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ABSTRACT

Transcriptional Regulation of Seed-specific Gene Expression - from PvALF/ ABI3 to

Phaseolin. (August 2005)

Wang Kit Ng, B.S., Hong Kong Baptist University;

M.S., Chinese University of Hong Kong

Chair of Advisory Committee: Dr. Timothy C. Hall

The phaseolin (phas) promoter drives the copious production of transcripts encoding

the protein phaseolin during seed embryogenesis but is silent in vegetative tissues when a

nucleosome is positioned over its three phased TATA boxes. Transition from the inactive

state in transgenic Arabidopsis leaves was accomplished by ectopic expression of the

transcription factor PvALF (Phaseolus vulgaris ABI3-like factor), and application of

abscisic acid (ABA). PvALF belongs to a family of seed-specific transcriptional activators

that includes the maize viviparious1 (VP1) and the Arabidopsis abscisic acid-insensitive3

(ABI3) proteins. The major goal of the study is to gain insight to the regulation of

seed-specific gene expression in three different aspects. First, since ABI3 (homolog of

PvALF) is involved in ABA-mediated expression of several seed-specific protein genes in

Arabidopsis, understanding its transcriptional regulation will provide insight to the

mechanism by which PvALF expression is controlled. To achieve this, ABI3 promoter

deletion analysis using either $-glucuronidase (gus) or green fluorescent protein (gfp)

reporter gene fusions have identified various regulatory regions within the ABI3 promoter
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including two upstream activating sequences and a minimal seed specific expression region.

In addition, a 405 bp 5' UTR was shown to play a negative role in ABI3 expression, possibly

through post-transcriptional mechanisms. Second, placement of PvALF expression under

control of an estradiol-inducible promoter permitted chronological ChIP analysis of changes

in histone modifications, notably increased acetylation of H3-K9, as phas chromatin is

remodeled (potentiated). A different array of changes (trimethylation of H3-K4) is

associated with ABA-mediated activation. In contrast, H3-K14 acetylation decreased upon

phas potentiation and increased on activation. Whereas decreases in histone H3 and H4

levels were detected during PvALF-mediated remodeling, slight increases occurred

following ABA-mediated activation, suggesting the restoration of histone-phas interactions

or the redeposition of histones in the phas chromatin. The observed histone modifications

thus provide insight to the factors involved in euchromatinization and activation of a plant

gene. Finally, ectopically expressed ABI5 and PvALF renders the activation of phas

ABA-independent, suggesting ABI5 acts downstream of ABA during phas activation.
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This dissertation follows the style of Genes and Development.

CHAPTER I 

INTRODUCTION

Transcriptional regulation in eukaryotes

In eukaryotes, temporal and spatial control of gene expression is under complex controls

through transcriptional, post-transcriptional and post-translational mechanisms. In addition

to various cis-elements that reside in the control regions (promoter) of genes (Lewin 2004),

transcriptional control of gene expression is achieved through the alteration of chromatin

structure and histone modifications (Hsieh and Fischer 2005). Transcript processing,

modification, transport, stability and the initiation of translation then are regulated

post-transcriptionally (Day and Tuite 1998; McCarthy 1998). Finally, the availability of

functional protein is determined by post-translational control via protein modification,

transportation and degradation (Liu and Culotta 1999).

Epigenetic control of gene expression through chromatin

Chromatin has emerged as playing an important role in eukaryotic gene regulation in

addition to its structural role in DNA packaging (Kornberg and Lorch 1999; Nemeth and

Langst 2004). The nucleosome is the fundamental unit of chromatin and consists of 146 bp

DNA wrapped around a histone octamer (a histone H3-H4 tetramer and two histone
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H2A-H2B dimers). Nucleosomes are connected by 20-60 bp linker DNA to form a 10 nm

chromatin fiber. Association with H1 linker histone and various non-histone proteins leads

to the formation of a 30 nm chromatin fiber with a 2-start helix arrangement of 6

nucleosomes per turn (Luger et al. 1997; Dorigo et al. 2004). Further condensation of

chromatin results in the formation of chromosomes.

Functionally, chromatin can be divided into two domains, heterochromatin and

euchromatin. Heterochromatic regions contains highly methylated and silenced DNA with

condensed chromatin. Histones in this region are generally hypoacetylated and methylated

at H3-K9, H3-K27 and H4-K20 (Craig 2005). In contrast, euchromatin is a region of

de-condensed chromatin with actively transcribing genes. Histones are in general

hyperacetylated in these regions and methylated at H3-K4, H3-K36 and H3-K79 (Krogan

et al. 2003b; Ng et al. 2003a).

The presence of a nucleosome essentially prevents access of general transcription

factors and RNA polymerase II to promoter sequences (Lorch et al. 1987; Han and

Grunstein 1988). Thus, a key function for transcriptional activators is to initiate the

unfolding or remodeling of repressive chromatin structure (heterochromatin) and permit the

formation of a preinitiation complex at the control region of gene for transcriptional

activation. Two classes of factors are involved in modulating the dynamic status of

chromatin (Nemeth and Langst 2004). The first class is ATP-dependent chromatin

remodeling factors, such as SWI/SNF (Vignali et al. 2000), that use energy from ATP

hydrolysis to alter interactions between histones and DNA. The second class of factors (for

examples, histone acetyltransferase and histone methyltransferase) alters chromatin status



3

through covalent modifications of the N-termini of histones such as acetylation,

methylation, phosphorylation, ubiquitination, ribosylation and sumoylation (Turner 2000;

Jenuwein and Allis 2001). This constitutes a histone code that determines the structural and

functional state of chromatin in gene regulation through interaction with non-histone

proteins in a modification-dependent manner (Luger and Richmond 1998; Strahl and Allis

2000).

Promoter and transcription control

In general, promoters of eukaryotic genes consist of a proximal core promoter region (~-40

to +50 bp relative to transcription start site) and modulating regions (activators, repressors,

enhancers or silencers) upstream of the core promoter. The core promoter provides sites for

the assembly of RNA polymerase II, the general transcription factors (TFIIA, TFIIB, TFIID,

TFIIE, TFIIF and TFIIH) and mediators (Orphanides et al. 1996). The temporal and spatial

regulation of genes is controlled through sequence-specific interactions between various

cis-elements located within the upstream regulatory region and transcriptional activators or

repressors (Hampsey 1998). In general, transcriptional activators consist two functional

domains, a DNA binding domain that targets the regulator to its cognate site and a

transcriptional activation domain that is involved in gene activation through direct

interaction with the basal transcription machinery or recruitment of co-activators such as

chromatin remodeling factors that facilitate the formation of the preinitiation complex at the

core promoter (Johnson and McKnight 1989; Triezenberg 1995; Kuo et al. 2000).
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Role of miRNAs in gene regulation

Recently, it has become evident that gene expression can be negatively regulated post-

transcriptionally by a family of 21-25 nucleotide non-coding RNAs, termed microRNAs

(miRNAs) (Lai 2003; Bartel 2004). miRNAs were first discovered in Caenorhabditis

elegans as small temporal RNAs (stRNAs) that involve in developmental regulations (Lee

et al. 1993; Lau et al. 2001). Primary miRNA transcripts (pri-miRNAs) are processed by

an RNase III enzyme, Drosha, in the nucleus to form pre-miRNAs which then are exported

to cytoplasm and processed into miRNAs by Dicer (Lee et al. 2003; Nakahara and Carthew

2004). In plants, ~22 ng miRNAs are expressed endogenously and are processed from

precursors containing fold-back secondary structure (Reinhart et al. 2002). Post-

transcriptional regulation of gene expression by miRNAs can be achieved through either

RISC-mediated miRNAs-directed cleavage of target mRNAs (Hutvagner and Zamore 2002;

Llave et al. 2002) or translational repression (Zeng et al. 2002; Aukerman and Sakai 2003;

Chen 2004).

Plant embryogenesis

In higher plants, embryogenesis marks one of the major morphogenetic changes that occur

during plant development. Complex gene expression and interactions are involved in

controlling proper development of an embryo. After fertilization, the zygote goes through

several developmental stages to finally become mature. These include the globular-, heart-,

torpedo-, walking stick- and mature-stage. Structurally, the embryo is differentiated into

two organ systems, the axis and cotyledons. While the axis contains the root- and
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shoot-meristem that will develop into vegetative tissues after seed germination, the

cotyledon is where food reserves (proteins, lipids and carbohydrates) are synthesized

(Goldberg et al. 1989). The synthesis of seed storage proteins constitutes one of the major

events during embryogenesis and cis-elements pivotal in controlling the expression of seed

storage protein genes have been extensively characterized (Bustos et al. 1991; Bobb et al.

1997; Ezcurra et al. 1999; Chandrasekharan et al. 2003a). A class of seed-specific

transcription activators containing the B3 domain (Suzuki et al. 1997) has been found to be

important for spatial regulation of many seed storage protein promoters (McCarty et al.

1991; Giraudat et al. 1992; Bobb et al. 1995; Parcy et al. 1997). However, it remains

unknown as to how the seed specificity of these transcriptional activators is regulated.

Therefore, understanding the transcriptional regulation of these factors has the potential to

provide a deeper insight into the control mechanisms of seed-specific gene regulation.

Additionally, it is of interest to understand the mechanisms used by these transcription

activators in mediating seed storage protein gene expression.

Transcriptional regulation of ß-phaseolin

The phas promoter provides an excellent opportunity for elucidating chromatin remodeling

associated with transcriptional gene activation during embryogenesis. Phaseolin is the major

seed storage protein found in French bean, Phaseolus vulgaris. The transcriptional

regulation of the ß-phaseolin gene (phas) is constrained both spatially and temporally. Its

mRNA accumulation initiates at 12 daf (days after flowering) and declines at 27 daf during

seed development (Sun et al. 1978; Frisch et al. 1995). Li et al. (1998) found that the
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establishment of a repressive chromatin structure and the presence of a rotationally

positioned nucleosome over three phased TATA boxes of phas promoter is responsible for

the lack of phas expression in vegetative tissues. Further observations by Li et al. (1999)

suggested that the activation of phas is a two-step process that involves the seed-specific

transcriptional activator, PvALF (Phaseolus vulgaris ABI3-like factor). While the activity

of the phas promoter is not inducible by ABA in vegetative tissues (Frisch et al. 1995),

ectopic expression of PvALF results in expression from the phas promoter in the presence

of exogenous ABA (Li et al. 1999). Increased nuclease accessibility to the phas promoter

was observed in the presence of PvALF. This suggested that the regulation of phas

expression involves chromatin modification by PvALF and subsequent activation by ABA.

A cornucopia of factor-bound cis-elements within the proximal 295 bp phas

promoter were identified by in vivo DMS footprinting in transgenic tobacco (Li and Hall

1999). Subsequent site-directed promoter mutagenesis have confirmed that various

cis-elements combine in controlling the modular nature of expression from the phas

promoter during embryogenesis (Chandrasekharan et al. 2003a). Among these cis-elements,

four RY elements and a G-box located within the proximal 295 bp of the phas promoter

were identified as having important roles in both quantitative and modular expressions

during embryogenesis.

The plant hormone - ABA

ABA regulates many important aspects of plant growth development (Leung and Giraudat

1998; Rock 2000; Finkelstein et al. 2002). During the vegetative phase, ABA mediates
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responses of plants to environmental stresses such as drought and low temperature. Under

drought conditions, ABA induces stomatal closure by altering ion fluxes in guard cells,

thereby limiting water loss by transpiration (Assmann and Shimazaki 1999).

ABA-biosynthetic mutants showed an increased tendency to wilt or lose water from excised

aerial parts (Léon-Kloosterziel et al. 1996a). A decrease in freezing tolerance has also been

observed in both ABA-biosynthetic (aba1) and ABA-insensitive (abi1) mutants (Koornneef

et al. 1998). ABA also plays several important roles in seed development, such as the

synthesis of storage proteins, the promotion of desiccation tolerance and dormancy as well

as the prevention of precocious seed germination. During seed development, endogenous

ABA levels increase at mid- and late-embryogenesis before returning to lower levels in dry

seeds (Rock and Quatrano 1995). In cotton, a dramatic increase in ABA level occurs

20 days post-anthesis, coincident with the transition from heart to torpedo stage and the

initiation of storage protein synthesis (Galau et al. 1987). ABA biosynthetic/ insensitive

mutants fail to become dormant and germinate precociously (Nambara et al. 1995; Léon-

Kloosterziel et al. 1996b). Seed storage protein regulation and lipid accumulation have been

studied and a positive response to exogenous ABA addition was demonstrated (Rock and

Quatrano 1995; Ingram and Bartel 1996).

The seed-specific transcriptional regulators - ABI3 and ABI5

Six abscisic acid insensitive loci (ABI1, ABI2, ABI3, ABI4, ABI5 and ABI8) have been

identified in Arabidopsis. Their mutation leads to reduced sensitivity of seed germination

to exogenous ABA (Koornneef et al. 1984; Finkelstein 1994; Brocard-Gifford et al. 2004).
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The effects of abi1 and abi2 mutations are pleiotropic in that ABA sensitivity in both seeds

and vegetative tissues is affected (Rodriguez et al. 1998; Gosti et al. 1999). In contrast,

abi3, abi4 and abi5 mutants display defects in seed ABA sensitivity and seed-specific gene

expression without affecting vegetative growth (Finkelstein 1994; Söderman et al. 2000;

Nambara et al. 2002). Mutation of abi8 has been shown to result in a dwarf phenotype and

affects stomatal regulation as well as sugar sensing and signaling (Brocard-Gifford et al.

2004).

ABI3 was identified in a genetic screen of mutants insensitive to the inhibitory

effects of exogenous ABA on seed germination (Koornneef et al. 1984) and it was the first

such locus to be cloned (Giraudat et al. 1992). It encodes a transcriptional factor of the B3

domain family that includes homologs such as viviparous-1 (VP1) from maize (McCarty

et al. 1991), PvALF from P. vulgaris (Bobb et al. 1995), OsVP1 from Oryza sativa (Hattori

et al. 1994), AfVP1 from Avena fatua (Jones et al. 2000), CpVP1 from Craterostigma

plantagineum Hochst (Chandler and Bartels 1997) and PtABI3 from Populus trichocarpa

(Rohde et al. 1998). The expression of ABI3 is seed specific; it is the major transcriptional

regulator during seed maturation in Arabidopsis (Giraudat et al. 1992). ABI3 mRNA starts

to accumulate at 6 daf and continues throughout seed development (Parcy et al. 1994).

Precocious seed germination was observed in abi3 mutants (Nambara et al. 1992) and

ectopic expression of ABI3 has led to vegetative expression of seed-specific marker genes

in response to exogenous ABA (Parcy et al. 1994). These studies suggested that ABI3 is one

of the components in the ABA signal transduction pathway and plays an important role in

seed maturation and dormancy. Sequence comparison of ABI3, VP1, PvALF and other
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orthologs reveals four highly conserved regions: an N-terminal acidic domain, a repressive

domain and three basic domains, B1, B2 and B3 (Bobb et al. 1995). In maize VP1, a

repressive domain was also identified for its role in negatively regulates the expression of

a-amylase gene that normally expresses during germination (Hoecker et al. 1995). Although

the DNA binding capability of these B3 factors remains poorly understood, it has been

demonstrated that the conserved B3 domains of VP1 and PvALF have a cryptic ability to

bind in vitro to the Sph element (Suzuki et al. 1997) and the RY element (Carranco et al.

2004) respectively.

ABI5 encodes a member of the basic leucine zipper (bZIP) transcription factor

family that includes homologs DCBF-1 (DC3 promoter binding factor) in sunflower (Kim

et al. 1997) and TRAB1 (transcription factor responsible for ABA regulation) in rice (Hobo

et al. 1999). ABI5 is expressed in both vegetative tissues and seeds and it regulates a subset

of LATE EMBRYOGENESIS ABUNDANT (LEA) genes expression in response to ABA

during embryogenesis (Finkelstein and Lynch 2000). It has been shown that ABI5 binds to

the abscisic acid response element (ABRE) in seed-specific promoters (Carles et al. 2002)

and interacts with the B1 domain of ABI3 (Nakamura et al. 2001). This factor, thus

connects the potentiation step with the ABA-mediated activation step in phas expression.

PvALF vs. ABI3

Several lines of evidence show that PvALF and ABI3 are functionally orthologous. Both

belong to the same family of seed-specific ABA signal transducers and contain the plant-

specific B3 domain. Ectopic expression of ABI3 or PvALF in vegetative tissues leads to the
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accumulation of mRNAs for several normally seed-specific genes in response to exogenous

application of ABA (Parcy et al. 1994; Li et al. 1999). PvALF and ABI3 share 48% protein

sequence identity and high sequence homology exists for the N-terminal acidic domain and

the three basic domains, B1, B2 and B3 (Bobb et al. 1995).

A major goal in this study is to address the possible mechanisms by which PvALF

expression is regulated. However, whereas ABI3 has been cloned (Giraudat et al. 1992) and

its promoter sequence is readily available from GenBank (Accession NC-003074), the PvAlf

promoter sequence is not available. Therefore, given the close functional similarities of

PvALF and ABI3, analyses of regulatory regions and cis-elements involved in the temporal

and spatial regulation of ABI3 are expected to parallel those involved in regulating PvALF

expression.

