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ABSTRACT 

Examination of the Relationship of River Water to Occurrences of Bottom Water with 

Reduced Oxygen Concentrations in the Northern Gulf of Mexico. (December 2006) 

Leila Belabbassi, B.S., Institut des Sciences de la Mer et de l’Aménagement du Littoral; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Worth Nowlin, Jr. 

Six years of comprehensive data sets collected over the northern continental shelf 

and upper slope of the Gulf of Mexico during the LATEX-A and NEGOM-COH 

programs showed that low-oxygen waters (<2.4 mL·L-1) are found only in spring and 

summer and only in water depths between 10 and 60 m. Four regions in the northern 

Gulf show considerable differences in the occurrence of low-oxygen waters. Low-

oxygen waters are observed almost exclusively in regions subject to large riverine 

influences: the Louisiana and Mississippi-Alabama shelves. Hypoxic waters (oxygen 

concentrations <1.4 mL·L-1) are found only over the Louisiana shelf. No low-oxygen 

water is found over the Florida shelf which has minimum riverine influence. Low-

oxygen water is found at only one station on the Texas shelf; this is during spring when 

the volume of low-salinity water is at maximum. The distributions of low-salinity water 

influenced the different distributions of low-oxygen and hypoxic waters in the four 

regions. Low-oxygen occurrences are clearly related to vertical stratification. Low-

oxygen occurred only in stable water columns with maximum Brunt-Väisälä frequency 

(Nmax) greater than 40 cycles·h-1. When Nmax exceeded 100 cycles·h-1 in summer over the 

Louisiana shelf, oxygen concentrations dropped below 1.4 mL·L-1, and the bottom 

waters became hypoxic. Salinity is more important than temperature in controlling 

vertical stratification. Locations where temperature influence was larger were found in 

summer in water depth greater than 20 m over the Louisiana shelf, along the near shore 

areas of the Mississippi-Alabama shelf west of 87ºW, and in the inner shelf waters of the 

Texas shelf. The extent of oxygen removal at the bottom of these stable water columns is 

reflected in the amount of remineralized silicate. Silicate concentrations are highest 

closest to the Mississippi River Delta and decrease east and west of the Delta. EOF 
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analyses show that more than 65% of the oxygen variance is explained by the first mode. 

The amplitude functions of the first EOF modes of bottom oxygen, water column Brunt-

Väisälä maxima, and bottom silicate are well correlated, indicating that much of the 

variance in bottom oxygen is explained by water column stratification and bottom 

remineralization. 
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CHAPTER I 

INTRODUCTION 

1.1. Background 

Inner shelf waters (10-60 m) of the northern Gulf of Mexico receive large inputs of 

nutrients (e.g., nitrate and silicate) due to fluvial discharge and runoff from the adjacent 

land (Figure 1.1). Because of this input, primary production by phytoplankton can occur 

anytime, even in winter, given sufficient light (Dortch et al., 1992; Lohrenz et al., 1994; 

Al–Abdulkader, 1996). Thus, the inshore waters of the northern Gulf of Mexico support 

large fisheries (Kumpf et al., 1999). One factor that may counteract the high nutrient 

concentrations and light penetration at shallow depths is the large amount of terrigenous 

debris, which may restrict the depth of the photic zone by limiting the amount of light 

that penetrates the water column (Riley, 1937; Lohrenz et al., 1992; Wawrik and Paul, 

2004; Wawrik et al., 2003; Gargett and Marra, 2002). 

The shallow depths, turbulence, and wind mixing of the inner shelves of the 

northern Gulf of Mexico usually result in an ample supply of oxygen in the water 

column. During summer, however, heating of surface waters and regular influx of fresh 

water onto this inner shelf lead to the development of a strong pycnocline (Wiseman et 

al., 1997). This pycnocline forms a barrier that often limits the exchange between the 

oxygen-rich surface waters and the sub-pycnocline waters. The isolation of the sub-

pycnocline waters from exchange with an oxygen source, coupled with high biological 

activity and slow renewal by flushing, may result in depletion of the dissolved oxygen 

content in these bottom waters (Wiseman et al., 1997; Rabalais et al., 1996). 

Hypoxia is a recurring condition in the northern Gulf of Mexico, particularly in the 

inner shelf waters of the Louisiana shelf. It is defined as the condition when dissolved 

oxygen is below 1.4 mL·L-1, or 2 mg·L-1 (Harper et al., 1981; Pavela et al., 1983; 

Leming and Stuntz, 1984; Renaud, 1986). This depletion of oxygen in bottom waters 

may begin in spring and last through summer (Rabalais et al., 1998).  

 

This dissertation follows the style of Gulf of Mexico Science. 
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As noted by Diaz and Rosenberg (1995), hypoxia is a stressful condition for aquatic and 

marine ecosystems. Since the mid 1970s, there has been increasing concern regarding 

the potentially detrimental effects of coastal hypoxia on the marine life of the Louisiana 

shelf ecosystem.  

Scientists have long known that hypoxia is a complex ecological phenomenon that 

results from the interplay of several factors. It generally affects enclosed or semi-

enclosed water bodies, such as lakes, bays, estuaries, and seas (Diaz, 2001). In these 

systems, local conditions, such as bottom topography and the strength and direction of 

river discharge, determine how well mixed the water is and how long riverine water 

remains in the system. Wind strength and direction, especially the influence of major 

storms, also affect the rate of mixing (Wiseman et al., 1992). Human activities, such as 

increasing the freshwater discharge entering the ecosystem, also can reduce the amount 

of vertical mixing (Bratkovich et al., 1994). This reduction in vertical mixing increases 

the chance of hypoxia occurrence.  

Nutrients (primarily nitrogen, phosphorus, and silica) are necessary for plant 

growth. High rates of external loading of these nutrients combined with adequate light 

can result in phytoplankton blooms. Phytoplankton blooms usually result in an intense 

supply of organic matter to bottom waters. The oxidation of this organic material near 

the bottom can lead to hypoxia if bottom waters are slow-moving and the water column 

is poorly mixed (Wiseman et al., 1997; Rabalais et al., 1996; Lohrenz et al., 1997, 1994, 

1990; Qureshi, 1995; Justic et al., 1993; Pokryfki and Randall, 1987; Sklar and Turner, 

1981).  

The nutrients come from point sources such as wastewater treatment plant 

discharges and from non-point sources such as agricultural activities, urban runoff, 

groundwater, and atmospheric deposition (Carey et al., 1999). The amount of pollutants 

generated and the rate at which they reach rivers, estuaries, and coastal waters are 

increased by human activities such as the destruction of wetlands, grasslands, and forests 

in favor of urban or suburban landscapes as well as by many agricultural practices 

(Rabalais et al., 2001; Mitsch et al., 2001; Spieles and Mitsch, 2000). By the end of the 
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1990s, controversy had arisen regarding whether the extent and severity of hypoxia over 

the Louisiana continental shelf were increasing as a result of anthropogenic changes to 

the ecosystem. 

Although the conditions that cause hypoxia are identified, there remains the need for 

better understanding of how interactions among the biological, chemical, and physical 

processes affect dissolved oxygen levels over the inner shelf. Especially important is the 

separation between the relative contributions to hypoxia of natural and anthropogenic 

effects. These contributions must be quantified in order to develop effective 

management guidelines for minimizing the impact from human activities. Using data 

sets obtained over six years of field studies, this research focuses on obtaining 

quantitative relationships between river-derived low-salinity water, vertical stratification, 

bottom nutrient enrichment through remineralization, and occurrences of reduced bottom 

oxygen concentrations over the northern continental shelf of the Gulf of Mexico. 

1.2. Description and Limitations of LATEX-A and NEGOM-COH Data Sets 

The principal data sets used were from research cruises sponsored by the Minerals 

Management Service (MMS) and conducted by Texas A&M University as part of two 

major programs: the Texas-Louisiana Shelf Circulation and Transport Processes Study 

(LATEX-A) and the Northeastern Gulf of Mexico Chemical Oceanography and 

Hydrography Study (NEGOM-COH). The LATEX-A field program was conducted over 

the Texas-Louisiana shelf and a portion of the upper slope from April 1992 through 

November 1994. The NEGOM-COH field program was conducted over the continental 

shelf and upper slope between the Mississippi River Delta and Tampa Bay from 

November 1997 through August 2000. For both programs there were three cruises each 

in spring, summer, and fall; LATEX-A had a tenth cruise in winter 1993. The start and 

end dates of the cruises are given in Table 1.1. 

In this study the 60-m isobath is taken as the outer boundary for the northern Gulf 

shelves because, as will be shown in section 3.2, reduced dissolved oxygen 

concentrations over these shelves were found only in water depths less than 60 m. 
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Table 1.1. Program and cruise identifiers and their corresponding dates. 

Program ID Cruise ID Start date End date 

    
LATEX-A H01 1 May 1992 8 May 1992 

 H02 1 August 1992 8 August 1992 

 H03 4 November 1992 13 November 1992 

 H04 4 February 1993 13 February 1993 

 H05 26 April 1993 10 May 1993 

 H06 26 July 1993 7 August 1993 

 H07 6 November 1993 22 November 1993 

 H08 24 April 1994 7 May 1994 

 H09 27 July 1994 4 August 1994 

 H10 2 November 1994 14 November 1994 

    
NEGOM-COH N1 17 November 1997 26 November 1997 

 N2 5 May 1998 16 May 1998 

 N3 26 July 1998 6 August 1998 

 N4 13 November 1998 24 November 1998 

 N5 16 May 1999 27 May 1999 

 N6 17 August 1999 28 August 1999 

 N7 13 November 1999 22 November 1999 

 N8 16 April 2000 26 April 2000 

 N9 29 July 2000 7 August 2000 
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Stations made in deeper water were excluded. The locations of CTD stations used in this 

study, superimposed on the bathymetry, are shown in Figure 1.2. A brief description of 

the data used is given below. For detailed information on the sampling methods refer to 

reports by Jochens and Nowlin (1994a, 1994b, 1995, 1998, 1999, and 2000). 

Data used in this study include continuous profiles of pressure, temperature, and 

salinity made at all stations on LATEX-A and NEGOM-COH cruises. The vertical 

separation distance of data on these profiles is 0.5 m. Other measurements used were 

discrete samples of nitrate, phosphate, and silicate taken at every station, and samples of 

salinity and dissolved oxygen taken at more than half of the stations. For the periods of 

both programs, daily river discharge rates for the Mississippi River and rivers to its east 

and west were obtained from the U.S. Geological Survey or the U.S. Army Corps of 

Engineers. 

Sampling plans of the LATEX-A and NEGOM-COH programs were designed to 

address issues other than the occurrence of hypoxia. Therefore, station locations and the 

vertical resolution and placement of water samples were not placed ideally to examine 

the features of interest to this study. For both programs, station spacing provided good 

resolution of the cross-isobath gradients of water properties but did not provide good 

along-shelf horizontal resolution for observing the structure of bottom hypoxic waters, 

the Mississippi-Atchafalaya River plumes, or nutrient distribution along the shelf. Water 

samples during the NEGOM-COH program were taken at depths determined by specific 

features or density values, generally at about the 3-m depth, at the chlorophyll a 

maximum as indicated by the downcast fluorescence maximum, at specified density 

surfaces, and about 2 m above the sea floor. During LATEX-A, water samples were 

taken at about the 3-m depth, at the chlorophyll a maximum, above and below the 

chlorophyll a maximum as determined by the fluorescence maximum, in the mixed 

layer, in other interesting features of temperature, salinity, relative fluorescence, or 

percent transmission profiles, and about 2 m above the sea floor. For this study, 

sampling within 1 m from the seafloor would have been ideal because the lowest oxygen  
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concentrations are commonly found close to the sea floor. However, samples within 1 m 

of the bottom were available from few stations. 

1.3. Study Objectives 

Two local processes are major causal factors for low-oxygen concentrations in near-

bottom waters over the northern continental shelves of the Gulf of Mexico. First, local 

stratification is a condition that determines the ease of vertical mixing between the 

oxygen-rich surface waters and the sub-pycnocline waters. Second, remineralization is a 

local process that determines the extent to which the concentrations of dissolved oxygen 

in the sub-pycnocline waters are actually depleted. Note that a decrease in dissolved 

oxygen concentration due to remineralization is usually reflected in an increase with 

depth in nutrient concentrations. Therefore, near-bottom silicate is taken to represent the 

remineralization process. I will show that the distribution of river water causes the 

spatial and temporal variability of stratification and the amount of the remineralized 

silicate near the bottom over the northern Gulf shelves and thereby controls the 

occurrence of bottom water with low-oxygen concentrations. This will be shown through 

achieving of the following objectives: 

1. Identify an upper limit for dissolved oxygen concentration that can be used to 

indicate reduced dissolved oxygen concentration over the northern shelves of the Gulf of 

Mexico. 

2. Identify distinct regions of the northern shelves as determined by the amount of 

freshwater discharge and the likelihood of reduced dissolved oxygen content or hypoxia 

in the bottom waters. 

3. Determine a minimum value of the maximum Brunt-Väisälä frequency present in 

the water column for which low-oxygen bottom waters are found. 

4. Determine the relative importance of salinity and temperature to the vertical 

stratification represented by the Brunt-Väisälä frequency. 

5. Obtain a quantitative relationship between bottom silicate, which is taken to 

represent the remineralization process, and maximum Brunt-Väisälä frequency. 
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6. Examine the space-time relationships between the Brunt-Väisälä maxima in the 

water column, bottom silicate concentrations, and bottom oxygen concentrations. 

1.4. Organization 

Chapter II provides historical background on hypoxia. In particular, regions in the 

northern Gulf of Mexico where hypoxia has been observed are described and the causes 

and effects of hypoxia in the northern Gulf are discussed. Also described in this chapter 

are some additional regions outside the Gulf of Mexico where hypoxia has been 

observed. 

Chapter III presents the study approach. The interactions between regional physical 

forcing and local processes/conditions are described and the effects of the forcing and 

processes on the vertical distribution of dissolved oxygen concentration in the water 

column are examined. The limiting values of dissolved oxygen concentrations used in 

this study are defined. Finally, the delineation of the northern shelves into four distinct 

regions is defined and the rational for the division is presented.  

Chapter IV covers the results from the LATEX-A and NEGOM-COH observations 

by season and region. First, the effect of local stratification on the occurrence of low-

oxygen and hypoxic waters is investigated. Next, the relative importance of salinity and 

temperature to the vertical stratification is determined. Then, the relationship between 

bottom silicate and stratification is examined. The last section of this chapter uses EOF 

analysis to examine the space-time relationship between stratification, bottom silicate, 

and bottom oxygen. 

Chapter V summarizes the results presented in chapter IV and provides conclusions.  
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CHAPTER II  

OBSERVATIONS OF HYPOXIA FROM THE NORTHERN GULF OF MEXICO 

AND REGIONS AROUND THE WORLD 

2.1. Occurrences of Hypoxia in the Northern Gulf of Mexico 

Hypoxia in the northern Gulf of Mexico has been observed in near shore waters at 

depths between 4-5 m to as deep as 60 m (Rabalais et al., 1991, 1999), but most 

frequently in waters shallower than 30 m along the Texas-Louisiana shelf between 

89.5°W and 94°W (Rabalais et al., 1999). Over the Texas-Louisiana shelf, hypoxia is 

found typically in the lower half or two-thirds of the water column. The mid-summer 

areal extent of the hypoxic zone along the Texas-Louisiana shelf varies from year to year 

(Figure 2.1). A noticeable increase in the size of the hypoxic zone occurred after the 

1993 flood of the Mississippi-Atchafalaya Rivers, although this increase has not been 

sustained. The size of the hypoxic zone varied between 4,400 km2 and 22,000 km2 from 

2000 through 2005 (Figure 2.1).  

One reason for the apparent large variability in the size of the hypoxic zone is 

because only one cruise was done each year. When this happens to follow immediately 

after passage of a tropical storm or hurricane, as in 2003 and 2005, then a much smaller 

area of hypoxia will be measured than might otherwise be expected. Also, the amount of 

water coming down the river does affect apparent size of the hypoxic region, as in 2000 

when discharge was low. 

It has been known since 1973 that hypoxia occurs over the Louisiana shelf (Harris et 

al., 1976; Ragan et al., 1978; Turner and Allen, 1982; Boesch and Rabalais, 1991; 

Rabalais et al., 2002), but there is now evidence that hypoxia goes back to as early as the 

1817 (Osterman et al., 2005). On the Texas shelf, occurrences of hypoxic waters are less 

frequent, shorter lived, and more limited in extent than those over the Louisiana shelf 

(Rabalais et al., 1998, 1999; Rabalais 1992). Harper et al. (1981, 1991) first documented 

hypoxia along the Texas coast in June and July of 1979. The hypoxic area extended from 

Freeport, Texas, northeast to Sabine Pass in 10- to 33-m depths. Hypoxia also was 

recorded at this location in June 1982 and 1983 and possibly occurred in June 1984 
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Figure 2.1. Mid-summer areal extent of hypoxic waters in the northwestern Gulf of 

Mexico between 1985 and 2005. In 1988, the hypoxic zone measured 40 
km2. (Data source: Nancy Rabalais, LUMCON). 

