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ABSTRACT

Dynamical Formulations and Control of an Automatic Retargeting System.

(December 2005)

Michael Charles Sovinsky, B.S., Texas A&M University

Chair of Advisory Committee: Dr. John E. Hurtado

The Poincaré equations, also known as Lagrange’s equations in quasi coordi-

nates, are revisited with special attention focused on a diagonal form. The diagonal

form stems from a special choice of quasi velocities that were first introduced by Georg

Hamel nearly a century ago. The form has been largely ignored because the quasi

velocities create so-called Hamel coefficients that appear in the governing equations

and are based on the partial derivative of the mass matrix factorization. Conse-

quently, closed-form expressions for the Hamel coefficients can be difficult to obtain

and relying on finite-dimensional, numerical methods are unattractive. In this thesis

we use a newly developed operator overloading technique to automatically generate

the Hamel coefficients through exact partial differentiation together with numerical

evaluation. The equations can then be numerically integrated for system simulation.

These special Poincaré equations are called the Hamel Form and their usefulness in

dynamic modeling and control is investigated.

Coordinated control algorithms for an automatic retargeting system are devel-

oped in an attempt to protect an area against direct assaults. The scenario is for

a few weapon systems to suddenly be faced with many hostile targets appearing to-

gether. The weapon systems must decide which weapon system will attack which

target and in whatever order deemed sufficient to defend the protected area. This

must be performed in a real-time environment, where every second is crucial. Four
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different control methods in this thesis are developed. They are tested against each

other in computer simulations to determine the survivability and thought process of

the control algorithms. An auction based control algorithm finding targets of oppor-

tunity achieved the best results.
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CHAPTER I

INTRODUCTION

Dynamics and control of mechanical systems are important issues across a wide field

of applications. A complete understanding of a system requires both topics to be

explored. An adequate control algorithm requires that the dynamics of the system

be understood. And if the dynamics of these systems can be understood clearer and

computed with less error and effort, this will allow more precise control. This thesis

will examine both aspects of these systems.

The dynamics portion will examine a formulation to simplify the equations of

motion of mechanical systems, named the Hamel Form. Simplified equations of mo-

tion can lead to many benefits. A better physical understanding of the system and

a reduction in integration error are a few examples of these benefits. The end result

of this formulation is a diagonalized form of equations of motion. Traditionally, the

mass matrix is a populated, configuration-dependent matrix which is then inverted.

This diagonalized form eliminates the need to perform this costly inversion. An au-

tomatic differentiation tool, OCEA, will also be utilized to aid in the creation of the

Hamel Form.

The second part of this thesis will analyze cooperative control techniques applied

to an automatic retargeting system. A scenario is created where only a few weapon

systems are faced with the task of eliminating many targets. This control algorithm

needs to autonomously determine which weapon system follows which target, while

preventing targets from passing beyond the weapon systems. This is to be accom-

plished in a real-time environment with attention also paid to a minimal amount of

The journal model is IEEE Transactions on Automatic Control.
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communication necessary between the weapon systems.

A subset of this scenario is target identification using one or more pan and tilt

cameras. Due to physical constraints with moving the actual camera system, a set

of mirrors will be used to pan and tilt the image beam into the camera. A control

algorithm will be developed to successfully point the camera system at a specified

point.
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CHAPTER II

INTRODUCTION TO HAMEL FORM

From the beginning, scholars have sought transformations that simplify the governing

equations of motion of mechanical systems. Analysis and experience has shown that

transformations performed at the velocity level, as opposed to coordinate level, are

most fruitful. When considering transformations at the velocity level one is naturally

lead to so-called quasi velocities [1, 2]. The adjective “quasi” serves to remind one that

the integration of such velocities will lead to coordinates (quasi coordinates) that can

not be used to describe the system configuration. This is unlike true or generalized

velocities, which are nothing more than the first time derivative of true or generalized

coordinates: the integration of true velocities yield the system configuration.

Perhaps the most famous quasi velocities are the components of the rigid-body

angular-velocity vector when coordinatized along body-fixed axes. Euler discovered

these and developed his equations for rigid-body rotational motion. His equations

are sleek whereas a traditional Lagrangian approach that uses, for example, a set of

Euler angles and their derivatives as true coordinates and velocities leads to a highly

nonlinear, unattractive set of equations. Gibbs, Volterra, Poincaré, and others [2]

deeply investigated the role and implications of quasi velocities in dynamic formu-

lations, and Kane’s method [3] uses quasi velocities (he prefers the term generalized

speeds) to a great extent to generate simple-looking governing equations.

One motivation for seeking simplified equations of motion is to reduce the ap-

pearance of complex nonlinear terms: the reasons are twofold. For low-dimensioned

systems, reducing the appearance of complex nonlinear terms sometimes allows one

to gain insight into the resulting motion using analytical techniques. For high-

dimensioned systems, reducing the appearance of complex nonlinear terms can allow
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faster simulation run times [4].

One approach to obtaining simplified equations of motion is to generate diago-

nalized forms, i.e., forms that produce a diagonal mass matrix. When the governing

equations of motion are developed for a general nonlinear mechanical system using

the traditional Lagrangian treatment, a symmetric, positive-definite, configuration-

dependent mass matrix is generated, which must be inverted at each time step when

using traditional explicit integration techniques like Runge-Kutta methods. Diago-

nalized forms alleviate the costly mass-matrix inversion, but always introduce another

calculation difficulty.

A. Other Diagonalized Forms

Two separate but similar diagonalized forms have been proposed recently by Jain

and Rodriguez [5] and Junkins and Schaub [6]. Their investigations are highlighted

below.

1. Mass Matrix Factorization

Jain and Rodriguez achieve a diagonal form for their quasi velocities via a special

mass matrix factorization.

M = (I + HφK)D(I + HφK)T ≡ m(q) m(q)T (2.1)

In this matrix equation, I represents the identity matrix, whereas H , K, D and φ

are spatial operators that are found recursively by spatial filtering and smoothing

algorithms. Jain and Rodriguez have traded the need to invert the mass matrix with

having to solve a recursive set of equations. Moreover, their technique applies only to

tree-like, articulated multibody systems and other kinematically recursive topologies.
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Jain and Rodriguez only consider natural systems, wherein the kinetic-energy

function is a quadratic function of the generalized velocities only. Their quasi veloci-

ties are defined via ν = m(q) q̇ and their resulting equations of motion take a simple

form.

ν̇k + ck(q, ν) = εk (2.2)

Here, c(q, ν) is their Coriolis force vector and depends on the mass matrix factoriza-

tion. The elements of c are given by the following expression.

ck(q, ν) = �kr

(
ṁriνi − 1

2

∂Mij

∂qk

q̇iq̇j

)
(2.3)

The matrix �(q) appearing here is the inverse of m(q).

Jain and Rodriguez go on to demonstrate several important facets of their de-

velopment, viz., that the Coriolis force vector depends quadratically on the quasi

velocities ν, and that the Coriolis force vector does no mechanical work.

2. Eigenstructure Quasi Velocity Formulation

Junkins and Schaub achieve a diagonal form for their quasi velocities via a spectral

decomposition of the mass matrix.

M = CT DC; CT C = 1; D = diag(λ) ≡ ST S (2.4)

Their quasi velocities are defined via η = SC q̇. Junkins and Schaub have essentially

traded the need to invert the mass matrix with having to solve one additional matrix

differential equation, viz., Ċ = −ΩC. This new differential equation is based on the

development of their new quasi velocities, which are related to the eigenvalues of the

mass matrix. Some difficulties arise when the distinct eigenvalues are near each other.



6

Their resulting equations of motion take the following matrix form.

