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ABSTRACT 
 
 

Modeling Correlation in Binary Count Data With Application 

to Fragile Site Identification.  (August 2005) 

Christopher Jerry Hintze, B.S., Brigham Young University; 

M.S., Brigham Young University 

Chair of Advisory Committee:  Dr. P. Fred Dahm 
 
 

 Available fragile site identification software packages (FSM and FSM3) assume 

that all chromosomal breaks occur independently. However, under a Mendelian model of 

inheritance, homozygosity at fragile loci implies pairwise correlation between 

homologous sites. We construct correlation models for chromosomal breakage data in 

situations where either partitioned break count totals (per-site single-break and double-

break totals) are known or only overall break count totals are known. We derive a 

likelihood ratio test and Neyman’s C(α ) test for correlation between homologs when 

partitioned break count totals are known and outline a likelihood ratio test for correlation 

using only break count totals. Our simulation studies indicate that the C(α ) test using 

partitioned break count totals outperforms the other two tests for correlation in terms of 

both power and level. These studies further suggest that the power for detecting 

correlation is low when only break count totals are reported. Results of the C(α ) test for 

correlation applied to chromosomal breakage data from 14 human subjects indicate that 

detection of correlation between homologous fragile sites is problematic due to 

sparseness of breakage data. Simulation studies of the FSM and FSM3 algorithms using 

parameter values typical for fragile site data demonstrate that neither algorithm is 

significantly affected by fragile site correlation. Comparison of simulated fragile site 

misclassification rates in the presence of zero-breakage data supports previous studies 

(Olmsted 1999) that suggested FSM has lower false-negative rates and FSM3 has lower 

false-positive rates. 
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CHAPTER I 

INTRODUCTION 

1.1 DNA and Fragile Sites  

Deoxyribonucleic Acid (DNA) provides the genetic blueprint by which multi-

cellular organisms are formed and maintained. The DNA contained within each cell is 

continuously accessed and interpreted by intricate intracellular networks that recognize, 

and respond to, environmental stimuli. Survival of an organism depends on correctly-

specified, viable genes along the length of its DNA blueprint. Aberrations in certain key 

genes are associated with developmental abnormalities and cancer.  

DNA strands replicate and segregate prior to cell division. This process is not 

immune to error, including the occurrence of breaks in the replicated DNA molecules. 

We define a break in the same way as Olmsted (1999); by chromosomal break, we mean 

a break or a gap in one or both sister chromatids (if in both, at the same place). Such 

breaks are microscopically visible at metaphase of mitosis, when the DNA is tightly 

coiled and condensed into familiar chromosome structures. The location of these breaks 

can be determined using a differential staining technique known as G-banding. Figure 1 

displays stained chromosomes, some of which exhibit chromosomal breaks. The 

presence of a break (McAllister and Greenbaum 1997) is first determined by looking at 

uniformly stained chromosomes (Figure 1(a)). When a break is found, the uniform stain 

is removed, the chromosomes are G-banded (Figure 1(b)), and the break is mapped to a 

particular site. All chromosomal sites can be categorized into one of three groups: 

 
1. Zero-Breakage Sites – Sites whose probability of breakage under specific 

conditions is equal to zero (i.e., sites at which breaks are never observed). 
2. Non-Fragile Sites – Sites that experience rare, random breakage under specific 

conditions. 
3. Fragile Sites – Sites that experience frequent, non-random breakage under 

specific conditions. 
                 

This dissertation follows the style of the Journal of the American Statistical Association. 
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(a) 

 
(b) 

 
 

Figure 1. (a) Uniformly Stained and (b) Differentially Stained (G-banded) Metaphase 
Chromosomes From a Deer Mouse. Breaks in the chromosomes are indicated by arrows. The 
presence of a break is first determined by looking at the uniformly stained chromosomes in (a). 
When a break is found, the uniform stain is removed, and the chromosomes are G-banded as in 
(b). G-banding allows the location of each break to be mapped to a particular site. (Photos 
provided by Dr. Ira F. Greenbaum of Texas A&M University.) 
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 Denison et al. (2003) defined fragile sites generally as “chromosomal loci that 

experience non-random breakage when challenged under appropriate tissue culture 

conditions.” Jordan et al. (1990) defined fragile sites as “nonrandom, heritable sites on 

chromosomes that can be induced to form gaps, breaks and rearrangements under 

specific conditions.” While it is possible to observe rare, random breaks in non-fragile 

regions, fragile sites are characterized by high relative break frequencies.  