(Harper et al., 1991; Kelly et al., 1983). South of Freeport, Texas, between Port 

O’Connor and the Rio Grande, the lowest dissolved oxygen found was 3.2 mg·L-1 (2.24 

mL·L-1) in 18-m water depth in June 1975 (Sackett and Brooks, 1976; Sackett et al., 

1977, 1979). On the inner shelf between Galveston Bay and Matagorda Bay, seasonal 

sampling (4 times per year) revealed scattered low-oxygen concentrations in July 1973 

(Oetking et al., 1974) with one value of 0.14 mL·L-1 in 15.5-m water depth and 1.4 

mL·L-1 in 21-m water depth. Low-oxygen concentrations were not documented at 

shallower or deeper stations. 

Bay systems in the western Gulf of Mexico are known to experience hypoxic 

conditions. For example, hypoxia has been documented in the southern part of Corpus 

Christi Bay, in Texas, every summer since 1988 (Montagna and Kalke, 1992; Martin and 

Montagna, 1995; Ritter and Montagna, 1999, 2001). Hypoxia also has occurred in parts 

of Galveston Bay (Seiler et al., 1991), in Offatts Bayou (Gunter, 1942) and other Texas 

estuaries such as in Matagorda Bay, Aransas Bay, and Laguna Madre (U.S. 

Environmental Protection Agency, 1999). 
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Unlike the Texas-Louisiana shelf, there are few documented occurrences of hypoxia 

over the northeastern Gulf shelf between the Mississippi River Delta and the west 

Florida shelf. Most reported occurrences in this region are in years of high river 

discharge. Rabalais (1992) reported hypoxic waters off Mississippi Sound and Mobile 

Bay following high flow of the Mississippi River in 1991. Waller (1998) also reported 

hypoxia off the Mississippi Sound and Mobile Bay following the 1993 Mississippi River 

flood. A recent report by Jochens et al. (2002) of the NEGOM-COH study found 

occurrences of near-hypoxic bottom water in the inner shelf region adjacent to the 

Mississippi River Delta. Bottom dissolved oxygen concentrations off Chandeleur Sound 

were as low as 1.9 mL·L-1 in summer of 1998 (a year of high Mississippi River 

discharge) and off Chandeleur and Mississippi Sounds were at least as low as 1.5 mL·L-1 

in spring of 1999. 

Estuaries and bays in the northeastern Gulf of Mexico also experience hypoxia. For 

example, Schroeder (1977) reported hypoxic water in Mobile Bay in 1973 following 

flooding by the Mobile River. Martin et al. (1996) noted that Mobile Bay has a history of 

seasonal hypoxia that often results in migration of a high number of fish and 

invertebrates to the shore of the bay in an attempt to escape low dissolved oxygen 

waters. The U.S. Environmental Protection Agency (1999) noted that in Mobile Bay 

low-oxygen waters were commonly observed from June through October and primarily 

resulted because of enhanced vertical stratification. Hypoxia also has been reported in 

Tampa, Sarasota, and Hillsborourgh Bays and Charlotte Harbor, Florida (Martin et al., 

1996; Gray et al., 2002). Brickers et al. (1999) reported that, unlike the east and west 

coasts of the U.S., most estuaries around the Gulf experience periodic hypoxia because 

of their location in a subtropical climate. 

2.2. Causes of Hypoxia in the Northern Gulf of Mexico 

The major source of fresh water and nutrients to coastal waters of the northern Gulf 

of Mexico is the Mississippi-Atchafalaya River system (Dunn, 1996), although other 

rivers can and do make significant local contributions. Direct measurement of dissolved 

inorganic nitrogen indicates that nitrogen inputs to the northwestern Gulf of Mexico via 
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this river system have increased since the turn of the century (Turner and Rabalais, 1991; 

Rabalais et al., 1996), although nitrate loading has declined somewhat since 1983. The 

resultant nutrient loading to the Louisiana shelf has been hypothesized as the source of 

enhanced productivity, which in turn is believed to contribute to the widespread hypoxia 

observed in the sub-pycnocline waters of the Louisiana shelf (Rabalais et al., 2002, 

2003). It has been suggested that reducing nitrate loading in the Mississippi River will 

reduce the extent and intensity of hypoxia off Louisiana (Turner and Rabalais, 1994; 

Diaz and Rosenberg, 1995; Committee on Environment and Natural Resources, 2002; 

Howarth, 2001; Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2001; 

Rabalais et al., 2002, 2003).  

The suggested reduction of nitrogen input as the means of reducing hypoxia is based 

on the eutrophication paradigm—the sequence of processes generally thought to occur in 

aquatic and marine ecosystems that suffer from high rates of external nutrient loading. 

This sequence begins with input of nutrients that stimulates primary production. Much of 

the organic carbon produced by primary production is transferred to the benthos and 

fuels aerobic respiration, utilizing the available dissolved oxygen in the water. The rates 

of water column respiration and bottom respiration can account for the decline in bottom 

water oxygen in the area (e.g., Turner, 2001; Justic, 1997; Lohrenz et al., 1997; Dortch 

et al., 1994; Justic et al., 1993).  

A temporal record of organic carbon accumulation that is about 100 years long was 

derived from sediment cores collected at several sites west of the Mississippi River. It 

indicates that the rates of accumulation of organic carbon are high now but decline back 

through time to a relatively constant level before 1900 (Eadie et al., 1992). The first 

noticeable increase began in the 1920s to 1950s (Sen Gupta et al., 1996). Eadie et al. 

(1994) showed that carbon accumulation in the sediments correlates with the increase in 

nutrient loading in the Mississippi River, thereby contributing to, or directly causing, the 

observed hypoxia in bottom water during summer. Carbon accumulation in the sediment 

was found to be from local production because there has been no evidence of an increase 

of organic carbon or silicate of riverine origin since the 1950s (Turner and Rabalais, 
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1991; Goolsby et al., 1999). Thus, the accumulated organic carbon originated primarily 

from marine phytoplankton. This is supported by stable carbon isotope analysis (Eadie et 

al., 1994; Turner and Rabalais, 1994). Nelson et al. (1994) attributed the increase in 

nutrient loading in Gulf waters to an increased use of fertilizers by the farm industry, 

thus presumably confirming the paradigm. 

Based on these hypotheses, the U.S. federal government initially attributed 

worsening hypoxia to farming practices. It then carried out a number of studies to assess 

whether nitrogen used by farmers in the midwestern United States was carried by the 

Mississippi River into the Gulf where it caused hypoxia. The Mississippi River/Gulf of 

Mexico Watershed Nutrient Task Force (2001) identified at least three causes of 

hypoxia, but, included suggestions for dealing with only one__nutrient loading. The three 

causes identified were: (1) excessive nutrient loading, (2) physical changes in the 

drainage basin, such as channeling the Mississippi River and loss of natural wetland and 

vegetation along the banks as well as wetland conversion throughout the basin, and (3) 

enhanced vertical stratification in the waters of the northern Gulf of Mexico. This focus 

on one cause, rather than consideration of the multiple contributing factors, may not lead 

to a full solution to the problem. Reducing the amount of nitrogen that leaves farm fields 

and is carried to the Gulf can only help decrease the size of the hypoxic zone (Chapman, 

2004, personal communication). Whether, it would be enough to reduce the affected 

region to less than 5000 km2 as suggested in Rabalais et al. (1999) would depend on the 

combined factors contributing to hypoxia. 

Factors that might play important roles in the hypoxia issue and yet have not been 

quantified are the changes in the hydrology, geomorphology, and coastline that are 

always occurring and can affect water quality and ecosystems in coastal water. For 

instance, channelization and leveeing of the Mississippi River result in more rapid transit 

of river water to the Gulf and less opportunity for interaction with wetlands in the 

floodplain where nitrate removal would occur (Carey et al., 1999). Also, the increased 

flow down the Atchafalaya River by 1950 lead to an increase in the amount of nutrients 

the river system delivers to the Louisiana shelf. What is more, many of the original 
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freshwater wetlands and riparian zones in the Mississippi basin that were connected to 

the streams and rivers are now disappearing (Mitsch et al., 2001). According to the U.S 

Fish and Wildlife Service more than 58,500 acres of wetlands are destroyed annually 

and with the loss of these wetlands entire ecosystems that utilized the nutrients are lost 

(Dahl, 2000). In the Mississippi River Delta, the highest rate of wetlands loss coincides 

with the build up of levees that isolate the lower Mississippi River and its tributaries 

from the flood plain ecosystem (Day et al., 2000). 

When water flows through wetland-dominated watersheds there is a reduction in 

nutrient concentration, especially of nitrate (e.g., Lane et al., 1999, 2002; Spieles and 

Mitsch, 2000; Boustany et al., 1997). The use of coastal wetlands and shallow water 

bodies to condition Mississippi River water before it enters the Gulf of Mexico has been 

proposed as a partial solution to help reduce the size of the hypoxic zone (from Coast 

2050: Toward a sustainable coastal Louisiana, 1998; Mitsch et al., 2001). 

There are other indications that nitrogen fertilizer usage is not solely responsible for 

hypoxia occurrences. Nitrogen fertilizer input to the Mississippi-Atchafalaya River 

Basin increased dramatically between 1951 and 1980 and then leveled off, whereas, the 

mean nitrate concentrations in the Mississippi River at St. Francisville, LA, did not 

increase beyond the level of 1951 until 1975, and the increase of 0.5 mg·L-1 that did 

occur has not been maintained in time (Figure 2.2). Thus there is no clear relationship 

between the annual nitrogen fertilizer input to the Mississippi-Atchafalaya River Basin 

and the concentration of nitrate in the Mississippi River at St. Francisville, LA. 

Furthermore, there is a similar pattern between the annual flux of nitrogen from the 

Mississippi River and the surface areal extent of bottom water hypoxia in the Gulf of 

Mexico from 1985 to 1993, but not for the period 1994-1999 (Figure 2.3 shows the 

annual nitrogen flux and for each year also gives the surface areal extent shown in 

Figure 2.1). The mid-summer areal extent of the hypoxic water for the period 1994-1999 

was large, close to the size of the 1993 hypoxic zone, whereas, the annual nitrate flux 

from the Mississippi River Basin was about the level of nitrate flux before 1993. 
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Figure 2.2. Annual nitrogen fertilizer input to the Mississippi-Atchafalaya River Basin 
(1951-1996), and nitrate concentrations in the Mississippi River at St. 
Francisville, LA (1954-1997). Figure adapted from Goolsby et al. (1999). 

 

Figure 2.3. Annual flux of nitrate from the Mississippi River Basin to the Gulf of 
Mexico. Figure adapted from Goolsby and Battaglin (2000). The numbers 
above the bars represent the area of hypoxia measured that year, in 102 
km2. ND refers to No Data. 
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Some scientists are concerned that the current eutrophication paradigm is 

oversimplified. Rowe and Chapman (2002) addressed weaknesses in the paradigm. They 

proposed that vertical stratification imposed by fresh water input, not nitrate input might 

be at least as important a cause of hypoxia in the northern Gulf of Mexico. They noted 

that Wiseman et al. (1997) showed that hypoxia over the Louisiana continental shelf 

correlates as well with the strength of the density gradient as it does with nitrate. River 

discharge adds fresher, less dense water to the surface, increasing the stratification of the 

water column and thus reducing vertical exchange of water between the less dense, 

oxygenated surface water and the more saline deeper water. So, more freshwater flow to 

the region leads to stronger vertical density gradients and increases the likelihood of 

hypoxia. 

Carey et al. (1999) pointed out that long-term stream flow records at Vicksburg, 

Mississippi, and at Simmesport, Louisiana, show that the annual average flow in the 

Mississippi River and Atchafalaya River, respectively, was greater at the end of the 20th 

century than in most years in that century. This suggests that long-term variations in 

Mississippi-Atachafalaya River discharge also should be considered. Rowe and 

Chapman (2002) observed that the 1990s were much wetter as a decade than the long-

term mean and that in most years of the decade there were subsidiary peaks in the flow 

after the main spring runoff that might have helped maintain the density structure. What 

is more, Osterman et al. (2005) found that the early (1817-1910) events of hypoxia over 

the Louisiana shelf were related to above-normal discharge rates of the Mississippi 

River. Clearly, changes in river discharge rates must be considered as affecting hypoxic-

favorable conditions.  

Slow replacement over time of waters below the pycnocline also is required for 

hypoxia to occur (Rowe and Chapman, 2002). Murray (1998) reported that off the 

Mississippi River Delta current velocities in the sub-pycnocline layer are only about 1-3 

cm·s-1 in summer. As suggested by Rowe and Chapman (2002), these very low velocities 

enhance the probability of occurrence of hypoxia in this region. In general, during 

summer, salty water is transported northward and eastward along Texas and Louisiana 
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by a wind-driven flow regime directed from Mexico toward the Mississippi River Delta 

(Li et al., 1997). (This direction is referred to as upcoast because it is opposite to the 

direction a shelf wave would propagate, called downcoast.) Water discharged from the 

Mississippi-Atchafalaya River system is held over the Louisiana shelf in summer rather 

than being transported out of the area as in other seasons when there is downcoast flow. 

As low-salinity water is pooled over the Louisiana shelf, the stratification of the water 

column increases. This stratification facilitates the formation of hypoxic bottom waters 

by restricting the supply of dissolved oxygen from surface to sub-pycnocline waters. The 

summer upcoast flow and the continuous input of fresh water to the system provide 

additional time for respiration processes in both water and sediments to reduce the 

oxygen content of the water column and thus enhance hypoxia occurrence. 

Unlike the northwestern Gulf of Mexico, observations made in the northeastern Gulf 

of Mexico during 1997-2000 (NEGOM-COH program) showed that the circulation over 

the shelf causes low-salinity water from the Mississippi and other rivers to be distributed 

over the inner shelf mainly in spring and not in summer (Jochens et al., 2002). In 

summer, most of the low-salinity discharge of the Mississippi River is advected eastward 

along the outer continental shelf and slope by off-shelf circulation features such 

anticyclones and cyclones (Belabbassi et al., 2005). Cases of low-oxygen water near the 

bottom at some shallow stations during the NEGOM-COH program were more prevalent 

on spring cruises than on summer cruises (Jochens et al., 2002). 

Other processes important in the formation of hypoxic conditions are those 

responsible for the removal of dissolved oxygen from the water column, particularly 

near the bottom. Such processes are water column respiration, bottom water nitrification, 

and oxygen consumption by benthic communities. The rates for these processes are not 

known accurately. For example, microbial respiration of terrestrial particulates (Trefrey 

et al., 1994) and dissolved organic material (Lopez-Veneroni and Cifuentes, 1994) 

introduced in high concentration by rivers may be important (Carey et al., 1999), but 

they have not yet been quantified. Biogenic terrestrial detritus now is believed to be 

more reactive than thought previously (Amon and Benner, 1996; Sun et al., 1997; Mayer 
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et al., 1998). Sulfide, Fe++, Mn++, NH4
+ (Morse and Rowe, 1999; Rowe et al., 2002), and 

dissolved organic matter react with oxygen and contribute to its reduction, but the rates 

of these processes have not been estimated yet (Rowe et al., unpublished data). Rabalais 

and Turner (2001) pointed out that because the 1993 flood brought a large amount of 

organic material to the benthic systems of the Louisiana shelf and adjacent regions, it 

will take many years for this material to be oxidized. 

Rowe and Chapman (2002) also noted that photosynthesis rates in the Mississippi 

River plume are relatively modest when compared with coastal environments in many 

other areas of the world (e.g., Walsh et al., 1989). The Gulf of Mexico is nitrate limited. 

Generally, the bulk of the nitrate in the Gulf is found below the euphotic zone and hence 

has little effect on productivity. Moreover, there is little evidence that oxygen demand on 

the seafloor or in the water column is exceptionally high below the plume. The 

respiration rates are low where they might be expected to be high, if the simple paradigm 

of hypoxia holds (Rowe and Chapman, 2002). 

To summarize, from the examples given above nitrogen loading is not the sole cause 

of hypoxia in the Gulf of Mexico. There is convincing evidence that other physical and 

biogeochemical processes are important, perhaps equally so, for the occurrence of 

hypoxia. The combination of all likely causal factors must be assessed before 

conclusions can be drawn as to the effectiveness of management actions. 

2.3. Effect of Nutrient Loading and Hypoxia in the Northern Gulf of Mexico 

Nutrients in the Mississippi-Atchafalaya River system and other rivers help 

maintain the fisheries of the Gulf of Mexico. Primary production over the inner shelf of 

the Gulf of Mexico is nitrogen limited (Sklar and Turner, 1981), and nutrient inputs by 

rivers far exceed the capacity of the coastal oceanic system to produce nutrients (Caddy, 

1993). This is important because the continued input of new nitrogen determines the 

total capacity of the system to produce sustainable fish harvests (Caddy, 1993). The 

northern Gulf of Mexico supports one of the most productive fisheries in the world. 

According to the National Marine Fisheries Service (NMFS: http://www.st.nmfs.gov 

/st1/commercial/landings/annual_landings.html), in 2004 the Gulf commercial landing 
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for all species had an annual dockside value of about $670 million. Of this amount, 41% 

was produced by Louisiana, 25% by Texas, 12% by Mississippi-Alabama, and 22% by 

west Florida. 

