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ABSTRACT 

Stokesian Dynamic Simulations and Analyses of  

Interfacial and Bulk Colloidal Fluids. (May 2006) 

Samartha Guha Anekal, B.E., Mangalore University 

Chair of Advisory Committee: Dr. Michael A. Bevan 
 
 
 

Understanding dynamics of colloidal dispersions is important for several 

applications ranging from coatings such as paints to growing colloidal crystals for 

photonic bandgap materials.  The research outlined in this dissertation describes the use 

of Monte Carlo and Stokesian Dynamic simulations to model colloidal dispersions, and 

the development of theoretical expressions to quantify and predict dynamics of colloidal 

dispersions.  The emphasis is on accurately modeling conservative, Brownian, and 

hydrodynamic forces to model dynamics of colloidal dispersions.  In addition, we 

develop theoretical expressions for quantifying self-diffusion in colloids interacting via 

different particle-particle and particle-wall potentials.  Specifically, we have used 

simulations to quantitatively explain the observation of anomalous attraction between 

like-charged colloids, develop a new criterion for percolation in attractive colloidal 

fluids, and validate the use of analytical expressions for quantifying diffusion in 

interfacial colloidal fluids.  The results of this work contribute to understanding 

dynamics in interfacial and bulk colloidal fluids. 
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1. INTRODUCTION 

1.1. Objectives and Significance 

One of the greatest pursuits of nanotechnology is the ability to fabricate large, 

single-domain colloidal crystals on templates for synthesizing photonic bandgap 

materials.1  This involves carefully controlling interactions on the order of the thermal 

energy, kT.  The two parts of this problem include (1) being able to measure and monitor 

particle-particle and particle-wall potentials, and (2) controlling these interactions to 

assemble colloids on a patterned substrate.  To achieve these two objectives, we require 

a thorough understanding of the thermodynamics and kinetics of these systems.   

Unlike atoms and molecules, colloidal particles experience continuum-level 

viscous forces, whose effect is to slow down dynamics which frequently results in the 

formation of kinetically hindered states like glasses and gels.  This is the main reason 

why large-scale manufacturing of colloidal crystals is still mostly fiction.  While the 

thermodynamics of these systems is fairly well known, the dynamics are very poorly 

understood.  Even for the simplest case of isotropic attractive particles, there are several 

dynamically arrested states such as gels, aggregates, repulsive glasses, and attractive 

glasses.  The ability to accurately model dynamics in these systems is thus critical in 

designing a process for colloidal assembly.  It is therefore useful to develop tools to 

quantify dynamics in colloidal systems.  

___________ 

This dissertation follows the style of The Journal of Chemical Physics. 
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The research outlined in this dissertation describes the use of numerical 

simulations to accurately describe colloidal systems under interacting through colloidal, 

hydrodynamic, and Brownian forces.  These include both traditional Monte Carlo  to 

predict equilibrium behavior, and Stokesian Dynamics2 simulations to model dynamics.  

Coupling these simulation techniques with useful equilibrium and dynamic analyses 

provides valuable information about the system under study.  This knowledge can then 

be used to design and test feasibility of real experiments.   

Our objectives in using numerical simulations for modeling colloidal dispersions 

are broadly two-fold.  First, we have used numerical simulations to interpret 

experimental observations to obtain information about the system under study.  

Secondly, we have used simulations to predict dynamic behavior of colloids under 

different conditions.  Also falling under the second category is verifying the validity of 

expressions to quantify dynamics in colloidal dispersions.  These tools are being used 

synergistically with real experiments to gain valuable information on colloidal dynamics.   

1.2. Background 

Colloidal dispersions are perfect systems for applying so called meso-scale 

simulation techniques.  In meso-scale simulations, the colloidal particles are treated at 

the particle-level, while the surrounding solvent is treated as a continuum.  The 

fundamental assumption in these systems is that the time for momentum relaxation of 

the larger particle is negligible compared to the time for change in particle configuration.  

The theory of Brownian motion developed by Einstein,3 Smoluchowski,4,5 Langevin,6 



 

 

3

Fokker,7,8 and Planck9 is thus applicable for these systems.  According to the theory of 

Brownian motion, the frequent collisions of the solvent molecules with the colloidal 

particles impart a random thermal motion, termed Brownian motion.  The colloidal 

particles are also big enough to be influenced by continuum forces due to the solvent.  

These are called hydrodynamic interactions, arising due to solvent viscous forces, and 

are very important in determining the dynamic behavior of colloidal dispersions.  Thus, 

in simulating systems belonging to the colloidal regime, both particle-level and 

continuum forces have to be considered.2 

The pioneering work in developing a method for simulating colloidal dispersions 

was that of Ermak and McCammon,10 where they started from the Langevin and Fokker-

Planck descriptions of the colloidal dispersion and arrived at an expression for time 

evolution of particle configuration.  In this work, the hydrodynamic interactions between 

particles were treated using approximate functions such as the Oseen11 and Rotne-

Prager12 tensors.  This method, along with other modifications,13-17 is called as Brownian 

dynamics, and are only valid for low particle concentrations, due to the incomplete 

treatment of hydrodynamics.2 

 Bossis and Brady18 developed a general molecular-dynamics type method for 

simulating dynamics of hydrodynamically interacting particles.  They found that 

lubrication forces, which operate at small particle-particle separations could only be 

preserved by a pairwise addition of forces, as opposed to velocities.18  Durlofsky and 

Brady19 developed a method for finite systems, where the hydrodynamic resistance 

tensor was split into far-field and near-field parts.  This was later extended to simulating 
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infinite systems,20 using Beenakker’s21 expression for Ewald summation of the Rotne-

Prager tensor.  The method of Durlofsky and Brady and its extension to infinite systems 

is known as Stokesian Dynamics,2 so called because of the use of Stokes’s equations for 

the hydrodynamic interactions.  Bossis et al.22 used Blake’s23 image representation for 

the Stokeslet of a particle near a plane wall and developed a method of simulating finite 

systems of particles near a plane wall.  Nott and Brady24 and Singh and Nott25 developed 

a formalism for simulating infinite systems near a plane wall by discretizing the wall 

into an array of touching spheres. 

Theoretical expressions for self-diffusion in colloidal dispersions have been 

reported in literature.  Short-time self-diffusion coefficients as a function of the Peclet 

number calculated using Stokesian Dynamics have been reported in literature.26  

Expressions for the long-time self-diffusion coefficient for concentrated colloidal 

dispersions based on the short-time self-diffusion coefficient have also been 

formulated.27,28    

1.3. Dissertation Outline 

This dissertation is organized as follows:  Section 2 describes the theory behind 

Stokesian Dynamics.  This is mainly meant to be a review of well-established theoretical 

methods.  Section 3 deals with some of the practical issues of using the Stokesian 

Dynamics code.  Details about variables, subroutines, and adjustable parameters are 

described in this section.  Sections 4-6 contain the results this research work.  These 

sections are (or will be) individually published.  Finally, section 7 summarizes the 
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conclusions of this work and introduces some current and future work related to this 

dissertation. 

Section 4 describes a simulation study of two negatively charged Brownian 

particles near one or two negatively charged walls, based on earlier experiments reported 

in literature29,30.  Using Stokesian Dynamics simulations to accurately capture multi-

body hydrodynamic interactions, we were able to fully account for observations of 

anomalous attraction between charged colloidal particles near a charged surface.  We 

also proposed new experiments where the same effect was observed, and derived 

effective potentials which quantitatively account for the anomalous observations.  By 

comparing our results to an earlier simulation study,31 we demonstrate the importance of 

accurately constructing the multi-body mobility tensor and its gradient.   

In Section 5 we describe a new dynamic signature for equilibrium percolation in 

attractive colloidal fluids.  The percolation threshold in attractive colloidal fluids is the 

only identifiable structural feature in the equilibrium fluid phase and is an important 

precursor for kinetically arrested states such as gels.  Since the percolation threshold 

does not correspond to a thermodynamic transition, equilibrium distribution functions 

change smoothly across it.  Previous definitions for the percolation threshold are based 

on a definition of connectedness and clustering of particles, which is arbitrary for 

particles interacting via continuous attractive potentials.  In this section, we show that 

the percolation threshold corresponds to an abrupt change in the short-time self-diffusion 

coefficient, DS
S, which we calculate from equilibrium particle configurations.  Since DS

S 

is also related to viscoelastic properties, this also offers a physical definition to the 
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percolation threshold.  Our simulation results act as a verification of a previous 

rheological measurement.32 

In section 6, we report methods to quantify and predict self-diffusion in 

concentrated interfacial confined fluids.  Expression for self-diffusion in three 

dimensions which are based on multi-body hydrodynamic interactions, are extended to 

two dimensions and tested using Monte Carlo and Stokesian Dynamics simulations.  

This section presents a thorough analysis of self-diffusion in interfacial fluids, and 

validates the extension of theoretical expressions for self-diffusion to interfacial fluids.  

This forms a robust test case before using these expressions on experimental data. 
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2. THEORY 

2.1. Synopsis 

This section describes the theory behind Stokesian Dynamics, which is the 

method used in this work for simulating colloidal dispersions.  Stokesian Dynamics is a 

molecular-dynamics type approach for simulating the dynamic behavior of particles 

dispersed in a fluid.  One of the earliest formulation for simulating Brownian particles 

dispersed in a fluid was developed in the pioneering work of Ermak and Mccammon,10 

who, starting from the Langevin equation of motion for particles experiencing a random 

force, arrived at a forward-time step equation of motion for Brownian particles.  This 

work, along with other developments is generally called Brownian Dynamics.  These are 

valid only in the dilute particle concentration regime, because of incomplete treatment of 

hydrodynamics.  A more general method, incorporating all hydrodynamic interactions, 

and thus valid for all particle concentrations, was developed by Durlofsky and Brady19 

and Brady and Bossis,2 which was termed Stokesian Dynamics.  The following section 

describes the development of the governing equations of motion for the particles in a 

fluid medium. 

2.2. Particle Equation of Motion 

Consider N rigid particles of radius a dispersed in a Newtonian fluid of density ρ 

and viscosity µ.  The fluid velocity is governed by the Navier-Stokes equations for an 
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incompressible, isotropic fluid, while the equation of motion for the particles are 

represented by the coupled N-body Langevin equation, which can be written as2,10 

 H P B

t
∂

⋅ = + +
∂
Um F F F  (2.1) 

where m is the mass/moment of inertia tensor of dimension 6N×6N, U is the particle 

translational/rotational velocity vector of dimension 6N, and the force/torque vectors of 

dimension 6N can be broken into three parts: (a) the hydrodynamic forces FH, (b) the 

deterministic conservative forces FP, and (c) the stochastic Brownian forces, FB.  When 

the motion of the particles is such that the particle Reynolds number is small, the Navier-

Stokes equations which describe the motion of the fluid reduce to linear Stokes 

equations, and the hydrodynamic forces exerted on the particles by a bulk linear shear 

flow is2 

 ( ) :H
FU FE

∞ ∞= − ⋅ − +F R U U R E  (2.2) 

Where U∞ is the bulk shear flow velocity, E∞ is the symmetric part of the velocity 

gradient tensor, also called the stresslet, and RFU and RFE are the configuration-

dependent hydrodynamic resistance tensors which relate the hydrodynamic force/torque 

on the particles with the particle velocity and stresslets.  Under the absence of external 

shear or bulk flow, eq. (2.2) reduces to 

 H
FU= − ⋅F R U  (2.3) 

The deterministic, conservative forces FP include interparticle and external forces and 

will be discussed later.  The stochastic Brownian force FB arises due to thermal 
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fluctuations in the fluid.  The statistical properties of the Brownian force are 

characterized by a mean and variance given by 

 
( ) ( ) ( )

0

20

B

B B
Bk T tt δ

=

=

F

RF F
 (2.4) 

Here, kB is Boltzmann constant, T is the absolute temperature, and δ(t) is the Dirac delta 

function.  The angle brackets denote an ensemble average over independent 

configurations.  On the time scale of particle motion, the fluctuating forces can be 

considered instantaneous.  The fluctuation-dissipation theorem requires the Brownian 

contribution to be weighted by the hydrodynamic resistance tensor as shown in eq. (2.4). 

The Langevin equation (eq. (2.1)) is valid provided the configuration of the 

particles does not change significantly during the time scale of Brownian motion, τ = 

m/6πµa, which is also the time scale for momentum relaxation.2,10  This condition is 

satisfied for most colloidal dispersions.  Under these conditions, eq. (2.1) can be 

integrated over a time interval ∆t, larger than the momentum relaxation time scale τ, but 

smaller than the time over which the forces change significantly.  Integrating eq. (2.1) 

twice gives the evolution equation for particle configurations as 

  
( )( ) ( ) ( )

( ) ( ) ( )

1 10 0 0 ,0 0

10, 2

P
Bk T t t t

t t t t

− −

−

= + ∇ ⋅ ∆ + ⋅ ∆ + ∆

= =∆ ∆ ∆ ∆

r r R R F X

RX X X
 (2.5) 

where r is a vector of particle positions, R is the hydrodynamic resistance tensor, X(∆t) 

is the Brownian contribution to particle displacements, and the superscript “0” indicates 
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that each quantity is computed at the beginning of the time interval.  Eq. (2.5) can be 

directly used in dynamic simulations.  From a given initial configuration, the particle 

trajectory can be obtained, provided the conservative forces are specified. 

 For creeping flow, we recall that the hydrodynamic force, FH, is linearly related 

to the particle velocities, through Stokes equations 

 ( )H = − ⋅F R r U  (2.6) 

where R is the 3N×3N resistance tensor that depends only on the instantaneous particle 

position vector, r, which is of order 3N.  Note that the subscript “FU” has been dropped 

from eq. (2.3) since we are interested only in the force-velocity part of the hydrodynamic 

resistance tensor.  To accurately consider both far-field, multi-body and near-field 

hydrodynamic interactions in an N particle system, Durlofsky and Brady,19 and Brady 

and Bossis,2 developed a general method to construct the resistance and mobility 

matrices.  In their method, hydrodynamic interactions are separated into a far-field part, 

which incorporates the multi-body interactions and a near-field lubrication correction.  

The steps for constructing the resistance tensor, R are briefly outlined here.  However, 

the reader is referred to the original references2,19 for a more thorough treatment.  The 

total resistance tensor, R, which incorporates far-field multi-body interactions and near-

field lubrication corrections, is calculated as 

 2 2B B
∞ ∞= + −R R R R  (2.7) 
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The far-field, multi-body hydrodynamic interactions are captured by the first term, R∞.  

The far-field resistance tensor is evaluated by inverting a far-field mobility tensor, M∞ 

as, 

 ( ) 1−∞ ∞=R M  (2.8) 

Under assumption of Stokes flow, M and R have some important properties.  

Both tensors depend only on the instantaneous configuration and not on particle 

velocities.  Also, both tensors are symmetric, as shown by the reciprocal theorem and 

positive definite, due to the dissipative nature of the system.19  The construction of these 

tensors for different cases will be discussed in the following sections.   

2.3. Hydrodynamics 

Colloidal particles are generally surrounded by a viscous fluid.  The behavior of 

the dispersion is hence strongly influenced by hydrodynamic forces generated by relative 

motion of the particles and the fluid.  They are extremely important in dynamic 

simulations because of their long-range (1/r), and multi-body interactions can be 

neglected only under very dilute particle concentrations.   

2.3.1. Stokes equations 

In the dynamic simulation of a colloidal dispersion, the fluid between particles is 

considered as a continuum and the classical Newtonian laws, i.e. the momentum 

conservation principle, is applied to a stationary control volume through which the fluid 

passes.  A balance yields the familiar momentum transport equation,33,34 
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 ( ) ( )
t

ρ
ρ ρ

∂
+ ∇ ⋅ = + ∇ ⋅

∂
u

uu g σ  (2.9) 

where ρ is the density of the medium, u is the fluid velocity, g is the body force per unit 

mass due to gravity, and σ is the stress tensor.  A mass balance across the control 

volume gives 

 ( ) 0
t
ρ ρ∂

+ ∇ ⋅ =
∂

u  (2.10) 

Under assumptions of constant fluid density, eq. (2.10) reduces to 

 0∇ ⋅ =u  (2.11) 

The stress tensor σ, for a Newtonian fluid can be represented as33 

 ( )TP µ ⎡ ⎤= − + ∇ + ∇⎣ ⎦σ I u u  (2.12) 

Where P is the dynamic pressure and I is the identity tensor.  Combining eqs. (2.9), 

(2.11), and (2.12), writing p = P + ϕ, where ρg = -∇ϕ, and assuming constant viscosity, 

µ, we arrive at, 

 2p
t

ρ µ∂⎛ ⎞+ ⋅∇ = −∇ + ∇⎜ ⎟∂⎝ ⎠

u u u u  (2.13) 

This is the Navier-Stokes equation for describing the conservation of momentum in a 

continuum fluid.  The above equation can be written in a non-dimensional form.  

Defining characteristic quantities as velocity (U), length (L), time (L/U), and denoting 

dimensionless quantities by over bars gives,34 
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2

Re p
t

⎛ ⎞∂
+ ⋅∇ = −∇ + ∇⎜ ⎟

∂⎝ ⎠

u u u u  (2.14) 

where 

 
Re

pLp
U
UL

µ
ρ

µ

≡

≡
 (2.15) 

The dimensionless Reynolds number (Re) indicates the relative importance of inertial to 

viscous forces.  

In many problems in colloid science, the Reynolds number is small.  Under such 

circumstances, to a good approximation, the flow is governed by the Stokes equations, 

where the inertial terms in eq. (2.14) are neglected, and the governing equations for fluid 

motion reduce to 

 2

0
p µ

∇ ⋅ =

∇ = ∇

u
u

 (2.16) 

The Stokes equations are linear, implying that a solution to a complicated problem can 

often be arrived at by the superposition of solutions to simpler problems.34 

 The motion of spherical particles in a fluid can be described by the Stokes 

equations.  The velocity at a point on the surface of the sphere, U, the force on the sphere 

F and the torque about the sphere center L, can be calculated from the equations34 
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( )

( )

 
S

S

dS

dS

σ

σ

= + Ω×

= •

= × •

∫

∫

0 0

0

U U x - x

F n

L x - x n

 (2.17) 

Here Ω is the angular velocity of the sphere about its center x0, S is the sphere surface 

and n is the outward positive unit normal.  The problem of solving for the velocity U, 

given the forces and torques, is called the mobility problem, while the problem of 

calculating the forces and torques given the motion of the sphere is called the resistance 

problem.34 

There are several methods to solve the Stokes equations for spheres moving in a 

Newtonian fluid.  Separation of variables leads to a general solution in which the 

velocity and pressure fields are represented by spherical harmonics.35  An alternate 

approach is to use the solutions of Stokes equations generated by a point force, a force 

dipole, etc.  These solutions are fundamental or singular solutions.  Based on the 

linearity of the Stokes equations, these solutions can be combined so as to satisfy the 

boundary conditions of the problem at hand.  This approach is widely used in colloid 

science and is adopted in the Stokesian Dynamics method. 

2.3.2. Singular solutions to Stokes equations 

One of the most important solutions to the Stokes equation is that which 

describes the flow caused by a sphere moving due to an applied force f through an 

unbounded quiescent fluid.34  If the sphere is far away from the source, the velocity and 

pressure fields are similar to that due to a point force of equal magnitude.  Thus the 
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point-force solution provides a far-field approximation and forms the basis of the 

superposition method described before.34 

Using the Dirac delta function to represent the point force, f, the singularly 

forced Stokes equations can be written as 

 ( )2

0
p µ δ

∇ ⋅ =

∇ = ∇ +

u
u x f

 (2.18) 

Oseen11 solved the above equations using Green’s functions.  An alternate solution is by 

taking advantage of the relation between the Dirac delta function and Fourier 

transforms.36  By writing the Fourier representation of the Dirac delta function and 

solving the singular equations, the solution to the point force problem can be obtained as 

 ( ) 3

1
8 x xπµ

⎛ ⎞= + ⋅⎜ ⎟
⎝ ⎠

I xxu x f  (2.19) 

Where I is the identity tensor and x = |x|.  The multiplier of f in eq. (2.19) is the solution 

to the singularly forced Stokes equation known by names such as Stokeslet, Green’s 

function, fundamental solution, propagator function, and Oseen tensor.  It is important 

to note that the derivatives of the Stokeslet are also fundamental solutions to the Stokes 

equations.  

2.3.3. General solutions to creeping flow equations 

The creeping flow or Stokes equations can be solved by two methods.  The first 

method involves dividing each particle surface into elements and then resolving the 

linear system of equations for the force densities subject to the total force and torque 
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conditions.  At close proximities, the number of surface elements required to resolve the 

singular force distributions becomes large.  This becomes computationally expensive 

and hence impractical for dynamic simulations. 

The alternative to describing the flow in terms of a surface distribution of point 

forces is to describe it in terms of a distribution of higher order singularities.  This is the 

multipole expansion method for solving the Stokes equations. The starting point is the 

integral representation for the velocity field in Stokes flow, given by37,38 

 ( ) ( )1( ) ( )  
8

y

y
S

dS
πµ

∞− = − ⋅∫u x u x G x - y f y  (2.20) 

The integration is performed over y and G is the Oseen tensor, a Green’s function and is 

given by, 

 ( ) 3x x
= +

I xxG x  (2.21) 

f(y) is the force density at the point y on the surface of the particle and u∞(x) is the 

velocity field in the absence of any particles.  Expanding the Green’s function in a 

Taylor series about the center of the particle α,37 

 

( ) ( )( )

( ) ( )

1 1 2 2

1 2

0

1
( - )

!