η̇ + S−1(ΩS + Ṡ)η − S−1C

(
1

2
q̇T ∂M

∂q
q̇ − ∂GT

∂q
q̇

)
= S−1CF (2.5)

Unlike Jain and Rodriguez, Junkins and Schaub consider more general nonnatural

systems. The vector function G appearing in equation (2.5) is the coefficient vec-

tor that multiplies the generalized velocities linearly in the kinetic-energy function,

and F is composed of potential forces, nonpotential forces, Ġ, and that part of the

kinetic-energy function that is independent of generalized velocities. Of course, with

a suitable definition of variables, the form of Junkins and Schaub could be written as

simple-looking as the form of Jain and Rodriguez.
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CHAPTER III

THE HAMEL FORM

The kinetic-energy function for a general mechanical system can be expressed as the

addition of three terms.

T (q, q̇, t) = T2(q, q̇) + T1(q, q̇, t) + T0(q, t) (3.1)

The leading term is a quadratic function of the n-dimensional true velocity vector, q̇,

whereas the middle term is linear in q̇ and the final term is independent of q̇.

T2 =
1

2
Mij(q) q̇iq̇j ; T1 = Nk(q, t) q̇k; T0 = m0(q, t) (3.2)

It is straightforward to adopt n + 1 coordinates where q̇n+1 =dt/dt = 1 so that the

kinetic-energy function can be written as a quadratic function of a (n+1)-dimensional

augmented vector.

2T =

[
q̇1 · · · q̇n 1

]
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M11 · · · M1n N1

...
. . .

...

Mn1 · · · Mnn Nn

N1 · · · Nn m0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q̇1

...

q̇n

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

This equation can be written more compactly.

2T (q, q̇, t) = Mαβ(t, q) q̇αq̇β (3.4)

Now consider a nonsingular linear transformation from the true velocities to a set of

quasi velocities, ω.

q̇i = Aij(q, t) ωj + ai(q, t) (3.5)



8

This equation represents the forward mapping, whereas the inverse mapping is given

as follows.

ωj = Bji(q, t) q̇i + bj(q, t) (3.6)

These mappings can be written in a compact manner using the augmented vector.

q̇α = Aαβ(q, t) ωβ; ωα = Bαβ(q, t) q̇β; (3.7)

Using the first of these equations leads to a kinetic-energy function dependent on the

true coordinates, q, the quasi velocities, ω, and time.

2T ∗(q, ω, t) = MαβAανAβμ ων ωμ (3.8)

The particular set of quasi velocities have not yet been specified, that is, Aαβ have

not yet specified. Consequently, a special set is sought. It is desired that the quasi

velocities to be such that 2T ∗ is independent of the true coordinates, q, which implies

the following (n + 1)-dimensional matrix equation.

AT MA = 1 (3.9)

This matrix equation can be satisfied if the Cholesky decomposition [7] of M is used

to define the quasi velocities. That is, suppose M = BT B, where B is an (n + 1)-

dimensional, upper-triangular matrix, and suppose this matrix B is used to define a

set of quasi velocities via the second expression of equation (3.7). As a consequence

of this choice, equation (3.9) will be satisfied and a simple form for the kinetic-energy

function is obtained.

2T ∗ = ωμ ωμ or 2T ∗ = ωTω (3.10)
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At this point return to Lagrange’s equations of motion in terms of quasi variables,

which are also known as the Poincaré equations of motion. [8]

d

dt

(
∂T ∗

∂ων

)
+ γβ

ναωα
∂T ∗

∂ωβ
− Aβν

∂T ∗

∂qβ
= πν (3.11)

Note that our special set of quasi velocities simplifies this equation because ∂T ∗/∂q =

0. Furthermore, rewriting this equation in terms of the original n-dimensional vector

components instead of the (n + 1)-dimensional augmented vector components, and

using the special form of T ∗, leads to the following kinetic equations of motion.

ω̇k + γj
ki ωiωj + γj

kωj = πk (3.12)

In these equations, πk, which appears on the right-hand side, is the kth nonholonomic

impressed force [2] and is composed of potential and nonpotential forces. The three-

index symbol γj
ki represents the three-index Hamel coefficients and may be defined

via the true and quasi velocity transformation matrices.

γr
ka ≡

(
∂Brj

∂qi
− ∂Bri

∂qj

)
AjkAiα (3.13)

These coefficients are also known as the Hamel-Volterra transitivity coefficients, or

the Ricci-Boltzmann-Hamel three-index symbols [2, 9]. The two-index symbol γj
k are

two-index Hamel coefficients and are also related to the true and quasi velocity trans-

formation matrices. [2]

γj
k ≡

(
∂Bjb

∂qc
− ∂Bjc

∂qb

)
Abkac +

(
∂Bjb

∂t
− ∂bj

∂qb

)
Abk (3.14)

A. Control Using Hamel Form

The Hamel equations of motion may be used to design stabilizing and regulating con-

trols. For a stabilizing control, let the system kinetic-energy function be a Lyapunov
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function. Then, according to the work/energy-rate principle [10], V̇ = Ṫ = q̇T F ,

where F are the generalized (or holonomic impressed) forces. In terms of quasi ve-

locities and nonholonomic impressed forces, this reads as V̇ = ωTπ, so choosing the

nonholonomic impressed forces as the negative of the quasi velocities will stabilize

the system.

For a regulating control (e.g., to the origin), let a Lyapunov function be composed

of the system kinetic-energy function and a suitable (possibly fictitious) potential

function: V (q, ω) = T (q, ω) + U(q). The time derivative of V gives V̇ = ωT (π +

AT (∂U/∂q) ). Choosing the nonholonomic impressed forces so that the parenthetical

factor equals the negative of the quasi velocities will regulate the system, provided

that the only solution to ∂U/∂q = 0 is the desired regulation point.

B. Observations and Remarks over Hamel Form

The complete motion of the dynamical system is governed by the kinetic equations,

equation (3.12), and the kinematic equations, equation (3.5). These 2n first-order,

ordinary differential equations replace the traditional n second-order, ordinary differ-

ential equations that result from Lagrange’s equations of motion in terms of q and

q̇.

The special choice of quasi velocities, and the resulting form, were first introduced

by Georg Hamel nearly a century ago [2, 11]. He called his equations Lagrange-Euler

equations and we refer to them here as the Hamel Form. This choice of quasi velocities

has been largely ignored because the quasi velocities create Hamel coefficients that are

based on the partial derivative of the mass matrix factorization, see equation (3.13).

The Hamel coefficients arise solely because of the “nongenuine” nature of quasi

coordinates, σ (the time derivative of the quasi coordinates equal the quasi velocities).
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Locally, the differentials of quasi coordinates are related to the differentials of true

coordinates via dσ = B dq. A necessary and sufficient condition for σ to be true

coordinates is the satisfaction of integrability conditions given by the theory of Pfaffian

forms [9].

(∂Brj/∂qi − ∂Bri/∂qj) = 0 (3.15)

When these integrability conditions are not satisfied, then no finite σ exist, only

the differentials dσ. The left side of equation (3.15) appears in the definition of

the three-index Hamel coefficients, and hence the dissatisfaction of the integrability

conditions, i.e., the nongenuine nature of the quasi coordinates, gives rise to the Hamel

coefficients. The integrability conditions make clear the following: quasi coordinates

implies nonzero Hamel coefficients; true coordinates implies zero Hamel coefficients.

It is straightforward to show that the three-index Hamel coefficients are skew-

symmetric in the lower indices: γr
ak = −γr

ka. The skew-symmetry property can be

used to show that the three-index Hamel coefficient term (Hamel’s Coriolis force

vector) is orthogonal to the quasi velocities and is therefore nonworking.