However, several studies suggest that nutrient enrichment over long periods leads to 

broad-scale degradation of the marine environment (e.g., Turner and Rabalais, 1991; 

Eadie et al., 1994; and Nelsen et al., 1994). Initially the increased fisheries production 

may offset any detrimental effects of hypoxia. But as eutrophication increases and 

hypoxia expands in duration and area, the fisheries production base is affected and 

declines (Diaz and Rosenberg, 1995). 

Over the northern Gulf of Mexico, several studies examined the effect of hypoxia on 

living organisms. Gaston (1985) found that during the 1981 summer hypoxia event on 

the inner shelf off Cameron, Louisiana, the populations of most species of macrobenthos 

were dramatically reduced. Gaston (1985) further added that shrimp fishers in Cameron, 

Louisiana, pulled their nets as close to the beach as possible during the periods of 

summer hypoxia probably because hypoxia forced the shrimp and fish inshore to the 

better-oxygenated waters. While mobile species may escape hypoxic water, immobile 

benthic species such as tube dwellers and some surface feeders are severely affected 

(Gaston, 1985). Rabalais and Harper (1992) documented a decline in species abundance 

and species richness as water conditions progressed from oxygenated in the spring to 

hypoxic in the summer. Cruz-Kaegi and Rowe (1992) attributed the low benthic 

macrofauna biomass to high sediment loading from the Mississippi River system and 

seasonal hypoxia. Over the Texas shelf, Harper et al. (1981) reported a decrease in 

species diversity and abundance associated with the 1979 summer hypoxia (early June-

August) off Freeport. At this same location, Pavela et al. (1983) reported that mobile 

shrimp and other bottom fish moved into areas of higher oxygen concentrations to avoid 

areas of hypoxia. Renaud (1986) demonstrated under laboratory conditions that white 

and brown shrimp avoided intruding waters with dissolved oxygen concentrations less 

than 1.05 mL·L-1 and 1.4 mL·L-1, respectively. Zimmerman et al. (1995) examined 

shrimp catch per unit fishing effort over the Louisiana shelf and found no relationship 
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with percent of the area that is hypoxic. Note that fishing effort is generally less in 

periods of widespread hypoxia for unrelated reasons. In Mobile Bay, Alabama, Loesch 

(1960) and May (1973) explained that demersal fish and crustaceans escape hypoxic 

waters by moving inshore into shallow water during summer. 

Most of the research examining the effects of eutrophication and hypoxia in the 

northern Gulf of Mexico has emphasized the loss of marine biota in general. However, 

Dagg (1995) proposed that increased primary production over the northern Gulf might 

be increasing secondary production of commercially important fishery species. He 

suggested that any proposed decrease in riverine nutrient loading to alleviate hypoxia 

should be weighed against the possible effects this decrease may have on species at 

higher trophic levels.  

2.4. Similarities and Differences Between the Gulf of Mexico and Other Regions 

Where Hypoxia Is Observed 

As for regions close to the Mississippi River Delta, many other areas near the 

mouths of the world's major river systems have experienced hypoxic or anoxic events 

(Degens et al., 1991; Diaz and Rosenberg, 1995; Glausiusz, 2000; Joyce, 2000; Diaz, 

1997, 2001). The Rhine River in the North Sea and the Pearl River in China are two 

notable examples. Gray et al. (2002) listed many bays (e.g., Kiel, Germany; Vilaine, 

France; Tokyo, Japan; Chesapeake, USA) and estuaries (e.g., Port Hacking, Australia; 

Pamlico, Rappahannock, and York Rivers, USA) around the world with observed 

hypoxia or anoxia and gave references for each. So, in this respect, the northern Gulf of 

Mexico is not unique. 

The decline in dissolved oxygen concentrations in many of these ecosystems has 

been attributed mainly to an increase in nutrient loading, similar to the attribution of 

hypoxia over the Louisiana shelf. The increase in nutrient loading in many of these 

systems was directly linked to increased human population and industrialization along 

coastal river drainages, modern agriculture, and loss of inland wetlands (Earles, 2000). 

Mass mortality of fish and benthic species and frequent loss of biodiversity often were 

reported in ecosystems that are moderately or severely stressed by hypoxia (Diaz, 2001). 
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The economic effects related to hypoxia in these systems were severe and led to 

collapses or declines in fisheries. Interestingly, this is not the case for the Gulf of 

Mexico. Diaz (2001) compared the Louisiana continental shelf to three other hypoxic 

regions—mainly the Kattegat, the Black Sea, and the Baltic Sea. He found that the 

northwestern Gulf of Mexico is the only system in which there is no documented decline 

in fisheries. 

Many countries where the effects of hypoxia are clear have reduced nutrient input to 

their watersheds as a potential solution to the problem. Often improvements were 

observed in systems regulated for years (or sometimes for decades), but hypoxia was not 

completely eliminated (Charlton et al., 1993; DiToro and Blumberg, 1990; Jansson and 

Dahlberg, 1999; Mee and Topping, 1999). 

Hypoxia in many regions around the world results from factors other than high 

anthropogenic nutrient input. For example, in the Rappahannock and York Rivers 

estuaries, tidal mixing and/or proximity to the hypoxic waters of Chesapeake Bay 

control the periodicity of hypoxia. In the York Bight, a study by Walsh (1988) showed 

that hypoxic events on the shelf were attributable to unusual hydrographic and/or 

climatic events, not to an increased anthropogenic input. Gray et al. (2002) cited as 

causes such events as "a warm winter with large terrestrial runoff, a low frequency of 

spring storm events resulting in a deep spring thermocline, persistent southerly summer 

winds, a large autochthonous carbon load, and low grazing pressure." What is more, 

Stoddard and Walsh (1986) showed that anoxic events might occur without any 

allochthonous input of organic carbon and that climatic conditions were extremely 

important in driving the event in the York Bight. 

Another example demonstrating that factors other than the addition of nutrients 

and/or organic matter from anthropogenic sources can drive hypoxia is found in studies 

of the Agulhas Bank, south of Africa. In that region during summer, hypoxia develops 

even without fresh water input from the few rivers along the southern coast of South 

Africa. Summer solar heating and very low water movement result in the establishment 
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of a strong pycnocline that help the development of hypoxic conditions (Chapman and 

Shannon, 1987; Carter et al., 1987). 

Flooding associated with heavy nutrient and organic material loading also may 

cause a decline in dissolved oxygen concentrations. In North Carolina when the rains of 

Hurricane Floyd caused extensive flooding in September 1999, a heavy load of nutrients 

from dead animals, flooded animal waste ponds, and numerous other sources reached the 

sounds that lie between the coast and the outer banks, and oxygen levels in the water 

plummeted (Paerl et al., 2001). 

In Europe, the lack of recent flushing of the deep basins of the Baltic Sea, not 

coastal eutrophication, has been identified as a primary cause for the observed anoxic 

conditions (Conley et al., 2002). 

Hypoxia occurs naturally over millions of square miles of the world ocean in 

regions of major upwelling events (Demaison and Moore, 1980). In these areas, hypoxia 

or anoxia is not driven by anthropogenic changes but by mesoscale variability changes 

often driven by the wind field. 

To conclude, hypoxia or anoxia occurrences result from the interplay of a variety of 

factors, including weather (e.g., frontal passages, winds, rainfall, temperature), 

oceanographic conditions (e.g., stratified or mixed areas, areas with a sill or without, 

tidal mixing, currents, waves), and anthropogenic forcing (e.g., sewage, agricultural and 

forestry runoff). Marine ecosystems encompass a variety of systems such that there is no 

simple model of oxygen depletion that can fit all these forms of variability. It is thus 

important that coastal zone managers take into consideration all the factors that might be 

important in causing hypoxia in their particular region. 
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CHAPTER III 

THE STUDY APPROACH 

Local conditions and processes that are responsible for the observed hypoxia in 

coastal ecosystems are but a reflection of the regional physical processes integrated over 

some period prior to the present conditions. In this chapter I review briefly relationships 

between regional physical forcing (such as wind, river discharge, heating, and currents) 

and the local conditions and processes responsible for low-oxygen concentrations in near-

bottom waters. Also, in this chapter I define a limiting value of dissolved oxygen 

concentration used in the remainder of the dissertation. Finally, I discuss the rationale, 

based on fresh water discharge, for dividing the study area into four separate regions. 

3.1. Effects of Regional Physical Forcing on Local Processes/Conditions 

Local processes determine the vertical distribution of dissolved oxygen in the water 

column (Figure 3.1). These processes may be physical (such as air-sea interactions, 

vertical mixing, advection, and diffusion) or biogeochemical (such as respiration, 

photosynthesis, remineralization, denitrification, and nitrification). Both physical and 

biogeochemical processes add or remove oxygen in different parts of the water column. 

We may consider an upper layer that extends from the surface to just above the 

pycnocline and a lower layer that includes the main pycnocline and the rest of the water 

column. 

The effects of the local biological processes in the upper layer are superimposed on 

those of local physical processes. In the absence of biology, oxygen in the upper layer is 

principally determined by gas exchange with the atmosphere. At the air-sea interface, 

oxygen concentrations are affected by different parameters such as: wind speed, air and 

sea temperatures, salinity, surface films, and wave action and bubble injection rates (e.g., 

Pilson, 1998). Surface waters are normally nearly saturated with dissolved oxygen, the 

solubility being mainly dependent on temperature and salinity. These well-oxygenated 

surface waters are vertically mixed through the surface layer as a result of winds. 

Photosynthesis, if rapid enough (as in the case of phytoplankton blooms), may 

supersaturate the upper layer with oxygen production. Storms also can result in 

supersaturation due to bubble injection (e.g., Broecker and Peng, 1982). Oxygen removal  
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Figure 3.1. Sources (arrows into boxes) and sinks (arrows out of boxes) of dissolved 
oxygen in inner shelf waters. 
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in this layer by respiration, remineralization and nitrification has little effect on local 

oxygen concentrations because supply far exceeds removal. 

The upper layer supplies oxygen to the lower layer mainly through vertical diapycnal 

mixing (Figure 3.1). Vertical transport of dissolved oxygen through molecular diffusion 

is negligible. When the lower layer receives sufficient light, plants can carry on 

photosynthesis and hence locally add oxygen to this layer. The water in this layer is 

usually less than saturated with oxygen because it is not in direct contact with the 

atmosphere and local processes of respiration, remineralization, and bottom nitrification 

remove oxygen faster than the replenishment needed to maintain saturation. Also, in 

summer, an increase in the water layer temperature results in a decrease in oxygen 

solubility which means oxygen levels in even the lower layer may be lower than in other 

seasons, so that additional oxygen removal in this layer may drive the system hypoxic 

more easily than in other seasons. 

Note that local physical processes associated with advection, downwelling, and 

upwelling, import and export dissolved oxygen in both layers. In some cases, these water 

movements may offset the results of the local biological processes. For example, over the 

inner shelf downwelling events transport oxygen-rich surface water to depths increasing 

oxygen concentrations in the lower layer. Horizontal advection of upwelled waters can 

transport low-oxygen waters into an area from neighboring regions and decrease the in 

situ oxygen concentration. Rabalais et al. (2001) cited an example of hypoxic water 

masses being forced onto barrier island shores by upwelling favorable winds and causing 

massive fish kills. 

The extent to which the concentrations of oxygen in the lower layer actually are 

depleted is determined by the regional physical factors that influence the local physical 

and biological processes. I describe first possible influences of regional processes, such 

as wind, heating, and river discharge, on the local physical conditions and processes, 

mainly vertical mixing and stratification. Then, I describe the possible influence of river 

discharge on local biological processes. 

In the northern Gulf of Mexico, the extent to which there is vertical mixing between 

the upper and the lower layer depends directly on the regional wind and indirectly on 

solar heating and freshening of surface waters by river runoff. 

A
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Heating and/or freshening of surface water result in a decrease in the density of the 

upper layer relative to that of the lower layer. This layering of the water column, 

commonly known as stratification, is a local condition that acts to restrict or minimize 

vertical mixing (Garrison, 2004). In well-stratified water columns, for example, vertical 

mixing is reduced considerably because the pycnocline restricts such mixing. Oxygen 

supply to the lower layer is then limited, and low values of dissolved oxygen may occur 

if the rate of removal exceeds the rate of supply. In extreme cases, where the water has 

been stagnant for a prolonged period of time, dissolved oxygen may be completely 

depleted (anoxia) and replaced by hydrogen sulfide. 

Replenishment of the oxygen consumed in the lower layer would be possible if the 

frictional effect of the wind acts to increase vertical mixing and thereby reduces the 

strength of stratification. A strong wind induces strong vertical mixing that destroys 

stratification and increases mixing of deep water with well-oxygenated surface waters 

(Kumpf et al., 1999). The lower layer is then enriched in oxygen. In the case of weak 

winds, mixing is limited to the upper layer and, hence, does not enhance oxygen levels in 

the lower layer. In summary, calmer seas and warmer or fresher surface waters result in a 

well-stratified water column. A well-stratified water column restricts the exchange of 

dissolved oxygen between the upper and lower layer. When the rate of oxygen utilization 

in the lower layer exceeds the rate of oxygen replenishment, dissolved oxygen 

concentrations may drop below 1.4 mL·L-1, the commonly accepted criteria for hypoxia. 

In the northern Gulf of Mexico, the rates of local biological processes are principally 

influenced by rivers that introduce high nutrient concentrations. When light is sufficient, 

elevated levels of nutrients stimulate photosynthesis and cause relatively high primary 

production that in turn leads to high secondary and tertiary production. In aquatic 

ecosystems in which phytoplankton production accounts for most of the organic input to 

the bottom (Wakeham, and Lee, 1993), the accumulation of ungrazed organic material is 

a condition for oxygen depletion (Officer and Ryther, 1977). That is, once phytoplankton 

production exceeds the grazing capacity of zooplankton the resulting excess of 

phytoplankton biomass sets the stages for enhanced microbial decomposition and oxygen 

depletion. 
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Nitrification, a local process that oxidizes ammonium (NH4) into nitrite (NO2) and 

then nitrate (NO3), water column respiration by animals and microorganisms, and 

sediment community oxygen consumption further deplete oxygen in the lower layer. 

What is more, in areas of close proximity to river mouths or openings of estuaries, river-

derived allochtonous organic matter results in increased respiration in the sub-pycnocline 

waters, especially if the organic matter is readily available for microbial oxidation (Carey 

et al., 1999). Sediment from the Mississippi River is thought to include important 

heterotrophic substrates which, upon consumption, may result in low-oxygen conditions 

near the bottom; however this usually occurs in the proximity of the river mouth 

(Gallaway, 1981). All these factors might lead to hypoxia, or in extreme cases to anoxia, 

if stratification inhibits vertical mixing as major source of oxygen renewal. 

From the aforementioned discussion I conclude that there are two conditions for 

hypoxia occurrences: (1) strong stratification sustained by the introduction of low-salinity 

water, reduced wind stress, and heating of surface waters, and (2) oxygen removal in the 

lower layer through remineralization and nitrification. The first condition prevents supply 

of oxygen to the bottom. The second results in extensive use of the available dissolved 

oxygen. 

3.2. Limiting Values of Dissolved Oxygen Concentrations Used in This Study 

For this study, I sought a value of dissolved oxygen concentration that separates 

waters with depths less than 60 m from waters over the northern Gulf shelves having 

commonly occurring oxygen concentrations. I examined the distribution of dissolved 

oxygen concentrations versus salinity on all LATEX-A and NEGOM-COH cruises 

(Figure 3.2). 

The range of observed dissolved oxygen is 0.1 to 8.3 mL·L-1. About 98% of these 

values fall within the more limited range of 2.4 to 5.8 mL·L-1. For all samples collected in 

water depths greater than 60 m, the oxygen values fall within the latter range. Dissolved 

oxygen concentrations less than or equal to 2.4 mL·L-1 are found exclusively in water 

depths less than or equal to 60 m. Therefore, I define water with dissolved oxygen 

concentrations less than 2.4 mL·L-1 as low-oxygen water in contrast to the commonly 

occurring oxygen concentrations over the Gulf of Mexico continental shelf. I will 

continue to use the 1.4 mL·L-1 limit to refer to hypoxic waters. 
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Figure 3.2. Dissolved oxygen concentrations versus salinity on all NEGOM-COH and 
LATEX-A cruises. z refers to depth of the water column. 
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3.3. Delineation of Study Subregions 

The northern shelves of the Gulf of Mexico are naturally divided by the Mississippi 

River Delta (Figure 3.3). For this study the eastern continental shelf extends from the 

eastern side of the Mississippi River Delta to the west Florida shelf off Tampa Bay and 

the western shelf extends from the western side of the Mississippi Delta to the Rio 

Grande River. The principal area of interest will be the shelf with water depths of 10 to 

60 m (Figure 3.3). 

The eastern shelf of the northern Gulf of Mexico is relatively narrow in width (60–

120 km) east of the Chandeleur Islands to Cape San Blas, where it abruptly widens to 

about 200 km in the Big Bend area of the west Florida shelf. On the other side of the 

Mississippi Delta, the western shelf is relatively wide off Cameron to Galveston (85–200 

km) and then narrows to 90 km at the Rio Grande River (Figure 3.3). 

Numerous rivers discharge onto the continental shelf of the northern Gulf of Mexico. 

Normally the majority of fresh water input to both the eastern and western shelves is 

from the Mississippi River. It is speculated that roughly 35 to 50% of the Mississippi 

discharge flows south or east from the Mississippi Delta (Dinnel and Wiseman, 1986; 

Etter et al., 2004). 