                                
n n

n

n

ij k k k k
n

n
ij

k k
k k k y

G y y
n

G
y

y y y
α

α α

α

∞

=

=

−
= − −

⎛ ⎞∂
− ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

∑x y

x - y
 (2.22) 

In the above equation, i, j, and ks are indices representing coordinates.  The integer n 

determines the order of the multipole expansion.  Using the notation, 
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 ( ) ( )
1 2

1 2

, , , , n

n

n
ij

ij k k k
k k k

G
G

x x x
⎛ ⎞∂

= ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

x
x…  (2.23) 

and combining eqs. (2.20) and (2.22), 

 
( ) ( ) ( ) ( )

( ) ( )( ) ( ){ }
1 2

1 1 2 2

, , , ,
0

11
8 !

                          

n

n n

y

n

i i ij k k k
n

j k k k k k k y
S

u u G
n

f y y y dS

πµ

α α α

∞
∞

=

−
− = −

− − −

∑

∫

x x x

y

…

…
 (2.24) 

This is the multipole expansion for the Stokes flow about a solid boundary in terms of 

higher order singularities.  Note that all the contributions automatically satisfy continuity 

since the Stokeslet and its derivatives are solutions to the Stokes equations.  The 

multipole expansion can also be written as37 

 ( ) ( ) ( ) ( ),
1 1

8 8i i ij j ij k jku u G F G D
πµ πµ

∞− = − + −x x x x … (2.25) 

where the first term (n = 0) is the monopole contribution, the second term (n = 1) is the 

dipole contribution, the next term (n = 2) is the quadrapole contribution, etc. The 

monopole contribution or Stokeslet is due to a point force, 

 1 ~
y

j j y
S

F f dS
x

= ∫  (2.26) 

The dipole or Stokes dipole is due to a force dipole, 

 ( ) 3

1  ~
y

jk j k k y
S

D f y dS
x

α= −∫  (2.27) 
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The difference between the net dipole and its isotropic part can be represented as a sum 

of symmetric and asymmetric contributions as 

 1
3jk ii jk jk jkD D S Tδ− = +  (2.28) 

The symmetric part Sjk is known as the stresslet, and is given by 

 ( ) ( )( ) ( )1 1  
2 3

y y

jk j k k k j j y i i i jk y
S S

S f y f y dS f y dSα α α δ= − + − − −∫ ∫  (2.29) 

The asymmetric part Tjk is known as the rolet, and is given by 

 ( ) ( )( )1
2

y

jk j k k k j j y
S

T f y f y dSα α= − − −∫  (2.30) 

The stresslet causes a straining motion at a point while the rolet results in a point torque.  

The velocity contributions from the different singularities are summarized below. The 

Stokeslet solution for flow due to a point force Fi at the origin is 

 ( ) ( )1
8

s
i ij ju G F

πµ
=x x  (2.31) 

For a stresslet, 

 ( ) ( ),
1

8
ss
i ij k kju G S

πµ
=x x  (2.32) 

and for a rolet, 

 ( ) ( ),
1

8
r
i ij k kju G T

πµ
=x x  (2.33) 
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A few examples of the velocity contributions will be shown below.  These velocity 

contributions can be added together because of the linearity of the Stokes equations.  

Now, the Oseen tensor or Stokeslet, 

 3

1~ij i j
ij

x x
G

x x x
δ

= +  (2.34) 

The derivative of the Stokeslet,  

 , 3 3 3 5 2

3 1 ~ij k ij j ik i jk i j k
ij k

k

G x x x x x x
G

x x x x x x
δ δ δ∂

= = − + + −
∂

 (2.35) 

The quadrapole solutions are more complicated, but one part of the quadrapole known as 

the source dipole is simple and useful and has the form37 

 
( ) ( )2

,

2

, 3 5 3

1 1
2 8

3 1 ~

dp s
i i ij kk j

ij ij i j
ij kk

k x

u u G m

G x x
G

x x x x x

πµ
δ

= − ∇ =

∂
= = − +

∂ ∂

x x

 (2.36) 

2.3.4. Singularity representation for a sphere translating in an unbounded quiescent 

fluid 

The expressions described earlier can be used to calculate the velocity of a sphere 

in a fluid, by adding up different singularities.  A single isolated sphere of radius a with 

center at x0 translating in an unbounded quiescent fluid creates a velocity disturbance, 

which can be written as 

 ( ) ( )2 21 11
8 6i ij ju a G F
πµ

⎛ ⎞′ = + ∇⎜ ⎟
⎝ ⎠0x 0x x - x  (2.37) 
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The sphere acts as a point force G. There is also a quadrapole contribution to the 

velocity due to the finite size of the particle.19  The quadrapole term is also needed to 

satisfy the no-slip condition on the surface of the particle.19  It is worth mentioning here 

that the source dipole term conveniently reduces to the Laplacian of the Stokeslet only 

for a sphere.19  The expansion in eq. (2.37) is sufficient to describe a sphere in a 

quiescent fluid.  For cases where the fluid induces other kinds of motion in the sphere, 

such as torques and stresses, higher order singularities should be considered.  Since most 

of the experiments we wish to simulate lie under the quiescent fluid case, we use eq. 

(2.37) to describe the velocity disturbance of a sphere.  In the presence of multiple 

particles, this description is only adequate when the particle-particle separation is large 

compared to the radius of the particle.  In other words, this expression for the velocity 

disturbance is the so called far-field assumption for the velocity.  In order to describe the 

motion of the particles when they come close together, higher moments are required.  

These higher terms are incorporated in the so called lubrication corrections.2,19  This is 

explained in detail in following sections. 

 Once we obtain the velocity field u´(x), the velocity of the particles can be 

computed by using Faxen’s relations.19 The velocity for a sphere in an unbounded fluid 

can be summarized as 

 
( ) ( ) ( )

( ) ( )

2 2

2 2 2 2

11
6

1 1 11 1
6 8 6 6

i i i

i
i ij j

u u a u

Fu a a G F
aπµ πµ

∞ ⎡ ⎤ ′= + + ∇⎢ ⎥⎣ ⎦
⎛ ⎞⎛ ⎞= + + ∇ + ∇⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠0

x

x x 0

x x x

x x - x
 (2.38) 
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In the following sections, we describe the construction of the hydrodynamic 

resistance tensor R.  Two main situations will be considered, one for finite number of 

particles and another for infinite dispersions. 

2.3.5. Finite particle systems in unbounded media 

For the case of particles far from any surfaces, the far-field mobility tensor, M∞, 

is constructed by summing all two-body far field interactions as 

 ( ) ( ) ( ) ( )2 2 2 21 1 6 1 6i j ij ijM a a Gα β αβ αβ α β α βδ δ δ∞ ⎡ ⎤ ⎡ ⎤= + − + ∇ + ∇ −⎣ ⎦ ⎣ ⎦ r r  (2.39) 

where Mαiβj is the mobility term of particle α in the ith direction due to a force on particle 

β in the jth direction, and G is the Green’s function.19,38  The mobility tensor, M∞ is a far-

field approximation to the true mobility tensor.  It has two basic limitations.  Firstly, the 

far-field tensor breaks down when two bodies get close to each other as it contains only 

second-order terms in the expansion of the Stokeslet (eq. (2.38)).  The multipole 

expansion converges to the true solution only if a very large number of terms are 

considered.19  Secondly, the mobility tensor contains only pair-wise interactions.  Due to 

the long range of hydrodynamic interactions, many body interactions are extremely 

important and have to be considered.  These two issues are resolved in the method of 

Stokesian Dynamics, where by eq. (2.7), the hydrodynamic interactions are separated 

into far-field and near-field parts.  According to this method, first, the mobility tensor is 

inverted to obtain the far-field approximation for the resistance tensor.  Although the 

mobility tensor, M∞, is constructed based on a pair-wise approximation, inverting it has 

the effect of reflecting all force-velocity interactions among all particles.19  Thus, the 
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inverse of the far-field mobility tensor, R∞ = ( M∞)-1, is a true far-field approximation to 

the many-body resistance matrix.19  

 This many body approximation to the resistance matrix still only describes the 

far-field hydrodynamics.  To account for the near-field part, lubrication corrections are 

needed.  There are some advantages in separating the far-field and near-field 

interactions.  Unlike the far-field hydrodynamic interactions, the near-field interactions 

are mainly two-body interactions, and hence, lubrication can be added to the far-field 

resistance matrix in a pair-wise fashion.2,19  To properly account for near-field 

lubrication forces, first a known exact two-body resistance tensor, R2B, is added to the 

far-field resistance tensor R∞.  The exact two-body  problem has been solved by Jeffrey 

and Onishi,39 who report the hydrodynamic resistance tensor in the notation of 

Batchelor40 

 

( ) ( ) ( )

( ) ( ) ( )

2 2

2           

i j
B i j

i j
ij

R A

B

α β α β

α β αβ α β

α β

α β α β

αβ α β

α β

δ

⎛ ⎞− −
⎜ ⎟= −
⎜ ⎟−⎝ ⎠
⎛ ⎞− −
⎜ ⎟+ − −
⎜ ⎟−⎝ ⎠

r r r r
r r

r r

r r r r
r r

r r

 (2.40) 

where the coefficients Aαβ(r) and Bαβ(r) are calculated by solving the exact two-body 

hydrodynamic problem.33,39  The functional forms are given in terms of a normalized 

surface-to-surface separation, s = r/a.  The A functions are calculated using the following 

expressions39 
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where the different constants are given by 

   
( )( )

( )

1 2 2

1 2 3

1
0

2 2 1
0.25, 0.225, 0.0268

2

m m

k
k

k k q q
q

m m
g g g

f P

δ δ

−
=

= − + − −

= = =

= ∑

 (2.42) 

The P functions are based on recursive solutions, are given by39 
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The B functions are given by 
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and the functions f are calculated using eq. (2.42) with P functions calculated using the 

recursive functions 
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 (2.45) 

 However, because R2B includes two-body resistances already accounted for in 

the construction of R∞, a resistance tensor R2B
∞

 containing two-body interactions at the 

same order of approximation included in R∞ is subtracted to avoid double counting.  The 

far-field, two-body resistance tensor, R2B
∞, is computed by summing up the inverse of 

far-field, two-body mobility tensors, M∞, containing terms to the same order as R∞ 

 ( ) ( ) ( ) ( )2 2 2 21 1 6 1 6i j ij ijM a a Gα β αβ αβ α β α βδ δ δ∞ ⎡ ⎤ ⎡ ⎤= + − + ∇ + ∇ −⎣ ⎦ ⎣ ⎦ r r  (2.46) 
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 ( ) 1

2 ,
, 1

N

B ij

ij

R αβ
α β
β α

−∞ ∞

=
>

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ M  (2.47) 

2.3.6. Finite particle systems near a plane wall 

For the case of particles near a stationary plane wall, Bossis et al.22 adapted the 

method outlined above to consider hydrodynamic interactions with the wall in a multi-

body resistance tensor.  Similar to eq. (2.6), the hydrodynamic force, Fα
H, on a particle α 

in the presence of other particles and a plane wall is linearly related to the particle 

velocities through Stokes equations.  The resistance tensor, R, is now a function of 

particle-particle and particle-wall separations.  The total resistance tensor can again be 

calculated using eq. (2.7) by summing separate far-field, multi-body and near-field 

lubrication parts.  In the same notation used above for unbounded particles, the 

expression for the far-field mobility tensor is written as,22 
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 (2.48) 

where, rα
′ is the vector representing the image of particle α with respect to the wall and 

Gw is the Green’s function due to the presence of the wall, constructed using the image 

representation of a particle near a plane surface.23  The primes denote the position of the 

particle images with respect to the plane surface.  The far-field multi-body resistance 

tensor is again obtained by inversion of the far-field mobility tensor (eq. (2.8)). 
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Lubrication corrections are to be added to the far-field resistance tensor as 

described earlier.  In addition to particle-particle lubrication corrections, particle-wall 

lubrication must also be added to accurately represent the wall’s no-slip boundary 

condition.  The expression for the exact particle-particle resistance tensor is given in eq. 

(2.40), and the exact particle-wall resistance tensor is given by, 

 ( ) ( ) ( )3 31wij w ij i w ij iR C Dα α αδ δ δ δ= − + − −z z z z  (2.49) 

where z denotes the coordinate normal to the plane surface, the subscripts α and w 

denote the particle and wall, and the coefficients C(h) and D(h) are reported in 

literature41 as solutions of the particle-wall hydrodynamic problem.  These solutions are 

conveniently expressed in terms of the particle-wall separation, h, by rational fits (with 

less than ±0.001 relative error) as 
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 (2.50) 

where, γ(h) = (h-a) / a.  The exact two-body resistance tensor is evaluated by adding 

exact two-body particle-particle (eq. (2.40)) and particle-wall (eq. (2.49)) resistance 

tensors 
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Similar to the particle-particle case, since R2B contains the far-field part, which is already 

accounted for in R∞, a far-field two-body resistance tensor, R2B
∞, containing two-body 

interactions at the same order of approximation as R∞ is subtracted to avoid double 

counting.  This far-field approximation is the sum of particle-particle and particle-wall 

resistance tensors given by, 
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In problems involving colloids confined between two planar surfaces at small 

separations, dominant near-field contributions allow the resistance tensor to be 

constructed using a simple superposition of effects due to the two walls.  The net effect 

of the two walls can be represented by writing a net resistance tensor as, 

 ( ) ( )1 2
1 1

N N

w wαβ α αβ αβ α αβ
α β

δ δ
= =

⎡ ⎤= + + +⎣ ⎦∑∑R R R R R  (2.53) 

where w1 and w2 denote the two walls.  This approach has been shown previously to 

yield fairly accurate results for the case of dilute confined colloidal dispersions in 

comparison to more rigorous treatments.42 
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2.3.7. Infinite particle dispersions in unbounded media 

Simulations involving infinite dispersions via periodic boundary conditions 

warrant a different approach for constructing the hydrodynamic resistance tensor, due to 

the long-range (1/r) nature of hydrodynamic interactions.  Brady and Bossis2 formulated 

a method combining O’Brien’s approach of an integral representation of the solution of 

Stokes equations for the fluid velocity field with Ewald’s summation technique.  This 

method will be briefly described here.  For details, the reader is referred to the original 

references.2,20,43 

For simulating infinite dispersions, the simulation box with a finite number of 

particles is periodically replicated in three dimensions to mimic an infinite system.  The 

key step in Stokesian Dynamics, of separating the hydrodynamic interactions into a far-

field multi-boy and near-field lubrication forces remains unchanged, i.e., eq. (2.7) is 

used to calculate the hydrodynamic resistance tensor.  The far-field mobility tensor for a 

periodically replicated system is constructed by using the expression for the Ewald-

summed far-field mobility tensor as derived by Beenakker.21  The mobility tensor in eq. 

(2.8) is now calculated using 
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where Mαiβj is the mobility of particle α in the ith direction due to a force on particle β in 
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the jth direction and µ is the continuous medium viscosity.  The lattice points in real 

space are given by the vectors rl, and the particles have position vectors rαl = rα + rl.  The 

reciprocal space lattice vectors are denoted by kλ, satisfying the condition exp(ikλ⋅rl) = 1 

for all l.  The first sum represents summation over real space and the second over 

reciprocal space.  The paper by Beenakker21 provides explicit expressions for the 

functions M1 and M2 as 

( ) ( ) (

( )

( ) (

1 1 3 3 7 3 4 3 2

5 3 2 3 3 3 2 1 2 2 2

1 3 3 7 3 4 3 2
2

5 3 2 3 3

3 1 4 3
4 2

9           20 14 exp
2

3 3           4 3
4 2

3           16 2 3
2

ar a r erfc r a r ar

a r a a a r r

ar a r erfc r a r ar
r

a r a a

ξ ξ ξ

ξ ξ ξ ξ π ξ

ξ ξ ξ

ξ ξ ξ

− −

− −

− −

⎧⎛ ⎞= + + +⎨⎜ ⎟
⎝ ⎠⎩

⎫⎞− − + + − ⎬⎟
⎠ ⎭

⎧⎛ ⎞+ − + − −⎨⎜ ⎟
⎝ ⎠⎩

+ + − −

M r I

rr

( )

( )

3 2 1 2 2 2

2 3 2 2 2 4 4
2

2 2 2

exp

1 1 11
3 4 8

1            6 exp
4

a r r

a a k k k
k

k k

ξ π ξ

ξ ξ

π ξ

− −

− −

− −

⎫⎞ − ⎬⎟
⎠ ⎭

⎛ ⎞⎛ ⎞⎛ ⎞= − − + +⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞× −⎜ ⎟
⎝ ⎠

kkM k I

 (2.55) 

Where r and k are the real-space and lattice vectors, with r = |r| and k = |k|, and I is the 

identity tensor.  Beenakker suggests an optimal value of the split parameter as given by ξ 

= π1/2V-1/3, where V is the volume of the simulation box. 

The far-field resistance tensor still lacks lubrication corrections.  To account for 

this, lubrication forces are added as near-field lubrication forces are added in a manner 

as described in section 2.3.1. by first adding an exact two-body resistance tensor, R2B 
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(eq. (2.40)), is and subtracting off the far-field part of the two-body resistance tensor, 

R2B
∞ (eqs. (2.46) and (2.47)). 

2.3.8. Infinite particle dispersions in bounded media 

In case of interfacial colloids, the resistance tensor also depends on the position 

of particles relative to the wall.  Nott and Brady24 and Singh and Nott25 further extended 

this method for including the effect of a wall.  In presence of a wall, the resistance tensor 

must be constructed to include the effects of the boundary conditions at the wall.  To 

incorporate this, the wall is discretized into an array of Nw spheres of radius equal to the 

radius of the dispersed particles, a.24,25  A far-field mobility tensor is constructed, in 

pairwise manner, for N = Np + Nw particles, resulting in a 3N×3N far-field mobility 

tensor.  The far-field mobility interactions are calculated in the usual manner by using 

the expression for the Ewald-summed Rotne-Prager tensor as derived by Beenakker for a 

3D periodically replicating simulation cell.  A schematic of the simulation cell is shown 

in fig. 2.1. 

To properly account for near-field lubrication forces, first an exact two-body 

resistance tensor, R2B, is added to the far-field resistance tensor R∞.  The exact 6×6 two-

body resistance tensor is a sum of an exact particle-particle resistance tensor and an 

exact particle wall resistance tensor.  The exact particle-particle (eq. (2.40)) and particle- 

wall (eq. (2.49)) tensors have been discussed in earlier sections.  However, because R2B 

includes two-body resistances already accounted for in the construction of the far-field 

resistance tensor, R∞, a resistance tensor R2B
∞

 containing far-field two-body interactions 
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at the same order of approximation included in R∞ is subtracted to avoid double 

counting.2   R2B
∞

 is calculated by constructing two-body particle-particle and particle-

wall mobility tensors and inverting them.  

 The particle-particle mobility tensor is calculated for free particle pairs as 

described in previous sections.  For the particle-wall two body resistance tensor, a 

mobility tensor is calculated using eq. (2.46) for each particle with all the wall 

“particles” to give a mobility tensor of size 3(Nw+1).25  This far-field mobility tensor is 
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Figure 2.1.  Schematic representation of the simulation cell showing the free particles 
(gray spheres) and wall patches (white spheres) in top view (top) and side view (bottom).  
The side view (bottom) also shows the position of the wall for near-field calculations.  
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inverted to give a far-field resistance tensor for a free particle with all the wall patches.  

This is done for all the free particles.  These two tensors are added to yield a two-body 

far-field resistance tensor.  The total resistance tensor, after construction, is of size 

3(Np+Nw).  However, since the wall particles are fixed, we know their velocities (Uw = 

0), and we assume that they do not experience Brownian motion.  This allows us to use a 

subset of the resistance tensor containing only free particles of size 3Np in the time 

evolution equation for the free particle trajectories (eq. (2.5)). 

2.4. Colloidal and External Forces 

Colloidal and external conservative forces are calculated as the gradient of a 

scalar potential energy function.  The conservative forces included in this work include 

interaction potential between particle-particle and particle-wall pairs and the external 

force is gravity.  All colloidal forces are assumed to be pairwise additive.  The forces are 

expressed as  

 P pp pw grav= + +F F F F  (2.56) 

where Fpp is the force due to particle-particle interaction, Fpw is the force due to particle 

wall interaction and Fext is the external force.  The particle-particle and particle-wall 

forces are calculated as the derivative of their respective potential energy functions upp(r) 

and upw(h), and are given by 
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where r is the particle-particle separation and h is the particle-wall separation.  The 

colloidal forces considered in this work include electrostatic, van der Waals, and steric 

forces.  The net particle-particle and particle-wall potentials are represented as the 

superposition of these relevant potentials as 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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pp pp pp pp
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= + +
 (2.58) 

The electrostatic particle-particle and particle-wall pair potentials for these 

conditions are well represented by34 
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 (2.59) 

The B parameters are related to the particle size and surface potentials as 
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where ε is the absolute permittivity, z is the charge number of the ions in the solvent, and 

κ is the Debye screening length given by 
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Here, C is the bulk electrolyte concentration, NA is Avogadro’s constant, and e is the 

charge on an electron.   
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The van der Waals forces arise due to a mismatch in the particle and medium 

dielectric properties and are well represented by a non-integer power-law decay fit to 

Lifshitz theory by44 
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where a is the particle radius and A and p are non-integer fitting parameters. 