One well-characterized fragile site is known as FRAXA and has been linked to 

fragile X syndrome, the most common cause of inherited mental retardation. FRAXA is 

located near the end of the long arm of the human X chromosome (Xq27.3) and 

encompasses a CCG-trinucleotide repeat sequence immediately adjacent to a gene called 

FMR1 (for fragile X mental retardation 1, Verkerk et al. 1991).  Many other less-studied 

fragile sites are believed to exist and are the subject of intense research in cytogenetics. 

Fragile sites also have been hypothesized to be associated with cancer (Yunis 1984; 

Yunis and Soreng 1984; Hecht and Glover 1984; Hecht and Sutherland 1984; Popescu 

2003). 

 

1.2  Fragile Site Identification Methods 

Many methods, both statistical and non-statistical, have been developed in an 

attempt to identify fragile sites. We summarize these methods. 

 

1.2.1 Ad Hoc Methods 

Fragile site identifications began with ad-hoc, non-statistical methods. Initially, 

researchers used an arbitrarily-set threshold frequency of breaks (4%) to distinguish 

fragile sites from non-fragile sites (Rao et al. 1988). Olmsted (1999) noted, “The 

performance of this 4% rule depends very much on the expected break count for the non-

fragile bands, which depends on the number of cells observed.” Olmsted (1999) used a 

simulation study of Poisson counts to demonstrate that as the expected break count 

among non-fragile sites increases, the Type I error rate (associated with the 4% rule) 

decreases. When the expected number of breaks at non-fragile sites was 0.25, 23% of the 
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simulated non-fragile sites were declared fragile. When 0.5 breaks were expected, 0.2% 

of non-fragile sites were misclassified as fragile. For a constant non-fragile breakage 

probability, the expected number of breaks can only be increased by raising the number 

of metaphases observed. Thus, in terms of controlling Type I error, this simulation study 

suggests that the 4% rule is not reliable as a method for fragile site identification. 

 

1.2.2 Probability-Based Methods 

Several researchers have recognized the need for probability-based models in the 

identification of fragile sites. De Braekeleer and Smith (1988) and Vasarhelyi and 

Friedman (1989) proposed binomial models for fragile site identification. Dahm and 

Greenbaum (1994), however, showed that the binomial distribution does not provide an 

appropriate fit to breakage data. Mariani (1989) suggested that for breakage data the 

binomial distribution of break counts can be adequately approximated by the Poisson 

distribution. Mariani (1989) modeled the total number of random breaks observed at 

band i, Ni, as following a ( )icPoisson π2  distribution, where c is the number of 

metaphases analyzed, and iπ  is the probability of a break occurring at band i, i = 1, …, 

k. The method of Mariani (1989) would flag a band as fragile if the total number of 

breaks for that band were greater than h0.05, the least integer h such that 

( ) 05.0<≥ hYkP , where ( )π̂2~ cPoissonY , and cn 2/ˆ =π  is the MLE of π . Jordan et 

al. (1990) used a negative-binomial model to fit breakage data and contended that the 

negative-binomial distribution provides a better fit than the Poisson to each of three sets 

of data. Böhm et al. (1995) pointed out that “fitting chromosomal breakage data to these 

particular models does not address the question of whether the data provide evidence for 

fragile sites.” The methods of Mariani (1989) and Jordan et al. (1990) declare sites as 

fragile if they fall within a prescribed proportion (e.g. the upper 5% tail) of the assumed 

distribution. Thus, even in the cases where no fragile sites are present, the methods of 