On the western shelf, both the Mississippi and Atchafalaya rivers discharge onto the 

Louisiana shelf. The Atchafalaya River is the second major source of fresh water input 

with discharge rates maintained at approximately one third those of the Mississippi River 

(Table 3.1). 

The Alabama and Tombigbee rivers, which discharge through Mobile Bay onto the 

eastern shelf, have the largest discharge next to the Mississippi-Atchafalaya River (Table 

3.1). Rivers west of Mobile Bay include the Pascagoula and Pearl rivers, with discharge 

rates of less than or equal to 30% of the Alabama and Tombigbee rivers. To the east of 

Mobile Bay, the Apalachicola River has the largest discharge, but is less than 85% of that 

of the Tombigbee River. Discharges rates decrease further to the east, e.g., the mean 

discharge of the Suwannee River is approximately one quarter that of the Apalachicola 

River. These river discharges contribute nutrients to waters over the inner shelf. In 

addition they contribute to buoyancy forcing of the coastal waters. The higher discharge 

rates in the west and lower rates in the east result in a large decrease from west to east in 
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Table 3.1. Annual average discharge rates from principal rivers east and west of the 
Mississippi Delta that flow onto Florida, Alabama, Mississippi, Louisiana 
or Texas shelves. Mississippi and Atchafalaya discharges are shown in 
bold. Data provided by the U.S. Geological survey and the U.S. Army 
Corps of Engineers (Courtesy of Matthew Howard, Texas A&M 
University). 

River Discharge rates m3·s-1 Record length (mm/dd/yyyy) 

Suwannee1 194 07/01/1931 to 09/30/2002 

Apalachicola2 711 10/01/1977 to 09/30/2002 

Tombigbee3 842 08/01/1928 to 09/30/2001 

Alabama4 926 10/01/1975 to 09/30/2001 

Pascagoula5 169 10/01/93 to 09/30/2002 

Pearl6 191 10/01/1938 to 09/30/2002 

Mississippi7 13,698 01/01/1930 to 05/12/2004 

Atchafalaya8 5,789 01/01/1935 to 05/12/2004 

Calcasieu9 74 09/01/1922 to 09/30/2002 

Sabine10 238 10/01/1924 to 09/30/2003 

Neches11 180 08/01/1904 to 09/30/2003 

Trinity12 223 05/01/1924 to 09/30/2003 

San Jacinto13 19 05/01/1984 to 09/30/2003 

Brazos14 229 04/01/1967 to 09/30/2003 

San Bernard15 15 05/01/1954 to 09/30/2002 

Colorado16 74 05/01/1948 to 09/30/2002 

Lavaca17 11 09/01/1938 to 09/30/2002 

Guadalupe18 55 12/01/1934 to 09/30/2002 

Mission19 4 07/01/1939 to 09/30/2002 

San Antonio20 21 07/01/1924 to 09/30/2002 

Aransas21 1 04/01/1964 to 09/30/2002 

Nueces22 21 09/01/1939 to 09/30/2002 
Note: Use the superscript number next to the river name to find the river location in Figure 3.3. 
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buoyancy input to the shelf. 

The Calcasieu is a significant river that enters the Gulf over the Louisiana shelf, but 

its discharge rate is small. West of the Calcasieu, there are 13 other significant rivers 

entering the Gulf from Texas. The Sabine, Neches, Trinity, and Brazos rivers have the 

largest discharge, but each account for only about 3% or 4% that of the Atchafalaya 

River (Table 3..1). Other rivers, such as the San Jacinto, Colorado, Guadalupe, 

Calcasieu, San Antonio, San Bernard, Lavaca, Nueces, Mission, and Aransas, have even 

smaller discharge rates, which each account about 1% or less than that of the 

Atchafalaya River. 

It should be remembered that the discharge rates given in Table 3.1 are long-term 

means. During a specific time period the relative discharges of these rivers may vary 

widely. For example, there have been periods when the San Jacinto river discharge 

exceeded that of the Mississippi River (Nowlin et al., 1998b). 

Based on the rates of river discharge and the morphology of the shelves, I 

subdivided the northern Gulf of Mexico into 4 regions (Figure 3.3). The eastern shelf 

may logically be divided into two regions at Cape San Blas, which separates a narrow 

shelf dominated by topographic influences and river discharge (Region 2: Mississippi-

Alabama shelf) from a wide shelf with little discharge (Region 1: West Florida shelf). 

Similarly, the western shelf can be divided at 94.5°W into two regions: Region 3 

(Louisiana shelf, east of 94.5°W) with a wide shelf dominated by river discharge and 

Region 4 (Texas shelf, west of 94.5°W) having a narrow shelf with minimum river 

discharge. Note that the regions are numbered from east to west. 

There are other criteria that support these subdivisions. On the Texas-Louisiana 

shelf, hypoxic water occurs almost exclusively in Region 3. Additionally in summer, due 

to the upcoast or eastward currents, the 34 isohaline is almost perpendicular to the 

bathymetry at 94.5°W (see Figure 4.9). On the eastern shelf, near-hypoxic waters were 

found only in Region 2, a region of high river discharge. Circulation patterns and the rate 

of river discharge were found to be important for hypoxia occurrences, as discussed in 

Chapter IV.  
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CHAPTER IV 

DESCRIPTION OF CAUSAL PROCESSES FROM THE LATEX-A AND 

NEGOM-COH OBSERVATIONS 

Mapping of bottom dissolved oxygen concentrations over the northern Gulf of 

Mexico revealed that occurrences of bottom water with low-oxygen concentrations 

during LATEX-A and NEGOM-COH cruises were found almost exclusively in Regions 

2 and 3 which were under large influence from rivers (Figure 4.1). Hypoxic waters were 

observed only in Region 3. Region 1 with minimum river discharge had no occurrences 

of low-oxygen or hypoxic water. Region 4, which is seasonally freshened by the 

advection of low-salinity water from Region 3 due to the downcoast circulation along the 

coast during the non-summer months, had only one station that was low in oxygen 

concentration near the bottom. Table 4.1 gives a detail description of the dates, locations, 

depths, and values of these low-oxygen and hypoxic water occurrences. 

In Region 3, low-oxygen waters occupied bottom layers up to 15-m thick and were 

found in waters with depths between 10 and 51.5 m. In Region 2, low-oxygen waters 

were found in waters with depths between 14 and 29 m where they occupied the bottom 

5-m or less of the water column. Thus, the occurrence of low-oxygen water was more 

widespread and occupied more volume in Region 3 than Region 2. For both regions there 

was no clear pattern between the vertical extent of low-oxygen waters, time, location, and 

the station water depth, except that most occurrences were in July or August. In Region 4, 

the only station with low-oxygen water was found in 29.3 m water depth and occupied a 

bottom layer less than 4 m thick. Region 1 had no occurrences of low-oxygen water. So, 

the occurrences of low-oxygen waters differ in the four regions. This leads to the 

question, "Do differences in the distribution of low-salinity water over the northern Gulf 

cause the regional differences in the local vertical stratification and remineralization that 

are responsible for low-oxygen occurrences?"  

To investigate the causal processes for low-oxygen observations in bottom waters, I 

first examined the effect of local vertical stratification on low-oxygen and hypoxic water 

occurrences over the four regions. The results are given in Section 4.1. Next, in Section 

4.2, I show the relative importance of temperature and salinity to the vertical water 

stratification. In Section 4.3 I compare vertical stratification with bottom silicate 
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Table 4.1. Bottles with dissolved oxygen concentrations less than 2.4 mL·L-1 at water 
depths less than 60 m. 

Program Cruise Station Date 
(dd/mm/yyyy)

Longitude
ºW 

Latitude
ºN 

Water 
depth 
(m) 

Niskin 
depth 
(m) 

Oxygen 
Conc. 

(mL·L-1) 

Depth from 
the bottom 

(m) 
          
LATEX H01 32 03/05/1992 -92.1 29 16 13.4 2.24 2.6 
  71 05/05/1992 -90.5 28.8 17 16.1 1.69 0.9 
  73 05/05/1992 -90.5 28.9 13 8.9 2.08 4.1 
       11.9 1.69 1.1 
LATEX H02 30 03/08/1992 -92.1 29.1 10.3 7.2 2.1 3.1 
       8.3 1.96 2 
  32 03/08/1992 -92.1 29.0 16.2 12.1 2.08 4.1 
       14.7 1.62 1.5 
  34 03/08/1992 -92 28.9 21.5 12.2 2.19 9.3 
       15.9 1.69 5.6 
       19.6 1.6 1.9 
  36 03/08/1992 -92 28.8 25.8 17.9 2.27 7.9 
  71 05/08/1992 -90.5 28.8 18 13.2 1.29 4.8 
       17 1.34 1 
  73 05/08/1992 -90.5 28.9 13.7 9.7 1.01 4 
       12.4 0.48 1.3 
  116 08/08/1992 -93 29.3 17.5 15.7 1.89 1.8 
  118 08/08/1992 -93 29.5 13 7.2 2.36 5.8 
       9.2 1.58 3.8 
       11.2 0.92 1.8 
LATEX H05 18 28/04/1993 -90.5 28.8 18 15.8 1.99 2.2 
  20 28/04/1993 -90.5 28.7 17.4 12.5 1.68 4.9 
  21 28/04/1993 -90.5 28.6 20.5 8.5 2.16 12 
       10.6 0.64 9.9 
       14 0.53 6.5 
       18.3 0.67 2.2 
  51 29/04/1993 -92 28.6 39.8 23.7 2.01 16.1 
       36.6 2.17 3.2 
  52 29/04/1993 -92.2 28.8 31.5 16.2 1.87 15.3 
       18.9 1.4 12.6 
       21 1.24 10.5 
       28.9 1.25 2.6 
  53 29/04/1993 -92 28.8 26.6 14.2 1.83 12.4 
       19.4 1.27 7.2 
       23.6 1.24 3 
  178 08/05/1993 -97.1 27.2 29.3 26.1 1.78 3.2 
          
LATEX H06 17 27/07/1993 -91.9 28.5 51.5 41.3 2.25 10.2 
       41.3 2.24 10.2 
       49.9 1.71 1.6 
  19 27/07/1993 -91.4 28.4 50.6 48.7 1.92 1.9 
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Table 4.1. Continued 

Program Cruise Station Date 
(dd/mm/yyyy)

Longitude
ºW 

Latitude
ºN 

Water 
depth 
(m) 

Niskin 
depth 
(m) 

Oxygen 
Conc. 

(mL·L-1) 

Depth from 
the bottom 

(m) 
          
LATEX H06 24 28/07/1993 -90.5 28.9 13.9 8.9 2.4 5 
       11.7 0.82 2.2 
  26 28/07/1993 -90.5 28.8 18.5 5.8 1.52 12.7 
       14.1 0.69 4.4 
       16.9 0.47 1.6 
  28 28/07/1993 -90.5 28.7 18.1 6.1 1.23 12 
       9.1 1.32 9 
       14.1 0.78 4 
       16.6 1.14 1.5 
  29 28/07/1993 -90.5 28.6 22 10.5 1.51 11.5 
       20.1 1.03 1.9 
  30 28/07/1993 -90.5 28.5 36.4 21.3 2.11 15.1 
       27.1 1.23 9.3 
       34.7 1.25 1.7 
  32 28/07/1993 -90.5 28.4 49.6 41.2 2.3 8.4 
       47.3 1.78 2.3 
  57 29/07/1993 -92 28.5 55.8 39.2 2.25 16.6 
   29/07/1993 -92 28.5 55.8 46.8 2.3 9 
  58 29/07/1993 -92 28.6 44.9 43.3 1.7 1.6 
  59 29/07/1993 -92 28.66 39.5 31.1 1.9 8.4 
       37.2 0.62 2.3 
  60 29/07/1993 -92.1 28.8 31.9 23.7 1.46 8.2 
       29.7 0.51 2.2 
  61 29/07/1993 -92 28.8 26.3 19.1 0.73 7.2 
       24.3 0.12 2 
  63 29/07/1993 -92 28.9 21.4 11.1 2.35 10.3 
       14.2 0.52 7.2 
       19.2 0.16 2.2 
  65 30/07/1993 -92.2 29.0 16.2 8.5 2.15 7.7 
       11.3 0.14 4.9 
       14.3 0.09 1.9 
  70 30/07/1993 -93 29.5 14.7 12.6 0.65 2.1 
  71 30/07/1993 -93 29.4 15.5 9 2.01 6.5 
       13.3 1.5 2.2 
  74 30/07/1993 -93 29.1 23.7 21.1 1.79 2.6 
          
LATEX H08 77 30/04/1994 -94.2 29 16.6 14.7 2.05 1.9 
          
          
LATEX H09 27 29/07/1994 -90.5 28.5 35.1 32 1.29 3.1 
  28 29/07/1994 -90.5 28.6 20.8 17.2 1.85 3.6 
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Table 4.1. Continued 

Program Cruise Station Date 
(dd/mm/yy) 

Longitude
ºW 

Latitude
ºN 

Water 
depth 
(m) 

Niskin 
depth 
(m) 

Oxygen 
Conc. 

(mL·L-1) 

Depth from 
the bottom 

(m) 
          
LATEX H09 29 29/07/1994 -90.5 28.7 17.9 13.8 1.13 4.1 
  30 29/07/1994 -90.5 28.8 18.7 10.2 0.35 8.5 
       14.3 0.19 4.4 
  31 29/07/1994 -90.5 28.9 15.8 8.7 1.05 7.1 
       11.8 0.36 4 
  32 29/07/1994 -90.5 29 11.5 7.1 1.1 4.4 
       9.2 0.89 2.3 
  34 30/07/1994 -92.1 29.1 12 6.7 0.02 5.3 
       10 0.07 2 
       10 0.02 2 
  35 30/07/1994 -92.2 29.0 16.2 7.5 1.33 8.7 
       10.2 0.07 6 
       14.1 0.1 2.1 
  36 30/07/1994 -92 28.9 21.8 15.6 0.42 6.2 
       19.7 0.3 2.1 
  37 30/07/1994 -92 28.8 27 19.2 1.12 7.8 
       19.2 1.09 7.8 
       24.3 0.89 2.7 
       24.3 0.88 2.7 
  38 30/07/1994 -92.1 28.8 32.1 28 1.72 4.1 
       28 1.74 4.1 
  59 31/07/1994 -93 28.4 49.6 26.8 2.3 22.8 
  61 31/07/1994 -93 28.6 34.4 32 2.34 2.4 
  62 31/07/1994 -93 28.8 29.3 26.7 2.29 2.6 
  65 31/07/1994 -93 29.1 22.2 19.3 2.35 2.9 
  67 01/08/1994 -93 29.3 16.8 14.2 2.09 2.6 
  83 01/08/1994 -94 28.4 51.5 47.8 2.4 3.7 
          
NEGOM N2 85 15/05/1998 -88.8 29.8 16 11.6 2.12 4.4 
          
NEGOM N3 73 04/08/1998 -87.4 30 29 22 2.06 7 
       25.5 1.89 3.5 
NEGOM N5 89 26/05/1999 -88.1 30.1 22 17.7 2.38 4.3 
  91 26/05/1999 -88.8 29.8 14 12.3 1.49 1.7 
  92 26/05/1999 -88.7 29.7 20 16.6 2.39 3.4 
NEGOM N6 6 18/08/1999 -88.8 29.87 14 11.2 2.3 2.8 
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concentrations; this provides links between remineralization, vertical stratification, and 

bottom oxygen concentrations. Finally, in Section 4.4 I use Empirical orthogonal 

Function (EOF) analysis to examine the space and time relationships between vertical 

stratification, bottom silicate concentrations, and bottom oxygen concentrations. 

4.1. Effect of Vertical Stratification on Occurrence of Low-Oxygen and Hypoxic 

Water 

Stratification refers to the strength of the vertical density gradient. The higher the 

stratification the more the water column resists vertical mixing. The Brunt-Väisälä 

frequency, N, is often used to express the degree of stratification (Brunt, 1927; Väisälä, 

1925), or more precisely, the natural frequency of oscillation for a water parcel displaced 

adiabatically from its rest position. The force causing the oscillation is the buoyant force. 

As pointed out by Pond and Pickard (1983), the Brunt-Väisälä frequency represents 

the maximum frequency of internal waves in water with frequency N. High values of N 

are found where the vertical density gradient is the largest. As quoted by Pond and 

Pickard (1983) "this is usually in the thermocline in oceanic water (where density 

variation may be determined chiefly by temperature variation) or in the halocline in 

coastal water (where density variation may be determined chiefly by salinity variation)". 