ωkγ
j
ki ωiωj =

1

2
ωk

(
γj

ki − γj
ik

)
ωiωj (3.16)

=
1

2
ωkγ

j
kiωiωj − 1

2
ωiγ

j
ikωkωj

= 0

(The indices within each term are repeated and therefore their labels may be freely

changed.) It is well known that the Coriolis force term in the Lagrangian treatment

does mechanical work according to

θ̇T C(θ, θ̇) =
1

2
θ̇T

[
θ̇T ∂M

∂θ
θ̇

]
(3.17)

For catastatic systems [1] (i.e., aj = bj = 0), the two-index Hamel coefficients simplify
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(equation (3.14)):

γj
k = Abk (∂Bjb/∂t) (3.18)

whereas for scleronomic systems1 (i.e., aj = bj = 0 and ∂Bjb/∂t = ∂Ajb/∂t = 0), the

two-index Hamel coefficients vanish altogether:

γj
k = 0 (3.19)

The special set of quasi velocities depend on the Cholesky decomposition of Mαβ .

This decomposition is guaranteed to exist because Mαβ is symmetric, positive definite.

The Cholesky decomposition takes advantage of the symmetry of the mass matrix and

requires n3/6 (addition and multiplication) mathematical operations. The inversion of

the upper-triangular matrix B (it’s needed to compute the Hamel coefficients) requires

an additional n3/6 operations [12]. The eigenstructure quasi velocity formulation of

Junkins and Schaub uses the spectral decomposition of the mass matrix, which is

also requires O(n3) operations. The approach of Jain and Rodriguez requires O(n)

operations, but their method is tailored for tree-like multibody systems.
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CHAPTER IV

COMPUTING HAMEL COEFFICIENTS

A diagonal form for the equations of motion of general mechanical systems is achieved,

as explained in the previous chapter, using quasi velocities that are based on a

Cholesky decomposition of the mass matrix. Unfortunately, like the forms of Jain

and Rodriguez and Junkins and Schaub, the quasi velocities create coefficients that

are based on the partial derivative of the mass matrix factorization. Consequently,

closed-form expressions for the coefficients can be difficult to obtain. Unlike the spa-

tial filtering and smoothing method of Jain and Rodriguez or the additional matrix

differential equation approach (and the associated concern with crossing eigenvalues)

of Junkins and Schaub, a newly developed operator overloading technique to auto-

matically generate the coefficients through exact partial differentiation together with

numerical evaluation will be used.

This newly developed automatic differentiation program is called OCEA (Object-

Oriented, Coordinate Embedding Approach). The OCEA package, currently pro-

grammed as a FORTRAN90 (F90) extension, is an object-oriented, automatic differ-

entiation manipulation package [13].

The strength and benefit of automatic differentiation is that it is an approach

that invokes the chain rule automatically and takes place in the background, without

user intervention. The key to the OCEA method is that certain variables are declared

as embedded. These variables represent abstract data types, where hidden dimensions

(background arrays) are used for storing and manipulating partial derivative calcula-

tions. For example, in a “second-order” version, OCEA replaces each scalar variable,
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f , that is a function of an embedded variable, x, with a differential n-tuple.

f(x) =
[
f(x) ∂f/∂x ∂2f/∂x2]

=
[
f(x) ∇f(x) ∇2f(x)] (4.1)

The introduction of the abstract differential n-tuple allows the computer to continue

to manipulate each scalar variable in a conventional way, even though the first- and

higher-order partial derivatives are attached to the scalar variable in a hidden way.

The individual objects of f are easily extracted by proper variable dimensioning.

For example, if Df is dimensioned as a n × 1 variable, then the statement Df = f

automatically extracts the gradient part of f , i.e., ∇f .

The automatic computation of the partial derivatives is achieved by operator-

overloading methodologies that redefine the intrinsic mathematical operators and

functions using the rules of calculus. For example, addition and multiplication are

redefined as follows.

a(x) + b(x) =
[
a + b ∇a + ∇b ∇2a + ∇2b] (4.2)

a(x) ∗ b(x) =
[
a ∗ b ∇(a ∗ b) ∇2(a ∗ b)] (4.3)

The addition and multiplication operators are overloaded so that coding the left-side

expressions of the above equations causes all of the right-side computations to be

carried out. Moreover, if z1 = a+b and z2 = a∗b, then computing z3 = z1 +z2 causes

the previous results to be propagated efficiently in the background for all subsequent

computations.

z3 = [a + b + a ∗ b ∇z3 ∇2z3] (4.4)

Additional operations for the standard mathematical library functions, such as expo-

nential and trigonometric functions, are redefined to account for the known rules of
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differentiation.

The true power of OCEA, indeed the “exact partial differentiation together with

numerical evaluation”, is best seen when one deals with composite functions. For

example, consider a function g(x).

g(x) = [g(x) ∇g(x) ∇2g(x)] (4.5)

Then when one defines a function f(g), OCEA exactly performs the partial differen-

tiations.

f(g) = [f(g) ∂f
∂g
∇g(x) ∂2f

∂g2∇g(x)∇g(x)T + ∂f
∂g
∇2g(x)] (4.6)

The numerical evaluations of g(x), ∇g(x), and ∇2g(x) (from equation (4.5)) all par-

ticipate in computing the exact higher-order partial derivatives of f(g). In essence,

this approach pre-codes, once and for all, the partial derivatives required for any

problem and the chain rule is implemented automatically in background operations

that the user neither derives nor codes. At compile time, and without user inter-

vention, the OCEA-based approach links the subroutines and functions required for

evaluating the partial derivative models.

With regard to computing the Hamel coefficients (and focusing on scleronomic

systems), the generalized coordinates are declared as embedded variables, and the

mass matrix is formed. For example, the mass matrix of a rigid two-link manipulator

with parameters denoted as M1, M2, etc., could be coded as follows.

MASS(1, 1) = (M1 + M2) ∗ L1 ∗ ∗2

MASS(1, 2) = M2 ∗ L1 ∗ L2 ∗ COS(q(2) − q(1))

MASS(2, 1) = M2 ∗ L1 ∗ L2 ∗ COS(q(2) − q(1))

MASS(2, 2) = M2 ∗ L2 ∗ ∗2
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The variables q(1) and q(2) are the embedded variables. The Cholesky decompo-

sition of the mass matrix can be computed in a straightforward way, for example,

according to the following statements [7]

B(i, i) = SQRT

(
(M(i, i)−

i−1∑
j=1

B(j, i)2

)
; i = 1, . . . , n (4.7)

B(i, k) =
1

B(i, i)

(
M(i, k)−

i−1∑
j=1

B(j, i)B(j, k)

)
; (4.8)

k = i + 1, . . . , n; i = 1, . . . , n

When computing the Cholesky decomposition, these equations must be used alter-

nately.

Now, because the elements of the Cholesky decomposition depend on the ele-

ments of the mass matrix, which in turn depend on the embedded variables, the

partial derivatives of B with respect to the embedded variables (e.g., ∇B) are auto-

matically computed and evaluated as the elements of B are computed. Consequently,

if DB is dimensioned as an n×n×n array, then the statement DB = B automatically

extracts ∇B ≡ ∂Bij/∂qk, which are terms that help compose the Hamel coefficients

given by equation (3.13).

The key point is that, via OCEA, once the Cholesky decomposition of the mass

matrix is carried out, the partial differentiations that compose the Hamel coefficients

are automatically determined.
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CHAPTER V

HAMEL FORM EXAMPLES

A. Example 1

This first example is used to demonstrate the Hamel Form. Consider the planar

motion of a point mass, m. Let r and θ be the generalized coordinates, where r is

the radial distance from the origin and θ is the angle between the x-axis and a vector

directed to the point mass from the origin: q1 = r; q2 = θ. Suppose the point mass is

acted upon by a radial force F . The second-order Lagrange equations of motion are

as follows:

mq̈1 − mq1q̇
2
2 = F (5.1)

mq2
1 q̈2 + 2mq1q̇1q̇2 = 0 (5.2)

The mass matrix for this choice of generalized coordinates is diagonal, and so is its

Cholesky decomposition.