Substrates with adsorbed polymer layers experience a steric force, which can be 

represented by a “hard wall” interaction having the mathematical form, 

   ( )
0     

    
refsteric

ref

x x
u x

x x

>⎧⎪= ⎨∞ ≤⎪⎩
 (2.63) 

which is suitable for either the particle or the wall by substituing center-to-center 

seperation, r, or center-to-surface separation, h, for x, and xref is reference for zero 

surface separation corresponding to hard wall contact. 

The only external force considered is the gravitational or buoyant force.  The 

gravitational force is given by 

 ( )34
3

grav
p fa gπ ρ ρ= − −F  (2.64) 

where ρp and ρf are the densities of the particle and the fluid respectively, and g is the 

force per unit mass due to gravity.   
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3. STOKESIAN DYNAMICS CODE IMPLEMENTATION 

3.1. Synopsis 

This section describes the algorithmic and implementation details of the 

Stokesian Dynamics code for simulating Brownian particles dispersed in a viscous fluid 

medium under the influence of interparticle and external forces in both unbounded and 

bounded systems.  First, the mid-point algorithm for the evolution equation of particle 

trajectories is described.  The remainder of this section is a summary of some of the 

practical aspects of the construction and execution of the code.     

3.2. Mid-Point Algorithm 

Before we discuss the mechanics of the simulations, we recall the propagation 

equation for particle trajectories from the theory section. 
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Although eq. (2.5) can be numerically solved to obtain particle trajectories, the second 

term, the spatial gradient of the resistance tensor, is expensive to compute explicitly.  To 

avoid this expensive computation, Banchio and Brady45 suggested the use of a method 

based on Fixman’s46,47 original mid-point scheme.  To illustrate this method, the 

Brownian displacement in eq. (2.5) is first re-written in terms of the Brownian force as, 
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From an initial particle configuration r0, the velocity is calculated as 

   ( ) ( )10 0 ,0 ,0P B−
= ⋅ +U R F F  (3.3) 

The particles are “moved” by a small fraction of the time step to an intermediate position 

by 

   0 0t
m
∆′ = +r r U  (3.4) 

where m is usually in order of 100.  A new velocity is computed at the intermediate 

particle configuration 

   ( ) ( )1 ,0 ,0P B−′ ′= ⋅ +U R F F  (3.5) 

Note that the premultiplying resistance tensor is now computed using the new 

coordinates, r′, while the forces remain constant.  The drift velocity, calculated via the 

modified mid-point scheme is 

   ( )0

2
drift m ′= −U U U  (3.6) 

The new configuration, for a time step of ∆t is finally calculated as 

   ( )0 0 drift t= + + ∆r r U U  (3.7) 
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Eqs. (3.3)-(3.7) are used to obtain the new configuration after a time interval ∆t.  The 

calculations of different terms in the above equations will be described in the remainder 

of this section. 

3.3. Instruction Flow and Code Details 

The general idea in Stokesian Dynamics is to start with a given particle 

configuration, from which the conservative forces, Brownian forces, and the 

hydrodynamic resistance tensor can be calculated.  Using these, particle coordinates are 

advanced in time based on eq. (3.2) using the modified mid-point algorithm described 

earlier.  The different steps are described in detail below, and are graphically represented 

by a flow chart.   

3.3.1. Input parameters 

The input parameters are read into the code from an input file titled run.txt.  The 

different inputs to be specified, dimensions where applicable, and variable names are 

summarized below: 

Number of particles: n/np 

Number of wall patches: nw (only for infinite unbounded systems) 

Number of walls: nw (only for finite bounded systems) 

Spacing between walls (nm): boxlenz 

Particle radius (nm): a 

Number of simulation steps: nstep 



 

 

38

Number of initial steps to be ignored: istart 

Interval for data output: iprint 

Temperature (°C): tempr 

Time step for driving simulation (ms): dt 

File name containing initial particle configuration: par_in 

File name containing coordinates for wall patches: wall_in (only for infinite bounded 

systems) 

File name for outputting particle coordinates: par_out 

Particle concentration (area fraction/volume fraction): phi (only for infinite systems) 

Numerical simulations in this work were done to complement real experiments 

done in the group, and were formulated to receive inputs such as physical constants and 

force expressions, directly from experiments.  This is why variables are expressed in 

absolute dimensions instead of the more common non-dimensional representation.  The 

physical parameters such as particle and medium density, medium viscosity are not 

required as inputs to the dynamic simulation.  Instead, they are specified in a 

MATHCAD® document where particle-particle and particle-wall potential functions are 

calculated.  From this, expressions for conservative forces are extracted, which is hard-

wired in the dynamic simulation code in the subroutine forces.f.  This, allows a seamless 

integration between potentials measured experimentally and numerical simulations, 

enabling a close collaboration between simulation and experiment. 
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3.3.2. Initial particle configuration 

The initial particle configuration needs to be specified before starting the 

simulation.  This is specified through a text file with all particle coordinates (in units of 

nm).  Almost always, the initial configuration needs to be an equilibrium configuration 

based on the specified interaction potentials.  Equilibrium particle configurations can be 

obtained by simple NVT Monte Carlo simulations, based on the algorithm of Allen and 

Tildesley,48 which can be used as inputs to the more expensive dynamic simulation.  For 

bounded infinite systems, an input containing coordinates of “patches” making up the 

wall is also required.  For hydrodynamic calculations, the wall is replaced by an array of 

touching spheres.  The coordinates of these spheres needs to be specified as input to the 

code.  These can be generated externally by another routine, wall_patch.f.  

3.3.3. Different steps in the dynamic simulation 

The sequential order of calculations in the Stokesian Dynamic code is presented 

below.  These are also represented graphically in the flow sheet (fig. 3.1).    

Step 1. 

Input parameters are read by the main program main.f and initial particle configurations 

are read by the subroutine readcn.f.  The code is set up to receive initial particle 

coordinates normalized by the particle radius (instead of nm), since the Monte Carlo 

code outputs particle coordinates in this format.  However, readcn.f can be changed to 

read in coordinates in other formats. 
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Step 2. 

The hydrodynamic resistance tensor is calculated by adding a far-field multi-body 

resistance tensor and near-field lubrication corrections as described in the theory section.  

These are handled in the subroutine grndrm.f and other subroutines invoked inside 

grndrm.f.  The far-field part of the resistance tensor only changes if the particle 

 0 , ,pp pwu ur

( )0 0R r ( ),0 0PF r( ),0 0BF r

( ) ( )10 0 ,0 ,0P B−
= ⋅ +U R F F

( )0 0t n′ = + ∆r r U

( )′ ′R r

( ) ( )1 ,0 ,0P B−′ ′= ⋅ +U R F F

( )( )02drift n ′= −U U U

( )0 0 drift t= + + ∆r r U U
 

 
 
 Figure 3.1.  Flow chart for Stokesian Dynamics code showing different steps in the 
time evolution equation. 
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configuration changes significantly.  Hence, a new calculation is done only if the 

average particle displacement, 〈r(t+∆t) – r(t)〉, is greater than a specified quantity.  In the 

code, this is set to 0.1a.  The lubrication correction has to be calculated at every step.  

This however, is computationally less expensive.  In the case of infinite (periodic) 

systems, the other adjustable parameter is the number of wave vectors for the real and 

imaginary space sums in the calculation of Ewald sum for the far-field mobility tensor.  

These are specified by variables rwald and kwald and are hard-wired in the main.f 

program.  These variables are both set to be equal to 3, although in case of highly 

confined systems, the value may have to be increased to 5.  It is recommended, however, 

that these variables remain hard-wired instead of being user inputs.  In computing the 

singular lubrication forces, particle-overlaps are handled in the method of Phung, et al.43  

According to this method, when overlap occurs, the lubrication forces are computed at a 

very small surface-surface separation (10-8a), and the rest of the calculations proceed as 

usual.  This has been shown to reproduce the right equilibrium microstructure26.    

Step 3. 

The conservative forces are calculated using the particle configuration in the subroutine 

forces.f.  The expression for forces is pre-computed in a MATHCAD® document, and 

input in the subroutine.  The forces are expressed in units of nN (10-9N).   

Step 4. 

The random (Brownian) contribution to the displacement is calculated by passing the 

hydrodynamic resistance tensor into the Cholesky decomposition subroutines, choldc.f 
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and random.f.  These routines output a 3Np vector of random displacements.  The 

generation of random particle displacements requires the use of a standard long-period 

random number generator, ran2.f49.  This random number generator requires an initial 

seed as a starting point49.  The seed for the random number generator in the Stokesian 

Dynamics code is a negative integer which is specified in main.f under the variable name 

idummy.  It is set at a value of -7.  This can be changed if desired, provided it remains a 

negative integer. 

Step 5. 

Using these forces, the initial velocity, U, is calculated as in eq. (3.3).  The inversion of 

the resistance tensor, done in the subroutine invert.f is computationally the most 

expensive step, which scales with the number of particles as N3.   

Step 6. 

The particles are moved by a small fraction of the time step, ∆t to a new position as 

described by eq. (3.4).  The time step, ∆t, is an input parameter and is chosen such that 

the change in particle configuration within that time step does not alter the forces 

significantly.  A good estimate for ∆t is 10-4τ – 10-5τ, where τ = 6πµa3/kT is the diffusive 

time scale.  The fraction of the time step, m, is declared in main.f, and has a value of 100.  

Step 7. 

A new velocity is calculated by recomputing the hydrodynamic resistance tensor for the 

new particle configuration (eq. (3.5)). 
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Step 8. 

The new particle positions after a time step ∆t are obtained using eqs. (3.6) and (3.7).  

Output coordinates are written to the output file in specified time intervals through the 

subroutine writcn.f.  The output format is in accordance with the standard Bevan group 

coordinate output format. 

Steps 2-8 are repeated for the specified total number of steps to obtain particle 

trajectories.  At each time step, the short-time self-diffusion coefficient is also outputted 

into a file “d.txt”.  For the case of bounded systems, separate lateral and normal diffusion 

coefficients can also be outputted.  These modifications are done in main.f.  The 

schematic representation of the different steps is shown below in fig. 3.1. 

3.3.4. Description of subroutines – Finite systems 

The different subroutines in the code for simulating a finite system are described 

below, and the information flow between them is represented schematically in fig. 3.2. 

main.f:  This is the main program.  It reads in user inputs and outputs data.  Other 

subroutines are connected to this as represented in fig. 3.2. 

forces.f:  Subroutine to calculate forces for a given configuration.  The force expressions 

are calculated externally in a MATHCAD document.  Forces are output as a vector of 

size 3Np and have units of nN. 

choldc.f:  Subroutine to calculate the Cholesky decomposition of a tensor.  Cholesky 

decomposition is the factorization of a symmetric and positive definite matrix into the 
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product of a lower triangular matrix and its transpose.  If A is a symmetric, positive 

definite matrix, it can be decomposed as 

   T= ⋅A L L  (3.8) 

where L is a lower triangle matrix, and LT is its transpose.  The subroutine is based on 

an implementation In Numerical Recipes.49  The subroutine receives the hydrodynamic 

resistance tensor and outputs its Cholesky decomposition. 

random.f:  Subroutine to calculate the Brownian contribution to the particle 

displacement.  The subroutine takes a set of normally distributed random numbers 

between 0 and 1 and weighs it by the Cholesky decomposed resistance tensor.  The 

output is a vector of size 3Np containing random particle displacements.   

gasdev.f:  Converts a set of uniformly distributed random numbers between 0 and 1 into 

a set of normally distributed random numbers with 0 mean and unit varaince.  The 

subroutine is based on an implementation in Numerical Recipes.49 

ran2.f:  Long-period random number generator49, which outputs uniformly distributed 

random numbers between 0 and 1.  The generator requires a negative integer input which 

acts as a seed.  This is specified by the variable idummy in main.f. 

invert.f:  Subroutine to invert a matrix based on LU decomposition.  The decomposition 

is done in two connected subroutines, ludcmp.f and lubksb.f.  The algorithm is based on 

implementation given in Numerical Recipes.49 



 

 

45

dtensor.f:  Subroutine to calculate the hydrodynamic resistance/mobility tensor.  The 

hydrodynamic resistance tensor is calculated as the sum of far-field and near-field 

terms2.   

greenact.f:  The far-field, multi body mobility tensor is calculated in this subroutine, and 

passed on to dtensor.f. 

ppexact.f:  The particle-particle exact hydrodynamic resistance is computed based on 

exact solutions to the two-particle problem reported in literature.39 

pwexact.f:  Calculates the particle-wall exact hydrodynamic resistance tensor based on 

the exact solutions reported by Brenner.41 

greenpp.f:  Computes the far-field particle-particle resistance tensor. 

greenpw:  Computes the far-field particle-wall resistance tensor. 

3.3.5. Description of subroutines – Infinite systems 

The different subroutines in the code for simulating infinite systems are 

presented below.  The information flow is presented in fig. 3.3. 

main.f:  Main program which reads in input parameters and writes outputs. 

readcn.f:  Reads in input particle coordinates. 

writcn.f:  Writes particle coordinates into output file.  The output is in the standard 

Bevan group format, including headers. 

forces.f, random.f, choldc.f, gasdev.f, ran2.f, invert.f, ludcmp.f, lubksb.f:  Subroutines 

described in the previous section. 
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grndrm.f:  Subroutine to calculate the grand resistance tensor.   

farfldres.f:  Subroutine to calculate the far-field, multi-body resistance tensor. 

selftm.f:  Subroutine to calculate the self-term in the Ewald sum for the hydrodynamic 

resistance tensor. 

ffwall.f:  Subroutine to calculate the far-field contribution from the wall patches to the 

multi-body hydrodynamic mobility tensor. 

ffw2b.f:  Subroutine to calculate the far-field contribution from the wall patches to the 

far-field two body hydrodynamic mobility tensor. 

 

.main f.main f

.dtensor f.dtensor f

.greenact f.greenact f

.ppexact f.ppexact f .greenpp f.greenpp f

.greenpw f.greenpw f.pwexact f.pwexact f

.invert f.invert f
.ludcmp f.ludcmp f

.lubksb f.lubksb f

.choldc f.choldc f .random f.random f

.gasdev f.gasdev f

2.ran f2.ran f

.forces f.forces f

I OI O

 
 

 
Figure 3.2.  Flow chart showing information flow in the SD code for finite systems. 
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ppexct.f, pwexct.f:  Subroutines to calculate exact two body particle-particle and particle 

resistance tensors. 

ppinf.f, pwff.f:  Subroutines to calculate far-field two body particle-particle and particle 

resistance tensors. 

rwald.f:  Subroutine to calculate the real-space part of the Ewald sum for the far-field 

resistance tensor using the method of Beenakker.21 

 

.main f.forces f

I O

.choldc f

.selftm f

.random f

.gasdev f

2.ran f

.farfldres f

.readcn f .writcn f

.rwald f

2 .ffw b f

1.m f

.grndrm f

2.m f

.ffwall f
.ppinf f

.pwff f

.kwald f

.invert f

.lu f

.ppexct f

.pwexct f

.main f.main f.forces f.forces f

I OI O

.choldc f.choldc f

.selftm f.selftm f

.random f.random f

.gasdev f.gasdev f

2.ran f2.ran f

.farfldres f.farfldres f

.readcn f.readcn f .writcn f.writcn f

.rwald f.rwald f

2 .ffw b f2 .ffw b f

1.m f1.m f

.grndrm f.grndrm f

2.m f2.m f

.ffwall f.ffwall f
.ppinf f.ppinf f

.pwff f.pwff f

.kwald f.kwald f

.invert f.invert f

.lu f.lu f

.ppexct f.ppexct f

.pwexct f.pwexct f

 
 

 
Figure 3.3.  Flow chart showing information flow in the SD code for infinite systems. 
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kwald.f:  Subroutine to calculate the Fourier-space part of the Ewald sum for the far-field 

resistance tensor using the method of Beenakker.21 

m1.f, m2.f:  Subroutines to calculate constants for the Ewald sum. 
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4. INTERPRETATION OF CONSERVATIVE POTENTIALS FROM 

STOKESIAN DYNAMIC SIMULATIONS OF INTERFACIAL AND CONFINED 

COLLOIDS 

4.1. Synopsis 

This section presents Stokesian Dynamics simulations of experiments involving 

one or two charged colloids near either a single charged wall or confined between 

parallel charged walls.  Equilibrium particle-particle and particle-wall interactions are 

interpreted from dynamic particle trajectories in simulations involving: (1) a single 

particle levitated above a wall, (2) two particles below a wall, and (3) two particles 

confined between two parallel walls.  By specifying only repulsive electrostatic DLVO 

(Derjaguin-Landau-Verwey-Overbeek) potentials and including multi-body 

hydrodynamics, we successfully recover expected potentials in some cases, while 

anomalous attraction is observed in other cases.  Attraction inferred in the latter 

simulations displays quantitative agreement with literature measurements when particle 

dynamics are interpreted using reported analyses.  Because anomalous attraction is 

reproduced in simulations using only electrostatic repulsive DLVO potentials, our results 

reveal the one-dimensional analyses to be invalid for configurations that are inherently 

multi-dimensional via multi-body hydrodynamics.  Parameters related to experimental 

sampling of particle dynamics are also found to be critical for obtaining accurate 

potentials.  We explain the anomalous attraction in each experiment using effective 

potentials, which can be employed in an a priori fashion to assist the confident design of 
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future experiments involving interfacial and confined colloids.  Ultimately, our findings 

reveal the importance of dimensionality and multi-body hydrodynamics for 

understanding non-equilibrium dynamics of colloids near surfaces. 

4.2. Introduction 

In this section, we report results from Stokesian Dynamics simulations of 

experiments involving either one or two colloids near a single wall or confined between 

two parallel walls.  By considering multi-body hydrodynamic interactions in interfacial 

and confined colloidal systems, we are able to fully account for observations of 

anomalous attraction in both previously reported50 and newly proposed experiments 

involving colloidal pairs near a single wall.  In experiments involving like charged 

particle pairs confined between like charged walls,30 we capture some features of 

previously reported anomalous potentials, but fall short of quantitatively reproducing 

experimental measurements.  In each case, we reproduce anomalous attraction by 

considering only repulsive electrostatic DLVO (Derjaguin-Landau-Verwey-Overbeek)51 

potentials and multi-body hydrodynamics in our simulations of particle dynamics, which 

we interpret using analyses identical to the original references.52  We derive effective 

potentials to quantitatively account for the anomalous attraction in each simulation using 

an approach analogous to that used in previous work by Squires and Brenner.31,53  Our 

modified potentials provide some qualitatively new conclusions and a clarification of 

anomalous attraction.  From both our simulated and analytical results, we show that 

accurate treatment of the multi-body mobility tensor and its gradient is essential for 
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interpreting conservative colloidal potentials from non-equilibrium particle dynamics 

near boundaries. 

Understanding multi-body hydrodynamics and colloidal potentials in interfacial 

and confined geometries is crucial to numerous scientific and technological applications 

involving nano- and micro- particles.  Colloidal force measurement techniques such as 

Total Internal Reflection Microscopy54 depend on the ability to rigorously interpret both 

equilibrium interactions due to conservative potential fields and non-equilibrium 

interactions due to dissipative hydrodynamic forces.55  Development of new colloidal 

force measurement techniques requires expanding our understanding from single 

particle-wall measurements to interpret interactions in increasingly concentrated, multi-

dimensional colloidal systems.56  Interfacial self assembly requires the ability to 

simultaneously manipulate colloidal forces and hydrodynamic interactions that control 

the thermodynamics and kinetics of structure formation on surfaces.57  Colloidal epitaxy 

on templated substrates58,59 is a specific case where both particle-particle and particle-

wall conservative and dissipative interactions need to be manipulated to design robust 

colloidal crystal fabrication processes.  Understanding interfacial particle and substrate 

interactions is crucial to complex fluid and advanced material technologies that involve, 

for example, film formation,60 particle deposition in porous media, and protein 

interactions at cell surfaces. 

Our results in this section are aimed at addressing the long standing controversy 

surrounding anomalous attraction between like-charged particles near like-charged 

interfaces.  To the authors' knowledge, the paper of Ise et.al.61 was one of the first to 
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report stable voids in dispersions of like charged particles near a like charged interface 

and attribute their formation to long range attraction between like charged particles.  

Anomalous attraction has more recently been inferred from measurements of the 

equilibrium structure of low density interfacial ensembles62,63 and non-equilibrium 

trajectories of particles periodically trapped and released by blinking optical tweezers 

near one or two walls.30,50  Recent inferences of attraction in equilibrium measurements 

of non-aqueous charged colloids may represent yet another case due to the importance of 

multi-body electrostatic interactions.64,65  These observations are often collectively 

interpreted to suggest a lack of universality of the classic DLVO theory when applied to 

charged colloids near interfaces and in confinement.  Although Squires and Brenner31,53 

previously identified the role of multi-body hydrodynamics in the apparent attraction 

between two like charged particles falling below a nearby wall, many inferences of 

anomalous interactions from both equilibrium and non-equilibrium measurements 

remain unexplained. 

