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ABSTRACT

Capacity Dynamics of Feed-Forward, Flow-Matching

Networks Exposed to Random Disruptions. (August 2005)

Aliaksei Savachkin,

B.S., Belarussian State University of Informatics and Radioelectronics;

M.S., University of Colorado

Chair of Advisory Committee: Dr. Martin A. Wortman

While lean manufacturing has greatly improved the efficiency of production op-

erations, it has left US enterprises in an increasingly risky environment. Causes of

manufacturing disruptions continue to multiply, and today, seemingly minor disrup-

tions can cause cascading sequences of capacity losses. Historically, enterprises have

lacked viable tools for addressing operational volatility. As a result, each year US

companies forfeit billions of dollars to unpredictable capacity disruptions and insur-

ance premiums. In this dissertation we develop a number of stochastic models that

capture the dynamics of capacity disruptions in complex multi-tier flow-matching

feed-forward networks (FFN). In particular, we relax basic structural assumptions

of FFN, introduce random propagation times, study the impact of inventory buffers

on propagation times, and make initial efforts to model random network topology.

These stochastic models are central to future methodologies supporting strategic risk

management and enterprise network design.
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CHAPTER I

INTRODUCTION

Lean business practices are widely accepted and deployed in modern manufacturing

enterprises. Estimates suggest that the shift to just-in-time scheduling in the US

automotive industry has saved companies more than $1 billion a year in inventory

costs, alone. Unfortunately, while lean manufacturing has dramatically boosted oper-

ational efficiency, it has also left companies highly vulnerable to capacity disruptions.

According to a recent survey by A.M. Best Company, Inc. of 600 executives, 69

percent of chief financial officers, treasurers and risk managers at Global 1,000 com-

panies in North America and Europe view property-related hazards–such as fires and

explosions–and supply chain disruptions as the leading threats to top revenue sources.

Causes of manufacturing disruptions continue to multiply, and, today, seemingly mi-

nor disruptions can rapidly starve downstream operations.

Global outsourcing has greatly reduced costs, but at the same time it has in-

creased risk exposure. The recent outbreak of Severe Acute Respiratory Syndrome

(SARS) in China and Singapore forced most electronics and hardware factories there

to suspend operations for days, and several Motorola plants shut down. In December

2002, a political strike in Venezuela made transnational businesses including GM,

BP, Ford, Goodyear and Procter & Gamble to suspend their manufacturing for the

duration of the conflict.

Enterprises are consolidating their internal and external suppliers to gain economies

of scale at the expense to exposure of supply chain disruption. In September 2002,

longshoremen on the US West Coast were locked out in a labor strike for 11 days,

The journal model is IEEE Transactions on Automatic Control.
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forcing the shutdown of 29 ports. With more than $300 billion of dollars in goods

shipped annually through these ports, the dispute caused between $11 and $22 billion

in lost sales, spoiled perishables and underutilized capacity.

Accidents and natural disasters also impact production capacity. In 1999 an

earthquake in Taiwan displaced power lines to the semiconductor fabrication facilities

responsible for more than 50 percent of the worldwide supplies of memory chips,

circuit boards, and other computer components. Estimates show it shaved 5 percent

off earnings for hardware manufacturers including Dell, Apple, Hewlett-Packard, IBM,

and Compaq.

Man-made disasters are on the rise, from terrorist attacks to computer viruses.

In January 2003, a computer virus named SQL Sapphire caused nearly $1 billion in

damage by overloading the global network. Continental Airlines was forced to delay

flights, and Bank of America’s ATMs shut down.

These and many other examples of catastrophic capacity disruptions illustrate

the fact that enterprises increasingly depend on a complicated multi-tier network of

global suppliers and partners, thus boosting the risk of the entire system if a member

of the network loses its capacity, even temporarily. Often managers fail to recognize

risk because they do not have a sufficient understanding of the enterprise network.

Historically companies have developed relatively sophisticated techniques for

dealing with financial risk [1]. Tools to address operational disruptions are consider-

ably less developed, and traditionally risk has been traded to insurance companies.

Insurance does not eliminate or even reduce risk of operational disruptions, rather

it only provides an indemnity by cushioning the impact of financial losses. As a

result, each year US companies forfeit billions of dollars to unpredicted disruptions

and insurance premiums. Risk managers need new methods to measure and manage

operational disruptions at a strategic level.
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The research developed here is focused on developing stochastic models for cap-

turing capacity dynamics in complex multi-tier flow-matching feed-forward networks

(FFN).

This dissertation is organized as follows. A review of the related literature is

given in Chapter II. In Chapter III we introduce terminology and notation, present

a basic production enterprise multi-tier flow-matching FFN, and obtain an expres-

sion for available effective capacity of a network in terms of available production

capacities of individual vertices. Derivation of the distribution of network available

effective capacity follows from the basic analysis. A useful interpretation of the main

result in terms of paths allows us to relax certain structural assumptions of the feed-

forward architecture in Chapter IV, and introduce random propagation times, study

the impact of capacity disruptions and inventory buffers, and model random network

topology. Chapter IV also presents a special case of FFN called serial FFN (SFFN).

In Chapter V we develop a number of stochastic models which characterize certain

dynamics of available production capacity at network vertices, which along with the

main result from Chapter III, allow to obtain the limiting distribution of available

effective capacity of the entire network. Finally, the contributions and conclusions of

this research are reviewed in Chapter VI.
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CHAPTER II

LITERATURE REVIEW

While there is a wealth of literature on production and inventory control, supply chain,

manufacturing systems, and operations, only a small portion of the open research

has been dedicated to modeling the impact of various disruptions such as demand

patterns, supplier and production lead times, prices, imperfect process quality, process

yield, etc. Most of the recent literature focuses on minimizing costs of supply chain

operations (see, for example, [2, 3, 4, 5, 6]); there appear to be very few results on

managing production disruptions.

One of the most common types of disruption appearing in the production/inventory

control and supply chain literature is that of supply rate changes. The work was pio-

neered by [7] who offer a model of a single-stage production with a constant demand

where the supply was subject to a random failure. Under the assumption of Poisson

machine failures, a fixed storage capacity and no setup time and/or setup cost, the

authors derived performance measures, such as average inventory level and the frac-

tion of time demand was met, for either exponentially distributed or constant repair

times. [8] extends this work to the case where demand follows a compound Poisson

distribution. An explicit closed form solution for the steady-state distribution of the

inventory level is derived, and this result is then used to compute system performance

indices of interest related to service level to customers and machine utilization.

More recently [9] explores the management of inventory for stochastic-demand

systems, where the products supply is randomly disrupted for periods of random du-

ration. The analysis yields the optimal values of the policy parameters, explores the

impact on the optimal values of the policy parameters of variations in the average

frequency and duration of supply disruptions, and of variations in the fraction of
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stockouts that are backordered, and provides insight into the optimal inventory strat-

egy when there are changes in the severity of supply disruptions or in the behavior

of unfilled demands. [10] study the classic economic order quantity (EOQ) problem

with supply disruptions, and [11] consider a order-quantity/reorder-point inventory

models with two suppliers subject to independent disruptions to compute the exact

form of the average cost expression. For the multiple-supplier problem, assuming

that all the suppliers have similar availability characteristics, the authors develop a

simple model and show that as the number of suppliers becomes large, the model

reduces to the classical EOQ model. [12] presents an analytical model for computing

the stationary distribution of the on-hand inventory in a continuous-review inventory

system with compound Poisson demand, Erlang distributed lead time, and lost sales,

where the supplier can assume one of the two ”available” and ”unavailable” states

at any point in time according to a continuous-time Markov chain. Exact analytical

expressions are derived for the special case where demand sizes are exponentially dis-

tributed, and some cost minimization numerical results are presented. Other work

on production-inventory systems with deterministic demand and supply disruptions

includes [13, 14, 15, 16].

Papers addressing both supply disruptions and random demand include [17, 18,

19]. [17] proposes a dynamic model concerning optimal inventory policies in the

presence of market disruptions, which are often characterized by events with uncertain

arrival time, severity and duration. [18] considers a continuous-review stochastic

inventory problem with random demand and random lead-time where supply may

be disrupted due to machine breakdowns, strikes or other randomly occurring events.

[19] explore an inventory-control model which includes a detailed Markovian model of

the resupply system. A number of papers which address supply and demand changes

have been developed in the field of oil stockpiling, as there has been grave concern
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over the oil supply from the Middle East. For examples see [20, 21, 22].

Modeling production rate disruptions (machine failures) challenged many re-

searchers for several decades, and numerous research efforts have been devoted to

extending classical economic manufacturing quantity (EMQ) models. [23] derive an

EMQ model when the production process is subject to a random deterioration from

an in-control state to an out-of control state. [24] proposes a model to determine an

optimal lot size under the following assumptions: while producing a lot, each time

it produces an item the process can go out-of control with a given probability, and

the process continues to produce defective items until the entire lot is produced. The

process is presumed to be in control before starting production of a new lot. [25]

models the defect-generating process in the semiconductor wafer probe process to

determine an optimal lot size, which reduces the average processing time on a criti-

cal resource. [26] presents a simple approximation of the EMQ model with Poisson

machine breakdowns and low failure rate. [27] study an unreliable production sys-

tem with constant demand and random breakdowns, with the focus on the effects of

machine failure and repair on optimal lot-sizing decisions. Assuming exponentially

distributed time between failures and instantaneous repair of the machine, authors

derive some unique properties of their model compared to the classical EMQ model.

Since it is assumed that machine restoration times are negligible, [27] only address

the lot-sizing problem. [28] extend their earlier work in [27] to the case where repair

times are randomly distributed and excess demand is lost.

[29] propose an extension to the model in [28], which determines an optimal lot

size when a machine is subject to random failures and the time to repair is constant.

They formulate average cost functions for the optimal lot size, and derive conditions

for determining the optimal lot size. [30] presents a model that assumes the (s, S)

control policy. With Poisson failures and exponential repair times, a cost function is
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derived. Among other notable examples of such works are [31] and [32].

The topic of system unreliability in the production/inventory context has also

attracted interest among operations management researchers as represented in the

sample of works we describe here. [8] superimpose the reliability feature comprising

the machine failure process and the ensuing repair actions. [13] investigate the opti-

mality of zero-inventory policies in production systems with uncertain manufacturing

capacity. [14] and [15] examine the classical economic lot-sizing model with single

and multiple disruptions. [33] analyze a single localized unreliable bottleneck facility

with a constant production and demand rate that is subject to random disruptions.

The time between breakdowns is assumed to be exponentially distributed while the

restoration times are constant. The authors employ an (s, S) production policy and

develop expressions for evaluating the probability distribution of the number of pro-

duction runs in a cycle together with its first two moments, the average cycle time,

the average on-hand inventory and backorder levels, and the expected total cost rate

of the system. In addition, they investigate the behavior and the properties of the

average total cost rate and the policy parameters with changes in reliability and other

system parameters. However, the authors leave to future work the case of random

demand and/or production rates and a stochastic duration of the disruption period.

[34] examines a single machine production and inventory system with a determin-

istic production and demand rate, when the machine is subject to random failures.

The machine times to failure and repair times are random, and during repairs, de-

mand is backordered as long as the backordering level does not exceed a prescribed

amount, after which demand is lost. Considering time in discrete units and the times

to failure and repair times to be geometrically distributed, the author models the pro-

duction/inventory system as a Markov chain and develops an algorithm to compute

the potentials that are used to formulate the cost function. [35] presents an integrated
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model for determining an economic manufacturing quantity, inspection schedule and

control chart design of an imperfect production process, where he assumes that the

process is subject to the occurrence of a non-Markovian shock having an increasing

failure rate.

Temporary price changes (disruptions) have also attracted interest among oper-

ations management researchers. Basic price discount models were formulated in the

1960s (e.g., [36]). [37] extend the basic model to situations in which the price change

becomes effective at any time in the future (originally - at the end of the next cycle).

[38] extends the model to situations in which there are limits on the quantities that

could be purchased at the discounted price. [39] analyze the price disruption inter-

val by looking at a minimal order quantity on discounted purchases and determine

optimal policies for various cases. [40] focus on a short disruption period that allows

only one special purchase. [41] emphasizes the differences between a net present value

model as opposed to a no-discount model for temporary price reduction.

To summarize, all production and inventory control, supply chain, manufactur-

ing systems, and operations literature, which consider various types of disruptions,

focus on traditional localized issues of inventory, production lot sizing, production

scheduling, cost management of inventory, setup, and backorder costs. At a strategic

level, there is a need to explore enterprise-wide disruptions with focus on strategic

enterprise design and enterprise risk management decisions. We offer a modeling

paradigm suitable for capturing the stochastic dynamics of capacity in complex feed-

forward flow-matching networks exposed to disruptions that occur anywhere across

the enterprise. Particular emphasis is given to constructing a number of stochastic

models characterizing capacity dynamics at point of delivery, which in conjunction

with demand dynamics, will provide the analytical foundation necessary to model

network risk.
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CHAPTER III

BASIC ANALYSIS OF FFN

We treat a manufacturing enterprise as a flow-matching network which receives a

supply of raw materials, parts and services, and assembles them, in a prespecified

technological sequence using manufacturing resources, to produce items and deliver

them to the point of consumption. Manufacturing resources belong to the enter-

prise but materials, parts and logistics services may be supplied both internally and

externally. Operations are a multi-step sequence, and so we combine suppliers, assem-

bly and distributors in tiers in accordance with the sequence. Managing enterprise

topology at a strategic level allows an assumption that the flow of assembly is not re-

entrant. Hence, we model the enterprise infrastructure as a multi-tier flow-matching

FFN. FFN have a characteristic layered architecture with each tier comprising one

or more simple assembly units as vertices. Each vertex is connected to one or more

other vertices by edges which represent flow of materials and parts. Each vertex is

responsible for a single assembly operation. The reader is referred to [42] for a basic

exposition of FFN.