B = diag

( √
m q1

√
m

)
(5.3)

This leads to the following nonzero Hamel coefficients and the Hamel Form of dynamic

equations.

γ2
21 = −γ2

12 =
1

q1

√
m

(5.4)

ω̇1 − ω2
2

q1

√
m

=
F√
m

(5.5)

ω̇2 +
ω1ω2

q1

√
m

= 0 (5.6)
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Note that for this simple problem, the eigenstructure quasi velocity formulation of

Junkins and Schaub gives the same quasi velocities and hence the same dynamic

equations.

M = CT STSC; C = 1 (5.7)

S = diag

(√
m q1

√
m

)
; B = SC (5.8)

B. Example 2

This second example is used to show that different generalized coordinates lead to

different quasi velocities, and hence, different Hamel coefficients. Consider the planar

motion of a rigid body of mass m and mass moment of inertia, J . The body has three

degrees of freedom. Let q1 be the radial distance from the origin of a fixed reference

frame, O, to the mass center, C; let q2 be the angle between the x-axis and a line

OC; and let q3 be the angle between OC and a reference axis in the body. For this

choice of generalized coordinates, the mass matrix, its Cholesky decomposition, and

the nonzero Hamel coefficients can all be computed.

M =

⎡
⎢⎢⎢⎢⎣

m 0 0

0 J + mq2
1 J

0 J J

⎤
⎥⎥⎥⎥⎦ (5.9)

B =

⎡
⎢⎢⎢⎢⎢⎣

√
m 0 0

0
√

J + mq2
1

J√
J+mq2

1

0 0 q1

√
mJ√

J+mq2
1

⎤
⎥⎥⎥⎥⎥⎦ (5.10)
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γ2
21 = −γ2

12 =
q1

√
m√

J + mq2
1

(5.11)

γ2
13 = −γ2

31 =
2
√

J√
J + mq2

1

(5.12)

γ3
31 = −γ3

13 =
J

q1

√
m(J + mq2

1)
(5.13)

If q3 is replaced with the generalized coordinate φ = q2 + q3, then different quasi

velocities and nonzero Hamel coefficients are obtained.

B = diag

(√
m q1

√
m

√
J

)
(5.14)

γ2
21 = −γ2

12 =
1

q1

√
m

(5.15)

C. Example 3

This final example is used to compare results from the Hamel Form with those ob-

tained from a traditional second-order Lagrangian formulation. Consider a problem

presented in the dissertation of Schaub [14], discussed on pp. 80-84. The mecha-

nism is a two-link manipulator whose shoulder is inertially fixed but free to rotate.

A linear spring is connected to the tip of the second link and to the inertial posi-

tion (x, y) = (0, 4). Each link has a tip mass. The generalized coordinates are the

angles between the x-axis and the links. This is shown in Figure 1 [14]. The mech-

anism properties and initial conditions are shown in Table I. A constant step size,

fourth-order, Runga-Kutta method within OCEA was used to numerically integrate

the two-link system. The angular histories in Figure 2 are identical to the results

of Schaub, which used the eigenstructure quasi velocity formulation of Junkins and

Schaub. The angular histories were obtained via integration of the Hamel dynamic

equations within the OCEA enviroment.

Figure 3 shows the time histories of the Hamel Form quasi velocities. The time
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Fig. 1. Two-Link Manipulator Example.

histories are smooth and well behaved. A “snap-through” condition, characterized

by large changes in the angular accelerations (θ̈1, θ̈2) can occur for this system when

θ1 ≈ θ2, and this can lead to numerical integration error. When the snap-throughs

occur, the changes in the first time derivative of the quasi velocities are not nearly

as much as the changes in the angular accelerations. Consequently, less error will

appear in the results from integrating the Hamel variables (θ, ω) than the traditional

Lagrangian variables (θ, θ̇).

This system is conservative and so the total system energy is constant. As a

result, one can use the difference between the current energy and initial energy as a

measure of integration error. This is shown in the energy plots of Figures 4 and 5. The

Hamel Form shows consistently less error than the Lagrangian treatment (“Brute”)

throughout the integration, especially during the snap-through periods, when θ1 ≈ θ2.
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Table I. Mechanism Properties and Initial Conditions

Links: l1 = 1/2; l2 = 1/
√

2

Tip masses: m1 = m2 = 1.0

Spring constant: k = 1.0

Initial positions: θ1 = 0; θ2 = 60 deg

Initial velocities: θ̇1 = θ̇2 = 0

Fig. 2. Angular Time Histories.
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Fig. 3. Time Histories of the Quasi Velocities.

Fig. 4. Difference Between the Current Energy and Initial Energy for Ten Seconds.
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Fig. 5. Difference Between the Current Energy and Initial Energy When Integrated

for 100 Seconds.
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CHAPTER VI

COORDINATED RETARGETING AND IDENTIFICATION SYSTEM

Bases, camps, outposts, etc. are critical to effective military operations in hostile

combat zones. Most of these locations, airfields as an example, tend to be at a fixed

location throughout the duration of the conflict. The loss of these locations can have

detrimental effects to almost all aspects of military campaigns. And these adverse

effects typically take considerable manpower and resources to correct, if they are

reversible at all. Therefore, these locations are high priority targets for an engaging

force. Accordingly, they are also critical positions to be defended. Governmental

buildings can also be threatened, especially with today’s para-military and terrorist

threats. The same priorities could be applied to these areas during tense or unrestful

political situations.

The use of automated, unmanned systems provides many benefits to the protec-

tion of a military/governmental system. First and foremost is the reduction in risk

to human life. A sentry force can be augmented or even eliminated with the addition

of unmanned weapon systems. Another benefit is that these systems are always “on

alert”, regardless of the time of day or duration of deployment time. A third benefit

is the reduction of base resources. These systems do not need to be fed, clothed or

have quarters, although the trade off is they need to be powered and maintained.

Intentional decoys of weapon systems placed in visible locations can fool electronic

and even human reconnaissance into believing that system is genuine. This can be a

deterrent to further aggression. Also, depending on the size of the systems, they could

possibly be hidden from sight as well. The sudden appearance of these systems could

surprise, confuse, and impede an attacking force. They can be used as the front-line

defense and absorb the initial attack and give the defense ample time to coordinate.
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A. Outline of Retargeting Scenerio

The goal of the proposed scenario is to minimize damage by targets to the area being

protected while also attempting to keep communications between the fully automated

weapon systems low. Secondary goals are to maximize the number of targets elimi-

nated and achieve the finished scenario in minimum time. Multiple weapon systems

are deployed and are stationary, but have the ability to pan and tilt. The opposition

consists of multiple targets that clearly outnumber the weapon systems. Additionally,

further targets will continue to appear throughout the exercise that were not present

initially.

Each target will start randomly within the field of operation. They all follow

trajectories towards the protected area. They travel at different speeds, and each

target has a different “damage level” which it inflicts on the protected area. A target

is considered to damage the area to be protected when it has passed through the

defensive line of weapon systems. The actions and decisions of the weapon systems

will be completed in real-time. The weapon systems have no prior knowledge of any

target data.

B. Target Identification

One more important aspect of the overall system is target identification. A set of

cameras with a small and more detailed field of view are required. These cameras

need to return readable pictures from large distances and highly detailed pictures

from short distances. This can have uses with the retargeting system. One use is for

the retargeting system to identify the targets themselves from a preset set of images.

Or a human user, who does not need to be onsite, can control the camera system

as well. This will allow the user to examine the pertinent area and possibly make
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decisions based on the images.

Because of the detail need, these cameras will have large lenses attached to front

of the cameras. It is impractical to physically move the camera and its large lens

system in a pan and tilt motion. However, a mirror system can be used to alleviate

this problem. Two mirrors will be used to redirected the beam where commanded.