In the following, we investigate the validity of a one-dimensional transition 

probability analysis for interpreting conservative colloidal potentials from Stokesian 

Dynamics simulations of particle trajectories near wall surfaces.  Using only DLVO 

potentials51 and established models for multi-body hydrodynamics,2,22,42 we present 

particle-particle and particle-wall potentials interpreted from particle dynamics in 

simulations involving: (1) a single particle levitated above a wall, (2) two particles 

below a wall, and (3) two particles confined between two parallel walls.  After verifying 

the one-dimensional analysis for interpreting interactions between a single levitated 
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particle and wall, we demonstrate the validity of the analysis for particle pairs far from 

any walls.  We then show that for particle pairs near a single wall the correct particle-

wall interaction appears to be obtained, but an anomalous particle-particle attraction is 

inferred that is indistinguishable from literature measurements.  The one-dimensional 

analysis fails in this case because it does not properly consider multi-body 

hydrodynamics that are inherently multi-dimensional.  By deriving effective potentials 

that rigorously consider the multi-body mobility tensor and its gradient, we 

quantitatively predict anomalous attraction in several new interfacial colloid experiments 

that are unexplained by previous analyses.  In particular, we describe and explain 

anomalous attraction inferred for both (1) like charged particles interacting adjacent to 

an uncharged wall, and (2) like charged particles interacting with a like charged wall in 

the presence of a nearby like charged particle.  We also discuss how effective potentials 

can be used in an a priori fashion to confidently interpret colloidal dynamics in future 

experiments.  Finally, we report anomalous interactions for like charged pairs confined 

between like charged parallel walls, which exhibit some features of previously reported 

experimental potentials30 but also fail to capture several important characteristics.  

Ultimately, these results allow us to discuss both the validity of the DLVO theory and 

the importance of multi-body hydrodynamics for understanding non-equilibrium 

dynamics of interfacial and confined colloids. 
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4.3. Equation of Motion 

To compute particle trajectories as a function of time, we recall the configuration 

propagation equation from Section 2 as 

 ( )( ) ( ) ( )1 10 0 0 ,0 0P
Bk T t t t

− −
= + ∇ ⋅ ∆ + ⋅ ∆ + ∆r r R R F X  (4.1) 

where the different variables have been defined earlier.  Eq. (4.1) is used to generate 

particle configurations as a function of time. 

4.4. Colloidal and External Force Fields 

For the experiments investigated in this section (see fig. 4.1), the net force due to 

conservative potential fields includes interactions between electrostatic double layers on 

charged particles and surfaces and the gravitational body force acting on each particle 

given as, 

 P pp pw grav
edl edl= + +F F F F  (4.2) 

For particle-particle surface separations larger than the Debye length (h-a>κ-1), but 

smaller than the sphere radius (h-a<a), the interaction of electrostatic double layers on 

adjacent particles, Fedl(r), for 1:1 electrolytes is given using the superposition and 

Derjaguin approximations as,34 

 ( ) ( )
2

1 232 tanh tanh exp 2
4 4

⎛ ⎞ ⎛ ⎞⎛ ⎞= − −⎡ ⎤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠
p ppp B

edl
B B

e ek TF r a r a
e k T k T

ψ ψ
πεκ κ  (4.3) 
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whereas, for particle-particle surface separations greater than the Debye length (h-a>κ-1), 

but also greater than the sphere radius (h-a>a), the interaction of electrostatic double 

layers, Fedl(r), is given for 1:1 electrolytes by the linear superposition approximation 

as,34  

 ( ) ( )
2

1 22
2

14 exp 2p ppp B
edl

B B

e ek T rF r a r a
e k T k T r

ψ ψ κπε κ
⎛ ⎞⎛ ⎞ +⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 (4.4) 

where ε is the dielectric permittivity of water, a is particle radius, kB is Boltzmann's 

constant, T is absolute temperature, e is the elemental charge, values of ψ are the Stern 

potentials of the particles or wall, and r is center-to-center particle separation.  The 

 
 
                          (a)                                        (b)                                        (c) 
 
Figure 4.1.  Schematic representations of experiments involving:  (a) a single levitated 
colloidal particle interacting with a wall as in typical TIRM measurements, (b) 
intermittent sedimentation of colloidal pairs below a wall using a blinking optical 
tweezer,50 and (c) two colloidal particles confined between two parallel walls using 
blinking optical tweezers.30 
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particle-wall electrostatic interaction is given for each case by multiplying the particle-

particle interaction by 2, which results from using the Derjaguin approximation.  The 

Debye screening length, κ, is, 

 
22

= A

B

CN e
k T

κ
ε

 (4.5) 

where C is the bulk solution ionic strength.  The gravitational body force acting on each 

particle is given in terms of the buoyant particle mass, m, which can be expressed in 

terms of particle and fluid densities, ρp and ρf, and the acceleration due to gravity, g, as, 

 ( ) 34 3 ( )grav
p fF mg a gπ ρ ρ= = −  (4.6) 

4.5. Equilibrium Pair Interactions from Transition Probability Analysis 

The configuration of the N-particle colloidal system can be represented by the N-

particle configuration-space distribution function, g(r).  The evolution of the N-particle 

distribution function is given by the N-body Smoluchowski equation,66 

 ( ) ( ) ( ) ( )1 0P
B

g
k T g

t
−∂ ⎡ ⎤− ∇ ⋅ ⋅ ∇ − =⎣ ⎦∂

r
R F r  (4.7) 

where R is the hydrodynamic resistance tensor, and FP is the total conservative force.  

For equilibrium conditions, eq. (4.7) can be solved to obtain an equilibrium distribution 

function related to particle pair interactions in dilute systems given by Boltzmann's 

equation as, 

 ( ) ( )( )exp Bg k Tφ= −r r  (4.8) 
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For a one-dimensional system, equation (4.7) can be written as,67 

 ( ) ( ) ( ) ( ) 0B

g r
M r r k T g r

t r r
φ

∂ ∂ ⎡ ∂ ⎤⎛ ⎞′− + =⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦
 (4.9) 

where M(r) is the hydrodynamic mobility coefficient.  Propagation of the one-

dimensional distribution function can be written using a transition probability tensor as, 

 ( ) ( ) ( ), , | , ,g r r t t P r r t t r t g r t dr+ ∆ + ∆ = + ∆ + ∆∫  (4.10) 

The equilibrium distribution function can be obtained as a stationary solution of eq. 

(4.10) even for non-equilibrium conditions. 

Particle trajectories obtained from simulations in this study are analyzed using 

the method of Crocker and Grier,52 which we briefly summarize here.  Pairs of particle 

coordinates are monitored at a specified time interval, ∆t, and their projected one-

dimensional center-to-center distance, r, is determined.  In consecutive time steps, the 

separation vector of the sphere pair changes from an initial vector r0 to a final vector rf .  

The final separation vector is projected onto the initial separation vector.  The initial 

separation |r0| and the projected final separation |r0 . rf| are distributed into a transition 

probability tensor, P.  The tensor P is constructed such that columns indicate initial 

separations and rows indicate final projected separations, i.e. Pij denotes the probability 

of a transition in particle separation from rj to ri in a time step ∆t.  The transition tensor 

is related to the equilibrium pair distribution function g(r) by,67  

 eq eq
i ij j

j
g P g= ∑  (4.11) 
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which is a discretized version of eq. (4.10).  Eq. (4.11) is an eigenvalue problem where 

the eigenvector corresponding to an eigenvalue of 1 is the equilibrium pair correlation 

function geq.  Once the pair correlation function is known, the pair potential φ(r) is 

obtained using Boltzmann’s equation in eq. (4.8). 

4.6. Results and Discussion 

4.6.1. Levitation of a single charged colloid above a charged wall 

The simplest interfacial particle experiment that we investigate is for a single 

colloid of radius, a, levitated above a flat wall with a one-dimensional center-to-wall 

distance, h, as shown in fig. 4.1a.  This is the arrangement used in the Total Internal 

Reflection Microscopy (TIRM) technique developed by Prieve and co-workers54 for 

measuring particle-wall interactions on the order of kBT.  In a typical TIRM experiment, 

particle surface-to-wall separation, h-a, is dynamically measured from particle scattering 

intensity, I, in an evanescent wave.  To model height excursions of a single levitated 

colloid in a typical TIRM experiment, three dimensional Stokesian Dynamic (SD) 

Table 4.1.  Simulation and sampling parameters for constructing the transition 
probability tensor in each experiment. 
 
 

 TIRM LG CG 
simulation step (ms) 0.1 0.1 0.1 
frame interval (ms) 16.67 16.67 16.67 

total cycles na 5000 10000 
frames/cycle na 6 6 
total points 250000 20000 40000 

total time (min) 69.5 11.1 22.2 
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simulations were implemented to include coupled hydrodynamic and Brownian forces in 

addition to conservative electrostatic (eq. (4.3)) and gravitational forces.  A simulation 

time step of 0.1 ms was used in the equation of motion (eq. (4.1)) as reported in Table 

4.1.  To interpret particle-wall interactions, we use a non-equilibrium transition 

probability analysis,68 which contrasts the standard TIRM analysis of equilibrium height 

distributions.54  This experiment demonstrates the measurement of single particle-wall 

interactions from dynamic height excursions, which we use in all subsequent 

experiments. 

Fig. 4.2 shows a potential energy profile for a single 2.2 µm silica colloid 

(ρp=2150 kg/m3, ψp=-50 mV) electrostatically levitated above a glass microscope slide 

h, µm
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Figure 4.2.  Particle-wall potential energy profile for a single 2.2 µm silica colloid 
(ρp=2150 kg/m3, ψp=-50 mV) electrostatically levitated above a glass microscope slide 
(ψw=-50 mV) in a 0.1 mM (κ-1=30 nm) 1:1 aqueous electrolyte solution (ρf  = 1000 
kg/m3)  (see fig. 4.1a).  The solid line is the total potential specified in the simulation. 
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(ψw=-50 mV) in 0.1 mM (κ-1=30 nm) ionic strength aqueous media (ρf =1000 kg/m3).  

Open circles in fig. 4.2 were obtained by analyzing the particle's height excursions above 

the glass surface using the transition probability analysis in eqs. (4.8) and (4.11).  The 

transition probability tensor was constructed from data acquired with the sampling 

parameters summarized in Table 4.1 which are comparable to typical values used in 

TIRM experiments69 and a previous Brownian Dynamics simulation.70  The solid line in 

fig. 4.2 is the theoretical potential energy profile corresponding to the net electrostatic 

and gravitational potentials specified in the SD simulation (eq. (4.2)).   

Excellent agreement is observed in fig. 4.2 between the potential energy profile 

obtained using the transition probability analysis and the potential energy profile 

originally specified in the SD simulation.  In addition, an autocorrelation function and 

mean squared displacement of the single particle's normal and lateral fluctuations 

indicate the correct average hindered particle diffusion coefficients (D⊥/D0=0.23, 

D||/D0=0.56).55  Agreement between simulated and interpreted equilibrium potential 

profiles and particle dynamics verifies the accurate and consistent treatment of the single 

particle-wall TIRM experiment in our SD simulation.  The results in fig. 4.2 also 

demonstrate the utility of the transition probability analysis for quantitatively recovering 

the particle-wall potential from a single particle's dynamic trajectory adjacent to a wall.  

This result provides an important foundation before proceeding to characterize both 

particle-wall and particle-particle interactions in experiments involving more than one 

particle. 
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4.6.2. Intermittent sedimentation of two charged colloids below a charged wall 

To incrementally increase both experimental and theoretical complexity, fig. 4.1b 

shows two particles of radius, a, held below a plane wall at a center-to-wall distance, h, 

and a projected one-dimensional center-to-center distance, r, by a pair of optical traps 

periodically blocked by a beam chopper.  Particle separation, r, is continuously adjusted 

during the experiment via the optical tweezer to evenly sample a specified range.  Values 

of h correspond to the “trapped” state (unblocked tweezers), while trajectory data are 

examined only during the “released” state (blocked tweezers) during which time all three 

dimensions are sampled via Brownian motion.   This experimental configuration was 

previously reported by Larsen & Grier (LG) to measure lateral interactions between 

negatively charged colloids below a negatively charged wall.50  In the original LG 

experiment, the projected center-to-center separation, r, was dynamically measured 

using video microscopy,71 while particle center-to-wall separation, h, was not monitored.  

As in the TIRM experiment in fig. 4.2, SD simulations of the LG experiment were 

implemented to include coupled hydrodynamic and Brownian forces in addition to 

conservative electrostatic (eq. (4.4)) and gravitational forces.  An important contribution 

in the three-body LG experiment is the multi-body resistance tensor, R, which occurs in 

the SD equation of motion (eq. (4.1)). 
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Fig. 4.3a shows potential energy profiles for the interaction of two 652 nm 

polystyrene (PS) colloids (ρp=1055 kg/m3, ψp=-178 mV) below a glass microscope slide 

(ψw=-71 mV) in 0.0012 mM (κ-1=275 nm) ionic strength aqueous media (ρf =1000 

kg/m3).  Data in fig. 4.3a are determined from a transition probability analysis of 

projected particle separations, r, in planes at either h = 9.5 µm (open circles) or h = 2.5 

µm (closed circles) parallel to the glass slide surface.  The transition probability tensor in 

each case was constructed using data acquired with the same parameters as the original 
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                                   (a)                                                                  (b) 
 
Figure 4.3.  Potential energy profiles for the interaction of two 652 nm polystyrene (PS) 
colloids (ρp=1055 kg/m3, ψp=-178 mV) below a glass microscope slide (ψw=-71 mV) in 
a 0.0012 mM (κ-1=275 nm) 1:1 aqueous electrolyte solution (ρf  = 1000 kg/m3) (see fig. 
4.1b).  Particle-particle interactions are reported in (a) where filled circles correspond to 
h=2.5 µm and open circles correspond to h=9.5 µm.  Particle-wall interactions are 
reported in (b) where filled circles correspond to particle 1 and open circles correspond 
to particle 2.  The solid lines are the DLVO interactions specified in the simulation. 
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LG experiment,50 which are summarized in Table 4.1.  The two profiles are intentionally 

offset by 1 kBT for clarity.  The solid lines in fig. 4.3a are the particle-particle 

electrostatic repulsion specified in the SD simulation (eq. (4.2)).   

While excellent agreement is observed in fig. 4.3a between the specified 

theoretical profile and the particle pair interaction for h = 9.5 µm, an apparently 

anomalous attractive well of ~0.75 kBT at r ≈ 10a is observed for the experiment at h = 

2.5 µm.  Both results in fig. 4.3a are essentially identical to the experimental LG 

results.31,50  Of course, the apparent attraction is unexpected because all particle and wall 

surfaces bear negative charges.  The observed attraction is particularly surprising in this 

work since only repulsive electrostatic DLVO pair interactions are specified in the SD 

simulation.  Because the transition analysis which worked for the TIRM experiment in 

fig. 4.2 now fails to recover the known interactions specified in the simulation, an 

immediate conclusion is that the analysis is either inappropriate or incorrectly applied in 

the experiment in fig. 4.3. 

Before further discussing the anomalous particle-particle attraction in fig. 4.3a, 

we also report particle-wall interactions from our simulation of the LG experiment in fig. 

4.3b.  Profiles in fig. 4.3b were constructed using the same trajectory data as in fig. 4.3a, 

except each particle’s height excursions normal to the glass surface were interpreted in 

an analysis identical to the TIRM experiment in fig. 4.2.  Circles in fig. 4.3b represent 

the interpreted interaction potential for each particle with the wall, and the solid line is 

the electrostatic repulsion specified in the simulation (eq. (4.2)).  Excellent agreement is 

observed in fig. 4.3b between measured and specified profiles for both h = 2.5 µm and h 
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= 9.5 µm.  A small upturn in the particle-wall interaction for h <9.2 µm is probably due 

to poor statistical sampling of the transition probability tensor, which we discuss later in 

more detail.  Because the specified particle-wall potentials are successfully recovered in 

fig. 4.3b, it appears the transition probability analysis is at least approximately valid in 

the particle-wall case despite its apparent failure to recover particle-particle interactions 

from the same trajectory data in fig. 4.3a. 

To fully understand all relevant interactions in the LG experiment, it is clear that 

a consistent explanation of the potentials in fig. 4.3 must simultaneously account for 

both the apparent particle-particle attraction and the DLVO particle-wall repulsion.  

Because the expected DLVO particle-particle potential is recovered for the h = 9.5 µm 

case in fig. 4.3a, which is consistent with previous measurements far from boundaries,52 

simple reasoning suggests the anomalous attraction in the h = 2.5 µm case is induced by 

the nearby wall.50  The role of the wall was indeed identified as the primary cause of the 

apparent attraction by Squires & Brenner (SB) using a “non-equilibrium hydrodynamic” 

explanation, as opposed to a novel conservative potential field.31  Although SB identified 

the importance of hydrodynamic phenomena in the LG experiment, we demonstrate in 

the following that more rigorous computation of the multi-body mobility tensor and 

inclusion of its gradient results in a modified explanation of the LG experimental results.  

In addition, we provide some qualitatively new conclusions with regards to inferences of 

anomalous attraction in several new experiments involving non-equilibrium 

measurements of interfacial colloidal dynamics. 
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Before proceeding with a quantitative analysis, we first offer a clarification 

concerning the nature of the anomalous attraction inferred in fig. 4.3a.  The fundamental 

explanation for the anomalous attraction in the LG experiment is that the one-

dimensional analysis in eqs. (4.8) and (4.11) is not valid for the conditions of this 

particular experimental configuration (see fig. 4.1b).  Analyzing projected one-

dimensional particle displacements, ∆r, during a time interval, ∆t, based on the one-

dimensional Smoluchowski equation (eq. (4.9))72 does not correctly treat multi-body 

hydrodynamic interactions that are also inherently multi-dimensional.  In other words, 

particle excursions in the LG experiment are affected by three-dimensional dissipative 

interactions that are not consistently treated using a one-dimensional transition 

probability analysis.  Although correct interactions might be obtained by considering 

propagation of the three dimensional distribution function, g(r), in the general N-particle 

Smoluchowski equation (eq. (4.7))66 using a transition probability approach,73 such an 

analysis is beyond the scope of this work.  The underlying problem with using the one-

dimensional analysis in the LG experiment is that it does not consistently treat one-

dimensional, pairwise conservative and multi-dimensional, multi-body dissipative 

forces. 

4.6.3. Effective potential for the interaction of two charged colloids below a charged 

wall 

By recognizing the importance of dimensionality in problems involving multi-

body hydrodynamics, it is possible to develop a priori criteria for determining the 

applicability of the one-dimensional transition probability analysis for interpreting non-
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equilibrium particle dynamics at interfaces.  By deriving "effective potentials" that 

quantitatively capture the anomalous attraction in our simulated results, we obtain a 

general and reliable method for predicting the validity of the one-dimensional analysis 

for interpreting "true" particle potentials from measured particle dynamics without their 

prior knowledge. 

Here we essentially follow the framework for deriving effective potentials 

developed by SB,31,53 except we consider a more rigorous mobility tensor and include 

the spatial gradient of the mobility tensor in our equations of motion.  The importance of 

the gradient of the mobility tensor in Brownian dynamics simulations is reported in the 

classic work of Ermak and McCammon,74 and is discussed in detail by Grassia et. al.47  

To quantitatively predict the anomalous attraction in fig. 4.3a, we begin by writing a 

one-dimensional, two-body equation of motion that would describe the projected one-

dimensional displacements observed in our simulations if multi-body, multi-dimensional 

hydrodynamic interactions were not important.  This can be written using an effective 

particle-particle force, Feff, as, 

 ( ) 1 1 1 2

1 1 1 2

2 2
2 22 2

B B
x x x xB B eff

x x x x
B

M Mtr M M F t
k T r r

⎛ ⎞∂ ∂∆
∆ = − + − ∆⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (4.12) 

where M's are components of the two-body mobility tensor, M2B, which were calculated 

using the exact expression.40  The subscripts on the mobility terms indicate how each 

coefficient relates particle hydrodynamics and forces;  Mx1x1 is the mobility of particle 1 

in the x direction due to forces on particle 1 in the x direction, and Mx1x2 is the mobility 

of particle 1 in the x direction due to forces on particle 2 in the x direction.  The 
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Brownian term is excluded from eq. (4.12) because it produces no net displacement on 

average.  We include the gradient of the mobility tensor from eq. (4.1), which has not 

been previously considered with regard to the LG experiment.  The factor of "2" in eq. 

(4.12) accounts for both particle displacements (see fig. 4.1b). 

