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ABSTRACT 
 
 

A Branch, Price, and Cut Approach to Solving the Maximum 
 

Weighted Independent Set Problem. (May 2007) 
  

Deepak Warrier, B.Tech., R.E.C Calicut;  
 

M.S., Texas A&M University 
 

Chair of Advisory Committee: Dr. Wilbert Wilhem 
 

 
The maximum weight-independent set problem (MWISP) is one of the most 

well-known and well-studied NP-hard problems in the field of combinatorial 

optimization. 

  In the first part of the dissertation, I explore efficient branch-and-price (B&P) 

approaches to solve MWISP exactly. B&P is a useful integer-programming tool for 

solving NP-hard optimization problems. Specifically, I look at vertex- and edge-disjoint 

decompositions of the underlying graph. MWISP’s on the resulting subgraphs are less 

challenging, on average, to solve. I use the B&P framework to solve MWISP on the 

original graph G using these specially constructed subproblems to generate columns. I 

demonstrate that vertex-disjoint partitioning scheme gives an effective approach for 

relatively sparse graphs. I also show that the edge-disjoint approach is less effective than 

the vertex-disjoint scheme because the associated DWD reformulation of the latter 

entails a slow rate of convergence. 

 In the second part of the dissertation, I address convergence properties associated 

with Dantzig-Wolfe Decomposition (DWD). I discuss prevalent methods for improving 
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the rate of convergence of DWD. I also implement specific methods in application to the 

edge-disjoint B&P scheme and show that these methods improve the rate of 

convergence. 

In the third part of the dissertation, I focus on identifying new cut-generation 

methods within the B&P framework. Such methods have not been explored in the 

literature. I present two new methodologies for generating generic cutting planes within 

the B&P framework. These techniques are not limited to MWISP and can be used in 

general applications of B&P. The first methodology generates cuts by identifying faces 

(facets) of subproblem polytopes and lifting associated inequalities; the second 

methodology computes Lift-and-Project (L&P) cuts within B&P. I successfully 

demonstrate the feasibility of both approaches and present preliminary computational 

tests of each.  
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CHAPTER I 

INTRODUCTION 
 
  

The maximum weight-independent set problem (MWISP) is one of the most 

well-known and well-studied NP-hard problems in combinatorial optimization. In the 

first part of this dissertation, we explore approaches based on branch-and-price (B&P) to 

solve MWISP exactly. In the second part of this dissertation, we address convergence 

properties of DWD and present specific techniques for improving the rate of 

convergence of DWD in application to our B&P scheme. In the final section of the 

dissertation, we focus on identifying new generic cut-generation methods for the B&P 

approach. These cut-generation methods are not limited to MWISP and can be used in 

general applications of the B&P. 

In this chapter we introduce the notation that will be used in this dissertation. We 

also present some relevant background and a brief overview of the research. We begin 

section 1.1 by defining the notation and presenting some background on MWISP. We 

specify this research in section 1.2 in terms of its goals and objectives. We present our 

research motivation in section 1.3. We describe our method of approach in section 1.4. 

Finally, we conclude by presenting the organization of the dissertation in section 1.5. 

 
 

_______________ 
This dissertation follows the format and style of Discrete Applied Mathematics. 
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1.1 Background 
 

An independent set S in a graph is a subset of its vertices such that no two 

vertices in S  are connected by an edge. Given a weighting of vertices, the maximum 

weight independent set problem (MWISP), which is NP-hard [58], is to prescribe an 

independent set of the graph that has maximum weight. The maximum weight-

independent set problem (MWISP) is one of the most well-known and well-studied 

problems in the field of combinatorial optimization. It has many important applications, 

including combinatorial auctions [126], graph coloring [92], coding theory [88], 

geometric tiling [38], fault diagnosis [25], pattern recognition [70], molecular biology 

[57, 66, 93], and scheduling [72].  

This dissertation deals with finite, simple undirected graphs. Graph G  = (V , E ), 

comprises vertex set V and edge set E . An edge in E  joining vertices u , v ∈ V is 

denoted uv . The neighbors and nonneighbors of vertex v ∈ V  

are )(vN = }:{ EuvVu ∈∈  and )(vN = }){)((\( vvNV � , respectively. This notation is 

extended to a set W ⊆ V  by defining )(WN  = � Wv
WvN

∈
\)(  and )(WN  = 

))(\( WWNv � . For any W ⊆ V , we denote the subgraph induced by W as G [W ]; and 

for any F ⊆ E , we denote the subgraph induced by F as G [ F ]. For 1V , 2V ⊂ V  the 

incidence of 1V  in 2V  is defined as 2V ( 1V ) = 2V � N ( 1V ). We use S ⊆ V to denote an 

independent set of G and subgraph K to denote a clique of G (i.e., a complete subgraph 

of G).  
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The family of all independent sets is denoted GS . For S ⊆ V and c ∈ nR , where 

n =|V | we define )(Sc =�
∈Sv

j
j

c . MWISP corresponds to determining 

{ max )(Sc | GSS ∈ }. We assume jc ≥  0 ∀ jv ∈ V . MWISP can be formulated as a 0-1 

integer program: 

max c x  

..ts  A x  ≤  1, x  binary             (1) 

where A : nm × edge-incidence matrix of G , n = |V | and m  = | E |. 

In this formulation, a binary characteristic vector x  represents a unique independent set 

from the set GS . We are interested in the convex hull of these characteristic vectors, 

which is denoted )( GSconv . The corresponding Linear Program or the fractional 

maximum weighted independent set problem (FMWISP) is obtained by relaxing the 

binary restrictions on x  to x ≥ 0 . The corresponding convex hull is represented by GL . 

A special case of MWISP is the maximum independent set problem (MISP) for which 

jc = 1 ∀ jv ∈ V . The corresponding linear relaxation will be referred to as MISLP. 

 

1.2 Specifications of the research 
 
 This section describes the goals and objectives of this research. 

1.2.1 Goal 

This research has two primary goals. The first goal is to investigate approaches 

based on B&P to solve MWISP exactly. Specifically, our goal is to investigate two B&P 
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schemes: vertex- and edge-disjoint. Our aim is to determine the effectiveness of these 

two schemes in solving challenging instances of MWISP.  

The second primary goal is to explore new generic approaches to generating 

cutting planes within the B&P framework. Such techniques have not been explored. We 

aim to provide a generic framework for generating cutting planes within the B&P 

approach. These techniques will be applied to MWISP in this dissertation but are not 

limited to it. 

1.2.2 Research objectives 

The objectives of this research are to present a rationale for using price-directed 

decomposition to solve MWISP, to investigate effective implementation techniques, and 

to conduct computational tests to identify strengths and weaknesses of the approach. The 

research comprises the following main tasks: 

(1) Developing an effective vertex-disjoint B&P approach to solve MWISP exactly. 

(2) Developing an effective edge-disjoint B&P approach to solve MWISP exactly. 

(3) Developing insights into stabilizing column generation within B&P. 

(4) Developing a generic cut-generation framework for B&P. 

 

1.3 Motivation 
 

MWISP is one of the most well-known and well-studied NP-hard problems in the 

field of combinatorial optimization. This research offers new approaches based on B&P 

to solve MWISP exactly. Specifically, the research presents two B&P schemes: vertex- 

and edge-disjoint. Our research evaluates the efficiency of these schemes 
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computationally, provides insights into the advantages and disadvantages of each, and 

offers guidelines for using each. Every solver developed for MWISP aims at being able 

to solve the entire spectrum of instances of MWISP but, often, the efficiency of a solver 

is limited to a certain range of instances. This research provides a scheme for embedding 

arbitrary MWISP solvers within our B&P framework. More importantly, this research 

shows that our B&P approach (using the embedded MWISP solver) is able to perform 

better on instances that were considered challenging for the embedded MWISP solver.  

Thus, our research provides a scheme for augmenting the performance of existing 

MWISP solvers. 

Traditional methods for improving the rate of convergence of DWD involve 

parameters that are difficult to estimate a priori. Our research explores the convergence 

issues associated with DWD and attempts to provide insights into developing non-

parametric methods to accelerate the rate of convergence of DWD.  

Finally, this research lays the foundation for a generic framework for generating 

cutting planes within B&P. Cutting plane techniques are not used routinely within B&P 

because of the challenge in generating cutting planes in terms of the original decision 

variables. This research shows how to overcome this challenge and invoke cutting plane 

techniques within the B&P framework.  

 

1.4 Method of approach 
 

In this section, we discuss our method of approach. 
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Vertex disjoint B&P scheme. An approach that involves a DWD reformulation of the 

edge inequality formulation (1) of MWISP was developed by our research team and 

reported in [126]. It begins by partitioning the vertex set of the graph based on a vertex-

disjoint partitioning.  This approach employs a clustering heuristic-based partitioning 

scheme (METIS) and compares it to a chordal partitioning scheme. The METIS 

partitioning scheme aims at partitioning the vertex set equally among all partitions while 

attempting to minimize the number of edges that have ends in different sets [75-77]. The 

chordal partitioning scheme employs the procedure of Balas and Yu [13] to partition the 

vertex set such that each partition induces a chordal subgraph.  This approach also 

employs two methods for managing the size of the restricted master problem (RMP) 

using either the basic edge-inequality formulation or a clique-based formulation. The 

latter aims at identifying a minimal set of cliques that cover all cross-edges (edges whose 

ends lie in different partitions) thus tightening the formulation and reducing degeneracy.  

Finally, two branching rules are explored–traditional variable-dichotomy branching and 

a special-purpose, branching on fractional-weighted cliques.  

Edge disjoint B&P scheme. It has been shown that an arbitrary vertex-disjoint 

partitioning can be transformed to a corresponding edge-disjoint partitioning that yields 

a tighter bound [131]. We investigate whether this property can be extended to show that 

an arbitrary edge-disjoint partition always yields a tighter bound than an arbitrary vertex-

disjoint partition having the same number of partitions. We employ a partitioning 

scheme based on branch decomposition [68] to create edge-disjoint subgraphs. We 

explore both edge partitioning and edge covering. The edge-disjoint formulation is 
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similar to the vertex cloning formulation described in [131] and involves invoking 

equality constraints among decision variables associated with a cloned vertex and each 

of its clones. Although these equalities tighten the formulation, they lead to higher orders 

of degeneracy and poor convergence. We adapt stabilization methods in an attempt to 

improve the rate of convergence. In addition, we invoke a clique cover of the cloned 

vertices and use these inequalities to tighten our formulation and to reduce degeneracy. 

We also explore problem-specific strategies to improve the rate of convergence and 

conduct a computational evaluation of these methods.  

Stabilization techniques for B&P. The slow rate of convergence associated with the 

DWD reformulation affects the time spent at each node in the B&P tree and, hence, is 

critical to the efficiency of the approach. We develop insights into the instability issues 

that accompany column generation. Specifically, we discuss the convergence properties 

of DWD and prevalent techniques for improving the rate of convergence. We also 

present preliminary research towards developing a non-parametric approach to 

stabilizing DWD. Finally, we present techniques for improving the rate of convergence 

of the edge-disjoint B&P scheme. 

Cut generation within B&P. Bounds obtained from the DWD relaxation are tighter than 

those given by the LP relaxation but are not tight enough to solve challenging instances 

effectively. In the second part of our research we focus on generating valid linear 

inequalities that can be incorporated in the B&P framework to tighten the formulation. 

Note that traditional generic cutting planes techniques– Gomory cutting planes and Lift-

and-Project (L&P) cutting planes - are derived from the optimal simplex tableau, which 
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in a DWD reformulation will generate cutting planes in terms of the decision variables in 

the reformulated master problem. A cutting plane in terms of the master-problem 

variables can distort the subproblem structure. Hence, the challenge is to present 

techniques for generating cutting planes in terms of the original problem variables. This 

is the precise reason why cutting plane techniques are not used routinely in the B&P 

framework. We introduce a generic method for deriving cutting planes in the B&P 

framework in terms of the original problem variables. Although implemented 

specifically for MWISP, our approach will be useful in generic applications of B&P. We 

begin by identifying faces (facets) of the subproblem that are tight at the current DWD 

solution using a modification of the facet generation procedure (FGP) [102]. These valid 

inequalities, however, are of no use if incorporated in the master problem since they are 

implicitly invoked by the DWD reformulation, which optimizes over the convex hull of 

the feasible integer solutions to each subproblem. However, we show that these valid 

inequalities - when lifted across other subproblems- can potentially generate valid 

inequalities that cut off the current fractional solution in the master problem. Within the 

context of MWISP, this method identifies those facets of G  that are obtained by lifting 

facets of polytopes associated with the subgraphs of G . However, we cannot guarantee 

that we will always be able to cut off the current fractional solution. In order to 

guarantee that a cut is always generated, we propose to use faces (facets) of the 

subproblem polytopes in conjunction with master problem inequalities in a Chvatal-

Gomory (C-G) fashion to generate valid cutting planes. However a practical 

implementation of the C-G cut relies on identifying the C-G multipliers which is not 
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straightforward. We overcome this challenge by exploring the L&P technique and show 

how to invoke L&P cuts within a B&P framework. This is the basis of our cut generation 

scheme, which we evaluate in computational tests.  

 

1.5 Organization of the dissertation 
 

The dissertation is organized in eight chapters. Chapter II reviews literature 

relevant to this research. Chapter III addresses objective (1) and presents the vertex-

disjoint scheme.  Chapter IV addresses objective (2) and presents the edge-disjoint 

scheme. In Chapter V we focus on objective (3) and present techniques for improving 

the rate of convergence of DWD. Chapters VI and VII address objective (4) and each 

present a generic cut generation strategy for B&P. In Chapter VIII we present our 

conclusions and some recommendations for future research.  



  10   

CHAPTER II 

LITERATURE REVIEW 
 

In this chapter we review literature relevant to this research. Section 2.1 presents 

some theoretical background of MWISP. A brief literature review of existing solvers for 

MWISP is given in section 2.2. In section 2.3 we present some background about B&P 

and review existing techniques towards improving the rate of convergence of DWD. 

Finally section 2.4 presents a brief review on cutting planes techniques. 

 

2.1 MWISP 
 

An important motivation for studying MWISP is that two classical combinatorial 

problems - set packing and set partitioning - can be transformed into MWISP on a 

corresponding intersection graph [100, 96]. One of the earliest attempts to explore the 

complete characterization of the convex hull of the independent set problem was by 

Padberg [100], who explored the facets of the set packing problem by equating it to 

MWISP on the underlying intersection graph. Padberg showed that maximal clique 

inequalities represent facets of )( GSconv  and, further, that the only canonical 

inequalities (inequalities with 0-1 coefficients for its left-hand-side and a 1 for its right-

hand-side) that are facets of )( GSconv  correspond to maximal clique inequalities. 

Padberg also identified one other important family of facets of )( GSconv : lifted odd-

hole inequalities. 
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Nemhauser and Trotter [96] provided a complete characterization of the extreme 

points of )( GLconv . They showed that, if x  is an extreme point of )( GLconv , then 

jx equals 1 ,
2
1

 ,0  ∀ j ∈ V . For  P ⊆  V  let Px ∈ )( GLconv  be defined by { P
jx = 

2
1

 

if j ∈ P ; P
jx = 0 else}. If Px as defined above is an extreme point in )( GLconv  and 

][PG  is connected, then Px is said to be an elementary fractional extreme point. They 

showed that Px is an elementary fractional extreme point IFF ][PG contains an odd-

cycle. They stated that x is an extreme point of )( GLconv  IFF x  = 0x + 1x +…+ kx ,  

where 0x  is an integer extreme point of )( GLconv , 1x … kx are elementary fractional 

extreme points of )( GLconv  and 0x , 1x ,…, kx are mutually disjoint. This implies that an 

arbitrary extreme point of )( GLconv  can be represented uniquely as the sum of an 

integer extreme point and elementary fractional extreme points, and conversely, that any 

such sum of extreme points, which produce a feasible solution to MWISLP, produces an 

extreme point of )( GLconv . They generalized the procedure of lifting odd-hole 

inequalities introduced by Padberg [100] and showed how to construct facets of 

)( GSconv from arbitrary facets associated with vertex-generated subgraphs of G . They 

made an important observation that the facets of )( GSconv can be divided into two 

distinct categories: those associated with subgraphs of G , which are obtained by lifting 

facets of polytopes associated with these subgraphs, and those uniquely associated with 

G . They emphasized that certain facets cannot be generated by simply lifting facets of 

subgraphs. In addition to the cliques and odd holes introduced by Padberg, they 
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introduced the odd anti-hole (an edge compliment of an odd hole). Finally, they showed 

that the facets obtained from lifting odd holes and cliques cut off all the fractional 

extreme points of )( GLconv , noting at the same time that introducing these inequalities 

generally produces new fractional vertices.  

Trotter [116] introduced other classes of facet-producing graphs called webs and 

anti-webs, subsuming cliques, odd holes and odd anti-holes. A sufficient local optimality 

condition for MWISP was presented by Nemhauser and Trotter [97]. They defined the 

concept of an augmenting set. Given S ∈ GS , a vertex set I ⊆ SV \  is called an 

augmenting subset to S  if I ∈ GS  and )())(\)(( ScISISc >� . They show that S ∈ GS  

is not an optimal independent set IFF ∃  some I ⊆ SV \  which is augmenting to S . This 

implies, that given S ∈ GS , we need to examine only those I ∈ GS  for which I ⊆ SV \  

in order to improve upon S or verify its optimality. They also show that S ∈ GS  is an 

optimal independent set in G  IFF, for every maximal independent set I ⊆ SV \ , S ( I ) 

is an optimum independent set in the bipartite subgraph Ĝ  induced by I � S ( I ). 

Further, if S  is an optimal independent set in the subgraph induced by S � )(SN , then 

S ⊆ *S , where *S  is an optimum independent set in G . They introduced the concept of 

persistency, showing that those variables that assume binary values in an optimum 

MWISLP solution retain the same values in an optimum solution. Suppose *x  is an 

optimal ( 1 ,
2
1

 ,0 ) - valued solution to MWISLP and P = { jv : *
jx =1}; then, there exists an 

optimal independent set in G  that contains P . 
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Chvatal [37] investigated the problem of finding a minimal description for 

)( GSconv . They showed that )( GSconv can be represented by maximal clique and non-

negativity inequalities IFF G is a perfect graph.  

 

2.2 Solving MWISP 
 

Different approaches for solving MISP exactly have been proposed. Explicit 

enumeration was proposed by Bron and Kerbosch [31]. B&B based approaches were 

explored by Balas and Yu [13] and, Carraghan and Pardalos [33], triggering the 

development of optimization methods for solving MWISP exactly [7, 11, 12, 26, 30, 32, 

48, 67, 73, 89, 38–41, 47]. Nemhauser and Sigismondi [36] have proposed a cutting 

plane approach for MWISP. Mehrotra and Trick [92] proposed column generation to 

solve the minimum coloring problem employing MWISP subproblems. 

 

2.3 B&P: convergence issues 
 

Implementing column generation using Dantzig-Wolfe decomposition (DWD) 

within branch-and-bound (B&B) is referred to as branch-and-price (B&P) [16, 130]. 

Many NP-hard integer optimization problems have been approached using B&P [15, 16, 

41, 42, 130]. 

Although a significant amount of research reports the successful use of B&P in 

various applications, it encounters difficulties in some applications. The bound obtained 

from DWD can be weak in comparison with the optimal objective value and lead to a 
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large B&B tree. The column-generation scheme could also be unstable, leading to a slow 

rate of convergence.  

Recent research has focused on improving the rate of convergence of DWD, 

typically exploiting the dual space. A column in a primal linear program is equivalent to 

a row in the dual. Thus, column generation is equivalent to generating supporting 

hyperplanes to the epigraph of the piecewise linear dual function and solving the DWD 

is identical to solving the dual problem by Kelley's cutting plane method [78]. One 

reason for the slow rate of convergence observed in column generation is instability - 

upon adding a new cut in the dual space, the resulting dual solution can be far away from 

the current dual solution (irrespective of the fact that the current solution could be near-

optimal or, in fact optimal) [40, 43]. Another component contributing to slow 

convergence is the tailing-off effect - the objective value improves rapidly early on but 

only slowly towards the end [40, 43]. Degeneracy, which is particularly significant for 

set partitioning problems, also affects convergence –column generation may require 

many iterations without improving the objective value [40, 43]. 