Each will rotate about one axis, representing the pan and tilt directions.
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CHAPTER VII

CONTROL ALGORITHMS FOR RETARGETING SYSTEM

To accomplish the scenario established in the previous chapter, the weapon systems

must operate autonomously. While developing the scenario, certain assumptions and

guidelines were set up to demonstrate the simulation. They are listed below.

• Targets are randomly placed in the region. Their trajectories are also random

to the extent that they all travel in the general direction towards the protected

area. The targets velocities are random as well.

• The targets velocities are constant, and they travel in straight lines

• The targets damage capabilities are randomly assigned.

• Additional targets can appear in the zone of interest after the start time and

follow the above items.

• The weapon systems are in fixed locations, randomly chosen – though staggered

to somewhat evenly span the vicinity.

• The weapon systems know the current position and velocity of the targets.

• The weapon systems have unlimited ammunition. Once the weapon system and

target are aligned, the target is considered destroyed.

• The weapon system’s two degrees of freedom, pan and tilt, can move at different

rates.

There are also specific properties of the scenario to be explained.

• The protected area starts with a “health” of 150.
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• The targets damage rating is between 0 and 200 and time to impact ranges

from five to forty seconds.

• The weapon systems have a maximum slew rate of ten degrees per second.

The next sections will outline the developed control algorithms.

A. Method 1: Closest Target

In this method, each weapon system determines which target it can reach first and

chooses that target. This is typically the closest target with respect to the angle

between the turret and the target. In some cases, however, it is not. A target can

be moving away from the weapon system, thus increasing its slew time. Therefore

a farther target moving towards the weapon system could be targeted sooner. The

only information passed between the weapon systems is the declaration of target, to

prevent multiple assignments of targets.

The computing needs of the weapon systems are very minimal. As a result, the

communication requirements are very minimal. The weapon systems do not have a

waiting period to either send or receive a communication. They also do not need a

response from their outgoing messages to proceed.

However, this is far from an optimal approach. Situations can easily be conceived

to show the shortcomings of this control method. The one advantage of this control

technique is speed. Always choosing the closest target allows the weapons system to

routinely eliminate more targets than the other algorithms. The major problem is

that the weapon systems can not differentiate between high and low damage targets.

They do not have any awareness if a target is critical to the protected area or not.

Thus, there is a dependence on luck if critical targets are targeted.

Another problem is choosing targets at a distance rather than nearby. This
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algorithm only analyzes which target has the shortest slew time. Thus the weapons

systems have no ability to distinguish depth of targets. Just like with the previous

problem, the weapon systems are just as likely to aim for a target thirty seconds out

compared to five seconds away.

When a new target appears within the time frame, each weapon system will

determine if the new target has a shorter slew time. If the new target has a shorter

slew time, the weapon system will disengage its current target and proceed to slew

towards the new target.

Because of the minimal communication and computing power required, this al-

gorithm is robust in a chaotic military environment. This algorithm would be the

backup plan in the case that communication with the other weapon systems became

erratic or non-existent.

B. Method 2: Auction Control

This control method has an overseer or an “auctioneer” to assign targets to weapon

systems. The auctioneer does not have to be a separate entity; it can be one of the

weapon systems. This auction system alleviates the problems of the previous control

system of determining target priorities.

When a weapon system(s) signals that it is idle, the auction process begins

[15]. The auctioneer determines the target with the highest priority, and then relays

this information to the weapon systems. Each weapon system returns a bid to the

auctioneer. The winning weapon system gets the target, and the process continues

with the auctioneer determining the next high value target and bidding until all the

weapon systems are busy.

How the auctioneer determines the highest priority targets is dependant on a set
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of metrics defined beforehand [16]. For this scenario, the damage rating of the target

and it’s time to impact are the key properties of the targets. Time to impact is more

informational than strictly velocity or distance from the protected area alone.

In a simpler case, one can just auction off the quickest to impact or the most

powerful targets first. However, the goal is to prevent as much damage as possible

to the protected area. Just choosing the target with the highest damage could force

the weapon systems to aim at targets far way and let closer ones pass through.

Alternatively, always choosing the quickest to impact could send the weapon systems

chasing targets with minimal damage properties while harder hitting targets slip past

the weapon systems.

A mix of these two properties is sought after. Below are the metrics used to

determine which target will be auctioned.

Step one Search for all targets within fifteen seconds of impact that do at least

ten percent damage to the protected area. This step allows the auctioneer

to find the closest targets but cautions against chasing weaker targets. If

more than one target appears in this list, the auctioneer will auction off

the target that does the most damage.

Step two If no targets are found in step one, find any target within twenty-

five seconds that will do eighty percent or more damage to the protected

area. This is a look-ahead feature. It is possible for weaker targets to be

by-passed by step one. Again, this will caution against chasing weaker

targets. It is more imperative to knock out critical damaging targets. If

more than one target appears in this list, auction off the closest.

Step three Find any available target. If no targets appear in step one or two,

this step will guide the weapon systems after all remaining targets. This
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is the first step the auctioneer could possibly look for targets past twenty-

five seconds to impact. If more than one target is on this list, target the

closest.

Step four Assign a target to multiple weapon systems. This step will be

reached once the number of weapon systems is greater than the number

targets. The auctioneer will simply tell the weapon system to find the

target with the shortest slew time and engage.

Once the auctioneer determines the target with highest priority, the weapon systems

must place a bid. For this scenario, this bid is simply the estimated time for the

weapon system to slew to the target. This is the only property of this scenario that is

pertinent to the abilities of the weapon systems. Whichever weapon system has the

shortest slew time, wins the bid.

This control algorithm also has the ability for preemption. If a new target ap-

pears, the auctioneer could recalculate the priorities of the current targets. If the

new target is more of a threat than current targets, the auctioneer will disengage all

weapon systems targeting a lower prioritized target. The auctioneer would then bid

off the new target, followed by the previous targets until all the weapon systems are

active again.

Once again, the computing power need for the auctioneer is minimal. The other

weapon systems computing power needs are even less. These weapon systems will

need to communicate more often than the first method, and the communications are

more detailed (declaring idle, getting target, sending bid, getting response). However,

each weapon system is only communicating with one entity. There is no need for the

weapon systems to be able to receive commands from each other.

From an operational point of view, having the entire decision making going
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through one entity is precarious. If for some reason the auctioneer is disabled, even

with the weapon systems automatically switching to the closest target method, the

results could be disastrous. Thus, to ensure stability, other computers (either sepa-

rate machines or other weapon systems) need to be able to take control in case of loss.

This increases the complexity of the programming required in the weapon systems.

It is still true that each weapon system will still only be communicating with one

auctioneer, but they also now need the ability to also communicate with the backups

as well.

C. Method 3: Targets of Opportunity

An area of improvement with the auction method is the ability to hit additional

targets of opportunity along the path to the main target. For example, when a

weapon system wins a bid for a target, the weapon system will slew towards the

intended target. It is quite possible along the way towards the intended target, the

weapon system will pass another target. The weapon system could possibly neutralize

that target also and still hit its initially assigned target. This could greatly reduce

the time needed to eliminate targets and increase the survivability of the protected

area.

Having the weapon systems find targets of opportunity will not greatly increase

the workload of the weapon systems. The first step of this new algorithm is the same

as the last method, a weapon systems will find their priority target. Now, during the

weapon system’s the initial movement, the weapon systems will attempt to find extra

targets. However, one cannot allow the weapon systems to look at all the available

targets. It is time consuming, and a majority of the targets are not reasonably nearby.

Therefore, the weapon system will only look for targets that are in the same direction
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of the priority targets, which is a logical subset of targets.

Unfortunately, applying this in a straightforward manner actually reduces the

ability to minimize damage to the base. An example is shown in the figure below.