Mariani (1989) and Jordan et al. (1990) would declare some sites to be fragile if data 

points exist within the prescribed proportion. Tai et al. (1993) assumed that, given the 

sum of k break counts equals n, random (non-fragile) breaks counts follow a multinomial 
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distribution with all cell probabilities equal to 1/k. Thus, under the null hypothesis of no 

fragile sites, the break count for each band follows a Binomial(n, 1/k) distribution. Tai et 

al. (1993) suggested testing the hypotheses H0: π i ≤ 1/k vs. H1: π i > 1/k to determine 

whether or not band i should be deemed fragile. The method of Tai et al. (1993), 

however, also suffers from the use of the binomial distribution as shown in Dahm and 

Greenbaum (1994). 
Böhm et al. (1995) developed the FSM multinomial statistical model which 

addresses many of the shortcomings of preceding methods. For instance, FSM utilizes 

the Poisson distribution. Böhm et al. (1995) showed that when no fragile sites are 

present, the Poisson distribution is the appropriate model for induced-breakage 

frequencies. FSM employs an iterative stepwise procedure of fitting a multinomial 

distribution to arrive at a maximal subset of non-fragile sites. All other sites are deemed 

fragile. Therefore, in the case where no fragile sites are present, FSM is more likely than 

previous methods (e.g., Mariani (1989) and Jordan et al. (1990)) to correctly identify 

sites as non-fragile. (Section 1.5 contains details of the FSM algorithm.) Olmsted (1999) 

adapted the FSM algorithm to account for the presence of zero-breakage sites and named 

this algorithm the FSM3 algorithm. Zero-breakage sites are chromosomal regions for 

which random breaks are never observed (i.e., have probability of breakage equal to 

zero). Zero-breakage sites may occur either because the sites are actually resistant to 

breakage or because a break results in cell death before metaphase of mitosis, making it 

impossible to observe that break. The FSM3 algorithm makes use of the positive-Poisson 

distribution in determining site fragility in order to eliminate the adverse effects of zero-

breakage site contamination in the data. (Section 1.6 contains details of the FSM3 

algorithm.)  

The common assumption of all of the methods mentioned in this section is that 

observed breaks are independent of one another. We consider a case where this 

assumption is violated; more specifically, we investigate the impact of correlation 

between fragile sites on homologous chromosomes on the FSM and FSM3 algorithms. 
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To facilitate the discussions that will follow, we first present the notation used in 

recording and summarizing breakage data. 

1.3 Data Structure and Summaries  

For a single individual, suppose that c somatic cells in metaphase are examined 

to determine whether there is a break in any of the k bands on either (or both) of the two 

homologous chromosomes. Use the following notation to record the presence (or 

absence) of a break.  Define 

⎪⎩

⎪
⎨
⎧

=
otherwise,   0 

homolog,  on the cell   theof band  at the observed isbreak  a if    1 ththth hji
X ijh (1.1) 

where i = 1, 2,…, k, j = 1, 2,…, c, and h = 1, 2. We do not distinguish between the 

maternal and paternal homologs because it is typically not possible to distinguish 

parentage based solely on karyotipic information such as that obtained when recording 

chromosomal breaks. The only exceptions to this would be the sex chromosomes, X and 

Y. 

 

1.3.1 Break Count Totals (BCT) 

The data can be summarized by determining the total number of breaks for a 

given band. The total number of breaks observed at band i is  

 ∑∑
= =

≡
c

j h
ijhi XN

1

2

1

.                                                  (1.2) 

We will hereafter refer to N1, N2, …, Nk as the Break Count Totals (BCT). 

 

1.3.2 Partitioned Break Count Totals (PBCT) 

It is also possible to summarize the data in a manner which provides more 

information than do just the total break counts. Define 

 ,
2

1
∑
=

• ≡
h

ijhij XX                                                      (1.3) 

and define 
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( )∑
=

•≡
c

j
ijXIM

i
1

00  , ( )∑
=

•≡
c

j
ijXIM

i
1

11  , and ( )∑
=

•≡
c

j
ijXIM

i
1

22  ,            (1.4) 

where  

( )
⎪⎩

⎪
⎨
⎧ =

=
•

•
otherwise,   0 

, if    1 aX
XI

ij

ija       (1.5) 

satisfy cMMM
iii
=++ 210 .Thus,

i
M 0 represents the number of metaphases examined 

for which no breaks are observed at band i, 
i

M1 represents the number of metaphases for 

which only one break is observed at band i, and 
i

M 2 represents the number of 

metaphases examined for which a break is observed at band i in both homologs. We will 

hereafter refer to ,0i
M  

i
M1 , and

i
M 2  as the Partitioned Break Count Totals (PBCT). 