Many approaches work to stabilize the dual in an attempt to improve the rate of 

convergence. In the Boxstep method, optimization in the dual space is explicitly 

restricted to a trust region around the current dual solution. This trust region is redefined 

appropriately as the algorithm converges [90]. A trust region has been combined with a 

penalty function to prevent excessive dual oscillations [43]. In the analytic center cutting 

plane method (ACCPM) a central point relative to the current approximation of the dual 

function is used instead of the current optimal dual solution to generate columns 
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[61,62,63]. Smoothing approaches have also been proposed to capture the history of the 

column generation process by using some combination of all previously generated dual 

solutions along with the current dual optimal solution [129]. In a related approach, the 

next dual vector used to generate columns is obtained by taking a step away from the 

current dual solution in the direction of the best dual vector (the one corresponding to the 

best dual bound) obtained so far [129]. 

 

2.4 Cut generation techniques 
 

Strong cutting plane methods form another, capable approach for solving 0-1 

Integer programs. These methods aim at improving the current approximation of the 

integer convex hull by generating valid inequalities that cut off the current fractional 

solution of the linear programming relaxation. Dantzig, Fulkerson and Johnson were the 

first to employ a cutting plane approach when they solved the Traveling Salesman 

Problem (TSP). Gomory was the first to propose a cutting-plane approach as a generic 

solution procedure for solving pure 0-1 integer programs [64, 65]. Cutting plane 

algorithms can be broadly classified into two categories. The first is generic in the sense 

that the cutting planes generated don’t rely on knowledge of the underlying 

combinatorial structure of the problem, whereas the second exploits the underlying 

combinatorial structure. Embedding cutting planes within B&B yields the branch-and-

cut (B&C) approach. 

 A lot of interest has recently been regenerated in the area of generic cutting-

plane methods. Gomory’s cutting plane techniques, which were considered 
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computationally inefficient for some time, have recently been shown to be quite efficient 

if implemented within B&C and have been successfully incorporated within commercial 

software [5]. The disjunctive principle developed by Balas [2, 3, 4] has been explored 

further, leading to a new generic, cutting-plane method – lift and project (L&P), which is 

based on tightening the linear relaxation of an integer program by lifting the problem 

into a higher dimensional space where a tighter formulation is obtained. This higher 

dimension polyhedron, when projected back onto the original space, provides a tighter 

approximation of the integer convex hull [5, 6, 114]. L&P utilizes this higher dimension 

polyhedron to derive strong cutting planes for the original polyhedron [5, 6]. 
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CHAPTER III 

VERTEX-DISJOINT B&P SCHEME FOR MWISP 
 
 

3.1 Introduction 
 

This chapter presents the B&P scheme for solving MWISP on a given graph G  

that our research team developed and reported in [127]. It also notes the contributions 

made by the author of this dissertation. This scheme involves a vertex-disjoint 

decomposition of G  and entails solving MWISP’s on vertex-disjoint subgraphs of G  

within a B&P framework. MWISP’s on the subgraphs are less challenging - in the 

average case - to solve than the MWISP on the original graph G . This study presents a 

rationale for using vertex-disjoint decompositions to solve MWISP exactly. This chapter 

comprises six sections. Section 3.2 presents the vertex-disjoint decomposition and the 

associated formulations. Sections 3.3, 3.4 and 3.5 present methods to deal with 

complexity of MWISP. Section 3.6 presents results of our computational tests and 

Section 3.7 presents our conclusions. 

 

3.2 MWISP – formulations 
 
The B&P approach uses the following edge-inequality based Integer Program (IP) to 

formulate MWISP: 

*
MWISPZ  = Max }:{ Qxxw

Vv
vv ∈�

∈

            (3.1) 

in which the inequalities corresponding to edges of G  define Q : 
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Q = },1:{ EuvxxBx vu
V ∈∀≤+∈ ,                         (3.2) 

where VB denotes the set of binary vectors of dimension || V  and binary variable vx  = 1 

if vertex v is included in the independent set; else, vx = 0. The set of feasible integral 

solutions to (3.2) represents the family of all independent sets in the graph G  and is 

denoted GS . We are interested in the convex hull of GS , which is denoted by GH  (i.e., 

GH = )( GSconv ). The corresponding linear relaxation of (3.1) is obtained by relaxing 

the binary restrictions on vx  to 10 ≤≤ vx . This LP is referred to as the fractional 

maximum weighted independent set problem (FMWISP). The corresponding convex 

hull is represented by GL . In the next section we present formulations based on our 

vertex-disjoint decomposition. 

3.2.1 Vertex-Disjoint formulations (VD) 

We partition the vertex set of the graph G  = (V , E ) into P  parts PVV ,..,1 , 

yielding subgraph pG = ][ pVG  with edge set pE = )( pGE  for each },..,1{ Pp ∈ . The 

partition containing vertex v  is denoted vp . Edges of G whose end-points lie in disjoint 

partitions constitute set Ê  = �
P

p pEE
1

\
=

, which induces subgraph ]ˆ[EG . V̂  denotes the 

vertex set of ]ˆ[EG . Based on this vertex-disjoint partitioning, MWISP can be formulated 

as: 

*
MWISPZ =Max

��

�
�
�

��

�
�
�

∈∀∈∈∀≤+��
= ∈

P

p Vv
p

p
vuvv

p

PpQxEuvxxxw
1

},..,1{,,ˆ,1: ,    (3.3) 

where pQ corresponds to edge-inequalities associated with pG : 
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  pQ ={ }pvu
V EuvxxBx p ∈∀≤+∈ ,1:||  .                        (3.4) 

Our B&P approach exploits the block-diagonal structure embedded within formulation 

(3.3): 

*
MWISPZ =Max�

∈Vv
vv xw = Max�

=

P

p

pp xw
1

  

subject to 
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�
�
�
�
�
�
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�

�

�

00

00
00

2

1

21

�
�
�
�
�

�

�

�
�
�
�
�

�

�

Px

x

x

�

2

1

1≤          (3.5) 

|| pVp Bx ∈  ∀ },..,1{ Pp ∈ ,    

where pA is the matrix of coefficients in inequalities associated with edges Euv ˆ∈ , pD  

is matrix of coefficients in inequalities associated with edges pEuv ∈ , px pVB∈  is the 

vector of decision variables associated with vertices pVv ∈  and pw pVR∈  is the 

corresponding vector of weights.  

 The set of integral solutions feasible with respect to pE and Ê  are denoted 

pS and 
E

S ˆ , respectively: 

pS  = ∈∀≤+∈ ),(,1:{ || vuxxBx vu
V

pE }         (3.6) 

E
S ˆ = ∈∀≤+∈ ),(,1:{ || vuxxBx vu

V Ê }         (3.7) 
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The corresponding integer convex hulls are denoted pH (= conv ( pS )) and 
E

H ˆ (= 

conv (
E

S ˆ )). The convex hull of the corresponding linear relaxations are denoted pL and 

E
L ˆ , respectively. 

We reformulate MWISP by applying DWD [39] to the linear relaxation of (3.5). 

Within this scheme, a subproblem corresponds to each subgraph pG , },..,1{ Pp ∈ , while 

the master problem corresponds to the induced subgraph ]ˆ[EG .  We solve MWISP’s on 

the subgraphs to generate columns that populate the master problem. Each column in the 

master problem is hence associated with an extreme point in the corresponding 

subproblem polytope. The restricted master problem (RMP) involves a subset of such 

columns:  

*
VDRMPZ =Max )(

1

jpp
P

p Jj
jp xw

p

��
= ∈

λ            (3.8) 

subject to  

1)(
1

≤��
= ∈

jp
p

P

p Jj
jp xA

p

λ            (3.9) 

1=�
∈ pJj

jpλ  ∀ },..,1{ Pp ∈         (3.10) 

0≥jpλ  ∀ },..,1{ Pp ∈ , pJj ∈ ,       (3.11) 

where pJ is the set of integer extreme points of pQ , jpx pVB∈  is the vector defining 

extreme point pJj ∈ , and jpλ  is the RMP decision variable corresponding to extreme 

point pJj ∈ . MWISP subproblem p  for },..,1{ P  is of the form: 
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( )α*
pZ  = Max ( ){ }p

ppT
p

p QxxAw ∈− :α ,        (3.12) 

 where α E
R

ˆ
∈  is the vector of dual variables associated with the rows of constraint set 

(3.9). A column corresponding to jpx  is deemed improving if ( ) 0>−− p
jpT

p
p xAw βα , 

where pβ is the dual variable corresponding to the thp  convexity constraint (3.10).  

B&P solves RMP to optimality at each node of the B&B tree using column 

generation. Variable fixing within child nodes of the B&B tree is enforced by inclusions 

(or exclusions) of the corresponding vertices in the subgraph 
vpG . The author of this 

dissertation implemented a generic B&P solver (see Appendix A) and adapted it for the 

above vertex-disjoint B&P scheme. In the next section we describe the partitioning 

scheme employed in this research. 

 

3.3 Vertex-Disjoint partitioning 
 

Our research team explore two alternative methods for partitioning the vertex set 

)(GV .  The first method employs METIS [75-77], a clustering heuristic, to partition the 

vertex set )(GV  into a pre-specified number of subsets P . The author of this 

dissertation was involved in invoking METIS from the B&P solver. The METIS 

partitioning scheme (p1) aims at partitioning the vertex set )(GV equally among all 

partitions while attempting to minimize the number of edges that have ends in different 

sets. We specify the number of partitions P  primarily based upon the size and density of 

a subproblem that can typically be solved in an acceptable amount of time. The 

advantage of (p1) is that it allows the resulting density of ]ˆ[EG  to be controlled. 
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However, one disadvantage of (p1) is that the induced subgraphs do not have any special 

structure and, thus, there is no guarantee that they can be solved in polynomial time.  

We compare this scheme to a chordal partitioning scheme which was developed 

by another member of our research team. The chordal partitioning scheme (p2) employs 

the procedure of Balas and Yu [13] to partition the vertex set such that each partition 

induces a chordal subgraph. The primary advantage of (p2) is that MWISP can be solved 

on each chordal subgraph in polynomial time. However (p2) results in a large Ê  for a 

given number of partitions P ; consequently, RMP is also large and requires substantial 

computational effort.  

To solve MWISP on these subgraphs, another member of our research team 

adapted Carraghan-Pardalos algorithm [17]. In the next section we discuss methods for 

handling the associated RMP. 

 

3.4 RMP  
 
A large RMP affects the computational effectiveness of our B&P approach. Thus, the 

size of Ê  is critical for our approach. Another issue observed, especially with more 

dense graphs, is degeneracy. Our research team employ two alternative methods to deal 

with RMP. The first method (m1) simply uses the constraints associated with edges in 

Ê . The primary advantage of (m1) is its simplicity. However, it suffers from 

computational disadvantages due to the resulting size of RMP and its associated 

degeneracy. The second method (m2) aims at identifying a minimal set of cliques that 
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cover all edges in Ê .  This method employs a best-in greedy heuristic (devised and 

implemented by another member of our research team) to identify a set of cliques in 

]ˆ[EG . This method entails solving a set-covering problem to select a minimal set of 

clique and edge inequalities that covers all edges in Ê . This method offers the 

advantages of a tighter formulation due to the clique inequalities, thus providing a better 

bound in comparison with method (m1). It also reduces the order of degeneracy in 

comparison with (m1). 

 

3.5 Branching 
 

Our research team explored two alternative rules to branch upon obtaining a 

fractional RMP solution – traditional variable-dichotomy branching and a special-

purpose branching on fractional-weighted cliques. The variable-dichotomy branching 

(b1) branches on the most fractional variable vx  = v

vp

v

jp

Jj
jp x�

∈

λ , where Vv ∈ , resulting in 

two child B&B nodes: one corresponding to vertex v  being excluded ( vx  = 0), and the 

other corresponding to vertex v  being included ( vx  = 1).  

The second rule (b2) employed by our research team branches on the vertices of 

a clique in graph G . Weights are assigned to each vertex equivalent to the fractional 

value of its associated variable – specifically, vertex v is assigned a weight of (0.5−| vx  

−0.5 |). This rule employs a greedy heuristic (implemented by another member of the 

research team) to identify a fractional-weighted clique K of large weight. We ensure that 

all vertices whose associated variables are fixed in the current B&B node are excluded 
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from clique K .  Branching on clique K  results in 1)( +KV  child nodes: nodes 

)(,,1 KV�  correspond to a single new vertex )(KVv ∈  being included ( vx  = 1), while 

child node 1)( +KV  corresponds to all vertices in K being excluded simultaneously ( vx  

= 0 )( KVv ∈∀  ).  Note that since K  contains only fractional vertices, it need not be 

maximal. Also, the current fractional solution need not violate K  (i.e. K need not cut off 

the current fractional solution).  

 

3.6 Computational results  
 

This section describes the results of our computational tests. We conduct our 

tests on two sets of instances. The first set comprises unweighted instances from the 

Second DIMACS Implementation Challenge (we actually use the complements of the 

listed graphs). The second set comprises randomly generated π  graphs. The parameter 

π  defines the probability of an edge connecting two vertices in the graph ( 10 ≤≤ π ). 

The weight of each vertex is generated from a discrete uniform distribution on the 

interval [1, M ], with M = 1, 20, 40, 60, or 100. The M  = 1 case corresponds to the 

unweighted case. For a given number of vertices )(GV  and a value of π , we generate 

25 independent instances (each using a unique random number seed), comprising five 

subsets, each with a different value of M and each comprising five instances.   

Table 1 compares performances of (m1) and (m2) using methods (p2) and (b2). 

The first six columns in Table 1 specify the instance: graph designation, the number of 

vertices, V ; the number of edges, E ; the % Density, ∆ ; the number of partitions ( P ); 
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and the corresponding Ê . The last five columns give the method [(m1) or (m2)] and the 

results of each: the number of rows in RMP (RMP Rows); the number of B&B nodes 

required to find the optimal solution (B&B Nodes); the total number times RMP is 

solved (MP Sols); and the CPU run time for our B&P approach to prescribe an optimal 

solution (B&P Time). Results show that (m2) solves 7 of these 13 instances faster than 

(m1) (including three of the four most challenging instances), ties on five of the 

instances, and is substantially slower on only one instance (brock200-3). (m2) is at a 

disadvantage in terms of the additional time spent in identifying cliques. However, this 

disadvantage is overcome by the fact that (m2) typically yields a tighter model as 

indicated by comparing the number of B&B nodes with the corresponding number that 

(m1) achieves. (m2) also yields a smaller RMPs (see RMP Rows), requiring less 

computational effort. Overall, (m2) performs better than (m1) and, based on this 

comparison, we select (m2) as a default to use on other tests.  

Table 2 compares performances of (p1) and (p2) using methods (m2) and (b2). 

Results show that (p2) solves 12 of the 13 instances faster than (p1) and essentially ties 

(p1) on the 13th instance (hamming8-2). Method (p1) typically results in larger Ê , 

reflecting the fact that subproblems contain fewer edges. This affects the tightness of the 

bound, consequently, resulting in larger solution times. (p2) outperforms (p1) because it 

yields smaller RMPs, thus providing tighter bounds (see B&B Nodes). Based on this 

comparison, we prefer (p2) over (p1).  
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Table 3 compares the performances of (b1) and (b2) using methods (p2) and 

(m2). Results show that method (b2) is faster than (b1) on 10 of the 13 instances; it is 

significantly faster on the more challenging instances. Method (b2) incurs an overhead 

due to the time involved in finding cliques. However, (b2) makes up for this 

disadvantage since it requires much smaller B&B search-trees than (b1), on average (see 

B&B Nodes). We conclude that (b2) is superior because cliques provide better 

partitioning of the solution space. Based on these tests, we conclude that the (m2)-(p2)-

(b2) combination is appropriate. We now evaluate (m2)-(p2)-(b2) combination further.  

Table 4 compares the performance of our B&P approach to that of CPAA on the 

set of 13 DIMACS instances. The first four columns in Table 4 specify the instance: 

graph designation, V , E , and ∆ . Columns 5-7 specify the number of partitions 

employed ( P ) and the resulting Ê  and RMP Rows, respectively. To evaluate tightness 

of the formulation columns 8-10 list the upper bound corresponding to the optimal 

solution of RMP at the root node ( )LPZ , the lower bound obtained from the heuristic 

( )HZ , and the optimal MWISP solution ( )IPZ . Finally, columns 11-14 present relevant 

performance metrics: B&B Nodes; MP Sols; B&P Time; and CPAA Time, the CPU run 

time for CPAA to solve the instance. We evaluate the sensitivity of our B&P approach to 

the number of partitions by testing three different values of P on each instance. Our 

results show that the performance of our B&P approach is indeed sensitive to P and that 

it is more effective than CPAA on graphs with densities less than 40%. Our run times to 

solve these DIMACS instances are quite reasonable. CPAA can handle dense subgraphs 
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effectively; however, on large, sparse subgraphs, CPAA does not perform well. CPAA 

can efficiently handle sparse subgraphs with up to only 30-50 vertices. We select the 

value of P such that CPAA can efficiently solve the resulting subproblems. Thus, for 

sparse subgraphs we use larger values of  P to make subgraphs smaller. However, as P 

increases, Ê also increases, weakening the bound provided by RMP. Smaller Ê is good 

in two ways: RMP requires less computational effort and subproblems contain more 

edge inequalities so that RMP provides tighter bounds.  

Table 5 describes the random � graphs generated for testing; all graphs use |V| = 

100 and P = 4. Column 1 specifies the value of �. Columns  2-4, 5-7, and 8-10, give 

minimum, maximum, and average values ( over  five instances) for the resulting E , 

Ê , and RMP Rows.  Table 6 reports the results of test on these random graphs. 

Columns 1 in Table 6 specifies the value of �, and Column 2 specifies M. Columns 3-6 

gives performance measures: ** / IPLP ZZ , ** / IPH ZZ , B&B Nodes, and RMP iterations. 

Columns 7-9, 10-12 specify the minimum, maximum, and average run times for our 

B&P approach and CPAA, respectively to solve a set of five random instances. As � 

increases, the upper bounds from the linear relaxations ( ** / IPLP ZZ  in column 3) as well as 

the lower bounds from the heuristic ( ** / IPH ZZ values in column 4) degrade. The tightness 

of *
LPZ the optimal solution at the root node, reduces as � increases because subgraphs 

contain fewer edges. Weaker bounds make denser problems more challenging (note 

B&B Nodes in column 5, RMP iterations in column 6 and run times in columns 7–9). 

Results in columns 5–12 show that, for a given �, the set of unweighted instances is 
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consistently more challenging than the set of related, weighted instances. Weighted 

instances (i.e., with M = 20, 40, 60, 100) have comparable run times for most values of � 

(exceptions are for � = 0.05 and for M = 100 with � = 0.10 and � = 0.15). Our B&P 

approach solves MWISP at the root node of the B&B tree in each instance with � = 0.01. 

CPAA failed to solve any instance with 0.01 � � � 0.10, because each exceeded memory 

capacity (512 MB). Our B&P approach gives better run times for instances with 0.01 � � 

� 0.20, but CPAA requires less run time on denser instances with � ≥ 0.30.  

 

3.7 Conclusions 
 

In this chapter we present an approach developed by our research team for 

solving MWISP by utilizing a vertex-disjoint decomposition within a B&P framework. 