This chapter is organized as follows. In section A we introduce terminology and

notation. Section B identifies underlying assumptions, presents a basic structural

model for enterprise topology as a multi-tier flow-matching FFN, and gives an ex-

pression for available effective capacity of the network in terms of available production

capacities of individual vertices. Finally, in section C, we propose a useful interpre-

tation of the main result in terms of paths, followed by derivation of the distribution

of available effective capacity of the network.
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A. Terminology and notation

Suppose we have a feed-forward flow-matching network N with a finite number

of vertices n ≥ 2 arranged in a fixed number of tiers m ≥ 2 (m ≤ n) so that each

tier contains at least one vertex. Tiers are numbered in ascending order starting from

tier 1 (on the far right) which represents point of delivery and moving upstream from

right to left. The first input tier (farthest left in Figure 1) is assigned to be tier m.

Tier m is typically where raw materials enter the network. Vertices are numbered in

ascending order from 1 to n according to their position in tiers starting from tier 1

and moving to left, and from top to bottom within a tier, so that lower-numbered

vertices belong to lower-numbered tiers (see Figure 1).

Fig. 1. Numbering scheme in a FFN.

Let Nk be the set of all vertices that belong to tier k, k = 1, 2, ...,m. For

example, in Figure 1, N1 = {1}, N2 = {2, 3, 4}, etc. We have Nk

⋂
Nl = Ø, k, l =

1, 2, ...,m, k 6= l, and
m⋃

k=1

Nk = N = {1, 2, ..., n}. We introduce the following

terminology.

Throughput is a long-run average of the number of units of finished product per

unit time flowing through a vertex. Each vertex has a demand which is the number
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of units of raw material or parts consumed by the vertex to produce a single unit of

finished product. This transformation is required to express network flows in common

production units; thus, vertex capacities are measured in the same units.

Available production capacity of vertex j, denoted Cpj
(t), j ∈ N , and fixed t > 0,

is the maximum throughput that production resources of vertex j are capable of

sustaining at time t.

Available supply capacity of vertex j, denoted Csj
(t), j ∈ N , and fixed t > 0,

is the maximum throughput that supply of raw materials to vertex j is capable of

sustaining at time t. Both Cpj
(t) and Csj

(t) are positive bounded random variables.

Available effective capacity of vertex j, denoted Cej
(t) = min {Cpj

(t), Csj
(t)}.

Vertex effective capacity is the maximum output throughput that the vertex can

produce.

Multifurcation coefficient, 0 ≤ Aji ≤ 1, i, j ∈ N, j > i, is the proportion of the

effective capacity of vertex j designated to serve the destination node i.

Aji =

 0, if vertices i and j are disconnected.

1, if vertex i is the only receiver of vertex j ’s output.

We are ready to proceed with our basic network topology model.

B. Basic model and main result

We accept the following assumptions for our basic enterprise network model:

1. Network configuration is fixed, i.e., network structure is provided for a fixed

instant of time so that values of Nk and Aji are known with certainty for all

i, j ∈ N, k = 1, ...,m. Modeling an enterprise network with a fixed topology is

suitable when all structural relationships among suppliers are known.
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2. The enterprise has a single point of delivery, i.e., the network flow converges to

a single output vertex. This vertex is j = 1.

3. Available production capacities are independent for all vertices. This is typi-

cally true when assembly locations are remotely separated and/or operations

of different locations are managed independently. This assumption may not be

reasonable for capacity disruptions generated by events impacting labor, as well

as disruptions affecting common infrastructure.

4. Propagation times between nodes are negligible. Propagation times include

transportation times only.

5. Enterprise has no inventory buffers.

Assumptions 1, 4, and 5 will be later relaxed.

With the above assumptions the following basic properties of FFNs must be true:

Property 1. N1 = {1}, {2} ∈ N2, {n} ∈ Nm.

Property 2. ∀j ∈ N2, Aj1 = 1. This follows from assumption 2 above.

Property 3. Aij = 0 ∀i, j ∈ N, s.t. i < j. This constraint along with the

numbering scheme characterize feed-forward flow.

Property 4. ∀j ∈ Nk+s, i ∈ Nk, Aji = 0, where k = 1, 2, ...,m; s ≥ 2.

Equivalently, ∀i, j ∈ N, Aji > 0 ⇒ j ∈ Nk+1, i ∈ Nk for some k. This means that

a vertex can only source vertices in its immediately succeeding tier. The converse

statement j ∈ Nk+1, i ∈ Nk, k = 1, 2, ...,m ⇒ Aji > 0, does not necessarily hold,

since we do not require a vertex be connected to all vertices in its preceding and/or

succeeding tier; we only require that a vertex be connected to a nonempty proper

subset of the tiers. However, j ∈ Nk+1, i ∈ Nk, k = 1, 2, ...,m ⇒ Aji ≥ 0 always

holds.
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Property 5. ∀i, j ∈ Nk, Aji = 0. This follows from the observation that a

vertex is not connected to any of the vertices in the tier it belongs to (including

itself).

Property 6. ∀j ∈ Nk, ∃ at least one i ∈ Nk−1, s.t. Aji > 0, where k =

1, 2, ...,m. Thus, every vertex j above point of delivery has at least one vertex recipient

of its output.

Available supply capacity of any vertex i ∈ Nk can be expressed as follows (see

Figure 2):

Csi
(t) = min

j∈Nk+1
Aji>0

{Aji Cej
(t)} = min

j∈N
Aji>0

{Aji Cej
(t)}. (3.1)

Fig. 2. Available supply capacity of vertex i.

It follows immediately from property 2 that, for point of delivery, available supply

capacity is given by:

Cs1(t) = min
j∈N2

{Aj1 Cej
(t)} = min

j∈N2

{Cej
(t)}. (3.2)

We have the following little lemma:

Lemma 1 For any vertex i ∈ Nk, k < m,
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Cei
(t) = min

j∈Nk+1
Aji>0

{Cpi
(t), Aji Cej

(t)} = min
j∈N

Aji>0

{Cpi
(t), Aji Cej

(t)}.

Proof. We use (3.1) and properties (3), (4), and (5) of FFNs:

Cei
(t)

def
= min{Cpi

(t), Csi
(t)}

= min{Cpi
(t), min

j∈Nk+1
Aji>0

{Aji Cej
(t)}}

= min
j∈Nk+1
Aji>0

{Cpi
(t), Aji Cej

(t)}

= min
j∈N

Aji>0

{Cpi
(t), Aji Cej

(t)}.

�

We can now introduce the central proposition of this chapter, which gives an expres-

sion for available effective capacity at point of delivery, for a fixed time, in terms of

available production capacities of all network vertices.

Proposition 1 Available effective capacity at point of delivery, for a fixed time t ≥ 0,

is given by

Ce1(t) = min
M= 2,3,...,m

i1∈N1, i2∈N2,..., im∈Nm
Aikik−1

>0 ∀k=1,...,m

{Cp1(t), CpiM
(t)

∏M
k=2 Aikik−1

},

provided that Cei
(t) = Cpi

(t) ∀i ∈ Nm.

Proof. Condition Cei
(t) = Cpi

(t) ∀i ∈ Nm means that input tier Nm has no suppliers.

To prove the result we move recursively upstream from vertex one and consider each

tier. For fixed t ≥ 0,

Ce1(t)
def
= min{Cp1(t), Cs1(t)}

= min{Cp1(t), min
i∈N2

{Cei
(t)}} by (3.2)

= min
h∈N1, i∈N2

{Cph
(t), Cei

(t)} consolidating min arguments
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= min
h∈N1, i∈N2

{Cph
(t), min

j∈N3
Aji>0

{Cpi
(t), Aji Cej

(t)}}

= min
h∈N1, i∈N2

{Cph
(t), Cpi

(t), min
j∈N3
Aji>0

{Aji Cej
(t)}}

= min
h∈N1, i∈N2, j∈N3

Aji>0

{Cph
(t), Cpi

(t), Aji Cej
(t)}

= min
h∈N1, i∈N2, j∈N3

Aji>0

{Cph
(t), Cpi

(t), Aji min
k∈N4
Akj>0

{Cpj
(t), Akj Cek

(t)}}

= min
h∈N1, i∈N2, j∈N3, k∈N4

Aji>0, Akj>0

{Cph
(t), Cpi

(t), Aji Cpj
(t), AjiAkj Cek

(t)}

= min
h∈N1,i∈N2,j∈N3,k∈N4

Aji>0, Akj>0

{Cph
(t), Cpi

(t), AjiCpj
(t), AjiAkj min

l∈N5
Alk>0

{Cpk
(t), AlkCel

(t)}}

...

= min
M= 2,3,...,m

i1∈N1, i2∈N2,..., im∈Nm
Aikik−1

>0 ∀k=1,...,m

{Cp1(t), CpiM
(t)

∏M
k=2 Aikik−1

}.

�

Available effective capacity at point of delivery, for fixed t ≥ 0, is therefore the

minimum of available production capacities of each vertex multiplied by the product

form
M∏

k=2

Aikik−1
, where M = 2, 3, ...,m; i1 ∈ N1, ..., im ∈ Nm; Aikik−1

> 0 ∀k =

1, ...,m.

C. Interpretation of the main result in terms of paths

In order to gain intuition about Proposition 1, we need additional terminology.

We define the ith path from vertex j ∈ Nk to point of delivery as a set of vertices

Li
j = {j, ji

1 ∈ Nk−1, j
i
2 ∈ Nk−2, ..., 1 ∈ N1 : Ajji

1
> 0, Aji

1ji
2

> 0, ..., Aji
k−21 > 0}, (3.3)

where i ∈ N. Each vertex j in the network has at least one unique path L1
j ; this
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follows from property 6 of FFNs. In fact, the number of unique paths a vertex j can

have (see Figure 3) is no smaller than card({i ∈ N : Aji > 0}). Paths L1
j and L2

j are

unique, if, in terms of sets, L1
j 6= L2

j .

Fig. 3. Vertex j has multiple paths.

For each unique path Li
j of vertex j, i ∈ N, we let the product of the corresponding

multifurcation coefficients be as

Ai
j = Ajji

1
Aji

1ji
2
... Aji

k−21, (3.4)

and then take the minimum over all unique paths i from j to point of delivery:

Āj = min
i
{Ai

j}. (3.5)

Now we can rewrite the result of Proposition 1 as:

Proposition 2 Available effective capacity at point of delivery, for a fixed time t ≥ 0,

is given by

Ce1(t) = min
j∈N

{Āj Cpj
(t)}.
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Proof. From Proposition 1 we have

min
M= 2,3,...,m

i1∈N1, i2∈N2,..., im∈Nm
Aikik−1

>0 ∀k=1,...,m

{Cp1(t), CpiM
(t)

∏M
k=2 Aikik−1

} =

= min
M=2,3,...,m

{Cp1(t), CpiM
(t) min

i1∈N1, i2∈N2,..., im∈Nm
Aikik−1

>0 ∀k=1,...,m

{
∏M

k=2 Aikik−1
}}.

For each fixed vertex iM , the expression CpiM
(t)

∏M
k=2 Aikik−1

, where i1 ∈ N1, i2 ∈

N2, ..., im ∈ Nm; Aikik−1
> 0, is equivalent to CpiM

(t) Ai
iM

for some path i of the

vertex iM . Then

CpiM
(t) min

i1∈N1, i2∈N2,..., im∈Nm
Aikik−1

>0 ∀k=1,...,m

{
∏M

k=2 Aikik−1
} = CpiM

(t) mini{Ai
iM
} = CpiM

(t) ĀiM .

Finally, available effective capacity of point of delivery is given by

Ce1(t) = min
j∈N

{Āj Cpj
(t)}.

�

Proposition 2 expresses available effective capacity at point of delivery as a minimum

of available production capacities of individual vertices multiplied by a factor Āj. To

obtain Āj for each vertex we identify all unique paths from the vertex to point of

delivery, then for each path calculate its product of multifurcation coefficients Ai
j as

in (3.4), and take the minimum over all paths as in (3.5). We are now in a position

to state the main result of this chapter

Proposition 3 The complimentary distribution of available effective capacity of a

network, for fixed t ≥ 0, is the product of complimentary distributions of available

production capacity of individual vertices

FCe1 (t)(α) = P{Ce1(t) > α} =
∏n

j=1 FCpj (t)(α/Āj).
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Proof. We use Proposition 2 and the assumption that available production capacities

of all vertices are independent.

FCe1 (t)(α) = P{Ce1(t) > α}

= P{min
j∈N

{Āj Cpj
(t)} > α}

= P{Ā1 Cp1(t) > α, Ā2 Cp2(t) > α, ..., Ān Cpn(t) > α}

=
∏n

j=1 P{Āj Cpj
(t) > α} =

∏n
j=1 FCpj (t)(α/Āj).

�

In this chapter we have developed the basic underlying structural model of an en-

terprise as a flow-matching FFN. We have chosen available effective capacity at point

of delivery as a measure of overall performance of the network. In the presence of

independent operations, available effective capacity of the enterprise is the minimum

of available production capacities of individual vertices. Proposition 3 reveals the re-

lationship between probability law on network capacity and probability law on vertex

capacity. The proposition leads to an important observation that, for relatively small

(e.g., n = 30) and reliable networks (with relatively high probabilities of exceeding

a certain capacity level for individual vertices, e.g., P{Āj Cpj
(t) > α} = 0.95), we

could have the corresponding probability for the entire network to be rather small

(P{Ce1(t) > α} could be as low as (0.95)30 ≈ 0.21). Analysis of this result suggests

that lean flow-matching FFN of independent operations are fragile - the output of

such networks is vulnerable to even minor upstream disruptions. Mathematically, this

follows from the min-type form of available effective capacity at point of delivery in

Proposition 1, and it could serve as a good explanation for recent catastrophic losses

mentioned in Chapter I.
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CHAPTER IV

EXTENDED ANALYSIS OF FFN

In this chapter we extend the basic analysis of chapter III by relaxing certain struc-

tural assumptions of the feed-forward architecture (Section A) and introducing ran-

dom propagation times (Section B). A special case of FFN called serial FFN (SFFN)

is modeled in section C. We study the impact of capacity disruptions and inven-

tory buffers (Section D), and make initial efforts to model random network topology

(section E).