Broader implications of this research

ABI3 was originally described as being expressed during embryogenesis (Giraudat et al.

1992; Parcy et al. 1994). Subsequent research findings indicate that ABI3 expression is not

restricted to seed tissues. Rohde et al. (1999) suggested that ABI3 has a role during

vegetative quiescence processes since ABI3-driven GUS expression was detected in the

apex of dark grown seedlings. In addition, GUS activity has been observed in axils and the

receptacle of flower bracts, and pedicel axils as well as in the abscission zones of siliques

and rosette leaves of older plants. Therefore, delineation of cis-elements and trans-acting

factors involved in ABI3 expression should clarify how ABI3 is regulated. Additionally,

elucidation of histone modification changes associated with ABI3/ PvALF-mediated
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potentiation and ABA-mediated activation of the phas promoter will provide insight to

other factors and the mechanisms involved in the regulation of seed-specific promoter

expression during plant development.

Research aims

The major goal of this research is to gain insight to the regulation of seed-specific gene

expression by studying the mechanisms of PvALF involvement in phas gene regulation.

Additionally the seed-specific transcriptional regulation of PvALF itself will be addressed

through the expression analysis of its ortholog, ABI3, in Arabidopsis. Specific objectives

included are: 1) To delineate the regulatory region(s) and element(s) responsible for

seed-specific expression of the ABI3 promoter; 2) To investigate PvALF- and

ABA-mediated histone modifications at the phas chromatin and 3) To examine other factors

involve in the regulation of phas expression.
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*Part of the data reported in this chapter is reprinted from “The 5'UTR negatively regulates
quantitative and spatial expression from the ABI3 promoter” DannyW-K Ng, Mahesh B.
Chandrasekharan and Timothy C. Hall, 2004. Plant Molecular Biology, 54, 25-38 with kind
permission of Springer Science and Business Media. Copyright 2004 by Springer Science and
Business Media.

CHAPTER II

TRANSCRIPTIONAL REGULATION OF ABI3*  

Introduction

Arabidopsis abscisic acid insensitive3 (ABI3), Phaseolus vulgaris ABI3-like factor

(PvALF) and Zea mays viviparious1 (VP1) are orthologous members of the plant-exclusive

B3 class of transcription factors. Each is known to play a vital role in the spatial regulation

of maturation-specific (MAT) genes (McCarty et al. 1991; Giraudat et al. 1992; Parcy et al.

1994; Bobb et al. 1995). Detailed studies on the phaseolin promoter (phas), which drives

expression of one member of the small gene family that encodes phaseolin (the major seed

storage protein of P. vulgaris), have established that transcription is rigorously confined to

embryogenesis and microsporogenesis (Bustos et al. 1991; Chandrasekharan et al. 2003a).

In leaves and other vegetative tissues, a nucleosome is translationally and rotationally

positioned over the TATA region of phas, making it inaccessible to the transcription

machinery (Li et al. 1998). Studies on tobacco (Li et al. 1999) and Arabidopsis

(Chandrasekharan et al. 2003b) transgenic for a -1470phas-gus construct established that

ectopically supplied PvALF mediates remodeling of the repressive chromatin architecture
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in leaves, potentiating phas (and other MAT promoters) for transcriptional activation in

response to exogenously-supplied abscisic acid (ABA). Similarly, as shown here, in the

presence of exogenously-supplied ABA, ectopic expression of ABI3 results in

$-glucuronidase (GUS) expression in leaves of Arabidopsis transgenic for -1470phas-gus.

The lack of GUS expression in vegetative tissues transgenic for the -1470phas-gus

construct, even in the presence of ABA, strongly implies the absence of ABI3 in the case

of Arabidopsis or its ortholog in the case of tobacco. This situation is in accord with the

embryogenesis-restricted expression of PvALF in bean (Bobb et al. 1995) and ABI3 in

Arabidopsis (Giraudat et al. 1992). Further, expression of seed-specific genes was observed

in transgenic Arabidopsis leaves ectopically expressing ABI3 only in the presence of ABA

(Parcy et al. 1994). It has also been shown that VP1 and ABI3 can repress expression of

genes involved in post-germination events. For example, GUS expression from the barley

"-amylase promoter was detected in vp1 mutant aleurone cells but not in wild type (Hoecker

et al. 1995). Similarly, GUS expression from the Cab promoter, that is normally induced

by light during germination, was observed during maturation of abi3 embryos (Nambara

et al. 1995). This is in accord with our finding that PvALF mediates chromatin

reorganization (Li et al. 1999) and reflects the complex nature of the VP1/ABI3 family of

factors, which contain an acidic activation domain, a repressive domain and three basic

domains (Holdsworth et al. 1999).

However, more recent studies have suggested that ABI3 expresses and functions

outside the seed (Rohde et al. 2000). GUS was found to be expressed from ABI3-gus fusion

constructs in the apex of dark grown Arabidopsis seedlings and it has been suggested that
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ABI3 is involved in vegetative quiescence. Additionally, GUS expression from the ABI3

promoter in vegetative tissues (stipules, abscission zones of siliques) was reported (Rohde

et al. 1999). Light has been suggested as one of the factors regulating ABI3 expression, as

abi3 mutants are defective in plastid dedifferentiation when grown in the dark. DET1

(deetiolation1), a negative regulator involved in light-mediated development and gene

expression (Pepper et al. 1994), is required for full expression from the ABI3 promoter

during embryogenesis (Rohde et al. 2000). Furthermore, in the presence of exogenous auxin

or ABA, Brady et al. (2003) demonstrated the activation of ABI3 promoter-driven GUS

expression in lateral roots of Arabidopsis. 

All of the ABI3 studies mentioned above were undertaken using a 5.4 kb ABI3

promoter to drive gus expression in Arabidopsis (Parcy et al. 1994), and we are unaware of

any previous functional analysis of the ABI3 promoter. Given the importance of the ABI3

transcription factor and its orthologs in plant development, our interest in the mechanisms

involved in the spatial regulation of expression from the phas promoter (Li et al. 2001), and

the need to address the apparently conflicting information on ABI3 expression, we decided

to undertake a functional analysis of the ABI3 promoter.

Materials and Methods

Plant material and growth conditions

Arabidopsis thaliana (Columbia ecotype) seeds were germinated in soil and, following a

2-day 4oC vernalization treatment in the dark, grown at 22oC under a 16/8 h light/dark cycle.
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Transformants were selected on Murashige and Skoog (MS) medium (GIBCO™ Invitrogen

Corporation) containing 50 mg l-1 kanamycin (Sigma), 2% (w/v) sucrose and 0.8% (w/v)

agar. 

Chimeric gene construction

All primers used in this study are listed in Table 2.1 and a schematic diagram showing the

cloning of various gene constructs is shown in Figure. 2.1. Three different primer sets (P7

and 10; P15 and P11; P6 and P2) were used to facilitate amplification from Arabidopsis

genomic DNA of the 5.15 kb ABI3 upstream sequence (-4630/+519ABI3) that includes a

519 bp 5' UTR (for untranslated region). Polymerase chain reaction (PCR) fragments

generated were cloned into pPCR-Script Amp (SK+)® vector (Stratagene) and recombined

to give pPCR-4630/+519ABI3 by restriction enzyme sites at positions -3449 (AccI) and

-1883 (SpeI). Restriction enzyme sites HindIII and NcoI were incorporated into the P7

forward  and P2 reverse primers, respectively. Various 5' promoter deletion fragments were

also generated using primers designed to give the desired fragment with flanking HindIII

and NcoI restriction enzyme sites. pPCR-3600/+519ABI3 was generated by recombining

-3600/-1801ABI3 and -2033/+519ABI3 PCR fragments through the common SpeI site at

position -1801. The other constructs: pPCR-2033/+519ABI3, pPCR-882/+519ABI3,

pPCR-364/+519ABI3 and pPCR-23/+519ABI3 were obtained by cloning corresponding

PCR-amplified fragments into pPCR-Script Amp (SK+)® vector. The identity of the cloned

fragments was verified by sequencing.
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Table 2.1 Oligonucleotide primers.
Primer Sequence (5'-3')1 5' position and direction on ABI32

P2 aaccatgGATTGGTCTTTGGTTCTAATAGAACAG +519 reverse

P3 gcaagcTTCTAGGGTAATAAAATCCGTG -882 forward

P4 gcaagctTCAAATGCTGAAAAACTGTTAC -364 forward

P5 gcaagcttTGAAAGAAAGAGAGAGTCTTC -23 forward

P6 gcaagcttGTATTCCTTGTAGTACGCATAG -2033 forward

P7 gcaagcttAGTAAAGGACATGATGGAG -4630 forward

P10 TCGTCGACCTCTTTCTCTCGTG -3449 reverse

P11 cgccatggTTGACTTGTAATTACGTAC -1801 reverse

P15 gcaagcttCATGTTAAGTTTTACTAGATACG -3600 forward

P16 ggggtaccaagcTTCTAGGGTAATAAAATCCG -882 forward

P17 aaccatggATTGGTCTTTGGTTCTAATAGAACAG +114 reverse

P18 gctctagaATTTTTCAAAGAAGACAAAAAGCAA -364 reverse
1lower case letters are introduced restriction enzyme site(s) sequences
2primer position on ABI3 upstream sequences and its direction

Full-length and 5' truncated ABI3 promoters were digested with HindIII and NcoI

and inserted into pUC-295phas-gus3' vector (Chandrasekharan et al. 2003a) to obtain

p U C - 4 6 3 0 / + 5 1 9 A B I 3 - g u s - p h a s ,  p U C - 3 6 0 0 / + 5 1 9 A B I 3 - g u s - p h a s ,

p U C - 2 0 3 3 / + 5 1 9 A B I 3 - g u s - p h a s ,  p U C - 8 8 2 A B I 3 / + 5 1 9 - g u s - p h a s ,

pUC-364/+519ABI3-gus-phas and pUC-23/+519ABI3-gus-phas. For gfp reporter fusions,

the gfp coding region was PCR amplified from pBINm-gfp5-ER (Haseloff et al. 1997) and

cloned into pPCR-Script Amp (SK+)® vector with introduced flanking BspHI and XbaI

enzyme sites to give pPCR-BspERgfpX. BspHI and XbaI-digested gfp fragment was

inserted into vectors containing the ABI3 upstream sequence and phas 3' sequence to yield

the constructs: pUC-4630/+519ABI3-gfp-phas, pUC-3600/+519ABI3-gfp-phas,
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p U C - 2 0 3 3 / + 5 1 9 A B I 3 - g f p - p h a s ,  p U C - 8 8 2 / + 5 1 9 A B I 3 - g f p - p h a s ,

pUC-364/+519ABI3-gfp-phas and pUC-23/+519ABI3-gfp-phas. Promoter fragments,

-2033/+114ABI3 and -882/+114ABI3 (lacking 405 bp of the 5' UR.) were also generated

by PCR and cloned into pPCR-Script Amp (SK+)® vector and then into pUC-295phas-gus3'

vector to obtained the constructs, pUC-2033/+114ABI3-gus-phas and

p U C - 8 8 2 / + 1 1 4 A B I 3 - g u s - p h a s  r e s p e c t i v e l y .  S i m i l a r l y ,  t h e

pUC-882/-364ABI3/-64/+6CaMV35S-gus-phas construct was obtained by cloning the

-882/-364ABI3 PCR fragment into the p35S-14 (van der Geest and Hall 1996) plasmid

containing the -64/+6CaMV35S minimal promoter. The plant transformation vector

pHM301K is a derivative of pCB301 (Xiang et al. 1999), modified to include a

CaMV35S-nptII-nos3' cassette and a poly-cloning site in an inverted orientation to that of

the parent vector. HindIII and EcoRI-digested fragments of the ABI3

promoter-reporter-3'phas fusion constructs were cloned into pHM301K and transformed

into Agrobacterium tumefaciens GV3101 by electroporation.
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Figure 2.1 Schematic diagram of various chimeric gene constructs. Different primer sets
(see Table 2.1) were used to generate various truncated ABI3 promoter fragments in a PCR
using genomic DNA extracted from Arabidopsis leaves. (A) The amplified 5' truncated
ABI3 promoter fragments were fused to either gus or gfp reporter gene and inserted to a
plant transformation vector through HindIII and EcoRI restriction enzyme sites. Numbers
denoted the position of the truncation relative to the transcription start site of ABI3. (B)
ABI3 promoter fragments (-2033/+114ABI3 and -882/+114ABI3) with deletion at both the
upstream region and the 5' UTR region were fused to gus and inserted into the plant
transformation vector. A -882/-364ABI3 fragment was fused to a -64/+6CaMV35S minimal
promoter before cloning into vector containing the gus reporter and subsequently into the
plant transformation vector.
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Plasmid constructs for in vitro transcription and translation

The gus coding region (1.8 kb) with 114 bp (+1/+114) or 519 bp (+1/+519) of theABI3

5' UTR was PCR amplified from pUC-4630/+519ABI3-gus-phas or

pUC-2033/+114ABI3-gus-phas, respectively. The resulting plasmid,

pGEM-519UTR-gus-phas or pGEM-114UTR-gus was obtained by cloning the PCR

amplified fragment into pGEM-T vector (Promega). The gus coding region (1.8 kb) with

519 bp (+1/+519) ABI3 5' UTR was amplified from pUC-4630/+519ABI3-gus-phas by PCR

using BspHIABI3+1-for (5'-GCATCATGAGTTGGAGTAAACCCAA-3') and

Xba-GUSend-rev (5'-CGTCTAGATTCATTGTTTGCCTCCC-3') primers. Purified PCR

product was then cloned into pGEM-T (Promega) to yield pGEM-519UTR-gus for in vitro

transcription. Similarly, pGEM-114UTR-gus was obtained by cloning a PCR fragment

amplified from pUC-2033/+114ABI3-gus-phas using the same primer set. For constructs

lacking the ABI3 5' UTR, primer set Nco-Gus-for (5'-GCCATGGTCCGTCCTGTAGA-3')

and Xba-GUSend-rev (5'-CGTCTAGATTCATTGTTTGCCTCCC-3') was used to amplify

the 1.8 kb gus coding region from pUC-4630/+519ABI3-gus-phas and then mobilized into

pGEM-T vector to yield pGEM-gus. 

Plant transformation and selection

Wild-type Arabidopsis plants (T0) with a 10-15 cm tall primary inflorescence were used for

transformation (Bechtold and Pelletier 1998). Mature seeds from infiltrated plants were

harvested, surface sterilized and putative transformants (T1) were selected on MS medium

containing 50 mg l-1 kanamycin (Sigma) and 100 mg l-1 Timentin (ticarcillin disodium and
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clavulanate potassium, SmithKline Beecham Pharmaceuticals).

Inducible ectopic expression of ABI3 in -1470phas-gus plants

The ABI3 coding region (2.1 kb) was obtained by reverse transcriptase-polymerase chain

reaction (RT-PCR), using total RNA isolated from Arabidopsis siliques. Primers were

designed to incorporate ApaI (at the 5' end) and SpeI (at the 3' end) sites upon amplification

of ABI3. The ABI3 fragment was inserted into pER8 (Zuo et al. 2000) downstream of the

XVE promoter to yield the estrogen-inducible construct pER8-ABI3. This was

supertransformed into an Arabidopsis line homozygous for -1470phas-gus. Doubly

transformed plants were selected on MS medium containing 50 mg l-1 kanamycin, 25 mg l-1

hygromycin B (GIBCO™ Invitrogen Corporation) and 100 mg l-1 Timentin. Expression of

GUS from -1470phas-gus, dependent on the presence of functional ABI3, was induced by

overnight (16 h) incubation of -1470phas-gus::XVE-ABI3 leaves in MS liquid medium

containing 25 :M 17β-estradiol (Sigma) and 200 :M ABA (GIBCO™ Invitrogen

Corporation), followed by histochemical staining.

ABA treatment

Seeds transgenic for the various ABI3 promoter-gus constructs were germinated on MS

medium containing 50 mg l-1 kanamycin. Seedlings (2-week-old) were transferred to MS

agar plates containing various concentrations of ABA (0.1 :M, 0.3 :M, 0.5 :M, 1 :M,

5 :M, 10 :M and 100 :M). Histochemical GUS staining was performed 7 days after the

transfer.
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Histochemical and fluorometric assays for GUS activity

Histochemical GUS staining was performed for vegetative tissues (leaves, roots,

inflorescence) using 5-bromo-4-chloro-3-indoxyl-β-D-glucuronic acid (X-gluc) as a

substrate (Jefferson et al. 1987). Samples were stained for overnight (16 h) at 37°C and

chlorophyll was removed by 95% ethanol after staining. For each promoter-reporter fusion

construct, mature T1 embryos from at least 6 independent transformants were dissected from

developing siliques (10-15 days after flowering) and at least 30 embryos were subjected to

histochemical GUS staining. Fluorometric assays of GUS activity of mature T2 seeds was

performed as described by Jefferson et al. (1987). GUS activity was calculated as

pmol 4-MU h-1 :g-1 (4-MU; 4-methylumbelliferone) of protein and data were analyzed

using SPSS 11.0 for Windows software. For each construct, three independent assays were

performed unless otherwise specified. 