Tests conducted by our team indicate that this B&P approach is more effective on sparse 

graphs, which result in small RMPs. The tests on random � graphs also show that the 

unweighted maximum independent set problem is more challenging computationally 

than the corresponding weighted problem. Run time is sensitive to P, the number of 

vertex-disjoint partitions of the graph. The associated Ê  is critical in defining the size 

of the master problem and the associated tightness of the bound. Overall, this B&P 

approach performs well on very sparse graphs, the category of instances that is most 

challenging for earlier approaches, including CPAA.  Every approach developed for 

MWISP aims at being able to solve the entire spectrum of instances of MWISP but, 

often, the efficiency of a solver is limited to a certain range of instances. This research 

provides a scheme for embedding arbitrary MWISP solvers (CPAA in our case) within a 
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B&P framework. Further, this B&P approach (using the embedded MWISP solver) is 

able to perform better on instances that were considered challenging for the embedded 

MWISP solver.  Thus, this research also provides a scheme for enhancing the 

performance of existing MWISP solvers such as CPAA. 
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Table 1  
Comparison of methods (m1) and (m2) 
 
Graph ||V  || E  ∆  P |ˆ| E  Method RMP 

Rows 
B&B 

Nodes 
MP 

Sols. 
B&P 

Time (sec.) 
(m1) 626 1 3 0.6 hamming8-2 256 1,024 3.1 20 626 
(m2) 626 1 3 0.6 
(m1) 26 98 2,091 2.4 MANN_a9 45 72 7.3 5 26 
(m2) 20 19 527 0.5 
(m1) 96 1 3 0.3 hamming6-2 64 192 9.5 8 96 
(m2) 96 1 3 0.3 
(m1) 240 6 89   0.9 johnson8-4-4 70 560 23.2 3 240 
(m2) 127 1 23 0.6 
(m1) 1,082 >3,500 >76,809 * johnson16-2-4 120 1,680 23.5 8 1,082 
(m2) 42 1 14 0.6 
(m1) 3,293 21,067 405,073 4,557.1 keller4 171 5,100 35.1 5 3,293 
(m2) 1,995 12,523 307,029 1,812.2 
(m1) 6,528 1 6 4.4 hamming8-4 256 11,776 36.1 4 6,528 
(m2) 3,707 1 12 6.1 
(m1) 3,463 775 15,331 1,671.5 brock200-3 200 7,852 39.5 2 3,463 
(m2) 2,736 3,624 62,432 2,537.4 
(m1) 137 136 1,962 1.3 johnson8-2-4 28 168 44.4 8 137 
(m2) 23 8 126 0.2 
(m1) 9,523 45 1,321 86.1 c-fat200-5 200 11,427 57.4 7 9,523 
(m2) 9,393 33 1,238 86.3 
(m1) 16,580 712 9,802 705.7 p_hat300-1 300 33,917 75.6 2 16,580 
(m2) 10,441 1,086 11,564 479.4 
(m1) 12,261 17 233 20.9 c-fat200-2 200 16,665 83.7 4 12,261 
(m2) 11,406 8 127 19.2 
(m1) 8,999 6 53 7.5 c-fat200-1 200 18,366 92.3 2 8,999 
(m2) 7,453 6 68 8.9 

(m1) edge constraints only in master problem 
(m2) clique constraints replace edge constraints in master problem 
* exceeded memory capacity of 512 MB 
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Table 2 Comparison of methods (p1) and (p2)        
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(p1) partitioning the graph into chordal subgraphs 
 (p2) partitioning the graph using METIS 
 *  exceeded memory capacity of 512 MB  

Graph ||V  || E  ∆  P Method |ˆ| E  RMP 
Rows 

B&B 
Nodes 

MP 
Sols. 

B&P 
Time (sec.) 

(p1) 846 846 1    3 0.6 hamming8-2 256 1,024 3.1 20 
(p2) 626 626 1     3 0.6 
(p1) 32 26 40 904 2.7 MANN_a9 45 72 7.3 5 
(p2) 26 20 19 527 0.5 
(p1) 156 156 1 3 0.3 hamming6-2 64 192 9.5 8 
(p2) 96 96 1 3 0.3 
(p1) 433 295 79 2,882 11.5 johnson8-4-4 70 560 23.2 3 
(p2) 240 127 1 23 0.6 
(p1) 1,243 108 16 400 1.7 johnson16-2-4 120 1,680 23.5 8 
(p2) 1,082 42 1 14 0.6 
(p1) 4,499 3,226 >26,370 >853,215 * keller4 171 5,100 35.1 5 
(p2) 3,293 1,995 12,523 307,029 1,812.2 
(p1) 10,650 7,434 >3,500 >38,126 * hamming8-4 256 11,776 36.1 4 
(p2) 6,528 3,707 1 12 6.1 
(p1) 7,325 6,738 >9,334 >200,240 * brock200-3 200 7,852 39.5 2 
(p2) 3,463 2,736 3,624 62,432 2,537.4 
(p1) 113 22 8 99 1.1 johnson8-2-4 28 168 44.4 8 
(p2) 137 23 8 126 0.2 
(p1) 11,201 11,077 >13 6,396 * c-fat200-5 200 11,427 57.4 7 
(p2) 9,523 9,393 33 1,238 86.3 
(p1) 31,511 24,833 >2,170 >84,660 * p_hat300-1 300 33,917 75.6 2 
(p2) 16,580 10,441 1,086 11,564 479.4 
(p1) 15,912 15,156 25 1,293 261.1 c-fat200-2 200 16,665 83.7 4 
(p2) 12,261 11,406 8 127 19.2 
(p1) 16,696 14,504 90 2,047 158.5 c-fat200-1 200 18,366 92.3 2 
(p2) 8,999 7,453 6 68 8.9 
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Table 3 
Comparison of methods (b1) and (b2) 

                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b1) branch on most fractional variable 
(b2) branch on vertices (i.e., nodes) of a clique 
* exceeded memory capacity of 512 MB                              

Graph ||V  || E  ∆  P |ˆ| E  RMP  
Rows 

Method B&B 
Nodes 

B&P 
Time (sec.) 

626 (b1) 1 0.7 hamming8-2 256 1,024 3.1 20 626 
626 (b2) 1 0.6 

20 (b1) 13 0.6 MANN_a9 45 72 7.3 5 26 
20 (b2) 19 0.5 
96 (b1) 1 0.2 hamming6-2 64 192 9.5 8 96 
96 (b2) 1 0.3 

127 (b1) 1 0.6 johnson8-4-4 70 560 23.2 3 240 
127 (b2) 1 0.6 

42 (b1) * * johnson16-2-4 120 1,680 23.5 8 1,082 
42 (b2) 1 0.6 

1,995 (b1) 16,579 12,793.5 keller4 171 5,100 35.1 5 3,293 
1,995 (b2) 12,523 1,812.2 
3,707 (b1) 1 6.0 hamming8-4 256 11,776 36.1 4 6,528 
3,707 (b2) 1 6.1 
2,736 (b1) >7,500 * brock200-3 200 7,852 39.5 2 3,463 
2,736 (b2) 3,624 2,537.4 

23 (b1) 7 0.7 johnson8-2-4 28 168 44.4 8 137 
23 (b2) 8 0.2 

9,393 (b1) 51 293.2 c-fat200-5 200 11,427 57.4 7 9,523 
9,393 (b2) 33 86.3 

10,441 (b1) >2,000 * p_hat300-1 300 33,917 75.6 2 16,580 
10,441 (b2) 1,086 479.4 
11,406 (b1) 13 41.5 c-fat200-2 200 16,665 83.7 4 12,261 
11,406 (b2) 8 19.2 
7,453 (b1) 9 9.5 c-fat200-1 200 18,366 92.3 2 8,999 
7,453 (b2) 6 8.9 
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Table 4 
Instances taken from the Second DIMACS Implementation Challenge solved using the (m2)-(p2)-(b2) combination of methods 
 
Graph ||V  || E  ∆  P |ˆ| E  RMP 

Rows LPZ  HZ  IPZ  B&B 
Nodes 

MP 
Sols. 

B&P 
Time 
(sec.) 

CPAA 
Time 
(sec.) 

hamming8-2 256 1,024 3.1 11 493 493 128.0 128 128 1 3 1.0 * 
hamming8-2 256 1,024 3.1 20 626 626 128.0 128 128 1 3 0.6 * 

hamming8-2 256 1,024 3.1 24 716 716 128.0 128 128 1 3 0.6 * 

MANN_a9 45 72 7.3 5 26 20 18.0 16 16 19 527 0.5 620.8 

MANN_a9 45 72 7.3 6 29 22 18.0 16 16 25 687 0.5 620.8 

MANN_a9 45 72 7.3 8 35 31 18.5 16 16 43 1,363 0.7 620.8 

hamming6-2 64 192 9.5 4 64 64 32.0 32 32 1 3 0.3 * 
hamming6-2 64 192 9.5 6 114 114 32.0 32 32 1 3 0.3 * 
hamming6-2 64 192 9.5 8 96 96 32.0 32 32 1 3 0.3 * 

johnson8-4-4 70 560 23.2 2 140 62 14.0 14 14 1 22 1.7 14.9 

johnson8-4-4 70 560 23.2 3 240 127 14.8 14 14 1 23 0.6 14.9 

johnson8-4-4 70 560 23.2 6 348 217 16.4 14 14 13 492 0.8 14.9 

johnson16-2-4 120 1,680 23.5 6 1,088 15 8.0 8 8 1 9 0.6 * 

johnson16-2-4 120 1,680 23.5 8 1,082 42 8.5 8 8 1 14 0.6 * 

johnson16-2-4 120 1,680 23.5 10 1,234 128 10.5 8 8 11 335 0.9 * 

* exceeded memory capacity of 512 MB  
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Table 4 continued 

* exceeded memory capacity of 512 MB  
 
  
 
 

Graph ||V  || E  ∆  P |ˆ| E  RMP 
Rows LPZ  HZ  IPZ  B&B 

Nodes 
MP 

Sols. 
B&P 
Time 
(sec.) 

CPAA 
Time 
(sec.) 

keller4 171 5,100 35.1 4 3,003 1,853 17.8 8 11 14,456 329,556 1,934.2 3,075.4 
keller4 171 5,100 35.1 5 3,293 1,995 18.1 8 11 12,523 307,029 1,812.2 3,075.4 

keller4 171 5,100 35.1 8 3,744 2,554 20.7 8 11 24,690 694,846 12,831.5 3,075.4 

hamming8-4 256 11,776 36.1 4 6,528 3,707 16.0 16 16 1 12 6.1 * 

hamming8-4 256 11,776 36.1 5 7,707 4,505 20.8 16 16 440 21,373 536.5 * 

hamming8-4 256 11,776 36.1 8 8,774 6,529 23.5 16 16 2,332 97,283 2,357.9 * 

brock200-3 200 7,852 39.5 2 3,463 2,736 20.0 11 15 3,624 62,432 2,537.4 * 
brock200-3 200 7,852 39.5 3 4,709 3,964 24.0 11 -- >10,024 >50,049 >14,400 * 
johnson8-2-4 28 168 44.4 4 100 12 4.0 4 4 1 7 0.53 0.0 

johnson8-2-4 28 168 44.4 5 124 32 5.3 4 4 6 95 0.45 0.0 

johnson8-2-4 28 168 44.4 8 137 23 5.0 4 4 8 126 0.23 0.0 
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Table 4 continued 
 
Graph ||V  || E  ∆  P |ˆ| E  RMP 

Rows LPZ  HZ  IPZ  B&B 
Nodes 

MP 
Sols. 

B&P 
Time 
(sec.) 

CPAA 
Time 
(sec.) 

c-fat200-5 200 11,427 57.4 4 8,118 7,985 66.7 58 58 33 1,328 157.8 41.4 
c-fat200-5 200 11,427 57.4 7 9,523 9,393 66.7 58 58 33 1,238 86.3 41.4 
c-fat200-5 200 11,427 57.4 8 9,787 9,655 66.7 58 58 33 1,599 112.1 41.4 
p_hat300-1 300 33,917 75.6 2 16,580 10,441 12.9 5 8 1,086 11,564 479.4 3.9 
p_hat300-1 300 33,917 75.6 3 21,972 13,968 16.0 5 8 4,032 44,928 2,302.3 3.9 

p_hat300-1 300 33,917 75.6 5 26,448 17,813 20.7 5 8 8,834 122,254 6,411.4 3.9 

c-fat200-2 200 16,665 83.7 4 12,261 11,406 26.2 24 24 8 127 19.2 1.2 

c-fat200-2 200 16,665 83.7 5 13,156 12,300 25.5 24 24 8 138 22.6 1.2 

c-fat200-2 200 16,665 83.7 8 14,504 13,783 26.9 24 24 26 685 56.6 1.2 

c-fat200-1 200 18,366 92.3 2 8,999 7,453 13.0 12 12 6 68 8.9 1.0 
c-fat200-1 200 18,366 92.3 3 12,137 9,996 14.0 12 12 19 219 19.4 1.0 
c-fat200-1 200 18,366 92.3 6 15.232 12,807 13.3 12 12 13 181 24.6 1.0 

* exceeded memory capacity of 512 MB 



                               

   

36 

Table 5 
            Randomly generated graphs  
 

π    E     
Ê  

  RMP Rows 
  Min Max Avg  Min Max Avg  Min Max Avg 
             

0.01  37 62 50.0  0 3 0.4  0 3 0.4 
0.05  219 276 246.2  67 107 91.4  67 107 86.6 
0.10  461 534 497.2  224 281 252.7  195 243 220.5 
0.15  704 780 742.6  390 453 419.2  332 397 361.8 
0.20  949 1,040 983.1  549 629 591.6  462 538 503.2 
0.30  1,405 1,530 1,471.9  883 977 939.0  747 819 786.4 
0.40  1,919 2,089 1,981.6  1,268 1,407 1,321.4  1,025 1,143 1,079.4 
0.50  2,395 2,586 2,475.8  1,622 1,779 1,697.2  1,231 1,362 1,325.2 
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Table 6 
Test results on randomly generated graphs 

* exceeded memory capacity of 512 MB  
 

  Overall measures B&P Run Times CPAA Run Times 

π  M  

* /LPZ  

*
IPZ  

/HZ  

*
IPZ  B&B Nodes RMP Iterations Min Max Avg Min Max Avg 

            

0.01 1 1.00 1.00 1.0 3.0 0.3 0.6 0.4 * * * 

 20 1.00 0.91 1.0 3.0 0.2 0.5 0.3 * * * 

 40 1.00 0.98 1.0 3.0 0.2 0.5 0.3 * * * 

 60 1.00 0.98 1.0 3.0 0.2 0.5 0.3 * * * 

 100 1.00 0.98 1.0 3.0 0.2 0.4 0.3 * * * 

            

0.05 1 1.03 0.93 11.2 553.4 25.1 65.8 36.8 * * * 

 20 1.01 0.94 6.2 350.8 3.5 27.9 10.2 * * * 

 40 1.00 0.91 0.6 56.2 0.8 7.7 4.5 * * * 

 60 1.00 0.93 1.2 74.6 0.3 7.3 3.3 * * * 

 100 1.01 0.94 7.0 453.4 0.3 52.2 19.6 * * * 

            

0.10 1 1.21 0.86 696.4 31,760.6 88.5 437.3 261.0 * * * 

 20 1.06 0.92 22.6 1,348.6 13.8 46.3 27.1 * * * 

 40 1.11 0.91 106.0 6,224.4 29.8 137.3 72.7 * * * 

 60 1.10 0.93 72.8 4,459.2 27.7 97.7 55.3 * * * 

 100 1.13 0.90 182.6 11,423.2 66.9 295.0 128.5 * * * 

            

0.15 1 1.33 0.87 365.0 69,322.0 138.4 538.5 311.3 11,125.0 16,046.0 12,745.0 

 20 1.24 0.91 384.6 17,263.0 29.7 135.9 84.1 1,688.6 5,281.4 3,100.2 

 40 1.23 0.90 331.6 16,167.8 28.6 129.84 79.8 1,772.4 4,011.2 2,879.2 

 60 1.24 0.89 247.2 11,392.4 44.0 76.9 59.2 1,992.0 4,626.9 2,998.8 

 100 1.26 0.92 365.4 25,243.6 45.1 225.5 112.6 1,844.8 3,355.2 2,845.3 

            

0.20 1 1.43 0.82 3,516.8 109,975.4 179.1 548.9 362.3 836.6 1,991.5 1,527.6 

 20 1.30 0.90 403.8 15,594.6 35.7 83.2 63.9 245.4 1,032.8 570.6 

 40 1.30 0.90 483.8 17,932.6 30.3 82.5 69.1 321.4 772.9 529.1 

 60 1.31 0.91 447.0 17,645.2 46.3 83.3 67.4 212.6 1,141.9 437.8 

 100 1.32 0.87 505.4 19,118.6 41.8 92.1 72.7 356.9 595.7 471.3 

            

0.30 1 1.55 0.85 2,142.4 49,392.2 77.7 220.1 148.5 58.1 73.2 66.7 

 20 1.43 0.88 351.2 9,881.2 25.2 45.2 34.4 15.2 30.3 20.6 

 40 1.46 0.90 455.6 13,170.4 21.2 69.1 43.8 18.7 34.0 24.1 

 60 1.46 0.86 687.8 18,199.4 38.7 122.9 59.6 19.6 40.9 28.7 

 100 1.40 0.88 351.2 10,186.8 20.5 48.5 33.9 12.7 35.5 22.7 
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Table 6 Continued 
 

  Overall measures B&P Run Times CPAA Run Times 

π  M  

* /LPZ  

*
IPZ  

/HZ  

*
IPZ  B&B Nodes RMP Iterations Min Max Avg Min Max Avg 

            

0.40 1 1.68 0.83 1,327.2 25,159.8 35.3 114.8 84.4 4.3 8.6 6.6 

 20 1.57 0.86 444.6 9,500.2 19.5 43.9 33.8 2.5 3.7 3.1 

 40 1.64 0.87 590.0 12,355.0 33.9 53.8 41.3 2.6 3.8 3.3 

 60 1.51 0.87 353.2 7,780.8 19.3 37.1 27.2 3.2 4.4 3.8 

 100 1.59 0.87 548.2 11,431.0 20.6 56.3 39.6 2.9 4.2 3.6 

            

0.50 1 1.66 0.73 605.6 10,261.4 26.2 52.0 39.0 1.1 1.4 1.2 

 20 1.68 0.78 377.0 6,637.4 18.2 35.7 25.1 0.7 1.0 0.8 

 40 1.61 0.76 287.4 5,117.8 9.6 28.8 19.7 0.6 0.8 0.7 

 60 1.56 0.75 227.6 4,100.2 12.9 20.1 16.3 0.6 0.8 0.7 

 100 1.64 0.87 370.6 6,441.4 23.1 30.8 27.4 0.6 0.8 0.7 
* exceeded memory capacity of 512 MB  
 
 



  39   

CHAPTER IV 

EDGE-DISJOINT B&P SCHEME FOR SOLVING MWISP 
 

4.1 Introduction  
 

It has been shown that an arbitrary vertex-disjoint partitioning can be 

transformed to a corresponding edge-disjoint partitioning that yields a tighter bound 

[131]. In the first half of this chapter we investigate whether this property can be 

extended further to show whether an arbitrary edge-disjoint partition yields a tighter 

bound than an arbitrary vertex-disjoint partition having the same number of partitions. 

We show that this is not guaranteed for an arbitrary partition. In the second half of the 

chapter we present a B&P scheme for solving MWISP based on an edge-decomposition 

of the original graph. We compare it with the vertex-disjoint scheme discussed in 

Chapter III. This study presents a rationale for using edge-based decompositions to solve 

MWISP exactly.  

This chapter comprises seven sections. Section 4.2 presents the edge-disjoint 

decomposition and the associated formulations. Section 4.3 presents an analysis of 

bounds comparing arbitrary vertex and edge-disjoint decompositions. Sections 4.3, 4.4 

and 4.5 present methods to manage the complexity of MWISP. Section 4.6 presents the 

results of our computational tests and section 4.7 gives our conclusions. In the next 

section we describe the edge-disjoint formulation. Relevant MWISP formulations from 

Chapter III are referenced and are not duplicated here.   
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4.2 MWISP – formulations 
 

We refer to the edge-inequality based Integer Programming (IP) formulation for 

MWISP described in Chapter III. The vertex-disjoint formulation described in Chapter 

III is also referenced. 