A. Relaxing structural assumptions of FFN

In this section we relax two structural constraints of FFNs: firstly, that only im-

mediate adjacent tiers can be possibly connected and, secondly, the feed-forwardness

constraint that no re-entrant flow is allowed.

FFN assume that within a tier, each vertex is connected only to vertices in the

previous tier and vertices in the subsequent tier. Any vertex can feed only vertices

in its immediately subjacent tier, that is, ∀i ∈ Nk, j ∈ Nk+s, Aji = 0, where

k = 1, 2, ...,m; s ≥ 2. However, not all enterprise level production networks comply

with this constraint. We will relax this constraint and allow feed-forward connections

among multiple tiers.

Suppose we have a feed-forward flow-matching network, so that there exist di-

rectly connected vertices i and j separated by several tiers (see Figure 4), i.e.,

∃ i ∈ Nk, j ∈ Nk+s, s ≥ 2 s.t. Aji > 0. For vertex i, available supply capacity

is given by:

Csi
(t) = min

l∈Nk+1
Ali>0

{Ali Cel
(t), Aji Cej

(t)}. (4.1)
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Fig. 4. Modeling a direct multi-tier connection between vertices j and i.

It is possible to model such a network and still remain within the bounds of FFN and

utilize our capacity calculus results. Consider introducing s-1 dummy vertices located

in adjacent tiers in the following way: j1 ∈ Nk+s−1, j2 ∈ Nk+s−2, ..., js−1 ∈ Nk+1 (see

Figure 5).

Fig. 5. Introducing dummy vertices.

For these intermediate dummy vertices we assume the following properties:

1. Cej1
(t) = Cej

(t).

2. Cejk
(t) = Csjk

(t), k = 2, ..., s− 1; t > 0.

3. Ajj1 = Aji.

4. Ajkjk+1
= 1, ∀k = 1, 2, ..., s− 2.

5. Ajs−1i = 1.
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6. (3)-(5) implies that Ajj1Aj1j2 ...Ajs−1i = Aji.

Now we have (4.1) in terms of effective capacities of dummy vertices as follows:

Csi
(t) = min

l∈Nk+1
Ali>0

{Ali Cel
(t)}

= min
l∈Nk+1
Ali>0

{Ali Cel
(t), Ajs−1i Cejs−1

(t)}

= min
l∈Nk+1
Ali>0

{Ali Cel
(t), Ajs−1i min{Cpjs−1

(t), Csjs−1
(t)}}

= min
l∈Nk+1
Ali>0

{Ali Cel
(t), Ajs−1iAjs−2js−1 Cejs−2

(t)}

= min
l∈Nk+1
Ali>0

{Ali Cel
(t), Ajs−1iAjs−2js−1 min{Cpjs−2

(t), Csjs−2
(t)}}

= min
l∈Nk+1
Ali>0

{Ali Cel
(t), Ajs−1iAjs−2js−1Ajs−3js−2 Cejs−3

(t)}

= ...

= min
l∈Nk+1
Ali>0

{Ali Cel
(t), Ajs−1iAjs−2js−1Ajs−3js−2 ... Aj1j2 Cej1

(t)}

= min
l∈Nk+1
Ali>0

{Ali Cel
(t), Ajs−1iAjs−2js−1Ajs−3js−2 ... Aj1j2Ajj1 Cej

(t)}

= min
l∈Nk+1
Ali>0

{Ali Cel
(t), Aji Cej

(t)},

by property 6 for intermediate vertices. The equivalence of these approaches is rec-

ognized by considering paths of vertex j. Introducing supplementary vertices j1 ∈

Nk+s−1, j2 ∈ Nk+s−2, ..., js−1 ∈ Nk+1 does not change the corresponding value of As
j

for a path s from node j through vertex i to point of delivery, since Ajj1Aj1j2 ...Ajs−1i =

Aji.

Now we turn our attention to the feed-forward constraint. In some cases it may
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be desirable to relax this assumption and allow re-entrant flow. There could be a

number of reasons for this. One possibility is to model a situation where a part, after

being assembled at a tier, does not pass quality control procedure at the next tier,

and has to be brought back. Another example would be to model some specialized

treatment after which the part has to be brought back to finish manufacturing before

shipping to next tier.

Fig. 6. Modeling re-entrant flow.

Fig. 7. Reconfiguring the network to eliminate re-entrant flow.

Suppose we have a network with a vertex j ∈ Nk sourcing vertex i ∈ Nk−1 with

a re-entrant flow from vertex i to vertex j (Aji = Aij = 1). After parts have been

processed for a second time at j, they go directly to vertex q ∈ Nk−1 (blue arrow

on Figure 6) with (Ajq = 1). Consider reconfiguring the network by introducing an

additional vertex i’ (and additional tier) with Aij = Aii′ so that Aji = Aii′ = Ai′q = 1

(see Figure 7).
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Now we can model the assembly as a feed-forward network with connections running

through multiple tiers. In a similar way we can model feedback of arbitrary complexity

(e.g., multi-step feedback, feedback that multifurcate, etc).

In this section we have modeled network models which are more general than

FFN. These networks allow direct multi-tier connections and re-entrant flows. At

a strategic level, we can view any enterprise as a FFN. At the same time, results

developed in this section can be applied to model risk for local subassemblies and

individual vertices.

B. Modeling propagation times

In chapter III propagation times between vertices were assumed to be negligi-

ble, i.e., a disruption in available effective capacity of a vertex in any tier will have

an immediate impact on available effective capacity of all vertices connected to the

disrupted vertex downstream the network. In many situations, however, there are

positive propagation times between vertices so that disruptions have a delayed im-

pact. Propagation times can include handling time at the point of output vertex,

time in transit, handling time at the point of input vertex, delays, etc. Propagation

times are generally random. In this section we introduce propagation times between

vertices still assuming that the enterprise is running very lean with zero inventories.

First, we model deterministic propagation times and later investigate the random

case.

We denote a propagation time from vertex j ∈ Nk+1 to vertex i ∈ Nk, k =

1, 2, ...,m located in adjacent tiers by Tji > 0. Obviously, Aji = 0 if and only if

Tji = 0. From (3.1) available supply capacity of any vertex i ∈ Nk can be expressed
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in the following way, including propagation time from node j to node i :

Csi
(t) = min

j∈Nk+1
Aji>0

{Aji Cej
(t− Tji)}, (4.2)

and its available effective capacity is, therefore, by Lemma 1 is given by

Cei
(t) = min{Cpi

(t), Csi
(t)} = min

j∈Nk+1
Aji>0

{Cpi
(t), Aji Cej

(t− Tji)}. (4.3)

Now we can obtain the following expression for available effective capacity at point

of delivery:

Proposition 4 Available effective capacity at point of delivery, for fixed t ≥ 0, is

given by

Ce1(t) = min
M= 2,3,...,m

i1∈N1, i2∈N2,..., im∈Nm
Aikik−1

>0 ∀k=1,...,m

{Cp1(t), CpiM
(t−

∑M
k=2 Tikik−1

)
∏M

k=2 Aikik−1
},

provided that Cei
(t) = Cpi

(t) ∀i ∈ Nm.

Proof. Similar to the proof of Proposition 1, the inclusion of propagation times gives

Ce1(t) = min{Cp1(t), Cs1(t)}

= min
h∈N1, i∈N2

{Cph
(t), Cei

(t− Tih)}

= min
h∈N1, i∈N2

{Cph
(t), min

j∈N3
Aji>0

{Cpi
(t− Tih), Aji Cej

(t− Tih − Tji)}}

= min
h∈N1, i∈N2, j∈N3

Aji>0

{Cph
(t), Cpi

(t− Tih), Aji Cej
(t− Tih − Tji)}

...

= min
M= 2,3,...,m

j1∈N1, j2∈N2,..., jm∈Nm
Ajkjk−1

>0 ∀k=1,...,m

{Cp1(t), CpjM
(t−

∑M
k=2 Tjkjk−1

)
∏M

k=2 Ajkjk−1
}.

�

We can obtain a result equivalent to Proposition 4 by introducing path times. For
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each unique path i from vertex j ∈ Nk to point of delivery in the form of (3.3), we let

T i
j be the total propagation time of the path Li

j. T i
j is the sum of propagation times

between individual vertices constituting the path

T i
j = Tjji

1
+ Tji

1ji
2
+ ... + Tji

k−21. (4.4)

Now let T̄j be the total propagation time of the path with the smallest Ai
j, i.e.,

T̄j = T i
j when i is such that Ai

j = Āj. (4.5)

We denote the total propagation time of vertex j by T̄j.

Proposition 5 Available effective capacity at point of delivery, for fixed t ≥ 0, is

given by

Ce1(t) = min
j∈N

{Āj Cpj
(t− T̄j)}.

The proof is similar to that of Proposition 2 and follows from Proposition 4, (4.4)

and (4.5).
�

Finally, we have

Proposition 6 The complimentary distribution of available effective capacity of a

network, for fixed t ≥ 0, is the product of complimentary distributions of available

production capacity of individual vertices

FCe1 (t)(α) = P{Ce1(t) > α} =
∏n

j=1 P{Āj Cpj
(t− T̄j) > α} =

∏n
j=1 FCpj (t−T̄j)(α/Āj).

The proof follows from Proposition 3 and Proposition 5.

Now, assume that propagation times Tjh between successive assembly operations

at any vertices j and h are independent nonnegative random variables with known
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distribution functions FTjh
(t) = P{Tjh ≤ t}, h, j = 1, 2, ..., n; t > 0. We assume that

FTjh
(t) is absolutely continuous with density fTjh

(t), h, j = 1, 2, ..., n, t > 0.

Suppose j ∈ Nk, and let the path corresponding to the minimal Ai
j be of the

form of

Lj = {j, j1 ∈ Nk−1, j2 ∈ Nk−2, ..., jk−2 ∈ N2, 1 ∈ N1}.

To find an expression for the distribution of T̄j = Tjj1 + Tj1j2 + ... + Tjk−21, observe

that

P{Tjj1 + Tj1j2 ≤ t} =

∫ t

0

FTjj1
(t− u)fTj1j2

(t)du. (4.6)

The distribution (4.6) is the convolution of FTjj1
(t) and FTj1j2

(t) and is denoted by

FTjj1
(t) ∗ FTj1j2

(t). Then it follows that

FT̄j
(t) = FTjj1

∗ FTj1j2
∗ ... ∗ FTjk−21

(t). (4.7)

In particular, if FTjj1
(t), FTj1j2

(t), ..., FTjk−21
(t) are identically distributed with a dis-

tribution function F (t), we have that

FT̄j
(t) = F (k−1)(t),

where F (k−1)(t) is the (k − 1)-fold convolution of F .

It is possible for a vertex j to have a non-unique value of Āj, i.e., there may

exist two or more paths Li
j, i ∈ N s.t. ∀i Ai

j = Āj, where the corresponding total

propagation times of the paths T i
j differ. If we take the total propagation time of the

vertex to be

T̄j = min
i
{ T i

j }, (4.8)

Propositions 5 and 6 hold for deterministic case. For random propagation times we
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have

F̄T̄j
(t) = P{ min

i=2,3,...,n̄
T i

j > t} = P{T 1
j > t, T 2

j > t, ..., T n̄
j > t}. (4.9)

Note that T i
j need not to be independent as they could have common arcs. To analyze

(4.9) we need an additional terminology.

Consider two propagation times for vertex j, say L1
j and L2

j . We say that paths

L1
j and L2

j are overlapping if they have at least one common arc, and non-overlapping

otherwise. For example, on Figure 8, purple- and yellow-colored paths are overlapping

twice, while green- and yellow-colored paths are non-overlapping. Note that it is

possible for two paths to have one or more common vertices and be non-overlapping

(e.g. navy- and yellow-colored paths are non-overlapping).

Fig. 8. Overlapping and non-overlapping paths of a vertex.

We analyze (4.9) separately for overlapping and non-overlapping paths. We have the

following proposition

Proposition 7 The complimentary distribution of the total propagation time of ver-

tex j for the case of n̄ non-overlapping paths T 1
j , T 2

j , . . . T n̄
j is given by

F̄T̄j
(t) = P{ min

i=2,3,...,n̄
T i

j > t} = P{T 1
j > t}P{T 2

j > t} ... P{T n̄
j > t}.

Proof. We first model the case of two non-overlapping paths and later extend it.
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Consider two non-overlapping paths L1
j and L2

j of vertex j. Let the total propagation

times of the paths be T 1
j and T 2

j respectively:

T 1
j = Tjj1

1
+ Tj1

1j1
2
+ ... + Tj1

k−21

T 2
j = Tjj2

1
+ Tj2

1j2
2
+ ... + Tj2

k−21.

Since T 1
j is a function of only Tjj1

1
, Tj1

1j1
2
, ... Tj1

k−21 and T 2
j is a function of only

Tjj2
1
, Tj2

1j2
2
, ... Tj2

k−21, and all individual propagation times are independent, it follows

that the random variables T 1
j and T 2

j are independent. So we have

P{min{T 1
j , T 2

j > t}} = P{T 1
j > t, T 2

j > t} = P{T 1
j > t}P{T 2

j > t}. (4.10)

When we have more than two non-unique total propagation times of vertex j associ-

ated with paths Li
j, i = 2, 3, ..., n̄, the analysis is similar:

P{ min
i=2,3,...,n̄

T i
j > t} = P{T 1

j > t, T 2
j > t, ..., T n̄

j > t}

= P{T 1
j > t}P{T 2

j > t} ... P{T n̄
j > t}.