Fluorescence microscopy

Green fluorescent protein (GFP) expression from developing seeds or embryos of plants

transgenic for gfp reporter was visualized using a Zeiss SV11 stereomicroscope with a

490 nm excitation filter and 500 nm or 525 nm emission filters.
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In silico promoter analysis

Cis-elements within the full-length ABI3 promoter were identified using online PlantCARE

and PLACE databases (Lescot et al. 2002). For mRNA secondary structure analysis, the

stem-loop structure and the free energy of the 405 nt 5' UTR were predicted according to

Zuker (2003).

In vitro transcription and translation

For in vitro transcription, 5 :g plasmid DNA was first linearized with SalI restriction

enzyme and purified by phenol:chloroform extraction and ethanol precipitation. Purified

and linearized template (2 :g) was used for in vitro transcription using MEGAscript® T7

kit (Ambion Inc.) and in a reaction setup as described in the manufacturer manual. After 1 h

incubation at 37°C, the quality and quantity of RNA produced as analyzed by 1%

agarose/formaldehyde gel. Equal molar RNA produced for different constructs was used for

subsequent in vitro translation reaction. Rabbit reticulocyte lysate (RRL) and wheat germ

extract (WGE) systems (Promega) were used for in vitro translation of RNA obtained from

in vitro transcription reaction. For each reaction, 1.5 pmol and 6 pmol in vitro transcribed

RNA were used for in vitro translation in RRL and WGE system respectively. Brome

Mosaic Virus (BMV) transcript (0.5 :g) was used as a control in both systems. A total 25 :l

translation was setup according to manufacture manual. Translation reactions were

incubated for 2 h at 30°C and 25°C for the RRL and WGE system respectively. The amount

of GUS synthesized was analyzed by using 10 :l lysate in a fluorometric analysis.
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RNA extraction and RT-PCR

Total RNAs were extracted from developing siliques using TRIzol reagent (Invitrogen).

DNase I-digested total RNAs (0.5 :g ) were subjected to RT-PCR analysis using a Qiagen

one-step RT-PCR kit. Gene-specific primer sets (0.6 :M), Gus-for

( 5 ' - G G T G G G A A A C G C G T T A C A A G - 3 ' )  a n d  G u s - r e v

( 5 ' - G T T T A C G C G T T G C T T C C G C C A - 3 ' ) ;  A b i 3 - f o r

( 5 ' - G A A A A G C T T G C A T G T G G C G G - 3 ' )  a n d  A b i 3 - r e v

(5'-TGTCTAATGGAATCTCCATGG-3') were used to detect the presence of gus and abi3

t r a n s c r i p t s ,  r e s p e c t i v e l y .  P r i m e r  p a i r  ( 0 . 0 8  :M ) ,  e f - f o r

( 5 ' - T G C T G T C C T T A T C A T T G A C T C C A C C A C - 3 ' )  a n d  e f - r e v

(5'-TTGGAGTACTTGGGGGTAGTGGCATC-3'), targeting the EF1" gene was used as

an internal control for the RT-PCR. The RT-PCR products were resolved in 1% agarose gel

and visualized by ethidium bromide staining.

Results

The full-length ABI3 promoter drives strong expression of GUS and GFP in embryos but

not in leaves

The ABI3 promoter was initially isolated as a 5.4 kb fragment from a cosmid clone and it

was shown that this region, fused to the gus coding sequence, yielded embryo-specific GUS

expression in transgenic Arabidopsis (Giraudat et al. 1992; Parcy et al. 1994). However,

inspection of the genomic sequence (NC-003074) in the current GenBank revealed that its
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5' boundary overlaps the stop codon of an upstream annotated hypothetical protein.

Inspection of recent EST (expressed sequence tag) sequences in the TIGR database

indicated that transcription of ABI3 commences upstream of the site predicted by Giraudat

et al. (1992). The transcription start site (position +1) used here corresponds to position

8997399 on chromosome 3 according to GenBank version NC-003074.4 (GI:30698537);

this was supported by RT-PCR of RNA from developing siliques (data not shown).

To avoid the overlap with the upstream gene, a 5.15 kb sequence (that includes a

4630 bp “full-length” promoter region and a 519 bp 5' UTR) was obtained by PCR

amplification of genomic DNA from the upstream stop codon to the ABI3 translation start

site at position +519. This sequence, defined as the -4630/+519ABI3 promoter, was fused

to gus or gfp and transformed into Arabidopsis (Fig. 2.1). 

Mature embryos were dissected from developing T1 seeds and analyzed via

histochemical GUS staining or fluorescence microscopy. The spatial pattern of GUS

expression from the full-length ABI3 promoter in developing embryos was similar to that

previously reported (Parcy et al. 1994; Devic et al. 1996), except that strong expression was

also detected during microsporogenesis (Fig. 2.2A,B). GFP expression from the full-length

ABI3 promoter was also observed during embryogenesis, starting at the heart stage (Fig.

2.2C-F). However, whereas Rohde et al. (1999) detected reporter expression in certain

vegetative tissues of the ABI3-GUS line established by Parcy et al. (1994), no reporter

expression was detected in vegetative tissues including roots, stems, or rosette and cauline

leaves from six independent transformants.
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Figure 2.2 Reporter expression from the full-length ABI3 promoter. GUS-stained anthers
are shown (A) within or (B) excised from the inflorescence. GFP expression is shown for
developing seeds containing embryos at various stages: (C) heart, (D) late torpedo, (E)
maturation, (F) non-transgenic seeds at the maturation stage. Bar = 1 mm (A);
100 :m (B-F).

Although transcription driven by the phas promoter is normally stringently

constrained to embryogenesis (Frisch et al. 1995), Chandrasekharan et al. (2003b) used a

XVE-PvALF construct that, in the presence of estradiol and ABA, induced PvALF synthesis

and concomitant strong expression of GUS in leaves of Arabidopsis transgenic for

-1470phas-gus. We conducted a similar experiment using an XVE-ABI3 construct. In the

absence of estradiol, there was no induction of ABI3 and no GUS expression was detected

in leaves, even when ABA was supplied (Fig. 2.3A-C). The lack of GUS expression under

these conditions reveals the absence of endogenous expression of ABI3 in leaves. As a

positive control, incubation of -1470phas-gus::XVE-ABI3 supertransformant leaves in MS

medium containing 25 :M estradiol and 200 :M ABA for 16 h in the dark induced ectopic

expression of ABI3 and activation of -1470phas-gus transcription (Fig. 2.3D). In addition

to demonstrating the seed-specificity of ABI3 expression, these experiments illustrate the

parallel functions of ABI3 and PvALF.
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Figure 2.3 Ectopically expressed ABI3-induced phas-driven GUS expression. Leaves from
-1470phas-gus::XVE-ABI3 plants were subjected to estradiol and ABA treatment, followed
by histochemical staining. GUS expression is shown for representative leaves incubated
overnight in: (A) MS alone (control), (B) 25 :M estradiol, (C) 200 :M ABA or (D) 25 :M
estradiol and 200 :M ABA. Bar = 1 mm.

Expression from truncated ABI3 promoters

5' truncated promoters -3600/+519ABI3, -2033/+519ABI3, -882/+519ABI3, -364/+519ABI3

and -23/+519ABI3 were obtained by PCR-amplification from the Arabidopsis genome and
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used in fusion constructs with gus or gfp reporters (Fig. 2.1). Figure 2.4 shows GUS and

GFP expression in mature embryos representative of at least six independent lines for each

construct. GUS expression was observed in all of the transgenic lines except those

harboring -364/+519ABI3-gus and -23/+519ABI3-gus constructs (Fig. 2.4A). No GUS

expression was detected in the radicle region of -2033/+519ABI3-gus and

-882/+519ABI3-gus embryos, suggesting the presence of regulatory element(s) upstream

of -2033. As expected, GFP expression was observed in embryos harboring

-4630/+519ABI3-gfp, -3600/+519ABI3-gfp and -2033/+519ABI3-gfp transgenes (Fig.

2.4B). However, GFP expression levels in embryos transgenic for -882/+519ABI3-gfp were

too low for detection using fluorescence microscopy. In general, reporter expression levels

decreased as the length of the promoter was shortened from the -2033 position. In all cases,

spatial regulation of the truncated promoter-reporter fusions was confined to

microsporogenesis and embryogenesis.

GUS expression in T2 seeds was further quantified by fluorometric assays (Jefferson

et al. 1987). Table 2.2 shows GUS activity relative to the -4630/+519ABI3-gus line.

Consistent with the histochemical results, GUS activity was seen to decrease as the

promoter length was shortened and negligible GUS activity was observed in

-364/+519ABI3-gus and -23/+519ABI3-gus transgenic lines. The levels of expression from

-4630/+519ABI3 and -3600/+519ABI3 were not significantly different. In contrast, deletion

of the 5' 2.6 kb promoter region (-4630 to -2033) led to a significant 3.8-fold decrease in

GUS activity. Further deletion from -2033 to -882 resulted in an additional 4-fold decrease

in activity and deletion of the -882 to -364 region caused a dramatic 645-fold loss. These
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data reveal the presence of at least three positive cis-regulatory regions (-3600 to -2033;

-2033 to -882 and -882 to -364) in the ABI3 promoter.

Figure 2.4 Reporter expression in mature Arabidopsis embryos transformed with various
ABI3 promoter fusion constructs. The coding region for (A) GUS or (B) GFP was ligated
immediately downstream of the 5' UTR (+519) to the promoter elements indicated in (E).
Inset :  GUS expression in mature  embryos t ransgenic  for  (C)
-882/-364ABI3/-64/+6CaMV35S-gus or (D) -64/+6CaMV35S-gus. A synopsis of regulatory
regions (see Discussion) is shown in (E), together their location (in bp relative to the
predicted transcription start site) and GUS reporter activity (%) relative to the -4630
construct (see Table 2.2). IGR, intergenic region; UAS1 and UAS2, upstream activation
sequences; SSR, seed specific expression region; PR, proximal region; NRS, negative
regulatory sequence. Magnification of embryos is indicated in each panel: bar = 100 :m.

The -882 to -364 region confers seed-specific expression

Since GUS expression was observed in -882/+519ABI3-gus seeds but not in

-364/+519ABI3-gus seeds, it follows that the -882 to -364 region contains cis-elements

conferring seed-specific expression. To verify this, the -882/-364ABI3 region was fused to

the -64/+6CaMV 35S minimal promoter (van der Geest and Hall 1996) and the gus coding
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sequence. GUS expression was observed in developing embryos of plants transformed with

-882/-364ABI3/-64/+6CaMV35S-gus (Fig. 2.4C) and was similar to that of

-882/+519ABI3-gus embryos both in its spatial distribution (compare Fig. 2.4A,C) and

intensity (Table 2.2). No GUS expression was detected in vegetative tissues for either of

these constructs (data not shown). As a result of these findings, the sequence from -882 to

-364 was designated as the seed-specific region (SSR) of the ABI3 promoter. 

Table 2.2 Contribution of various regions within the ABI3 promoter to GUS expression in
seeds.

Natural logarithmic
scale2

Construct N1 ln mean SE P-value3 Mean GUS activity4 GUS activity (%)5

-4630/+519ABI3-gus 19 9.84 1.05 n.a.     18857.55          100.00          
-3600/+519ABI3-gus 20 9.72 1.13 0.547 16675.95          88.43          
-2033/+519ABI3-gus 22 8.49 1.28 0.000 4875.56          25.85          

-882/+519ABI3-gus 15 7.07 1.43 0.000 1175.50          6.23          
-364/+519ABI3-gus 16 0.60 0.89 0.000 1.82          0.01*         

-23/+519ABI3-gus 13 -0.51 0.66 0.000 0.60          0.00*         
-2033/+114ABI3-gus 20 9.84 0.99 0.593 18677.43          99.04          

-882/+114ABI3-gus 21 9.76 1.04 0.357 17372.14          92.12          
-882/-364ABI3/-64/+6CaMV35S-gus 21 6.72 1.16 0.000 827.77          4.39          

-64/+6CaMV35S-gus 9 0.54 0.69 0.000 1.72          0.01*         

(1) Total number of individual transformants analyzed
(2) Transformed mean GUS activity (ln mean) using natural logarithmic (ln) scale and its standard error (SE)
(3) ANOVA P-value at 95% confidence interval respective to -4630/+519ABI3-gus, n.a. = not applicable
(4) Mean GUS activity (pmol 4-MU hr-1 :g-1 of protein) calculated by back-transforming the ln mean
(5) Percentage GUS activity relative to transgenic line -4630/+519ABI3-gus
* Results are based on two separate trials

The 5' UTR negatively regulates expression from the ABI3 promoter

As found for the 5' UTR of mRNAs encoding proto-oncogenes, growth factors and

transcription factors (Kozak 1987, 1991b; Han et al. 2003), the 5' UTR of ABI3 mRNA is
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unusually long. Since these studies have shown that the presence of a long leader sequence

can be inhibitory, it appeared important to determine if the extensive 5' UTR of ABI3

contributed negatively to expression. Inspection of the 5' UTR sequence revealed three

upstream open reading frames (uORFs), located at positions +239, +337 and +362 and

consisting of 26, 11 and 12 codons, respectively (Fig. 2.5A). As shown in Figure 2.5B, the

5' UTR of ABI3 has a high degree of predicted secondary structure (Zuker 2003). Two

constructs lacking 405 bp of 5' UTR (spanning region +114 to +519), and thereby removing

the three uORFs, were made (-2033/+114ABI3-gus and -882/+114ABI3-gus) and

transformed into Arabidopsis. Remarkably, strong GUS expression was observed in T1

embryos (Fig. 2.6A,B). Expression levels were equivalent to that for the full-length

-4630/+519ABI3-gus construct, representing 4-fold and 15-fold increases over the

respective constructs containing the 5' UTR (Fig. 2.6C,D; Table 2.2). These results identify

the +114 to +519 region of the 5' UTR as a negative regulator of expression. Moreover, this

5' UTR deletion resulted in alteration of spatial expression since GUS expression was

evident in roots of most transformants lacking the ABI3 5' UTR (Fig. 2.6E,F).
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Figure 2.5 uORFs and predicted secondary structure of the 519 nt ABI3 5' UTR. (A)
Nucleotide sequence showing predicted start codons (aug) for three short ORFs and two
additional aug triplets (aug). The predicted start codon and coding region for the first 25
codons of ABI3 are underlined. (B) Predicted secondary structure of the 5' UTR
()G = -103.41 kcal/mol).
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Figure 2.6 Contribution of the 5' UTR to ABI3 expression. Representative GUS-stained
mature embryos are shown from plants transformed with gus fusion constructs containing:
(A) -2033/+114ABI3 and (B) -882/+114ABI3 that lack the 3' 405 bp of the 519 bp-long
ABI3 5' UTR; (C) -2033/+519ABI3 and (D) -882/+519ABI3 that contain the ABI3 5' UTR;
GUS-stained roots of seedlings transgenic for (E) -2033/+114ABI3-gus and
(F) -882/+114ABI3-gus. Bar = 100 :m (A-D); 100 mm (E-F).
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Negative regulatory role of ABI3 5' UTR

Deletion of the 405 bp (+114/+519) 5' UTR from the ABI3 promoter led to a dramatic

increase in reporter (gus) activity in transgenic Arabidopsis containing either

-2033/+114ABI3-gus or -882/+114ABI3-gus construct (Fig. 2.6). The effect of the 5' UTR

could be transcriptional or post-transcriptional (Fig. 2.7). For transcriptional regulation,

there could be the presence of a negative regulatory factor which binds to the UTR region

and inhibit the transcription. In contrast, post-transcriptional regulation can be achieved at

both transcript or protein level. In trans, binding of an RNA binding protein to the 5' UTR

may increase the rate of mRNA turnover or it may inhibit the translation of protein. In cis,

the intrinsic structure of the 5' UTR may inhibit translation initiation or efficiency.

Figure 2.7 Diagram showing possible regulatory role of the ABI3 5' UTR. The negative
effect of ABI3 5' UTR could be the results from repressor binding to the UTR leading to
transcriptional repression (A). Post-transcriptionally, binding of RNA binding protein to the
5' UTR may increase mRNA turnover (B) or inhibit translation initiation (C) and the
intrinsic structure of the 5' UTR may also inhibit translation initiation and efficiency (D).
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To further elucidate the effect of the 5' UTR, in vivo and in vitro approaches were

used to determine the involvement of post-transcriptional (at transcript level) versus the

translational mechanisms in ABI3 expression. In vivo comparison of transcripts and protein

accumulation during embryogenesis was performed by obtaining both total RNA and total

seed protein from developing siliques of three different transgenic Arabidopsis lines

containing constructs with or without the 5' UTR fused to the gus coding sequence

(-4630/+519ABI3-gus, -2033/+519ABI3-gus or -2033/+114ABI3-gus). Semi-quantitative

RT-PCR and fluorometric GUS analysis (MUG) were used to evaluate the level of gus

transcript and protein (as reflected by GUS activity) respectively. In transgenic lines

(-4630/+519ABI3-gus and -2033/+519ABI3-gus) containing construct with the 5' UTR, a

close correlation between the level of gus transcript and GUS activity was evident (Fig.