4.2.1 Edge-Disjoint formulation (ED) 

We begin by partitioning the edge set of the graph G  = (V , E ) into P  parts 

PEE ,..,1 , defining subgraph pG = ][ pEG  with edge set pE  for each },..,1{ Pp ∈ . The 

partition containing edge uv  is denoted uvp . Vertices of G  whose incident edges lie in 

more than one partition constitute set V
~

, which induces subgraph ]~[VG . E
~  denotes the 

edge set of ]~[VG . For each Vv
~∈ we define } with  |},..,1{{

~
pv EuvVuPpP ∈∈∃∈= , 

the set of partitions containing vertex v . A distinct decision variable is used to represent 

a vertex Vv
~∈  in every  partition vPp

~∈  in which it appears. Thus, corresponding to 

each such vertex Vv
~∈ , we introduce vP

~
 decision variables },..,1{, vv Pkx

k
∈  so that 

the edge-disjoint formulation has v
Vv

PVVV
~~~

\
~
�
∈

×+  decision variables. The edge-

disjoint formulation invokes equality constraints to equate the decision variables 
kvx  that 

correspond to each vertex Vv
~∈ .  Based on this edge-disjoint partitioning, MWISP can 

be expressed as:  

*
MWISPZ =Max 

�
�
�

��
�

�

�
�
�

��
�

�

∈∀∈∈∈∀=−

+� ��
∈ ∈∈

},..,1{,,
~

},
~

,..,2{,0

:

'1

~
.}~,..,1{

PpQxVvPkxx

xwxw

p
p

vvv

Vv Pk
vv

Vv
vv

k

v

kk

,    (4.1) 
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where pQ  corresponds to edge-inequalities associated with pG : 

pQ ={ }pvu
V EuvxxBx p ∈∀≤+∈ ,1:|| .         (4.2) 

Similar to the vertex-disjoint formulation, the edge-disjoint formulation (4.1) has 

a block-diagonal structure, which is exploited by B&P: 

*
MWISPZ =Max�

∈Vv
vv xw = Max�

=

P

p

pp xw
1

 

subject to 
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           (4.3) 

|| pVp Bx ∈  ∀ },..,1{ Pp ∈ , 

where pA is matrix of coefficients in equalities associated with vertices Vv
~∈ in partition 

Pp ∈ , pD  is matrix of coefficients in inequalities associated with edges pEuv ∈ , 

px pVB∈ is the vector of decision variables representing vertices in ][ pEG , and 

pw pVR∈  is the corresponding vector of weights. 

 The set of integral solutions feasible with respect to pE is denoted pS  and the set 

of integral solutions feasible with respect to the equality constraints corresponding to 

each Vv
~∈  is denoted 

V
S ~ : 
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pS =
�
�
�

�
�
�

∈∀≤+
�

∈
×+

pvu

PVVV

EvuxxBx v
v

),(,1:
'1

~~\

       (4.4) 

and 

vS~ = 
�
�
�

�
�
�

∈∈∀=−
�

∈
×+

VvPkxxBx vvv

PVVV

k

v
v ~

},
~

,..,2{,0:
'1

~~\

.     (4.5) 

The corresponding integer convex hulls are denoted pH (= conv ( pS )) and 
V

H ~ (= 

conv (
V

S ~ )) and the convex hulls of the corresponding linear relaxations are denoted 

pL and 
V

L~ , respectively. 

We reformulate MWISP by applying DWD [39] to the linear relaxation of (4.3). 

Within this scheme, we have a subproblem corresponding to each subgraph 

pG , },..,1{ Pp ∈ . The master problem comprises the equality constraints corresponding 

to each Vv
~∈ .  We solve MWISP’s on the subgraphs to generate columns that populate 

the master-problem basis. Each column in the master problem is thus associated with an 

extreme point in the corresponding subproblem polytope. The restricted master problem 

(RMP) involves a subset of such columns: 

*
EDRMPZ =Max )(

1

jpp
P

p Jj
jp xw

p

��
= ∈

λ          (4.6) 

subject to  

0)(
1

=��
= ∈

jp
p

P

p Jj
jp xA

p

λ            (4.7) 

1=�
∈ pJj

jpλ  ∀ },..,1{ Pp ∈           (4.8) 
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0≥jpλ  ∀ },..,1{ Pp ∈ , pJj ∈         (4.9) 

where pJ is the subset of integer extreme points of pQ  that form columns in RMP, jpx  

pVB∈  is the vector defining extreme point pJj ∈ , and jpλ is the RMP decision variable 

corresponding to extreme point pJj ∈ . MWISP subproblem p  for },..,1{ P  is of the 

form: 

( )α*
pZ  = Max ( ){ }p

ppT
p

p QxxAw ∈− :α ,       (4.10) 

where α E
R

ˆ
∈  is the vector of dual variables associated with the rows of constraint set 

(4.7). A column corresponding to jpx  is deemed improving if ( ) 0>−− p
jpT

p
p xAw βα , 

where pβ is the dual variable corresponding to the thp  convexity constraint (4.8).  

 

4.3 Bounds analysis 
 

Sachdeva & Wilhelm [131] introduced vertex cloning to transform a given 

vertex-disjoint partition into an edge-disjoint partition. Vertex cloning involves 

duplicating vertices in ]ˆ[EG . Specifically, it replaces every edge-inequality 1≤+ vu xx  

(where Euv ˆ∈ ) in the master problem by an equality cv xx =  (vertex v  in partition vp  

is cloned as vertex c in partition up ) and an inequality corresponding to clone cx , 

1≤+ cu xx  (associated with edge uc ) in partition up . Cloning thus transforms a given 

vertex-disjoint partition into an edge-disjoint partition. They show that the bound 

obtained from the resulting edge-disjoint partitioning is not weaker than that associated 

with the corresponding vertex-disjoint partitioning. Their result thus implies that, an 
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arbitrary vertex disjoint partitioning can be transformed to an edge disjoint partitioning 

that yields a tighter bound. This leads us to the question of whether this result can be 

generalized to - ‘does an arbitrary edge-disjoint partition yield a tighter bound than an 

arbitrary vertex-disjoint partition having the same number of partitions?’ We investigate 

this question in this section. We first illustrate why a tightening is guaranteed with 

vertex-cloning. We then present insight into why tightening is not guaranteed with an 

arbitrary edge-disjoint partitioning and finally provide an example, which answers the 

question in the negative.  

4.3.1 Bounds analysis: vertex-disjoint vs. vertex-cloning 

In this section we illustrate vertex cloning and provide an insight that rationalizes 

the observed tightness. Figure 1 depicts an arbitrary graph with 6 vertices and 8 edges 

and an arbitrary vertex-disjoint partition of this graph into 2 partitions. Following 

Sachdeva and Wilhelm [131], Figure 2 shows the transformation of the vertex-disjoint 

partition to an edge-disjoint partition through vertex-cloning. 

 

 

 

 

 

 

Figure 1: A graph and its vertex-disjoint partition 
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Note that, during this cloning transformation, the original vertex-disjoint subgraphs are 

augmented by adding more edges into them (in Figure 2 we add edges (2, 3) and (6, 5) 

into the subgraph on the left). Thus, the corresponding subproblem polytopes now more 

closely represent the polytope of the original MWISP. This is the primary reason that 

allows vertex cloning to provide tighter bounds. In addition, equalities invoked in the 

master problem ensure that the feasible region of the edge-disjoint formulation is  

Figure 2: Vertex-Cloning: vertices 3 and 5 are cloned 

 

contained within the feasible region of the vertex-disjoint formulation. 

4.3.2 Bounds analysis: vertex-disjoint vs. edge-disjoint 

 In this section we investigate the relationship between arbitrary vertex and edge-

disjoint partitions. We begin with an arbitrary edge-disjoint partition and an arbitrary 

vertex-disjoint partition with the same number of partitions. We employ a two - step 

process to transform the given vertex-disjoint partition into the given edge-disjoint 

partition. We show that the first step weakens the bound obtained from the vertex-

disjoint partition and that the second step subsequently tightens this bound. However, 
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due to a lack of comparability between the first and second steps of the transformation, 

we cannot guarantee that this will result in a tightening of the bound.  Figure 3 depicts 

arbitrary vertex and edge-disjoint partitions of the graph in Figure 1, each with two 

partitions. Figures 4 and 5 show Step 1 and Step 2, respectively, which transform the 

given vertex-disjoint partition into the given edge-disjoint partition. 

 

Figure 3a: An arbitrary vertex-disjoint partition   Figure 3b:An arbitrary edge-disjoint partition  

 

 

Figure 4: Step 1: Cloning vertices in the given vertex-disjoint partitioning to obtain an edge disjoint 
partitioning 
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Figure 5: Step 2: Adding edges to transform the edge-disjoint partitioning of Figure 4 to obtain the 
given edge disjoint partition (Figure 3b) 
 
 

We describe our analysis in further detail here. An arbitrary vertex-disjoint partitioning 

of a graph G  = (V , E ) is defined by sets pV  for },..,1{ Pp ∈  and set Ê  (refer to 

Chapter II). Likewise, an arbitrary edge-disjoint partitioning is defined by sets PE  for 

},..,1{ Pp ∈ and set V
~

. The premise for this analysis is that the vertex - and edge-disjoint 

partitions are provided to us a priori. Our analysis is based on transforming the vertex-

disjoint partition into the given edge-disjoint partition while monitoring the effect of the 

transformation on the associated bounds. Note that the bound obtained from solving the 

DWD reformulation associated with the vertex-disjoint partition is equal to the bound 

obtained from solving the fractional maximum weighted independent set problem 

(FMWISP) on the feasible region defined by 
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HL ˆ  [131]. We refer to this 
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p
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by VD
PH . This is equivalent to considering the vertex-disjoint subgraphs as one subgraph 

comprising disjoint components. From a theoretical point of view, this does not distort 

our analysis. Henceforth, we will refer to VD
PH  as the vertex-disjoint subproblem 

polytope. Thus VDB is equal to { }�
VD
PE

HL ˆ .  Similarly, the bound obtained from 

solving the DWD reformulation associated with the edge-disjoint partition is equal to the 

bound obtained from solving FMWISP on a feasible region defined by 

��

�
�
�

��

�
�
�

�
�
�

�
�
�
�

�
� �

p

ED
PV

HL~  [131]. We refer to this bound as the edge-disjoint bound (EDB). 

Again we denote the intersection of the convex hull of the edge-disjoint subproblem 

polytopes ( �
p

ED
pH ) by ED

PH . Thus EDB is equal to { }�
ED
PV

HL~ . Henceforth, we will 

refer to ED
PH  as the edge-disjoint subproblem polytope.  

We begin by identifying the set V
~

corresponding to the given edge-disjoint 

partition (V
~

= {1,2,3,4} for the edge-disjoint partition depicted in Figure 3) and the 

corresponding set vPp
~∈ for each Vv

~∈  ( in our example }2,1{
~~~~

4321 ==== PPPP ). 

The first step (Figure 4) begins by using the above information to create ( )1
~ −vP  clones 

for each vertex Vv
~∈  in the given vertex-disjoint subgraphs. The vertex-disjoint 

subproblem polytope VD
PH  is modified accordingly by introducing decision variables 

corresponding to clones and constraints equating decision variables corresponding to a 

vertex Vv
~∈ and its clone. Introducing decision variables corresponding to clones 

increases the dimension of the subproblem polytope. This higher dimension subproblem 
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polytope is denoted *VD
PH . However, adding equality constraints reduces the dimension 

of the subproblem polytope. We denote the convex hull of the feasible integer variables 

satisfying the equality constraints by 
V

H ~ . The linear relaxation of 
V

H ~  is denoted 
V

L~ . 

The polytope corresponding to the subproblem with new decision variables 

corresponding to clones and the associated cloning equalities is thus denoted 

� V
VD
P HH ~

* . Note that invoking equality constraints within the subproblem ensures that 

VD
PH  is equal to � V

VD
P HH ~

* . Thus at this point, the bound obtained from DWD 

reformulation which is equivalent to the bound obtained by solving FMWISP on the 

feasible region defined by the set  ( ){ }� � V
VD
PE

HHL ~
*

ˆ ,  is equal to VDB (since VD
PH  = 

� V
VD
P HH ~

*  ). To complete the first step, we relegate the equality constraints to the 

master problem. Accordingly the subproblem polytope now corresponds to *VD
PH . At 

this point, the bound obtained from DWD reformulation corresponds to the bound 

obtained by solving FMWISP on the feasible region defined by the set  

{ }� �
*

~ˆ
VD
PVE

HLL . This bound is no stronger than VDB since we have replaced 
V

H ~ with 

its linear relaxation 
V

L~ . We refer to this bound as VDBSTEP1 (VDBSTEP1 ≤  VDB). 

In the second step (Figure 5), we relegate edges Ê  to the subgraphs. 

Correspondingly edge-inequalities associated with Ê  are introduced into to the 

subproblem. The subproblem polytope now corresponds to { }��
*VD

PE HH . The bound 

obtained from the DWD reformulation at the end of this step corresponds to the bound 

obtained by solving FMWISP on the feasible region defined by the set 
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( ){ }� �
*

ˆ~
VD
PEV

HHL  and is tighter than VDBSTEP1 since we have replaced 
E

L ˆ with its 

integer convex hull 
E

H ˆ . We refer to this bound as VDBSTEP2. Note that at the end of step 

2 we obtain the edge-disjoint formulation associated with the given edge-disjoint 

partition (Figure 3b). Thus VDBSTEP2 = EDB. We summarize the bounds associated with 

the two steps as follows: 

VDB ≥  VDBSTEP1 

VDBSTEP2 ≥  VDBSTEP1 

EDB = VDBSTEP2 ≥  VDBSTEP1 

However, because (VDB - VDBSTEP1) may not be equal to (EDB - VDBSTEP1), it 

is not possible to specify the sign of (VDB - EDB) so that it is not possible to say that 

EDB ≤  VDB in all cases. 

In the next section we provide a example, which shows that the bound obtained 

from an arbitrary edge-disjoint partition is weaker than that obtained from an arbitrary 

vertex-disjoint partition with the same number of partitions.  

4.3.3 Example 

The graph in Figure 1 provides the example which answers our initial question -

‘does an arbitrary edge-disjoint partition yield a tighter bound than an arbitrary vertex-

disjoint partition having the same number of partitions?’- in the negative. Solving the 

DWD reformulation on the vertex-disjoint partition depicted in Figure 3a we get an 

upper bound on the MWISP of 2. However, solving the DWD reformulation on the 

edge-disjoint partition depicted in Figure 3b, we obtain an upper bound of 3.  



                               

   

51 

The optimal feasible bases for the associated DWD reformulations are as 

follows:  

Vertex-disjoint: 

• The optimal basis consists of columns associated with decision variables 1
1λ , 2

1λ  , 

which both have the optimal value of 1. The respective cost coefficient for each 

of these columns is 1. Thus, the optimal solution ( *
VDRMPZ ) is equal to 2. 

• The column associated with 1
1λ  corresponds to the independent set containing 

vertex {1} from subgraph 1 while that for 2
1λ  corresponds to the independent set 

containing vertex {3} from subgraph 2. 

Edge-disjoint: 

• The optimal basis consists of columns associated with decision variables 1
1λ , 1

2λ , 

2
1λ , 2

2λ , each of which have the optimal value of 0.5. The cost coefficients for 

decision variables 1
1λ  and 1

2λ  are each 1, while the cost coefficients for decision 

variables 2
1λ , 2

2λ  are each 2. The optimal solution ( *
EDRMPZ ) is equal to 3. 

• The columns associated with 1
1λ  and 1

2λ  correspond to independent sets 

containing vertices {1,3} and {2,4}, respectively, from subgraph 1, while those 

for 2
1λ  and 2

2λ  correspond to independent sets containing vertices {1’,2’,5} and 

{3’,4’,6}, respectively, from subgraph 2. 

4.3.4 Example: vertex-disjoint vs. edge-cover 

 While in an edge-disjoint partitioning, an edge is present in only one subgraph in 

an edge-cover partitioning, an edge is replicated in every subgraph that contains both of 
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its end-points. In a later section we will show that edge-cover partitioning provides a 

tighter bound than the edge-disjoint partitioning.  In this section, we answer the question 

-‘does an arbitrary edge-cover partition yield a tighter bound than an arbitrary vertex-

disjoint partition having the same number of partitions?’- in the negative by providing an 

example (Figure 6). The intuition behind the construction of this example is to obtain an 

optimal vertex-disjoint partitioning but a sub-optimal edge-cover partitioning.  

 

 

 
Figure 6: Construction for bounds analysis between Vertex-Disjoint and Edge-Cover 
         

 

 

      Figure 7a: Vertex-Disjoint Partitioning              Figure 7b: Edge-Cover Partitioning 

 
 

Note that the graph in Figure 6 is not facet producing and hence all facets of the 

corresponding MWISP polytope can be generated by lifting facets of polytopes 
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corresponding to subgraphs. We make leverage of this fact while partitioning the graph. 

The vertex-disjoint partitioning specified in Figure 7a provides an optimal bound of 4 

upon solving the corresponding DWD reformulation whereas the edge-cover partitioning 

specified in Figure 7b provides a sub-optimal bound of 4.5. Note that the vertex-disjoint 

partitioning results in two subgraphs both of which are facet producing (odd-holes). 

Moreover, the subgraph induced by the corresponding cross-edges is a bipartite 

subgraph. This is the reason that the bound obtained is optimal. On the other hand, the 

edge-cover partitioning does not yield any special structure in its subgraphs. Moreover 

the subgraph induced the cloned vertices does not yield a clique. Hence, the edge-cover 

partitioning does not produce an optimal bound. Thus this example demonstrates that we 

can not guarantee that an arbitrary edge-cover partition will yield a tighter bound than an 

arbitrary vertex-disjoint partition having the same number of partition.  

 

4.4. Edge-Disjoint partitioning  
 

We use a tree decomposition approach [68] to partition the edge set )(GE  

(suggested and implemented by a member of our research team). Given a graph G , the 

tree decomposition approach constructs a tree T that has )(GE leaves. In addition, every 

non-leaf vertex in T  has degree three. A bijective function υ  maps the leaves of T to the 

edges of G . ( )υ,T  is referred to as the branch decomposition of G . Removing an edge 

e  of T  produces a vertex-disjoint partition of T into two subtrees. This consequently 

produces an edge-disjoint partition of G comprising two subgraphs - eA  and eB , which 
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are induced by the edges incident to the leaves of the left and right trees, respectively. 

This is the basis for the edge-disjoint partitioning we employ.  

We use two approaches for partitioning a graph – (p1) and (p2). (p1) is an edge-

disjoint decomposition in which each edge appears in only one partition. In (p2) we 

replicate an edge in every subgraph that contains both of its end-points. This is referred 

to as the edge-cover approach since an edge can now be covered by more than one 

partition. (p2) offers two advantages. The first advantage is that the bound obtained from 

DWD reformulation associated with edge-cover decomposition is tighter than that 

obtained from edge-disjoint decomposition. This is because, in the edge-disjoint case 

since an edge appears in only one partition, it is possible that an edge ( uv ) is not 

invoked for a subgraph p  which contains both u  (or a clone of u ) and v  (or a clone of 

v ). In such a case, a column entering RMP from subproblem p  could incorrectly invoke 

both u  and v  (or their respective clones) as members of an independent set. By 

invoking an edge in all subgraphs that contain both its end-points, edge-cover 

decomposition eliminates this problem and guarantees that all columns entering RMP 

correspond to feasible independent sets of the original graph. Thus subproblem 

polytopes generated by edge-cover are contained within subproblem polytopes generated 

by edge-disjoint decomposition. The second advantage is that subproblem polytopes 

corresponding to edge-cover have fewer extreme points and consequently have fewer 

columns to be priced in comparison with edge-disjoint, thus reducing the computational 

effort.  