Note that the BCT can be computed from the PBCT as  

ii
MMNi 21 2+= .           (1.6) 

 

1.4 Independence Assumptions 

The probability-based fragile site identification models mentioned in Section 1.2, 

including the FSM and FSM3 algorithms, are based on the following three independence 

assumptions: 

 
1. Breaks occurring at different bands are independent, whether on the same 

chromosome or on non-homologous chromosomes. Thus, Xijh and Xi’jh are 
independent, where i and i’ correspond to different bands.  

2. Breaks occurring in different cells (i.e., different metaphases) are 
independent. Thus, Xijh and Xij’h are independent, where j and j’ correspond to 
different cells. 

3. Breaks occurring at the same bands on homologous chromosomes in the 
same cell are independent. Thus, Xij1 and Xij2 are independent. 

 

Taken together, these assumptions imply that Xijh is independent of any other Xi’j’h’ when 

),,(),,( hjihji ′′′≠ . 
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1.5 FSM Algorithm 

The FSM algorithm described in Böhm et al. (1995) is an iterative procedure that 

determines the maximal subset of non-fragile sites and identifies all other sites as fragile. 

Suppose that c metaphases are examined from each of r individuals, each having the 

same set of k chromosomal sites per haploid chromosomal complement. (The sex 

chromosomes are ignored, and the distinction between maternal and paternal homologs 

is not incorporated in the formulation of the FSM algorithm.) If we consider a single 

individual and denote the probability of breakage at band i as iπ , then based on the three 

independence assumptions of Section 1.4, the total number of breaks observed at site i is 

binomially distributed as 

( )ii cBinN π,2~  for all i = 1,…, k.           (1.7) 

Since the expected number of breaks, icπ2 , is small, the distribution of the total number 

of breaks at band i can be approximated with the Poisson distribution as 

( )ii cPoissonN π,2~&  for all i = 1,…, k.                 (1.8) 

The independence of the Ni’s, i = 1, 2, …, k, and (1.8) allowed Böhm et al. (1995) to 

write the distribution of the vector of breaks, ( )kNN ,...,1=N , conditional on the total 

number of breaks, nNN
i

i == ∑ , as multinomial 

  ( ),,,~| pN knMultnN =                                            (1.9) 

where ( )kpp ,...,1=p  with ∑=
i

iiip ππ / for i = 1,…, k. 

The FSM algorithm begins by ordering the sites based on the number of break 

counts observed for each site and then testing the null hypothesis that there are no fragile 

sites present, i.e., that all sites have the same breakage probability equal to 1/k. If this 

hypothesis is rejected, then the site with the highest observed breakage is excluded and 

the remaining sites are tested for homogeneity. This process continues until the 

hypothesis of homogeneity is not rejected, creating the maximal set of non-fragile sites. 

The excluded sites are deemed fragile. The test statistic used at each iteration is  
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∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

l

l

k

i ll

i
ik kn

NNX
1

2 1
/

,             (1.10) 

where l designates the iteration at which the test is performed, ∑=
= lk

i il Nn
1

, and kl is the 

number of non-fragile bands remaining at the lth iteration. Because of the sparse nature 

of the data, the statistic of (1.10) cannot be assumed to follow a 2χ  distribution. Böhm 

et al. (1995) used the standardized test statistic 

( )
( )12

12
2

−

−−
=

l

lk
s k

kX
X l ,           (1.11) 

which is asymptotically distributed as Normal(0,1). A Bonferroni-type adjustment of the 

significance level is used at each iteration, i.e., the adjusted level is equal to α /(l + 1). 