2.8). In contrast, such correlation was not observed when comparing transgenic line without

the 405 bp 5' UTR (-2033/+114ABI3-gus) to its corresponding line with the 5' UTR

(-2033/+519ABI3-gus). Deletion of the 5' UTR led to an increase in GUS expression for

similar levels of transcripts detected (Fig. 2.8B, compare lane 4 and 5 to 7). However, a

higher transcript level with lower GUS expression was also detected (Fig. 2.8B, compare

lane 6 to 8 and 9). It is expected that low transcript level and high GUS activity reflect a

translational regulatory role of the 5' UTR whereas high transcript level and low GUS

activity reflect a post-transcriptional regulatory mechanism at transcript level. Therefore,

while this extends the finding that the 405 bp 5' UTR is involved in post-transcriptional

regulation, its control through affecting either transcript stability or protein translation is

still unknown.
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Figure 2.8 Effect of ABI3 5' UTR in transcript and protein accumulation in vivo. Total RNA
and protein were isolated from developing siliques of transgenic plants contain the
-4630/+519ABI3-gus, -2033/+519ABI3-gus and -2033/+114ABI3-gus transgenes. GUS
activity was quantitated by fluorometric MUG assay (A) and semi-quantitative RT-PCR was
used to evaluate the gus transcript produced, internal control primers targeting abi3 and
EF1" transcripts were used in the RT-PCR (B).

To determine if the presence of 5' UTR affects the translation of the mRNA, an in

vitro transcription and translation experiment was performed. Three reporter constructs,

with or without the 5' UTR fused with the gus coding sequence were used in an in vitro

transcription reaction (Fig. 2.9A). By providing the same molar amount of in vitro

synthesized transcripts for in vitro translation using either rabbit reticulocyte lysate (RRL)

or wheat germ extract (WGE) system, the level of GUS activity after in vitro translation was
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determined. It is expected that if the 5' UTR does not have an effect on translation, similar

GUS activity should be obtained from transcript with or without the 5' UTR. In contrast,

variation of GUS activity in the presence/ absence of the 5' UTR would indicate that it

affects gene expression translationally. Figure 2.9B shows the results of fluorometric

analyses of lysates from in vitro translation using either RRL or WGE with the same molar

amount of transcripts for the translation. Efficient translation of GUS was only observed for

RNA containing the full length 519 bp ABI3 5' UTR in both RRL and WGE systems

suggesting the present of 5' UTR is important. The lower translation efficiency in WGE

without denaturation of RNA suggested the presence of secondary structure in RNA could

decrease translation efficiency.

Surprisingly, for RNA with 114 bp 5' UTR or without 5' UTR, no translation of GUS

was detected (Fig. 2.9C,D). Since the quality and quantity of the in vitro transcribed RNA

were verified prior in vitro translation (Fig. 2.9A), the data thus suggested that the presence

of the 519 bp 5' UTR is important for the translation of GUS in the in vitro system. This is

in contrast to its negative regulatory role as suggested by in vivo data. Nevertheless, both

in vivo and in vitro analyses suggested that the 5' UTR regulates ABI3 expression

post-transcriptionally rather than transcriptionally.
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Figure 2.9 Role of ABI3 5' UTR in translation in vitro. (A) Schematic diagram of constructs
and 1% agarose/formaldehyde gel showing RNA transcripts from in vitro transcription: lane
1, 519UTR-gus; lane 2, 114UTR-gus and lane 3, gus. (B) Fluorometric analysis data
showing GUS activity of lysate from RRL and WGE after in vitro translation reactions. (C)
and (D) Results of (B) at a smaller scale showing the GUS activity form in vitro translation
of 114UTR-gus, gus and BMV RNA. RRL, rabbit reticulocyte lysate; WGE, wheat germ
extract. 
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In silico analysis of the ABI3 promoter

In silico analysis was performed to examine the profile of cis-elements present in the ABI3

promoter. The cis-elements identified were grouped into four categories: seed-specific,

light-response, elicitor-response elements and miscellaneous elements (Table 2.3).

CCAAT-box elements, involved in enhancing promoter activity (Chaubet et al. 1996), were

located within each of the three positive regulatory regions between positions -3714 and

-477. T-boxes (AACGTT), known to provide maximal transcriptional activation (Foster et

al. 1994), were only found within the -2033 to -364 region. Several cis-elements putatively

involved in seed-specific expression were identified within the SSR. These include an

E-box, an RAV1 binding site, a glutenin-box and a CArG motif. However, these elements

were not limited to this region and seed-specific elements (RY-repeat, ABRE/ G-box,

A-box, DPBF-core sequence) are also present upstream of this region. Additionally,

light-response and elicitor-response elements were found within the three positive

regulatory regions (-3600 to -364), suggesting the potential involvement of light and other

elicitors such as auxin, ABA or gibberellic acid in the regulation of ABI3 expression.
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ABA can induce ABI3-driven expression in vegetative tissues

ABI3 is one of the major components involved in the ABA signal transduction pathway

(Parcy et al. 1994; Giraudat 1995; Meinke 1995; Merlot and Giraudat 1997; Bonetta and

McCourt 1998) and in silico promoter analysis revealed several ABREs within the

-4630/+519ABI3 upstream sequence (data not shown), prompting an examination of the

effect of ABA on ABI3 expression. Transgenic seeds harboring -4630/+519ABI3-gus were

germinated for 2 weeks in MS medium, then transferred to MS medium (control) or MS

medium containing various concentrations of ABA (0.1 :M, 0.3 :M, 0.5 :M, 1 :M, 5 :M,

10 :M and 100 :M). Histochemical GUS staining was performed 7 days after transfer and,

as was recently reported (Brady et al. 2003) for a similar construct, in the presence of

exogenous ABA at concentrations as low as 0.3 :M, GUS expression was evident in roots

and the intensity of staining increased as the concentration of ABA was increased (Fig.

2.10B-F). However, no GUS expression was detected in vegetative tissues in the absence

of ABA (Fig. 2.10A). Similar experiments were conducted using seedlings harboring the

-3600/+519ABI3-gus and -2033/+519ABI3-gus constructs in the presence of 100 :M ABA.

Although ABA-induced GUS expression in roots was observed in all cases, no GUS

expression was detected in leaves or other vegetative tissues of plants grown in MS medium

without ABA (data not shown). In contrast, GUS expression was detected in roots of

seedlings transgenic for constructs lacking the 5' UTR region grown on MS medium (Fig.

2.6E,F), and increased GUS expression was detected in the presence of exogenous ABA

(data not shown). These results are consistent with the finding that the 5' UTR of ABI3 plays

a negative regulatory role in its expression. No induction of GUS expression by exogenous



41

application of ABA was found for roots of plants transgenic for the truncated constructs

-882/+519ABI3-gus, -364/+519ABI3-gus or -23/+519ABI3-gus (that include the 5' UTR).

Figure 2.10 Induction of GUS expression in roots of transgenic seedlings by ABA.
GUS-stained roots are shown for -4630/+519ABI3-gus seedlings grown in MS medium (A)
lacking or (B-F) containing ABA at various concentrations: (B) 0.3 :M ABA, (C) 1 :M
ABA, (D) 5 :M ABA, (E) 10 :M ABA and (F) 100 :M ABA. Bar = 1 mm.

Effect of light/dark treatment on ABI3-driven expression

(Rohde et al. 1999) reported ABI3-driven GUS expression in shoot apices for 10-15% of

355-377 plants that were germinated in the dark for 10-15 days. No expression of GUS was
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observed for plants maintained in the light. Seeds transgenic for the -4630/+519ABI3-gus

construct were germinated under similar experimental and tested for GUS expression after

15 days culture in the dark. Ten or more plants representing five independent transgenic

lines were examined. Although GUS was expressed in all lines during embryogenesis,

confirming the functionality of the transgene insert, no ABI3-driven GUS expression was

detected in shoot or root apices (or other vegetative tissues) of the dark-grown seedlings.

Similarly, seedlings grown in the light for 5 days and then transferred to the dark for

15 days failed to exhibit GUS expression in vegetative tissues.

Discussion

Spatial regulation of ABI3 expression

Expression of GUS from the full-length ABI3 promoter was consistent with the results

reported by Parcy et al. (1994) in that reporter accumulation started at the globular stage and

continued through the heart, torpedo and mature stages of embryogenesis. However, GUS

expression was also found to occur during microsporogenesis (Fig. 2.2A,B). This finding

is in accord with the observation of phas promoter activity (dependent on the presence of

PvALF, the bean ortholog of ABI3) during pollen development in Arabidopsis transgenic

for -1470phas-gus (Chandrasekharan et al. 2003b). Constructs containing the GFP reporter

showed similar expression during embryogenesis (Fig. 2.2C-E) to that for GUS. No

expression was observed in vegetative tissues for either reporter. However, ectopic

expression of ABI3, but only in conjunction with exogenously supplied ABA, led to the
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activation of phas in leaves, reflecting the functional orthology of ABI3 and PvALF (Fig.

2.3D). Indeed, the absence of GUS expression from the phas promoter in leaves, even in

the presence of ABA (Fig. 2.3C), provides strong evidence that the ABI3 promoter is silent

in vegetative tissue.

The above results, together with the ABI3-driven reporter expression in embryos

(Fig. 2.2) support earlier findings (Giraudat et al. 1992; Parcy et al. 1994) that ABI3 is

normally a seed-specific factor. However, it has been reported that, under certain

experimental regimes, ABI3-driven GUS expression can be induced in vegetative tissues.

For example, Rohde et al. (1999) observed GUS expression in shoot apices of dark

germinated seedlings and Brady et al. (2003) have shown that weak GUS expression was

induced in roots of plants transgenic for ABI3-GUS (Parcy et al. 1994) by 3 days culture in

0.4 :M ABA. Culture of T1 seedlings transgenic for -4630/+519ABI3-gus for 7 days in the

presence ABA at concentrations ranging from 0.3 :M to 100 :M resulted in strong

expression of GUS in roots (Fig. 2.10B). A similar observation was obtained for plants

transgenic for -3600/+519ABI3-gus and -2033/+519ABI3-gus constructs but not in those

transgenic for -882/+519ABI3-gus, -364/+519ABI3-gus or -23/+519ABI3-gus constructs

in the presence of 100 :M ABA. This is in agreement with the presence of an abscisic acid

response element in upstream activation sequence UAS1, in UAS2 and in the intergenic

region (IGR), but not in the SSR. In contrast, we did not detect ABI3-driven GUS

expression in seedlings germinated in the dark, as was found by Rohde et al. (1999).

Nevertheless, it is evident that ABI3-driven GUS expression in roots can be triggered by

exogenously supplied ABA despite the fact that ABI3 acts primarily as a transcriptional
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activator for seed-specific gene expression.

Functional regions within the ABI3 promoter

Reporter fusions to 5' truncations of the ABI3 promoter revealed similar expression patterns

for both GUS and GFP, although GUS proved to be a more sensitive reporter (Fig. 2.4A,B).

Several regulatory regions were defined on the basis of fluorometric assays of GUS

expression (Table 2.2). Since no augmentation of activity was observed for the -4630 to

-3600 region, this was defined as an IGR (Fig. 2.4E), even though it probably includes the

3' terminator of the upstream gene. Promoter lengths of 3600 bp and 2033 bp yielded

embryo-specific expression levels that were many-fold greater than that for the -882

truncation and the regions -3600 to -2033 and -2033 to -882 are defined as UAS2 and

UAS1, respectively.

The absence of GUS expression in the radicle region of embryos transgenic for

-2033/+519ABI3-gus and -882/+519ABI3-gus (Fig. 2.4A,B) implies the presence of

module-specific cis-element(s) upstream of position -2033. Module-specific gene

expression in plant embryos has been described previously. For example, Perez-Grau and

Goldberg (1989) reported modular expression of the kti3 (Kunitz proteinase inhibitor) gene

in soybean embryos and Goldberg et al. (1994) documented differential promoter activity

in specific compartments within embryos of transgenic tobacco. The involvement of

multiple cis-elements within the phas promoter in module-specific expression has also been

demonstrated (Bustos et al. 1991; Chandrasekharan et al. 2003a).

Truncation of the promoter to position -364 led to a dramatic loss of embryo-specific
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GUS expression in construct -364/+519ABI3-gus, revealing the presence of important

cis-elements within the -882 to -364 region. Placement of this region upstream of the

minimal -64/+6CaMV 35S promoter yielded seed-specific expression (Fig. 2.4C,D),

defining it as the SSR. While elements important for spatial regulation are often present in

the proximal region of promoters, deletion of the -364 to +1 proximal region (PR) did not

affect seed-specificity of expression from the -882/-364ABI3 promoter, nor did constructs

(-364/+519ABI3-gus; -23/+519ABI3-gus) that include this region yield significant reporter

expression in any tissue.

In silico analysis of the ABI3 promoter revealed a plethora of cis-elements 

Many cis-element motifs were identified using PlantCARE and PLACE software; these

were grouped into several functional categories (Table 2.3). The presence of seed-specific

elements within the SSR suggests their involvement in conferring seed-specific expression

to the ABI3 promoter. However, it is envisioned that additional seed-specific elements

outside the SSR may be required for complete promoter activity, and such elements were

identified within the UAS1 and UAS2. Similarly, the presence of light-response and

elicitor-response elements in the ABI3 promoter suggested potential roles for environmental

signals (light, temperature and drought) and phytohormones (ABA, auxin, ethylene,

gibberellic acid) in its regulation.

Although functional roles can be predicted for the various cis-elements identified

by in silico analysis, experimental evidence is required to determine the actual functional

roles of these cis-elements in ABI3 expression. Genomic footprinting has been widely used
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to study factor-promoter interactions. Li and Hall (1999) identified multiple factor

interactions with the phas promoter by in vivo DMS footprinting and Kosoy et al. (2002)

showed the presence of multiple GAGA binding sites on the Trl (trithorax-like) promoter

in Drosophila via DNase I footprinting. Similar analyses are needed for the ABI3 promoter,

but its 4.7 kb length requires the preliminary identification of regulatory regions and

putative functional cis-elements undertaken here. 

Quantitative and spatial regulatory roles of the 5' UTR

We have established that the 405 bp 5' UTR strongly represses both quantitative and spatial

expression from the ABI3 promoter. For example, higher GUS expression was observed in

seeds harboring fusion constructs lacking the 5' UTR than in seeds bearing constructs that

include the 5' UTR (Fig. 2.6A-D; Table 2.2) and the normal spatial constraint on ABI3

expression in roots was lost, even in the absence of ABA (Fig. 2.6E,F). Modulation of

spatial constraint via the 5' UTR has been demonstrated for the embryo-specific barley

lipoxygenase gene lox1: substitution of the 5' UTR of an aleurone-specific gene (Chi26)

with that of lox1 yielded expression of Chi26 in the embryo as well as in the aleurone cells

(Rouster et al. 1997). 

Brady et al. (2003) showed that ABI3 promoter-driven GUS expression is increased

in the era1 mutant background and that punctate GUS expression occurred in roots. Era1

encodes the β subunit of a protein farnesyl transferase and it has been suggested that a

farnesylation-dependent negative regulator is involved in ABA signaling (Cutler et al.

1996). The similarity between the effect of the Era1 mutation in ABI3 expression and our
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observation of the effects of the 5' UTR deletion in ABI3 expression suggests the existence

of a farnesylation-dependent negative regulatory factor that is involved in transcriptional

or post-transcriptional regulation of ABI3 expression through its interaction with the 5'

UTR. Additionally, it has been suggested that RNA-binding proteins are involved in the

ABA signal transduction pathway (Lu and Fedoroff 2000; Hugouvieux et al. 2001; Xiong

et al. 2001a; Xiong et al. 2001b; Li et al. 2002). For example, ABH1 that encodes a subunit

of a dimeric Arabidopsis nuclear cap-binding complex (CBC) (Hugouvieux et al. 2001), is

involved in mRNA processing in yeast and human HeLa cells (Izaurralde et al. 1994;

Gorlich et al. 1996; Ishigaki et al. 2001). abh1 mutants have reduced transcript levels of

AtPP2C, a proposed negative regulator of ABA signaling (Sheen 1998; Hugouvieux et al.

2001). Another example of interaction between ABA signal transduction and mRNA

metabolism is the hyl1 mutation which causes ABA hypersensitivity in seed germination

and root growth (Lu and Fedoroff 2000). HYL1 encodes a dsRNA-binding protein and

negatively regulates the level of ABI5 expression through the mitogen-activated protein

kinase signaling cascade (Lu et al. 2002). Given the involvement of these RNA binding

proteins in ABA signal transduction, it is possible that ABI3 expression may also be

modulated post-transcriptionally through interaction(s) between these proteins or as yet

unidentified RNA-binding protein(s) and its 5' UTR. 