However, the three-dimensional equation of motion in eq. (4.1) used in our SD 

simulations, can also be simplified to write an approximate equation of motion for 

projected one-dimensional displacements in terms of DLVO particle-particle, Fpp, and 

particle-wall, Fpw, interactions, and the multi-body diffusion tensor as, 

( ) 1 1 1 2

1 1 1 2 1 2
2 2 2 x x x xpp pw

x x x x x z
B B

M Mt tr M M F M F t
k T k T r r

∂ ∂⎛ ⎞∆ ∆
∆ = − + + − ∆⎜ ⎟∂ ∂⎝ ⎠

 (4.13) 

where M's are now components of the multi-body mobility tensor, M = R-1, which were 

calculated using the method of Brady and Bossis2 as summarized in section 2.  The 

multi-body term Mx1z2  is the mobility of particle 1 in the x direction due to forces on 

particle 2 in the z direction, which accounts for three-body hydrodynamic interactions.  

This term is calculated more rigorously compared to previous approximate treatments.75  

Because particles experience Brownian excursions normal to the wall, the average 

particle-wall interaction is used in eq. (4.13) as denoted by the brackets.  Because eqs.. 

(4.12) and (4.13) are expected to both produce the same projected one-dimensional 

particle displacements, which was confirmed in one-dimensional dynamic simulations, it 

is reasonable to equate them and integrate to obtain an effective potential as, 
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 (4.14) 

where the relative magnitude of particle-wall interactions, Fpw, and multi-body mobility 

terms and their gradients determine the degree to which relative one-dimensional particle 

motion is perturbed by the wall, which accounts for the resulting apparent deviation 

from the DLVO particle-particle potential. 

Fig. 4.4a replots our simulated potential for h=2.5 µm from fig. 4.3a along with 

the effective potential predicted by eq. (4.14) as the dashed line.  Excellent agreement is 

obtained between predicted and measured potentials both in magnitude and range.  Eq.. 

(4.14) also predicts the simulated potential in fig. 4.3a for h=9.5 µm with equal accuracy 

because the second and third terms vanish, and the first coefficient is unity, so the 

effective potential reduces to the predicted DLVO interaction.  These results illustrate 

that eq. (4.14) quantitatively describes particle pair interactions both near and far from 

walls by including the rigorous many-body mobility tensor and its gradient in the 

equation of motions in eqs. (4.12) and (4.13).  By determining whether relevant terms 

have non-zero or non-unity values, the effective potential in eq. (4.14) can also be used 

in an a priori fashion to predict whether a one-dimensional analysis is expected to yield 

the correct pair interactions in experiments involving interfacial and confined colloids.  

This knowledge is essential for confidently designing and interpreting experiments, 
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particularly if the one dimensional analysis is intended as a reliable measurement tool in 

poorly understood systems. 

The expression in eq. (4.14) is different from the effective potential derived by 

SB.  Different terms are present in our effective potential because we distinguish 

between two-body and multi-body mobility tensors in eqs. (4.12) and (4.13) and include 

the gradient of the mobility tensor (see eq. (4.1)).  The net attraction in Fig 4a is 

quantitatively captured only when all these terms are included in eq. (4.14).  The 
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Figure 4.4.  (a) Particle-particle potential energy profile replotted from fig. 4.3a for 
h=2.5 µm.  (b)  Particle-particle potential energy profile for the interaction of two 652 
nm polystyrene (PS) colloids (ρp=1055 kg/m3, ψp=-178 mV) below an uncharged wall 
(ψw=0 mV) in a 0.0012 mM (κ-1=275 nm) 1:1 H2O/D2O electrolyte solution (ρf  = 1055 
kg/m3) (see fig. 4.1b).  Circles correspond to interpreted simulation data, the solid line is 
the DLVO particle interaction specified in the simulation, and the dashed lines are 
analytical effective potentials given by eq. (4.14).  Insets show magnification of each 
potential energy profile's minimum region.   
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additional terms in our effective potential predict qualitatively different results in several 

new illustrative experiments described in the following sections. 

4.6.4. Intermittent sedimentation of two charged colloids below an uncharged wall 

To demonstrate the importance of the terms in eq. (4.14) in addition to the one 

involving repulsive particle-wall interactions, we present simulations of an experiment 

similar to the LG experiment except the wall is uncharged and the particles are neutrally 

buoyant (see fig. 4.1b).  This arrangement is a good approximation of experiments 

involving non-ionic polymer films with negligible surface potentials and polystyrene 

particles density matched in H2O/D2O media.  Fig. 4.4b shows a potential energy profile 

for the interaction of two 652 nm PS colloids (ρp=1055 kg/m3, ψp=-178 mV) below an 

uncharged wall (ψw=0 mV) in 0.0012 mM (κ-1=275 nm) ionic strength H2O/D2O media 

(ρf=1055 kg/m3).  Our SD simulations of this experiment include coupled hydrodynamic 

and Brownian forces and conservative electrostatic forces. 

Data in fig. 4.4b are from a transition probability analysis of one-dimensional 

particle separations, r, in a plane at h = 2.5 µm parallel to the wall surface using identical 

parameters to the LG experiment in Table 4.1.  As in fig. 4.4a, the solid line shown in 

fig. 4.4b is the electrostatic repulsion specified in the SD simulation (eq. (4.2)), which is 

the same for both experiments.  An anomalous attractive well of ~0.4 kBT is observed at 

r ≈ 10a in fig. 4.4b, which is similar in range to the LG experiment in fig. 4.4a, but 

approximately half the depth.  Because the particle-wall interaction is identically zero for 

separations sampled in the vicinity of the trapped position at h = 2.5 µm, the anomalous 
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attraction in fig. 4.4b cannot be accounted for by the spheres’ net drift away from the 

wall and their “coupling” via three-body hydrodynamics.31  The particles were made 

neutrally buoyant (Fg=0) so that gravitational forces normal to the wall are not present 

(although gravitational forces were also found to be insignificant in this experiment 

without density matching). 

The anomalous attraction in fig. 4.4a is well described by the dashed line given 

by eq. (4.14), with contributions only from the terms involving the gradient of the 

mobility tensor and differences in two- and three- body mobility tensor terms.  Because 

this experiment is nearly identical to the LG experiment except for the uncharged wall, it 

is clear that these additional terms account for approximately half of the anomalous 

attraction in the LG experiment in fig. 4.4a.  Both of the results in fig. 4.4 together 

illustrate that even in a simple two particle-wall experiment, only a rigorous treatment of 

multi-body hydrodynamics in conjunction with an accurate equation of motion including 

the gradient of the mobility tensor is sufficient to generate quantitative agreement 

between theoretical predictions and experimental measurements. 

4.6.5. Effective potentials for charged colloids interacting with a charged wall 

Although the anomalous particle-particle attraction in the LG experiment in fig. 

4.3a is now fully accounted for, it is less obvious why the correct particle-wall 

interaction was obtained in the same experiment in fig. 4.3b.  To examine in more detail 

the influence of multi-body hydrodynamics on the interpretation of particle-wall 

interactions, we present simulations of yet another variation of the LG experiment 

involving two 652 nm PS particles held below a charged wall at h = 2.5 µm and r = 2.5 
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µm by a pair of optical traps periodically blocked by a beam chopper (see fig. 4.1b).  By 

maintaining the particle pair at both relatively small particle and wall separations, multi-

body hydrodynamics are expected to have a greater effect on particle-wall interactions 

compared to the experiment in fig. 4.3b in which particle separation was continuously 

adjusted between r = 2.0-6.5 µm.  This experimental arrangement could be realized in 

future measurements of particle-wall interactions involving two or more particles in a 

multi-trap optical tweezer.   

Fig. 4.5 shows a potential energy profile for the interaction of two 652 nm PS 

colloids (ρp=1055 kg/m3, ψp=-178 mV) below a charged wall (ψw=-71 mV) in 0.0012 

mM (κ-1=275 nm) ionic strength aqueous media (ρf =1000 kg/m3).  Because the optical 

trap position is unchanged during the experiment, height excursions used to construct the 

transition probability tensor arise only from Brownian motion about the trapped position 

at h = 2.5 µm and r = 2.5 when the particle pair is periodically released from the optical 

tweezer.  Data in fig. 4.5 are determined from a transition probability analysis of one-

dimensional particle-wall separation, h, as in the TIRM experiment in fig. 4.2.  The 

transition probability tensor in each case was constructed using the same parameters as 

the LG experiment listed in Table 4.1.  The solid line in fig. 4.5 is the particle-wall 

electrostatic and gravitational interaction specified in the SD simulation (eq. (4.2)). 

When using the same analysis as in the TIRM experiment in fig. 4.2, the data in 

fig. 4.5 display an anomalous attractive well of ~1 kBT  at h ≈ 10a, which is of course 

unexpected.  We again explain this anomalous attraction in terms of an effective 

potential.  In a derivation paralleling our analysis of particle-particle interactions near a 
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wall in eqs. (4.12)-(4.14), and similar to the method originally implemented by SB, it is 

easy to show the effective potential for the particle-wall interaction is given by, 

 

( ) ( ) ( )1 1 1 2 1 1 1 2
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 (4.15) 

where M's are components of two- and many- body mobility tensors calculated using the 

rigorous expressions described in section 2.  Mz1z1 is the mobility of particle 1 in the z 
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Figure 4.5.  Particle-wall potential energy profiles for two 652 nm PS colloids (ρp=1055 
kg/m3, ψp=-178 mV) held at h=2.5 µm and r=2.5 µm below a negatively charged wall 
(ψw=-71 mV) in a 0.0012 mM (κ-1=275 nm) 1:1 aqueous electrolyte solution (ρf  = 1000 
kg/m3) (see fig. 4.1b).  Filled circles correspond to particle 1 and open circles correspond 
to particle 2.  The solid line is the DLVO particle interaction specified in the simulation, 
and the dashed line is the analytical effective potential given by eq. (4.15). 
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direction due to forces on particle 1 in the z direction, Mz1z2 is the mobility of particle 1 

in the z direction due to forces on particle 2 in the z direction, and Mz1x2 is the mobility of 

particle 1 in the z direction due to forces on particle 2 in the x direction.  Because 

particles experience Brownian excursions parallel to the wall, an average particle-

particle interaction is used in eq. (4.15) as denoted by the brackets. 

Excellent agreement is displayed in fig. 4.5 between the dashed line predicted by 

eq. (4.15) and the interpreted particle-wall potentials.  Eq. (4.15) also predicts the 

simulated potential for the TIRM experiment in fig. 4.2 with equal accuracy, which 

illustrates the generality of this expression for understanding charged particles near 

charged surfaces for conditions when another charged particle is either nearby or far 

away.  As in eq. (4.14), the success of eq. (4.15) originates from consideration of the 

rigorous many-body mobility tensor, the gradient of the mobility tensor, and the relative 

importance of multi-body hydrodynamics compared to two-body interactions.  Again, by 

quantifying in eq. (4.15) whether relevant terms have non-zero or non-unity values, this 

expression can be used in an a priori fashion to predict whether the one dimensional 

transition probability analysis can be confidently used as an objective measurement tool 

in colloidal systems where potentials are unknown. 

It is also important to clarify the apparent discrepancy between the particle-wall 

interactions reported for the similar experiments in figs. 4.3b and 4.5.  While an 

anomalous attractive particle-wall potential was inferred in fig. 4.5, the expected DLVO 

particle-wall potential was recovered in fig. 4.3b, which suggests an important 

dependence on data sampling and averaging parameters when constructing transition 
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probability tensors.  In fig. 4.5, particle and wall separations are essentially fixed at h = 

2.5 µm and r = 2.5 µm, however, in fig. 4.3b, only particle-wall separation was fixed at h 

= 2.5 µm, but particle-particle separation was adjusted continuously between r = 2.0-6.5 

µm.  These results suggest that if particle dynamics were sampled only for r < 3.0 µm 

when constructing the transition probability tensor in fig. 4.3b, an anomalous particle-

wall attraction would have been obtained similar to fig. 4.5.  Because a significant 

portion of the measurement in fig. 4.3b was averaged over separations where particle-

particle electrostatic and multi-body hydrodynamic interactions are not significant as 

determined from eq. (4.15), the average potential inferred in fig. 4.3b agrees well with 

the expected DLVO particle-wall interaction.  These results indicate the importance of 

sampling statistics and averaging when constructing the transition probability tensor 

from measured particle dynamics.  Although eqs. (4.14) and (4.15) capture deviations 

from DLVO potentials when the one-dimensional transition probability analysis is 

inappropriately applied to multi-dimensional dynamic data, the combined results in figs. 

4.2, 4.3b, and 4.5 suggest that additional care must be taken when analyzing 

measurements averaged over different dynamic conditions. 

4.6.6. Colloidal pairs confined at the mid-plane between parallel charged walls 

So far we have considered interfacial colloids in close proximity to one wall, but 

have yet to examine confined colloidal systems.  In this section, we build on our 

understanding of particle pairs near one wall to investigate the anomalous attraction 

inferred from non-equilibrium measurements of like-charged particle pairs confined at 

the mid-plane between parallel like-charged walls (see fig. 4.1c).  Anomalous attraction 
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was originally reported for this particular experimental configuration by Crocker & Grier 

(CG) in 1996, but has eluded satisfactory explanation.30,31  The experimental 

arrangement and procedure are similar to the LG experiment in fig. 4.1b, except that a 

second charged wall is added below the particle pair at a spacing L from the top wall as 

shown in fig. 4.1c.  In the original CG experiment, projected center-to-center separation, 

r, was dynamically measured using video microscopy,71 while particle center-to-wall 

separation, h, was not monitored.  Our SD simulations of the CG experiment treat 

conservative and dissipative interactions similar to all previous experiments reported in 

this section (see eq. (4.1)). 

  Fig. 4.6a shows potential energy profiles for the interaction of two 652 nm PS 

colloids (ρp=1055 kg/m3, ψp=-145 mV) at the mid plane between two charged walls 

(ψw=-58 mV) in 0.0012 mM (κ-1=275 nm) ionic strength aqueous media (ρf =1000 

kg/m3).  The walls are positioned at distances of L=6.5, 4.0, 3.0, and 2.5 µm as reported 

in a review article by Grier,76 while all other parameters are the same as reported by 

CG.30  Fig. 4.7 shows the particle-wall interaction for each of the four wall spacings 

investigated in fig. 4.6a.  All particle-particle and particle-wall profiles in figs. 4.6a and 

4.7 were constructed using the same particle trajectory data and the one-dimensional 

transition probability analysis in eqs. (4.8) and (4.11).  Circles represent interpreted 

profiles, and solid lines are the electrostatic repulsion specified in the simulation (eq. 

(4.2)).  Each potential profile in fig. 4.6a is intentionally offset by 2 or 3 kBT for clarity, 

and the separation scale in fig. 4.7 is normalized by the wall spacing, L, for each 
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experiment.  The transition probability tensor was constructed using data acquired with 

the parameters reported in Table 4.1. 

 Excellent agreement is observed in fig. 4.7 between measured and specified 

particle-wall interactions at each wall separation.  In addition, excellent agreement 
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                                       (a)                                                              (b) 
 
Figure 4.6.  Particle-particle potential energy profiles for two 652 nm polystyrene (PS) 
colloids (ρp=1055 kg/m3, ψp=-145 mV) at the mid plane between two charged walls 
(ψw=-58 mV) in a 0.0012 mM (κ-1=275 nm) 1:1 aqueous electrolyte solution (ρf  = 1000 
kg/m3) (see fig. 4.1c).  Circles correspond to interpreted simulation data using either (a) 
40,000 or (b) 80,000 sampled separations (see Table 4.1).  From top to bottom in both 
(a) and (b), the wall separation as defined in fig. 4.1c is L=6.5, 4.0, 3.0, and 2.5 µm.  
Solid lines are the DLVO particle-particle interactions specified in the simulation. 
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between measured and specified particle-particle interactions is also obtained in fig. 4.6a 

for a wall spacing of L=6.5 µm.  Because the expected potentials are recovered, the one-

dimensional transition probability analysis appears to be at least approximately valid for 

interpreting particle-particle interactions for relatively large wall spacings (L/a = 6.5 

µm/0.326 µm ≅ 20) and particle-wall interactions for all wall spacings examined here 

(L/a = 2.5-6.5 µm/0.326 µm ≅ 8-20).  Although particle-wall interactions inferred at 

small particle-particle separations could be expected to predict anomalous attraction 

from eq. (4.15), no attraction is observed probably due to sampling and averaging effects 

similar to the particle-wall interaction obtained in the LG experiment in fig. 4.3b. 

Results in fig. 4.6a also indicate anomalous attractive wells of ~0.4 kBT and ~0.2 

kBT for L=4.0 and L=3.0 µm, while an anomalous long range repulsion is observed for 

L=2.5 µm.  As in the previous experiments for particle pairs adjacent to a single wall in 

figs. 4.3-4.5, the apparent attraction is unexpected because all surfaces bear negative 

charges.  The anomalous long range repulsion for L=2.5 µm, which was not observed in 

any other experiments, is also not expected from DLVO theory (eq. (4.4)).  Similar to 

the results of the CG experiment,30,76 DLVO electrostatic repulsion is observed for L=6.5 

µm, anomalous attraction is observed for L=4.0 and L=3.0 µm, and anomalous repulsion 

is observed for L=2.5 µm.  Our observations of anomalous interactions similar to the CG 

experimental results are quite surprising given that only standard DLVO repulsive 

electrostatic pair interactions were specified our SD simulations. 
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While the potential profiles interpreted from our SD simulations in fig. 4.6a have 

qualitative similarities with the original findings in the CG experiment, important 

quantitative differences exist.  For instance, the apparent range of the potentials in the 

CG experiment were originally observed to shift to shorter separations by ~1 µm 

compared to nearly identical measurements for the same 652 nm PS colloids far from 

any boundaries.  Our interpreted potentials in fig. 4.6a do not display this inward shift.  

In addition, the CG data exhibit more complex separation dependent potential profiles 

with either greater anomalous attraction or repulsion at relatively short separations.  The 
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Figure 4.7.  Particle-wall potential energy profiles for two 652 nm polystyrene (PS) 
colloids (ρp=1055 kg/m3, ψp=-145 mV) at the mid plane between two charged walls 
(ψw=-58 mV) in a 0.0012 mM (κ-1=275 nm) 1:1 aqueous electrolyte solution (ρf  = 1000 
kg/m3) (see fig. 4.1c).  The wall separations as defined in fig. 4.1c correspond to L=6.5, 
4.0, 3.0, and 2.5 µm.  Open circles correspond to particle 1, closed circles correspond to 
particle 2, and solid lines are the DLVO particle potentials specified in the simulations. 
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discrepancies between our findings in fig. 4.6a and the reported CG results suggest our 

SD simulations including electrostatic DLVO potentials (eq. (4.4)) do not completely 

capture the behavior of like-charged colloidal pairs confined between parallel like-

charged walls. 

Although we do not quantitatively duplicate the potentials found in the CG 

experiment, we attempt to understand the anomalous interactions inferred from our 

dynamic simulations in which only repulsive electrostatic DLVO pair interactions were 

specified between the particles and walls.  Because the one-dimensional transition 

probability analysis fails to recover known input interactions for L=4.0, 3.0 µm, and 2.5 

µm in fig. 4.6a, it might be expected that the analysis in eqs. (4.8) and (4.11) is also 

invalid for the CG experiment due to multi-dimensional dissipative interactions similar 

to our explanations of results in figs. 4.3-4.5.  However, the effective potential in eq.. 

(4.14) predicts successful recovery of the repulsive DLVO particle-particle potential for 

all wall spacings in fig. 4.6a.  In particular, the term in eq. (4.14) involving the particle-

wall interaction is identically zero due to symmetry (see fig. 4.7), and the first and third 

terms, while deviating slightly from unity and zero, produce negligible contributions for 

the particle and wall separations in fig. 4.6a.  The terms in eq. (4.14) cannot account for 

the anomalous repulsion in the L=2.5 µm case.  Because the anomalous interactions in 

fig. 4.6a, which are interpreted from simulations using only repulsive potentials, are not 

explained by multi-dimensional hydrodynamics, another factor must be responsible for 

the discrepancy between the simulated particle-particle potentials and the potentials 

inferred from non-equilibrium particle dynamics. 
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From insights gained in figs. 4.2-4.5, we explored several modifications to the 

CG experimental protocol that allowed us to ultimately recover the simulated DLVO 

potentials for each value of L as shown in fig. 4.6b.  All parameters in fig. 4.6b were 

identical to those in fig. 4.6a with the single exception that 80,000 images were acquired 

instead of the 40,000 images in the original CG experiment.  This result suggests that at 

least part of the anomalous behavior inferred in the CG experiment using the one-

dimensional transition probability analysis may be due to insufficient statistical sampling 

of particle dynamics when constructing the transition probability tensor.  Although a 

significantly smaller number of points (6502) allowed successful recovery of particle 

interactions in a similar experiment in bulk media52 and even the 6.5 µm case in fig. 

4.6a, it appears that hydrodynamic hindrance in confined geometries may affect the 

sampling parameters necessary to obtain a statistically significant set of independent 

points when constructing the transition probability tensor.  Details concerning proper 

statistical sampling of the transition probability tensor are beyond the scope of this work, 

but given their apparent influence on the results in figs. 4.3, 4.5 and 4.6, they appear to 

be an issue worthy of further investigation. 