For the initial test of homogeneity, l is equal to zero.  

 

1.6 FSM3 Algorithm 

The FSM3 algorithm developed in Olmsted (1999) is similar in nature to the 

FSM algorithm but accounts for zero-breakage site contamination of the data. Zero-

breakage sites are bands for which breaks are never observed, the inclusion of which 

violates the underlying assumptions of the FSM algorithm. Data containing zero-

breakage sites display a greater number of bands with zero breaks than would be 

expected if the data were a random sample from a Poisson distribution (I.F. Greenbaum, 

personal communication, May 6, 2005). The FSM3 algorithm removes zero-breakage 

contamination from the data by eliminating all sites with zero observed breaks from the 

analysis. 

When sites with zero observed breaks are ignored, the k1 remaining break totals 

follow a positive-Poisson distribution. That is 

( ) ( )

( )  ,
!)1(

0|

1

1

1

1

k

i

n
k

iiii

Poisson

ne

e
nnNPnp

k

ik

λ

λ
λ

λ

+

−

−

≡

−
=>==

            (1.12) 
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for i = 1, 2, …, k1, ni = 1, 2, 3, …, and 0
1
>kλ . Johnson, Kotz, and Kemp (1993) showed 

that the MLE of 
1kλ is the value 

1
ˆ

kλ  that satisfies 

1

1

ˆ
1

ˆ

ke
n k

λ

λ

−
= ,     (1.13) 

which can be solved numerically.  

The FSM3 algorithm begins at iteration zero by testing the null hypothesis of no 

fragile bands using the Rao-Robson statistic (Rao and Robson 1974; Olmsted 1999)  

( ) ( ) ( )
111

ˆˆˆ2
kk

T

kRRX λλλ XVX
−

= ,     (1.14) 

where ( )
1

ˆ
kλX  is the vector of Pearson residuals whose ith element is equal to  

( )
( )

1

1

ˆ

ˆ

1

1

ki

kii

pk

pkn

λ

λ−
      (1.15) 

and ( )−
1

ˆ
kλV  is the generalized inverse of the estimated null asymptotic covariance matrix 

of ( )
1

ˆ
kλX . The asymptotic distribution of 2

RRX  is 2
dfχ , where df equals the number of 

cells minus one. The number of cells is determined by the fact that each cell must have 

an expected count greater than or equal to e, where e is some specified minimum value. 

The default value of e for FSM3 is one. 

If the null hypothesis of no fragile sites is rejected, the algorithm continues 

iteratively, setting the value of m to two (or incrementing m by one on subsequent 

iterations), fitting a one- and m-truncated Poisson distribution, and testing for goodness 

of fit using a Pearson-type statistic which follows a chi-square distribution. The 

algorithm terminates upon rejection the null hypothesis that the data follow a truncated 

Poisson distribution or if m = f, where f is the highest break count such that the expected 

number of break counts greater than or equal to f is greater than or equal to one. FSM3 

then uses λ̂ , the MLE of λ  associated with the truncated Poisson distribution from the 

previous iteration (or from the one- and f-truncated Poisson distribution if m = f), to 

estimate the expected number of non-fragile bands having each break count in the range 
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of the data. Bands for which these expected frequencies are less than a preset threshold 

are flagged as fragile. The default threshold for FSM3 is set to 0.10. (See Olmsted 

(1999) for details of the FSM3 algorithm.) 

 

1.7 Correlated Binary Variables 

As mentioned previously, the FSM and FSM3 algorithms are based on three 

independence assumptions listed in Section 1.4. The third independence assumption 

states that Xij1 and Xij2 are independent, i.e., that breaks occurring in the same bands on 

homologous chromosomes in the same cell are independent. In this section we give a 

biologically plausible explanation of why this assumption is likely violated by the 

presence of positive correlation between homologs. We also provide a review of 

statistical methods applied to correlated binary variables. 