�

Now we model overlapping paths.

Proposition 8 The distribution of the total propagation time of vertex j for the case

of two paths T 1
j and T 2

j , which overlap through one common arc, connecting vertices

j ∈ Nk and j1
1 ∈ Nk−1, is given by

P{T̄j ≤ t} = P{min{T 1
j , T 2

j } ≤ t} = FT
jj11

∗ (1− F̄Z)(t),

where

F̄Z(t) = (1− FT
j11j12

∗ ... ∗ FT
j1
k−2

1
(t)) (1− FT

j11j22

∗ ... ∗ FT
j2
k−2

1
(t)).
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Proof. We assume, without loss of generality, that this common arc connects vertices

j ∈ Nk and j1
1 ∈ Nk−1. After j1

1 the paths split and do not intersect. Let the total

propagation times of the paths be T 1
j and T 2

j respectively

T 1
j = Tjj1

1
+ Tj1

1j1
2
+ ... + Tj1

k−21

T 2
j = Tjj1

1
+ Tj1

1j2
2
+ ... + Tj2

k−21.

We seek the distribution of min{T 1
j , T 2

j }. Now, T 1
j and T 2

j are both functions of Tjj1
1
,

and, thus, not independent. For the case of two overlapping paths with one common

arc, let Z be defined as

Z = min{Tj1
1j1

2
+ ... + Tj1

k−21, Tj1
1j2

2
+ ... + Tj2

k−21}.

Then

min{T 1
j , T 2

j } = Tjj1
1
+ Z.

Now, since Tj1
1j1

2
+...+Tj1

k−21 is a function of only Tj1
1j1

2
, ... Tj1

k−21, and Tj1
1j2

2
+...+Tj2

k−21

is a function of only Tj1
1j2

2
, ... Tj2

k−21, it follows that these sums of independent random

variables are independent, and so we have that

F̄Z(t) = P{min{Tj1
1j1

2
+ ... + Tj1

k−21, Tj1
1j2

2
+ ... + Tj2

k−21} > t}

= P{Tj1
1j1

2
+ ... + Tj1

k−21 > t, Tj1
1j2

2
+ ... + Tj2

k−21 > t}

= P{Tj1
1j1

2
+ ... + Tj1

k−21 > t} P{ Tj1
1j2

2
+ ... + Tj2

k−21 > t}

= (1− FT
j11j12

∗ ... ∗ FT
j1
k−2

1
(t)) (1− FT

j11j22

∗ ... ∗ FT
j2
k−2

1
(t)).

Note that Z and Tjj1
1

are independent. Finally

P{min{T 1
j , T 2

j } ≤ t} = P{Tjj1
1
+ Z ≤ t} = FT

jj11

∗ (1− F̄Z)(t). (4.11)

�
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It is straightforward to extend this approach to include multiple common arcs.

Suppose that we have two paths L1
j and L2

j of vertex j ∈ Nk which overlap through

an arbitrary number q of common arcs located in an arbitrary manner. We simplify

the notation by letting X1, X2, ..., Xq denote the propagation times associated with

the common arcs. Let FX1(t), FX2(t), ..., FXq(t) be the respective distributions of

X1, X2, ..., Xq. After regrouping and renaming, T 1
j and T 2

j can be expressed as follows

T 1
j = X1 + X2 + ... + Xq + Tj1

q j1
q+1

+ ... + Tj1
k−21

T 2
j = X1 + X2 + ... + Xq + Tj2

q j2
q+1

+ ... + Tj2
k−21.

We introduce the following proposition

Proposition 9 The distribution of the total propagation time of vertex j, for the case

of two paths T 1
j and T 2

j overlapping through q common arcs, is given by the following

expression

F̄T̄j
(t) = FX1 ∗ FX2 ∗ ... ∗ FXq ∗ (1− F̄Z)(t),

where

F̄Z(t) = (1− FT
j1q j1q+1

∗ ... ∗ FT
j1
k−2

1
(t)) (1− FT

j2q j2q+1

∗ ... ∗ FT
j2
k−2

1
(t)).

Proof. Now we define Z as

Z = min{Tj1
q j1

q+1
+ ... + Tj1

k−21, Tj2
q j2

q+1
+ ... + Tj2

k−21},

so that

min{T 1
j , T 2

j } = X1 + X2 + ... + Xq + Z.

We have

F̄Z(t) = (1− FT
j1q j1q+1

∗ ... ∗ FT
j1
k−2

1
(t)) (1− FT

j2q j2q+1

∗ ... ∗ FT
j2
k−2

1
(t)).
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Note that Z and Xs are mutually independent, and finally,

P{min{T 1
j , T 2

j } ≤ t} = P{
∑q

i=1 Xi + Z ≤ t} = FX1 ∗ FX2 ∗ ... ∗ FXq ∗ (1− F̄Z)(t).

�

Note that in the case of multiple overlapping paths Li
j, i = 2, 3, ..., n̄, if some or all

Li
j are overlapping, one can proceed iteratively, by their pairwise comparison:

min
i=2,3,...,n̄

{T i
j} = min{T n̄

j , ..., min{T 3
j , min{T 1

j , T 2
j }}}.

In this section we have modeled random propagation times between vertices. For

each vertex j, potentially having multiple overlapping paths to point of delivery, we

have identified the total propagation time, T̄j, as a unique measure of propagation

delay between the vertex and point of delivery. We have derived the distribution

of T̄j, which can easily be integrated with the basic underlying model to obtain the

distribution of available effective capacity of the network.

This analysis allows to obtain a more precise snapshot of the network which

now can include analysis of the impact of upstream disruption delays and in-transit

inventory. This is particularly important for global enterprises where propagation

times can be of the magnitude of several weeks or months.

The ability to model random propagation times combined with modeling inven-

tory buffers in section D, results in a more efficient handling of capacity disruptions.

In this light, development of tools based on intelligent data mining to monitor and

manage a real-time dashboard of disruptions/inventory levels for the scale of the en-

terprise is of a paramount importance. These developments is a subject of future

research.
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C. Special case: Serial FFN

A special type of FFN with a property that each tier consists of only one vertex

can be of practical interest (see Figure 9). We shall call such networks serial FFN

(SFFN).

Fig. 9. A serial feed-forward network.

For SFFN we have that the number of tiers is equal to the number of vertices, m = n,

and according to the numbering scheme, j ∈ Nj ∀j = 1, 2, . . . , n. Some of the basic

properties of FFN will become more specific for SFFN:

Property 1. N1 = {1}, N2 = {2}, . . . , Nm = Nn = {n}.

Properties 2-5. These properties simplify to the following: ∀i, j ∈ N, Aji >

0 ⇔ j = i + 1 and Aji > 0 ⇒ Aji = 1.

Available supply capacity of any vertex i ∈ N is expressed as:

Csi
(t) = min

j∈Ni+1
Aji>0

{Aji Cej
(t)} = Cei+1

(t).

Corollary 1 For SFFN, available effective capacity of vertex i, for a fixed time t ≥ 0,

is given by

Cei
(t) = min{Cpi

(t), Cei+1
(t)}.

Proof.

Cei
(t)

def
= min{Cpi

(t), Csi
(t)} = min{Cpi

(t), Cei+1
(t)}.

�
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Corollary 2 For SFFN, available effective capacity at point of delivery, for a fixed

time t ≥ 0, is given by

Ce1(t) = min
j∈N

{Cpj
(t)}.

Proof. From Proposition 1 we have that

Cej
(t) = min

M= 2,3,...,m
i1∈N1, i2∈N2,..., im∈Nm

Aikik−1
>0 ∀k=1,...,m

{Cp1(t), CpiM
(t)

∏M
k=2 Aikik−1

}.

By properties 2-5 of SFFN, for i1 ∈ N1, i2 ∈ N2, ..., im ∈ Nm and M = 2, 3, ...,m, we

have that ∏M
k=2 Aikik−1

= 1,

which along with property 1 for SFFN give the desired result.

As an alternative proof, consider paths of vertex j. For each vertex j ∈ Nj, there

exists only one path from the vertex to point of delivery:

L1
j = {j, j − 1 ∈ Nj−1, j − 2 ∈ Nj−2, ..., 1 ∈ N1}.

The product of the corresponding multifurcation coefficients is given by:

A1
j = Aj(j−1) A(j−1)(j−2) . . . A21 = 1,

and

Āj
def
= min

i
{Ai

j} = A1
j = 1.

Now the result follows from Proposition 2 and the fact that Āj = 1 ∀j ∈ N .

�

Corollary 3 For SFFN, the complimentary distribution of available effective capacity

of a network, for fixed t ≥ 0, is the product of complimentary distributions of available
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production capacity of individual vertices

FCe1 (t)(α) = P{Ce1(t) > α} =
∏n

j=1 FCpj (t)(α) , α ≥ 0.

The proof follows immediately from Proposition 3.

�

Introducing propagation times between vertices, available supply capacity of any ver-

tex i ∈ N can be expressed as

Csi
(t) = min

j∈Ni+1
Aji>0

{Aji Cej
(t− Tji)} = Cei+1

(t− T(i+1)i),

and available effective capacity of the vertex is given by

Cei
(t) = min{Cpi

(t), Cei+1
(t− T(i+1)i)}.

Corollary 4 For SFFN, available effective capacity at point of delivery, for a fixed

time t ≥ 0 and random propagation times, is given by

Ce1(t) = min
j=2, 3, ..., n

{Cp1(t), Cpj
(t−

∑j
k=2 Tk(k−1))},

provided that Cen(t) = Cpn(t).

Proof. Note that

Ce1(t) = min{Cp1(t), Cs1(t)}

= min{Cp1(t), Ce2(t− T21)}

= min{Cp1(t), min{Cp2(t− T21), Ce3((t− T21)− T32)}}

= min{Cp1(t), Cp2(t− T21), Ce3(t− (T21 + T32))}

= ...

= min
j=2, 3, ..., n

{Cp1(t), Cpj
(t−

∑j
k=2 Tk(k−1))}.
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As an alternative proof, in terms of propagation times of paths, we have

T 1
j = Tj(j−1) + T(j−1)(j−2) + ... + T21 =

∑j
k=2 Tk(k−1),

and

T̄j = T 1
j =

∑j
k=2 Tk(k−1).

From Proposition 4 we have

Ce1(t) = min
j∈N

{Āj Cpj
(t− T̄j)} = min

j∈N\N1

{Cp1(t), Āj Cpj
(t− T̄j)}

= min
j=2, 3, ..., n

{Cp1(t), Cpj
(t−

∑j
k=2 Tk(k−1))}.

�

Finally, for

Lj = {j ∈ Nj, j − 1 ∈ Nj−1, j − 2 ∈ Nj−2, ..., 1 ∈ N1},

we have that the distribution of

T̄j = Tj(j−1) + T(j−1)(j−2) + ... + T21

is given by

FT̄j
(t) = FTj(j−1)

(t) ∗ FT(j−1)(j−2)
(t) ∗ ... ∗ FT21(t).

Analyzing Proposition 3 and Corollary 3 we can conclude that SFFN give extreme

case results that might be used as quick-reference, lower bounds for more general

networks. For the example on page 18, for n = 30, and probabilities of exceeding

a certain capacity level for individual vertices P{Cpj
(t) > α} = 0.95, we have the

corresponding probability for the entire network P{Ce1(t) > α} ≈ 0.21.
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D. Modeling the impact of inventory buffers

In this section we consider the impact of disruptions on available effective capac-

ity of the entire network and individual vertices. We introduce inventory buffers and

investigate the influence of propagation times under capacity disruptions.

Suppose that a disruptive event reduces available production capacity of vertex

i ∈ Nk, Cpi
, by ∆Cpi

> 0 for a period of time ∆ti > 0 beginning at t. Impact of this

event on the available effective capacity at the point of delivery will depend on the

state of the network at time t. We consider two possible states of the network: flow

balanced and flow unbalanced. In a flow balanced network, each vertex has available

production capacity matching available supply capacities of vertex’s suppliers, i.e.,

the following holds for any fixed vertex i ∈ Nk, k = 1, 2, . . . ,m and for any supplier

of the vertex jn ∈ Nk+1 (see Figure 10):

Aj1i Cej1
= Aj2i Cej2

= Aj3i Cej3
= · · · = Ajni Cejn

=
∑

s∈Nk−1

Ais Cei
. (4.12)

Fig. 10. Modeling a flow balanced network.

If the network is flow balanced, and a vertex i ∈ Nk, k = 1, 2, . . . ,m has tier-1

suppliers as vertices jn ∈ Nk+1, n = 1, 2, . . . , then from (4.12) and (3.1) we have the
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following:

Csi
(t) = min

n=1,2,...
Ajni>0

{Ajni Cejn
(t)} = Aj1i Cej1

(t), (4.13)

without loss of generality, so that by definition of a flow balanced network and from

(4.13) we obtain

Cei
(t) = Cpi

(t) = Csi
(t) = Aj1i Cej1

(t). (4.14)

If we now apply the same logic to vertex j1 ∈ Nk+1 and consider its suppliers, we

obtain for some k1 ∈ Nk+2 (see Figure 11) from (4.13) and (4.14):

Csj1
(t) = Ak1j1 Cek1

(t),

Cej1
(t) = Csj1

(t) = Ak1j1 Cek1
(t),

Cei
(t) = Aj1i Cej1

(t) = Aj1i Ak1j1 Cek1
(t) = Aj1i Ak1j1 Al1k1Cel1

(t),

for some l1 ∈ Nk+3 (see Figure 11). In general, by continuing in this fashion, we

can identify m vertices located in adjacent tiers, is ∈ Ns, s = 1, 2, . . . ,m, so that

applying results for serial networks from the previous section, we get the following

for the available effective capacity at point of delivery:

Ce1(t) = Āi1 Cpi1
(t− T̄i1) = Āi2 Cpi2

(t− T̄i2) = · · · = Āim Cpim
(t− T̄im). (4.15)

Now, suppose that at time t, a disruption reduces available production capacity

of fixed vertex i ∈ Nk by ∆Cpi
> 0 for a period of time ∆ti > 0, and then instantly

recovers. After possible renumbering of vertices, using (4.15) we can deduce that

available effective capacity at point of delivery will be reduced by Āi ∆Cpi
in the

interval [t + T̄i, t + T̄i + ∆ti], provided that no other disruptions occur downstream

the network between t and t + T̄i.
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Fig. 11. Conversion from a flow balanced network to a serial network.