In addition to the possibility that post-transcriptional mRNA metabolism may be

involved in ABI3 expression, as is the case for the 5' UTR of many mRNAs encoding

proto-oncogenes, growth factors and transcription factors (Kozak 1987, 1991a), the

possibility exists that 5' UTR-regulation of ABI3 expression is translational. The presence
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of a long leader can be inhibitory as its sequence or secondary structure may contain

features that repress translational initiation of the downstream main ORF (Kozak 1987,

1991a). Han et al. (2003) recently found that the 828 base-long 5' UTR of the mouse tumor

suppressor gene PTEN severely inhibited translation of both PTEN and firefly luciferase

mRNAs. Deletion of a large segment of the PTEN 5' UTR greatly enhanced translation

efficiency. The presence of three short uORFs in, and the overall high predicted hairpin

secondary structure (Fig. 2.5) of, the ABI3 mRNA leader thus provides an alternate model

that their presence may impair translation initiation which in turn affect mRNA stability or

protein level. Supporting evidence has been shown in the case of maize Lc mRNA that the

presence of a 38-codon uORF and a potential hairpin structure represses translation of the

downstream ORF (Wang and Wessler 1998, 2001). uORFs in the leader of rice myb7

mRNAs were also found to inhibit translation in vivo and in vitro (Locatelli et al. 2002). In

addition, the presence of nonsense codons in the 5' UTR may destabilize mRNA through

a nonsense-mediated mRNA decay mechanism (Kebaara et al. 2003)). In the yeast

Saccharomyces cerevisiae, insertion of a small uORF into the 5' UTR of Cat mRNA led to

a decrease in the translation of the downstream ORF and the stability of the mRNA

(Oliveira and McCarthy 1995). Insertion of nonsense codons in the 5' UTR of ferridoxin-1

(Fed-1) mRNA decreased its stability under light conditions (Petracek et al. 2000). mRNA

secondary structure can also affect cap-dependent translation initiation (Pelletier and

Sonenberg 1985). For example, introduction of various stem-loop structures 5' to luciferase

mRNA decreased its translation efficacy (Niepel et al. 1999). Comparison of the 5' UTR of

ABI3 (519 bp) with orthologous genes from Chamaecyparis nootkatensis (accession
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AJ131113; 516 bp) revealed the presence of 5 uORFs (of more than 5 amino acids); 2 in

Daucus carota (accession AB005558; 380 bp), and 6 in Pisum sativum (accession

AB080195; 761 bp). The presence of long 5' UTRs bearing uORFs in these ABI3 relatives

suggests that the presence of a negative regulatory region may be a common feature.

There are many facets to ABA-mediated signal transduction (Rock 2000). Among

the complexities lies the fact that some events are stimulatory while others are repressive.

The pleiotropic functions of B3 domain-containing factors such as ABI3, VP1 and PvALF,

that modulate ABA-induced gene expression, further compound the situation. The

recognition in this study of various regulatory domains within the 4.6 kb ABI3 promoter can

facilitate the identification of important cis-element(s) or trans-acting factor(s) that may

involve in the ABI3 expression. In addition, the potentially high levels of transcription that

the ABI3 promoter can drive, are mitigated by the repressive activity of the 5' UTR that, in

turn, presumably reflects interactions with RNA-binding proteins. These findings provide

new insight to developmental regulation of plant growth, especially during embryogenesis.
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CHAPTER III

DECIPHERING HISTONE CODE IN THE PHAS CHROMATIN

Introduction

Although a wealth of information exists concerning the overall regulation of transcription

from eukaryotic promoters, much remains to be learned as to how specific promoters are

selected for activation. In plants, the phas promoter provides an excellent system to explore

this challenge as it is silent in all vegetative tissues of the bean (Phaseolus vulgaris) plant

(van der Geest et al. 1995), but becomes exceptionally transcriptionally active during

development of the seed embryo (Hall et al. 1999; Li et al. 2001).

The contrast between the complete failure of phas-gus constructs to express

$-glucuronidase (GUS) in vegetative tissues when stably integrated into the genome and the

abundant expression of GUS from the same constructs when transiently inserted into leaves

as naked DNA (Frisch et al. 1995), provided compelling circumstantial evidence for the

involvement of chromatin in the regulation of phas expression. Experimental evidence was

obtained by in vivo and in vitro footprinting studies that the lack of transcriptional

expression in vegetative tissues is stringently maintained by a rotationally and

translationally positioned nucleosome over the three phased TATA boxes of the phas

promoter (Li et al. 1998), each of which contributes to its high level of expression (Grace

et al. 2004). A significant finding was that, although transcription from the phas promoter

is not inducible in callus or vegetative tissues by the plant growth regulator abscisic acid
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(ABA) alone (Frisch et al. 1995), ectopic expression of a seed-specific transcriptional

activator, PvALF (Phaseolus vulgaris ABI3-like factor) from the quasi-constitutive

CaMV 35S promoter (Moravcikova et al. 2004), renders phas ABA-inducible in vegetative

tissues (Li et al. 1999). Increased DNase I accessibility to the phas promoter in isolated

nuclei was observed in the presence of PvALF, but the TATA boxes became protected in

the presence of both PvALF and ABA, suggesting that chromatin remodeling facilitates

occupancy by TATA-binding protein (TBP) under those conditions. These observations

provided evidence for a two-step process of phas activation in which the first step

(potentiation) requires the presence of PvALF and the second step (activation) is achieved

by ABA acting through a signal transduction pathway. Placement of PvALF expression

under the control of an estradiol-inducible promoter (Zuo et al. 2000) permits analysis of

the chromatin status over the phas promoter under three discrete conditions. To maintain

the repressed state, no estradiol is supplied so that PvALF production is uninduced and no

ABA is added. The potentiated state is attained by supplying estradiol and hence PvALF,

but no ABA. When both estradiol and ABA are supplied the phas promoter is

transcriptionally active. This system permits the discrete distinction of events related to

remodeling of nucleosome architecture over the promoter from the ABA-motivated

recruitment of TBP and initiation of transcription.

Evaluation of covalent histone modifications associated with developmental stages

and transcriptional status of eukaryotic promoters has verified the existence of an epigenetic

code (Jenuwein and Allis 2001) and rapid advances are being made in deciphering its roles

in developmental processes of higher organisms (Margueron et al. 2005). Studies on the
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recruitment of specific factors or complexes by specific histone states are providing exciting

insights to gene regulation. In plants, elegant studies on vernalization and control of

flowering time have revealed that the chromatin status over the FLOWERING LOCUS C

(FLC) is influenced by three regulatory systems and controls downstream flowering-time

integrator genes that in turn activate floral meristem-identity genes (Boss et al. 2004;

Putterill et al. 2004; He and Amasino 2005). Among animal systems, characterization of

histone modifications over the IFN-$ promoter following infection by Sendai virus is

providing novel insight to how transcription is initiated (Agalioti et al. 2002).

A challenging question regarding chromatin dynamics is the fate of the nucleosome

during transcriptional activation. Using a novel photochemical method for mapping the

contacts of specific histone residues with DNA in the nucleosome before and after

remodeling, Kassabov et al. (2003) demonstrated that, in addition to sliding nucleosomes,

SWI/SNF displaces DNA off the octamer in a process that remodels 50-bp of DNA within

1 second. This concept appears to be in good accord with histone changes seen here for the

phas promoter.

In the present work, we show that three discrete conditions of the phas promoter are

reflected in various arrays of chromatin modifications. In addition to the discrete separation

of potentiation from activation, our system allows chronological studies that provide insight

to the ordered recruitment of histone modifiers. Insight gained from these studies suggests

the existence of close similarities between transcriptional activation of the phas and IFN-$

promoters.
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Materials and Methods

Antibodies for ChIP analyses

Antibodies used in ChIP assays were purchased from either Upstate (NY) or Abcam (UK)

including: anti-histone H3 N-ter (Upstate, #06-755), anti-histone H3 C-ter (Abcam,

Ab1791), anti-histone H4 C-ter (Abcam, Ab10158), anti-acetyl-histone H3 (Upstate, #06-

599), anti-acetyl-histone H3-K9 (Upstate, #07-352), anti-acetyl-histone H3-K14 (Upstate,

#07-353), anti-dimethyl-histone H3-K4 (Upstate, #07-030), anti-trimethyl-histone H3-K4

(Upstate, #07-473), anti-hyperacetylated histone H3 (Upstate, #06-946), anti-dimethyl-

histone H3-K9 (Upstate, #07-441; Abcam, Ab7312), anti-acetyl-histone H4-K5 (Abcam,

Ab1758) and anti-dimethyl-histone H4-K20 (Upstate, #07-367).

Plasmid construction

A triple-HA tag sequence (3xHA) was PCR-amplified from pMPY-3xHA (a kind gift from

Dr. Michael P. Kladde, Texas A&M University), and cloned into a pGEM-T vector

(Promega) to yield pGEM-T/3xHA. The 2.3-kb PvAlf coding region without the ATG start

codon was amplified by PCR from pXVE-HisSPvAlf (Chandrasekharan et al. 2003b) to

incorporate flanking BtsI and PacI restriction enzyme sites and cloned into a pGEM-T

vector to yield pGEM-T/PvAlf. The PvAlf coding region was then released by BsmI and

PacI digestion and fused 3' to the 3xHA sequence in BsmI-PacI-digested pGEM-T/3xHA

vector to give pGEM-T/HAPvAlf. The HAPvAlf fragment was then cloned into pER8 vector

(Zuo et al. 2000) through ApaI and PacI enzyme sites. The resulting construct,

pER8/XVE-HAPvAlf, was transformed into Agrobacterium strain GV3101 and used for



54

Arabidopsis transformation to yield estrogen-inducible expression of HA-PvALF.

Plant transformation

Transgenic Arabidopsis thaliana (Columbia ecotype) seeds (line 5'14) containing

-1470phas-gus (Chandrasekharan et al. 2003a) were germinated on Murashige and Skoog

(MS) agar medium (Sigma) containing 50 mg/L kanamycin (Sigma). Seeds were subjected

to vernalization at 4°C for 2 days and grown at 22°C under a 16/8 h light/dark cycle.

Agrobacterium-mediated transformation with pER8/XVE-HAPvAlf of 4 to 5 week old 5'14

plants was conducted with vacuum infiltration (Bechtold and Pelletier 1998). Arabidopsis

supertransformants (5'14HAPvAlf) were selected by plating T0 seeds in MS agar containing

hygromycin (25 mg/L) and kanamycin (50 mg/L). Transformants with a single homozygous

insertion for both XVE-HAPvAlf and -1470phas-gus transgenes were obtained through

antibiotic selection and genomic blot analyses.

Estradiol and ABA induction conditions

5'14HAPvAlf seeds were germinated in hygromycin (25 mg/L) and kanamycin (50 mg/L)

selection media and rosette leaves from 3 to 4 week-old plants were collected and

transferred to liquid MS media containing 25 :M 17$-estradiol (Sigma) or 200 :M ABA

(Sigma). Four independent treatments were performed: (U) uninduced control without

addition of estradiol and ABA; (E) 25 :M estradiol alone treatment; (EA) 25 :M estradiol

and 200 :M ABA treatment and (A) 200 :M ABA alone control. Leaves were treated for

8 h with gentle agitation in the light unless specified. For chronological experiments in
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which estradiol was removed prior to ABA addition, leaves were exposed to MS media

containing 25 :M 17$-estradiol for 1 to 4 h, after which estradiol was removed by rinsing

with running distilled water. The leaves were then exposed for the times indicated to MS

media containing 200 :M ABA.

Histochemical and fluorometric assays for GUS activity

Histochemical staining and fluorometric analysis of GUS were performed with 5-bromo-

4-chloro-3-indoxyl-$-D-glucuronic acid (X-gluc) or 4-methylumbelliferyl-ß-D-glucuronide

(4-MUG), respectively, as substrates (Jefferson et al. 1987). For fluorometric analysis, GUS

activity was calculated as pmol 4-MU/h/:g protein.

Protein SDS-PAGE and Western blot analyses

After the specific induction treatment (U, E, EA or A), total protein was extracted from

leaves (100 mg) using an extraction buffer containing 200 mM MOPS

(4-morpholinepropanesulfonic acid), pH 7.5, 200 mM KCl, 20% glycerol, 1 mM EDTA and

3 mM DTT. Total protein was quantitated by the Bradford assay (BioRad) and samples (40

:g protein) were subjected to 12.5% SDS-PAGE. Benchmark pre-stained protein ladder

(Invitrogen) was used as a molecular marker for SDS-PAGE. Two parallel gels were

prepared, one for Coomassie blue staining after electrophoresis and the other for Western

blot analysis. For Western blot analysis, total leaf proteins separated after SDS-PAGE were

transferred to PVDF (BioRad) membrane. Polyclonal HA-antibodies (Covance Research

Products) at 1:500 dilution were used for Western blots with chemiluminescent detection
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to verify the presence of HA-PvALF in the samples.

RT-PCR analysis

Total RNAs were extracted from leaves after various experimental treatments using TRIzol

reagent (Invitrogen). DNase I-digested total RNAs (0.5 :g ) were subjected to RT-PCR

analysis using a Qiagen one-step RT-PCR kit. Gene-specific primer sets (0.6 :M), alf-rt-for

(5 ' -ATGGAGTGTGAAGTGAAGTTAAAAGGGGG-3 ' )  and  a l f - r t - rev

(5 '-TGAAAGATTGAGGCAGGATCGAAGAAATCATTG-3 ') ,  1-gus-for

( 5 ' - A T G G T C C G T C C T G T A G A A A C C C - 3 ' )  a n d  1 - g u s - r e v

(5'-CGATGGATTCCGGCATAGTTAAAGA-3') were used to detect the presence of

HA-PvAlf and gus transcripts respectively. Primer pair (0.08 :M), ef-for

( 5 ' - T G C T G T C C T T A T C A T T G A C T C C A C C A C - 3 ' )  a n d  e f - r e v

(5'-TTGGAGTACTTGGGGGTAGTGGCATC-3'), targeting the EF1" gene were used as

an internal control for the RT-PCR. The RT-PCR products were resolved in 1% agarose gel

and visualized by ethidium bromide staining.

Chromatin immunoprecipitation

Chromatin immunoprecipitation was modified as briefly described below from Gendrel et

al. (2002). In brief, 3 to 4 g of Arabidopsis leaves from 3 to 4 week-old 5'14HAPvAlf plants

were used for each induction treatment (U, E, EA or A) for 8 h. After 8 h, the samples were

subjected to 1% formaldehyde cross-linking in a cross-link buffer (0.4 M sucrose, 10 mM

Tris-HCl pH 8, 1 mM EDTA) under vacuum for 10 min. Formaldehyde cross-linking was
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stopped by adding glycine to a final concentration of 0.125 M and incubated for 5 min at

room temperature. Then leaves were rinsed with water and ground into powder in liquid

nitrogen. Nuclei were extracted and lysed with 300 :L lysis buffer [50 mM Tris-HCl pH

8, 10mM EDTA, 1% SDS, 1 mM PMSF, 10 mM Na butyrate, 1 mM benzamidine and 50

:L/mL protease inhibitor cocktail (Sigma)]. The resulting chromatin was subjected to pulse

sonication (6 pulses, 95% power output for 8 times) using a Branson sonifier M350

(Branson sonic power company) to obtain DNA fragments with sizes ranging from 500- to

1000-bp. After sonication, a 25 :L aliquot was removed for the total input DNA control and

the rest of the chromatin solution was diluted ten times with dilution buffer (1.1%

TritonX-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8, 167mM NaCl, 10 mM Na butyrate

and 50 :L/mL protease inhibitor cocktail). The diluted chromatin solution was then

subjected to 1 h preclearing treatment at 4°C with 40 :L salmon sperm DNA/protein A

agarose [50% suspension in dilution buffer (Upstate, #16-157) without Na butyrate and

protease inhibitor cocktail] to reduce non-specific interactions between protein-DNA

complexes and the agarose beads. Overnight (17 h) immunoprecipitation was performed at

4°C using 600 :L chromatin solution with antibodies typically at a final 1:150 dilution or

without antibodies  (mock control). Immunoprecipitates were collected following incubation

with 40 :L salmon sperm DNA/protein A agarose (50% suspension in dilution buffer) at

4°C for 1 h. The protein A agarose beads bearing immunoprecipitates were then subjected

to sequential washes and immunoprecipitates were eluted twice with 300 :L elution buffer

(1% SDS and 0.1 M NaHCO3). Samples were then reverse cross-linked at 65°C under high

salt (0.2 M NaCl) conditions for 6 h. For the input DNA control (25 :L), 275 :L TE buffer
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was added and reverse-cross-linked. After reversing cross-links, protein was removed by

proteinase K digestion and DNA was purified by phenol-chloroform extraction and ethanol

precipitation. Purified DNA was resuspended in 40 :L TE buffer for PCR analyses.