For this study, the Brunt-Väisälä frequency was calculated over 0.5-m depth 

intervals for each hydrographic station on LATEX-A and NEGOM-COH spring and 

summer cruises. The method used for computing N is given in Millard et al. (1990): 

N2= ρ·g2·[-α·((dT/dp)-Г)+β·(dS/dp)] (radians·s-1) 2, or in cycles·s-1: N=N/2·Π 

T: temperature (°C) 
S: salinity 
p: pressure (decibars, dbar) 
ρ: density (kg·m-3) 
g: gravity acceleration (m·s-2) 
α: thermal expansion (α =-(1/ρ)·( ∂ρ/∂T)) (°C-1) 
β: saline contraction (β =(1/ρ)·(∂ρ/∂S)) 
Г: adiabatic lapse rate (Г =-(Ta/Cp)·(∂v/∂T)) 
v: specific volume (=1/ρ) 
Ta: absolute temperature (Ta=T+273.15) (Kelvin) 
Cp: specific heat 
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To investigate the effect of vertical stratification on the occurrences of low-oxygen 

and hypoxic waters in the northern Gulf of Mexico, the maximum value of the Brunt-

Väisälä frequency was compared with the bottom dissolved oxygen concentration at each 

station. The assumption is that a highly stratified water column facilitates the formation 

of low-oxygen waters by restricting the vertical mixing that can replenish oxygen in the 

sub-pycnocline water. 

Figure 4.2 shows examples of vertical profiles of temperature, salinity, potential 

density, dissolved oxygen, and the Brunt-Väisälä frequency at stations 28 and 130 in 

summer 1993 on cruise H06 in Regions 3 and 4, respectively. The contrast between the 

two stations is obvious. At station 130, a poorly stratified water column, with maximum 

Brunt-Väisälä frequency less than 38 cycles·h-1, had concentrations of dissolved oxygen 

at the bottom greater than 4 mL·L-1. At station 28, however, the maximum Brunt-Väisälä 

frequency peaks to more than 114 cycles·h-1 where the density gradient is the largest. 

Below this strong pycnocline, dissolved oxygen concentrations were low at the bottom 

with concentrations less than 1 mL·L-1. This example is consistent with the assumption 

stated earlier. I now investigate the validity of this assumption by examining the relation 

between bottom dissolved oxygen and vertical stratification in the four study regions. 

Note that only stations with bottom oxygen data in the lower 5 m of the water column are 

considered in this analysis. 

Region 3 (Louisiana Shelf) 

In Figure 4.3 are plotted bottom dissolved oxygen concentrations versus maximum 

Brunt-Väisälä frequency in Region 3 for springs and summers of 1992, 1993, and 1994. 

In general, for both seasons bottom dissolved oxygen concentrations decrease with 

increasing maximum Brunt-Väisälä frequency. Correlations between the two parameters 

are larger in summer than in spring, except in 1992. The square correlation coefficients 

shown in Figure 4.3 are all significant at the 95% confidence limit. Compared to springs 

1993 and 1994 correlations, the r2 shown for spring 1992 (cruise H01) may not be 

representative of the spring condition given that only 13 observations were available. 

During spring and summer in Region 3, low-oxygen and hypoxic water occurred 

only in waters with maximum Brunt-Väisälä frequency greater than 40 cycles·h-1. Figure 

4.3 shows three distinct intervals. The first interval includes maximum Brunt-Väisälä  
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Figure 4.3. Bottom dissolved oxygen (Ob) versus the maximum Brunt-Väisälä frequency 
(Nmax) in Region 3 on LATEX-A cruises. The thresholds of 2.4 mL·L-1 for 
low-oxygen, 1.4 mL·L-1 for hypoxia, and 40 and 100 cycles·h-1 are shown. 
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frequencies between 0 and 40 cycles·h-1. In this interval, low-oxygen or hypoxic waters 

do not occur at the bottom because there is an ample supply of oxygen through vertical 

mixing. The second interval consists of maximum Brunt-Väisälä frequency values 

between 40 and 100 cycles·h-1. Within this second interval low or hypoxic conditions 

may develop near the bottom if oxygen removal exceeds oxygen supply. The third 

interval consists of maximum Brunt-Väisälä frequency values greater than 100 cycles·h-1. 

Within this interval, dissolved oxygen concentrations near the bottom had only low or 

hypoxic conditions, indicating that vertical mixing was reduced considerably. In spring, 

the maximum frequencies in Region 3 exceeded 100 cycles·h-1 at only two stations on 

cruise H01 and one station on cruise H08, which are not shown in Figure 4.3 because no 

near-bottom oxygen data were collected at these stations. 

It is also clear from Figure 4.3 that in spring more stations have a maximum Brunt-

Väisälä frequency of 40 cycles·h-1 or less than in summer. This suggests that the water 

over Region 3 is vertically more strongly stratified in summer than in spring, which may 

in part explain why most occurrences of low-oxygen and hypoxic water are found in 

summer in Region 3. Spring occurrences of hypoxic waters occurred only in 1993. The 

other springs had only three stations with low-oxygen waters near the bottom in 1992 and 

one station in 1994 (Figure 4.3). 

Maps of maximum Brunt-Väisälä frequency and bottom dissolved oxygen 

concentrations in Region 3 show that in springs of 1992 and 1993 waters with maximum 

Brunt-Väisälä frequency greater than 40 cycles·h-1 and associated with low-oxygen or 

hypoxic conditions near the bottom were limited to the area east of 92°W (Figure 4.4). 

These areas are found inshore of the 20-m isobath on cruise H01 (spring 1992) and 

outside the 20-m isobaths near 92°W on cruise H05 (spring 1993). No oxygen data are 

available inside the 20-m isobath near 90.5°W to verify whether or not low-oxygen water 

occurred near the bottom there. On cruise H08 (spring 1994), there was only one station 

with low-oxygen concentration at the bottom; it was located near 94°W in water with 

16.6 m depth. The maximum Brunt-Väisälä frequency at this station was 58.9 cycles·h-1. 

In summer in Region 3 there were only a few stations with maximum Brunt-Väisälä 

frequency less than 40 cycles·h-1, located along the transect line near 94°W and at the 

outermost stations west of 93°W (Figure 4.4). On all three summer cruises, the 
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Figure 4.4. Bottom dissolved oxygen concentrations and contours of maximum Brunt-
Väisälä frequency (cycles·h-1) in Region 3 on LATEX-A spring and summer 
cruises. Dots represent station locations. The 10-, 20-, 50-, and 60-m 
isobaths are shown. 
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occurrences of low-oxygen and hypoxic bottom waters were found as far west as 93.5°W. 

On cruise H02 (summer 1992), these occurrences were limited to the shelf area inside the 

20-m isobath, whereas on the other summer cruises low-oxygen and hypoxic waters were 

found as far offshore as the 50-m isobath over the eastern end of Region 3. To 

summarize, in Region 3 a highly stratified water column with maximum Brunt-Väisälä 

frequencies greater than 40 cycles·h-1 was more widespread and resulted in more frequent 

occurrences of bottom low-oxygen and hypoxic waters in summer than in spring. 

Region 4 (Texas Shelf) 

Bottom dissolved oxygen concentration and maximum Brunt-Väisälä frequency 

were not well correlated in summer in Region 4 (Figure 4.5). In general, the water over 

Region 4 was poorly stratified with maximum Brunt-Väisälä frequency less than or equal 

to 40 cycles·h-1; only 4 stations on cruises H06 and 6 stations on cruise H09 had 

maximum Brunt-Väisälä frequencies greater than 40 cycles·h-1. Summer bottom 

dissolved oxygen concentrations greater than 3.2 mL·L-1 were found at all frequencies. 

Thus, in summer, the water over Region 4 was vertically less stratified and less prone to 

occurrences of low-oxygen or hypoxic water near the bottom. 

Spring conditions in Region 4 were different from summer. There were more stations 

with maximum Brunt-Väisälä frequencies between 40 and 100 cycles·h-1 in spring than in 

summer (Figure 4.5), but these stations had high near-bottom oxygen concentrations 

except for one station on cruise H05 (spring 1993). Dissolved oxygen concentration and 

maximum Brunt-Väisälä frequency at this station were equal to 1.78 mL·L-1 and 90.6 

cycles·h-1, respectively. 

In spring in Region 4, the pattern is of bottom dissolved oxygen concentrations 

decreasing with increasing maximum Brunt-Väisälä frequency. Both spring cruises of 

1993 and 1994 show that about 20% of the variance in bottom dissolved oxygen 

concentrations can be explained by variation in maximum Brunt-Väisälä frequency 

(Figure 4.5). So, unlike Region 3, in Region 4 it is in spring that the water is vertically 

more stratified and more prone to low-oxygen occurrences. In Section 4.2 I show that the 

increase in water column stratification in spring in Region 4 is caused by the presence of 

river-derived low-salinity water transported to the region by the seasonal circulation. 
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Figure 4.5. Bottom dissolved oxygen (Ob) versus the maximum Brunt-Väisälä frequency 
(Nmax) in Region 4 on LATEX-A cruises. The thresholds of 2.4 mL·L-1 for 
low-oxygen, 1.4 mL·L-1 for hypoxia, and 40 and 100 cycles·h-1 are shown. 
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Region 2 (Mississippi-Alabama Shelf) 

The pattern of bottom oxygen concentrations decreasing with increasing maximum 

Brunt-Väisälä frequency is seen in most spring and summer cruises in Region 2 (Figure 

4.6). The square correlation coefficients shown in Figure 4.6 are all significant at the 95% 

confidence limit except for cruise N2 (spring 1998) when bottom dissolved oxygen 

concentrations and maximum Brunt-Väisälä frequency were essentially poorly correlated. 

On cruises other than N2, 22% to 48% of the variance in bottom dissolved oxygen 

concentration can be explained by variation in maximum Brunt-Väisälä frequency. In 

Region 2, low-oxygen waters did not occur at stations with maximum Brunt-Väisälä 

frequencies less than or equal to 40 cycles·h-1 (Figure 4.6). Even when the water column 

Brunt-Väisälä maxima exceeded this frequency low bottom dissolved oxygen 

concentrations were found at only one station during the spring and summer of 1998 and 

1999. The maximum Brunt-Väisälä frequency at stations with low-oxygen were between 

60 and 80 cycles·h-1, only one shallow station with low-oxygen water on cruise N2 

(spring 1998) had water column Brunt-Väisälä maxima greater than 100 cycles·h-1 

(Figure 4.6). On the other cruises, bottom dissolved oxygen concentrations associated 

with frequencies greater than 100 cycles·h-1 were all high. For example, on cruises N5 

(spring 1999) and N9 (summer 2000) stations with maximum Brunt-Väisälä frequencies 

greater than 120 cycles·h-1 had bottom dissolved oxygen concentrations greater than 3.8 

mL·L-1. These stations were located west of 87ºW in water depths greater than 20 m 

(Figure 4.7). Brunner et al. (paper in review) suggested that in Region 2 it is the 

instability in the position of the river plume, which moves inshore and offshore with the 

passage of eddies, that provides opportunities for the water exchange that replenishes 

oxygen near the bottom. 

Spring occurrences of low-oxygen water were found near Chandeleur Sound, west of 

88ºW, on cruise N2 and N5 (Figure 4.7). Summer occurrences of low-oxygen water were 

located at the outermost station of a survey line made south of Pensacola, west of 87ºW, 

on cruise N3 (summer 1998) and at one station near Chandeleur Sound, west of 88ºW, on 

cruise N6 (summer 1999). No occurrences of low-oxygen or hypoxic waters were 

observed at stations with a maximum Brunt-Väisälä frequency greater than 40 cycles·h-1 

in either spring or summer of 2000. 
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Figure 4.6. Bottom dissolved oxygen (Ob) versus the maximum Brunt-Väisälä frequency 
(Nmax) in Region 2 on NEGOM-COH cruises. The thresholds of 2.4 mL·L-1 
for low-oxygen, 1.4 mL·L-1 for hypoxia, and 40 and 100 cycles·h-1 are 
shown. 
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Figure 4.7. Bottom dissolved oxygen concentrations and contours of maximum Brunt-
Väisälä frequency (cycles·h-1) in Region 2 on NEGOM-COH spring and 
summer cruises. Dots represent station locations. The 10 - 60-m isobaths are 
shown. 
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So, in Region 2 a highly stratified water column with low-oxygen waters near the 

bottom seems to occur in localized regions on the Mississippi-Alabama shelf in some 

years; later I will show these years to have relatively high river discharge. 

Region 1 (West Florida Shelf) 

The water over Region 1 was poorly stratified. Maximum Brunt-Väisälä frequencies 

were less than 40 cycles·h-1 in spring and summer cruises of 2000. In 1999 there were 

only four stations on cruise N5 and one station on cruise N6 with maximum Brunt-

Väisälä frequency between 40 and 50 cycles·h-1. Bottom dissolved oxygen concentrations 

at these stations were larger than 3.6 mL·L-1. Spring and summer of 1998 were different 

from 1999 and 2000. More than 50% of the stations had maximum Brunt-Väisälä 

frequencies between 40 and 80 cycles·h-1. Water with maximum Brunt-Väisälä frequency 

greater than 40 cycles·h-1 covered almost all of Region 1 on cruise N2 (spring 1992). This 

condition was generally found in water depth greater than 20 m on cruise N3 (summer 

1998) except for one shallow station located south of the Suwannee River. Bottom 

dissolved oxygen concentrations associated with these frequencies were larger than 3 

mL·L-1 (not shown). In Region 1, no occurrences of low-oxygen or hypoxic water were 

observed in either spring or summer of 1998, 1999, or 2000. 

In this section I have shown that during LATEX-A and NEGOM-COH cruises 

occurrences of low-oxygen and hypoxic waters were clearly related to the local vertical 

stratification, occurring only in waters with maximum Brunt-Väisälä frequency greater 

than 40 cycles·h-1. Waters with high maximum Brunt-Väisälä frequency were commonly 

found in Regions 2 and 3, which are greatly influenced by rivers. In regions with 

minimum river discharge, water with maximum Brunt-Väisälä frequency greater than 40 

cycles·h-1 were found either in a specific season (e.g., in spring in Region 4), or during 

years of high river discharge (e.g., in Region 1, during the 1998 and 1999 spring and 

summer cruises).  

In the next section I show how the distribution of river-derived low-salinity water 

causes the local vertical stratification to differ in the four regions. 
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4.2. Relative Importance of Salinity and Temperature to the Vertical Stratification 

Vertical density stratification is generally a function of several physical variables, 

including river fresh-water discharge, solar heating, and wind mixing. To examine the 

effect of river-derived low-salinity water on water column stratification in the four study 

regions, I first compared the maximum Brunt-Väisälä frequency to near-surface salinity 

(salinity at approximately 3-m depth) using data from the spring and summer cruises. 

Then, I calculated the density ratio (Rp; defined as the ratio of the thermal part of 

stratification to its salinity part) to determine if the calculated maximum Brunt-Väisälä 

frequency is determined chiefly by temperature or salinity. 

According to McDougall (1987) the formula for the density ratio is:  

Rp = [α·(dT/dp)]/[β·(dS/dp)] 

T: temperature (°C) 
S: salinity 
p: pressure (Decibars, dbar) 
α: thermal expansion (α =(-1/ρ)·(∂ρ/∂T)) (°C-1) 
β: saline contraction (β =(1/ρ)·(∂ρ/∂S)) 
ρ: density (kg·m-3) 

Region 3 (Louisiana Shelf) 

In Region 3 the maximum Brunt-Väisälä frequency is seen to increase with 

decreasing near-surface salinity on both spring and summer cruises (Figure 4.8). The r2 

values shown in the figure are all significant at the 95% confidence limit. Correlations 

between these two parameters show larger r2 in summer than in spring. The difference 

between spring and summer correlations is essentially explained by the distribution of 

river-derived low-salinity water, and the interannual variability in Mississippi-

Atchafalaya River discharge rates. 

The distribution of river-derived low-salinity water over Region 3 differed between 

spring and summer. In spring, the downcoast coastal current generated by the downcoast 

wind component advects river-derived low-salinity water along the near shore areas of 

Region 3. As a result, during the three spring cruises, the salinity gradient over Region 3 

is directed offshore with the lowest salinity waters inshore and the highest salinity waters 

offshore (Figure 4.9). 
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Figure 4.8. Maximum Brunt-Väisälä frequency (Nmax) versus near-surface salinity (NSS) 
in Region 3 on LATEX-A cruises. The thresholds of 34 for low-salinity 
water and of 40 and 100 cycles·h-1 are shown. 
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Figure 4.9. Near-surface salinity and contours of maximum Brunt-Väisälä frequency 
(cycles·h-1) in Region 3 on LATEX-A spring and summer cruises. Dots 
represent station locations. The 10-, 20-, 50-, and 60-m isobaths are shown. 
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On cruise H05 (spring 1993), low-salinity water less than 34 covered the entire area 

of Region 3 (Figure 4.9). This is most likely because the rate of the Mississippi-

Atchafalaya River discharge prior to this cruise exceeded the record mean by more than 

73% (Table 4.2). In general, low-salinity water was associated with maximum Brunt-

Väisälä frequency larger than 40 cycles·h-1 except at a few stations located in the middle 

shelf area between 92ºW and 93ºW and at the outermost stations along the transect near 

94ºW (Figure 4.9). 

Spring discharges in 1992 and 1994 were less than in 1993 (Table 4.2). Cruises H01 

and H08 conducted in spring of these two years had many offshore stations with high 

salinity near the surface associated with low maximum Brunt-Väisälä frequency. Along 

the near shore areas of Region 3, where low-salinity water was found, the maximum 

Brunt-Väisälä frequency was generally larger than 40 cycles·h-1 (Figure 4.9). On cruise 

H01 and H08, a number of stations with low-salinity near the surface also had low 

maximum Brunt-Väisälä frequency (Figure 4.8). These stations were located along the 

transect line near 94ºW on cruise H01 (spring 1992) and in water depths less than 20 m 

near 92ºW and 93ºW on cruise H08 (spring 1994; Figure 4.9). In all three springs, 

vertical profiles of salinity at these stations showed a weak to a non-existent halocline 

suggesting that mixing had occurred. During the three springs included in the study 

period, 35 fronts passed over the Texas-Louisiana shelf (Etter et al., 2004). So, we would 

expect wind mixing of the surface layer to be important in spring and facilitate the break 

down of the local stratification at these stations. 