To conclude this part, we want to note that, in practice, most enterprise net-

works are designed as flow balanced, especially for cases where supply is inexpensive

comparing to the value of capital assets. Analysis of flow unbalanced networks and

effect of contemporaneous disruptions can be very complicated, and it is a subject of

future research.

We are now ready to investigate the effects of inventory buffers. Consider vertex

i ∈ Nk, k = 1, 2, . . . ,m, and suppose it has multiple tier-1 suppliers j1, j2, j3, · · · ∈

Nk+1 operating in a flow balanced network (see Figure 12).

Fig. 12. Tier-1 suppliers of vertex i.

Suppose, at time t, a disruption reduces available effective capacity of vertex j1 (see

Figure 12) by ∆Cej1
> 0 for a period ∆t > 0, and then instantly recovers (see
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Figure 13(a)). We have that

Cej1
(t) = Cej1

(t− ε)−∆Cej1
for an arbitrary small ε > 0,

Cej1
(t + s) = Cej1

(t) for s < ∆t, and

Cej1
(t + ∆t) = Cej1

(t− ε).

The disruption could be a disruption in production Cpj1
and/or supply capacity

Csj1
as well as a temporary inability to move parts from j1 to i. Available effective

capacities of vertices j2, j3 . . . , as well as available production capacity of vertex i

continue to stay the same.

Fig. 13. Impact of disruptions and inventory buffers.

In general, we have

Csi
(t)

def
= min{Aj1iCej1

(t− Tj1i), Aj2iCej2
(t− Tj2i), Aj3iCej3

(t− Tj3i), . . . },

so that we have

Csi
(t + Tj1i) < Cpi

(t + Tj1i), and
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Cei
(t + Tj1i) = Csi

(t + Tj1i) = Aj1i Cej1
(t) = Aj1i [Cej1

(t− ε)−∆Cej1
].

Therefore, in the presence of zero inventory buffers, we have that available effective

capacity of vertex i will be reduced by Aj1i ∆Cej1
in the interval [t+Tj1i, t+Tj1i +∆t]

(see Figure 13(b)). Available effective capacity at point of delivery will be reduced

by ĀiAj1i ∆Cej1
, beginning at t + Tj1i + T̄i, for a period ∆t, provided that no other

disruptions occur downstream the network between time t and t + Tj1i + T̄i.

Next we introduce inventory buffers. Suppose that at time t > 0, vertex i has

inventory buffers Bi
j1

(t) > 0, Bi
j2

(t) > 0, Bi
j3

(t) > 0, . . . of parts supplied by vertices

j1, j2, j3, . . . respectively. Inventory buffers have the same units as available capacities.

Inventory buffer of the disrupted network, Bi
j1

(t), remains constant until time t+Tj1i.

When the ∆Cej1
disturbance impacts vertex i at time t + Tj1i, Bi

j1
(t) will start to be

depleted at a constant rate Aj1i ∆Cej1
units per unit time. We introduce the following

variable

t∗ =
Bi

j1
(t + Tj1i)

Aj1i ∆Cej1

. (4.16)

Then either of the following two cases can happen:

Case 1. t∗ ≤ ∆t

1.1. Buffer Bi
j1

is completely depleted: Bi
j1

(t + Tj1i + ∆t) = 0.

1.2. Ce1 is reduced by ĀiAj1i ∆Cej1
from time t + Tj1i + t∗ + T̄i for a period ∆t− t∗.

1.3. Levels of Bi
j2

(t), Bi
j3

(t), . . . are increased by Aj1i ∆Cej1
(∆t− t∗).

Case 2. t∗ > ∆t

2.1. Ce1 remains unaffected between t and t + Tj1i + ∆t + T̄i.

2.2. Buffer Bi
j1

is depleted to Bi
j1

(t + Tj1i + ∆t) = Bi
j1

(t + Tj1i)− Aj1i ∆Cej1
∆t.
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2.3. Buffers Bi
j2

(t), Bi
j3

(t), . . . are unaffected.

Therefore, in the presence of an inventory buffer Bi
j1

> 0, the impact of a disruption

can either be eliminated completely, or the total propagation time (delay) of the

disruption can be increased from (t+Tj1i+T̄i) to (t+Tj1i+T̄i+Bi
j1

(t+Tj1i)/Aj1i ∆Cej1
).

Now suppose that again a disruption reduces available effective capacity of vertex

j1 by ∆Cej1
> 0, beginning at time t for a period ∆t > 0, but unlike the previous

case, capacity recovers gracefully at rate α units per unit time (see Figure 14(a)) so

that total recovery time tr is:

tr =
∆Cej1

α
, and

Cej1
(t) = Cej1

(t− ε)−∆Cej1
, for an arbitrary small ε > 0,

Cej1
(t + s) = Cej1

(t) for 0 ≤ s < ∆t,

Cej1
(t + ∆t + s) = Cej1

(t + ∆t) + αs for 0 ≤ s ≤ tr (see Figure 14(a)).

In the presence of zero inventory we have

Cei
(t + Tj1i + s) = Aj1i [Cej1

(t− ε)−∆Cej1
] for 0 ≤ s ≤ t,

so that beginning at time t + Tj1i, available effective capacity of vertex i will be

reduced by Aj1i ∆Cej1
for a period ∆t (see Figure 14(b)). Starting at t + Tj1i + ∆t ,

Cei
will recover at rate Aj1i α:

Cei
(t + Tj1i + ∆t + s) = Cei

(t + Tj1i + ∆t) + Aj1i α s for 0 ≤ s ≤ tr.

Available effective capacity at point of delivery will be reduced by Āi Aj1i ∆Cej1
be-

ginning at t + Tj1i + T̄i, for a period ∆t, provided that no other disruptions occur

downstream in the interval [t, t + Tj1i + T̄i]. Starting at time t + Tj1i + ∆t + T̄i, ca-
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Fig. 14. Impact of disruptions: case of graceful capacity recovery.

pacity will recover at rate Āi Aj1i α until complete recovery at time t+Tj1i+∆t+T̄i+tr.

Now suppose that at time t > 0, vertex i has inventory buffers Bi
j1

(t) > 0, Bi
j2

(t) >

0, Bi
j3

(t) > 0, . . . . In the presence of the disruption, buffer Bi
j1

(t) remains constant

until time t + Tj1i. Between t + Tj1i and t + Tj1i + ∆t it will be depleting at rate

Aj1i ∆Cej1
. We introduce the following variable:

t∗∗ = s such that
[
Bi

j1
(t + Tj1i + ∆t)−

∑s
k=1 Aj1i(∆Cej1

− αk)
]
≥ 0. (4.17)

Here, t∗∗ is the time that the buffer Bi
j1

can withstand the disruption to maintain the

network flow balance. We have the following cases:

Case 1. t∗ ≤ ∆t

1.1. The network remains flow balanced in the interval [t, t + Tj1i + t∗ + T̄i].

Buffer Bi
j1

is completely depleted: Bi
j1

(t + Tj1i + ∆t) = Bi
j1

(t + Tj1i + t∗) = 0.

1.2. Ce1 is reduced by ĀiAj1i ∆Cej1
from time t + Tj1i + t∗ + T̄i for a period ∆t− t∗.
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Capacity recovers at rate Āi Aj1i α from time t + Tj1i + ∆t + T̄i.

1.3. Inventory levels Bi
j2

(t), Bi
j3

(t), . . . are increased by Aj1i ∆Cej1
(∆t− t∗)

by time t + Tj1i + ∆t. Starting at t + Tj1i + ∆t, inventory is accumulating at

rate Aj1i α.

Case 2. ∆t < t∗ ≤ ∆t + tr

2.1. Ce1 remains unaffected in the interval [t, t + Tj1i + ∆t + T̄i].

2.2. By time t + Tj1i + ∆t, buffer Bi
j1

is depleted to the level

Bi
j1

(t + Tj1i + ∆t) = Bi
j1

(t + Tj1i)− Aj1i ∆Cej1
∆t.

2.3. Buffers Bi
j2

(t), Bi
j3

(t), . . . are unaffected in the interval [t + Tj1i, t + Tj1i + ∆t].

2.4. If t∗∗ ≥ tr, then

2.4.1. Ce1 remains unaffected.

2.4.2. Bi
j1

(t + Tj1i + ∆t + tr) = Bi
j1

(t + Tj1i + ∆t)−
∑tr

k=1 Aj1i(∆Cej1
− αk).

2.4.3. Buffers Bi
j2

(t), Bi
j3

(t), . . . are unaffected in [t + Tj1i, t + Tj1i + ∆t + tr].

If t∗∗ < tr, then

2.4.4. Ce1 is unaffected in [t + Tj1i + ∆t + T̄i, t + Tj1i + ∆t + t∗∗ + T̄i].

2.4.5. Bi
j1

(t + Tj1i + ∆t + tr) = 0.

2.4.6. Ce1 recovers at rate Āi Aj1i α beginning at time t + Tj1i + ∆t + t∗∗ + T̄i.

Case 3. t∗ > ∆t + tr

Apply the results of 2.4.1. - 2.4.3.
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In this section we have measured the impact of inventory buffers on total propa-

gation time (delay) of upstream capacity disruptions and available effective capacity

of the network. In the presence of an inventory buffer, the impact of a disruption

can either be eliminated completely, or the total propagation time (delay) of the dis-

ruption can be increased. The amount of increase depends on the magnitude and

duration of capacity disruption, as well as on the level of the buffer.

We have considered a one time disruption affecting a single vertex in a flow bal-

anced network. Analysis of flow unbalanced networks and effect of contemporaneous

disruptions can be very complicated, and it is a subject of future research.

On a more general note, we want to mention that companies have begun to

measure/estimate on-hand inventory in terms of time until days out once a disruption

has occurred, but it is difficult to monitor and manage a real-time dashboard of critical

inventory levels for the scale of a large enterprise. The inventory measurement in

terms of time is at a stage of infancy and more research is required to integrate

decision support systems and inventory management.

E. Modeling random network topology

In a dynamic manufacturing environment, it is often a formidable task to iden-

tify the chain of upstream suppliers, especially suppliers which are external to the

enterprise. Decision makers must rely on probabilistic models. As we traverse the

network from the final point of delivery upstream, our knowledge of configuration of

suppliers becomes less certain. Hence, our specification of probability law must reflect

this uncertainty. One way to capture the uncertainty associated with network config-

uration is via probability law on available production capacity of individual vertices.
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This approach is developed in Chapter V. Another approach is to model network

topology as a random graph [42]. Our initial work in this direction includes modeling

a fixed structure of tiers with random multifurcation coefficients (supply allocation).

Investigating random structure of tiers is a subject of future research.

Suppose that Aji are random variables with known distribution functions FAji
(a) =

P{Aji ≤ a}, i, j = 1, 2, . . . , n; 0 ≤ a ≤ 1 and probability mass functions pAij
(a) =

P{Aji = a}, i, j = 1, 2, . . . , n; 0 ≤ a ≤ 1. We introduce the following assumptions on

independence of Aji: two multifurcation coefficients Aji and Ahg are pairwise indepen-

dent if j 6= h (Aji and Ahg are associated with arcs emanating from different vertices).

If j = h, then Aji and Ahg are not pairwise independent through the identity

∑
i∈Nk

Aji = 1,

for any j ∈ Nk+1, k = 1, 2, . . . ,m. For example, on Figure 15, factors Ajik , k =

1, 2, . . . are pairwise dependent. Factors Aji1 and Ai1h1 are pairwise independent, as

are Aji1 and Ai1h2 , Aji1 and Ai1h3 .

Fig. 15. Independence of multifurcation coefficients.

Suppose that each unique ith path (i = 1, 2, . . . ) from vertex j ∈ Nk to point of

delivery is in the form of

Li
j = {j, ji

1 ∈ Nk−1, j
i
2 ∈ Nk−2, . . . , ji

k−2 ∈ N2, 1 ∈ N1},
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and the product of the corresponding multifurcation coefficients is given by

Ai
j = Ajji

1
Aji

1ji
2

. . . Aji
k−21, i = 1, 2, . . . . (4.18)

We have the following proposition

Proposition 10 The distribution of Āj of vertex j is given by

F̄Āj
(a) = P{Āj > a} = P{A1

j > a, A2
j > a, . . . },

for all i = 1, 2, . . . , 0 ≤ a ≤ 1.

Proof. We have that

F̄Āj
(a) = P{Āj > a} def

= P{min
i
{Ai

j} > a} = P{A1
j > a, A2

j > a, . . . }.

�

We will analyze Proposition 10 for overlapping and non-overlapping paths. As a

reminder, paths L1
j and L2

j are overlapping, if they have at least one common arc,

and non-overlapping otherwise. Consider two non-overlapping paths L1
j and L2

j of

vertex j ∈ Nk:

L1
j = {j, j1

1 ∈ Nk−1, j
1
2 ∈ Nk−2, . . . , j1

k−2 ∈ N2, 1 ∈ N1}

L2
j = {j, j2

1 ∈ Nk−1, j
2
2 ∈ Nk−2, . . . , j2

k−2 ∈ N2, 1 ∈ N1}.