 

1.7.1 Biological Explanation for Correlation 

 Our consideration of correlation between homologs is motivated by the 

possibility of an underlying codominant, Mendelian model of fragile site inheritance. In 

investigating the heritability of fragile sites, researchers have found evidence that some 

fragile sites follow a Mendelian mode of inheritance (Sherman and Sutherland 1986). In 

a Mendelian model, we assume that unlinked alleles segregate independently of one 

another as they pass from one generation to the next. For purposes of discussion, let F  

 

Table 1. Breakage Probabilities in a 2 x 2 
Contingency Table 

 
 

  Xij2  
  0 1  

0 i
p00  

i
p01  iπ−1  

Xij1 
1 i

p10  
i

p11  iπ  

  iπ−1  iπ  1 



 12

denote a fragile allele at some site, and let f indicate the presence of a non-fragile allele. 

All individuals inherit one allele from their mother and one from their father. Thus, an 

individual can be either homozygous fragile, FF, heterozygous, Ff, or homozygous non-

fragile, ff. In reality, the genotype and parentage, however, are unknown.  

Under a Mendelian model for the expression of fragility and if an individual is 

homozygous fragile (FF) at a certain locus, then the third assumption of Section 1.4 is 

tenuous. For an individual homozygous at band i, observing a break in the maternal 

homolog would logically raise the likelihood of a break in the paternal homolog (or vice 

versa) if band i expresses fragility. Mathematically, this can be expressed as 

( ) ( )0|11|1 2121 ==>== ijijijij XXPXXP . Consider a single pair of homologous 

chromosomes (Xij1, Xij2) with breakage probabilities represented in a two by two 

contingency table (Table 1). With ,1001 ii
pp =  write 

( ) ( )

( )

( ) ( )

2
10111011
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)21(
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iii
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Thus, ( ) ( )0|11|1 2121 ==>== ijijijij XXPXXP  implies that the correlation between 

homologs must be positive. Individuals who are homozygous non-fragile (ff) or 

heterozygous (Ff) would not be expected to exhibit the same type of correlation since 

breaks at non-fragile sites are, by definition, random events. Therefore, we investigate 

the effects of positive correlation between homologs on the FSM and FSM3 algorithms 

and investigate this type of correlation for fragile sites only. We do concede that the 

Mendelian model described may not, in fact, be the correct model for fragile site 

inheritance, but for the purposes of this research, we will assume that correlation arises 

from Mendelian inheritance of fragile sites. 

 

1.7.2 Methods for Modeling Correlated Binary Variables 

Correlated binary data arise in a wide variety of applications. In ophthalmologic 

studies, for example, measurements are often made on both eyes from a single 

individual. These observations are highly correlated. Correlated binary data also arise in 

reproductive toxicity studies involving teratogenic, mutagenic or carcinogenic chemicals 

administered to laboratory animals. Responses measured on several littermates are 

frequently binary in nature, i.e. each animal is determined to be dead or alive, affected or 

normal, etc. Much of the research in correlated binary methodology has been motivated 

by experiments in reproductive toxicology. A review of methods for analyzing 

dichotomous response data from toxicological experiments can be found in Haseman 

and Kupper (1979).  

Originally, for treatment groups indexed by i and litters indexed by j, the number 

of successes (affected fetuses), ijx , in litters of size ijn  were assumed to follow either a 

),( ijijnBinomial π  distribution (Rosenzweig and Blaustein 1970; Zawoiski 1975; Krüger 

1970; Salsburg 1973) or a ( )ijPoisson λ  distribution (Epstein et al. 1970, 1972; Dean, 

Doak and Somerville 1975). For each treatment group, the underlying probability of 

success, ijπ , in the former was generally assumed to be equal, i.e., iij ππ =  for all j. 

Similarly, the expected Poisson count of the latter, ijλ , was generally assumed to be 
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equal to iλ  for all j. A number of investigators, however, have shown that the empirical 

distribution of fetal mortality often departs from a binomial model (Röhrborn 1968; 

McCaughran and Arnold 1976; Haseman and Soares 1976; Aeschbacher, Vuataz, Sotek 

and Stalder 1977) and from a Poisson model (Haseman and Soares 1976; McCaughran 

and Arnold 1976). 