DMG = 140

DMG = 5

DMG = 160

DMG = 1

DMG = 4

Fig. 6. Proposed Target Scenario.

Using the auction method, the weapon system would aim toward the target with the

160 damage rating, and then next slew to the target with the 140 damage rating.

The other three targets would hit the protected area and result in a total damage to

the area of 10. Without any restraints on finding targets of opportunity, the weapon

system would hit all three targets on the way to the 160 target. However, the 140

target would reach the protected area before the weapon system could swing back.

While an extra target was neutralized compared to the first case, 131 extra damage

was applied to the protected area.

Even though this is a more extreme example, it demonstrates a valid point.

More often than not, the targets of opportunity are not the mission critical targets.

If these targets were more important, they would already have been auctioned off. So

while this action maximized the number of targets hit, it did not minimize damage
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to the protected area. And minimizing damage to the protected area is vitally more

important than the maximum number or targets eliminated.

Therefore a limit must be put on the number of targets a weapon system will

queue before its priority target. Remembering that these targets of opportunity are

not deemed the most critical targets, this limit will be set to only one additional

target. There are a few criteria which need to be met for the weapon system to

decide to target and additional target.

The weapon system will estimate its time to slew to the new target, and then re-

estimate its slew time to the original target. Of course, there is a degree of uncertainty

in propagating the future re-estimate of the original target. Therefore, if the new

estimate of reaching the original target occurs when the original target is less than

ten seconds from reaching the protected area, the target of opportunity will not be

targeted.

If there is more than one target along the path to the auctioned target, the

weapon system will choose the target of opportunity which predicts the quickest to

reach the intended target. This choice will ensure that the weapon system will not

waste extra time chasing an alternate target.

This new algorithm will increase the computing power of the weapon systems, but

they are only minor calculations. The large increase will come in communications.

Each weapon system will have to relay its new target of opportunity to the other

weapon systems and to the auctioneer. This will eliminate two or more weapon

systems aiming at the same target.
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D. Method 4: Initial Decisions

The scenario is defined for a multitude of targets to appear suddenly all at once. Then

as time progresses, additional targets appear, but not nearly with the magnitude of the

first wave. One area to possibly increase the efficiency and optimality of the targeting

system are the initial choices for targets. The method would determine the angular

optimal choice for the first two targets for each weapon system. Determining the order

that n number of weapon systems will target the 2n targets and their respective order

is a challenging task to be completed in a real-time environment. The reason for an

angular optimal solution over a more favorable time optimal solution is the real-time

constraint. In the auction process, the weapon systems create their bid of slew time

to the target by propagating the future. This single operation alone does not take

any substantial amount of time. However, with three weapon systems and six targets

are chosen to sort, that could require up to ninety different combinations of have slew

times computed. This can not be done in a real-time environment, when seconds

matter greatly. On the other hand, the instant angular distance between the weapon

systems and the targets can be computed promptly.

This technique can only be used for two or three weapon systems. Four or more

weapon systems can not be computed within reasonable time limits. With three

weapon systems, six targets will be chosen for targeting. Worst case possibility, there

are 600 different possible paths for the weapon systems to take that would need to

be searched. This can still be accomplished in under half of a second. If there are

four weapon systems, eight targets would be chosen. Worst case now leads to 1680

possible solutions. This leads to difficulty in computing the optimal solution in short

time.

The first step is to identify the 2n targets to be considered. The auction process
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already defined earlier will determine these targets. Once these targets are defined,

the next step is finding the cost of all the possible combinations for the first round of

targets and sort them. For this problem, the cost of the operation will be the angular

distance needed for the weapon system to slew to the target. For the two weapon

system scenario, the possible paths are for weapon system one to aim at target one

and weapon system two to aim at target two. Or targets 1 and 3, or 1 and 4, or 2

and 1 etc.

To efficiently sort the various costs, a binary heap sorting process will be used

[17]. A traditional sorting routine where each value is ranked lowest to highest requires

O(n) computations to sort, add or delete items from list. A binary heap will have the

lowest value at the top of the sort, but all the values below are not sorted from the

next lowest to highest. This suits this application, since only the lowest cost at the

present time is needed. Organizing a binary heap only takes O(log2n) computations.

The next step is to remove the lowest cost path from the top of the heap, and

expand it to find costs to the second set of targets. These new costs are now put back

into the heap and organized accordingly. This process of removing the lowest cost and

expanding the possible paths will continue until the lowest cost available contains both

levels of targets. This solution is guaranteed to involve the least amount of angular

movement of the weapon systems at that exact time.

Unfortunately, the targets are moving. Thus, finding the lowest angular distance

does not guarantee this path will eliminate the targets in the shortest time. For exam-

ple, target A could be farther away from the weapon system than target B. Therefore,

this algorithm would choose the weapon system to pursue target A. However, target B

is moving towards the weapon system, whereas target A is moving away. The weapon

system would actually hit target B first, even though it was farther away initially.

Once the path is found, this information is relayed to the weapon systems, and
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the rest of the operation would be completed using the “targets of opportunity”

method. The algorithm would essentially have the same amount of communications

required as the “targets of opportunity” method.

E. Control of Weapon Systems

The control of the weapon systems uses a simple kinematic exponential control based

on the error between the angle where the weapon system is currently pointing and

the desired target. A rate limited is put onto the slew to more accurately model a

dynamical system. Figure 7 displays a weapon system and its intented target. Let

θcurrent

θ desired

Target

Weapon System

Fig. 7. Diagram of Weapon System and Target.

the error, ε be defined as the current angle minus the desired angle

ε = θcur − θdes (7.1)
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Taking the time derivative and rearranging equation (7.1) gives

θ̇cur = ε̇ + θ̇des (7.2)

Now lets define the weapon system’s slew rate ω as

ω = θ̇des − kε (7.3)

ω is the same term as θ̇cur, thus substituting equation (7.3) into equation (7.2)

ε̇ = −kε (7.4)

The solution to equation (7.4) is

ε(t) = εoe
−kt (7.5)

Therefore the error will always be driven to zero. The update equation for control of

the weapon systems is as follows

θ̇cur = ω = θ̇des − k (θcur − θdes) (7.6)
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CHAPTER VIII

CONTROL ALGORITHM TRADE STUDIES

A. Example 1

Table II. Retargeting Simulation 1

3 weapon systems and 6 targets

Gun 1 Gun 2 Gun 3 Time to Complete

Method 1 3 2 1 10.2 seconds

5 6 4

Method 2 3 5 6 10.6 seconds

1 2 4

Method 3 3 2* 6 9.2 seconds

1 5 4

Method 4 6 3 2 9.6 seconds

5 1 4

The first simulation shown involves three weapon systems and only six targets.

This is a simple case and does not follow the design of the scenario involving a clear

majority of targets. Even in this simple case however, all four methods chose a

different order to eliminate the targets, as shown in Table II. Notice that method

4, the angular optimal choice, actually was not the fastest time to complete. If the
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targets were stationary, then method four would have the shortest time. However,

because the targets are all moving, the final slew distances will be different than the

original amount. Method 3 delivered the shortest completion time. The star on the

target signifies that it was a target of opportunity, and chose that target before its

priority target.

B. Example 2

Table III. Retargeting Simulation 2

3 weapon systems and 18 targets

Time to Complete Final Base Health

Method 1 15.0 sec. -252

Method 2 34.4 sec. -14

Method 3 34.8 sec. 40

Method 4 32.4 sec. -150

Table III details a simulation with three weapon systems and eighteen targets.

This simulation is noteworthy as method 3 was the only method to successfully com-

plete the mission. Method 4 failed because of its initial choices, ironically. Two of

the weapon systems could not actually slew to their second targets before the targets

reached the protected area. Once again, method 4 does not account for the targets

moving towards or away from the weapon systems. Therefore, there is no guarantee

that the weapon systems could actually reach the target in time, just a guarantee that

at the initial time, the choice delivers the least angular distance required. Table IV

shows the decisions made by the weapon systems in deciding which targets to target.
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Method 3 was able to eliminate one extra target, and that the was difference between

success and failure for the scenario. The starred numbers represent that target being

a target of opportunity. Table V highlights the target information.