Let the corresponding products of multifurcation coefficients of the paths be A1
j and

A2
j respectively:

A1
j = Ajj1

1
Aj1

1j1
2

. . . Aj1
k−21

A2
j = Ajj2

1
Aj2

1j2
2

. . . Aj2
k−21.

Knowing that Aj1
1j1

2
, . . . Aj1

k−21 and Aj2
1j2

2
, . . . Aj2

k−21 are all pairwise independent, as
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are Aj1
1j1

2
, . . . Aj1

k−21 and Ajj2
1
, Aj2

1j2
2
, . . . Aj2

k−21, we have that

P{min{A1
j , A

2
j > a}} =

= P{A1
j > a, A2

j > a}

= P{Ajj1
1
Aj1

1j1
2

. . . Aj1
k−21 > a, Ajj2

1
Aj2

1j2
2

. . . Aj2
k−21 > a}

=
∑

x1
P{Aj1

1j1
2

. . . Aj1
k−21 > a/x1, Ajj2

1
Aj2

1j2
2

. . . Aj2
k−21 > a}P{Ajj1

1
= x1}

=
∑

x1
P{Aj1

1j1
2

. . . Aj1
k−21 > a/x1}P{Ajj2

1
Aj2

1j2
2

. . . Aj2
k−21 > a}P{Ajj1

1
= x1}

=
∑

x1
P{Aj1

1j1
2

. . . Aj1
k−21 > a/x1} F̄A2

j
(a) pA

jj11

(x1).

To extend this approach to networks having more than two non-overlapping paths

Li
j, i = 2, 3, . . . , we need only determine pairwise minimums of the corresponding Ai

j:

Āj = min
i=2,3,...

{Ai
j} = min{. . . , min{A3

j , min{A1
j , A2

j}}}.

Now consider two paths L1
j and L2

j emanating from vertex j ∈ Nk that over-

lap through one common arc. Assume, without loss of generality, that this common

arc connects vertices j ∈ Nk and j1
1 ∈ Nk−1 with corresponding multifurcation co-

efficient Ajj1
1
. Downstream of j1

1 , the paths do not intersect, so that they are two

non-overlapping paths emanating from vertex j1
1 . Let the corresponding products of

multifurcation coefficients of the paths be A1
j and A2

j respectively:

A1
j = Ajj1

1
Aj1

1j1
2

. . . Aj1
k−21 ,

A2
j = Ajj1

1
Aj1

1j2
2

. . . Aj2
k−21.

Define Ψ as

Ψ = min{Aj1
1j1

2
. . . Aj1

k−21 , Aj1
1j2

2
. . . Aj2

k−21}.
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Then

min{A1
j , A

2
j} = Ajj1

1
Ψ.

Note that Ψ and Ajj1
1

are independent, since Ψ is a function of random variables all of

which are pairwise independent of Ajj1
1
. Since Aj1

1j1
2

. . . Aj1
k−21 is written only in terms

of Aj1
1j1

2
, . . . , Aj1

k−21, and Aj1
1j2

2
. . . Aj2

k−21 is written only in terms of Aj1
1j2

2
, . . . , Aj2

k−21,

it follows that these are products of independent random variables. Hence,

F̄Ψ(a) = P{min{Aj1
1j1

2
. . . Aj1

k−21 , Aj1
1j2

2
. . . Aj2

k−21} > a}

= P{Aj1
1j1

2
. . . Aj1

k−21 > a, Aj1
1j2

2
. . . Aj2

k−21 > a}

= P{Aj1
1j1

2
. . . Aj1

k−21 > a} P{ Aj1
1j2

2
. . . Aj2

k−21 > a}.

Finally, since Ψ and Ajj1
1

are mutually independent, we obtain for 0 ≤ a ≤ 1:

P{min{A1
j , A

2
j} > a} = P{Ajj1

1
> a, Ψ > a} = F̄A

jj11

(a) F̄Ψ(a). (4.19)

In this section we have modeled random multifurcation coefficients with a fixed

structure of tiers. We have shown that under certain assumptions of independence

among Ajis, the distribution of Āj exhibits a fairly simple form for non-overlapping

paths. For large enterprises with complex, multi-tier topology and many involute

overlapping paths, the analysis becomes complicated. As we propagate upstream the

network, our knowledge of configuration of suppliers becomes less certain. In the pres-

ence of little or no historical data, specification of probability law on multifurcation

coefficients can become very intricate.
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CHAPTER V

STOCHASTIC MODELS FOR AVAILABLE EFFECTIVE CAPACITY OF THE

NETWORK

Development of appropriate stochastic models that capture the dynamics of network

capacity disruptions is one of the most important objectives of this research. Our

main focus will be on point of delivery, and the corresponding stochastic process

{Ce1(t), t ≥ 0}, which is dependent, through the feed-forward, flow-matching net-

work, on the family of processes {Cei
(t), i ∈ N, t ≥ 0}.

In Chapter III, Proposition 3 provided us with a key result that for independent

operations, the complimentary distribution of available effective capacity of a network,

for fixed t ≥ 0, is the product of complimentary distributions of available production

capacity of individual vertices:

FCe1 (t)(α) =
∏n

j=1 FCpj (t)(α/Āj), α ≥ 0, t > 0.

This chapter develops four stochastic models that characterize dynamics of avail-

able production capacity at individual vertices exposed to random disruptions.

In section A we consider stepwise capacity loss with instantaneous capacity re-

covery model. This behavior is suitable for a number of industrial scenarios. One

example is a limited availability of repair personnel and performance degradation

caused by failing equipment/tooling (quality issues) with a subsequent repair upon

complete failure. Or, it can be non-self-announcing equipment failures causing step-

wise performance degradation. Upon detection, the problem is fixed in a very short

time so that repair time is negligible. Or, piecewise equipment modernization when

available production capacity decreases stepwise (possibly, to zero). Upon complete

modernization, the capacity is instantaneously restored. Or, piecewise reset of equip-
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ment due to a shift to manufacturing of a new product.

Section B presents an instantaneous capacity loss with instantaneous recovery.

This capacity pattern can be applicable to model emergency power outage, water

(gas, heat) supply disruptions, as well as disruptions in any infrastructure system

(IT, telephone, etc.).

The instantaneous capacity loss with instantaneous recovery model is extended

to an instantaneous capacity loss with constant recovery rate model in section C. This

paradigm is appropriate for modeling, for example, instantaneous types of disruptions

presented in the previous model when capacity restoration occurs gracefully (approx-

imately). A graceful restoration can be due to a number of reasons. One example,

is a failure (reset, maintenance procedures, or gradual modernization/testing) of a

complex multi-line equipment. Another example is a terrorist attack threat/warning

followed by area search/checking with a gradual restoration of human and manufac-

turing resources. Or, it can be a limited availability of (outside) repair personnel.

Or, it can be a compressed air/steam failure. In this case, production capacity is

restoring with a gradual increase in the compressed air/steam pressure. One more

example is modeling an extended warmup period of a failed equipment.

Finally, in section D we consider a constant capacity loss rate with a constant

rate of recovery. Graceful capacity degradation and restoration is suitable to modeling

events impacting labor (labor strikes, political riots, epidemics (e.g., SARS), etc.).

Gradual modernization (reset, maintenance) followed by a gradual recovery is another

example of this capacity behavior.
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A. Stepwise capacity loss with instantaneous recovery

Consider our first model describing the dynamics of available production capacity

at a vertex j ∈ Nk.

Fig. 16. Stepwise capacity loss with instantaneous capacity recovery.

Initially, Cpj
(0) = C∗, where C∗ is set apriori based on demand. In general, C∗

is vertex dependent, since each vertex has a different demand function. We will

omit the j-th index for C∗. This notational convention will be preserved for later

models. Capacity is subject to disruptions causing instantaneous random stepwise

capacity degradation. Disruptions occur one at a time. Following each disturbance,

if the amount of available capacity exceeds a critical level c, the system continues to

operate at the disrupted level. If, after a disruption, the amount of available capacity

falls below level c, the vertex instantly recovers its capacity to the target level C∗.

Figure 16 shows a realization of the process. We assume that the points of recovery

form a sequence of stopping times at which the process stochastically regenerates, so

that {Cpj
(t), t ≥ 0} forms a regenerative stochastic process.

We use the following notation for vertex j:

C∗ - target capacity level, C∗ > 0.

c - critical capacity level, 0 ≤ c < C∗.
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∆Cn - magnitude of of the n-th capacity loss, 0 ≤ ∆Cn ≤ C∗, n ∈ N.

X1 - epoch of the first capacity loss.

Xn - time between capacity losses n− 1 and n, n ≥ 2.

Let Z0 = 0, and

Zn =
∑n

j=1 Xj, n = 1, 2, . . . (5.1)

be the arrival epoch of the n-th capacity loss.

Available production capacity of vertex j is a nonnegative random variable. If, at

any time t > 0 , the cumulative amount of lost capacity exceeds C∗, we say that

Cpj
(t) = 0. Suppose that capacity losses occur as a renewal process, with {Xn}

being independent and identically distributed. We also assume that {∆Cn, n ∈ N}

form a sequence of independent and identically distributed random variables that

are independent of the {Xn}. Beginning with {Cpj
(t), t ≥ 0} process, we define the

regenerative process {Bu
t , 0 ≤ u ≤ C∗, t ≥ 0} with state space {0, 1} (see Figures 17

and 18), where:

Bu
t =


1, if Cpj

(t) ≥ u;

0, otherwise.

The process is in state one when the amount of available production capacity is at least

u, and it is in state zero otherwise. Any epoch, where available production capacity

falls below u, initiates a transition from state one to state zero. Any epoch where

available production capacity falls below c is a transition from state zero to state one,

and the process regenerates. Therefore, the process {Bu
t , 0 ≤ u ≤ C∗, t ≥ 0} has the

same stopping times as {Cpj
(t), t ≥ 0}.

We define a cycle as a portion of the process between two adjacent transitions

from zero to one (see Figure 17). Let Tu denote the amount of time that Cpj
≥ u,

i.e., is in state one during a one/zero cycle, and let T denote the length of time of a
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Fig. 17. {Cpj
(t)} process of model 1.

Fig. 18. Corresponding {Bu
t } process of model 1.

cycle. Consider the first cycle, and let

Nx = min{n s.t. ∆C1 + ∆C2 + · · ·+ ∆Cn > C∗ − x}.

That is, Nx is the index of the first capacity disturbance for which a cumulative loss

in available capacity up to this epoch has been exceeding C∗ − x, or the index of the

first capacity loss that causes available capacity to fall below x. Note that

Tu = ZNu , and (5.2)

T = ZNc . (5.3)

We have the following proposition.
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Proposition 11 For stepwise capacity loss with instantaneous capacity recovery,

lim
t→∞

P{Cpj
(t) ≥ u} =

E(Nu)

E(Nc)
,

where c ≤ u ≤ C∗.

Proof. To prove, we use Proposition 3.7.1 in [43], (5.2), (5.3), and the fact that the

{Xn} are i.i.d., independent of the {∆Cn}:

lim
t→∞

P{Cpj
(t) ≥ u} =

E(Tu)

E(T )

=
E(ZNu)

E(ZNc)

=
E

(∑Nu

j=1 Xj

)
E

(∑Nc

j=1 Xj

) by definition of Zn in (5.1), and

=
E(Nu)E(X1)

E(Nc)E(X1)
{Xn} are i.i.d., independent of {∆Cn}

=
E(Nu)

E(Nc)
.

�

Now define

Ñx = max{n s.t. ∆C1 + ∆C2 + · · ·+ ∆Cn ≤ x}.

Ñx is the index of the last capacity loss for which a cumulative loss in available

capacity does not exceed x. Since ∆Ci are independent nonnegative random variables,

then Ñx is a renewal process. From the elementary renewal theorem it follows that

lim
t→∞

E(Ñt)

t
=

1

E(∆C1)
. (5.4)

Note that Nx and Ñx are connected through the following simple expression:

NC∗−x = Ñx + 1. (5.5)
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Proposition 12 For stepwise capacity loss with instantaneous capacity recovery, the

limiting complimentary distribution of available production capacity of vertex j can

be approximated by the following expression, where c ≤ u ≤ C∗:

lim
t→∞

P{Cpj
(t) ≥ u} ≈ (C∗ − u) + E(∆C1)

(C∗ − c) + E(∆C1)
.

Proof. From Proposition 11 and (5.4), it follows that

lim
t→∞

P{Cpj
(t) ≥ u} =

E(Nu)

E(Nc)
=

E(ÑC∗−u) + 1

E(ÑC∗−c) + 1
≈

C∗−u
E(∆C1)

+ 1
C∗−c

E(∆C1)
+ 1

=
(C∗ − u) + E(∆C1)

(C∗ − c) + E(∆C1)
.

�

Finally, we obtain the following result as a measure of overall network performance

Proposition 13 For stepwise capacity loss with instantaneous capacity recovery, the

limiting complimentary distribution of available effective capacity of a network can be

approximated by the following expression, where c ≤ u ≤ C∗:

lim
t→∞

P{Ce1(t) ≥ u} ≈
∏n

j=1
(C∗−u/Āj)+E(∆C1)

(C∗−c)+E(∆C1)
.

Proof. We use Proposition 3 and Proposition 12 to have

lim
t→∞

P{Ce1(t) ≥ u} = lim
t→∞

∏n
j=1 P{Cpj

(t) ≥ u/Āj} by Proposition 3

=
∏n

j=1 limt→∞ P{Cpj
(t) ≥ u/Āj} the product is finite

≈
∏n

j=1
(C∗−u/Āj)+E(∆C1)

(C∗−c)+E(∆C1)
by Proposition 12.

�

B. Instantaneous capacity loss with instantaneous recovery

Consider our second model describing the dynamics of available production ca-
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Fig. 19. Instantaneous capacity loss with instantaneous recovery.

pacity at a vertex j ∈ Nk.

Initially, Cpj
(0) = C∗. Random disruptions cause immediate random capacity loss.