Williams (1975) proposed a beta-binomial model for data from toxicological 

experiments that accounts for extra-binomial variation observed in the data caused by 

correlation between responses within each litter. In general, for ijx  successes among ijn  

observations in the jth litter of the ith treatment group, the model assumes that ijx  follows 

a Binomial( ijn , ijπ ) distribution where ijπ  is a random variable from a Beta(α i, β i)   

distribution, so that the marginal distribution of ijx  is 

( ) ( )
( )ii

ijiijiji

ij

ij
ijijij B

xnxB
x
n

nxX
βα
βα

,
,

|Pr
−++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ,       (1.16) 

where ( ) ( ) ( ) ( )iiiiiiB βαβαβα +ΓΓΓ=, . The model is reparameterized as ( += iii ααμ  

) 1−
iβ  and ( ) 1−+= iii βαψ . Estimates of iμ  and iψ  are obtained using maximum 

likelihood. iψ  determines the shape of the distribution whose variance is ( −1iμ  

) ( ) 11 −+ iii ψψμ . When 0=iψ , the model reduces to the simple, independent binomial 

model. Williams used this model for calculating asymptotic likelihood ratio tests for 

differences between treatment groups. In the case relevant to chromosomal breakage 

data, i.e., when 2=ijn , the beta-binomial model is identical to the additive and 

correlated-binomial models of Altham (1978) and Kupper and Haseman (1978), 

respectively, described below. Tests for homogeneity of proportions against beta-

binomial alternatives have been derived when proportions are known (Potthoff and 

Whittinghill 1966; Paul et al. 1989) and unknown (Gart 1970). 

Kupper and Haseman (1978) used results from Bahadur (1961) to create the 

“correlated binomial” model applicable to modeling data from toxicological experiments 

involving littermates. The model has the form 
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where iθ  is the pairwise covariance between responses in the same litter. The correlated 

binomial model is described in detail in Section 1.7.3.  

Altham (1978) derived two generalizations of the binomial distribution that 

account for intragroup correlation. Altham called these the additive model (which is 

identical to the correlated binomial model of Kupper and Haseman (1978) given in 

(1.17)) and the multiplicative binomial model. The multiplicative binomial model has 

the form 
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If 1=iδ , this generalization reduces to the binomial distribution. When 1>iδ , the 

distribution is (strongly) unimodal and is more sharply peaked than the binomial; this 

roughly corresponds to a negative association between the responses from the 

littermates. When 10 << iδ , the distribution is more diffuse than the binomial 

distribution and the responses are positively related. According to Altham (1978), the 

multiplicative model is less tractable and less interpretable than the additive (correlated 

binomial) model. Tarone (1979) derived C(α ) tests for the goodness of fit of the 

binomial distribution which are asymptotically optimal against the generalized binomial 

alternatives given in Altham (1978) and Kupper and Haseman (1978). 

McCaughran and Arnold (1976) suggested the use of a negative-binomial 

generalization to the Poisson model. The negative-binomial model is obtained by 

assuming that the Poisson parameter ijλ  follows a gamma distribution. Thus, the 

unconditional distribution of successes is negative binomial. McCaughran and Arnold 
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(1976) used the method of moments to estimate parameters, transformed the data in a 

manner that depends on the parameter estimates, and used analysis of variance 

techniques to test for differences between treatment and control groups. 

Various other methods for modeling correlated binary data have been proposed. 

Paul (1982) suggested a jackknife method for modeling data from teratological 

experiments. Rosner (1982) studied ophthalmologic data and proposed an ANOVA 

model for detecting group differences that accounts for pairwise-correlated observations. 

Crowder (1985) suggested a Gaussian estimation technique for correlated binomial data. 

Others (Pack 1986; Makuch et al. 1989; Rudolfer 1990; Lipsitz et al. 1991; Rao and 

Scott 1992; George and Bowman 1995; Brooks et al. 1997) have also contributed 

methods for modeling correlated binary data applicable to various scientific disciplines.  