There were overall fewer stations with maximum Brunt-Väisälä frequency less than 

40 cycles·h-1 in summer than in spring (Figure 4.8) because summer circulation 

conditions over Region 3 are different from those in spring. In summer, water discharged 

from the Mississippi-Atchafalaya River system is held over Region 3 rather than being 

transported out of the area as in spring when there is downcoast flow. As a result, low-

salinity water covered the entire area of Region 3 (Figure 4.9). The maximum Brunt-

Väisälä frequencies associated with this low-salinity were larger than 40 cycles·h-1 

(Figure 4.8). Stations with near-surface salinity greater than 35 were found along the 

transect line near 94°W (Figure 4.9). At those stations maximum Brunt-Väisälä 

frequencies were less than 40 cycles·h-1 except at two stations on cruise H02 (summer 
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1992) where the maximum Brunt-Väisälä frequency were between 40 and 60 cycles·h-1 

(Figure 4.8). 

Table 4.2. Mean river discharge (103 m3·s-1) associated with the 30-day period prior to 
each cruise for the Mississippi-Atchafalaya River (CM). The long-term 
mean (RM) for the same 30-day period for the Mississippi-Atchafalaya 
River is shown for comparison. 

Year Parameter Spring Summer 
1992 CM 22.2 16.1 
1992 RM 31.5 16.8 

    
1993 CM 43.2 27.1 
1993 RM 31.6 18.2 

    
1994 CM 38.3 15.6 
1994 RM 31.5 18.0 

Also, unlike spring, in summer there were only six frontal passages total during the 

study period (Etter et al., 2004). So, because summer is quiescent and because of the 

pooling of low-salinity water over Region 3, the stratification of the water column is 

more prone to increase in summer than in spring. Note that if a tropical storm or a 

hurricane hit the region, the resulting wind mixing will temporally destabilize the water 

column and decrease the strength of the local vertical stratification. A study on 

"Mechanisms Controlling Hypoxia on the Louisiana Shelf" observed in 2005 that the 

pycnocline became reestablished within 2 to 4 days after the passages of a tropical storm 

and a hurricane in early July (Chapman, 2006, personal communication). 

The discharge rates of the Mississippi River are at maximum in spring and decline to 

approximately half this rate in summer (Table 4.2). The variability in Mississippi-

Atchafalaya River discharge rates between the three years may to some extent affect the 

distribution of the maximum Brunt-Väisälä frequency over Region 3. The maximum 

Brunt-Väisälä frequency and near-surface salinity showed better correlation in 1993 and 

1994, years of high spring discharge rates, than in 1992, a year of low spring discharge 
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rate. Also, in summer the two parameters correlated better during the high discharge year 

of 1993 than the low discharge years of 1992 and 1994 (Table 4.2).  

Solar heating also affects the local vertical stratification. The northern Gulf shelves 

experience a net gain of heat in spring and summer. However, it is in summer that 

maximum heating of surface waters occurs (Nowlin et al., 1998a). To determine the 

relative importance of temperature and salinity to the vertical stratification, the density 

ratio (Rp) was calculated over a 0.5-m depth interval for each hydrographic station on 

LATEX-A and NEGOM-COH spring and summer cruises. For this analysis, I selected at 

each station the Rp values that corresponded to the maximum Brunt-Väisälä frequencies 

that are larger than 40 cycles·h-1. The selected Rp values were then plotted versus 

potential density for each region. 

In Region 3, the spring data show the density ratio is less than unity over the whole 

density range (Figure 4.10), except at two stations on spring 1992 and 1993 where it was 

marginally greater. These stations were sampled along the 94°W transect in water depths 

greater than 20 m. The maximum Brunt-Väisälä frequency at these two stations is about 

41 cycles·h-1. This implies that the spring time stratification is chiefly caused by the 

vertical salinity gradient due to the presence of low-salinity surface water. In summer, 

density ratios greater than unity were found in water depths greater than 20 m; so the 

vertical temperature gradient was largely responsible for the vertical stratification. The 

maximum Brunt-Väisälä frequencies at these stations ranged between 40 and 70  

cycles·h-1. 

Therefore, in spring, in Region 3, it is salinity and not temperature that chiefly 

determines the degree of water stratification. In summer, in water with maximum Brunt-

Väisälä frequency greater than 70 cycles·h-1 stratification again was chiefly determined 

by river-derived low-salinity water. However, the influence of temperature was generally 

seen in water depths greater than 20 m, where near-surface salinity is usually greater than 

32 (see Figure 4.9). 
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Figure 4.10. Density ratio (Rp) versus potential density (Sigma Theta) for maximum 
Brunt-Väisälä frequency greater than 40 cycles·h-1 in Region 3 on LATEX-
A spring and summer cruises. 
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Region 4 (Texas Shelf) 

In Region 4, the combination of river discharge and flow regime means that the 

volume of low-salinity water is at maximum in spring due to the advection of low-salinity 

water from Region 3 by spring downcoast flow. Similarly, it is at minimum in summer 

because of the transport of salty water from off Mexico by summer upcoast flow. 

This is well reflected in Figure 4.11. Summer near-surface salinity over Region 4 

was generally larger than 34. In spring, however, near-surface salinity was generally less 

than 34, with the salinity gradient directed offshore (Figure 4.12). On cruise H08 (spring 

1994) stations with high salinity water greater than 34 were found in water depths greater 

than 20 m east of 95ºW. The presence of this high salinity water on cruise H08 is due to 

the fact that the river discharge rate in 1994 was less than 1993 (Table 4.2). 

In summer, the maximum Brunt-Väisälä frequencies registered in Region 4 did not 

exceed 60 cycles·h-1 and did not correlate with near-surface salinity (Figure 4.11). The 

distribution of near-surface salinity and the maximum Brunt-Väisälä frequency did not 

show any specific pattern over Region 4 (Figure 4.12). Since frontal passages are 

infrequent in summer, I speculate that it is the absence of river-derived low-salinity water 

in Region 4 that caused the water column to be poorly stratified. 

The maximum Brunt-Väisälä frequency was correlated poorly with near-surface 

salinity on both spring cruises, but the pattern of increasing maximum Brunt-Väisälä 

frequency with decreasing near-surface salinity still can be seen (Figure 4.11). A number 

of stations with low-salinity at the surface had maximum Brunt-Väisälä frequency less 

than 40 cycles·h-1. Vertical profiles of salinity at these stations showed a weak to non-

existent halocline confirming that mixing had occurred. Mixing at these stations may 

have resulted from the effect of frequent frontal passages over the region (Etter et al., 

2004). 

The density ratio of water with maximum Brunt-Väisälä frequency greater than 40 

cycles·h-1 in Region 4 shows that in spring salinity chiefly determines the greatest density 

variation in the pycnocline in the same way as in Region 3 (Figure 4.13). This is 

consistent with the fact that the downcoast current moves low-salinity water to this 

region. In summer, however, water salinity over Region 4 is relatively constant 

throughout the water column and it is summer heating that leads to the formation of a 
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Figure 4.11. Maximum Brunt-Väisälä frequency (Nmax) versus near-surface salinity 
(NSS) in Region 4 on LATEX-A cruises. The thresholds of 34 for low-
salinity water and of 40 and 100 cycles·h-1 are shown. 
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Figure 4.12. Near-surface salinity and contours of maximum Brunt-Väisälä frequency 
(cycles·h-1) in Region 4 on LATEX-A spring and summer cruises. Dots 
represent station locations. The 10 – 60-m isobaths are shown. 
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Figure 4.13. Density ratio (Rp) versus potential density (Sigma Theta) for maximum 
Brunt-Väisälä frequency greater than 40 cycles·h-1 in Region 4 on LATEX-
A spring and summer cruises. 
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thermocline and an increase in the thermal part of the density ratio (Figure 4.13). 

Region 2 (Mississippi-Alabama Shelf) 

In spring 1998, on cruise N2, the Mississippi River and other rivers to the west of 

Apalachicola River exceeded their long-term mean, some by more than 90% (Table 4.3). 

As a result of these high discharge rates and the relatively strong eastward current 

encountered in the region (Jochens et al., 2002), low-salinity water less than 34 occupied 

the entire area of Region 2. This is clearly reflected in Figure 4.14, with only three 

stations with near-surface salinity water larger than 34. Near-surface low-salinity water 

associated with maximum Brunt-Väisälä frequency greater than 80 cycles·h-1 were 

generally found west of 87.5ºW, the region close to the Mississippi River Delta, and at a 

localized area east of 86ºW (Figure 4.15). 50% of the variance in maximum Brunt-

Väisälä frequency on cruise N2 (spring 1998) can be explained by variation in near-

surface salinity with the maximum Brunt-Väisälä frequency increasing with decreasing 

near-surface salinity (Figure 4.14). 

Better correlations of maximum Brunt-Väisälä frequency with near-surface salinity 

are seen in spring of 1999 and 2000 (Figure 4.14). Spring 1999 was marked with a series 

of pulses in the Mississippi River discharge that exceeded the mean by more than 50% 

(Table 4.3). Other rivers discharging into Region 2 were significantly below their mean 

except from a very high discharge from Tombigbee River (Table 4.3). During this spring 

salinity water less than 34 extended from the Mississippi Delta to as far east as 86°W 

(Figure 4.15). There were more stations with maximum Brunt-Väisälä frequency less 

than 40 cycles·h-1 associated with the presence of high salinity water during N5 (spring 

1999) than during N2 (spring of 1998, Figure 4.14). 

In spring of 2000 (cruise N8) much less river water was available in Region 2 

because of the low Mississippi River discharge and the advection of river-derived low-

salinity water out of Region 2 by the southwestward currents (Jochens et al., 2002). Thus, 

low-salinity water was limited to a smaller region west of 87°W (Figure 4.15). The 

maximum Brunt-Väisälä frequencies associated with these low-salinity waters were 

greater than 40 cycles·h-1 (Figure 4.14). 

Summer is the season of minimum discharge and weak and irregular inner shelf 

currents (Jochens et al., 2002). For the three summer cruises in this study (N3, N6, and 
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N9), deep eddies induced strong anticyclonic currents along the upper slope and outer 

shelf from the Mississippi River delta to the west Florida shelf (Belabbassi et al., 2005). 

Those currents transported Mississippi River water eastward along the outer shelf and 

slope adjacent to Region 2, reversing over most of the shelf the normal offshore increase 

in salinity (Figure 4.15). A strong east-west gradient over Region 2 was observed in all 

three summers. Maximum Brunt-Väisälä frequency greater than 80 cycles·h-1 was limited 

to the area immediately next to the Mississippi River Delta where the lowest salinities 

were observed. In all three summers the maximum Brunt-Väisälä frequency increased 

with decreasing near-surface salinity (Figure 4.14). 

Table 4.3. Mean river discharge (103 m3·s-1) associated with the 30-day period prior to 
each cruise for the Mississippi and selected rivers (CM). The long-term 
mean (RM) for the same 30-day period for each river is shown for 
comparison. 

River name Year Parameter Spring Summer 
     

Mississippi 1998 CM 26.2 20.1 
 1998 RM 21.8 12.6 
     
 1999 CM 21.4 10.5 
 1999 RM 21.4 9.5 
     
 2000 CM 14.8 14.5 
 2000 RM 21.7 12.1 
     

Apalachicola 1998 CM 1.4 0.5 
 1998 RM 0.9 0.6 
     
 1999 CM 0.3 0.5 
 1999 RM 0.8 0.6 
     
 2000 CM 0.7 0.2 
 2000 RM 1.2 0.6 
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Table 4.3. Continued 

River name Year Parameter Spring Summer 
     

Tombigbee 1998 CM 1.1 0.3 
 1998 RM 1.5 0.4 
     
 1999 CM 0.7 0.1 
 1999 RM 1.2 0.3 
     
 2000 CM 2.4 0.1 
 2000 RM 1.7 0.3 
     

Alabama 1998 CM 1.6 0.3 
 1998 RM 1.3 0.5 
     
 1999 CM 0.5 0.4 
 1999 RM 1.0 0.4 
     
 2000 CM 1.6 0.2 
 2000 RM 1.8 0.5 
     

Pearl 1998 CM 0.2 0.1 
 1998 RM 0.4 0.1 
     
 1999 CM 0.1 0.02 
 1999 RM 0.3 0.1 
     
 2000 CM 0.4 0.02 
 2000 RM 0.4 0.1 
     

Suwannee 1998 CM 0.5 0.1 
 1998 RM 0.3 0.2 
     
 1999 CM 0.1 0.1 
 1999 RM 0.3 0.2 
     
 2000 CM 0.1 0.1 
 2000 RM 0.3 0.2 
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Figure 4.14. Maximum Brunt-Väisälä frequency (Nmax) versus near-surface salinity 
(NSS) in Region 2 on NEGOM-COH cruises. The thresholds of 34 for 
low-salinity water and of 40 and 100 cycles·h-1 are shown. 
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Figure 4.15. Near-surface salinity and contours of maximum Brunt-Väisälä frequency 
(cycles·h-1) in Region 2 on NEGOM-COH spring and summer cruises. 
Dots represent station locations. The 10 - 60-m isobaths are shown. 
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The density ratio in Region 2 shows that low-salinity water chiefly determines 

maximum Brunt-Väisälä frequencies greater than 40 cycles·h-1 for both spring and 

summer (Figure 4.16). During summer, stations where vertical temperature gradients 

were largely responsible for the vertical stratification were located in the innermost shelf 

area east of 86.25°W during cruise N3 (summer 1998) and east of 89°W during cruise N9 

(summer 1999) (Figure 4.15). 

Region 1 (West Florida Shelf) 

Region 1 is on the west Florida shelf and is located far from the direct influence of 

the Mississippi or other significant rivers. Maximum Brunt-Väisälä frequency correlated 

poorly with near-surface salinity on both spring and summer cruises. During spring and 

summer cruises of 1999 and 2000 near-surface salinities generally were greater than 34 

over Region 1 and were associated with maximum Brunt-Väisälä frequencies less than 40 

cycles·h-1 (not shown). In spring of 1998, on cruise N2, low-salinity water less than 34 

was found over Region 1 inshore of the 30-m isobath as a result of high discharge rates 

and the relatively strong eastward current encountered in the region (not shown). On 

cruise N3 (summer 1998), low-salinity water was located outside the 40-m isobath except 

for the area south of 28ºN and at one shallow station south of the Suwannee River. There 

also was a clear indication of low-salinity water derived from the Suwannee River in the 
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Big Bend area during cruise N2 (spring 1998) and at the same location in spring of 1999. 

The maximum Brunt-Väisälä frequencies associated with these low near-surface 

salinities were generally between 40 and 80 cycles·h-1. 

Spring and summer data in Region 1 show that the density ratio is less than unity for 

frequencies greater than 40 cycles·h-1 (Figure 4.17). This implies that the relative 

importance of salinity to vertical stratification exceeds that of temperature for both spring 

and summer. 

To summarize, differences in the distribution of low-salinity water was the chief 

cause of regional differences in the local vertical stratification in the four study regions. 

Water stability was found to increase with decreasing low-salinity water in Regions 2 and 

3, which are greatly influenced by rivers. In these regions, maximum Brunt-Väisälä 

frequencies greater than 40 cycles·h-1 were found in the halocline, where the density 

variation is chiefly determined by salinity variation. The influence of temperature seems 

to be more important in summer at stations located in water depth greater than 20 m in 

Region 3 and over the innermost area in Region 2, generally east of 87ºW. During spring 

in Region 4 and during both spring and summer in Region 1, Brunt-Väisälä maxima were 

found in the halocline, as in Regions 2 and 3. Temperature was found to have the greater 

influence on density variation in the pycnocline during summer in Region 4 when the 

volume of low-salinity water was at minimum, due to the upcoast transport of salty 

surface water by the non-summer circulation pattern.  
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Figure 4.16. Density ratio (Rp) versus potential density (Sigma Theta) for Brunt-Väisälä 
frequency greater than 40 cycles·h-1 in Region 2 on NEGOM-COH spring 
and summer cruises. 
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Figure 4.17. Density ratio (Rp) versus potential density (Sigma Theta) for Brunt-Väisälä 
frequency greater than 40 cycles·h-1 in Region 1 on NEGOM-COH spring 
and summer cruises. 
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4.3. Water Column Stratification Versus Bottom Silicate  

In Section 4.1, I showed that vertical density stratification plays a key role in 

influencing the magnitude of low-oxygen water occurrences over the inner shelf of the 

northern Gulf of Mexico. However, it is the oxidation of the ungrazed organic material 

that depletes the lower layer of dissolved oxygen. Organic matter remineralization is 

generally reflected in the chemical concentration and distribution throughout the water 

column. Nutrients, such as silicate, nitrate, and phosphate, are enriched in the bottom 

layer as a result of the oxidation (decay) of this organic material. Therefore, an increase 

in the concentrations of nutrients with depth in the sub-pycnocline layer should be 

accompanied by a decrease in the concentration of dissolved oxygen.  