Table IV. Weapon Systems Target Choices

Method 2 Method 3

Gun 1 Gun 2 Gun 3 Gun 1 Gun 2 Gun 3

17 6 5 17 6 5

12 8 16 11* 8 16

7 13 3 12 13 3

10 9 7 9

1 11 2 10

2 14*

4 1

4

C. Example 3

This example ran through 250 cases of sixteen targets and three weapon systems.

Their averages are shown in Table VI. Method 3 on average had the best results

of the three methods tested. The average health column shows the average ending

base health, with the protected area starting with 150. The next column shows the

average time to complete the scenario and the last column shows how many times

the scenario was completed successfully (final base health greater than zero).
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D. Conclusion

The algorithm that achieved the best results was the auction control looking for tar-

gets of opportunity. Finding targets of opportunity greatly enhanced the survivability

of the weapon system over the basic auction method. While on some occasions, the

angular optimal algorithm achieved better results, as in example 3. Most instances

though, it would not even achieve better results than the simple auction control.

Even in the simple case of example 1, the angular optimal choice actually was not

the fastest algorithm to complete the task. This lies in the fact that the algorithm

does not take advantage of all the information available to the weapon systems.

The target of opportunity method could be expanded to look at more than one

target before its priority target. Careful consideration should be heeded to ensure

that the weapon systems do not spend time chasing less important targets.
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Table V. Target Data for Example 2

Target Damage Time Target Damage Time

Number Level to Hit Number Level to Hit

1 109 38.4 10 48 29.1

2 95 32.5 11 167 36.7

3 121 29.2 12 165 32.6

4 66 34.9 13 43 25.4

5 102 12.3 14 54 31.9

6 171 12.1 15 55 32.2

7 112 31.1 16 194 19.2

8 48 12.4 17 81 10.1

9 44 26.4 18 55 33.8

Table VI. Averaged Results for 250 Simulations

3 weapon systems and 16 targets

Ave. Health Ave. Time Successful Scenarios

Method 1 -86.03 17.23 82

Method 2 27.18 28.69 147

Method 3 47.06 36.12 189

Method 4 -12.74 29.12 125
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CHAPTER IX

TARGET IDENTIFICATION

Another area of interest within the retargeting scenario is target identification. Po-

sitioning cameras in the scene will allow either the computers or users to identify

targets and make decisions about the target. These decisions could be as simple as

friend or foe, or the images can be used to determine a specific point of attack at a

target. Thus, these cameras need to be able to pan, tilt and zoom. A two mirror sys-

tem was deemed necessary to control the pan and tilt of the camera. This reasoning

is explained below.

A. Two Mirror System

These cameras are required to see objects at an extreme distance. Therefore, large

lenses are necessary on the camera. Since it is not possible to mount a rotation device

to the lens device, it must be mounted to the camera. This will create a considerable

moment of inertia to control. Using a mirror system to redirect the image into the

camera instead of physically moving the camera alleviates many problems. The first

problem eased is pan and tilt speed. It will be much faster to rotate a mirror with

considerably less inertia than the whole camera system. Settling time could also be

improved, for much of the same reason as pan and tilt speeds. Settling time also

can be reduced because the smaller motors which do not have to deliver as much

torque tend to be more responsive also. Further, the camera needs to be calibrated

to be accurate, and physically moving the camera system greatly increases the risk

of altering the camera internal properties. A two mirror system, each rotated in only

one direction was chosen over one mirror system able to rotate in two directions.

This decision was chiefly based on the available range of motion of the systems. A
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two-axis device is not able to pan and tilt as large of an angular range as a two mirror

system would. An example of a camera and mirror system is shown in Figure 8. The

camera would be mounted inside of a building or a protective box to reduce the risk

of damage to the camera system.

Fig. 8. Camera and Mirror Example.

B. Determination of Mirror Pan and Tilt Angles

The user will have some kind of interface, such as a joystick, to control the camera.

The user would input a command as if he was physically controlling the camera. He

might want the camera to pan to the right a certain distance. However, this does not

map identically to just moving the mirror responsible for panning the same distance.
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A relationship must be found to coordinate a move in the real world to the rotation of

the mirrors. This section will explain how given a certain point in three dimensional

space, what the ensuing mirrors angles need to be to capture that image point.

To begin with, a few coordinate systems need to be defined. These are mutually

orthogonal systems and are depicted in Figure 9.

{ci} (fixed) camera system/world system

{di} mirror 1 system

{ei} mirror 2 system

The camera system is aligned such that c2 points straight out of the window. Each

mirror system is aligned such that d3 and e3 is normal to the mirror plane and d1,

d2, e1 and e2 lie in the mirror plane.

(fixed) camera
coordinate system

mirror 1 
coordinate system

c1

c2

c3

d1

d2d3

Fig. 9. Coordinate System Depiction.

Now consider the vector u. This vector is coordinatized along the camera system

axes as u = 0c1 + 1c2 + 0c3. The column matrix representation of this vector is

[u]c = [0 1 0]T. This vector represents the camera pointing straight out from its

platform. Next, this vector needs to be represented in the mirror 1 coordinate system.

Let C be the orthonormal rotation tensor that performs the transformation of a vector
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coordinatized along the camera system axes to a coordinatization along the mirror 1

axes.

[u]d = [C][u]c ; [u]c = [C]T[u]d (9.1)

The vector u coordinatized along the mirror 1 axes is now u = C12d1+C22d2+C32d3,

which in column matrix form is simply [u]d = [C12 C22 C32]
T.

This vector u that is now coordinatized along the mirror 1 axes is the incident

vector on mirror 1. The reflected vector is also important to know. Figure 10 is an

example of the incident and reflected vector relationship. The reflected vector from

incident vector reflected vector

plane of mirror

Fig. 10. Incident and Reflected Vector.

mirror 1 is given by the following equation, where r is the reflected vector and n is

the vector normal to the (mirror) plane.

r = u − (2u · n) n (9.2)

This coordinatization of the reflected vector may be written in terms of the coordi-

natization of the incident vector using a reflection matrix R.

[R] =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 −1

⎤
⎥⎥⎥⎥⎦ (9.3)
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The reflected vector may be coordinatized along the camera system axes as such.

[r]c = [C]T[r]d

= [C]T[R][u]d

= [C]T[R][C][u]c (9.4)

Let T be the orthonormal rotation tensor that performs the transformation of

a vector coordinatized along the camera system axes to a coordinatization along the

mirror 2 axes.

[r]e = [T ][r]c ; [r]c = [T ]T[r]e (9.5)

Here the vector [r]e is the reflected vector from mirror 1 coordinatized along the

mirror 2 axes. Likewise, this vector also represents the incident vector onto mirror

2. They are the same vector. Similar to before, the reflected vector from mirror 2

can be related to the incident vector on mirror to as [w]e = [R][r]e. Then the vector

w can then be transformed from the mirror 2 reference frame to the camera system

reference frame from equation (9.5). This vector, [w]c, represents the location that

the user of the camera system would want the camera to be pointing towards. The

final matrix result is obtained by combining all the previous transformations.

[w]c = [T ]T[R][T ][C]T[R][C][u]c (9.6)

Equation (9.6) details how a vector u is redirected to vector w as a consequence of

the orientations of mirrors 1 and 2.

1. Parameterization of the Transformations

Now that the transformation matrices have been defined, they must be parameterized.

First, an overview of how the mirrors are to be rotated. Mirror 1, the mirror closest
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to the camera, will be responsible for panning. If looking directly out of the camera,

this mirror would rotate left and right. Mirror 2 would thus rotate up and down.