                               

   

55 

 

4.5 RMP  

RMP associated with DWD reformulation involves equality constraints and thus 

resembles a set-partitioning problem. Set-partitioning problems are much more 

challenging to solve than set-covering or set-packing problems.  The size of RMP is 

critical to the computational effort required in solving an instance. Computational effort 

increases as the number of equalities increase. Thus, the size of V
~

 is crucial for our 

approach. Moreover, set-partitioning constraints typically lead to a poor rate of 

convergence. We observe a similar behavior with our approach. We employ two 

alternative methods to deal with RMP. The first method (m1) simply invokes cloning 

equalities associated with V
~

 in RMP. The primary advantage is its simplicity; however, 

it suffers computational disadvantages due to the resulting size of RMP and its 

degeneracy. The second method (m2) aims at identifying a minimal set of cliques of 

]~[VG  that cover all vertices in V
~

.  We employ a best-in greedy heuristic to identify a set 

of cliques in ]~[VG . We aim to cover all vertices in V
~

by at least one clique. This method 

exploits a tighter formulation that results from incorporating clique inequalities, thus 

providing a better bound in comparision with (m1). It also reduces degeneracy in 

comparison with (m1).  
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4.6 Computational benchmarks  

This section describes the results of our computational tests. We conduct our 

tests on unweighted instances from the Second DIMACS Implementation Challenge, 

(we actually use the complements of the listed graphs).  

Table 7 compares (p1) and (p2) using (m1). The first five columns in Table 7 

specify the instance: graph designation, the number of vertices, V ; the number of edges, 

E ; the % Density, ∆ ; and the number of partitions ( P ). The last five columns give the 

method [(p1) or (p2)] and the results of each: the total number of times RMP is solved 

(MP Sols); the number of B&B nodes required to find the optimal solution (B&B 

Nodes); the upper bound corresponding to the optimal solution of RMP at the root node 

( )LPZ ; and the CPU run time for our B&P approach to prescribe an optimal solution 

(B&P Time). Results show that (p2) outperforms (p1).  As discussed earlier (p2) offers 

two advantages. First, (p2) provides a better bound (see ( )LPZ ). Second, it has a better 

rate of convergence (see NMP). Based on this comparison, we select (p2) as the default 

for the remainder of our tests.  

Table 8 compares performances of (m1) and (m2) using (p2). The first five 

columns in Table 8 specify the instance: graph designation, V , E , ∆ , and P . The last 

six columns give the method [(m1) or (m2)] and the results of each: the number of 

cloning equalities, the number of clique inequalities, MP Sols, B&B Nodes, LPZ , and 

B&P Time. (m2) is at a disadvantage because it must expend time to identify cliques. 

Moreover, for sparser graphs, no cliques exist in ]~[VG  and, hence, no improvement in 
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the bound is observed. For more dense instances, cliques are identified. For the three 

instances for which cliques were generated, there were marginal improvements in the 

computational effort in two (see Column 11), while there was no improvement in the 

remaining one (although the run-time using (m1) was low and did not provide much of 

an opportunity for improvement). Since the time required to generate cliques is not 

substantial and since, theoretically, there is sufficient advantage in generating cliques, 

we select (m2) as a default to use on other tests. 

Based on this preliminary analysis, we henceforth use the (p2)-(m2) 

combination. Table 9 evaluates the sensitivity of our approach with respect to the 

number of partitions employed. The first four columns in Table 9 specify the instance: 

graph designation, V , E , and ∆ . Columns 5-7 give the value of P  employed, and the 

resulting V
~

 and RMP rows, respectively. The last five columns presents relevant 

performance metrics: MP Sols, B&B Nodes, LPZ , IPZ , and B&P Time. Results are quite 

sensitive to the number of partitions. The computation effort is proportional to the 

number of equality constraints involved; hence, partitions resulting in fewer equality 

constraints tend to be more effective. Preliminary results also indicate that cloning fewer 

vertices tends to provide a tighter bound.  

Table 10 evaluates our edge-disjoint approach further and compares it to the 

vertex-disjoint approach discussed in Chapter II. The first five columns in Table 10 

specify the instance: graph designation, V , E , ∆ , and P . The last six columns give 

the approach (edge-disjoint or vertex-disjoint) and the results of each: MP Sols, B&B 
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Nodes, LPZ , IPZ , and B&P Time. Results indicate that the vertex-disjoint approach is 

significantly better over most of the instances. The vertex-disjoint approach outperforms 

the edge-disjoint approach markedly on the denser instances (>30% density). This is 

primarily because, for denser instances, the rate of convergence for edge-disjoint DWD 

is extremely slow, due to the large number of equality constraints involved in RMP. A 

related difficulty for extremely dense graphs (>80%) is that the tree decomposition 

approach runs out of memory. For sparser graphs, our results indicate that the run time 

for the edge-disjoint approach is comparable to that required by the vertex-disjoint 

approach, primarily due to the fact that the former approach involves fewer equality 

constraints and thus the rate of convergence for DWD is better in application to sparser 

instances. 

 

4.7 Conclusions  
 

In this chapter we present an approach for solving MWISP by utilizing an edge-

disjoint decomposition within a branch-and-price framework. We evaluate the 

effectiveness of this scheme computationally, providing insights into the advantages and 

disadvantages associated with it. We demonstrate that our approach is sensitive to 

parameters V
~

 and VvPv
~

   
~ ∈∀ as they govern the computational effort involved and the 

tightness of the bounds provided by the model. A small number of cloned vertices yields 

a tighter bound and is desirable. The computational effort is proportional to the number 

of equality constraints in RMP, each of which is associated with a cloned vertex. A 

larger number of equality constraints results in a slower rate of convergence for DWD. 
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Since denser graphs inevitably result in more equality constraints, our approach is more 

suitable for sparser graphs.  The tree-decomposition partitioning scheme is not able to 

tackle large, dense graphs due to memory requirements. To be able to perform 

effectively over a wider spectrum of instances, we need to reduce the number of cloned 

vertices and substantially improve the rate of convergence of edge-disjoint DWD. In the 

next chapter we discuss convergence properties associated with DWD and adapt 

available techniques to improve the convergence performance of the edge-disjoint 

solver. 
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Table 7 
Comparison of methods (p1) and (p2) 

(p1) edge disjoint 
(p2) edge cover 
** exceeded run time limit of 1 hour 

Instance |V| |E|  ∆  P Method 
MP 

Sols. 
B&B 
Nodes LPZ  

B&P Time 
(seconds) 

          
hamming8-2 256 1024 3.1 20 (p1) >612 ** ** ** 
     (p2) 495 1 128 4661.83 
MANN_a9 45 72 7.3 5 (p1) 235 19 18.5 0.64 
     (p2) 103 7 18 0.39 
hamming6-2 64 192 9.5 8 (p1) 71 1 32 1.03 
     (p2) 76 1 32 0.91 
johnson8-4-4 70 560 23.2 3 (p1) 1109 12 16.21 40.08 
     (p2) 164 1 14 8.4 
johnson16-2-4 120 1680 23.5 8 (p1) >23,945 >335 13.75 ** 
     (p2) 84 1 8 7.29 
johnson8-2-4 28 168 44.4 8 (p1) 873 79 6.13 3.453 
          (p2) 29 1 4 0.19 
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Table 8 
Comparison of methods (m1) and (m2) 
 

(m1) no clique constaints 
(m2) clique constraints 

 

 

Instance |V| |E| ∆   P Method # Equalities 
# Clique 

rows 
MP 

Sols. LPZ  
B&P Time 
(seconds) 

           
hamming8-2 256 1024 3.1 2 (m1) 78 0 3 128 0.23 
     (m2) 78 0 3 128 0.23 
MANN_a9 45 72 7.3 2 (m1) 8 0 15 17.5 0.09 
     (m2) 8 0 15 17.5 0.09 
hamming6-2 64 192 9.5 2 (m1) 21 0 3 32 0.03 
     (m2) 21 0 3 32 0.03 
Johnson8-4-4 70 560 23.2 2 (m1) 36 0 10 14 0.14 
     (m2) 36 28 7 14 0.08 
Johnson16-2-4 120 1680 23.5 2 (m1) 67 0 42 8 8.94 
     (m2) 67 9 42 8 6.92 
Johnson8-2-4 28 168 44.4 2 (m1) 17 0 16 4 0.03 
          (m2) 17 5 19 4 0.03 
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Table 9 
Results for different number of partitions 
 

Instance |V| |E| ∆   P 

V
~

 
RMP 
Rows MP Sols. 

B&B 
Nodes 

LPZ
 

IPZ
 

B&P Time 
(seconds) 

            
hamming8-2 256 1024 3.1 2 78 78 55 1 128 128 107.86 
    20 197 557 495 1 128 128 4654.23 
MANN_a9 45 72 7.3 2 8 8 256 21 17.5 16 0.89 
    5 16 22 103 7 18 16 0.38 
hamming6-2 64 192 9.5 2 21 21 6 1 32 32 0.34 
    8 47 101 75 1 32 32 0.89 
Johnson8-4-4 70 560 23.2 2 36 36 9 1 14 14 0.48 
    3 51 66 145 1 14 14 6.83 
Johnson16-2-4 120 1680 23.5 2 67 67 5 1 8 8 1.39 
    8 111 375 88 1 8 8 6.94 
Johnson8-2-4 28 168 44.4 2 17 17 5 1 4 4 0.08 
        8 26 85 26 1 4 4 0.19 
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Table 10 
Comparison of methods ED and VD on DIMACS instances 

(ED) Edge-Disjoint Approach 
(VD) Vertex-Disjoint Approach 
** exceeded run time limit of 1 hour 
*** exceeding memory limit 

 

 
 

 

 

 

 

Instance |V| |E| ∆   P Approach MP Sols. 
B&B 
Nodes 

LPZ
 

IPZ
 

B&P Time 
(seconds) 

           
hamming8-2 256 1024 3.1 2 (ED) 55 1 128 128 107.86 
    20 (VD) 8 1 128 128 0.44 
MANN_a9 45 72 7.3 2 (ED) 256 21 17.5 16 0.89 
    5 (VD) 187 22 18 16 0.41 
hamming6-2 64 192 9.5 2 (ED) 6 1 32 32 0.34 
    8 (VD) 4 1 32 32 0.06 
Johnson8-4-4 70 560 23.2 2 (ED) 9 1 14 14 0.48 
    3 (VD) 19 1 14 14 0.25 
Johnson16-2-4 120 1680 23.5 2 (ED) 5 1 8 8 1.39 
    8 (VD) 11 1 8 8 1.28 
keller4 171 5100 35.1 2 (ED) ** ** ** ** ** 

    5 (VD) 129613 14069 
18.0

5 11 2367.05 
hamming8-4 256 11776 36.1 2 (ED) ** ** ** ** ** 
    8 (VD) 11 1 16 16 15.25 
brock200-3 200 7852 39.5 2 (ED) ** ** ** ** ** 
    2 (VD) 24734 2224 20 15 3451.84 
Johnson8-2-4 28 168 44.4 2 (ED) 5 1 4 4 0.08 
    8 (VD) 41 8 4 4 0.13 
c-fat200-5 200 11427 57.4 2 (ED) ** ** ** ** ** 

        7 (VD) 379 33 
66.6

7 58 18.28 
c-fat200-2 200 16665 83.7 2 (ED) *** *** *** *** *** 
    4 (VD) 103 16 26.5 24 10.38 
c-fat200-1 200 18366 92,3 2 ED *** *** *** *** *** 
        2 VD 34 6 13 12 15.5 
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CHAPTER V 

IMPROVING THE RATE OF CONVERGENCE OF DWD 
 

5.1 Introduction 
 

The slow rate of convergence associated with a DWD reformulation affects the 

time spent at each node in the B&P-tree and, hence, is critical to the efficiency of the 

approach. In this chapter, we develop insights into the convergence issues that 

accompany column generation. Specifically, we discuss the convergence properties of 

DWD and available techniques for improving the rate of convergence. We also present 

preliminary research towards developing a non-parametric approach to stabilizing DWD. 

Finally, we present techniques for improving the rate of convergence of the edge-disjoint 

B&P scheme discussed in Chapter IV. We present a computational evaluation of these 

specific techniques by conducting experiments on the linear relaxation associated with 

the root node of the edge-disjoint B&P scheme.  

This chapter comprises six sections. Section 5.2 presents a brief overview of 

DWD and section 5.3 presents a dual perspective of DWD. Section 5.4 presents a brief 

discussion on DWD convergence issues. Section 5.5 discussed available techniques for 

improving the rate of convergence of DWD and presents insight into a non-parametric 

approach for stabilizing DWD. Section 5.6 presents specific techniques for improving 

the rate of convergence associated with the edge-disjoint B&P scheme and Section 5.7 

presents a computational evaluation of these techniques.  
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5.2 DWD – overview 
 

DWD entails decomposing the original problem into smaller subproblems and 

employing a master problem to coordinate the solutions proposed by these subproblems. 

The coordination is achieved in a price - directive fashion through the dual solutions 

provided by the master problem to the subproblems. 

Below, we present an arbitrary linear formulation having a block diagonal 

structure, which is subsequently reformulated using DWD: 

*Z  = Max �
∈Pp

pp xw            (5.1) 

bxA
Pp

p
p ≤�

∈

            (5.2) 

pp
p dxD ≤ Pp ∈∀            (5.3) 

pnp Rx ∈  , },,1{ Pp �∈∀ ,          (5.4) 

where pA  is the matrix of coefficients corresponding to px  in inequalities associated 

with master problem constraints, pD  is matrix of coefficients corresponding to px  in 

inequalities associated with subproblem constraints, px pnR∈ is the vector of decision 

variables associated with subproblem Pp ∈ , pw pnR∈  is the corresponding vector of 

weights, and pn is the corresponding number of decision variables. This model is 

referred to as the original formulation.  

The block-diagonal structure is exploited in the DWD reformulation (DWD) as 

follows:  
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*Z  = Max )(
1

jpp
P

p Jj
jp xw

p

��
= ∈

λ          (5.5) 

bxA jp
p

P

p Jj
jp

p

≤��
= ∈

)(
1

λ            (5.6) 

1=�
∈ pJj

jpλ ∀ },..,1{ Pp ∈           (5.7) 

0≥jpλ ∀ },..,1{ Pp ∈ , pJj ∈ ,         (5.8) 

where pJ is the set of integer extreme points of subproblem polytope 

pQ ={ }pp
p

np dxDBx p ≤∈ :|| , jpx pVB∈ is the vector defining extreme point pJj ∈ , and 

jpλ is the decision variable corresponding to extreme point pJj ∈ .  

DWD (5.5-5.8) reformulation is solved using a column generation approach, 

which entails solving a restricted master problem (RMP) comprising a subset of 

columns. Pricing subproblems are solved to identify improving columns, which are 

entered into RMP in the subsequent simplex iteration. Pricing subproblems },..,1{ Pp ∈  

are integer problems of the form: 

( )α*
pZ  = Max ( ){ }p

ppT
p

p QxxAw ∈− :α ,         (5.9) 

where α E
R

ˆ
∈  is the vector of dual variables associated with the rows of constraint set 

(5.6) in RMP. A column corresponding to jpx  is deemed improving if 

( ) 0>−− p
jpT

p
p xAw βα , where pβ is the dual variable corresponding to the thp  

convexity constraint (5.7).  
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At column generation iteration k  the current solution obtained from RMP, 

denoted by 
kRMPZ , provides a lower bound (referred to as the primal bound). Note that, 

from strong duality, 
kRMPZ = bα +�

∈Pp
pβ . Upon solving each of the pricing subproblems, 

an upper bound (referred to as the dual bound) is obtained: 
kRMPZ  + ( )�

∈

−
Pp

ppZ )( * βα  

[17]. Thus,
kRMPZ ≤  *Z  ≤  

kRMPZ  + ( )�
∈

−
Pp

ppZ )( * βα . Optimality is guaranteed when no 

improving column is identified by any pricing subproblem; i.e. 

( ) PpxAw p
jpT

p
p ∈∀≤−−    0βα . Thus, the column generation scheme maintains primal 

feasibility and terminates upon achieving dual feasibility. While the primal bound is 

guaranteed to improve monotonically (except for degenerate iterations), the dual bounds 

are not guaranteed to improve monotonically. In fact, the erratic nature of the dual bound 

is a concern. To lend further insight into the principles of DWD, we describe the dual 

perspective in the next section.  

 

5.3 DWD: the dual perspective 
 
The dual of RMP can be formulated as follows: 

00 ,,0
min

wvu≥
b α + �

∈Pp
pβ          (5.10) 

s.t.  

jpp xw  - α ( )jp
p xA  ≥  pβ       ∀ pJj ∈ , Pp ∈      (5.11) 

This can alternatively, be written as [43 ] 
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0

min
≥u

b α + )(α�
∈

Θ
Pp

p           (5.12) 

where )(αpΘ  = ( ){ }jp
p

jpp xAxw α− } ∀ Pp ∈ .      (5.13) 

Note that (5.12) has the form of a non-differentiable optimization problem. 

Specifically, dual problem (5.12)-(5.13) represents the minimization of a convex, 

piecewise-linear function. At a differentiable point, the epigraph of this function has a 

unique supporting hyperplane and the corresponding slope of this hyperplane is the 

gradient [108]. At a non-differentiable point (a point at which two or more of the 

piecewise functions intersect), the epigraph has an infinite set of supporting hyperplanes 

[108].  The slope of a supporting hyperplane is referred to as the sub-gradient and the set 

of all such sub-gradients is called the sub-differential [108].  

Cutting plane algorithms are widely used for solving non-differentiable 

optimization problems. Such an algorithm uses an oracle to dynamically generate 

supporting hyperplanes to approximate the epigraph of the non-differentiable function. 

From a dual perspective, DWD column generation represents such a cutting plane 

algorithm, specifically Kelley’s cutting plane algorithm [78]. The optimal dual solution 

obtained at each iteration of DWD column generation corresponds to the minimum of 

the current (i.e., employing the cutting planes generated so far) piecewise approximation 

of the dual function (5.12). Columns in the primal correspond to hyperplanes that 

support the epigraph of the dual function (5.12). Thus, from the dual perspective, at 

every iteration a new supporting hyperplane is generated to cut off the current optimal 

dual solution. For the dual function (4.12), the sub-gradient of the supporting hyperplane 
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is given by ( )
�
�
�

�
�
�

−�
∈Pp

jp
p xAb . Optimality is guaranteed when no cut can be generated at 

the current dual solution, implying that the minimum of function (5.12) has been 

attained. This is exactly Kelley’s cutting plane algorithm.   

This dual point of view provides significant insights into the functioning of 

DWD. The convergence issues observed with DWD are similar to the convergence 

issues observed with Kelley’s cutting plane algorithm; in fact, both use the current 

optimal dual solution to generate an improving column. Using the current optimal dual 

solution is critical in defining the convergence of the algorithm. The primary concern is 

that, if the primal RMP is degenerate, the dual has alternative optimal solutions. DWD 

employs extreme point dual solutions to generate columns for RMP but they may not 

facilitate convergence. Previous research has shown that in the case of primal 

degeneracy, an inner point with respect to the optimal dual face could be more suitable 

for generating improving columns. Such variants of cutting plane algorithms that use 

alternative dual points are prevalent for non-differentiable optimization problems (e.g., 

the Analytic Center Cutting Plane method (ACCPM) chooses the analytic center of the 

current approximation of the epigraph to generate improving columns). In the next 

section, we describe the primary issues affecting the rate of convergence of DWD. 

 
 
5.4 DWD: convergence issues  
 

Typically, DWD converges slowly. Four main phases that affect the rate of 

convergence are defined as follows: 
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Heading-In relates to the number of iterations required to identify an initial feasible basis 

and is a pronounced issue for set partitioning problems for which column generation 

spends a substantial amount of time to identify an initial feasible basis.   

Oscillation occurs when dual solutions obtained from solving RMP oscillate with no 

well-defined pattern. This results in erratic changes of the corresponding dual bounds. 