A final issue worth addressing is the speculation by SB that repeated 

displacement of the particle pair away from the mid-plane in the CG experiment could 

also produce anomalous attraction via hydrodynamic effects.  In SD simulations where 

we intentionally offset particles from the mid-plane by up to 300 nm in the CG 

experiment (beyond the 150 nm uncertainty suggested by CG30), no anomalous 

attraction was observed as long as 80,000 images were acquired.  From our simulation 
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data, particles move back to the mid-plane much faster than the 1/60s image capture time 

such that multi-dimensional dissipative effects appear insignificant.  It is also important 

to note that offsetting the particles from the mid-plane in eq. (4.14) cannot account for 

the anomalous repulsion depicted in fig. 4.6a for L=2.5 µm.  Because increasing the 

number of points used to construct the experimental transition probability tensor 

consistently corrects both the anomalous attraction and repulsion in our results in fig. 

4.6, it may partially explain the anomalous interactions in the CG experiment. 

Because we do not observe an inward shift or quantitative agreement with the 

magnitudes of anomalous interactions in our simulated results in fig. 4.6 compared to the 

CG experiment, our findings do not appear to fully account for the non-equilibrium 

behavior of confined colloidal pairs.  However, by identifying possible issues related to 

experimental sampling of particle dynamics when constructing the transition probability 

tensor, we are able to account for some qualitative features of the anomalous CG 

potentials.  Despite our imperfect reproduction of the CG experimental results, our 

findings provide some new insights into anomalous attraction using only DLVO 

conservative potentials and multi-body resistance tensors calculated using the methods 

of Brady and Bossis.2  By at least partially reproducing features observed in the CG 

experiment and also considering particle-wall interactions, our results in figs. 4.6 and 4.7 

provide a basis for future refinements to better understand the origin of anomalous 

potentials inferred from non-equilibrium measurements of confined colloidal pairs. 
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4.7. Conclusions 

To summarize and conclude our findings, we initially verified the ability of the 

one-dimensional transition probability analysis to measure particle-wall interactions in a 

typical TIRM experiment.  We demonstrated this same analysis to be suitable for 

recovering particle-particle and particle-wall interactions for particle pairs held in a 

blinking optical tweezer far below a single charged wall (h ≈ 30a).  For the same 

experiment conducted closer (h ≈ 10a) to either charged or uncharged walls, an 

anomalous particle-particle attraction was inferred from relative projected particle 

displacements in agreement with reported measurements.  The one-dimensional 

transition probability analysis fails in this case because it does not consistently treat 

multi-body hydrodynamics that are also inherently multi-dimensional. 

By deriving effective potentials that consider the multi-body mobility tensor and 

its gradient, we were able to quantitatively predict anomalous attraction in previous and 

several new illustrative experiments involving particle pairs near one wall.  Our effective 

potentials were derived using an approach similar to that originally reported by Squires 

and Brenner.  By including a more rigorous mobility tensor and its gradient, we recover 

quantitative predictions of the net anomalous attraction between charged particles near a 

single charged wall with different relative contributions from new and previously 

reported effects.  Our effective potentials also predict the anomalous attraction between 

charged particles adjacent to an uncharged wall, which is not captured by previous 

explanations.  A different effective potential expression was derived to capture 

anomalous attraction between a particle and wall when one additional particle is nearby. 
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Our capabilities for interpreting conservative potentials from non-equilibrium 

colloidal dynamics are thus expanded from bulk particle pairs and single particle-wall 

interactions (fig. 4.2) to include particle-particle and particle-wall interactions for 

charged colloidal pairs near single charged and uncharged walls (figs. 4.3-4.5).  For 

particle pairs confined between parallel walls (figs. 4.6, 4.7), we obtain evidence 

suggesting the anomalous attraction may be partially accounted for by statistical 

sampling effects.  While data sampling issues appear to explain some of the features in 

experimentally measured anomalous potentials, other important characteristics are not 

captured by our SD simulations.  These results demonstrate that accurate treatment of 

the multi-body mobility tensor and its gradient can fully account for anomalous 

attraction inferred from particle dynamics near a single wall and appear to partially 

explain anomalous interactions for particle pairs between parallel confining walls. 

Our findings reported here are not expected to explain recent inferences of 

anomalous attraction from equilibrium measurements of confined ensembles,63 where 

dissipative effects are inherently unimportant, or in small κa systems,64,65 where many-

body electrostatic interactions may be important.  The analytical and simulation results 

presented in this section are intended to provide a constructive basis for self-consistently 

interpreting equilibrium and dynamic interactions in interfacial and confined colloidal 

systems.  Ultimately, our goal is to assist the robust design and interpretation of 

increasingly complex future experiments. 
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5. DYNAMIC SIGNATURE FOR THE EQUILIBRIUM PERCOLATION 

THRESHOLD OF WEAKLY ATTRACTIVE COLLOIDAL FLUIDS 

5.1. Synopsis 

Short time self diffusivities, DS
S, are computed for attractive colloidal fluids with 

van der Waals potentials to identify their percolation threshold and a previously 

unexplained dynamic transition.  Our results show a discontinuous change in the slope of 

DS
S vs. temperature as the percolation threshold is crossed.  Because DS

S depends only 

on multi-body hydrodynamic interactions, the percolation threshold of attractive 

colloidal fluids is shown to correspond to a transition in a dynamic property consistent 

with the linear viscoelastic measurements of Woutersen, et al.32 

5.2. Introduction 

Attractive colloidal particles form equilibrium and non-equilibrium 

microstructures determined by their concentration and the magnitude and range of their 

attraction.  For weak attraction, single phase fluids and coexisting gas-liquid and liquid-

solid phases are observed, whereas strong attraction produces irreversible fractal gels34.  

Elevated attraction and concentration can also produce dynamically arrested 

microstructures.77  Whether colloidal attraction originates from van der Waals, depletion, 

or biomolecular interactions, controlled assembly of attractive colloids into useful 

microstructures requires the ability to intelligently manipulate particle interactions and 

dynamics to navigate free energy landscapes in such systems. 
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To begin to understand the importance of multi-body hydrodynamic interactions 

in colloidal assembly processes, here we investigate dynamical changes as the 

equilibrium percolation threshold (PT) is crossed, which is one of the simplest structural 

transitions of weakly attractive colloids.  The equilibrium PT is defined to occur when 

attractive colloids produce system spanning clusters in half of all configurations.  The 

PT is not a phase transition since it is not accompanied by discontinuous changes in 

thermodynamic quantities or their derivatives, but is a distinctive feature in an otherwise 

barren landscape of single phase fluid configurations with insufficient concentration or 

attraction to produce coexisting equilibrium phases, arrested glasses, or irreversible gels. 

Although the PT is one of few notable features on kinetic pathways from initially 

hard sphere fluids towards gel, glass, and crystal structures at higher particle attractions 

and concentrations, changes in relaxation mechanisms and frequency dependent 

properties of colloidal fluids across the PT are not yet fully understood.  Numerous 

studies have investigated attraction and concentration dependent rheological transitions 

in colloidal fluids with temperature dependent pair potentials but have focused primarily 

on the fluid-gel transition beyond the PT.78-80  Experimental studies of dynamical 

changes across the PT are generally complicated by having to measure linear 

viscoelastic properties and also having an independent measurement of the percentage of 

system spanning clusters averaged over space and time.  Although much theoretical 

work has been dedicated to consistently treating thermodynamic and hydrodynamic 

relaxation mechanisms in repulsive colloidal fluids,81 similar approaches have not been 

extended to attractive colloidal fluids in the vicinity of their PT. 
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Here we report evidence of a dynamic signature of the equilibrium PT of 

attractive colloid fluids that is dominated by multi-body hydrodynamic interactions.  In 

particular, we observe a discontinuous rate of change in the short time self diffusivity, 

DS
S, vs. temperature, T, for polymer coated colloids with realistic van der Waals (vdW) 

potentials at a locus of conditions nearly identical to the PT of adhesive spheres (AS) 

with equivalent second virial coefficients, B2.  This dynamic signature serves as a 

criterion for the equilibrium PT of attractive colloids and provides new insights into the 

role of multi-body, dissipative hydrodynamic interactions in the structural evolution of 

attractive, single phase, equilibrium colloidal fluids.  The predicted change in DS
S across 

the percolation threshold is consistent with, and can be used to explain, the linear 

viscoelastic measurements of attractive colloidal fluids by Woutersen, et al.32 

5.3. Phase Diagram of Polystyrene Particles with Adsorbed Polymer 

This investigation is motivated by our previous measurements of a T and 

concentration dependent transition of polystyrene (PS) colloids (radius, a = 180 nm) 

with adsorbed PEO-PPO-PEO (thickness at 25 C, δ = 20 nm) in aqueous 0.5 M NaCl82 

for which the potential is well known.83  Fig. 5.1 shows a phase diagram for such 

polymer coated particles as a function of T and PS core particle volume fraction, φcore.  

With increasing T, the net attraction is mediated by diminishing solvent quality for the 

PEO moieties.  The pair potential between such particles (hereafter referred to as the 

vdW potential) can be modeled to include a hard wall repulsion that collapses with 

increasing T and a van der Waals attraction between core particles and solvated 
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copolymer coatings.  By equating B2's for the vdW and AS potentials (to link T and the 

AS parameter τ), fig. 5.1 is constructed to show AS predictions for gas-liquid 

coexistence and the critical point,82 liquid-solid coexistence,84 the PT,85,86 and glass 

lines.77  The phase diagram appears inverted due to the lower critical solution 

temperature of the adsorbed copolymer in aqueous media. 

5.4. Results and Discussion 

To understand how structural relaxations change as the PT is approached and 

traversed with increasing attraction in equilibrium colloidal fluids, we performed 

standard canonical (NVT) Monte Carlo (MC) simulations for copolymer coated particles 
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Figure 5.1.  Phase diagram showing gas-liquid and liquid-solid coexistence (--) and 
critical point (◊);  percolation thresholds from MC simulations (▬),85 theory (─),86 and 
transitions in short time self diffusivity (●);  glass lines (─ ··).77 
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interacting via the vdW potential.  Equilibrium configurations for 108 and 256 particles 

were generated for a range of T and φcore values bounding the AS PT in fig. 5.1. 

Before examining dynamic quantities, we first establish that the MC simulated 

equilibrium fluid configurations display the expected continuous changes in 

thermodynamic properties via the pair distribution function at contact, g(2a,φ), in fig. 

5.2.  Results are shown for the five MC simulated φcore values on a temperature scale 

relative to the equivalent AS PT temperature, T-Tpt.  The MC simulated values of g(2a,φ) 

are well represented by the solid lines in fig. 5.2 given by 

 ( ) ( ) ( )( )2 , 2 , exp 2eff eff HS eff eff vdW effg a g a u a kTφ φ= −  (5.1) 

which is the hard sphere radial distribution function at contact 87 times a Boltzmann 

factor for the vdW potential at contact based on effective radii (aeff=a+δ) and volume 

fractions (φeff=φcore(aeff/a)3).  The data and fits in fig. 5.2 display smooth changes in 

g(2a,φ), confirming the absence of any thermodynamic transitions across the equivalent 

AS PT. 

Next, we compute short time, DS
S, and long time, DS

L, self diffusivities for the 

MC simulated fluid configurations in fig. 5.2.  Values of DS
S are computed from the 

trace of the N-particle diffusion tensor, D, as 

 
3

1

1
3

N
S
S ii

i

D D
N =

= ∑  (5.2) 

where the brackets indicate an average over all configurations for each set of T, φcore 
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conditions.  D is related to the resistance tensor, R, through the generalized Stokes-

Einstein relation, D=kTR-1.  Here R is computed using the method of Brady and Bossis,2 

where hydrodynamic interactions are separated into far-field, multi-body and a near-

field, lubrication contributions as 

 ( ) 1

2 2B B

−∞ ∞= + −R M R R  (5.3) 

where M∞ is the far-field mobility tensor constructed in a pairwise manner.  The inverse 

of M∞ is a true multi-body, far-field approximation to the resistance tensor.  Lubrication 
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Figure 5.2.  Pair distribution function at contact (top) and normalized long time self 
diffusivity (bottom) for MC simulations of colloids with temperature dependent vdW 
potentials.  Data plotted on temperature scale relative to equivalent AS PT for φcore=0.15 
(Ο), 0.20 (∇), 0.25 ( ), 0.30 (◊), and 0.38 (∆).  Also shown are fits using eq. (5.1) (─) 
and lines to guide the eye (--). 
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is included by adding the exact two-particle resistance tensor,88 R2B, and subtracting the 

two-body, far-field resistance tensor, R2B
∞, to avoid double counting. 

To demonstrate the accuracy of eqs. (5.2) and (5.3) for attractive equilibrium 

colloidal fluids before applying them to all MC simulated configurations, we compare 

them with mean squared displacements (MSD), 〈∆r2(∆t)〉, obtained from Stokesian 

Dynamic (SD) simulations.  SD simulations were performed using the Langevin 

equation74 described in Section 2 as 

 ( ) ( )0 1 1 PkT t t t− −= + ∇ ⋅ ∆ + ⋅ ∆ + ∆r r R R F X  (5.4) 

where r is the 3N particle coordinate vector, FP is the net conservative force vector, and 

X is the random Brownian displacement such that 〈X〉=0 and 〈XX〉=2kTR-1∆t.  The time 

step, ∆t, was chosen to be larger than the momentum relaxation time, τB=m/(6πµa), but 

smaller than the diffusive time, τD=a2/D0, where D0=kT/(6πµa) is the single particle 

Stokes-Einstein diffusivity. 

Using the final MC simulated configuration at T=70C, φcore=0.25 as the initial 

configuration in an SD simulation, fig. 5.3 shows a solid line for MSD vs. time by 

averaging over multiple time origins and all particles (N=108).  The dashed line 

intercepting the origin and tangential to the MSD at short times has a slope of 6(DS
S/D0) 

where DS
S was computed using eqs. (5.2) and (5.3) by averaging over all MC simulated 

configurations at T=70C, φcore=0.25.  The dashed line tangential to the linear region at 

long times has a slope of 6(DS
L/D0) where 81 
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 ( ) 1
1 2 2 ,L S

S S eff eff effD D g aφ φ
−

⎡ ⎤= +⎣ ⎦  (5.5) 

and g(2a,φeff) and DS
S are computed using eqs. (5.1)-(5.3).  Insets in fig. 5.3 show 

derivatives of MSD vs. time as solid lines and values of 6(DS
S/D0) and 6(DS

L/D0) from 

MC simulations as dashed lines. 

Fig. 5.3 displays excellent agreement between DS
S and DS

L obtained from SD 

simulations and predictions from eqs. (5.1) and (5.5) with MC simulated configurations.  

The agreement of diffusivities determined independently from MC and SD simulations 

confirm that equilibrium colloidal fluids are retained beyond the PT and that DS
S and DS

L 
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Figure 5.3.  MSD and its derivative (insets) vs. time from SD simulations (─) at T=70C, 
φcore=0.25.  Short time (eq. (5.2)) and long time (eq. (5.5)) diffusivities predicted from 
MC simulated configurations (--) at the same conditions. 
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can be accurately predicted from MC simulations without performing computationally 

expensive dynamic simulations.  DS
S has a known system size dependence in eq. (5.2) 89 

that can be corrected using90 

 ( ) ( ) ( ) ( )1 3
0 1.7601S S

S SD D N D N Nµ η φ φ⎡ ⎤∞ = + −⎣ ⎦  (5.6) 

where DS
S(∞) is the infinite system size value, DS

S(N) is the N-particle value, and µ and 

η are the medium and dispersion viscosities.  Because simulations were performed for 

N=108 and N=256, DS
S(∞) could be obtained without independently determining µ/η. 

Using eqs. (5.2), (5.5), and (5.6), DS
S and DS

L were computed for MC simulated 

configurations of vdW particles for all conditions investigated in fig. 5.2.  To 

demonstrate the smooth variation of DS
L across the PT (similar to molecular fluids), Fig 

5.2 shows DS
L vs. T-Tpt.  For comparison, fig. 5.4 shows a plot of D0/DS

S vs. T for 

different φcore.  Each φcore set displays a pronounced slope change at temperatures 

estimated from the intersection of linear fits to high and low temperature regions.  The 

resulting transition temperatures for each φcore set (plotted in fig. 5.1) indicate a dynamic 

transition of vdW particles nearly identical to the equivalent AS PT.  As a result, the PT 

of vdW particles appears to have a dynamic signature determined exclusively by multi-

body hydrodynamic interactions contained in DS
S in eq. (5.2). 

An advantage of identifying the PT from changes in D0/DS
S is its direct 

connection to linear viscoelastic properties in attractive colloidal fluids.  Because D0/DS
S 

is proportional to the high frequency dynamic viscosity, η∞/µ,81 the results in fig. 5.4 
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predict an abrupt rate of change in η∞/µ vs. T at the PT of attractive colloidal fluids that 

can be compared with experimental measurements.  This prediction appears to be 

consistent with the unique high frequency, linear viscoelastic measurements of an 

attractive colloidal fluid (octadecyl coated silica in benzene) by Woutersen, et al.32  By 

fitting a general Maxwell model to their dynamic viscosity measurements in the range 

70-250,000 Hz, Woutersen, et. al. found an abrupt change in the dependence of the 

relaxation time, a2/DS
S, vs. T at the PT.  Our results in fig. 5.4 suggest the mechanism for 

their observed transition in a2/DS
S vs. T is based on changes in multi-body hydrodynamic 

interactions as the PT is crossed. 

Although DS
S is a measure of local particle mobility, it is important to note that it 

critically depends on both near-field, lubrication and far-field, multi-body interactions.  

In fact, inclusion of multi-body, far field interactions is essential to the proper prediction 

of DS
S to obtain even qualitative agreement with experiments.89  Because DS

S has a 

unique multi-body dependence on particle configurations that is distinct from the 

pairwise dependence of g(r), it is possible to have a dynamic transition determined by 

dissipative interactions at the PT in fig. 5.1 for conditions where pairwise conservative 

interactions produce no thermodynamic transition.  Values of DS
S computed by 

considering only pairwise lubrication interactions between adjacent particles are not 

expected to capture the transition in fig. 5.4. 

It should be noted that the transition in D0/DS
S vs. T in fig. 5.4 across the 

percolation threshold occurs within the single phase fluid region of fig. 5.1 and does not 

indicate a fluid-solid transition associated with gelation or dynamic arrest.78-80  Although 
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DS
S contributes to η(ω)/µ at all frequencies based on its dominance at the high frequency 

limit (DS
S~η∞-1) and finite contribution to DS

L (eq. (5.5)) in the zero frequency limit 

(DS
L~η0

-1), the smooth variation of DS
L across the PT in fig. 5.2 indicates that the low 

frequency dynamic viscosity, η0/µ, should not display any discontinuous changes 

indicative of gelation or dynamic arrest 79,80.  Thus, the discontinuous rate of change in 

DS
S vs. T in fig. 5.4 is a dynamic signature of the PT only and does not indicate a fluid-

gel transition that is expected beyond the PT.78 

Although our simulated results in fig. 5.4 are consistent with the high frequency 

measurements of Woutersen, et. al., it is not obvious how the complete spectrum of 
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Figure 5.4.  Reciprocal of normalized short time self diffusivity vs. temperature for 
φcore=0.15 (Ο), 0.20 (∇), 0.25 ( ), 0.30 (◊), and 0.38 (∆).  Linear fits shown to guide the 
eye (--). 
 
 
 



 

 

96

relaxation times varies across the PT.  The inverse relationship between dynamic 

viscosity and self diffusivity should allow prediction of the normalized viscosity, (η(ω)-

η∞)/(η0-η∞), in terms of the normalized self diffusivity, (1/DS(ω)-1/DS
S)/(1/DS

L-1/DS
S), 

vs. the non-dimensional frequency, ωa2/DS
S.81  Another issue when comparing our 

results with rheological experiments is the possibility of departures from equilibrium.  

Our results may be valid for small perturbations to equilibrium structures, but additional 

multi-body hydrodynamic contributions may be expected to affect relaxation times in 

non-equilibrium colloidal fluids.91 

A final issue worth noting is the benefit of identifying the PT using the dynamic 

criterion based on its applicability to particles with continuous potentials such as the 

vdW attraction examined here.  For the inverse power law decay of vdW potentials, an 

arbitrary cutoff separation must be specified to identify connectedness, clusters, and the 

PT in particle configurations.  For comparison, particles with discontinuous AS and 

square well potentials form unambiguous “bonds” for separations within their attractive 

wells.  However, by observing changes in D0/DS
S at a locus of T, φcore conditions, we 

recover a PT for vdW particles nearly identical to equivalent AS particles with a clearly 

identifiable PT.  The dynamic signature of the PT provides a means to avoid the 

connectedness issue.  Re-analyzing our data with knowledge of the PT also indicates that 

a unique cutoff separation does not exist for the vdW potential. 

5.5. Conclusions 

In conclusion, we report evidence of a dynamic transition at the equilibrium PT 
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of attractive colloidal fluids based on a discontinuous rate of change in D0/DS
S vs. T data 

for a range of φcore values.  Our results indicate a dynamic signature for the PT that is 

consistent with the rheological measurements of Woutersen, et al.32  Extension of these 

findings might provide insights into the combined roles of multi-body, dissipative and 

pairwise, conservative interactions for other colloidal structural transitions, particularly 

for colloids with different effective thermodynamic and hydrodynamic sizes. 
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6. SELF-DIFFUSION IN CONCENTRATED INTERFACIAL COLLOIDAL 

FLUIDS 

6.1. Synopsis 

This section reports methods to interpret and predict self diffusion in 

concentrated interfacial colloidal fluids, where particles are confined near surfaces by 

gravity, but levitated at sub-monolayer coverages.  Expressions for self-diffusion in three 

dimensions are extended to two dimensions, and their validity tested, using Monte Carlo 

and Stokesian Dynamic simulations.  Theoretical expressions, based on multi-body 

hydrodynamic interactions, pairwise colloidal and surface potentials, and many-particle 

packing effects, are used to describe short- and long-time self diffusion in quasi two 

dimensional fluids, for directions both parallel and normal to underlying flat surfaces.   