Disruptions occur one at a time. Following each capacity disturbance, the vertex

switches to the recovery mode that takes a random amount of time, and then in-

stantly recovers its capacity to the target level. Figure 19 shows a realization of the

process. We, again, assume that the points of recovery form a sequence of stopping

times at which the system stochastically regenerates, so that {Cpj
(t), t ≥ 0} forms a

regenerative process.

Let Xn, n ∈ N be the amount of time the system operates at target capacity be-

fore experiencing the n-th disruption. Assume {Xn} forms a sequence of independent

and identically distributed random variables with known mean µX . Let Yn, n ∈ N

denote the time of the n-th disruption period. Assume that {Yn} forms a sequence of

independent and identically distributed random variables with known mean µY . In

addition, we assume that the sequences {Xn} and {Yn} are mutually independent.

Let Zn =
∑n

i=1(Xi+Yi), n ∈ N, so that {Zn} forms an embedded renewal process. We

denote by ∆Cn the magnitude of of the n-th capacity loss (0 ≤ ∆Cn ≤ C∗, n ∈ N),

and assume that {∆Cn, n ∈ N} forms a sequence of independent and identically

distributed random variables with known distribution function F∆C(x), which are
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independent of the {Xn} and {Yn}. We define the following regenerative process

{Bu
t , 0 ≤ u ≤ C∗, t ≥ 0} with state space {0, 1} (see Figures 20 and 21):

Bu
t =


1, if Cpj

(t) ≥ u;

0, otherwise.

The process is in state one when available production capacity is at least u, and

it is in state zero otherwise. The epoch, where available production capacity falls

below u, initiates a transition from state one to state zero, and the epoch, where

available production capacity recovers to the target level, initiates a transition from

state zero to state one. The recovery epoch is a point of regeneration. The process

{Bu
t , 0 ≤ u ≤ C∗, t ≥ 0} is a thinning of {Cpj

(t), t ≥ 0} since the sequence of stopping

times of {Bt} is a subsequence of the sequence of stopping times of {Cpj
(t)}.

Note that transitions from one to zero coincided with an arrival epoch of the

renewal process {Zn}, and the amount of time that {Bu
t } is in state zero is the

recovery time for the cycle. We define a cycle as a portion of the process between

two adjacent transitions from zero to one (see Figure 21). Let Tu denote the amount

of time that Cpj
≥ u, and let T denote length of the cycle. Consider the first cycle,

and let

Nx = min{n s.t. ∆Cn > C∗ − x}.

Nx is the index of the first capacity loss that causes available capacity to fall below

x. Then the index of the (first) capacity loss that causes the system to experience a

transition from one to zero can be expressed as follows

Nu = min{n s.t. ∆Cn > C∗ − u}

= n s.t. ∆Cn > C∗ − u, (5.6)
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since after the Nu -th loss, there are no further capacity losses in this cycle.

Fig. 20. {Cpj
(t)} process of model 2.

Fig. 21. Corresponding {Bu
t } process of model 2.

A transition from zero to one coincides with an epoch of the renewal process

{Zn}, and, we observe that

T = ZNu , and

Tu = ZNu − YNu . (5.7)

Proposition 14 For instantaneous capacity loss with instantaneous capacity recov-

ery,

lim
t→∞

P{Cpj
(t) ≥ u} = 1− µY

E(Nu)(µX + µY )
, 0 ≤ u ≤ C∗.
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Proof. From Proposition 3.7.1 in [43], (5.7), and the fact that the {Xn} are i.i.d.,

{Yn} are i.i.d., and both are independent of the {∆Cn}, we observe that

lim
t→∞

P{Cpj
(t) ≥ u} =

E(Tu)

E(T )

=
E(ZNu − YNu)

E(ZNu)

=
E

(∑Nu

j=1(Xj + Yj)− YNu

)
E

(∑Nu

j=1(Xj + Yj)
)

=
E

(∑Nu

j=1 Xj

)
+ E

(∑Nu−1
j=1 Yj

)
E

(∑Nu

j=1 Xj

)
+ E

(∑Nu

j=1 Yj

)
=

E(Nu)µX + E(Nu − 1)µY

E(Nu)µX + E(Nu)µY

= 1− µY

E(Nu)(µX + µY )
.

�

At this point we can estimate E(Nu) by first obtaining the distribution of Nu.

Consider the first cycle, and let

pu = P{∆Cn > C∗ − u} for n = 1, 2, . . . , Nu (since ∆Cn are i.i.d.). (5.8)

Since, for a given cycle, Nu is the index of the first (and the last) capacity loss having

a magnitude that exceeds (C∗−u), and since the ∆Cn are i.i.d., we can treat them as

a sequence of repeated independent trials stopped when the process reaches capacity

(C∗− u). At this epoch, the process transitions to the recovery mode. For each trial,

there are only two possible (mutually exclusive) outcomes: a success event, when

the capacity loss exceeds the (C∗ − u) level, and a failure event, when it does not.

Therefore, Nu has a negative binomial distribution with the probability mass function
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given by

P{Nu = n} = pu (1− pu)
(n−1) for n = 1, 2, . . . . (5.9)

Proposition 15 For instantaneous capacity loss with instantaneous capacity recov-

ery,

E(Nu) =
pu

1− pu

∑∞
k=1 k (1− pu)

k.

The proof follows directly from (5.9). �

We now have the following result.

Proposition 16 For instantaneous capacity loss with instantaneous capacity recov-

ery, the limiting complimentary distribution of available production capacity of vertex

j is given by the following expression, where 0 ≤ u ≤ C∗:

lim
t→∞

P{Cpj
(t) ≥ u} = 1− µY (1− pu)

(µX + µY ) pu

∑∞
k=1 k (1− pu)

k
.

Proof. From Propositions 14 and 15 it follows that

lim
t→∞

P{Cpj
(t) ≥ u} = 1− µY

E(Nu)(µX + µY )

= 1− µY (1− pu)

(µX + µY ) pu

∑∞
k=1 k (1− pu)

k
.

�

Finally, we obtain the following result as a measure of overall network perfor-

mance:

Proposition 17 For instantaneous capacity loss with instantaneous capacity recov-

ery, the limiting complimentary distribution of available effective capacity of a network

is given by the following expression, where ũj = u/Āj , 0 ≤ u ≤ C∗:

lim
t→∞

P{Ce1(t) ≥ u} =
∏n

j=1

(
1− µY (1−pũj

)

(µX+µY ) pũj

∑∞
k=1 k (1− pũj

)k

)
.



61

Proof. We use Propositions 3 and 16

lim
t→∞

P{Ce1(t) ≥ u} = lim
t→∞

∏n
j=1 P{Cpj

(t) ≥ u/Āj}

=
∏n

j=1 limt→∞ P{Cpj
(t) ≥ u/Āj}

=
∏n

j=1

(
1− µY (1−pũj

)

(µX+µY ) pũj

∑∞
k=1 k (1− pũj

)k

)
.

When u = C∗, we have the following proposition.

Proposition 18 For instantaneous capacity loss with instantaneous capacity recov-

ery, the limiting probability that vertex j operates at the target capacity is given by

lim
t→∞

P{Cpj
(t) = C∗} =

µX

µX + µY

.

Proof. With u = C∗, it follows that

pu = P{∆Cn > C∗ − u} = P{∆Cn > 0} = 1 for n = 1, 2, . . . , Nu,

so that

E(Nu) =
pu

1− pu

∑∞
k=1 k (1−pu)

k =
∑∞

k=1 k pu (1−pu)
(k−1) = pu+

∑∞
k=2 k pu (1−pu)

(k−1) = 1.

It follows from Proposition 14 that

lim
t→∞

P{Cpj
(t) = C∗} = lim

t→∞
P{Cpj

(t) ≥ C∗}

= 1− µY

E(Nu)(µX + µY )

=
µX

µX + µY

.

�

Corollary 5 For instantaneous capacity loss with instantaneous capacity recovery,
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the limiting probability that a network operates at the target capacity is given by

lim
t→∞

P{Ce1(t) = C∗} =
∏n

j=1

µXj

µXj
+ µYj

.

Proof. From Proposition 18, the proof is analogous to that of Proposition 17.
�

C. Instantaneous capacity loss with constant recovery rate

Consider our third model describing the dynamics of available production capac-

ity at a vertex j ∈ Nk. Initially, Cpj
(0) = C∗. Capacity disruptions occur one at a

time. Following each disruption, the system enters a recovery period, and immedi-

ately begins recovering the lost capacity at a constant rate α > 0 until the target level

is achieved (see Figure 22). We assume that the points of recovery form a sequence of

stopping times at which the system stochastically regenerates, so that {Cpj
(t), t ≥ 0}

forms a regenerative stochastic process.

As before, Xn, n ∈ N denotes the amount of time the system operates at the tar-

get level before experiencing the n-th capacity disruption. {Xn, n ∈ N} are assumed

to form a sequence of independent and identically distributed random variables with

known mean µX . We denote by ∆Cn the magnitude of of the n-th capacity loss

(0 ≤ ∆Cn ≤ C∗, n ∈ N), and further assume that {∆Cn, n ∈ N} forms a sequence of

independent and identically distributed random variables, independent of the {Xn},

with distribution function F∆C(x), x ∈ N.We let Yn, n ∈ N to be the length of the n-th recovery period:

Yn =
∆Cn

α
, α > 0.

Then {Yn} is a sequence of independent and identically distributed random variables

with mean µ∆C/α. In addition, sequences {Xn} and {Yn} are mutually independent
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Fig. 22. Instantaneous capacity loss with constant rate recovery.

Fig. 23. Corresponding {Bu
t } process of model 3.

since {Xn} and {∆Cn} are independent. Let Zn =
∑n

i=1(Xi + Yi), n ∈ N, so that

{Zn} forms an embedded renewal process.

Let Bu
t be defined as before, with the process {Bu

t , t ≥ 0} (see Figure 23). The

process is in state one when available production capacity is at least u, and it is in

state zero otherwise. When available production capacity falls below u, the process

moves from state one to state zero. When available production capacity recovers to

u (not to the target level, as in the previous model), the process moves from state

zero to state one. We define Tu and T as in the previous model, and Nu and pu as in
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(5.6) and (5.8) respectively. It follows that

T =
C∗ − u

α
+ ZNu −

C∗ − u

α
= ZNu , (5.10)

and

Tu =
C∗ − u

α
+ ZNu −

∆CNu

α
. (5.11)

Proposition 19 For instantaneous capacity loss with a constant recovery rate, the

limiting complimentary distribution of available production capacity of vertex j is

given by the following expression, where E(Nu) =
∑∞

k=1 k pu (1 − pu)
(k−1) , 0 ≤ u ≤

C∗:

lim
t→∞

P{Cpj
(t) ≥ u} =

(C∗ − u)/α + E(Nu)(αµX + µ∆C)− µ∆C

E(Nu)(αµX + µ∆C)
.

Proof. From Proposition 3.7.1 in [43], Proposition 15, (5.10) and (5.11) we observe

that

lim
t→∞

P{Cpj
(t) ≥ u} =

=
E(Tu)

E(T )

=
E((C∗ − u)/α + ZNu −∆CNu/α)

E(ZNu)

=
(C∗ − u)/α + E(Nu)µX + E(

∑Nu

i=1 Yi)− µ∆C/α

E(Nu)µX + E(
∑Nu

i=1 Yi)

=
(C∗ − u)/α + E(Nu)µX +

∑∞
n=1 E(

∑n
i=1 Yi)P{Nu = n} − µ∆C/α

E(Nu)µX +
∑∞

n=1 E(
∑n

i=1 Yi)P{Nu = n}

=
(C∗ − u)/α + E(Nu)µX + (µ∆C/α)

∑∞
n=1 nP{Nu = n} − µ∆C/α

E(Nu)µX + (µ∆C/α)
∑∞

n=1 nP{Nu = n}

=
(C∗ − u)/α + E(Nu)µX + E(Nu)(µ∆C/α)− µ∆C/α

E(Nu)µX + E(Nu)(µ∆C/α)
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=
(C∗ − u)/α + E(Nu)(αµX + µ∆C)− µ∆C

E(Nu)(αµX + µ∆C)
.

�

We obtain the following result as a measure of overall network performance:

Proposition 20 For instantaneous capacity loss with a recovery constant rate, the

limiting complimentary distribution of available effective capacity of a network is given

by the following expression, where ũj = u/Āj:

lim
t→∞

P{Ce1(t) ≥ u} =
∏n

j=1

(C∗ − ũj)/α + E(Nũj
)(αµX + µ∆C)− µ∆C

E(Nũj
)(αµX + µ∆C)

.

Proof. We use Propositions 3 and 19

lim
t→∞

P{Ce1(t) ≥ u} = lim
t→∞

∏n
j=1 P{Cpj

(t) ≥ u/Āj}

=
∏n

j=1 limt→∞ P{Cpj
(t) ≥ u/Āj}

=
∏n

j=1

(C∗ − ũj)/α + E(Nũj
)(αµX + µ∆C)− µ∆C

E(Nũj
)(αµX + µ∆C)

.

�

We have the following important corollary when u = C∗:

Corollary 6 For instantaneous capacity loss with a constant recovery rate, the lim-

iting probability that vertex j operates at the target capacity is given by

lim
t→∞

P{Cpj
(t) = C∗} =

αµX

αµX + µ∆C

.

Proof. We have, as shown in proof of Proposition 18, that pu = 1, and E(Nu) = 1.

From Proposition 19 it follows that

lim
t→∞

P{Cpj
(t) = C∗} = lim

t→∞
P{Cpj

(t) ≥ C∗} =
αµX

αµX + µ∆C

.
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Alternatively, we have (see Figure 24) that

Fig. 24. {Cpj
(t)} process of model 3.

Nu = min{n s.t. ∆Cn > C∗ − u}

= min{n s.t. ∆Cn > 0}

= 1.