The relationship of nutrients to oxygen through the process of remineralization is 

illustrated in Figure 4.18. The vertical profiles of nutrient and dissolved oxygen shown 

were made at stations 65, 117, and 27 in Region 3 during summer 1993 (cruise H06), 

spring 1993 (cruise H05), and summer 1992 (cruise H02), respectively. Indicated on each 

profile is the depth of the maximum Brunt-Väisälä frequency. 

The contrast between the three stations is obvious. At station 65, the remineralization 

of the organic matter resulted in an increase in silicate and phosphate and a decrease in 

oxygen concentration at and below the pycnocline (Figure 4.18). Nitrate concentrations 

in the sub-pycnocline water were low, possibly indicating local denitrification at low-

oxygen concentrations or local photosynthesis. The maximum Brunt-Väisälä frequency 

of about 123 cycles·h-1 at station 65 indicates the presence of a strong pycnocline. The 

presence of this strong pycnocline combined with an important remineralization below 

the pycnocline resulted in the hypoxic conditions near the bottom. At station 117, 

however, the remineralization process was not important below the existing strong 

pycnocline, as indicated by the low nutrient and high oxygen concentrations in the 

bottom layer (Figure 4.18). As a result of the lack of remineralization, oxygen 

concentrations in the sub-pycnocline water were high. 

At station 27, the maximum Brunt-Väisälä frequency was about 37 cycles·h-1, 

indicating weak stratification and so little change in oxygen or nutrients between the 

upper and the lower water column (Figure 4.18). As a result of weak stratification, 

bottom dissolved oxygen concentrations in the sub-pycnocline water were high. 
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The examples shown in Figure 4.18 are consistent with the assumption that low-

oxygen and hypoxic waters occur only when two conditions are met: (1) a strong 

stratification that prevents oxygen replenishment to the bottom layer and (2) high 

remineralization that depletes the oxygen within the bottom layer. I tested the validity of 

this assumption by examining the relationship between bottom silicate concentrations and 

the maximum Brunt-Väisälä frequency in the four study regions. Silicate rather than 

nitrate was selected as a proxy for remineralization because during LATEX-A and 

NEGOM-COH bottom silicate concentrations were seen to decline less rapidly than 

bottom nitrate concentrations. Several stations with local remineralization as evidenced 

by the increase with depth in silicate concentrations and a decrease in dissolved oxygen 

concentration showed nitrate depletion in the sub-pycnocline waters as opposed to nitrate 

enrichment due to local remineralization. This is not unexpected in the inner shelf water 

of the northern Gulf because of nitrate limitation (Turner and Rabalais, 2001). When light 

is not limiting, nitrate uptake by biological processes may lead to a rapid nitrate depletion 

in near-bottom waters and so evidence of local remineralization cannot be observed 

reliably by examination of the vertical distribution of nitrate. Silicate is generally found at 

high concentrations in the sub-pycnocline waters, which is not unexpected since high 

dissolved silicon is associated with river-derived low salinity water and the Mississippi 

River in general (Burton, 1976). So, biological uptake of silicate in near-bottom water 

generally will be small enough that it will not mask evidence of local remineralization. 

Therefore, silicate is a better proxy for bottom remineralization than nitrate. Note that 

only stations with both silicate and oxygen data in the lower five meters of the water 

column were considered in this analysis. 

Region 3 (Louisiana Shelf) 

In Figure 4.19 are plotted the maximum Brunt-Väisälä frequency versus bottom 

silicate concentrations in spring and summer of 1992, 1993, and 1994 over Region 3. 

Stations with low-oxygen concentrations near the bottom are highlighted in red. In 

spring, low bottom oxygen concentrations were found at stations with high maximum 

Brunt-Väisälä frequency (greater than 40 cycles·h-1) and high bottom silicate 

concentrations (generally greater than 24 mmol·m-3). In summer, stations with low 

bottom oxygen concentrations, found in waters with high Brunt-Väisälä maxima, were 
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Figure 4.19. Bottom silicate concentrations versus maximum Brunt-Väisälä frequency 
(Nmax) in Region 3 on LATEX-A cruises. Stations with low-oxygen values 
at the bottom are shown in red. The threshold of 40 and 100 cycles·h-1 are 
shown. 
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generally associated with bottom silicate concentrations greater than 18 mmol·m-3. So, for 

both spring and summer, low bottom oxygen concentrations generally occurred when 

both stratification and remineralization were high. 

The data presented in Figure 4.19 show a trend of increasing bottom silicate 

concentrations with increasing maximum Brunt-Väisälä frequency for both spring and 

summer in Region 3. In Section 4.2, I showed that the presence of low-salinity water and 

its distribution by local currents essentially control water column stratification in both 

spring and summer. Maps of bottom silicate concentrations and near-surface salinity 

(Figure 4.20) show the clear relationship between lower salinity in surface waters and 

higher bottom silicate concentrations. Overall, silicate concentrations greater than 18 

mmol·m-3 occur at stations with near-surface salinity less than 32. As salinity increases, 

bottom silicate concentrations decrease. This is because river-derived low-salinity waters 

are usually associated with high biological production. The deposition and oxidation of 

this material near the bottom results in an increase in bottom silicate concentrations. 

Surface waters with high salinity generally have few nutrients resulting in little in situ 

production, little organic material deposited, and low bottom silicate concentrations. 

In spring occurrences of bottom silicate concentrations greater than 18 mmol·m-3 

were found east of 92ºW in 1992 and 1993 and west of 93ºW in 1994 (Figure 4.20), 

generally at stations with near-surface salinities less than 32. However, there were many 

stations with near-surface salinities less than 32 that had bottom silicate concentrations 

less than 12 mmol·m-3. At these stations the water column was relatively unstable in 

spring and so little change in oxygen or silicate occurred between the upper and the lower 

water column. This condition led to the high oxygen concentrations near the bottom 

except at three stations on cruise H01, four stations on cruise H05, and one station on 

cruises H08 (Figure 4.19). 

Summer differed from spring. In summer 1992, on cruise H02, bottom silicate 

concentration decreased offshore over the whole of Region 3 (Figure 4.20). In contrast, 

during summers in 1993 and 1994, the gradient of decreasing silicate concentration was 

directed more from east to west (Figure 4.20). High silicate concentrations associated 

with salinity water less than 32, were found as far west as 94ºW. Thus in Region 3, 

summer, is the season of high stratification and high bottom remineralization and 
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Figure 4.20. Bottom silicate concentrations and contours of near-surface salinity on 
LATEX-A spring and summer cruises in Region 3. Dots represent station 
locations. The 10 - 60-m isobaths are shown. 
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therefore an important time of bottom oxygen depletion. 

Region 4 (Texas Shelf) 

In summer bottom silicate concentrations in Region 4 were low (Figure 4.21). The 

vertical stratification was generally weaker than during spring. Summer near-surface 

salinities in Region 4 were larger than 34 due to the northward and eastward advection of 

high salinity water from off Mexico (Figure 4.22). These waters are generally low in 

biological production because they are nutrient limited. The result is little organic 

material near the bottom with consequent low bottom silicate concentrations. At only one 

station on cruise H06 and four stations on cruise H09 were bottom silicate concentrations 

greater than 12 m mol·m-3. 

As a result of the downcoast advection of river-derived low-salinity water from 

Region 3 in non-summer, surface water with salinities less than 32 were found over 

almost all of Region 4 in spring (Figure 4.22). In spring of 1993, during cruise H05, 

bottom silicate concentrations associated with these low-salinity waters were less than 12 

mmol·m-3. There were only two stations with bottom silicate concentrations greater than 

12 mmol·m-3: one was a shallow station located on the eastern end of Region 4, the other 

was found in more than 20 m water depth near 97ºW-27.25ºN. At this latter station, 

bottom silicate concentrations were greater than 30 mmol·m-3 and were found in water 

with maximum Brunt-Väisälä frequency greater than 90 cycles·h-1 (Figure 4.21). Low 

bottom oxygen occurred at this station because of the combined effect of high 

stratification and high remineralization. The other three stations with high silicate 

concentrations were found during spring 1994 on cruise H08 beneath weakly stratified 

water columns (Figure 4.21). These stations were located along the inner shore area of 

Region 4 north of 27ºN where near-surface salinity waters were less than 30, but near-

bottom oxygen concentrations were high as a result of the weak stratification. 

Region 2 (Mississippi-Alabama Shelf) 

In Region 2, low-oxygen occurrences were found at stations with maximum Brunt-

Väisälä frequency greater than 40 cycles·h-1 and silicate concentrations greater than 12 

mmol·m-3 (Figure 4.23). This confirms the assumption that low-oxygen water occurs only 

when both stratification and remineralization are high. 
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Figure 4.21. Bottom silicate concentrations versus maximum Brunt-Väisälä frequency 
(Nmax) in Region 4 on LATEX-A cruises. Stations with low-oxygen values 
at the bottom are shown in red. The thresholds of 40 and 100 cycles·h-1 are 
shown. 
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Figure 4.22. Bottom silicate concentrations and contours of near-surface salinity on 
LATEX-A spring and summer cruises in Region 4. Dots represent station 
locations. The 10 - 60-m isobaths are shown. 
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Figure 4.23. Bottom silicate concentrations versus maximum Brunt-Väisälä frequency 
(Nmax) in Region 2 on NEGOM-COH cruises. Stations with low-oxygen 
values at the bottom are shown in red. The thresholds of 40 and 100 
cycles·h-1 are shown. 



 

 

81

The data presented in Figure 4.23 show a propensity for bottom silicate 

concentrations to increase with increasing maximum Brunt-Väisälä frequency though 

bottom silicate values were rather low on cruises N6, N8, and N9. Maps of bottom 

silicate concentrations (Figure 4.24) show that the presence of river-derived low-salinity 

water may be responsible for the observed bottom silicate distributions. For spring and 

summer of 1998 and 1999, bottom silicate concentrations greater than 12 mmol·m-3 were 

found exclusively in the area west of 87ºW where near-surface salinity was less than 32. 

Bottom silicate concentrations greater than 12 mmol·m-3 were found along the coast of 

this area. Silicate concentrations are higher in this area because of the close proximity to 

the source of the Mississippi River. In summer, however, bottom silicate concentrations 

greater than 12 mmol·m-3 were found in water depths greater than 20 m, except in the 

immediate area next to the Mississippi River discharge. This may be explained by the 

reversed salinity gradient in summer due to the transport of river-derived low-salinity 

water eastward along the outer shelf and slope by the off-shelf circulation features 

(Belabbassi et al., 2005). 

In 2000, during a year of very low river discharge, spring bottom silicate 

concentrations in Region 2 were generally less than 12 m mol·m-3. Bottom silicate 

concentrations greater than 12 mmol·m-3 were found only in summer in the immediate 

area next to the Mississippi River discharge (Figure 4.24).  
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Figure 4.24. Bottom silicate concentrations and contours of near-surface salinity on 
NEGOM-COH spring and summer cruises in Region 2. Dots represent 
station locations. The 10 - 60-m isobaths are shown. 
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Region 1 (West Florida Shelf) 

Region 1 is characterized by minimal river discharge. The average salinity over this 

region is generally greater than 34 except during years of high river discharge, such as in 

1998. In the spring and summer cruises of 1998, 1999, and 2000, the maximum Brunt-

Väisälä frequency and bottom silicate concentrations were low, being less than 40 

cycles·h-1 and 12 m mol·m-3, respectively. No bottom low-oxygen values were found in 

spring or summer in Region 1. Region 1 is less prone to occurrences of low-oxygen water 

because of the paucity of river-derived low-salinity water with its source of nutrients. 

In summary, low-oxygen and hypoxic waters were found to occur only in well stratified 

water columns with evidence of remineralization near the bottom. Bottom silicate 

concentrations were associated with low-salinity water over the inner continental shelf of 

the northern Gulf of Mexico. Bottom silicate concentrations were found to be higher in 

waters with near-surface salinities less than 32, often found in close proximity to the 

Mississippi River Delta. 

4.4. Spatial-Temporal Patterns of Vertical Stability, Near-Bottom Dissolved Oxygen, 

and Bottom Remineralization Using EOF Analyses 

In this section I have elected to analyze for temporal and spatial patterns of vertical 

stability, near-bottom oxygen, and bottom remineralization using Empirical Orthogonal 

Functions (EOF) analyses on the surrogate variables Brunt-Väisälä maxima in the water 

column, bottom oxygen concentrations, and bottom silicate concentrations. This analysis 

was carried out only for Regions 2 (Mississippi-Alabama Shelf) and 3 (Louisiana Shelf) 

because, of the regions studied, those are most likely to have low values of near-bottom 

oxygen.  
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All three variables were interpolated onto regular grids shown in Figure 4.25 for 

each LATEX-A and NEGOM-COH hydrographic cruise using a SCAT2INTERP 

function built in PV-WAVE. The procedure as explained by Akima (1978) is based on a 

method of bivariate interpolation and smooth surface fitting applicable when the data 

values are given at points irregularly distributed in the x-y plane. The procedure adopts 

partitioning of the plan into a number of triangular cells and the application of a bivariate 

fifth degree polynomial to each cell to determine the interpolant. The SCAT2INTERP 

function in PV-WAVE does not provide error fields. Comparisons of spatial maps of the 

original data with maps produced using the interpolated data, as recommended by Akima 

(1978), showed very small differences.  

For Region 3, new data sets were constructed by selecting the grid points that fall on 

the four transects made on LATEX-A and at locations where oxygen data in the lower 5 

m of the water column were available for all cruises. For Region 2, I visually selected the 

grid point closest to the sampling station location with oxygen data in the bottom 5-m to 

reproduce the seven transects of the original sampling plan made on NEGOM-COH. 

Each data field has the mean removed at each selected grid point before EOF analysis. 

The goal of EOF analysis is to examine the space and time relationship between the 

three variables, isolate and quantify the maximum amount of variation in the data that 

underlie the spatial and temporal variation, and determine if there is some statistical 

connection between the three parameters. The EOF method used follows the singular 
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Figure 4.25. Dots represent grid point locations and red circles represent the selected grid 
points used to construct the new data sets. R refers to region. The 10-, 20-, 
50-, and 60-m isobaths are shown. 
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value decomposition method given in Emery and Thomson (2001). As explained by 

Otero and Siegel (2004) and Nezlin et al. (2004), the EOF method decomposes a 

time/space series into a set of orthogonal function (spatial maps) whose amplitude varies 

in time about the mean. The sum of these functions explains the covariability of the data 

set. Each of these orthogonal functions is ranked by a measure of the fraction of the total 

variance explained by each EOF mode. 

Region 3 (Louisiana Shelf) 

Table 4.4 shows temporal variance associated with the first five EOF modes for each 

variable. The first modes are dominant, contributing 65.4%, 52.7%, and 70.4%, to the 

total variability of Brunt-Väisälä maxima in the water column, bottom silicate 

concentrations, and bottom dissolved oxygen, respectively.  

Table 4.4. Percentage variance of Brunt-Väisälä maxima (Nmax) in the water column, 
bottom silicate concentration ([SiO3]b), and bottom oxygen concentration 
([O2]b) associated with the first five EOF modes based on 1992-1994 data in 
Region 3. 

EOF modes Nmax [SiO3]b [O2]b 

    

1 65.4 52.7 70.4 

2 11.4 23.6 11.0 

3 8.3 12.0 8.3 

4 5.6 6.6 4.3 

5 3.8 2.3 2.9 

    

The patterns of the first EOF modes of all three parameters are similar with the 

greatest variation about the mean found in the nearshore, eastern part of Region 3 (Figure 

4.26). The amplitude functions of these first EOF modes show general seasonal 

oscillations between summer and fall (Figure 4.27). The product of the summer 
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Figure 4.26. Spatial distribution of the first EOF modes of Brunt-Väisälä maxima in the 
water column, bottom silicate concentration, and bottom oxygen 
concentration for the 1992-1994 data in Region 3. Triangles represent data 
locations. The 10-, 20-, 50-, and 60-m isobaths are shown. 
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Figure 4.27. Amplitude functions of the first EOF modes of Brunt-Väisälä maxima in the 
water column, bottom silicate concentration, and bottom oxygen 
concentration for the 1992-1994 data in Region 3. The percentage variance 
of the first EOF mode of each parameter is shown. 
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amplitudes by their first EOF mode reveals that bottom oxygen concentrations are at 

minimum in summer when Brunt-Väisälä maxima in the water column and bottom 

silicate concentrations are at maximum, whereas in fall the opposite conditions occur. 

Excluding the single winter cruise of 1993, correlations between the amplitude 

functions of the first EOF modes of bottom oxygen concentration and Brunt-Väisälä 

maxima, and between bottom oxygen and silicate concentrations show high square 

correlation coefficients (r2) of 0.88 and 0.92, respectively. This strongly supports the 

hypothesis that in Region 3 the low bottom oxygen concentrations are associated with 

high Brunt-Väisälä maxima in the water column and high regenerated silicate near the 

bottom. Moreover, correlation between the amplitude function of the first EOF mode of 

Brunt-Väisälä maxima in the water column and bottom silicate concentration is high with 

a squared correlation coefficient of 0.82. This correlation indicates that the dominant 

modes of these two parameters are dynamically linked over Region 3, which also is 

supported by the fact that they have similar spatial distributions (Figure 4.26). The spatial 

distributions of the first EOF mode can be attributed to the impact of fresh water 

discharge into Region 3. The discharge of fresh water causes salinity to decrease and 

stratification to increase, and is most likely reason for the increase in oxygen demand 

from decay of organic matter produced earlier in situ or transported in with river runoff. 