 Monte Carlo and Stokesian Dynamic simulations are used to generate 

equilibrium particle coordinates for interfacial colloidal fluids.  Two systems are 

considered, one where particles interact via screened electrostatic repulsion and another 

where particles interact via weak van der Waals attraction.  For both potentials, we 

compare short- and long-time self diffusion coefficients as determined for Monte Carlo 

simulated particle configurations using analytical expressions.  We also use dynamic 

trajectories generated using Stokesian Dynamic simulations to calculate average mean-

squared displacements.  We show that analytical expressions for calculating self 

diffusion coefficients from equilibrium particle configurations agree with those 

determined from mean squared displacements of dynamic particle trajectories.  The 



 

 

99

theory and simulations reported in this work are expected to be broadly applicable to the 

interpretation and prediction of self diffusion, in realistic experiments based on the 

accurate treatment of multi-body hydrodynamic interactions. 

Analyses for short-time and long-time self-diffusion in interfacial colloidal fluids 

are demonstrated, both parallel and normal to the wall, by performing Stokesian 

Dynamic simulations with accurately modeled multi-body hydrodynamic interactions.  

Self diffusion coefficients for concentrated fluids are compared with the infinitely dilute 

(single particle) limit to illustrate the effect of many particles.  Our results demonstrate 

the validity of extending existing expressions for self-diffusion coefficients in three 

dimensions to interfacial colloidal fluids.   

6.2. Introduction 

Understanding dynamics of colloidal fluids near an interface is important in 

several different areas involving colloids near interfaces, ranging from paints and 

coatings, to self-assembly of photonic crystals on substrates.  Novel surface imaging 

methods such as Diffusing Colloidal Probe Microscopy involve colloidal particles 

diffusing near an interface.  There has been a lot of confusion on the role of dissipative 

hydrodynamic forces in measuring and interpreting conservative interaction potentials 

between particles close to a surface.  The success of these methods depends on our 

ability to understand and quantify equilibrium and dynamic behavior of colloidal fluids 

near an interface.  Techniques such as template-directed self-assembly of colloids to 

make ordered structures are not yet successful, mainly due to the inability to control 
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dynamics of colloids near a surface.  It is therefore crucial to be able to quantify 

diffusion coefficients of particles interacting via a specific potential near an interface.   

Several papers report experiments on dynamics of colloidal particles near 

interfaces.92-94  There have also been simulation studies both with and without 

hydrodynamic interactions to explore equilibrium and dynamic properties of interfacial 

colloidal dispersions.42,95  However, there has been no systematic study of applying 

expressions for short- and long-time self-diffusion based on multi-body hydrodynamic 

interactions in concentrated interfacial colloidal fluids.  It is well known that the 

dynamics of colloidal dispersions is strongly controlled by multi-body hydrodynamic 

interactions.  Brady and Bossis2 developed a method called Stokesian Dynamics to 

describe motion of particles under the influence of hydrodynamic and conservative 

forces.  Pesche and Nagele42 reported studies of confined colloidal monolayer, using a 

version of Stokesian Dynamics where hydrodynamic interaction with the wall was 

treated approximately, by using a Stokeslet description for the far-field hydrodynamics.  

However, in concentrated dispersions, this formalism is not expected to yield suitable 

results. 

Nott and Brady24 and Singh and Nott25 suggested a method, where the wall’s far-

field contribution to the hydrodynamic resistance tensor was captured by discretizing the 

wall into an array of touching spheres.  This formalism enables accurate prediction of 

hydrodynamic resistances for particles near an interface.  A direct result of this is the 

ability to calculate the short-time self-diffusion coefficients of an interfacial colloidal 

fluid.  The expression for long-time self-diffusion coefficient has been derived by 
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Brady27 by combining hydrodynamics via the short-time self-diffusion coefficient and a 

thermodynamics, via the radial distribution function.   

Although these methods have been reported in literature, there has been no 

systematic study where these results have been compared with simulations or 

experiments for the case of diffusion in interfacial colloidal fluids.  In this work, we 

present accurate Stokesian Dynamic simulations for interfacial colloidal fluids and 

demonstrate the applicability of various expressions for self-diffusion of particles.  We 

strongly feel that this is an important test case before explicitly attempting to use these 

expressions to analyze experimental data. 

In this section, we report analyses of Monte Carlo and Stokesian Dynamic 

simulated particle configurations to quantify diffusion in interfacial fluids.  Monte Carlo 

(MC) simulations are used to generate equilibrium particle configurations for two 

interfacial fluids, one where particles interact via screened electrostatic repulsion and 

another where the particles interact via an attractive van der Waals potential.  We also 

perform Stokesian Dynamic (SD) simulations to generate dynamic particle trajectories, 

by rigorously incorporating hydrodynamic interactions between all particles and the 

wall.  We report several dynamic tools to quantify the time-dependent self-diffusion 

coefficients of the particles.  We demonstrate the use of accurate simulations and theory 

to accurately describe dynamics in interfacial colloidal fluids.  
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6.3. Colloidal, Surface, and External Conservative Forces 

Colloidal and external conservative forces are calculated as the gradient of a 

scalar potential energy function.  Conservative forces include colloidal particle-particle 

and particle-wall interaction potentials and external gravitational potential.  All colloidal 

forces are assumed to be pairwise additive.  The forces are expressed as 

 P pp pw grav= + +F F F F  (6.1) 

where Fpp is the force due to particle-particle interaction, Fpw is the force due to particle 

wall interaction, and Fgrav is the buoyant force.  The particle-particle and particle-wall 

forces are calculated as the derivative of their respective potential energy functions upp(r) 

and upw(h), and are given by 

 
( )
( )

pp
pp

pw
pw

u r

u h

= −∇

= −∇

F

F
 (6.2) 

where r is the particle-particle separation and h is the particle-wall separation.  The net 

particle-particle and particle-wall potentials are represented as the superposition of 

relevant potentials as 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

elec vdw steric
pp pp pp pp

elec vdw steric
pw pw pw pw

u r u r u r u r

u h u h u h u h

= + +

= + +
 (6.3) 

In this study, we consider two different systems, one in which the particles interact via 

an electrostatic repulsive potential and another where the particles interact via a 

combination of an attractive van der Waals potential and a hard wall steric repulsion.  
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For the electrostatic system, the particle-particle and particle-wall pair potentials are well 

represented by34 

 
( ) ( )
( ) ( )

exp 2

exp
pp pp

pw pw

u r B r a

u h B h a

κ

κ

= − −⎡ ⎤⎣ ⎦
= − −⎡ ⎤⎣ ⎦

 (6.4) 

The B parameters are related to the particle size and surface potentials as 

 

2

32 tanh tanh
4 4

2

p p
pp

pw pp

ze zekTB a
ze kT kT

B B

ψ ψ
πε ⎛ ⎞ ⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=

 (6.5) 

where ε is the absolute permittivity, z is the charge number of the ions in the solvent, and 

κ is the Debye screening length given by 

 
22 A

B

CN e
k T

κ
ε

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (6.6) 

Here, C is the bulk electrolyte concentration, NA is Avogadro’s constant, and e is the 

charge on an electron.   

For the attractive system, the cumulative potential is a van der Waals attraction 

due to the core particle and the adsorbed polymer, combined with hard wall repulsion at 

a separation where the polymer layers come in contact.  The particle-particle van der 

Waals interaction, which arises due to a mismatch in particle and medium dielectric 

properties is well represented by non-integer power law decay to Lifshitz theory by44 

 ( ) ( )2 pvdw
ppu r aA r a −= − −  (6.7) 
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The steric interaction due to adsorbed polymer is reasonably well represented for 

modeling colloidal fluids by a hard wall interaction given by 

 ( )
0     

    
refsteric

ref

x x
u x

x x

>⎧⎪= ⎨∞ ≤⎪⎩
 (6.8) 

which is suitable for either the particle or the wall by substituting center-to-center 

separation, r, or center-to-surface separation, h, for x, and xref is reference for zero 

surface separation corresponding to hard wall contact.  The particle-wall potential in the 

attractive system is fixed as a hard-wall interaction. 

The gravitational body force due to the buoyant particle weight via a density 

mismatch is given by 

 ( )34
3

grav
s fa gπ ρ ρ= − −F  (6.9) 

ρs and ρf are the densities of the particle and the fluid respectively, and g is the 

acceleration due to gravity.   

6.4. Prediction of Self-Diffusion Coefficients from Equilibrium Particle 

Configurations  

The diffusion coefficient of an isolated colloidal particle undergoing a three 

dimensional random walk far from any boundaries is given by the Stokes-Einstein 

equation as, 

 0 6
kTD

aπµ
=  (6.10) 
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where µ is the surrounding medium viscosity and a is the particle radius.  For a single 

colloidal particle near a planar surface, hydrodynamic interactions between the particle 

and surface hinder the particle's diffusion both normal and parallel to the surface.  The 

single particle's diffusion coefficients near a planar surface for given separation, h 

between the particle and surface is given by, 

 
( ) ( )

0

0

( ) ( )D h D f h

D h D f h⊥ ⊥

=

=
 (6.11) 

where the functions f||(h) and f⊥(h) have been calculated in literature by analytically 

solving the Navier-Stokes equations for a sphere near a plane wall by Goldman et al.96 

and Brenner97 respectively.  These solutions are conveniently represented by rational 

expressions (with less than ±0.001 relative error) as, 
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− −⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6.12) 

For a single Brownian levitated particle in equilibrium with the wall under the 

influence of a particle-wall potential, the average diffusion coefficient is calculated by 

weighting the diffusion coefficient at each height with its Boltzmann probability.  The 

average diffusion coefficients can be expressed as 
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( ) ( )
( )

( ) ( )
( )

D h p h dh
D

p h dh

D h p h dh
D

p h dh
⊥

⊥

=

=

∫
∫

∫
∫

 (6.13) 

where 〈D||(h)〉 and 〈D⊥(h)〉 are ensemble-average lateral and normal diffusion 

coefficients, and the probability function, p(h) is related to the particle-wall potential, 

upw(h) by Boltzmann’s equation as 

 ( ) ( )exp pwp h u h kT⎡ ⎤= −⎣ ⎦  (6.14) 

The confinement in the normal direction results in MSD at long times leveling 

out to an average value about which it shows small fluctuations.  The average value 

about which the MSD fluctuates, h∞
2 is equal to twice the variance of the height 

distribution of the particle, h,  about its mean position, and this is determined by the 

equilibrium potential energy profile in the normal direction as 

 
( ) ( )

( )

2

2 2
h h p h dh

h
p h dh∞

−
= ∫

∫
 (6.15) 

where p(h) is the height probability function and the mean height, 〈h〉 is given by 

 
( )
( )

hp h dh
h

p h dh
= ∫

∫
 (6.16) 

For multiple particles near an interface, the diffusion of a target particle is 

affected by the presence of the other particles, in addition to the wall.  In this case, the 
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free-particle diffusion is replaced by a quantity called self-diffusion, which is the 

diffusion coefficient of a particle in the presence of other particles.  The self-diffusion 

coefficients of a particle at short and long times are different and are respectively called 

short-time and long-time self-diffusion coefficient. 

Short-time self diffusion coefficient quantifies the mobility of a particle for 

displacements much smaller than its radius.  Since the small displacements do not 

perturb the dispersion microstructure, short-time diffusivities can be measured from 

static snapshots of equilibrium particle configurations.98  Equilibrium particle 

configurations from MC simulations are used to compute short-time self diffusion 

coefficients.  The hydrodynamic resistance tensor is constructed using these particle 

coordinates following the method described earlier.  The diffusion tensor for the system 

of particles is related to the hydrodynamic resistance tensor via the generalized Stokes-

Einstein relation as 

 1kT −=D R  (6.17) 

where kT is the thermal energy of the bath.  The most general way of calculating the 

short-time self-diffusion coefficient, valid for all concentrations is from the diffusion 

tensor as 
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∑

∑
 (6.18) 

where DS
S,|| and DS

S,⊥ represent diffusion coefficients lateral and normal to the interface 
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and the angle brackets denote an ensemble average of the self-terms in the diffusion 

tensor over all particle configurations.    

Long-time diffusion coefficient quantifies the mobility of a particle at 

displacements much larger than its radius.  In order for a particle to make such large 

displacements, rearrangements within the local structure must occur.  The long-time self-

diffusion coefficient should thus include a thermodynamic contribution which accounts 

for the resistance offered by the equilibrium microstructure to rearrange.27  The long 

time diffusivity can be calculated as a combination of the short-time diffusivity and a 

contribution accounting for the perturbation in the equilibrium structure.27,28  The 

expression for the long time diffusivity has been approximately derived in literature as27 

 ( ) 1
1 2 2 ;L S

S SD D g aφ φ
−

≈ +⎡ ⎤⎣ ⎦  (6.19) 

where the long-time diffusivity is represented as a product of the hydrodynamic and 

thermodynamic contributions.  The thermodynamic contribution is a function of the 

particle concentration, φ and the value of the first peak of the radial distribution function, 

g(2a).  The thermodynamic contribution can be interpreted as an increase in the effective 

size of the trace particle as it diffuses through the equilibrium structure.27  For the 

electrostatic system considered, the particle area fraction in eq. (6.19) is the effective 

area fraction, based on an effective radius as calculated by the position of the first peak 

in the radial distribution function.27  The first peak is obtained from the computed value 

of the radial distribution functions from MC simulations.  For the attractive system, 

particle area fraction is the true area fraction, but due to the discontinuous nature of the 
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potential, the absolute value of the first peak of the pair distribution function cannot be 

obtained from the computed distribution function.  The value of the first peak is 

calculated using the approximation 

 ( ) ( ) ( )2 ; 2 ; exp 2HS ppg a g a u a kTφ φ ⎡ ⎤≈ −⎣ ⎦  (6.20) 

where gHS(2a) is the value of the first peak of a hard-disk radial distribution function at 

the same concentration as the attractive system and upp(2a) is the value of the pair 

potential at r = 2a.  The hard-disk radial distribution function at contact, for a given 

particle area fraction, φ was calculated using99 

 ( )
( )2

1 0.4362 ,
1

HSg a φφ
φ

−
=

−
 (6.21) 

6.5. Measurement of Self-Diffusion Coefficients from Dynamic Particle Trajectories  

Mean squared-displacement is a fundamental quantity in describing the dynamics 

of colloidal particles.  Particle mean-squared displacement (MSD) was calculated from 

trajectories obtained by dynamic simulations.  MSDs in the x and y directions are 

equivalent since the system is isotropic in the lateral direction.  For each direction, MSD 

is calculated using 

 ( ) ( ) ( ) 2

1

1 0
pN

x i i
ip

W t x t x
N =

= −⎡ ⎤⎣ ⎦∑  (6.22) 

Here, the angle brackets denote ensemble averages and multiple time origins are used to 

ensure adequate statistics.  The total number of origins is taken to be half the total 
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number of steps to ensure each step is weighted equally.  The lateral mean-squared 

displacement is reported as a sum of the x and y mean squared displacements. 

Autocorrelation functions were calculated for each particle in the normal 

direction to obtain information about the dynamics of the colloidal monolayer normal to 

the interface.  Normalized position autocorrelation functions are calculated as an average 

over all particles as 

 ( ) ( ) ( )
( )2

1

01
0

pN
i i

ip i

h t h
A t

N h=

= ∑  (6.23) 

The autocorrelation function, A(t) is calculated using eq (6.23) and expressed in a 

normalized manner as 

 ( ) ( ) ( )
( ) ( )

ˆ
0

A t A t
A t

A A t
− → ∞

=
− → ∞

 (6.24) 

and the limits are given by 

 
( )

( )

2

2

0A h

A t h

=

→ ∞ =
 (6.25) 

where the angle brackets indicate an ensemble average over all particles and all time 

steps.  The normalized autocorrelation function varies between 0 and 1 when plotted 

according to eq. (6.24).  The slope of the autocorrelation function in the limit as t→0 is 

the average normal diffusion coefficient.   
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6.6. Results and Discussion 

Fig. 6.1 shows plots of pair correlation functions and height probability 

distribution functions with particle-particle and particle-wall pair interactions.  We 

consider two different systems for studying interfacial colloidal dynamics.  Fig. 6.1a 

shows pair correlation functions (main) and particle-particle interaction potentials (inset) 

for two colloidal dispersions, I and II.  Fig. 6.1b shows probability distribution functions 

of particle heights (main) and particle-wall interaction potentials (inset) for I and II.  

System I is a dispersion of a = 1µm silica (ρ = 1.98 g/cc) negatively charged particles 

(ψp = -75 mV) at a particle area fraction φ = 0.35, near a negatively charged wall (ψw = -

75 mV) in a medium of water (ρ = 1.00 g/cc) with an ionic strength of C = 0.1 mM, 

corresponding to a Debye length (κ-1 = 30 nm).  System II is a dispersion of hydrophobic 

a = 1µm silica (ρ = 1.98 g/cc) particles covered with a tri block copolymer (PEO-PPO-

PEO) in a medium of water with ionic strength C = 1M.  The large salt concentration 

effectively screens electrostatic interactions, and the particles interact via an attractive 

van der Waals potential.  The thickness of the polymer layers can be controlled by 

varying temperature.  The particle concentration based on the core silica radius is φcore = 

0.55.  The dispersion is at a temperature of 60 °C, where the exposed van der Waals 

attraction corresponds to a well depth of 3.4 kT.  The particle concentrations for the two 

systems were chosen so as to be as high as possible, while the dispersion still remained 

an equilibrium fluid.  The electrostatic system crystallizes at about φ ≈ 0.35, while the 

attractive van der Walls fluid reaches the percolation threshold at φ ≈ 0.60 for a well 
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depth of 3.4 kT.     

Equilibrium NVT Monte Carlo (MC) simulations were performed for systems I 

and II with Np=36 and Np=46 respectively with particles interacting via potentials 

described earlier.  Simulations were performed for about 106 steps after an initial 

equilibration period.  Two-dimensional pair correlation functions were calculated using 

particle configurations and normalized by the average particle density.  Fig. 6.1a shows 

two-dimensional radial distribution functions calculated using particle coordinates in 

dimensions lateral to the wall for system I (circles) and system II (triangles) plotted as a 

function of center-center separation normalized by the particle radius.  The plot for 
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 (a)  (b) 
 
Figure 6.1.  Particle-particle pair interaction potential (inset) and pair correlation 
function (main) for repulsive electrostatic (Ο) and attractive van der Waals (∆) 
potentials.  (b)  Particle-wall interaction potentials (inset) and probability distribution 
functions for electrostatic (Ο) and hard wall (∆) potentials. 
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system II has been offset for clarity.  The pair correlation function shows no particle 

overlaps, and at large particle-particle separations, the normalized radial distribution 

function decays to 1, implying that the particles are effectively restricted to only small 

normal displacements and can be effectively treated as a two-dimensional fluid for 

thermodynamic calculations at these conditions.  This is also evident from the height 

distribution functions (Fig. 6.1b).     

The dynamics of colloidal fluids can be measured by a plot of the average mean-

squared displacement (MSD) as a function of time.  MSDs are reported for 

displacements in both lateral and normal directions.  We used Stokesian Dynamics (SD) 

simulations to obtain trajectories for particles interacting via potentials described earlier.  

Configurations from equilibrium MC simulations we used as the starting point for SD 

runs.  The simulations were run for Np=36 (system I) and Np=46 (system II) particles.  

For calculating the hydrodynamic resistance tensor, the wall is discretized into an array 

of touching particles, having the same size as the diffusing particles.  The number of 

wall particles for systems I and II are Nw=81 and Nw=64 respectively.  The Stokesian 

Dynamics (SD) simulations were performed for both systems using the method 

described in the theory section.  MSDs were calculated as averages over all the free 

particles (Np), and over multiple time origins to reduce statistical noise.  Care was taken 

to equally weigh displacements for all time steps from all time origins. 

Fig. 6.2 shows particle MSDs for systems I (circles) and II (triangles) with time.  

The points are calculated as the sum of MSD values in the two lateral directions.  MSDs 

are normalized by a2 and time is normalized by the diffusive time scale, τ = a2/D0.  The 
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MSD data shows the typical behavior for Brownian particles diffusing in a viscous 

medium.  At short times, (t << τ), the particles diffuse over distances much smaller than 

the particle size and thus do not perturb the equilibrium structure.  The MSD in this 

region varies linearly with time, with a slope equal to 4DS,||
S, where DS,||

S is the short-

time self diffusion coefficient parallel to the wall.  The short-time diffusion corresponds 

to localized displacements much smaller than the particle size, the particle configuration 

is largely unchanged, and hence, for a given particle size and solvent viscosity, only 

depends on the equilibrium configuration.98  Thus, it can be calculated from particle 

coordinates generated using MC simulations.  The dashed lines in Fig. 6.2, which 

coincide with the MSD points at short times (t→0) are 4DS,||
St, where DS,||

S, is calculated 

from the hydrodynamic resistance tensor constructed using MC particle coordinates.  