The optimal dual solution obtained from RMP corresponds to the minimum of the 

current approximation of the dual function, which is refined by including the cutting 

plane generated by this dual solution. Oscillation occurs because the new minimum of 

the refined dual function is not guaranteed to be close to the previous minimum. It 

appears that DWD would converge more rapidly if successive dual solutions progressed 

smoothly to an optimal solution.  This would also provide successive dual bounds that 

improve monotonically.  

Primal degeneracy results when an improving column enters the RMP basis but does 

improve the primal bound. A degenerate primal solution corresponds to alternative 

optimal dual solutions in the dual space. A column newly entered in the primal model 

corresponds to a new cut in the dual space. This cut renders the current extreme point 

dual solution infeasible but does not necessarily cut off all alternative dual optima. 

Consequently, the primal bound does not improve on a degenerate iteration.   

Tailing-off effect is the phenomenon that occurs as DWD approaches an optimal 

solution; it requires a substantial amount of time to close the gap between primal and 

dual bounds. The slow rate of convergence due to tailing-off is notably severe for set 

partitioning problems. 
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5.5 Techniques for improving convergence of DWD 
 

In this section we discuss prevalent techniques for accelerating the rate of 

convergence of DWD and present a theoretical insight into a non-parametric method for 

stabilizing DWD.   

5.5.1 Initializing RMP 

 Artificial variables are used in the initial RMP basis for the case in which a 

master problem incorporates equality constraints. Since the value “Big M”, which is 

assigned to the objective function coefficient associated with each artificial variable 

corresponds to a bound on the associated dual variable, a tight estimate of Big M often 

aids in the rapid convergence to a feasible (primal) solution that does not include 

artificial variables. The rate of convergence can also be accelerated if an initial set of 

columns can be generated to provide a good approximation of the epigraph of function 

(5.12) near its minima. A good heuristic solution to the integer problem does not 

necessarily provide a good estimate of the optimal DWD primal bound; hence, adding 

columns prescribed by a heuristic do not necessarily improve the rate of convergence.  

 

5.5.2 Stabilizing DWD 

Stabilization seeks to avoid erratic oscillation of dual variable values. The main 

idea behind stabilization is to restrict each dual variable to take values within a specified 

trust-region. The optimization of the dual function is restricted within this trust-region, 

which is redefined appropriately as the algorithm converges. Smoothing approaches 

have also been proposed to capture the history of the column generation process by 
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using some combination of previously generated dual solutions along with the current 

dual optimal solution. In this section we describe these techniques in more detail.  

Boxstep method: In the Boxstep method [90], optimization in the dual space is 

explicitly restricted to a box obtained by enforcing upper and lower bounds on dual 

variable values. Solving a series of optimization problems, each around a more refined 

box, stabilizes the column generation process. If the optimal dual solution associated 

with a particular box does not lie completely within it, the center of the box is updated to 

the current optimal dual solution and the revised problem is optimized. If the current 

optimal dual solution lies completely within the box, we have attained global optimality 

and primal feasibility is guaranteed. Our preliminary analysis of the Boxstep method 

reveals that the box width is critical - a box-size that is too small may require more 

frequent updates, while one that is too large may not improve convergence. However, 

the best box-size is relative to the instance at hand. Preliminary analysis also show that 

different box sizes, each containing the optimal dual solution, need not lead to similar 

convergence rates. Ideally, the smallest box containing the optimal dual is the desired 

option because it provides the least opportunity for oscillation and will thus require just 

one problem to be optimized (i.e., one box). The important concerns affecting the 

efficiency of the Boxstep method are to provide a good starting dual solution (which is 

close to the optimal dual solution) and to prescribe good box-sizes a priori.  A successful 

implementation of Boxstep requires effective resolution of these concerns. In the last 

section we present our adaptation of Boxstep, addressing these concerns relative to the 

edge-disjoint scheme. 
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3-Piece: In the Boxstep method, dual variable values are not permitted to violate the 

trust-region; they must lie within the box. However, in a related approach [43], a linear 

penalty function comprising three pieces is invoked and dual variables are allowed to a 

take values outside the box, but at the expense of incurring a penalty. Similar to the 

Boxstep method, deciding the parameters of the penalty function defines the efficiency 

of this approach.   

Wentges smoothing approach: The main idea of the smoothing approach is to maintain 

proximity to the best dual solution obtained so far (the one corresponding to the best 

dual bound).  In the Wentges approach [129], the next dual vector used to generate 

improving columns is obtained by taking a step away from the current dual solution in 

the direction of the best dual solution. As the algorithm converges, it places an 

increasing emphasis on the best dual solution found.  

5.5.3 A new non-parameteric approach for stabilizing 

All previously developed techniques involve parameters for which it is difficult 

to determine effective values. In this section we explore a non-parametric approach for 

stabilizing DWD and discuss some concerns related to it. Our approach is based on 

insights from interior point approaches that have been used to stabilize DWD 

convergence. Most interior point algorithms (e.g analytical center, volumetric center, 

etc.) use a central point with respect to the current approximation of the epigraph of the 

dual objective function.  A central point is deemed useful because it summarizes dual   
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Figure 8: Non-Parametric approach to stabilization 

 
information accumulated during the progress of the algorithm. Therefore, calculating a 

central point, which is not easy, is the focus of most research in this area. In addition, 

interior point algorithms do not apply to DWD, which uses the Simplex method. In this 

section we explore an alternative method that employs the idea of a central point within 

the framework of the Simplex method. Our approach uses a projection of the current 

optimal dual solution provided by RMP (Figure 8). This optimal dual solution 

corresponds to an intersection of hyperplanes in the dual space. We refer to a hyperplane 

that intersects at the current optimal dual solution as an active hyperplane. Each 

hyperplane supports the dual epigraph at a point corresponding to the dual solution 

which was used in generating this hyperplane. We refer to this point corresponding to an 

active hyperplane as an active dual point. We construct the affine hull of all the active 

dual points and project the optimal dual solution obtained from RMP onto it. The 

motivation for this approach is that the dual solution corresponding to this projected 
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point has a central property because it captures information provided by the set of active 

dual points obtained in previous iterations. More importantly, the projected point tends 

to be close to the better dual values (“better” in the sense of the dual bounds associated 

with each).  The optimal dual solution provided by RMP is indifferent to the quality of 

previous dual solutions but is dependent (only) on the slopes of supporting hyperplanes 

generated by these dual solutions. In using the slope of the affine hull, our goal is to 

implicitly force dual solutions to be close to one another on subsequent iterations, thus 

preventing excessive oscillation.  Finally, the projected dual point can be obtained within 

a Simplex-method framework as shown below.  

Calculating the projected dual: The projection of point x�  on to the affine hull of k 

points ix , ki ,..1=  is obtained by solving the following minimization problem: 

min { || �
= ki ..1

iλ ix  - x� || } 2 )            (4.14) 

s.t. 

�
= ki ..1

iλ = 1.         (4.15) 

Model (4.14)-(4.15) can be solved using the Karush-Kuhn-Tucker conditions [17]. The 

corresponding lagrange function can be formulated as follows: 

),( µλL  = �
j

( �
= ki ..1

( iλ ijx ) - jx� ) 2 + µ (1- �
= ki ..1

iλ ),  

where jx� is the jth component of vector x� ; and ijx is the jth component of vector ix . The 

associated KKT conditions are 

iλ∂
∂

( ),( µλL ) = �
j

2*( �
= ki ..1

( iλ ijx ) - jx� ) ijx  - µ  = 0 for ki ,,1 �=  
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and 

µ∂
∂

( ),( µλL ) = 1 - �
= ki ..1

iλ = 0. 

Solving these (k + 1) equations in (k+1) unknowns ( µ  and iλ  for ki ,,1 �= ) we obtain 

the projected dual.   

 Our primary concern is that, often, we use columns generated a priori (e.g., by a 

primal heuristic) to initiatize RMP. The dual points that correspond to such columns are 

not known. Thus, when hyperplanes corresponding to these columns are active in 

defining the current optimal dual, the corresponding affine hull is not well-defined 

because it does not include any dual points corresponding to these columns. Our future 

research will try to overcome these difficulties and explore non-parametric approaches 

further. 

  

5.6 Improving convergence of edge-disjoint DWD 
 
 In this section we describe specific techniques we implemented to improve the 

convergence of the DWD reformulation of the edge-disjoint partitioning scheme (see 

Chapter IV). 

5.6.1 An improving initial set of columns 

 We draw insight for generating a set of initial columns from the unique structure 

of the master problem constraints for the edge-disjoint scheme. Each equality constraint 

involves two decision variables: one related to a cloned vertex; and the other, to its 

clone. The coefficient of the former is +1 while that of the latter is -1. This implies that 
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every hyperplane that supports the epigraph of the dual function will have values +1, 0, 

or -1 as components of its gradient. The component of the gradient corresponding to an 

equality constraint will take a value of +1 if the corresponding generated columns 

involve the cloned vertex but not the clone. The component takes a value of -1 if the 

corresponding generated columns do not involve the cloned vertex but does the clone. 

Finally the gradient has a component value of 0 if the corresponding generated columns 

involve both a cloned vertex and its clone.  

We use this insight to generate useful columns apriori. A hyperplane that has a 

gradient component of +1 associated with an equality constraint can be obtained by 

generating a column that involves the cloned vertex. Similarly, by generating  a column 

that involves a clone, we can generate a hyperplane with a gradient component of -1, 

which is associated with the equality constraint. We initiate RMP with columns based on 

this criterion. Preliminary tests show that such initial columns indeed accelerate the 

convergence of DWD.  

5.6.2 Defining optimal bounds on the dual variables 

 An ideal implementation of the boxstep method would utilize the optimal box-

width. In this section we exploit an observation regarding the edge-disjoint scheme to 

create tight dual bounds. Our scheme is based on the insight obtained from observing the 

structure of master problem constraints. We illustrate our insight using an example. 

Assuming a vertex v  has 2 clones 'v  and ''v , the associated equality constraints are as 

follows: 0'=− vv xx  and 0'' =− vv xx . The cost coefficients of the decision variables vx , 
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'vx , ''vx  are 
3

vw
 each, where vw  is the original weight associated with vertex v . Let 'δ  

and ''δ  denote the dual variables associated with the cloning equalities. Employing 

duality we have the following constraints on the dual variables: 'δ + ''δ ≤
3

vw
, 

'δ− ≤
3

vw
, and ''δ− ≤

3
vw

. These constraints imply that dual variables 'δ  and ''δ  are 

bounded within the interval [-
3

vw
, 2

3
vw

]. In general, for a cloned vertex with 1
~ −vP  

clones, the dual variables associated with the corresponding equality constraints are 

bounded within the interval [-
3

vw
,

v

v
v

P

w
P ~*)1
~

( − ]. We use this observation to enforce 

bounds on the dual variables within the Boxstep method. Preliminary tests show that 

these dual bounds promote convergence. 

5.6.3 A relaxation scheme 

For denser instances, the tailing-off effect is severe and convergence typically 

takes a number of hours at the root node for the edge-disjoint approach. The last method 

aims at solving a relaxation of RMP in order to improve performance. Standard 

techniques for relaxing constraints of the set-partitioning type involve penalizing a 

violation of the equality constraint by using surplus and slack variables or by perturbing 

the equations. We explore a related relaxation for the edge-disjoint scheme, which offers 

the potential of allowing better control and involving fewer parameters.   
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The equality constraints that relate each vertex Vv ˆ∈ and its clones (see Chapter 

III) contribute substantially to the computational effort required to solve the edge-

disjoint DWD formulation: 

vS~ = 
�
�
�

�
�
�

∈∈∀=−
�

∈
×+

VvPkxxBx vvv

PVVV

k

v
v ~

},
~

,..,2{,0:
'1

~~\

.                (4.5)  

Thus, RMP can be decomposed into disjoint sets of equality constraints, each set 

involving a cloned vertex Vv ˆ∈  and its clones. We focus on each such set individually. 

For each Vv ˆ∈ , we have 1
~ −vP  equality constraints; for example, a vertex v having two 

clones 'v  and ''v  is associated with two equality constraints: 0'=− vv xx  and 

0'' =− vv xx . The solution space associated with these equality constraints corresponds 

to the diagonal of the unit hypercube formed by the binary variable vx  and its clones, 'vx  

and ''vx  (Figure 9a). Since such a feasible region is highly restrictive, extensive 

computational effort is entailed. Based on this observation, we relax the solution space to 

a box of width δ around this diagonal (Figure 9b). This relaxation has the advantage that 

it is both intuitive and simple to implement. Moreover, the relaxation is easy to control – 

we can enlarge or reduce the boxsize, depending on how challenging an instance is. 



                               

   

80 

 

 

Figure 9a: The solution space corresponding to the                 Figure 9b: Relaxing the solution space 

equality constraints involving a vertex and its clones 
 
 

5.7 Computational benchmarks 
 
 In this section we present a computational evaluation of our stabilization methods 

in application to the edge-disjoint B&P approach for MWISP (see Chapter IV), focusing 

on instances from the Second DIMACS Implementation Challenge (we actually use the 

complements of the listed graphs). We present results based on applying our stabilization 

methods at the RMP root node.  Table 11 presents results; column 1 identifies the graph 

involved in each test and columns 2-7 describe the instance, giving,  respectively, the  

number of vertices V ; the number of edges, E ; the % Density, ∆ ; the number of 

partitions ( P ), the corresponding V
~

; and the number of equality constraints in RMP 

(Equalities). Column 8 identifies the stabilization method.  Columns 9-11 present 

relevant performance metrics with respect to the rate of convergence of DWD: the root 

''vx
'vx''vx
'vx

vx

'vx''vx

vx

'vx''vx
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node solution ( LPZ ), the total number times RMP is solved (MP Sols), and the CPU run 

time for our B&P approach to prescribe the root node RMP optimal solution (Time). 

Table 11 compares the performances of the techniques described in section 5.6.1, 

5.6.2 and 5.6.3 in comparison with the unstabilized version. For each instance, five rows 

present results obtained from applying (m1): the unstabilized DWD, (m2): the initial set 

of columns as discussed in section 5.6.1, (m3): the dual bounds within a Boxstep method 

as described in section 5.6.2 in addition to employing the initial set of columns, and the 

relaxation described in section 5.6.3 using box-widths of 0.1 (m4) and 0.05 (m5). Note 

that (m4)-(m5) relax the problem and hence the upper bounds obtained from the linear 

relaxation ( LPZ ) are weaker than that obtained from (m1)-(m3). 

Results indicate that the time expended in generating the initial set of columns 

for (m2) is more than offset by the improvement in the rate of convergence. By 

employing the dual bounds within a Boxstep method, (m3) improves the rate of 

convergence of DWD. For instance keller4 (a large, dense instance), inspite of 

employing (m2) and (m3) techniques, convergence was not attained at the root node 

within a realistic amount of time. The main reason for this poor performance was the 

tailing-off effect, which was addressed by the relaxation strategy using (m4) and (m5). 

However, the relaxation resulted in a weaker upper bound (see LPZ ). For sparser 

instances, the upper bounds obtained by (m4) and (m5) are tight in comparison with that 

obtained by (m1)-(m3), but the bound weakens as density increases. With respect to run 

time, (m4) and (m5) together provide the best results for 5 of the 8 instances and the 

worst only on instance johnson16-2-4. This is intuitive since (m4) and (m5) solve a 
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relaxation of the original problem. Instances MANN_a9, hamming6-2, and johnson8-2-4 

do not provide much opportunity to make improvements with respect to run time.   

 

5.8 Conclusions 
 
 In this chapter we describe available techniques employed to accelerate 

convergence of DWD. We present preliminary research to explore a new non-parametric 

approach for stabilizing DWD. Finally, we demonstrated adaptations of available 

techniques in application to the edge-disjoint B&P formulation. Our results indicate that 

our implementations were successful in improving the rate of convergence. Our future 

research will explore more generic strategies for set-partitioning problems and explore 

efficient techniques for improving the convergence of the edge-disjoint B&P 

formulation. 
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Table 11 
Comparison of methods (m1), (m2), (m3), (m4) and (m5) 
 

(m1) unstabilized 
(m2) employing starting set of columns 
(m3) employing dual bounds with Boxstep 
(m4) 0.1 relaxation 
(m5) 0.05 relaxation 
** exceeds run-time limit of 3 hours 

Instance |V| |E| ∆  P V
~  

Equalities Method LPZ  MP sols. 
Time 

(seconds) 
MANN_a27 378 702 0.01 25 70 284 (m1) 135 101 5.88 
       (m2) 135 61 2.68 
       (m3) 135 84 9.34 
       (m4) 137.4 29 3.17 
       (m5) 136.25 28 2.77 
hamming8-2 256 1024 3.1 20 197 557 (m1) 128 495 4547.45 
       (m2) 128 403 3442.38 
       (m3) 128 292 1741.8 
       (m4) 128.925 21 4.67 
       (m5) 128.47 35 6.86 
MANN_a9 45 72 7.3 5 16 22 (m1) 18 21 0.06 
       (m2) 18 12 0.06 
       (m3) 18 10 0.05 
       (m4) 18.37 7 0.03 
       (m5) 18.18 8 0.05 
hamming6-2 64 192 9.5 8 47 101 (m1) 32 75 0.58 
       (m2) 32 67 0.86 
       (m3) 32 4 0.05 
       (m4) 32.33 3 0.06 
       (m5) 32.12 3 0.04 
johnson8-4-4 70 560 23.2 3 51 66 (m1) 14 145 6.57 
       (m2) 14 142 6.74 
       (m3) 14 172 9.15 
       (m4) 14.43 4 0.39 
       (m5) 14.22 5 0.47 
johnson16-2-4 120 1680 23.5 8 111 375 (m1) 8 88 5.36 
       (m2) 8 56 4.96 
       (m3) 8 46 5.37 
       (m4) 12.784 35 37.57 
       (m5) 11.58 75 12.89 
keller4 171 5100 35.1 8 157 621 (m1) 13.63 >500 ** 
       (m2) 13.63 >500 ** 
       (m3) 13.63 373 4446.52 
       (m4) 16.79 55 648.59 
       (m5) 15.95 101 757.43 
johnson8-2-4 28 168 44.4 8 26 85 (m1) 4 26 0.11 
       (m2) 4 14 0.05 
       (m3) 4 11 0.06 
       (m4) 5.53 10 0.09 
              (m5) 4.938 13 0.09 
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CHAPTER VI 

CUT GENERATION WITHIN B&P – A LIFTING TECHNIQUE 
 

6.1 Introduction 
 

DWD reformulation can provide a tighter bound than that given by the LP 

relaxation of a model. However, in a typical implementation of B&P, the bound obtained 

may not tight enough to solve challenging instances effectively. B&P can potentially be 

enhanced by incorporating cutting planes to form a branch-and-cut-and- price (BCP) 

approach. However, incorporating cutting planes within B&P is challenging. In this 

chapter we focus on generating valid linear inequalities that can be incorporated in RMP 

to tighten the formulation. Note that traditional techniques for deriving generic cutting 

planes from the optimal Simplex tableau – Gomory and L&P cutting planes – will, within 

a DWD framework, generate cutting planes in terms of the RMP decision variables. A 

cutting plane in terms of RMP decision variables entails the disadvantage that it can 

distort subproblem structure. Hence, the challenge is to present techniques for generating 

cutting planes in terms of the original problem variables. This is the precise reason why 

cutting plane techniques are not used routinely in the B&P framework.  

In this chapter we introduce a generic lifting technique for deriving cutting planes 

in the B&P framework in terms of the original problem variables. Moreover, our 

technique does not rely on the polyhedral properties of the underlying problem. Although 

we discuss a specific application to MWISP, our approach is useful in generic 

applications of B&P. We begin our approach by identifying faces/facets of the 

subproblem that are tight at the current DWD solution using a modification of the facet 

generation procedure (FGP) [102]. These valid inequalities, however, are of no use if 
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incorporated in RMP because they have been implicitly invoked; DWD reformulation 

optimizes over the integer convex hull of each subproblem. However, we show that these 

valid inequalities - when lifted over variables associated with other subproblems- can 

potentially generate valid inequalities that cut off the current fractional solution. Within 

the context of MWISP, this method corresponds to identifying facets of the polytopes 

associated with G  that are obtained by lifting facets of polytopes associated with 

subgraphs of G . This is the basis of our cut generation scheme.  