The controlling processes over Region 3 are therefore the loss and gain of 

stratification and the intensity of oxygen removal in the lower layer through 

remineralization. The seasonal loss and gain of stratification as shown in Section 4.2 

results mostly from: (1) the downcoast transport of river-derived low-salinity water 

through Region 3 in non-summer and its pooling over Region 3 in summer, and (2) the 

intensification of the wind (and consequently mixing) in non-summer and the calmer 

conditions in summer. The seasonal increase and decrease of bottom silicate 

concentrations, that is usually indicative of the intensity of the process of 

remineralization, suggest that the process of remineralization is more intense in summer 

than in other seasons. 

The second EOF mode shows a pattern that is generally of cross shelf gradients for 

all three variables (Figure 4.28). The amplitude function of the second EOF mode of 

water column Brunt-Väisälä maxima (Figure 4.29) show a pattern that corresponded very 
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well with the mean Mississippi-Atchafalaya River discharge associated with the 30-day 

period prior to each cruise (Figure 4.29; dashed line). The values obtained by multiplying 

the second EOF spatial mode with the amplitude function show that the magnitude of the 

Brunt-Väisälä maxima in the nearshore area of Region 3 is greatest in seasons and years 

when the river discharge is greatest and lower when river discharge is lower (Figure 

4.29). I am unable to interpret the amplitude functions for bottom silicate and bottom 

oxygen concentrations. 

Region 2 (Mississippi-Alabama Shelf) 

For Region 2, the first dominant EOF modes of Brunt-Väisälä maxima in the water 

column, bottom silicate concentration, and bottom dissolved oxygen concentration 

accounted for 71.7%, 59.1%, and 62.1% of the total variance, respectively (Table 4.5). 

As seen, modes three and higher contribute little to the total variability and are not 

included in the discussion.  

Table 4.5. Percentage variance of Brunt-Väisälä maxima (Nmax) in the water column, 
bottom silicate concentration ([SiO3]b), and bottom oxygen concentration 
([O2]b) associated with the first five EOF modes based on 1998-2000 data in 
Region 2. 

EOF modes Nmax [SiO3]b [O2]b 

    

1 71.7 59.1 62.1 

2 18.2 20.8 17.0 

3 4.4 6.9 6.6 

4 2.0 5.7 4.8 

5 2.2 4.4 2.1 
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Figure 4.28. Spatial distribution of the second EOF modes of Brunt-Väisälä maxima in 
the water column, bottom silicate concentration, and bottom oxygen 
concentration for the 1992-1994 data in Region 3. Triangles represent data 
locations. The 10-, 20-, 50-, and 60-m isobaths are shown. 
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Figure 4.29. Amplitude functions of the second EOF modes of Brunt-Väisälä maxima in 
the water column, bottom silicate concentration, and bottom oxygen 
concentration for the 1992-1994 data in Region 3. The percentage variance 
of the second EOF mode of each parameter is shown. The dashed line 
represents the mean Mississippi-Atchafalaya River discharge associated 
with the 30-day period prior to each cruise. 
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The amplitude patterns of the first EOF modes clearly show a seasonal cycle with an 

interannual variability (Figure 4.30). In general, bottom oxygen concentrations are at 

minimum in spring or in summer when water column Brunt-Väisälä maxima and bottom 

silicate are at maximum. The strength obtained by multiplying the first EOF spatial 

modes (Figure 4.31) by their amplitudes for all three parameters is highly dependent on 

river discharge in that particular season and year. There is an apparent difference between 

years of high river discharge mainly 1998 and 1999 and year 2000 of low river discharge. 

In spring 2000, because of the below average amount of freshwater over Region 2, the 

low water column Brunt-Väisälä maxima and low bottom silicate concentrations resulted 

in high concentration of oxygen in bottom waters. Correlations between the first EOF 

modes of bottom oxygen concentration and water column Brunt-Väisälä maxima and 

between bottom oxygen concentration and bottom silicate concentration have squared 

correlation coefficients of 0.67 and 0.62, respectively, suggesting that vertical 

stratification and bottom remineralization are important in determining dissolved oxygen 

levels near the bottom in Region 2. What is more, correlation between the first EOF 

modes of water column Brunt-Väisälä maxima and bottom silicate concentration is high 

with a squared correlation coefficient of 0.81, indicating that the first dominant modes of 

these two parameters are dynamically linked over the region. 

The spatial distributions of the first dominant modes of all three parameters are 

similar west of 88ºW with inshore-offshore gradients (Figure 4.31). The product of these 

modes with their amplitudes reveal that the highest variability about the mean is found 

inshore, near Chandeleur Sound, and the lowest variability is found offshore. This can be 

attributed to low-salinity water from the Mississippi River outflow as well as from other 

local rivers (Jochens et al., 2002) being found predominantly nearshore west of 88ºW. 

East of 88ºW, the high variability about the mean found offshore for water column Brunt-

Väisälä frequency (Figure 4.31) can be directly related to the advection of low salinity 

water during high spring Mississippi River discharge and strong eastward currents 

(Jochens et al., 2002). 

The spatial distribution of the first EOF mode of bottom silicate concentration and 

bottom oxygen concentrations east of 88ºW show the highest variability above the mean 

in the nearshore area between Cape San Blas and Choctawhatchee Bay at about 85.4ºW  
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Figure 4.30. Amplitude functions of the first EOF modes of Brunt-Väisälä maxima in the 
water column, bottom silicate concentration, and bottom oxygen 
concentration for the 1998-2000 data in Region 2. The percentage variance 
of the first EOF mode of each parameter is shown. 
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Figure 4.31. Spatial distribution of the first EOF modes of Brunt-Väisälä maxima in the 
water column, bottom silicate concentration, and bottom oxygen 
concentration for the 1998-2000 data in Region 2. Triangles represent data 
locations. The 10-, 20-, 50-, and 60-m isobaths are shown. 
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and 86.45ºW, respectively. This nearshore area has been shown by Jochens et al. (2002) 

to have low salinity and high chlorophyll concentrations in the near surface waters 

indicating local influence of fresh water influx from the Choctawahatchee Bay. 

The second EOF pattern of Brunt-Väisälä maxima shows a northeastward gradient to 

the east of the Mississippi River Delta (Figure 4.32). This pattern reflects the summer 

near-surface salinity distributions observed in this area in all three years. Near surface 

salinities were low near the Mississippi River Delta and increased to the northeast of this 

location. The explanation for the amplitude function of this mode is difficult to interpret 

(Figure 4.33). The EOF patterns for the second modes of bottom silicate and oxygen are 

similar as are their amplitudes. These patterns may be related to differences between what 

is happening in the region east of the Mississippi Delta along the shelf edge and upper 

slope and in the nearshore area from the Mississippi Sound eastward past Mobile Bay. 

These regions are divided approximately by 29.5° N latitude. The highest variability in 

bottom silicate and oxygen are of opposite signs in the two areas and in spring and 

summer. The values obtained by multiplying the second EOF mode with its amplitude 

show that bottom silicates are generally low in summer nearshore north of  about 29.5ºN 

and high south of that latitude but reverse in spring. For bottom oxygen the relationships 

are reversed. This second mode likely reflects the summer minimum river flow from the 

Mississippi and other rivers over Region 2 and the transport of most of Mississippi river 

along the outer shelf edge (Belabbassi et al., 2005) resulting in high salinity water over 

most of Region 2 except for the region immediately eastward of the Mississippi Delta. 

In summary, the processes controlling bottom dissolved oxygen concentrations in 

Region 2, namely vertical stratification and bottom remineralization, are affected by the 

distribution of low-salinity water derived from the Mississippi River and from other 

major rivers of the region.  
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Figure 4.32. Spatial distribution of the second EOF modes of Brunt-Väisälä maxima in 
the water column, bottom silicate concentration, and bottom oxygen 
concentration for the 1998-2000 data in Region 2. Triangles represent data 
locations. The 10-, 20-, 50-, and - 60-m isobaths are shown. 
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Figure 4.33. Amplitude functions of the second EOF modes of Brunt-Väisälä maxima, in 
the water column, bottom silicate concentration, and bottom oxygen 
concentration for the 1998-2000 data in Region 2. The percentage variance 
of the second EOF mode of each parameter is shown. 



 

 

99

CHAPTER V 

SUMMARY AND CONCLUSIONS 

Because of the limitations of the LATEX-A and NEGOM-COH data sets some of 

the features that are of interest to this study could not be examined. The sampling plan 

during LATEX-A and NEGOM-COH programs did not provide the along shelf spatial 

resolution or the near-bottom vertical resolution that would be optimal for observing the 

distributions of low-oxygen bottom waters, the Mississippi-Atchafalaya River plume, or 

nutrient distributions. Bottom samples during both field programs were generally 

collected 2 m above the seafloor, whereas sampling within 1 m from the bottom would 

have been ideal to locate bottom waters with reduced oxygen concentrations. Therefore, 

the LATEX-A and NEGOM-COH data sets have definite sampling limitation to a 

thorough investigation of factors causing low-oxygen and hypoxic conditions in bottom 

waters. In this chapter I summarize results of the analyses of these data sets carried out 

to examine relationships between river-derived low salinity water, vertical stratification, 

bottom nutrient enrichment through remineralization, and occurrences of reduced bottom 

oxygen concentrations over the northern continental shelf of the Gulf of Mexico. 

Using LATEX-A and NEGOM-COH data sets I found that over the northern 

continental shelf and upper slope of the Gulf of Mexico dissolved oxygen concentrations 

less than 2.4 mL·L-1 are found exclusively in water depths less than 60 m. For all 

samples collected in water depths greater than 60 m oxygen values ranged between 2.4 

and 5.8 mL·L-1. Therefore, I defined water with dissolved oxygen concentrations less 

than 2.4 mL·L-1 as low-oxygen waters in contrast to the commonly occurring oxygen 

concentrations over the northern Gulf. Low-oxygen concentrations and hypoxic 

conditions (defined as oxygen concentrations less than or equal to 1.4 mL·L-1) in near-

bottom water were found exclusively over the continental shelf of the northern Gulf in 

water depths less than 60 m. These occurrences differed in the four regions studied. 

Low-oxygen and hypoxic water occurrences were found almost exclusively in regions 

with large influences from rivers. The Mississippi and Atchafalaya rivers are the major 

sources of fresh water for the northern Gulf, although other rivers sometimes may have 
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significant effects. Thus the occurrences were found in regions most influenced by these 

two rivers, namely, Region 2 (Mississippi-Alabama shelf) and Region 3 (Louisiana 

shelf). Region 1 (West Florida shelf) with minimum freshwater discharge had no low-

oxygen occurrences, and Region 4 (Texas shelf) had only one occurrence. 

The spatial and temporal variability of vertical stratification and bottom 

remineralization over the inner shelf of the northern Gulf were responsible for the 

differences in distributions of low-oxygen and hypoxic waters in the four regions. As 

demonstrated by the examination of water column Brunt-Väisälä maxima and bottom 

silicate concentrations, the regional differences and the seasonal variability are 

principally influenced by the presence or absence of river water in these regions. Three 

factors that affect this variability are wind mixing, currents, and the proximity to the 

Mississippi and Atchafalaya rivers. 

The presence of river-derived low-salinity water in near-surface waters of Regions 2 

and 3 caused water column stratification to increase. Salinity was more important than 

temperature in determining the vertical stratification in these regions in spring and in 

summer. Locations where temperature influence was larger were found in water column 

depths greater than 20 m over Region 3 and in the near shore areas west of 87ºW in 

Region 2. The maximum Brunt-Väisälä frequency was found to increase as near-surface 

salinity decreased. Near-surface waters with salinity less than 34 were generally 

associated with a water column Brunt-Väisälä maximum that was greater than 40 

cycles·h-1, except when winds induced vertical mixing to decrease vertical stratification. 

In these cases the maximum Brunt-Väisälä frequency was reduced to less than 40 

cycles·h-1. This tended to occur in Region 3 during spring when frontal passages were 

frequent. 

A trend of increasing bottom silicate concentrations with increasing maximum 

Brunt-Väisälä frequency was observed for both spring and summer in Regions 2 and 3. 

High bottom silicate concentrations generated by high remineralization rates were 

strongly associated with the presence of river-derived low-salinity water in Regions 2 
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and 3. The highest bottom silicate concentrations were found in areas of low-salinity 

surface waters near the Mississippi River Delta. 

Low-oxygen and hypoxic waters were found only in waters with Brunt-Väisälä 

maxima greater than 40 cycles·h-1. These oxygen conditions in near-bottom waters were 

common in summer in Region 3 east of 93.5ºW, whereas in spring they were found only 

at a few stations east of 92ºW. In Region 2 in both spring and summer, occurrences of 

low-oxygen to hypoxic conditions were rather localized in the near shore area west of 

88ºW, where they occupied smaller areas and volumes than in Region 3. 

Spatial and temporal patterns of bottom dissolved oxygen, water column Brunt-

Väisälä maxima, and bottom silicate concentrations were examined using EOF analysis. 

More than 65% of the variance in bottom oxygen in Regions 2 and 3 was associated with 

the first EOF mode. The amplitude functions for the first EOF modes of bottom oxygen, 

Brunt-Väisälä maxima, and bottom silicate concentrations are well correlated indicating 

that much of the variance in bottom oxygen is explained by the combined effect of 

vertical stratification and bottom remineralization. The temporal and spatial distribution 

of the first mode of Brunt-Väisälä maxima and bottom silicate concentration indicated 

that the distributions of both are dynamically linked to the seasonal distributions of river-

derived low-salinity water in Regions 2 and 3. 

Regions 1 and 4 are subjected to minimum influences from local river discharges 

and are located far from the direct influence of major rivers, and so they differ 

considerably from Regions 2 and 3. The absence of river-derived low-salinity water in 

Region 1 during both spring and summer and in Region 4 during summer resulted in a 

poorly stratified water column and little remineralization in the bottom layer. Water 

column Brunt-Väisälä maxima in these regions were generally less than 40 cycles·h-1 

and were associated with high oxygen concentrations near the bottom. There were a few 

stations with water column Brunt-Väisälä maxima greater than 40 cycles·h-1 in summer 

in Region 4. At these stations, the temperature was relatively more important than 

salinity in determining vertical stratification. Because of low remineralization in the 

near-bottom waters, those stations did not have low-oxygen concentrations.  
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Water column Brunt-Väisälä maxima also exceeded 40 cycles·h-1 in Region 4 in 

spring when the downcoast current regime advected low-salinity water out of Region 3 

into Region 4 and caused an increase in water column stratification and a noticeable 

increase in silicate concentrations near the bottom. Brunt-Väisälä frequencies greater 

than 40 cycles·h-1 were found in the halocline, where the density variation is chiefly 

determined by salinity variation. There was little effect of river-derived low-salinity 

water on bottom silicate concentration because Region 4 is located far from the 

freshwater source. As a result, any near-surface nutrients would have been used up well 

before the water reached Region 4 and thus primary production would have been 

limited. Low-oxygen water occurred only at one station in Region 4 that had high water 

column Brunt-Väisälä maxima and high bottom remineralization.  

In Region 1, the advection of river-derived low-salinity water from Region 2 during 

years of unusually high river discharge caused an increase in water column stratification 

and a small increase in bottom silicate concentrations. Like Region 4, because Region 1 

is located far from the Mississippi River Delta the rate of oxygen removal near the 

bottom did not exceed the rate of oxygen supply. Thus, no occurrences of low-oxygen or 

hypoxic conditions near the bottom were found in Region 1.  

In conclusion, the occurrences of low-oxygen concentrations in near-bottom water 

over the inner continental shelf of the northern Gulf of Mexico are clearly related to 

vertical stratification. Such occurrences are found only in waters with maximum Brunt-

Väisälä frequency greater than 40·cycles·h-1. Except for Region 4 in summer and other 

localized areas in Regions 3 and 2, these high frequencies were chiefly caused by the 

vertical salinity variation due to the presence of river-derived low-salinity water. The 

relationship between bottom silicate concentration and maximum Brunt-Väisälä 

frequency revealed that low-oxygen concentrations in bottom waters occur only in stable 

water columns with high bottom remineralization. It was also clear that the process of 

remineralization was more intense during summer in Region 3 and during years of high 

river discharge in Region 2. Thus, over the inner continental shelf of the northern Gulf of 

Mexico the distribution of river-derived low-salinity water by currents influences the 
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spatial and temporal variability of vertical stratification and the amount of the 

remineralized silicate near the bottom, and thereby controls the occurrence of bottom 

waters with low-oxygen concentrations. Of course, strong surface winds can reduce 

significantly the vertical stratification due to low-salinity surface waters and result in an 

ample supply of oxygen to the bottom waters. Also, the effect of river water on bottom 

silicate concentrations generally decreases with increasing distance from the source. In 

all cases low-oxygen or hypoxic bottom waters occur only if oxygen removal exceeds 

supply. 
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