Therefore,

T = ZNu = Z1 = X1 +
∆C1

α
, (5.12)

and

Tu =
C∗ − u

α
+ ZNu −

∆CNu

α

= Z1 −
∆C1

α

= X1. (5.13)

Now from (5.12) and (5.13) we have that
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lim
t→∞

P{Cpj
(t) ≥ u} =

E(Tu)

E(T )

=
µX

µX +
µ∆C

α

=
αµX

αµX + µ∆C

.

�

Corollary 7 For instantaneous capacity loss with a constant recovery rate, the lim-

iting probability that a network operates at the target capacity is given by

lim
t→∞

P{Ce1(t) = C∗} =
∏n

j=1

αjµXj

αjµXj
+µ∆Cj

.

The proof follows directly from Proposition 3 and Corollary 6.
�

It is straightforward to extend this analysis to the situation shown in Figure 25.

Fig. 25. Including random delay time Rn in model 3.

In this case, the total recovery time of the n-th capacity loss consists of a random

recovery delay Rn, n ∈ N, when available production capacity remains at the level
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Fig. 26. Corresponding {Bu
t } process of the model.

C∗ − ∆Cn, and time Yn, n ∈ N, required to recover the lost capacity to the target

level at a constant rate α:

Yn =
∆Cn

α
.

Rn is a random delay before capacity recovery begins. We assume that {Rn} forms a

sequence of independent and identically distributed random variables with mean µR,

mutually independent of {Xn} and {Yn}, and we define Zn =
∑n

i=1(Xi+Ri+Yi), n ∈

N. We have that

T =
C∗ − u

α
+ ZNu −

C∗ − u

α
= ZNu , (5.14)

and

Tu =
C∗ − u

α
+ ZNu −

(
RNu +

∆CNu

α

)
. (5.15)

Now we have the following result.

Proposition 21 For instantaneous capacity loss and a constant recovery rate with

random recovery delay, the limiting complimentary distribution of available production

capacity of vertex j is given by the following expression, where 0 ≤ u ≤ C∗ and
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E(Nu) =
∑∞

k=1 k pu (1− pu)
(k−1):

lim
t→∞

P{Cpj
(t) ≥ u} =

(C∗ − u)/α + E(Nu)(αµX + αµR + µ∆C)− αµR − µ∆C

E(Nu)(αµX + αµR + µ∆C)
.

Proof. From (5.14) and (5.15), the proof is analogous to that of Proposition 19.

�

Proposition 22 For instantaneous capacity loss and a constant recovery rate with

random recovery delay, the limiting complimentary distribution of available effective

capacity of a network is given by the following expression, where ũj = u/Āj , 0 ≤ u ≤

C∗:

lim
t→∞

P{Ce1(t) ≥ u} =
∏n

j=1

(C∗ − ũj)/α + E(Nũj
)(αµX + αµR + µ∆C)− αµR − µ∆C

E(Nũj
)(αµX + αµR + µ∆C)

.

The proof is straightforward by using Propositions 3 and 21.
�

Corollary 8 For instantaneous capacity loss and a constant recovery rate with ran-

dom recovery delay, the limiting probability that vertex j operates at the target capacity

is given by

lim
t→∞

P{Cpj
(t) = C∗} =

αµX

αµX + αµR + µ∆C

.

The proof is analogous to that of Corollary 6.

�

Corollary 9 For instantaneous capacity loss and a constant recovery rate with ran-

dom recovery delay, the limiting probability that a network operates at the target ca-

pacity is given by

lim
t→∞

P{Ce1(t) = C∗} =
∏n

j=1

αjµXj

αjµXj
+αjµRj

+µ∆Cj
.
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The proof is analogous to that of Corollary 7.

�

D. Constant rate capacity loss with constant recovery rate

Consider our fourth model describing the dynamics of available production ca-

pacity at a vertex j ∈ Nk. This model is an extension of the previous model, where,

in addition, we allow random graceful capacity losses with a constant rate β > 0 (see

Figure 27), so that the n-th capacity loss ∆Cn (0 ≤ ∆Cn ≤ C∗, n ∈ N) lasts

Sn =
∆Cn

β

amount of time.

Fig. 27. Loss with a constant rate β, recovery with a constant rate α.

As before, we assume that total recovery time of the n-th capacity loss consists

of a random recovery delay Rn, n ∈ N, and a recovery time Yn, n ∈ N:

Yn =
∆Cn

α
.
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We let

Zn =
∑n

i=1(Xi + Si + Ri + Yi), n ∈ N.

We have that

T =
C∗ − u

α
+ ZNu −

C∗ − u

α
= ZNu , (5.16)

and

Tu =
C∗ − u

α
+ ZNu −

(∆CNu

α
+ RNu +

∆CNu − (C∗ − u)

β

)
. (5.17)

Proposition 23 For a constant capacity loss rate with a constant recovery rate, E(T )

and E(Tu) are given by the following expressions:

E(T ) = E(Nu)
αβ(µX + µR) + (α + β)µ∆C

αβ
,

E(Tu) =
(α + β)(C∗ − u− µ∆C)− αβµR + E(Nu)(αβ(µX + µR) + (α + β)µ∆C)

αβ
.

Proof. From (5.16) and (5.17) we have that

E(T ) = E(ZNu)

= E(Nu)
αβ(µX + µR) + (α + β)µ∆C

αβ
,

where

E(Nu) =
pu

1− pu

∑∞
k=1 k (1− pu)

k . (5.18)

It follows that

E(Tu) = E

(C∗ − u

α
+ ZNu −

(∆CNu

α
+ RNu +

∆CNu − (C∗ − u)

β

))
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=
C∗ − u

α
+ E(Nu)

αβ(µX + µR) + (α + β)µ∆C

αβ

−
(µ∆C

α
+ µR +

µ∆C − (C∗ − u)

β

)

=
(α + β)(C∗ − u− µ∆C)− αβµR + E(Nu)(αβ(µX + µR) + (α + β)µ∆C)

αβ
.

�

Proposition 24 For a constant capacity loss rate with a constant recovery rate, the

limiting complimentary distribution of available production capacity of vertex j is

given by the following expression, where E(Nu) =
∑∞

k=1 k pu (1 − pu)
(k−1) and 0 ≤

u ≤ C∗:

lim
t→∞

P{Cpj
(t) ≥ u} =

(α + β)(C∗ − u− µ∆C)− αβµR + E(Nu)(αβ(µX + µR))

E(Nu)[αβ(µX + µR) + (α + β)µ∆C ]

+
(α + β)µ∆C

E(Nu)[αβ(µX + µR) + (α + β)µ∆C ]
.

The proof follows directly from Proposition 23.
�

Proposition 25 For a constant capacity loss rate with a constant recovery rate, the

limiting complimentary distribution of available effective capacity of a network is given

by the following expression, where ũj = u/Āj:

lim
t→∞

P{Ce1(t) ≥ u}

=
∏n

j=1

(α + β)(C∗ − ũj − µ∆C)− αβµR + E(Nũj
)(αβ(µX + µR) + (α + β)µ∆C)

E(Nũj
)
(
αβ(µX + µR) + (α + β)µ∆C

)
 .

The proof is straightforward using Proposition 3 and Proposition 24.
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�

Corollary 10 For a constant capacity loss rate with a constant recovery rate, the

limiting probability that vertex j operates at the target capacity is given by

lim
t→∞

P{Cpj
(t) = C∗} =

αβµX

αβ(µX + µR) + (α + β)µ∆C

.

Proof. When u = C∗, we have (see Figures 28 and 29) that:

Nu = min{n s.t. ∆Cn > C∗ − u} = 1.

Therefore,

T = ZNu = Z1 = X1 +
∆C1

β
+ µR +

∆C1

α
,

and

Tu =
C∗ − u

α
+ ZNu −

(∆CNu

α
+ RNu +

∆CNu − (C∗ − u)

β

)

= Z1 −
(∆C1

α
+ R1 +

∆C1

β

)
= X1.

Now we have that

lim
t→∞

P{Cpj
(t) ≥ u} =

E(Tu)

E(T )

=
µX

µX +
µ∆C

β
+ µR +

µ∆C

α

=
αβµX

αβ(µX + µR) + (α + β)µ∆C

.

�
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Fig. 28. {Cpj
(t)} process of model 4.

Fig. 29. {Bu
t } process when u = C∗ of model 4.

Finally,

Corollary 11 For a constant capacity loss rate with a constant recovery rate, the

limiting probability that a network operates at the target capacity is given by

lim
t→∞

P{Ce1(t) = C∗} =
∏n

j=1

αjβjµXj

αjβj(µXj
+µRj

)+(αj+βj)µ∆Cj
.

The proof follows directly from Proposition 3 and Corollary 10.

In this chapter we have imposed certain capacity dynamics on the underlying

feed-forward, flow-matching network model. In the presence of independent available

production capacities, in order to characterize stochastic dynamics of the network,

it is sufficient to describe the dynamics of individual vertices. We have developed
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four stochastic models that capture this dynamics. These models can be applied

or extended to cover a large variety of capacity disruption scenarios. Drivers of

these disruptions, affecting both human and technological resources, can range from

accidents and natural disasters to man-made distortions like labor strikes, political

riots, computer viruses, and terrorist attacks.

For each developed model, we have derived the limiting distribution of available

effective capacity of the network. As a special case, we have obtained the limiting

probability that the network operates at a fixed target capacity level set apriori based

on demand. The product-type form of these probabilistic results suggest that large,

lean enterprise networks are brittle, their ability to sustain demand is susceptible

to even minor upstream disruptions. Another important conclusion is that for a

complex, dynamic manufacturing environment, in the presence of little or no historical

data, capturing probability law on capacity degradation and restoration can be very

intricate.

To best of our knowledge, these results give, for the first time, an analytical

characterization of capacity dynamics at the network level. The analytical approach

that we have developed can be integrated with decision support methodologies based

on risk theory and expected utility theory, to focus on strategic risk management

and enterprise network design. Obtaining transient phase results, modeling event-

dependent capacity losses, introducing random target capacity levels, and combining

different capacity disruption scenarios for one network constitute a promising venue

for future research.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

We have developed a number of stochastic models that capture the dynamics of

capacity disruptions in complex multi-tier feed-forward, flow-matching networks. We

derived an expression for available effective capacity of point of delivery, proposed

a useful interpretation of this result in terms of paths, followed by the derivation of

the distribution of available effective capacity of a network. In addition, we relaxed

some basic structural assumptions of FFN, introduced random propagation times,

studied the impact of inventory buffers on propagation times, and made initial efforts

to model a random network topology. We considered SFFN as a special case.

For a fixed network topology and a fixed time, available effective capacity of

the network is a complicated nonlinear function of available production capacity of

individual vertices. The result is further complicated by introduction of random

propagation times and random network architecture. However, under the assumption

of independence of production capacities, the complimentary distribution of available

effective capacity exhibits a fairly simple product form. Analysis of this result suggests

that lean feed-forward, flow-matching enterprise networks are brittle - the output of

such networks is vulnerable to minor upstream disruptions. In addition, enterprise

topology is often traceable to at most two-three upstream tiers. Furthermore, most

enterprises do not have a long history of company-specific data, and in many instances,

company owned data are not representative to model current and future disruptions.

Thus, capturing the probability law on available effective capacity can be difficult.

Analysis of feed-forward flow-matching networks developed in Chapters III and

IV, and stochastic models presented in Chapter V give, for the first time, an analyti-

cal characterization of stochastic dynamics for feed-forward, flow-matching networks.
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We have developed four stochastic models that can be applied or extended to model a

large variety of capacity disruption scenarios. Additionally, we have explored the dy-

namics of capacity disruptions throughout the network, i.e., at the enterprise level. As

is pointed in Chapter II, most literature on production and inventory control, supply

chain, and manufacturing systems which considers disruptions, focuses on traditional

localized issues of inventory, production lot sizing, production scheduling, and cost

management. To the best of our knowledge, this is the first set of results reporting a

model that captures capacity dynamics at the network level. The analytical approach

that we have developed can be integrated with decision support methodologies based

on risk theory and expected utility theory, to focus on strategic risk management and

enterprise network design.

Future research embraces a number of objectives: 1) to obtain conversion metrics

that transforms available effective capacity at point of delivery to a reward, and

investigate associated stochastic processes. In the simplest case, reward is a linear

function of the network effective capacity, having the same time basis, so that the

limiting distribution function of reward is as follows:

F kCe1 (t)(α) =
n∏

j=1

FCpj (t)(α/kĀj), α ≥ 0, t ≥ 0, k > 0, (6.1)

and results developed in Chapter V can be extended using (6.1); 2) to refine existing

stochastic models and obtain transient phase results in special cases. For example, it

can be shown that for instantaneous capacity loss with instantaneous recovery, with

exponentially distributed Xn and Yn with means 1/βX and 1/βY respectively, and

fixed t ≥ 0, the probability that vertex j operates at target level C∗ is given by:

P{Cpj
(t) = C∗} =

βY

βX + βY

+
βX

βX + βY

e−(βX+βY )t . (6.2)
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Note that as t → ∞, (6.2) gives the result of Proposition 18; 3) to model random

structure of tiers Nk, k = 1, 2, . . . ,m. Analysis of random multifurcation coefficients

Aji for a fixed network structure from section E of Chapter IV can be extended,

and combined with approaches from reverse engineering (i.e., conjecturing upstream

suppliers based on successive product decomposition); 4) to further relax structural

assumptions of FFN, in particular, the assumption that a network has a single point

of delivery. If a network has multiple points of delivery, it can be decomposed into

several networks each having a single output vertex, so that topology results from

Chapter III can be applied to obtain an aggregate effective capacity of the complex

network.

Ultimately, we want to develop methodologies to analytically support strategic

design of enterprise infrastructure. The developed network algebra and stochastic

models serve as a foundation of this research iceberg.
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