This chapter has five sections. Section 6.2 presents relevant formulations for our 

method; and section 6.3 discusses the lifting scheme. Sections 6.4 and 6.5 present 

computational results and conclusions, respectively. 

 

6.2 B&P formulations  
 

In this section we present a generic formulation having a block diagonal structure, 

which is amenable to DWD. The corresponding feasible region is thus represented by the 

following set of constraints: 

bxAxAxA P
P ≤+++ �

2
2

1
1  

pp
p dxD ≤  Pp ∈∀            (6.1)  

pnp Bx ∈   Pp ∈∀ , 

where pA  is the matrix of coefficients corresponding to px  in master problem 

constraints, pD  is the matrix of coefficients corresponding to px  in inequalities 

associated with subproblem p , px pnB∈ is the vector of decision variables associated 
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with the pn variables in partition Pp ∈ , and pw pnR∈  is the corresponding vector of 

weights.  

The block-diagonal structure of formulation (6.1) is exploited in the following 

DWD reformulation (DWD):  

bxA jp
p

P

p Jj
jp

p

≤��
= ∈

)(
1

λ             (6.2) 

1=�
∈ pJj

jpλ  ∀ },..,1{ Pp ∈            (6.3) 

0≥jpλ  ∀ },..,1{ Pp ∈ , pJj ∈ ,         (6.4) 

where pJ is the set of integer extreme points of pQ = { }pp
p

np dxDBx p ≤∈ :|| , jpx pVB∈  

is the vector defining extreme point pJj ∈ , and jpλ is the RMP decision variable 

corresponding to extreme point pJj ∈ . Subproblem },..,1{ Pp ∈  is an integer problem of 

the form: 

( )α*
pZ  = Max ( ){ }p

ppT
p

p QxxAw ∈− :α ,          (6.5) 

in which α E
R

ˆ
∈  is the vector of dual variables associated with the rows of constraint set 

(6.2). A column corresponding to jpx  is deemed improving if ( ) 0>−− p
jpT

p
p xAw βα , 

where pβ is the dual variable corresponding to the thp  convexity constraint (6.3).  

This DWD reformulation involves jpλ decision variables, which differ from those 

in original formulation (6.1). Consequently, the optimal Simplex tableau corresponding 

to the DWD reformulation is in terms of jpλ  rather than px . Traditional cutting plane 

techniques - Gomory and L&P cutting planes – exploit the optimal Simplex tableau. 
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Relative to the DWD reformulation, this results in cutting planes involving jpλ decision 

variables. The disadvantage of such a scheme is that resulting cutting planes might 

change the subproblem structure, posing a challenge to the subproblem solver and 

affecting the overall performance of B&P. To improve the B&P approach, the challenge 

is to present techniques for generating cutting planes in terms of the original problem 

variables. Invoking such cutting planes in RMP will not distort subproblem structure. 

We next describe a formulation that provides insight into our lifting technique. 

The DWD reformulation implicitly invokes the integer convex hull of each subproblem 

polytope. Assuming that we have a minimal representation of the integer convex hull of 

each subproblem polytope, an equivalent representation (DWD”) is as follows:  

bxAxAxA P
P ≤+++ �

2
2

1
1           (6.6)  

pp
p dxD

~~ ≤  Pp ∈∀            (6.7)  

pnp Rx ∈   },,1{ Pp �∈∀ ,          (6.8)  

where (6.7) is the minimal representation of pQ ={ }pp
p

np dxDBx p ≤∈ :|| . Formulation 

(6.6) – (6.8) provides the same bound as formulation (6.2) – (6.4). Moreover, the optimal 

feasible bases of these formulations correspond to each other. The difference between the 

two formulations is that, while DWD reformulation invokes the convex hulls of integer 

subproblem polytopes implicitly, DWD” invokes them explicitly in (6.7).  In the next 

section we describe our lifting technique, which generates cutting planes in terms of the 

original variables.  
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6.3 Lifting technique 
 
 Let  x  ([ 1x , 2x , � , Px ]T) denote the current DWD fractional solution obtained 

by the transformation px  = jp
jpJj x

p
λ� ∈ , in which λ is the vector of the optimal basic 

variables in RMP. Since x corresponds to an optimal feasible basis for DWD”, a subset 

of constraints (6.6) and (6.7) are tight at x . Note that, while it is easy to determine the 

subset of constraints (6.6) that are tight at x , we can not do the same for constraints (6.7) 

because we do not know them explicitly. Further, we reiterate that constraint set p  in 

(6.7) includes decision variables associated with only one partition. The following 

theorem presents the basis for our lifting technique. 

Theorem 6.1: Suppose that inequality βα ≤ii pp x  from constraint set (6.7) is tight at x  

for some partition Ppi ∈ . Further, suppose that lifting βα ≤ii pp x  over fractional 

variable kx (i.e., 10 << kx ) generates the valid inequality βαα ≤+ kk
pp xx ii  with 

0>kα . Then, βαα ≤+ kk
pp xx  cuts off x .   

Proof: Since, as βα ≤ii pp x  is tight at x , we have βα =ii pp x . Since 0>kα  and 

10 << kx , we have 0>kk xα . Thus, βαα >+ kk
pp xx ii  and x  violates valid inequality 

βαα ≤+ kk
pp xx . 

This theorem implies that we can generate cuts by lifting subproblem faces that 

are tight at the current fractional solution x . These cuts can be incorporated in  RMP 

without changing the subproblem structure. Note that Theorem 6.1 guarantees that a cut 

can be generated in this way only if it is possible to lift the face successfully (i.e., ∃  kx  

such that 10 << kx  and 0>kα ).  
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Lifting is a prevalent concept in the literature.  Our contribution here is in 

providing a mechanism for identifying and generating potential inequalities to be lifted.  

For each subproblem, we apply FGP to identify faces (facets) of the corresponding 

polytope that are tight at the current DWD fractional solution x . Having identified an 

inequality representing a subproblem face (facet), we attempt to lift it over variables 

associated with other subproblems in order to generate cuts successfully. Next, we 

describe FGP within this context. 

6.3.1 Facet generation procedure 

Gadidov et.al. [102] introduced FGP, which identifies a facet of a full-

dimensional integer polytope nR∈Ρ  by separating a given fractional point Ρ∉*f .  This 

procedure relies on an oracle to solve an optimization problem over Ρ .  They embedded 

FGP within a B&B framework and generated cuts derived from facets of underlying 

knapsack polytopes. Here, we adapt FGP to identify whether a given fractional point  *f  

is an interior point or an inner point relative to a subproblem polytope. Further, if *f  is 

an inner point, FGP provides a face (facet) containing *f . We describe this adaptation 

of FGP below. 

Objective: Identify if a fractional point *f  is an inner point or an interior point w.r.t. to 

an underlying full-dimensional polytope nR∈Ρ . In case *f is an inner point, identify a 

face of Ρ  containing *f . 

FGP Assumptions: 

(A1) nR∈Ρ  is a full dimensional polytope and Ρ∈0 . 

(A2) Ρ∈*f . 



                               

   

90 

(A3) There exists a set 1E  of n  vectors representing linearly independent extreme points 

of Ρ  such that *f  belongs to the convex cone generated by 1E . 

(A4) There exists an oracle to solve an integer program over Ρ .  

FGP solves the following LP problem to optimality using column generation: 

*z  = Min �
∈ )(PExti

iα            (6.9) 

s.t. 

�
∈ )(PExti

iα ix  = *f           (6.10) 

 iα ≥  0 i ∈ )(PExt ,          (6.11) 

where )(PExt  represents the set of extreme point of the polytope Ρ . The optimal solution 

*z  provides the  following information: 

• If *z  = 1, then Pf ∈*  and *f  is an inner point. 

• If *z  < 1, then Pf ∈*  and *f  is an interior point. 

For the case *z  = 1, the face (facet) containing *f  is generated by constructing the 

affine hull of the extreme points corresponding to the optimal basis. Note that *z  > 1 

implies Pf ∈*  and violates (A2). 

In our adaptation, we use px  for some Pp ∈ as fractional point *f . Our oracle 

corresponds to the solver for subproblem Pp ∈ .  In addition, we know a priori that px ∈  

pQ , thus guaranteeing *z  ≤ 1. Moreover, since px  = jp

Jj
jp x

p

�
∈

λ ,  the extreme points 

used in the representation of px  are known a priori. This provides an initial basis for the 

FGP column generation problem. If the solution to (6.9) - (6.11) gives *z  < 1, then px is 
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an interior point and we conclude that no subproblem face (facet) is tight at px . 

However, if *z  = 1, px is an inner point and we construct the affine hull of the extreme 

points corresponding to the optimum basis of (6.9) - (6.11) to generate the valid 

inequality representing the subproblem face (facet) containing px . Note that a degenerate 

optimal basis would imply that the inner point px  lies on a face of dimension less than 

that of a facet and that FGP identifies the corresponding face. In the next section we 

describe our lifting step. 

6.3.2 Lifting subproblem faces 

After having identified subproblem faces that are tight at px , we attempt to lift 

each sequentially over variables associated with other sub-problems. Based on Theorem 

6.1, we need only to lift with respect to variables that are fractional in the current 

solution. Our lifting problem is an integer problem and can be solved using the same 

B&P scheme used for the original problem.  We now describe the lifting problem.  

Assume that FGP has identified face βα ≤jj pp x  of the polytope associated with 

subproblem },...,1{, Pjp j ∈ .  Let T  be the set of the decision variables to be lifted: 

T = },10|{ jii pixx ∉<< . We do not need to lift with respect to all variables in T . In 

fact, the lifting process can be terminated at any iteration after having obtained at least 

one positive coefficient for a lifted variable since such an inequality represents a cut. At 

iteration k , let TLk ⊂−1  represent the set of variables already lifted and let 1\ −∈ kk LTx  

be the next variable to be lifted. The lifting problem is represented as follows: 
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kz = Max  j
Lj

j
pp xx

k

jj �
−∈

+
1

αα  

s.t. 

bxAxAxA P
P ≤+++ �

2
2

1
1  

pp
p dxD ≤  Pp ∈∀        (6.12)  

pnp Rx ∈   },,1{ Pp �∈∀  

 1=kx . 

The lifting coefficient for kx  is obtained from kk z−= βα , where β  is the right hand 

side of the inequality representing the face to be lifted. According to Theorem 6.1, if 

0>kα  for any Txk ∈ , a cut has been generated successfully. In the next section we 

illustrate an example of our lifting technique: 

6.3.3 Example of lifting 

We demonstrate our cutting plane methodology in application to the vertex-

disjoint B&P approach for MWISP (see Chapter III). Figure 10 depicts a graph G  and a 

vertex-disjoint partitioning of G  into two subgraphs.  

 

 

Figure 10: A graph and a vertex-disjoint partition into two subgraphs 
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Figure 11a: Vertex disjoint subgraph 1                      Figure 11b: Vertex disjoint subgraph 2 

 
 

The corresponding formulation for MWISP is as follows:  

 121 ≤+ xx  

162 ≤+ xx  

156 ≤+ xx  

143 ≤+ xx  

2x + 5x  ≤  1 

2x + 3x  ≤  1            

5x + 3x  ≤  1 

1x + 6x  ≤  1 

1x + 4x  ≤  1   

4x + 7x  ≤  1          

7x + 6x  ≤  1 

 1x , 2x , 3x , 4x , 5x , 6x , 7x ∈ { }1,0 . 

The optimal RMP solution at the root node is fractional:  

2
3

5

Subgraph 1

2
3

5

Subgraph 1

1

6 7

4

1

6 7

4Subgraph 2

constraints that will be relegated to the master problem 

constraints that will be used to form subproblem 1 

constraints that will be used to form subproblem 2 
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1x  = 2x  = 4x  = 5x = 6x = 7x = 0.5, 3x  = 0, and *
VDRMPZ = 3.0. 

A minimal description of 1Q for subproblem p = 1 (corresponding to subgraph 1 in 

Figure 11a) is as follows: 

2x + 5x  ≤  1 

2x + 3x  ≤  1           (6.13) 

5x + 3x  ≤  1 

2x + 3x + 5x  ≤  1 

0 ≤  2x , 3x , 5x ≤  1  

Similarly, a minimal description of 2Q for subproblem p = 2 (corresponding to subgraph 

2 in Figure 11b) is as follows: 

1x + 6x  ≤  1 

1x + 4x  ≤  1   

4x + 7x  ≤  1           (6.14) 

7x + 6x  ≤  1 

0 ≤  1x , 4x , 6x , 7x ≤  1 . 

 Note that subproblem 1 face 2x + 5x  ≤  1 is tight at the current fractional solution. 

Lifting this face over the decision variables associated with subproblem 2 entails lifting 

with respect to variables related to vertices 1, 6, and 4. Note that the variable related to 

vertex 7 need not be lifted since it is not adjacent to either vertex 2 or 5. Moreover, 

variables 1x  , 4x , 6x  are all fractional;  we can lift with respect to each one of them. 

Lifting produces zero coefficients 01 =α  and 04 =α  for 1x  and 4x  ; however, it 



                               

   

95 

produces a positive coefficient 16 =α  for variable 6x , generating the clique-inequality 

2x + 5x + 6x  ≤  1. Note that this inequality cuts off the current fractional solution 

( 2x + 5x + 6x  = 1.5 >  1) ! Thus, we have successfully generated a cut using our scheme. 

The next section describes our computational tests. 

 

6.4 Computational evaluation 
 
 We evaluate our cut-generation methodology in application to the vertex-disjoint 

B&P approach for MWISP (see Chapter III), focusing on instances from the Second 

DIMACS Implementation Challenge (we actually use the complements of the listed 

graphs). Table 12 describes each test instance and presents results. The first five columns 

specify the instance, the associated number of vertices V , the number of edges E , the 

% Density ∆ , and the number of partitions P  used in the vertex-disjoint scheme.  

 For each instance we generate one round of cuts at the root node. If an RMP 

solution is fractional, we use FGP in an attempt to identify a face (facet) from each 

subproblem that is tight at the fractional solution. Each such face is then lifted in an 

attempt to generate a cut. If a cut is identified, we incorporate it in RMP, which is then 

reoptimized. The bound obtained after one iteration of cut generation is denoted )1(LPZ .   

To evaluate the tightness obtained from cut generation, we compare )1(LPZ  (column 8) 

with the optimal root node solution of RMP, )0(LPZ  (column 6). Columns 7 and 9 record 

run times to obtain  )0(LPZ  and )1(LPZ , respectively. 

 Results show that our cut generation methodology improves the bound obtained 

in 9 of these 11 instances; it did not identify a valid cut for 2 instances. The failure in 
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both of these cases was because lifting the subproblem faces did not yield a positive 

coefficient for any fractional variable. Our results indicate that substantial computational 

effort may be required to generate a cut using this approach. Lifting entails most of the 

computational effort because it involves solving an integer program for each lifted 

variable. We lifted each identified subproblem face over all decision variables in the 

associated set T . Thus, the computational effort we report is related to both the number 

of partitions P  and the number of vertices V̂ . Finally, the improvement in the bound at 

the end of just one round of cut generation is not substantial. It is possible that additional 

rounds of cuts could yield additional, tighter bounds. However, there is no guarantee that 

our approach will generate the deepest possible cuts.  

 

6.5 Conclusions 
 
   In this chapter we present a new technique for generating cuts within B&P. We 

also provide a preliminary computational evaluation. Although lifting is a prevalent 

technique, our contribution is in providing a mechanism for identifying potential 

inequalities to be lifted within B&P to yield cuts that do not destroy subproblem 

structure.  

We have three primary concerns. First, we are unable to guarantee that the 

identified subproblem face will yield a cut when lifted. Second, the cut obtained is not 

guaranteed to be the deepest cut possible (which affects the % improvement achieved in 

the bound). Third, lifting may require a prohibitive run. While the first and the second 

concerns are inherent and cannot be resolved, there is scope for reducing the 

computational effort. Specifically, we can avoid lifting all the relevant decision variables 
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and terminate upon achieving a positive coefficient for any lifted variable. We could also 

explore problem-specific techniques for identifying a priori decision variables which will 

yield a cut upon lifting. Further, we need to evaluate our approach in other IP 

applications besides MWISP.  Our future research will be directed along these lines.  
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Table 12 
Preliminary results for lifting 

 

Instance |V| |E| � P )0(LPZ  Time )1(LPZ  
 

Time 
MANN_a9 45 72 7.3 5 18 1.781 18 5.945 

johnson8-4-4 70 560 23.2 6 16.5 0.452 16.1684 35.431 
johnson16-2-4 120 1680 23.5 10 10.5 2.046 9.25 91.421 

keller4 171 5100 35.1 4 17.7533 14.171 17.5842 520.089 
hamming8-4 256 11776 36.1 5 20.827 43.999 20.7556 3984.37 
brock200-3 200 7852 39.5 4 27.5205 40.484 27.2219 1280.76 

johnson8-2-4 28 168 44.4 5 5.25 0.233 4.375 6.978 
c-fat-2005 200 11.427 57.4 5 66.667 8.906 66.667 6591.31 
p_hat300-1 300 33.917 75.6 2 12.867 533.14 12.85 2836.19 
c-fat-2002 200 16665 83.7 4 26.5 20.593 26.3846 761.766 
c-fat-2001 200 18366 92.3 3 14 41.342 13.8 859.062 
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CHAPTER VII 

CUT GENERATION WITHIN B&P – INVOKING LIFT & PROJECT 
 

7.1 Introduction 
 

DWD reformulation can provide a tighter bound than that given by the LP 

relaxation of a model. However, in a typical implementation of B&P, the bounds 

obtained may not tight enough to solve challenging instances effectively. B&P can 

potentially be enhanced by incorporating cutting planes to form a branch-and-cut-and- 

price (BCP) approach. However, incorporating cutting planes within B&P is challenging. 

Chapter VI mentions the challenges involved in implementing traditional cutting plane 

methods within a B&P framework. Further, it presents a lifting technique for generating 

cutting planes in terms of the original problem variables. However, this technique suffers 

several drawbacks. Primarily, there is no guarantee that the lifting technique can identify 

a cut. Moreover, any cut obtained from lifting is not guaranteed to be the deepest. 

Addressing these concerns, we now explore generic (i.e., without relying on the 

polyhedral properties of the underlying problem) cutting plane methods within a B&P 

framework. We emphasize that, although we implement it specifically for MWISP, our 

approach is useful in generic applications of B&P.  

As in Chapter VI, our approach relies on identifying faces (facets) of a 

subproblem polytope using a modification of FGP [102]. We emphasize that resulting 

valid inequalities are of no use if incorporated in RMP, since DWD reformulation 

invokes them implicitly as it optimizes over the integer convex hull of each subproblem. 

We begin by presenting a theoretical framework for generating valid cutting planes in a 

Chvatal-Gomory (C-G) fashion by combining faces (facets) generated from the 
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subproblems in conjunction with master problem inequalities. However a practical 

implementation of the C-G cut relies on identifying the C-G multipliers which is not 

straightforward. We overcome this challenge by exploring the L&P technique and show 

how to invoke L&P cuts within a B&P framework. This is the basis of our cut generation 

scheme, which we evaluate through computational tests. Our goal is to present a 

framework for generating generic cutting planes within the B&P approach.  

This chapter has five sections. The B&P formulations discussed in Chapter VI are 

referenced instead of duplicating them here. In section 7.2 we present the insight for 

generating a C-G cut within B&P. Section 7.3 presents L&P with respect to DWD 

reformulation while section 7.4 describes our cut generation scheme. Section 7.5 presents 

our computational tests. 