ChIP PCR and densitometry

Primers targeting the proximal region (-282 to -55) of the phas promoter, -282Phas-for

( 5 ' - C C G C G T C C A T G T A T G T C T A A A T G C - 3 ' ) ,  - 5 5 P h a s - r e v

(5'-GGTTGGAACATGCATGGAGATTTGG-3') and the actin2, actin-for

( 5 ' - C G T T T C G C T T T C C T T A G T G T T A G C T - 3 ' ) ,  a c t i n - r e v

(5'-AGCGAACGGATCTAGAGACTCAC-3'), were used for analysis of the

immunoprecipitated DNA in ChIP assays. PCR products were visualized by ethidium

bromide staining in 1.5% agarose gels. Densitometry of data obtained from ethidium

bromide staining of PCR products for at least two completely independent experiments was

performed using ImageJ software (National Institutes of Health). Signals from the phas or

the actin2 PCR products were normalized against the mock (no antibody) signal and input

DNA control signal, respectively. The signal enrichment for phas DNA for each individual

treatment (U, E, EA or A) was then normalized with its respective actin2 control. RE values

were calculated for each of the four different treatments.
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Results

Inducible potentiation and activation system for phas expression in vegetative tissues

The seed-specific activation of transcription from the phas promoter is a 2-step process that

includes PvALF-mediated remodeling of its chromatin architecture (potentiation) and

subsequent activation through an ABA-mediated signaling cascade (Li et al. 1999). In

developing seeds, events associated with phas potentiation and activation are inseparable

as both PvALF and ABA are present. In order to differentiate between these sequential

events, an estrogen receptor-based inducible system (Zuo et al. 2000) was used (Fig. 3.1A)

to permit ectopic expression of a hemagglutinin (HA) epitope-tagged PvALF (HA-PvALF)

in leaves of Arabidopsis transgenic for a -1470phas-gus reporter construct

(Chandrasekharan et al. 2003a). A triple HA tag sequence was fused 5' to the PvAlf coding

sequence (HA-PvAlf) and inserted downstream of a synthetic promoter containing the LexA

operator to yield the inducible construct XVE-HAPvAlf. XVE is a chimeric protein that

contains a LexA DNA binding domain, a VP16 activation domain and a human estrogen

receptor site (Zuo et al. 2000). When leaves of transgenic Arabidopsis line 5'14HAPvAlf

that contains both -1470phas-gus reporter and XVE-HAPvAlf effector constructs are

exposed to estradiol, the XVE transactivator protein is induced and binds to the LexA

operator, driving ectopic expression of HA-PvALF. The presence of HA-PvALF potentiates

the repressed phas promoter for transcriptional activation upon the addition of ABA.
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Figure 3.1 Induced ectopic expression of HA-PvALF and phas activation in leaves. (A)
Schematic diagram of the -1470phas-gus reporter construct and XVE-HAPvALF inducible
effector construct present in 5'14HAPvAlf Arabidopsis supertransformants. (B) 12.5% SDS
PAGE (top) and Western analysis with anti-HA antibody of a parallel gel (bottom) of total
protein (40 :g/lane) from leaves treated with: 25 :M estradiol (E), 25 :M estradiol + 200
:M ABA (EA) or 200 :M ABA (A). U: uninduced control. M: Protein size markers. (C)
Histochemical analysis of GUS expression in representative 5'14HAPvAlf plantlets for each
treatment. Bar = 1 mm.

To confirm that HA-PvALF expression was dependent on ectopically-supplied

estradiol, leaves from 5'14HAPvAlf plants were placed for 8 h in MS medium (see

Materials and Methods) containing 25 :M estradiol (E); 25 :M estradiol and 200 :M ABA

(EA) or 200 :M ABA (A). Leaves exposed under identical conditions to media lacking

estradiol or ABA served as uninduced controls (U). Immunoblot analyses of total protein

extracts confirmed that HA-PvALF was only produced in leaves exposed to media

containing estradiol (Fig. 3.1B). Histochemical staining for GUS expression confirmed that
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transcription from the phas promoter in leaves occurred only in the presence of both

HA-PvALF and ABA (Fig. 3.1C, panel EA). These experiments confirmed the feasibility

of separating the potentiated state of the phas promoter (as a result of HA-PvALF

expression) from the transcriptionally active state in leaf tissues through the use of an

inducible expression system. This permitted detailed analyses of changes in histone

modifications associated with each step of transcriptional activation of the phas promoter

in leaves. Such separation of potentiation from activation is not practicable in seeds because

of the presence of both PvALF and ABA and because the very small size of developing

Arabidopsis embryos greatly limits the amount of material suitable for characterization of

chromatin status.

Potentiation and activation of phas can be temporally separated

To optimize the induction conditions for HA-PvALF production and ABA activation of the

phas promoter, phas-driven GUS production was followed. Rosette leaves from 3 to 4-week

old 5'14HAPvAlf plants were subjected to estradiol (25 µM) and ABA (200 µM) treatment

and samples were collected for GUS staining at various time points (Fig. 3.2A). GUS

expression was initially detected after 4 h and uniform histochemical staining in the leaves

was obtained after 8 h. This indicated that potentiation resulting from HA-PvALF

production occurs within 4 h of estradiol addition.

In another set of experiments, leaves of 5'14HAPvAlf plants were exposed to

estradiol for 1 to 4 h to induce the production of HA-PvALF, after which the estradiol was

removed. ABA was added following the removal of estradiol (Fig. 3.2B). Histochemical
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staining of leaves treated with estradiol for 4 h revealed that GUS was produced

substantially earlier (1 h) than for leaves treated for only 1 h with estradiol. This suggests

that the rate of GUS production is dependent on the amount of HA-PvALF available. After

5 h of exposure to ABA, uniform GUS expression was observed for all treatments and,

unless otherwise specified, 8 h was chosen as the standard incubation time for all

subsequent analyses.

Figure 3.2 Activation of the phas promoter. (A) Histochemical staining of leaves from
5'14HAPvAlf line at the indicated times following addition of 25 :M estradiol and 200 :M
ABA. (B) phas was potentiated by treatment of leaves from 5'14HAPvAlf line with 25 :M
estradiol for 1 to 4 h. ABA was added to a final concentration of 200 :M after estradiol was
removed at the indicated times. Histochemical-stained leaves are shown for the indicated
times following ABA addition.
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Nucleosomal architecture of the phas promoter during potentiation and activation

A rotationally positioned nucleosome over the three phased TATA boxes in the phas

promoter represses activation in vegetative tissue (Li et al. 1998). In transgenic tobacco

leaves ectopically expressing PvALF, DNase I hypersensitivity assays coupled with

ligation-mediated PCR (LM-PCR) showed an increase in DNase I sensitivity over the

TATA region of the phas promoter (Li et al. 1999). These assays also revealed a shift in the

rotationally positioned nucleosome, commensurate with remodeling of nucleosome

association with the phas promoter in the presence of PvALF. 

In this study, chromatin immunoprecipitation (ChIP) was used to determine the

nucleosomal condition of the phas promoter upon potentiation and activation in leaves from

5'14HAPvAlf plants under the four experimental regimes (U, E, EA and A) described in the

legend to Figure 3.1. DNA purified after immunoprecipitation was evaluated by PCR using

primers targeting the proximal region of the phas promoter. The targeted 227-bp amplicon

includes four RY elements [the binding motif for PvALF: Carranco et al. (2004)] and a

G-box [abscisic acid response element: Ezcurra et al. (2000)] that are essential for phas

expression (Chandrasekharan et al. 2003a). As an internal control, primers targeting the 5'

end (160-bp) of actin 2 (An et al. 1996) were used for PCR. Prior to analyses of the

modified histones status associated with the phas chromatin at various states, the

nucleosome architecture of the phas promoter was determined using antibodies targeting

the N terminus of histone H3 and C terminus of either histone H3 or H4 in ChIP assays.

Upon potentiation, nucleosome association with the proximal region (-282 to -55) of the

phas promoter is remodeled, as evidenced by the decrease in histones H3 and H4 associated
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 with the promoter (Fig. 3.3). These data suggest that a decrease in histone-DNA interaction

or displacement of histones from the phas promoter occurs during phas potentiation. A

slight increase in the level of histones H3 and H4 was detected when the phas promoter is

transcriptionally active, suggesting an increase in histone-phas interaction or the

redeposition of histones in the phas chromatin.

Histone acetylation associated with phas expression

In general, histone hyperacetylation is correlated with the permissive state of gene

expression (Wade et al. 1997; Turner 2000; Lusser et al. 2001). Using anti-acetyl histone

H3 antibody in ChIP analyses, an increase in histone acetylation was detected during phas

potentiation (E) and activation (EA) (Fig. 3.4A). To further characterize histone acetylation

at specific lysine residues upon phas expression, histone antibodies targeting either H3-K9

or H3-K14 acetylation were used. Interestingly, H3-K9 acetylation was enriched only

during phas potentiation and decreased when phas is actively transcribing (Fig. 3.4B).

Quantitation using densitometry with normalization to the actin2 control (see Materials and

Methods) gave relative enhancement (RE) values of 0.7 and 0.18 for the potentiated and

activated states compared with 0.04 for the repressed state (Fig. 3.4B, left panel),

accentuating the role of these modifications in the early stages of transcriptional expression.
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Figure 3.3 Remodeling of phas chromatin during potentiation and activation. Leaves from
5'14HAPvAlf plants were subjected to the four regimes described in the legend to Figure 1.
ChIP assays were performed with antibodies targeting the N terminus of histone H3 (A), the
C terminus of histone H3 (B) or the C terminus of histone H4 (C). Representative
ChIP-PCR products for the 227-bp phas (-282 to -55, see diagram at top)and the 160-bp
actin2 amplicons are shown (right). The ethidium bromide-stained products were
quantitated by densitometry and the relative enrichment (RE) for each treatment was
calculated (left). Results shown are averages from at least two independent experiments.
Error bars represent standard deviation.
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Figure 3.4 Histone acetylation associated with phas expression. Representative PCR results
(right) from ChIP assays using various histone antibodies. (A) anti-diacetyl H3 (K9/K14);
(B) anti-acetyl H3-K9; (C) anti-acetyl H3-K14; (D) anti-hyperacetylated H4
(K5/K8/K12/K16); (E) anti-acetyl H4-K5 and (F) anti-acetyl H4-K12. The average relative
enrichment (RE) for at least two independent experiments is shown on the left. Error bars
represent standard deviation.
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In contrast to the situation for H3-K9, substantial acetylation was detected in

uninduced leaves at H3-K14 and H4-K12 in the repressed phas chromatin (RE = 0.32 and

0.28, respectively, Figs. 4C,F; left panels). Further, H3-K14 acetylation decreased upon

phas potentiation and increased on phas activation (Fig. 3.4C). A slight increase in histone

H4 hyperacetylation was observed during active transcription from the phas promoter

(Fig. 3.4D) and a marked enrichment of acetylation of histone H4 on lys5 was detected

during phas activation but not potentiation. However, results from leaves treated with ABA

alone (A) also showed an enrichment of H4-K5 acetylation when compared to the

uninduced (U) control (Fig. 3.4E). In contrast, a decrease in acetylation of histone H4 on

lys12 was observed in the presence of ABA (Fig. 3.4F). Therefore, by temporally separating

phas potentiation from activation, we discovered that the lysine residues of histones H3 and

H4 are not globally hyperacetylated during phas expression. Rather, there is stepwise

histone acetylation and deacetylation at specific lysine residues when phas is induced to its

potentiated state and progresses to its activated state.

Histone methylation status during phas expression

Whereas lysine can be mono-, di- or trimethylated, arginine can only be mono- or

dimethylated (both asymmetrically and symmetrically) at the histone tails (Lachner and

Jenuwein 2002; Bannister and Kouzarides 2004; Tariq and Paszkowski 2004). Unlike

histone acetylation, methylation of specific lysine or arginine residues can lead to either

repressive or permissive states of gene expression (Kouzarides 2002).

To elucidate the histone methylation status associated with phas expression, ChIP
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analyses were performed using antibodies targeting methylated lysine residues H3-K4,

H3-K9 or H4-K20 under the ascribed experimental treatments (U, E, EA and A) of the

5'14HAPvAlf plants. ChIP using di- or trimethyl H3-K4 antibodies showed that changes in

both di- and trimethylation are associated with active transcription from the phas promoter

(Fig. 3.5A,B). In the presence of ABA alone, phas chromatin is dimethylated at H3-K4,

acetylated at H4-K5 and deacetylated at H4-K12. This suggests that the involvement of

ABA signaling components in recruiting other histone modifiers to the phas promoter is

PvALF-independent. However, in the absence of PvALF or chromatin remodeling, these

modifications were not sufficient to stimulate the transcriptional initiation from the phas

promoter. Trimethylation of H3-K4 was only detected for the EA regime that fully activates

the phas promoter (Fig. 3.5B).

Figure 3.5 Histone methylation associated with phas expression. Representative PCR
results (right) from ChIP assays using various histone antibodies. (A) anti-dimethyl H3-K4;
(B) anti-trimethyl H3-K4 and (C) anti-dimethyl H4-K20. The average relative enrichment
(RE) for at least two independent experiments is shown on the left. Error bars represent
standard deviation.
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Whereas H4-K20 was dimethylated in uninduced leaves or leaves treated with either

estradiol or ABA alone, transcriptionally active phas chromatin was found to be devoid of

dimethylated H4-K20 (Fig. 3.5C, lane EA). This suggests that dimethylation of histone H4

on lys20 does not impede chromatin remodeling or phas potentiation even though it has

been imputed to function in general gene silencing (Karachentsev et al. 2005). Methylation

of histone H3-K9 is also generally associated with gene silencing and heterochromatin

formation through recruitment of HP1 (heterochromatin protein 1)(Bannister et al. 2001;

Mutskov and Felsenfeld 2004). It has been shown in mammals (Schotta et al. 2004) that

H3-K9 methylation is required for the methylation of H4-K20, we expected to find that

histone H3 would be methylated at lys9. However, attempts to analyze the methylation

status of histone H3 on lys9 at the phas promoter failed to give reproducible results (data

not shown). Nevertheless, as methylation and acetylation of H3-K9 are mutually exclusive,

the low level of H3-K9 acetylation observed under repressive conditions may imply the

presence of methylated H3-K9.

Temporal profile of histone modifications during phas potentiation and activation

It is now evident that chromatin architecture is dynamic and our inducible system provides

an unusually convenient opportunity to follow chromatin changes associated with promoter

activation. Thus, while the data of Figures 3.4 and 3.5 yield the information that, when fully

potentiated histone H3 is acetylated at lys9 and that chromatin over the fully activated

promoter is trimethylated at H3-K4 and acetylated at H3-K14, the time-course information

presented in Figure 3.6 provides insight to the chronological sequence of changes in histone
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modification associated with chromatin remodeling and promoter function. The experiments

depicted in Figure 3.2A confirmed the functionality of the inducible system. However, as

both estradiol and ABA were present at the beginning of the experiment there was no clear

separation of potentiation and activation events. By modifying the procedure so that only

estradiol was present at the beginning of the experiment, only potentiation (chromatin

remodeling) events could occur. As shown in Figure 3.6A, HA-PvAlf transcripts were

detected by RT-PCR within 1 h after estradiol addition, increased in abundance over the

next 3 h, then remained at similar levels for at least 5 h after estradiol was removed.

Although HA-PvALF production was only detected 3 h after estradiol induction (Fig. 3.6B),

H3-K9 acetylation was evident within 1 h of estradiol addition and was dramatically

elevated 1.5 h after the leaves were exposed to estradiol (Fig. 3.6C). This is in accord with

the finding that acetylation of H3-K9 is associated with phas potentiation (Fig. 3.4B), and

probably reflects the presence of HA-PvALF at the early time-point at levels that were too

low for detection by the HA antibody used for Western analysis. In marked contrast to the

early onset of H3 acetylation at lysine 9, only background (or non-specific interaction)

levels were detected for trimethylated H3-K4 throughout the potentiation step. A significant
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 increase in trimethylated H3-K4 is evident for the 1 h time-point following exposure of the

leaves to ABA. At this time, the signal for trimethylated H3-K4 is already strong and

intensifies over the following 5 h whereas acetylation at H3-K9 decreases (Fig. 3.6C). After

the phas chromatin is potentiated from its repressed state in the presence of PvALF but prior

to its full activation stimulated by ABA, a transition phase with a gradual decrease in

acetylated H3-K9 and an increase in trimethylated H3-K4 was observed over the first 3 h

of activation. This suggested that it requires at least 3 h for the potentiated phas promoter

to attain its fully activated state upon ABA exposure. Therefore, the conditions of this

experiment clearly reveal the ordered changes in histone modification associated with, and

probably responsible for, transition from architectural remodeling of the promoter to its

active participation in RNA transcription. The latter function is evidenced by the appearance

of gus transcripts within 1 h of ABA addition and their attainment of a steady state level

over the following 2 h (Fig. 3.6A). GUS accumulation was detected 3 h after initiation of

mRNA production by fluorometric analysis and at 4 h by histochemical analysis (Jefferson

et al. 1987) (Fig. 3.6B).
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Figure 3.6 Temporal changes in histone modification during potentiation and activation.
Leaves from 5'14HAPvAlf plants were induced for 4 h with 25 :M estradiol alone. After
washing the leaves with water to remove estradiol, they were placed in medium containing
200 :M ABA. (A) RT-PCR analyses of HA-PvAlf, gus and EF1" transcripts. (B)
Recombinant HA-PvALF detection using anti-HA antibody in a Western blot (top) and
histochemical and fluorometric analyses for GUS expression (bottom). (C) phas PCR
products from ChIP assays using antibodies against acetylated H3-K9 and trimethylated
H3-K4.
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Discussion

Epigenetic control via histone modifications is now known to play a significant role in gene

expression and development (Schneider et al. 2004; Margueron et al. 2005). It has been

shown in many systems that histone H3 and H4 hyperacetylation, H3-K9 acetylation,

H3-K4 methylation and H3-S10 phosphorylation are involved in active gene expression

(Loidl 2004) whereas hypoacetylated histones as well as H3-K9, H3-K27 and H4-K20

methylation are markers of gene silencing (Bender 2004; Craig 2005). In contrast to the

wealth of information from animal and yeast systems, the relationship between chromatin

dynamics and development has been investigated for only a few plant genes (Hsieh and

Fischer 2005).

