:(5) (1999) 789-791.

[103] A. Pigatti, M. Poggi de Aragao, Stabilized Branch-and-cut-and-price for the
generalized assignment problem, Working Paper, Departmento de Informatica, PUC do
Rio de Janeiro, Brazil (2004).

[104] T.K. Ralphs, M. V. Galati Decomposition and dynamic cut generation in integer
programming, Optimization Online.
http://www.optimization-online.org/DB_HTML/2003/09/726.html (Last Modified 2005).

[105] T.K. Ralphs, and L. Ladanyi SYMPHONY: A parallel framework for branch, cut
and price, White Paper, Rice University, (2000) 1-19.

[106] T.K. Ralphs, L. Ladanyi, M.J. Saltzman, Parallel branch, cut, and price for large-
scale discrete optimization, Mathematical Programming. 98 (2003) 253-280.

[107] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM
Journal of Control and Optimization. 14 (5) (1976) 877-898.

[108] R.T. Rockafellar, Convex Analysis, Princeton University Press, New Jersey, 1970.

[109] F. Rossi, S. Smriglio, A branch-and-cut algorithm for the maximum cardinality
stable set problem, Operations Research Letters. 28 (2001) 63–74.

[110] L.M. Rousseau, M. Gendreau, D. Feillet, Interior point stabilization for column
generation, C.R.T. publication C7PQMR PO2003-39-X, 1-10, Operations Research
Letters. (In Press, Corrected Proof December 2006).

123

[111] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, New
York, 1986.

[112] E.L.F. Senne, L.A.N. Lorena, Stabilizing column generation using
Lagrangean/surrogate relaxation: An application to P-median location problems, EURO
2001 – the European Operational Research Conference, Erasmus University, Rotterdam,
July 2001, 1-23.

[113] E.C. Sewell, A branch and bound algorithm for the stability number of a sparse
graph, INFORMS Journal of Computing. 10 (1998) 438–447.

[114] H. Sherali, W. Adams, A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems, SIAM Journal on
Discrete Mathematics. 3 (1990) 411-430.

[115] H. Sherali, C. Shetty, Optimization with disjunctive constraints, Lecture Notes in
Economics and Mathematical Systems 181, Springer, 1980.

[116] L.E. Trotter Jr., A class of facet producing graphs for vertex packing polyhedra.
Discrete Math. 12 (1975) 373–388.

[117] L.E. Trotter Jr., Solution characteristics and algorithms for the vertex packing
problem. Technical Report 168, Dept. of Operations Research, Cornell University, Ithaca,
NY, 1973.

[118] M.Van den Akker, H. Hoogenveen, S. van de Velde (2002) Combining column
generation and Lagrangean relaxation to solve a single-machine common due date
problem, INFORMS Journal on Computing. 14:(1) (2002) 37-51.

[119] F. Vanderbeck, Automated Dantzig-Wolfe reformulation or how to exploit
simultaneously original formulation and column generation re-formulation, Working
paper, Department of Applied Mathematics, University of Bordeaux, Talence Cedex,
France, 2003.

[120] F. Vanderbeck, Computational study of a column generation algorithm for bin
packing and cutting stock problems, Math. Programming Series A. 86 (1999) 565-594.

[121] F. Vanderbeck, On Dantzig-Wolfe Decomposition in Integer Programming and
Ways to Perform Branching in a Branch-and-Price Algorithm, Operations Research. 48
(1) (2000) 111-128.

[122] F. Vanderbeck, A Generic View at the Dantzig-Wolfe decomposition approach in
mixed integer programming: Paving the way for a generic code, Presentation,
Laboratoire de Mathematique Appliques de Bordeaux, University of Bordeaux, Talence
Cedex, France, 2004.

124

[123] A.M.Verweij, Selected applications of integer programming: A computational
study, Ph.D. Thesis, University of Utrecht, Utrecht, Holland, September, 2000.

[124] B. Verweij, K. Aardal, An optimization algorithm for maximum independent set
with applications in map labeling, Proceedings of the Seventh Annual European
Symposium on Algorithms, Number 1643, J. Nesetril (Editor), in Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 1999, pp. 426–437.

[125] D. Villeneuve, J. Desrosiers, M. E. Lubbecke, F. Soumis, On compact formulations
for integer programs solved by column generation, Annals of Operations Research.
139:(1) (2005) 375-388.

[126] S. de Vries, R. Vohra, Combinatorial auctions: A survey, INFORMS J Comput. 15
(2003) 284–309.

[127] D. Warrier, W.E. Wilhelm, J. Warren, I.V. Hicks, A branch-and-price approach for
the maximum weighted independent set problem, Networks. 24 (2005) 198–209.

[128] D. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, NJ,
2001.

[129] P.Wentges, Weighted Dantzig-Wolfe decomposition of linear mixed-integer
programming, International Transactions Operational Research. 4:(2) (1997) 151-162.

[130] W.E. Wilhelm, A technical review of column generation in integer programming,
Optimization Engineering. 2 (2001) 159–200.

[131] W.E. Wilhelm, S.Sachdeva, Vertex cloning to facilitate a branch-and-price
approach to the maximum weighted independent set problem, (Working Paper) Texas
A&M University, College Station, December 2006.

[132] J. Xue, Edge-maximal triangulated subgraphs and heuristics for the maximum
clique problem, Networks. 24 (1994) 109–120.

125

APPENDIX A

A GENERIC IMPLEMENTATION OF BRANCH AND PRICE

 Here, we describe the generic implementation of B&P used in our research. The

goal of this implementation is to provide a reusable framework, which can be easily

adapted for different applications of B&P. In addition to the standard techniques for

B&P, our implementation provides advanced techniques for branching, stabilizing DWD

and generating cuts. Moreover, the implementation offers flexibility for invoking future

enhancements. Our implementation is in C++ with embedded CPLEX Callable Library

routines. The implementation comprises the following components:

B&P generic routines: This set of routines provides the standard implementation of the

B&P algorithm. We implement DWD column generation using CPLEX callable library

routines at each node of the B&B tree. We initialize RMP using artificial variables. Both

two-phase and Big-M methods are implemented for initializing RMP. Improving

columns generated are preserved in a column pool for future iterations. We provide to the

user the option of entering a single improving column or all improving columns into

RMP. We also provide an option for identifying an improving column from the column

pool before solving the pricing subproblems. The B&B tree is searched according to a

breadth-first strategy. Our implementation allows the user to invoke both variable

dichotomy branching as well as constraint branching. Parent-node columns that are

feasible with respect to a child node are used to initialize RMP for the child node.

Problem specific routines: This set of routines is used to invoke problem-specific

information and interface with the generic routines discussed above. The user is required

126

to populate data structures to define the specific instance at hand. The user is also

required to specify an oracle to solve the pricing subproblems.

B&P stabilization routines: This set of routines provides additional enhancements for

improving the rate of convergence of DWD. Prevalent stabilization methods are

provided. Specifically, the Boxstep method, 3-piece and 5-piece penalty function method,

and Wentges smoothing method are implemented. The user is required to specify the

associated parameters for each of these methods.

B&P cut generation routines: This set of routines invokes cut generation strategies at the

root node of the B&P tree. Specifically, the two strategies developed in this dissertation

are implemented.

127

VITA

Name: Deepak Warrier

Address: 501 Sycamore Lane #1121
 EulessTX-76039

Email Address: warrier@neo.tamu.edu

Education: B.Tech., Mechanical Engineering R.E.C., Calicut, INDIA 1998
 M.S., Industrial Engineering Texas A&M University, 2002
 Ph.D., Industrial Engineering Texas A&M University, 2007