Fig. 6.2b shows the MSD curve at short times where the agreement between the two 

curves is clearly seen.  For comparison, single-particle lateral diffusion coefficients are 

represented by solid lines for the two systems. 

The single-particle lateral diffusion coefficient predictions are shown by the solid 

lines in Fig. 6.2.  It can be seen that the single particle and the multi-particle short time 

diffusivities are almost equal for the electrostatic system.  The hydrodynamic 

interactions of the particles are small due to the relatively large interparticle surface 

separation.  The total hydrodynamic resistance is thus dominated by the wall, resulting in 

the single-particle and the dispersion diffusion coefficients being very close to each 

other.  In contrast, there is considerable difference between the single particle and the 

multi-particle short time diffusion coefficients for the attractive system, where the higher 
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particle density and attractive potential result in small particle-particle separations.   

At times t > τ, the particle diffuses over a distance larger than its radius, and 

starts to encounter other particles in the dispersion.  In this intermediate regime, where 

the probe particle encounters the equilibrium structure, rearrangements must occur 

within the equilibrium structure for the particle to move past its neighbors.  The MSD is 

non-linear with time, and hence the particle is non-diffusive in this regime.  Beyond this, 

at t >> τ, after the particle has diffused a considerable distance and sampled the 
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Figure 6.2.  (a) Lateral mean squared displacements from Stokesian Dynamic 
simulations of interfacial colloidal fluids with repulsive electrostatic (Ο) and attractive 
van der Waals (∆) potentials shown in fig. 6.1a.  Short and long time diffusive limits 
computed from Monte Carlo simulated particle coordinates (- -) using eqs. (6.18) and 
(6.19).  Height averaged single particle lateral diffusion coefficients (⎯) computed using 
eq. (6.13).  (b)  Enlarged view of same curves reported in (a) to show the short time 
regime. 
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equilibrium structure, the MSD is again linear with time, with a slope equal to 4DS
L, 

where DS
L is the long-time self diffusion coefficient, DS

L.  Diffusion coefficients are also 

calculated from MC particle configurations using equations (6.18) and (6.19).  Dashed 

lines in fig. 6.2 coinciding with the MSD curve at long times are calculated values of 

4DS
Lt, with DS

L calculated from MC particle configurations.  The MC calculated 

diffusion coefficients show excellent agreement with the actual dynamics, thereby 

enabling us to use equilibrium MC simulations to predict diffusion coefficients of 

interfacial fluids.   

     Fig. 6.3 shows average particle MSDs normal to the surface as a function of 

time.  Normal diffusion is different from lateral diffusion since the particles are confined 

within a potential well in the normal direction.  At short times (t << τ), the particle 

dynamics is similar to lateral diffusion, where the slope of the MSD is proportional to 

the average normal short-time self-diffusion coefficient, DS,⊥
S.  DS,⊥

S calculated from 

MC particle configurations using Eq. (6.18) is used to plot the dashed lines, which are 

equal to 2DS,⊥
St.  The short-time limit is magnified in fig. 6.3b.  Again, the agreement 

between diffusion coefficients calculated from MC and SD particle configurations is 

excellent.  For comparison, we also plot the infinite dilution limit (including the effect of 

single particle wall hydrodynamic interactions),  

The long-time dynamics (t >> τ) is different in the normal direction when 

compared to the lateral direction.  At long times, the particle cannot diffuse beyond a 

certain value in the z-direction due to confinement induced by the wall and gravity.  This 
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long-time limit for a single particle diffusing in a potential well can be calculated using 

eq. (6.15).  These limits are plotted in fig. 6.3a as shown by the dot-dashed lines.  The 

long time limit of MSD for the two systems calculated from dynamic simulations agrees 

with the calculated limits, implying that the single-particle approximation is sufficient to 

capture the long-time diffusive limit in the normal direction.   

Another characteristic quantity to study dynamics in the normal direction is the 

height autocorrelation function.55  This has been calculated and experimentally 
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Figure 6.3.  (a) Mean squared displacements in the z-direction from Stokesian Dynamic 
simulations of interfacial colloidal fluids with repulsive electrostatic (Ο) and attractive 
van der Waals (∆) potentials.  Long time diffusive plateaus (⎯ ⋅) computed using eq. 
(6.15).  (b)  Enlarged view of same curves reported in (a) to show the short time regime.  
Short time diffusive limits computed from Monte Carlo simulated particle coordinates (- 
-) using eq. (6.18).  Height averaged single particle normal diffusion coefficients (⎯) 
computed using eq. (6.13). 
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determined for the case of a single particle near an interface55.  In this study, we apply 

the analysis to a colloidal fluid next to an interface.  The position autocorrelation 

function describes in an average sense, how the height of a particle at two different times 

is correlated.  The rate at which this correlation decays is a measure of the diffusion 

coefficient, and is equal to the ensemble averaged normal diffusion coefficient.  At t=0, 

the particle heights are totally correlated, and the autocorrelation function, in a 

normalized sense is unity.  At short times, the particles start loosing correlation, and 

hence the autocorrelation function starts to decay.  At sufficiently long times, the particle 

looses its correlation completely.  Fig. 6.4 shows height autocorrelation functions 

averaged over all particles and over multiple time origins, paralleling the MSD analysis.   

The dashed lines are calculated using average normal diffusion coefficients from 

MC particle coordinates (eq. (6.18)).  For comparison, average normal diffusion 

coefficients for single particles next to a wall (infinite dilution), calculated using eq.. 

(6.13) are plotted as solid lines.  Again, the single-particle and the true multi-particle 

short time self diffusion coefficients are almost similar for the electrostatic system, but 

noticeably different for the attractive particles.  This is a result of the interparticle 

spacing being smaller in the attractive system as compared to the electrostatic system.  

The short-time limit is magnified in fig. 6.4b, where the agreement between the MC and 

SD diffusion coefficients can be seen more clearly.  This agreement shows that the 

single-particle result can be extended without loss of generality to multi-particle 

systems, with the single-particle normal diffusion coefficient being replaced by the 

ensemble averaged normal self-diffusion coefficient.   
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Our results demonstrate the validity of expressions for calculating particle 

diffusion coefficients using expressions discussed earlier.  Particle trajectories obtained 

in experiments can be used to calculate MSDs, from which diffusion coefficients can be 

obtained.  Alternatively, equilibrium particle coordinates can be used to construct the 

hydrodynamic resistance tensor, from which average diffusivities can be computed.  The 

autocorrelation function and the MSD in the normal direction are more sensitive to the 

time interval between two consecutive particle configurations.  The short-time self-

diffusion coefficient also has a strong system size dependency,90,98 the effect of which is 
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Figure 6.4.  (a) Normalized height autocorrelation functions from Stokesian Dynamic 
simulations of interfacial colloidal fluids with repulsive electrostatic (Ο) and attractive 
van der Waals (∆) potentials.  Short time diffusive limits computed from Monte Carlo 
simulated particle coordinates (- -) using eq. (6.18).  Height averaged single particle 
normal diffusion coefficients (⎯) computed using eq. (6.13).  (b) Enlarged view of same 
curves reported in (a) to show the short time regime.   
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avoided in this work by selecting equal system sizes for both MC and SD simulations.  

For bulk (three-dimensional) dispersions, a correction for system-size has been 

developed,90 but the same is not applicable for interfacial fluids.  The effect of system 

size can be minimized by having a fairly large number of particles (>100). 

6.7. Conclusions 

In this work, we have used Stokesian Dynamic simulations to analyze dynamics 

of colloidal fluids near a solid interface.  We have studied two systems, one with 

particles interacting via a screened repulsive potential and another where particles 

interact via an attractive van der Waals well.  We also calculate average lateral and 

normal particle diffusion coefficients, both from rigorous Stokesian Dynamic as well as 

equilibrium Monte Carlo simulations.  The short-time self-diffusion coefficient was 

predicted from equilibrium MC particle configurations and shown to agree with the 

short-time slope of the mean-squared displacement curve, as calculated from SD particle 

trajectories.  The long-time diffusion coefficient was determined using an expression 

which combined the short-time self diffusion coefficient with a thermo dynamic term, 

both calculated from MC particle coordinates.  The predicted long-time self-diffusion 

coefficient was shown to match the long-time slope of the mean-squared displacement 

curve.  This implies that average particle diffusion coefficients for equilibrium fluids can 

be calculated using equilibrium particle coordinates, without resorting to expensive 

dynamic simulations.  The single-particle (infinite dilution) diffusion coefficients are 

also compared to the calculated dispersion diffusion coefficients.  From results on the 
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electrostatic system, it can be concluded that the presence of many particles affect the 

lateral diffusion coefficient more than the normal diffusion coefficient.  However, for 

attractive particles, the dispersion diffusion coefficients are considerably smaller than the 

single-particle diffusion coefficients.  Height autocorrelation functions and mean-

squared displacements in the normal direction were used to quantify the dynamics in the 

normal direction.  Diffusion coefficients calculated from MC particle coordinates agree 

with both the mean-squared displacement and the autocorrelation function results.   

While the simulation methods and analyses we have used are well-established in 

literature, a systematic study of particle diffusion near an interface using rigorous 

dynamic simulations has not been undertaken.  An approximate hydrodynamic treatment 

of the wall might give reasonable estimates of particle diffusivities, concentrated 

dispersions or dispersions with attractive particles warrants the use of an exhaustive 

treatment of the wall-induced hydrodynamic interactions.  To the authors’ knowledge 

this is the first work where mean-squared displacements of an interfacial fluid have been 

compared to short and long time self-diffusion coefficients calculated from equilibrium 

particle coordinates.  This work will be used for analyzing dynamics of interfacial 

colloidal fluids, which is crucial for template-directed colloidal crystallization.  The 

simulations establish a solid test case for testing the analyses, which can now be directly 

applied to real experiments.  Several experimental observations in interfacial colloidal 

fluids are due to complex multi-body hydrodynamic forces, which can be accurately 

described by using the tools presented in this work. 
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7. CONCLUSIONS 

7.1. Summary of Conclusions 

Understanding the effect of particle-particle and particle-wall potentials on the 

dynamics of colloidal dispersions is important for several applications ranging from 

particle depositions in coatings such as inks and paints to growing colloidal crystals on 

patterned substrates for creating photonic bandgap materials.  This dissertation describes 

the use of Monte Carlo and Stokesian Dynamic simulations to model colloidal 

dispersions and the development of theoretical expressions, to quantify and predict 

dynamics of the system.  The emphasis is on accurately incorporating conservative, 

Brownian, and hydrodynamic forces to capture the dynamic behavior of a colloidal 

dispersion.  In particular, the long-range multi-body hydrodynamic forces are accurately 

modeled using Stokesian Dynamics.  The conservative potentials were obtained from 

direct measurements using Total Internal Reflection Microscopy (TIRM), or from 

rigorous theoretical predictions.  This accurate treatment of the forces at the microscale 

can yield accurate estimates of the dynamics of both single particles and ensembles of 

particles. 

The initial effort of this dissertation was in applying Stoesian Dynamics to small, 

finite systems to test its predictive capabilities.  The perfect test problem for this was the 

somewhat controversial set of experiments29,30 in which anomalous attraction was 

measured between two like-charged particles near one or two like-charged surface(s).  

Although previous a simulation study31 using Brownian dynamics had shown that the 
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experimental observation was due to the influence of the wall, there was a lack of 

complete quantitative agreement between simulation and experiment, which can be 

attributed to the approximate treatment of hydrodynamic interactions.  This presented a 

perfect opportunity to test the predictive capabilities of Stokesian Dynamics.  Our results 

demonstrated that complete quantitative agreement could be realized by capturing the 

hydrodynamic interactions accurately.  In addition, we demonstrated that a purely 

hydrodynamic contribution from the wall was sufficient to induce an apparent 

anomalous attraction between the particles.  We also showed the importance of statistics 

while calculating potentials from distribution functions.  These simulations emphasize 

the utility of simulations in aiding the interpretation of experimental data.100 

To extend simulation from an interpretive to a predictive tool, we used Stokesian 

Dynamics to explore the equilibrium percolation threshold in attractive colloidal 

fluids.101  In order to realize the dream of robust colloidal crystals, there needs to be an 

attractive force to hold the particles together, similar to atomic and molecular crystals.  

The thermodynamic phase diagram for attractive colloids shows a small region for the 

solid (crystal) phase and a remaining fluid phase.  The vast majority of the phase 

diagram is a fluid phase with smoothly varying thermodynamic functions.  Kinetically 

irreversible structures such as gels and glasses can be observed at large attraction and 

high concentration.   

In the equilibrium fluid phase, however, there is a single region, where the 

particles undergo a structural transition.  This region corresponds to the percolation 

transition and is important as being the only identifiable feature in the equilibrium fluid 
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phase.  Using a combination of Monte Carlo and Stokesian Dynamics, we showed that 

the percolation threshold corresponds to a dynamic transition involving a sharp change 

in the short time self-diffusion coefficient.  This result gives a physical picture of the 

percolation threshold since the short time self-diffusion coefficient is related to 

viscoelastic properties, while providing an unambiguous criterion to identify the 

percolation threshold.  This approach is being extended to analyzing electrostatic 

crystals (see Section 8). 

Finally, one of the requirements of experiments involving colloidal fluids near an 

interface is the ability to quantify the dynamics, primarily self-diffusion.  While there are 

well-established theoretical and simulation methods for measuring the short and long 

time self-diffusive limits for a colloidal fluid in the bulk, these have not been extended to 

interfacial colloidal fluids.  Since most important involving colloidal fluids, including 

colloidal deposition on patterned substrates require an underlying substrate, it becomes 

important to be able to quantify diffusion in these systems.  For this reason, we extend 

theoretical expressions for self-diffusion in three dimensions to interfacial colloidal 

fluids, and verify their validity for use in these systems.102  We also compare self-

diffusion coefficients calculated from equilibrium configurations and dynamics 

trajectories and show their excellent agreement.  

  To finally summarize, Monte Carlo and Stokesian Dynamic simulations, along 

with analytical theory have been used to model dynamics of colloidal dispersions under 

different conditions.  We have demonstrated both the interpretive and predictive 

capabilities of Stokesian Dynamics, along with the importance of multi-body 
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hydrodynamic interactions in colloidal dispersions.   
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8. FUTURE RESEARCH 

8.1. Synopsis 

This section briefly summarizes current and future work which has not been 

presented in this dissertation.  The ideas discussed below are closely related to Sections 

4-6 and are in tune with the general theme of using simulations for predicting dynamic 

properties of colloidal dispersions.    

8.2. Self-Diffusion on Patterned Substrates 

Understanding lateral diffusion of colloids near a patterned surface is important 

for template-directed colloidal assembly.  The “pattern” may be physical or chemical in 

nature.  The key physics here is how the particle-particle and varying particle-wall 

interaction affects the lateral self-diffusion of the colloidal dispersion.  

Thermodynamically, the pattern introduces the dispersion to a free energy landscape, 

which creates density gradients in the lateral direction.  This affects the short-time and 

long-time self-diffusion coefficients of the dispersion.  Some of the ongoing work in this 

area is to develop generalized expressions for predicting self-diffusion coefficients on 

patterned substrates.  We are also using Stokesian Dynamics to simulate particles 

diffusing over a patterned substrate.  These tools should enable us to explain 

observations made in experiments.   

Fig. 8.1a shows an example of silica colloids diffusing over a glass surface with 

gold patterns.103  Fig. 8.1b shows average mean-squared displacements (MSDs) for 
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particles in fig. 8.1a.  The MSD dramatically shows the effect of the pattern.  The 

plateau seen in the curve is due to the particles being attracted to the small patterns.  The 

MSD data has been fit with an expression for diffusion in a confined area.104  We are in 

the process of trying to gain a fundamental understanding of this diffusive process.  It is 

useful to be able to quantify how the pattern influences the short- and long-time 

diffusion coefficients.  This finds direct application in realizing a kinetic pathway for 

template-directed colloidal assembly. 
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Figure 8.1.103  (a) Transmitted light CCD image of 2.34 µm silica colloids 
electrostatically levitated in aqueous 1mM KNO3/HNO3 above 5 µm × 5 µm × 15 nm (l 
× w × h) Au square films separated by 6 µm regions with 5 nm Au films (all on glass 
substrates).  15 nm Au films appear darker than 5 nm Au films.  (b) Lateral mean 
squared displacements in x(o) and y( ) directions.  Reference lines are shown for bulk 
diffusion (...) and lateral surface diffusion on 5 nm (--) and 15 nm (- . -).  Solid lines (─) 
are theoretical fits.104 
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Fig. 8.2a105 shows an another example of silica 2.20µm colloids diffusing over a 

glass substrate with 13µm × 13µm × 800nm physical features, with the corresponding 

particle mean-squared displacement plotted in Fig. 8.2b.  The dispersion in this 

experiment has a higher density than in Fig. 8.1a, giving rise to more complex 

thermodynamic behavior.  The system behaves as an inhomogeneous fluid modulated by 

the underlying potential energy landscape.  To quantify the long-time dynamics, we 

would need to incorporate the observed density partitioning into the expression for the 

long-time self-diffusion coefficient.  The inhomogeneity of the surface is reflected in the 

long-time diffusive limit shown in the MSD plot in Fig. 8.2b.  Stokesian Dynamics can 

be used to generate test data for analyzing diffusivities.  The high-density problem is 

unavoidable since the solid (crystal) phase is at the highest density possible. 
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Figure 8.2.105  (a) Transmitted light CCD image of 2.20µm silica colloids above 13µm × 
13µm × 800nm (l × w × h) features separated by 4µm.  (b) Average Lateral mean 
squared displacements ( ).  Dashed lines show short- and long-time diffusive limits.  
Solid lines (─) are theoretical curve fits.104 
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8.3. Percolation in Interfacial Attractive Colloidal Fluids 

It has earlier been shown (Section 5, Anekal et al.101) that the equilibrium 

percolation threshold in attractive colloidal fluids is associated with a dynamic transition 

corresponding to a sharp change in the short-time self-diffusion coefficient.  Since the 

same percolation phenomenon also exists in two-dimensional fluids, it is tempting to try 

to extend this concept to an interfacial colloidal fluid.  The motivation is similar to the 

three dimensional case in that, the percolation threshold is a rare structural feature in the 

fluid phase.  Two-dimensional percolation is important to interfacial rheological 

properties, phase separation kinetics, and self-assembly processes in interfacial colloidal 

dispersions.  Two-dimensional percolation is also important to making conducting films 

using colloidal precursors.  Percolation in attractive 2D fluids is very poorly understood 

when compared to the vast body of literature in 3D percolation.  We are studying 

percolation in interfacial colloidal fluids by calculating lateral diffusion coefficients of 

particles confined between two walls, which is thermodynamically equivalent to a two-

dimensional fluid.  Changing the amount of attraction changes the two-dimensional 

configuration, which changes the short-time self-diffusion coefficient of the fluid.  We 

are currently investigating if this change across the percolation threshold is consistent 

with what is seen in the bulk dispersion.   

8.4. Self-Diffusion in Shrinking Electrostatic Colloidal Crystals 

Unlike hard-sphere or attractive colloidal crystals, large, single-domain 

electrostatic colloidal crystals form quite effortlessly.  One of the main reasons for this is 
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the large spacing between particles in an electrostatic crystal, which allows them to 

diffuse and form ordered structures.  By adding small amounts of salt to an 

electrostatically stabilized crystal, it is possible to shrink the crystal by decreasing the 

Debye length.  However, attempting to shrink the ordered structure beyond a certain 

limit, results in the formation of a gel.   

The difference between electrostatic, hard-sphere, and attractive systems can be 

expressed by the ratio of the thermodynamic size to the hydrodynamic size, ξ = aT / aH.  

The thermodynamic size can be thought of as half the separation of the first peak in the 

particle pair correlation function.  The hydrodynamic size is half the separation where 

the particle-particle lubrication force becomes singular, which is merely equal to the 

actual particle radius.  For electrostatic systems, the thermodynamic radius includes a 

part of the Debye screening length, and hence ξ >1.  For hard-spheres, ξ =1, and for 

attractive systems, ξ <1.  The higher the ratio, the more ease with which crystals can 

form.  In a shrinking electrostatic crystal, the different equilibrium states are all solid 

(crystal) phases, and all these states have the same osmotic pressure.  That is, Π(φ, κ) is 

a constant, where Π is the osmotic pressure, φ is the particle concentration, and κ is the 

Debye length.   

We are currently calculating the effective size ratios and self-diffusion 

coefficients as a function of φ and κ along the path where Π(φ, κ) is a constant, to mimic 

the equilibrium stages of a shrinking electrostatic crystal experiment to quantify when a 

shrinking electrostatic crystal begins to loose order.  This approach is similar to the 
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consistent treatment of thermodynamics and hydrodynamics in our analysis of 

percolation in attractive colloidal fluids.  Crystallization is an important thermodynamic 

transition, and its kinetics is important for self-assembly processes.  This method can 

also be directly compared to published results on shrinking electrostatic crystals.57  
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