The phas promoter, together with the GUS reporter, provides an excellent system

for studying the dynamic changes in histone modification that accompany the transition of

a higher eukaryotic promoter from a transcriptionally silent to a highly active state. The

establishment of estradiol-inducible production of HA-PvALF in Arabidopsis leaves allows

precise analysis of these changes in chromatin status for the phas promoter as it is

remodeled from its repressed form and is poised (potentiated) for transcriptional activation.

Exposure of the potentiated promoter to ABA induces the second set of changes in

nucleosomal architecture that result in transcriptional activation. Elucidation of the dynamic

histone modification changes at the phas chromatin will thus provide insight to the

identification of potential interactions between various chromatin modifiers and PvALF as

well as other components in the ABA signaling cascade throughout seed maturation in plant

development.
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Histone status of repressed phas chromatin

Histone H4 is dimethylated at lys20 when the phas chromatin is repressed from

transcriptional activation, in accord with the finding that H4-K20 methylation functions in

gene repression (Sarg et al. 2004; Karachentsev et al. 2005). Although we were unable to

obtain decisive evidence concerning the methylation status of H3-K9 associated with phas,

H3-K9 is likely to be methylated as it is required for the methylation of H4-K20 (Schotta

et al. 2004). The absence of acetylated H3-K9 in the repressed state is in accord with this

assumption.

In contrast to the situation for H3-K9, substantial acetylation was detected in

uninduced leaves at H3-K14 and H4-K12 in repressed phas chromatin. In Drosophila,

newly synthesized histones H3 and H4 are acetylated at K14/K23 and K5/K12, respectively,

before their deposition into chromatin (Sobel et al. 1995). In yeast, identical acetylated

histone isoforms were found in the replication-coupling assembly factor (RCAF) subunits

that are involved in nucleosome reformation during DNA replication or repair (Tyler et al.

1999). The absence of H4-K5 acetylation in repressed phas chromatin may reflect a higher

turnover of the acetyl group as opposed that for acetyl groups in H3-K14 and H4-K12 after

the deposition of histones into the chromatin (Pesis and Matthews 1986; Sobel et al. 1994).

This suggests that these modifications may have a structural role in phas chromatin

formation but their presence is not sufficient to weaken histone-DNA interaction and

establish a permissive state for phas expression. 
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Remodeling of phas chromatin during potentiation

In plants, the onset of intense seed storage protein accumulation requires the presence of a

B3 domain transcription factor such as PvALF (in Phaseolus vulgaris), ABI3 (in

Arabidopsis) or VP1 (in Zea mays). These B3 factors are generally described as being

plant-specific, but are now known to include a region that has substantial similarity to the

structure of the noncatalytic DNA binding domain of the restriction enzyme EcoRII

(Yamasaki et al. 2004). We have previously shown that ectopic expression of PvALF in

tobacco leaves potentiates the normally stringently seed-specific phas promoter for

transcriptional expression (Li and Hall 1999). Similarly, ectopic expression of ABI3 in

leaves, together with ABA, permits strong expression from the phas promoter in vegetative

tissues of Arabidopsis (Ng et al. 2004). It thus appears that these factors are capable of

recognizing the phas promoter in its nucleosomal architecture, and of recruiting remodeling

complexes that yield transcriptionally active chromatin over this promoter.

The inducible system used here, together with the increasing array of specific

antibodies available for ChIP assays, permits identification of the changes and coordination

in histone modifications associated with phas remodeling and can be expected to yield

insight to the protein complexes involved. The decrease in histones H3 and H4 associated

with the promoter, as detected by ChIP analyses, are consistent with histone displacement

from the promoter, but could alternatively reflect a decrease in histone-DNA interaction

leading to less efficient cross-linking in the ChIP assay. Evidence favoring both possibilities

exists. The loss of histone contact with the activated PHO5 promoter following

hyperacetylation of histones in Saccharomyces cerevisiae has been reported (Reinke and
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Horz 2003; Boeger et al. 2004). In an impressive study in yeast, Lee et al. 2004 showed a

depletion in nucleosome occupancy at transcriptionally active regions throughout the

genome. However, in a similarly impressive study, Kassabov et al. (2003) showed that

SWI/SNF is engaged in a directional unwrapping of DNA from the edge of the nucleosome,

resulting in the formation of a more accessible DNA loop during gene activation. This, and

earlier work showing co-occupancy of transcriptional activators and histones for the HIV-1

enhancer (Steger and Workman 1997), provide evidence that histones are not completely

displaced when chromatin is being remodeled.

Histone modifications associated with phas activation

In our experiments, an increase in histones H3 and H4 was detected concomitant with the

onset of active transcription. Since a decrease in histone-DNA interaction or histone

displacement from the promoter was detected during phas potentiation, this may reflect a

simple restoration of histone-DNA interaction or a redeposition of histones; alternatively,

a coupled histone displacement and redeposition event could occur during phas activation.

Histone displacement (during or after potentiation of phas chromatin) could account for the

loss of H4-K20 dimethylation seen upon transcriptional activation of the phas promoter. An

alternative explanation would be through enzymatic demethylation. However, such an

enzyme has only recently been reported (Shi et al. 2004). This lysine-specific demethylase

1 (LSD1) targets exclusively to mono- or dimethylated H3-K4, and enzymatic reactions

capable of removing other epigenetic methylation marks (methylated H3-K9, H3-K27 and

H4-K20) remain unknown (Sarma and Reinberg 2005).
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As the PvALF-potentiated phas chromatin progresses to its activated state in the

presence of ABA, a transition phase can be discerned. This is characterized by a gradual

decrease in acetylated H3-K9 and an increase in trimethylated H3-K4. In addition to the lost

of dimethylation at H4-K20 during phas activation, these reflect displacement of histone

H3 from the potentiated phas chromatin and their replacement by histone H3.3 bearing

trimethylated lysine 4, possibly through a replication-independent nucleosome assembly

pathway (Ahmad and Henikoff 2002; Workman and Abmayr 2004). In Drosophila,

chromatin associated with transcriptionally active loci is enriched in histone H3.3 with

modifications specifying the active state of transcription (McKittrick et al. 2004). In yeast,

phosphate metabolism is regulated by the PHO system. Following hyperacetylation of

histones, nucleosomes completely unfold at the transcriptionally active PHO5 promoter

(Reinke and Horz 2003). By analogy, these findings strongly support the notion that

potentiation of the phas promoter through specific histone modifications and chromatin

remodeling leads to histone displacement and redeposition when the phas promoter is

actively transcribed in the presence of ABA. 

Similarities in histone code functions among eukaryotic systems

In agreement with the general observation that histone hyperacetylation is coupled with the

permissive state of gene expression (Wade et al. 1997; Turner 2000; Lusser et al. 2001), our

results revealed an increase in histone H3 diacetylation (at lys9 and lys14) when phas is

potentiated and activated. However, an insignificant change in H4 acetylation

(hyperacetylation, or specific acetylation at lysines 5 and 12) and H4-K20 dimethylation
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was observed when compared to the repressed phas chromatin, suggesting that the presence

of these histone H4 modifications does not affect PvALF-mediated phas remodeling.

Analysis of H3 lys9- or lys14-specific acetylation revealed that H3-K9 acetylation is

primarily associated with phas potentiation rather than activation. In contrast, H3-K14 was

found to be deacetylated during phas potentiation and acetylated upon activation. A similar

order of histone modifications is associated with the initiation of transcription from the IFN-

$ promoter following infection by Sendai virus, where H3-K9 acetylation commences 3 to

5 h post infection and persists throughout the time course of virus infection (Agalioti et al.

2002). In the IFN-$ system, an early step in transcriptional activation is the formation of an

enhanceosome (Merika and Thanos 2001). This complex contains three transcription factors

(NF-6B, IRFs and ATF-2/c-Jun) and HMG I(Y), an architectural protein that binds to

specific sites in the nucleosome-free enhancer DNA, altering its topology and lowering the

free energy for activator binding. In the phas system (Falvo et al. 1995), PvALF is known

to be required for nucleosome remodeling (Li et al. 1998; Li et al. 1999) and binds to RY

motifs (Carranco et al. 2004) present within a 68-bp seed-specific enhancer sequence (van

der Geest and Hall 1996); thus, it is functionally equivalent to the architectural protein of

the human IFN-$ system. In their silent state, the TATA regions of both the phas and IFN-$

promoter are masked by a nucleosome, preventing access by basal transcription factors.

Targeting of PvALF to the RY motifs within the phas promoter leads to the formation of

an enhanceosome and results in recruitment of chromatin modifier(s) that contain histone

acetyltransferase activities to the phas chromatin. Acetylation of H3-K9 is an early event

in transcriptional activation of the phas promoter and it is logical to speculate that, as for



79

IFN-$, this event facilitates recruitment by the enhanceosome of SWI/SNF. Subsequent

remodeling of the nucleosome over the phas TATA region through interaction of

bromodomains with the acetylated histone N-termini (Agalioti et al. 2002), permits access

by TFIID (Li et al. 1998), and sets the stage for establishment of the basal transcription

complex. In the IFN-$ system, onset of H3-K14 acetylation correlates precisely with TBP

recruitment and initiation of transcription (Agalioti et al. 2002). Activation of the phas

promoter is dependent on the addition of ABA and, as for the IFN-$ promoter, is

commensurate with acetylation of H3-K14. In addition to H3-K14 acetylation, activated

phas chromatin is enriched with trimethylated H3-K4.

In Saccharomyces cerevisiae, dimethylated H3-K4 is associated with both active and

inactive euchromatic genes while H3-K4 trimethylation results in active transcription

(Santos-Rosa et al. 2002). The yeast SET1 complex is the first H3-K4 methyltransferase to

be identified (Briggs et al. 2001). It targets the 5' portion of active mRNA coding regions

through interactions with the PolII associated factor 1 (PAF1) complex and the RNA

polymerase II complex (Krogan et al. 2003a; Ng et al. 2003b). The yeast PAF1 complex

consists of Paf1, Ctr9, Leo1, Cdc73 and Rtf1 (Krogan et al. 2002; Squazzo et al. 2002).

Arabidopsis relatives of Paf1, Ctr9 and Leo1 were identified as ELF7, ELF8 and VIP4,

respectively (Zhang and van Nocker 2002; He et al. 2004). These loci are involved in the

FRIGIDA (FRI)-mediated trimethylation of H3-K4 at the FLC chromatin in the winter-

annual habit of Arabidopsis (He et al. 2004). These studies showed that members of the

PAF1 complex in both yeast and plants share similar components in target gene regulation.

By analogy, members of the PAF1 complex and H3-K4 methyltransferase [EFS in
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Arabidopsis; He and Amasino (2005)] may be recruited to the potentiated phas promoter

through interaction with RNA PolII. Such recruitment could initiate transcription,

accompanied by changes in phas nucleosome architecture and histone modification.

Model for histone modification changes associated with phas expression

A model for events associated with the activation of transcription from the phas promoter

proposed in Figure 3.7 was derived summarizing the results obtained from ChIP analyses

conducted in this study. It is known that during vegetative growth, a rotationally positioned

nucleosome is present over the three phased TATA boxes of the phas promoter (Li et al.

1998). Dimethylation of histone H4 on lysine 20 contributes to the establishment of

heterochromatic phas chromatin whereas acetylation at H3-K14 and H4-K12 represent the

native modifications present in the histone isoforms that are being deposited in the phas

chromatin during DNA replication. The interaction of the transcription factor PvALF

(normally confined to developing embryos, but supplied ectopically in the leaf system

described here) with RY-elements of the phas promoter (Carranco et al. 2004) leads to the

recruitment of histone acetyltransferase through its acidic activation domain. Acetylation

of H3-K9 thus weakens the histone-DNA interactions at the phas promoter and constitutes

a histone code for the recruitment of a chromatin remodeling complex such as SWI/SNF.

This, as a consequence, renders phas chromatin more accessible for the assembly of other

factors and binding of a preinitiation complex as they are recruited through the ABA

signaling cascade.
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Figure 3.7 Model depicting the sequential events and ordered modification of chromatin
over the phas promoter during potentiation and activation. (A) In the repressed state during
vegetative growth, the promoter is envisaged for being heterochromatic, with nucleosomes
bearing dimethylated H4-K20. (B) PvALF-mediated potentiation of phas (1) through
recruitment of a complex with histone acetyltransferase (HAT) activity, H3-K9 is acetylated
(2). Modifications of histones may recruit a chromatin remodeler such as SWI/SNF (3)
resulting in a decrease in histone-DNA interactions (4). (C) In the presence of ABA, this
triggers components in the ABA signaling cascade (for example, ABI5) (5) that interact
with the ABRE within the phas promoter (6) with the formation of a preinitiation complex
(7). Histone displacement and redeposition of variant histones during phas activation
incorporates new histone code modifications (H3-K4 trimethylation, H3-K14 and H4-K5
acetylation) at the actively transcribed phas chromatin (8). The original repressive
chromatin status of phas is restored through DNA replication (during seed germination and
vegetative growth) (9).
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The addition of ABA, or the onset of its presence in embryos, initiates progression

from potentiation to active transcription. Cooperative binding and interactions of PvALF

and ABA-induced factors, such as ABI5 [a bZIP transcription factor that binds ABRE;

Nakamura et al. (2001)], to the RY and ABRE motifs in the phas promoter thus permit the

assembly of GTFs and RNA PolII at the TATA regions. Upon transcription initiation,

histones are displaced from the phas chromatin and the repressive methylation mark at

H4-K20 is removed. The initiation of replication-independent nucleosome assembly and

recruitment of H3-K4 methyltransferase (EFS in Arabidopsis) to RNA PolII through the

PAF1 complex thus leads to the deposition in phas chromatin of replacement histone H3.3

bearing modifications typically associated with active genes (trimethylated H3-K4,

acetylated H3-K14 and acetylated H4-K5). The repressive phas chromatin state is restored

once the level of PvALF and ABA decline at seed maturation. Conversely, on seed

germination, histone H3.3 at the phas chromatin will then be replaced by canonical histone

H3, together with modifications specifying repressed phas chromatin through a

replication-dependent nucleosome assembly pathway.



83

CHAPTER IV

ROLE OF ABI5 IN PHAS EXPRESSION

Introduction

Within the -248/-243 region of the phas promoter is the G-box (CACGTG) that is similar

to the consensus sequence C
TACGTGGC predicted (Shen and Ho 1995; Busk and Pagès

1997) for a strong abscisic acid response element (ABRE). Mutation of this G-box in the

-295phas promoter dramatically reduces the ability of the phas promoter to drive GUS

expression in developing seeds (3% activity compare to the wild type 295 bp proximal phas

promoter) (Chandrasekharan et al. 2003a). Studies have shown that ABI5, a basic leucine

zipper (bZIP) class transcription factor, is a positive ABA signal effector for seed protein

accumulation (Finkelstein and Lynch 2000). It is induced by exogenous ABA through

interaction with ABREs (Busk and Pages 1998) and with ABI3 (Nakamura et al. 2001).

Like abi3, mutation of abi5 in Arabidopsis causes a decrease in seed ABA sensitivity and

seed-specific gene expression (Finkelstein 1994; Carles et al. 2002). In a transient assay,

ABI5 was capable of trans-activating phas promoter-driven GUS expression (Gampala et

al. 2002). In this section, the role of ABI5 in phas expression is evaluated.
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Materials and Methods

Plant materials

Arabidopsis seeds were germinated under conditions described in the Materials and

Methods section (p. 14 ) of chapter II. The ABI5/AtDPBF-1 overexpressing line (Jianzhong

Ma, Texas A&M University) was kindly provided by Terry Thomas (Texas A&M

University). An abi5 T-DNA insertion mutant (Garlic 401b F08) from Syngenta Research

and Technology was obtained through Terry Thomas (Texas A&M University). Another

abi5-1 mutant (CS8015) and abi5 T-DNA insertion mutant (Salk_013163) were obtained

from Arabidopsis Biological Research Center. 

Induction treatment

Estradiol and ABA induction treatments were performed as described in the Materials and

Methods section (p. 54) of chapter III. 

Fluorescence microscopy

Green fluorescent protein (GFP) expression from developing seeds or embryos of plants

transgenic for gfp reporter was visualized using a Zeiss SV11 stereomicroscope with a

490 nm excitation filter and 500 nm or 525 nm emission filters.