 

7.2 Cut generation scheme 
 
 Let  x  ([ 1x , 2x , � , Px ]T) denote the current DWD fractional solution obtained 

by the transformation px  = jp
jpJj x

p
λ� ∈  where λ is the vector representing the optimal 

basic variables in RMP. From the principles of DWD, we know that x corresponds to an 

optimal feasible basis for DWD” (see Chapter VI). This implies that, at x , a subset of 

constraints (6.7) and (6.8) is tight. Note that, while it is easy to determine the subset of 

constraints (6.7) that are tight at x , we can not do the same for constraints (6.8) because 

we don’t know them explicitly. Moreover, there could be exponential number of 

constraints in set (6.8). However, if constraint set (6.8) were available explicitly, we 

could generate a C-G cut by taking a combination of selected constraints in (6.7) and 

(6.8). In the next section we illustrate an example of such a procedure. 



                               

   

101 

7.2.1 Example of a C-G cut in B&P 

We demonstrate an example based on the vertex-disjoint B&P approach for 

MWISP. We refer to Figure 10 from Chapter VI, which depicts a graph and a vertex-

disjoint partition into two subgraphs. We also refer to the corresponding formulations 

from Chapter VI. 

 The optimal RMP solution at the root node using the vertex-disjoint B&P scheme 

is fractional: 

            1x  = 2x  = 4x  = 5x = 6x = 7x = 0.5 and 3x  = 0 and *
RMPZ = 3.0.  

Referring to the DWD” reformulation for this example (Chapter VI), we derive a C-G cut 

using a linear combination of the following inequalities: 

2x + 6x  ≤  1 (Master constraint) 

6x + 5x  ≤  1 (Master constraint) 

2x + 3x + 5x  ≤  1 (face of subproblem polytope 1=p ).  

Using a coefficient of 0.5 for each constraint, a linear combination results in 

            2x +0.5 3x + 5x + 6x ≤ 1.5 

Integer rounding generates the clique inequality 2x + 5x + 6x  ≤  1. Note that this inequality 

cuts off the current fractional solution ( 2x + 5x + 6x  = 1.5 >  1)! The next section 

summarizes our C-G scheme for B&P.  

7.2.2 Implementing C-G cuts within B&P 

Our approach is based on the fact that x corresponds to an optimal feasible basis 

for DWD”. We seek to identify the set of hyperplanes that are tight at x . This set 

comprises a subset of master problem constraints and a subset of subproblem faces 



                               

   

102 

(facets). We use FGP (see section 6.3) to identify the subproblem faces that are tight at 

x . For each subproblem, we apply FGP to identify faces (facets) of the corresponding 

polytope that are tight at the current DWD fractional solution x . A C-G cut can then be 

derived by taking a linear combination of the identified subproblem faces (facets) and the 

master problem constraints that are tight at x .  

However, the challenge involved is in identifying the multipliers for the linear 

combination used to derive the C-G cut. Although our simple example demonstrates the 

feasibility of invoking C-G cuts within B&P theoretically, a practical implementation is 

not straightforward. In the next section we present a theoretical framework for using L&P 

within B&P while addressing our concerns about C-G cuts. 

 

7.3 Lift & project 
 

L&P tightens the linear relaxation of an integer program by lifting it into a higher 

dimensional space where a tighter formulation is obtained. This higher dimension 

polyhedron, when projected back onto the original space, provides a tighter 

approximation of the integer convex hull [6, 7, 114]. L&P utilizes this higher dimension 

polyhedron to derive strong cutting planes for the original polyhedron [6, 7].  In the next 

section we present our L&P scheme for B&P. 

7.3.1 Lift & project using the binary disjunction 

We begin by invoking L&P for DWD”. Recall that the DWD” reformulation is 

obtained by explicitly invoking the integer convex hull of each subproblem polytope. 

Assuming that a DWD” reformulation is available, we show how to invoke L&P. Later, 



                               

   

103 

we address the concern that the DWD” reformulation is not explicitly available. We start 

with the following 0-1 program, which corresponds to the DWD” reformulation: 

max  �
∈Pp

pp xc             (7.1) 

s.t. 

bxA
Pp

p
p ≤�

∈

            (7.2)  

pp
p dxD

~~ ≤ Pp ∈∀                                                        (7.3)  

pnp Bx ∈ , },,1{ Pp �∈∀ ,                                                      (7.4)  

where pA  represents the matrix of coefficients associated with master problem 

constraints, pD
~

represents the matrix of coefficients associated with constraints 

representing the integer convex hull of subproblem polytope Pp ∈ , pnp Bx ∈ is the 

vector of binary decision variables associated with subproblem Pp ∈ , and pnp Rc ∈  is 

the corresponding vector of cost coefficients.  

The corresponding linear relaxation is obtained by relaxing binary restriction 

(7.4). A disjunctive relaxation of (7.2) - (7.4) is obtained by imposing the 0-1 disjunction 

on a single variable }1,0{∈jx as in ( ) ( )10 ≥∨≤ jj xx . The conjunctive normal form for 

the disjunctive set is represented as 

bxA
Pp

p
p ≤�

∈

             

pp
p dxD

~~ ≤  Pp ∈∀              (7.5) 

( ) ( )10 ≥∨≤ jj xx  

pnp Rx ∈  },,1{ Pp �∈∀ , 
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and the disjunctive normal form is represented as 

bxA
Pp

p
p ≤�

∈

   bxA
Pp

p
p ≤�

∈

   

pp
p dxD

~~ ≤ Pp ∈∀  pp
p dxD

~~ ≤ Pp ∈∀      (7.6) 

( )0≤jx    ( )1≥jx  

pnp Rx ∈ , },,1{ Pp �∈∀             pnp Rx ∈ , },,1{ Pp �∈∀  

7.3.2 Compact representation of the convex hull 

L&P invokes the convex hull representation of the union of two polyhedra, each 

of which corresponds to a disjunctive set [6, 7]. Let H
~  denote this closed convex hull.  

H
~  is thus the set of points pnp Rx ∈ Pp ∈∀  for which there exist vectors 

( )PpRyRy pnp ∈∀∈∈ ,1
0  and ( )PpRzRz pnp ∈∀∈∈ ,1

0  such that 

0

              
~~

1

             

0

0

00

=

∈∀≤

≤

=+

∈∀+=

�
∈

j

p
p

p

Pp
p

ppp

y

PpydyD

byyA

zy

Ppzyx

                      (7.7) 

PpzdzD

bzzA

p
p

p

Pp
p

∈∀≤

≤�
∈

              
~~

0

0

 

.,

00

pnpp

j

Rzy

zz

∈

=−
 

L&P exploits the observation that x ∉ H
~  and, thus, facets of H

~  can be used to cut off x  

[6, 7]. L&P uses the reverse polar *~
H  of H

~ in order to generate these cuts: 

 ∨
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If H
~  is full-dimensional, inequality βα ≤�

∈Pp

pp x  defines a facet of H
~  IFF 

( )βααα ,,,, 21 p
�  is an extreme ray of *~

H [6, 7]. In order to generate the extreme rays of 

*~
H , L&P solves a linear program over a normalized version of the cone *~

H  [6, 7]. This 

linear program identifies the facet of H
~ that is most violated by the current fractional 

point x = ( )Pxxx �,, 21  and is called the cut generating linear program (CGLP) [6, 7]: 

Min �
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In CGLP, we use a normalization that restricts [ ]1,0∈β , allowing us to deal with 

a polyhedron instead of the cone *~
H . Different normalization forms can be used [6, 7] 

but care must be taken to assure that the normalization does not distort the cone; that is, 

extreme points of the CGLP polyhedron should still correspond to facets of H
~ . Note that 

we need not solve CGLP to optimality; we can stop anytime the objective function value 

is positive. However, this would not guarantee the deepest cut.  

 

7.4 Generating L&P cuts within B&P 
 

In section 7.3 we showed that a L&P cut can be derived assuming that the DWD” 

reformulation is explicitly available. However, DWD” is not explicitly available. 

Moreover, even if it were available, the minimal representation could involve a large 

number of facets, so that solving CGLP with all facets invoked explicitly could take a 

prohibitive amount of time.  

We overcome these challenges by posing CGLP as a column generation problem 

in which each generated column is associated with a facet of a subproblem polytope. The 

next section describes our column generation framework in more detail.   

7.4.1 Solving CGLP using column generation: master problem 

Our approach eliminates the need for a priori explicit information defining all 

facets of each subproblem polytope. Instead, we use a column generation scheme to 

identify required facets dynamically. We emphasize that CGLP is a linear program and 

we use a column generation approach to solve it. Moreover, our column generation 

approach does not invoke DWD but is a Type II column generation [130], analogous to 

that used for cutting stock problems [59]. Our column generation scheme entails solving 
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a RMP comprising columns representing master problem constraint set A  and a subset of 

the subproblem facets D
~ . The dual solution provided by RMP is used by an oracle to 

generate improving columns corresponding to subproblem facet defining equalities, 

which are entered into RMP in the subsequent Simplex iteration. Optimality for CGLP is 

achieved when no improving column is identified by the oracle. We now present RMP 

for CGLP: 

CGLPZ  = Min �
�
�

�
�
�
�

�
−�

∈

p

Pp

p xαβ                (7.8) 

s.t. 

jeuDuA 0'
~

' ++≤ µα            (7.9) 

jevDvA 0'
~

' −+≤ υα          (7.10) 

'
~

'dub µβ +≥           (7.11) 

0'
~

' vdvb −+≥ υβ          (7.12) 

11- ≤≤ β           (7.13) 

0,u,'v,,'u, 00 ≥vυµ          (7.14) 

where, 'µ and 'υ correspond to the subset of oracle-prescribed (i.e., generated) columns 

that populate the current RMP. In CGLP, columns associated with decision variables µ  

and υ  correspond to facets of subproblem polytopes, while those associated with 

decision variables u  and v  correspond to the master problem constraints. Since master 

problem constraints are known, we initiate RMP for CGLP with columns corresponding 

to decision variables u  and v . Optimal dual values from the solution of RMP are used by 

the oracle to generate columns corresponding to decision variables µ  and υ .   
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Our column generation scheme for CGLP need not be solved to optimality and 

can be stopped anytime the objective function value is greater than zero. We next 

describe the pricing problem used for generating columns corresponding to facets of 

subproblem polytopes. 

7.4.2 Solving CGLP using column generation: pricing subproblem 

Since each generated column is associated with a facet of a subproblem polytope, 

each pricing problem is an IP over the polar of a subproblem polytope. We use δ , η , 0δ , 

and 0η , the optimal solution to the dual of RMP ((7.8) – (7.14)), to price out columns µ  

and υ . 'µ , 'υ , δ  and η  are partitioned to correspond with the subproblems in the forms 
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 , 

respectively. We denote the polar of pQ = { }pp
p

np dxDBx p ≤∈ :||  by ∗
pQ . Pricing 

subproblems ),( 0δδ pSP  and ),( 0ηη pSP have the following forms: 

),( 0δδ pSP : ),( 0
* δδ pZ = Max { pδ− py + 0δ , where py ∈ ∗

pQ }.    (7.15) 

and  

),( 0ηη pSP : ),( 0
* ηη pZ = Max { pη− py + 0η , where py ∈ ∗

pQ }.    (7.16) 

Both these pricing subproblems are integer programs over the polar ∗
pQ . A column 

obtained by solving ),( 0δδ pSP  (or ),( 0ηη pSP ) corresponds to extreme point of ∗
pQ  and, 

thus, represents a facet of pQ . A column obtained by solving ),( 0δδ pSP  (or ),( 0ηη pSP )   

is considered improving if ),( 0
* δδ pZ 0>  (or ),( 0

* ηη pZ  > 0). At the optimal solution, 
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no improving column can be identified by any subproblem. In the next section we 

describe an approach to solve the pricing problem. 

7.4.3 Solving the pricing problem 

We begin by giving a theorem that provides insight into FGP (see Chapter VI): 

Theorem 7.1 Solving an IP over the polar ∗
pQ  is dual to solving FGP on pQ .  

Proof: We begin by stating the FGP problem on pQ : 

Primal FGP( pQ ):  Min �
∈ )(PExti

iα  

   s.t. 

�
∈ )(PExti

iα ix  = *f  (Primal) 

   iα ≥  0 i ∈ )( pQExt  

The dual to FGP( pQ ) is given by 

Dual {FGP( pQ )}: Max *f Ty  

s.t.  

Ty ix  ≤ 1 )( pQExti ∈∀  

Ty  free  

Assuming that pQ is a bounded polytope containing the origin, we know from Theorem 

9.1, Schrijver 1986 [111] that the set { Ty pnR∈ | Ty ix  ≤ 1 )( pQExti ∈∀ } represents the 

polar ∗
pQ  of pQ . Thus, the linear programming dual to FGP( pQ )  can be represented as 

Dual {FGP( pQ )}: Max *f Ty | Ty ∈ ∗
pQ , 

which corresponds to solving an IP over the polar ∗
pQ . [QED]. 
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Theorem 7.1 shows that, in the column generation framework, solving the pricing 

problem is equivalent to solving FGP( pQ ) with *f  corresponding to pδ− (or pη− ).  

The next section describes preliminary computational tests of our approach. 

 

7.5 Computational benchmarks 
 
 We apply our cut generation scheme to the vertex-disjoint formulation of MWISP 

discussed in Chapter III. We focus our preliminary tests on instances from the Second 

DIMACS Implementation Challenge (we actually use the complements of the listed 

graphs). Table 7.1 describes each test instance and presents results. The first five columns 

specify the instance, the associated number of vertices, V ; the number of edges, E ; the 

% Density, ∆ ; and the number of partitions, P ; used in the vertex-disjoint scheme. 

 For each instance we generate ten rounds of cuts at the root node. If an RMP 

solution is fractional, we select the most fractional variable and generate an L&P cut 

using a disjunction based on this fractional variable. We solve CGLP to optimality for 

each such iteration to optimality. The resulting cut is then incorporated in RMP, which is 

then reoptimized. The bound obtained after 10 such iterations is denoted )10(LPZ .  To 

evaluate the tightness obtained from cut generation, we compare )10(LPZ (column 7) with 

the optimal root node solution of RMP, )0(LPZ  (column 6).  

 Table 13 shows (columns 6 and 7) that cut generation improves the bound 

obtained in each of the 11 instances. Unlike the lifting scheme presented in Chapter V, 

solving CGLP to optimality guarantees that L&P prescribes the deepest cut. In addition, 

our L&P scheme is guaranteed to generate a cut.  
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Our main concern is the time consumed to obtain each cut – especially for larger 

instances. One option for reducing run time is to terminate CGLP as soon as a cut is 

obtained, rather than solving it to optimality. More time can then be spent on additional 

cut-generating iterations, compensating for the depth of the cut obtained on each 

iteration. A second improvement for larger instances would involve invoking only the 

RMP constraints that are tight instead of all RMP constraints, thus reducing the size of 

CGLP.  Finally, recent research has shown that a L&P cut can be generated from the 

optimal Simplex tableau without solving CGLP, thus reducing run time substantially. A 

similar technique within the B&P framework could be explored. Our research continues 

along these lines.  
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 Table 13 

Results of Lift & Project Cut generation scheme within B&P 

Instance |V| |E| � P )0(LPZ  )10(LPZ  
MANN_a9 45 72 7.3 5 18 17.33 
johnson8-4-4 70 560 23.2 6 16.5 15.9853 
johnson16-2-4 120 1680 23.5 10 10.5 10.0 
keller4 171 5100 35.1 4 17.7533 17.2579 
hamming8-4 256 11776 36.1 5 20.827 20.2495 
johnson8-2-4 28 168 44.4 5 5.25 4.9167 
p_hat300-1 300 33.917 75.6 2 12.867 12.8286 
c-fat-2002 200 16665 83.7 4 26.5 25.3623 
c-fat-2001 200 18366 92.3 3 14 13.9022 
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CHAPTER VIII 

CONCLUSION AND FUTURE RESEARCH 
 

In this research, we have explored B&P approaches for solving MWISP, one of 

the most well-known and well-studied NP-hard problems in the field of combinatorial 

optimization. In the first part of this research, we explored vertex and edge-disjoint 

decompositions of the underlying graph to develop B&P approaches for MWISP. We 

demonstrated that vertex-disjoint partitioning scheme gives an effective approach for 

relatively sparse graphs (i.e., density less than 30%). We showed that the edge-disjoint 

approach is less effective than the vertex-disjoint scheme because the associated DWD 

reformulation of the latter entails a slow rate of convergence. Further research can 

explore avenues for enhancing the effectiveness of the edge-disjoint approach for 

MWISP. Also, future research can explore methods for determining an optimal 

partitioning of a graph for MWISP. An ideal partitioning should yield an optimal integer 

solution at the root node of the B&B tree. However, this does not appear practical. A 

more realistic goal would be to identify optimal partitionings for both vertex and edge-

disjoint approaches with the goal of minimizing the run time required to prescribe an 

optimal integral solution.  

In the second part of this research, we addressed convergence properties of DWD. 

We described available techniques for improving the rate of convergence and presented 

preliminary research towards exploring non-parametric approaches for stabilizing DWD. 

We also demonstrated our efforts for improving the rate of convergence associated with 

the edge-disjoint B&P approach. Future research can explore more generic stabilization 
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techniques, especially for challenging set partitioning problems. Also, future research can 

continue to explore non-parametric approaches for stabilizing DWD.  

In the third part of this research, we explored more fundamental concepts towards 

enhancing the strength of B&P as a useful integer programming tool. A primary 

challenge posed in B&P is in generating cuts that do not distort subproblem structure. 

Traditional implementations of C-G and L&P cuts can not be successful within a B&P 

framework.  We presented two new methodologies for generating generic cutting planes 

within the B&P framework.  The first methodology generates cuts by using FGP to 

identify faces (facets) of subproblem polytopes and lifting associated inequalities; the 

second methodology computes L&P cuts within B&P. We successfully demonstrated the 

feasibility of our approaches and presented preliminary computational tests of each. 

Future research can focus on devising more effective methods to implement the proposed 

cut-generation approaches with the ultimate goal of building a generic Branch-and-Price-

and-Cut framework.  
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APPENDIX A 
 

A GENERIC IMPLEMENTATION OF BRANCH AND PRICE 

  

 Here, we describe the generic implementation of B&P used in our research. The 

goal of this implementation is to provide a reusable framework, which can be easily 

adapted for different applications of B&P. In addition to the standard techniques for 

B&P, our implementation provides advanced techniques for branching, stabilizing DWD 

and generating cuts. Moreover, the implementation offers flexibility for invoking future 

enhancements. Our implementation is in C++ with embedded CPLEX Callable Library 

routines. The implementation comprises the following components: 

B&P generic routines: This set of routines provides the standard implementation of the 

B&P algorithm. We implement DWD column generation using CPLEX callable library 

routines at each node of the B&B tree. We initialize RMP using artificial variables. Both 

two-phase and Big-M methods are implemented for initializing RMP. Improving 

columns generated are preserved in a column pool for future iterations. We provide to the 

user the option of entering a single improving column or all improving columns into 

RMP. We also provide an option for identifying an improving column from the column 

pool before solving the pricing subproblems. The B&B tree is searched according to a 

breadth-first strategy. Our implementation allows the user to invoke both variable 

dichotomy branching as well as constraint branching. Parent-node columns that are 

feasible with respect to a child node are used to initialize RMP for the child node.  

Problem specific routines: This set of routines is used to invoke problem-specific 

information and interface with the generic routines discussed above. The user is required 
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to populate data structures to define the specific instance at hand. The user is also 

required to specify an oracle to solve the pricing subproblems.  

B&P stabilization routines:  This set of routines provides additional enhancements for 

improving the rate of convergence of DWD. Prevalent stabilization methods are 

provided. Specifically, the Boxstep method, 3-piece and 5-piece penalty function method, 

and Wentges smoothing method are implemented. The user is required to specify the 

associated parameters for each of these methods.  

B&P cut generation routines:  This set of routines invokes cut generation strategies at the 

root node of the B&P tree. Specifically, the two strategies developed in this dissertation 

are implemented. 
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