This is depicted in Figure 11 where the camera is on the left side of the picture.

incident vector
on mirror 1

reflected vector
from mirror 1

incident vector
on mirror 2

reflected vector
from mirror 2

pan rotation (φ)

tilt rotation (δ)

Fig. 11. Mirror Pan and Tilt Depiction.

Let C, the orthonormal rotation tensor that performs the transformation of a

vector coordinatized along the camera system axes to a coordinatization along the

mirror 1 axes, be parameterized using Euler angles. The mirror 1 axes are tilted at a

constant angle of forty-five degrees, which can be viewed as a 1-axes Euler rotation.

The variable pan angle, φ, can be viewed as a 2-axes rotation.

[C] =

⎡
⎢⎢⎢⎢⎣

cos φ 0 − sin φ

0 1 0

sin φ 0 − cos φ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0

0 cos(π/4) sin(π/4)

0 − sin(π/4) cos(π/4)

⎤
⎥⎥⎥⎥⎦ (9.7)

Let T , the orthonormal rotation tensor that performs the transformation of a
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vector coordinatized along the camera system axes to a coordinatization along the

mirror 2 axes, be also parameterized using Euler angles. The mirror 2 axes are tilted

at a variable tilt angle of θ, which can be viewed as a 1-axes Euler rotation.

[T ] =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

⎤
⎥⎥⎥⎥⎦ (9.8)

Using these parameters together with [u]c = [0 1 0]T, equation (9.6) can be used

to compute the reflected vector from mirror 2 coordinatized along the camera system

axes.

[w]c =

⎡
⎢⎢⎢⎢⎣

(√
2/2
)
sin 2φ

sin2 φ cos 2θ + cos2 φ sin 2θ

sin2 φ sin 2θ − cos2 φ cos 2θ

⎤
⎥⎥⎥⎥⎦ (9.9)

The nominal tilt angle of mirror 2 is forty-five degrees. Therefore, we can write

θ = 45 deg + δ. Now, equation (9.9) can be written in term of δ instead of θ.

[w]c =

⎡
⎢⎢⎢⎢⎣

(√
2/2
)
sin 2φ

− sin2 φ sin 2δ + cos2 φ cos 2δ

sin2 φ cos 2θ + cos2 φ sin 2δ

⎤
⎥⎥⎥⎥⎦ (9.10)

Note that if φ = 0 (no pan) and δ = 0 (no additional tilt beyond the nominal forty-five

degrees) then [w]c = [0 1 0 ]T = [u]c.

Now suppose a desired point in the camera system axes is defined by the coor-

dinates (ω1d, ω3d). The corresponding pan and tilt angles, φ and δ, can be computed

using the elements of ω coordinatized in the camera system axes as given by equation
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(9.10).

ω1d =
(√

2/2
)

sin 2φ (9.11)

ω3d = sin2 φ cos 2θ + cos2 φ sin 2δ (9.12)

Equation (9.11) may be solved for the pan angle φ.

φ =
1

2
arcsin

(√
2ω1d

)
(9.13)

Solving for the tilt angle, δ, is not so straightforward. Equation (9.12) is a transcen-

dental equation. For small pan angles φ, the solution of equation (9.12) is nearly

given by the second term. This can provide a good starting guess for δ

δ ≈ 1

2
arcsin(ω3d/ cos2 φ) (9.14)

Using a standard non-linear least squares solving method [18], it usually only takes

about two iterations to arrive at a solution.



52

CHAPTER X

SUMMARY

A. Hamel Form

A special form of the Poincaré equations, which is called the Hamel Form, was devel-

oped in this thesis. Through this special choice of quasi velocities, a diagonal form

of the equations of motion can be achieved. The coefficients generated by the Hamel

Form are based on the partial differentiation of the mass matrix, and thus closed form

representations are difficult to obtain. However, a newly developed program called

OCEA is used to automatically, and without any user intervention, generate these

coefficients so that numerical integration can follow. Although the Hamel Form is

a diagonal form similar in concept to those of Jain and Rodriguez and Junkins and

Schaub, the quasi velocities of all three methods are generally different. One advan-

tage, as displayed in example 3 from Chapter V, is that integration error with the

Hamel form was less than the traditional Lagrange treatment. This arises because

the quasi velocities generated are much smoother through the “snap-through” of the

system, whereas the traditional accelerations have a more dramatic change in their

values.

B. Coordinated Retargeting and Target Identification

An automated retargeting system provides many benefits to the user of this system.

Most important of these is the almost complete reduction of human risk. This scenario

involved greatly outnumbered weapon systems suddenly inundated with targets. An

auction control system was developed to be operated in real-time to minimize damage

to the protected area. Refining the auction control system by identifying targets of
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opportunity increased the survivability of the system. Another method attempted to

optimally find the first two levels of targets for each weapon system, and then revert

to the auction process afterwards. This process looked only at angular distance, and

not estimated time to slew to target, because of the real-time constraints. Thus, in

some cases this algorithm will achieve better results, but it can run into problems

when targets are moving away from the weapon system’s slew direction.

Target identification is another aspect within the retargeting system. Due to the

range and clarity needed from these cameras, large lens are attached to the cameras.

This creates problems controlling the pan and tilt ability of the cameras. This diffi-

culty is alleviated by the use of a two mirror system to pan and tilt the image into

the camera instead of physically moving the camera. An algorithm was developed

which given a target point in the real world for the camera to look at, the mirrors

would rotate accordingly.



54

REFERENCES

[1] L. Meirovitch, Methods of Analytical Dynamics. New York: McGraw-Hill, 1970.

[2] J. Papastavridis, Analytical Mechanics. New York: Oxford University Press,

2002.

[3] T. Kane and D. Levinson, Dynamics: Theory and Applications. New York:

McGraw-Hill, 1985.

[4] P. Mitiguy and T. Kane, “Motion variables leading to efficient equations of mo-

tion,” The International Journal of Robotics Research, vol. 15, no. 5, pp. 522–532,

1996.

[5] A. Jain and G. Rodriguez, “Diagonalized lagrangian robot dynamics,” IEEE

Transactions on Robotics and Automation, vol. 11, no. 14, pp. 571–584, 1995.

[6] J. Junkins and H. Schaub, “An instantaneous eigenstructure quasivelocity for-

mulation for nonlinear multibody dynamics,” The Journal of the Astronautical

Sciences, vol. 45, no. 3, pp. 279–295, 1997.

[7] L. Meirovitch, Computational Methods in Structural Dynamics. Rockville, MD:

Sijthoff & Noordhoff, 1980.

[8] R. Talman, Geometric Mechanics. New York: John Wiley & Sons, 2000.

[9] J. Papastavridis, Tensor Calculus and Analytical Dynamics. Boca Raton, FL:

CRC Press LLC, 1999.

[10] H. Oh, S. Vadali, and J. Junkins, “On the use of the work-energy rate principle for

designing feedback control laws,” Journal of Guidance, Control, and Dynamics,

vol. 15, no. 1, pp. 275–277, 1992.



55

[11] G. Hamel, Theoretische Mechanik. Berlin: Springer-Verlag, 1967.

[12] G. Stewart, Introduction to Matrix Computations. Orlando, FL: Academic

Press, 1973.

[13] J. Turner, “Automated generation of high-order partial derivative models,”

AIAA Journal, vol. 41, no. 8, pp. 1590–1598, 2003.

[14] H. Schaub, “Novel coordinates for nonlinear multibody motion with applications

to spacecraft dynamics and control,” Ph.D. dissertation, Texas A&M University,

College Station, 1998.

[15] W. Vickrey, “Counterspeculation, auctions, and competitive sealed tenders,”

Journal of Finance, vol. 16, pp. 8–37, March 1961.
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