Histochemical staining and fluorometric analysis of GUS activity

Histochemical staining of embryos and fluorometric analysis of GUS activity in transgenic

T2 seeds was performed as described in the Materials and Methods section (p. 21) of chapter
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II.

Results

ABA is dispensable for phas activation in the presence of both PvALF and ABI5

To evaluate the role of ABI5 in phas expression, an ABI5/AtDPBF-1 overexpressing line

(kindly provided by Dr. Terry Thomas, Texas A&M University) was doubly transformed

with a pER/HisSPvALF effector construct (Chandrasekharan et al. 2003b) and a

pHM301/-1470phas-gfp reporter construct. The resulting triple transformants

(35S-ABI5::XVE-HisSPvALF::phas-gfp) expressed ABI5 in leaves constitutively whereas

expression of HisSPvALF is controlled by estrogen application. Under non-inducing

conditions where only ABI5 is ectopically expressed in triple transformants, phas is

transcriptionally silent in leaves, as revealed by the lack of GFP expression (Fig. 4.1A,B).

This showed that the presence of ABI5 alone is not sufficient to activate the phas promoter.

When leaves from 35S-ABI5::XVE-HisSPvALF::phas-gfp plants were exposed to MS

medium containing either estradiol (25 :M) alone or estradiol (25 :M) and ABA (200 :M),

GFP fluorescence was observed 8 h after treatment. In the presence of ectopically induced

HisSPvALF through exposure to estradiol alone, it was expected that the phas promoter

would be potentiated but that no active transcription would ensue. However, overexpressing

ABI5 in leaves relieved the ABA requirement for phas activation in the presence of

ectopically expressed PvALF (Fig. 4.1C,D). In the presence of both HisSPvALF and ABI5,

ABA had a synergistic effect on phas activation (Fig. 4.1E,F). Similar results were observed
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in the roots of triple transformants (Fig. 4.2).

Figure 4.1 Fluorescence microscopy of leaves from Arabidopsis triple transformants
(35S-ABI5::XVE-HisSPvALF::-1470phas-gfp). Fluorescence microscopy with different
emission filters, 500 nm (left panel) and 525 nm (right panel). Figure shown: (A,B)
untreated leaves; (C,D) 25 :M estradiol-treated leaves and (E,F) 25 :M estradiol and 200
:M ABA-treated leaves.
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Figure 4.2 Fluorescence microscopy of roots from Arabidopsis triple transformants
(35S-ABI5::XVE-HisSPvALF::-1470phas-gfp). Fluorescence microscopy with different
emission filters, 500 nm (left panel) and 525 nm (right panel). Figure shown: (A,B)
untreated roots; (C,D) 25 :M estradiol-treated roots and (E,F) 25 :M estradiol and 200 :M
ABA-treated roots.

Effect of ABI5 mutation on phas expression

The role of ABI5 in phas expression was also evaluated in a reciprocal experiment by

transforming pHM301/-1470phas-gus or pHM301/-1470phas-gfp reporter construct into
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three different T-DNA insertion mutants of abi5. These include an Arabidopsis abi5 line

(Garlic 401b F08, Syngenta Research and Technology) containing two T-DNA insertions

in the ABI5 coding region upstream of the bZIP DNA binding domain, abi5-1 (CS8105,

ABRC) (Finkelstein 1994) and Salk_013163 (ABRC) lines that contain T-DNA insertions

in the ABI5 coding sequence and promoter region, respectively. Arabidopsis transformants

garlic401-phas-gus, garlic-phas-gfp, abi5-phas-gus, abi5-phas-gfp, salk-phas-gus and

salk-phas-gfp were selected for subsequent analyses. In all abi5 mutants, developing

embryos were obtained from developing siliques and phas-driven GFP expression was

evident as revealed by fluorescence microscopy (Fig. 4.3C-E). Whereas similar expression

pattern was observed for the phas-driven gus expression in both wild type and abi5

background (Fig. 4.3G,H), alteration of phas-driven gfp expression was observed in the

absence of function ABI5 (Fig. 4.3B-E) and a significant decrease in GFP expression was

evident in the hypocotyl region of developing embryos. Fluorometric assays for GUS

activity were performed for garlic401-phas-gus T2 seeds and results revealed no significant

difference in phas-driven GUS expression for either wild type (Col-0) or abi5 mutant (garlic

401b) plant (Fig. 4.4). The contrasting results obtained from the two reporters may reflect

their difference in nature as GUS expression is manifested through histochemical staining

whereas evaluation of GFP expression is more direct via the use of fluorescent microscope.

Therefore, although no significant change in phas-driven GUS expression was observed in

all abi5 mutants tested, the change in GFP expression pattern suggested that ABI5 may play

a role in modulating phas expression within different regions of the embryo.
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Figure 4.3 phas expression in abi5 mutants. Representative embryos showing phas
expression in different abi5 mutant lines revealed by either fluorescence microscopy (with
a 500 nm emisson filter) or histochemical staining. (A) Wild type (Col-0) Arabidopsis
embryos under fluorescence microscopy. GFP expression from the phas promoter in (B)
wild type Col-0 (Col0-phas-gfp), (C) abi5 mutant (garlic401-phas-gfp), (D) abi5-1 mutant
(abi5-phas-gfp) and (E) salk_013163 abi5 mutant (salk-phas-gfp) embryos. phas-driven
GUS expression in (F) wild type Col-0 (Col0-phas-gus), (G) abi5-1 mutant (abi5-phas-gus)
and (H) salk_013163 abi5 mutant (salk-phas-gus) embryos. Bar = 0.25 mm (A-E); 0.5 mm
(F-H).
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Figure 4.4 Fluorometric analysis of GUS activity in transgenic Arabidopsis seeds. GUS
activity was measured in transgenic Arabidopsis seeds transgenic for -1470phas-gus in
either wild type (Col-0-phas-gus) or abi5 (garlic401-phas-gus) background.

Discussion

ABI5 is involved in phas activation

In Arabidopsis, ABI5 regulates expression of a subset of late embryogenesis abundant

(LEA) genes (AtEm1, AtEm6) in response to ABA (Finkelstein and Lynch 2000; Carles et

al. 2002). By exposing 35S-ABI5::XVE-HisSPvALF::phas-gfp triple transformants to

estradiol, it showed clearly that overexpression of ABI5 renders phas activation

ABA-independent in the presence of ectopically expressed PvALF in leaves. This provides

the first direct evidence that ABI5 functions downstream of ABA during phas expression.

In Arabidopsis, ABI5 expression is induced by ABA and is cross-regulated by ABI3 that

acts synergistically with ABA (Finkelstein and Lynch 2000). Thus, the requirement for

ABA in phas activation may reflect its role in inducing ABI5 for further recruitment of
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factors to the phas promoter. 

The contrasting results observed between phas-driven expression in the reciprocal

GUS and GFP experiments using various abi5 mutants reflect the difference in nature of

these two reporter systems. Although the phas promoter can still be activated during

embryogenesis in the abi5 mutant, a change in the pattern of phas-driven GFP expression

was observed that revealed a modular regulatory role of ABI5 and the involvement of

additional bZIP transcription factors in phas activation. In Arabidopsis, approximately 80

genes encoding bZIP transcription factors have been identified (Riechmann et al. 2000).

These are divided into ten bZIP groups, each having a similar basic region and motifs

(Jakoby et al. 2002). Group A, is annotated as being involved in ABA signaling; ABI5 is

one of the 13 genes found in this group. In a yeast two-hybrid assay, Lara et al. (2003)

showed that AtbZIP10 and AtbZIP25 can interact in vivo with ABI3 in a yeast two-hybrid

assay. Additionally, synergistic activation of the At2S promoter by ABI3 together with

either AtbZIP10 or AtbZIP25 was observed in transient expression assays. Therefore, the

observed phas expression in abi5 mutants may reflect an involvement of additional bZIP

factors in the activation of the phas promoter.

Although in vitro studies have provided evidence for a direct binding to Sph and RY

elements by the B3 domain of VP1 (Suzuki et al. 1997) and PvALF (Carranco et al. 2004),

respectively, no binding of the full length B3 factor to either Sph or RY elements was

observed. It has been suggested by Ezcurra et al., (2000) that ABI3 binds to the RY

elements in the napin (napA) promoter and interacts (through the B2 domain) with a

TRAB1-type bZIP factor that binds ABREs. However, an alternative model is that ABI5



92

functions in tethering ABI3 to the At2S3 promoter through its interactions with a G-box

whereas other B3 domain containing transcription factors (FUS3 and LEC2) bind to the

flanking RY motives (Kroj et al. 2003). Therefore, it will be of interest to determine if the

RY elements within the phas promoter are the direct binding sites for PvALF or if ABI5 or

other bZIP factors are involved in mediating the interaction between PvALF and the phas

promoter. This can be achieved through the use of the established 5'14HAPvAlf line (as

described in chapter III). Anti-HA antibody can be used to pull down the HA-PvALF-bound

DNA by ChIP assay and the consensus sequence of the immunoprecipitated DNA could be

obtained by cloning the DNA into vector for sequencing. It is also of interest to determine

the role of other B3 domain-containing transcription factors (such as FUS3 or LEC2) in the

regulation of phas expression.

While, the data presented here show the involvement of ABI5 in phas expression,

additional molecular analyses are required to verify the presence or absence of abi5

transcripts in the Arabidopsis transformants. Further, having established that H3-K4

methylation and H3-K14 acetylation are both associated with phas activation (chapter III),

it is of interest to evaluate ABI5-mediated change in histone modification at the phas

chromatin by establishing an estradiol-inducible system for ectopic expression of ABI5 in

leaves of transgenic plants containing the -1470phas-gus reporter construct.
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CHAPTER V

CONCLUSIONS

Summary

The seed-specific phas promoter provides an excellent model for studying various

mechanisms involve in the temporal and spatial regulation of eukaryotic gene expression

in plants, ranging from the involvement of the transcriptional activator, PvALF, to the

chromatin remodeling through histone modifications in the phas chromatin.

The seed-specific transcriptional activator, PvALF is important in mediating the

alternation of the phas chromatin architecture for transcriptional activation in the presence

of ABA (Li et al. 1999). In order to understand the spatial control of PvALF expression,

transcription regulation of its homolog (ABI3) in Arabidopsis was investigated through

promoter deletion analyses. The full length 5.1 kb ABI3 promoter (includes a 4.6 kb

promoter region and 519 bp 5' UTR) was PCR amplified from the Arabidopsis genome and

fused to a gus reporter gene. Transgenic Arabidopsis containing the -4630/+519ABI3-gus

transgene shows seed-specific expression from the ABI3 promoter started as early as the

globular stage of embryo development. 5' and 3' ABI3 promoter deletion and reporter fusion

analyses have revealed various regulatory regions within the ABI3 promoter. These include

an intergenic region (-4630/-3600), two upstream regulatory sequences (-3600/-2033;

-2033/-882), a seed specific expression region (-882/-364), a proximal region (-364/+114).

The 5' UTR (+114/+519) of ABI3 was found to play a negative regulatory role in ABI3
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expression. It is likely that post-transcriptional mechanisms are involved in the regulation

of the ABI3 expression. 

Another aspect of this research is to elucidate the mechanisms involved in

PvALF-mediated potentiation and ABA-mediated activation of the phas promoter. Through

the establishment of a stable inducible system for PvALF expression in leaves of transgenic

plants transformed with -1470phas-gus construct, it allowed the separation of the

potentiation state of phas promoter from its activated state during the course of phas

expression. Using ChIP analyses with various histone antibodies targeting specific

modification on histones H3 and H4, histone modification changes associated with three

states of phas expression (repressed, potentiated and activated states) were revealed. In

general histone H3 or H4 are acetylated and lost contact with the phas promoter when the

phas chromatin is in its permissive state (potentiated or activated). Specific H3-K9

acetylation is associated with potentiated phas promoter while H3-K14 is deacetylated upon

phas potentiation and enriched during phas activation. H4-K5 acetylation of the phas

chromatin was found to be associated with the ABA signaling transduction cascade in

mediating the phas expression while H4-K12 acetylation was detected in the absent of ABA

or when phas is either repressed or potentiated. Trimethylation at H3-K4 and lost of

H4-K20 dimethylation are associated with activated but not potentiated phas chromatin.

Dimethylation of H3-K4 was detected in the presence of ABA supporting the involvement

of ABA signaling in phas activation, however, dimethylation of H3-K4 is not sufficient to

cause the activation of phas. The diverse histone modifications associated with the phas

expression reported thus provides new insights to the epigenetic regulation of the phas
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promoter. A model was proposed for the transcriptional regulation of the phas promoter and

this provides a basis in subsequent identification of factors involved in the phas regulation

through the powerful Arabidopsis genetics with readily available mutant lines and the

wealth of information regarding histone modifications and gene expression in other model

systems in yeasts and animals.

Finally, the role of ABI5 in ABA-mediated phas activation was investigated.

Supertransformation of both estrogen inducible PvALF construct and -1470phas-gus

construct into Arabidopsis overexpressing ABI5 in leaves render the activation of phas

ABA-independent in the presence of both ectopically expressed PvALF and ABI5 in leaves.

Results suggested ABA functions in activating ABI5 through either transcriptionally or

post-transcriptionally mechanisms. This, in turn, lead to phas activation in the presence of

PvALF. In contrast, phas-driven reporter (GUS or GFP) expression is not completely

abolished in the absence of ABI5 suggesting the presence of redundant bZIP factors capable

of activating phas expression.

In conclusion, the findings reported here have provided a more detailed investigation

of different mechanisms employed in the developmental regulation of the seed-specific phas

promoter.

Future Directions

How does PvALF gain access to the phas chromatin?

In the regulation of human IFN-$ promoter, an architectural protein, HMG I(Y) is involved

in recruiting three activators (NF-6b, IRFs and ATF-2/c-jun) to the enhancer DNA with the
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formation of enhanceosome (Falvo et al. 1995; Yie et al. 1999; Merika and Thanos 2001)

for transcriptional activation. In the case of phas expression, it is thought that PvALF

interacts with the RY motifs in the phas promoter through its B3 DNA binding domain.

However, while in vitro studies have provided evidence for direct binding to Sph and RY

elements by the B3 domain of VP1 (Suzuki et al. 1997) and PvALF (Carranco et al. 2004),

no binding has been observed for either of the full length B3 factors. Therefore, it is of

interest to investigate how PvALF gains access to the repressed phas chromatin during its

potentiation and to determine if additional factors are involved in PvALF-mediated

potentiation of the phas chromatin. One approach to achieve this is to use antibody against

HA tag to immunoprecipitate the HA-PvALF and its associated proteins from leaves of

5'14HAPvALF plants after estradiol or estradiol and ABA treatment. Protein complex

isolated can then be purified, digested into smaller peptides and used in a matrix-assisted

laser desorption/ionization time of flying mass spectrometry (MALDI-TOF-MS) analysis.

Peptide mass fingerprints obtained can be used to search against SWISS-PROT database

with the PeptIdent software.

Nucleosomal architecture of the phas chromatin over the 68-bp seed-specific enhancer

region of the phas promoter

In ChIP assays, a decrease in histone-DNA interaction during phas potentiation and

activation was observed. Therefore, it is of interest to determine the nucleosomal

architecture of the phas promoter over the 68-bp seed-specific enhancer region (SSE,

-295/-227) where three RY repeat elements and the G-box important for phas expression
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are located. This can be achieved by comparing DNase I footprints of the phas promoter

region at its repressed, potentiated and activated states in leaves using the established

inducible system. Results obtained will reveal if the 68-bp SSE is positioned in a

nucleosome or it is located at the linker DNA region between nucleosomes when phas is

repressed. In addition, this may provide insight to the nucleosomal architecture of the phas

chromatin during potentiation and activation.

Temporal histone modification changes in the phas chromatin during phas expression

The detection of the temporal changes in H3-K9 acetylation and H3-K4 trimethylation

during phas potentiation and activation demonstrated the feasibility to investigate the

gradual histone modification changes in the phas chromatin when it is potentiated from its

repressed state in the presence of PvALF (induced by estradiol) and activated upon ABA

exposure. A more thorough investigation of the temporal histone modification changes

using various histone antibodies (e.g. anti-histone H3, anti-acetyl H3-K14, anti-acetyl

H4-K5 and anti-acetyl H4-K12) is expected to reveal sequential modifications that occur

during the potentiation and the activation of the phas chromatin. This thus will permit a

more precise analysis of events that occur during phas expression. 

Mechanisms of ABI5-mediated phas expression

ABI5 was found to play a modular regulatory role in phas expression and its presence

relieves the ABA requirement for phas expression in leaves with ectopically expressed

PvALF. Analysis of its role in mediating histone modification changes in the phas
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chromatin will thus provide more insights to its regulation of phas expression. This can be

achieved by subjecting ABI5 under the control of the inducible promoter in the estrogen

inducible system (Zuo et al., 2000) in this study, and by inducing the expression of ABI5

in leaves of transgenic Arabidopsis containing the -1470phas-gus construct, it will permit

the analysis of the histone status in the phas chromatin in the presence or absence of

ectopically expressed ABI5.
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