While the research in modeling correlated binomial data is extensive, there is no 

method that can be directly applied to chromosomal breakage data. Previous research on 

data of this type focused on determining differences between treatment groups with 

litters as the experimental unit. Our purpose is to determine the effect of correlation on 

the sum of break counts from independent pairs of homologous chromosomes. We use 

results from the correlated binomial model of Kupper and Haseman (1978) and Altham 

(1978) in the special case where 2=ijn  to determine the probabilities of observing zero, 

one, and two breaks in the presence of correlation. We have derived all other results.  

 

1.7.3 The Correlated Binomial Model 

 Results from the additive correlated binomial model of Altham (1978) and 

Kupper and Haseman (1978) are applicable to chromosomal breakage data. The general 

model first will be presented following an example of Kupper and Haseman (1978), and 

then the model will be specialized to fragile site data. 

 Suppose that there are li litters in the ith group (i = 0, 1), with the jth litter in the ith 

group being of size nij, j = 1, 2,…, li. Let 

∑
=

=
ijn

h
ijhij XX

1
,                     (1.19) 
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where Xijh takes on value 1 with probability iπ  and 0 with probability ( )iπ−1 . When the 

assumption of independence is not reasonable, Badahur (1961) has shown that the 

correct expression for )( ijij xXP = is given by 
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where ),...,,( 21 ijijnijij xxxf corrects for the lack of mutual independence among the Xijh’s. 

Kupper and Haseman (1978) demonstrated that if  

iijhijh XXCov θ≡),( ' ,          (1.21) 

such that 
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In the special case where nij = 2 (which would be applicable to per-individual 

breakage data) the expression in (1.23) becomes 
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whence 

( )

( )

.)2(

,212)1(

,1)0(

2

2

iiij

iiiij

iiij

XP

XP

XP

θπ

θππ

θπ

+==

−−==

+−==

                                     (1.25) 



 18

The three statements of (1.25) demonstrate how the presence of correlation between 

maternal and paternal homologs affects the probability of observing zero, one, and two 

breaks for a single homologous pair of chromosomes. Positive correlation, which 

corresponds to 0>iθ , results in a greater number of zero-breaks and double-breaks and 

fewer single-breaks than would be expected under a fully-independent binomial or 

Poisson model.  

 

1.8 Overview 

The main goal of this research is to determine the effect of pairwise correlation 

between bands on maternal and paternal homologs on the current FSM and FSM3 

algorithms. The FSM and FSM3 algorithms are based on the assumption of complete 

independence between each observed break. In Chapter II we construct models for both 

BCT and PBCT that include the possibility that correlation between homologs exists. In 

Chapter III we derive statistical tests to detect correlation, provide simulation studies that 

compare the power and level achieved by each test, and apply the tests to a chromosomal 

breakage dataset. In Chapter IV we present simulation studies which determine the effect 

of various degrees of correlation on the FSM and FSM3 algorithms. Finally, in Chapter 

V we discuss the results of these simulation studies and state our conclusions. 
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CHAPTER II 

CORRELATED BERNOULLI TRIALS MODEL 

In the Correlated Bernoulli Trials (CorrBT) model, we retain all independence 

assumptions of FSM and FSM3 except the third assumption of Section 1.4. We consider 

the situation where correlation between identical bands on homologous chromosomes 

may exist, i.e., Xij1 and Xij2 are not necessarily independent. With the data structure as set 

forth in Section 1.3, define the covariance between Xij1 and Xij2 as 

( ) iijij XXCov θ≡21 ,                                                 (2.1) 

and the correlation between Xij1 and Xij2 as 

,),(
21

21
ijij XX

i
iijij XXCorr

σσ
θ

ρ =≡            (2.2) 

where 
ijhXσ is the standard deviation of Xijh. If the probability of breakage at band i is iπ , 

then ( )iiX ijh
ππσ −= 1  regardless of the homolog, h. Therefore,  

( ) .1
),( 21

ii

i
iijij XXCorr

ππ
θ

ρ
−

=≡            (2.3) 

From (1.25) the probabilities of observing zero, one, and two breaks at band i in a single 

metaphase are, respectively, 
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Using (2.4), the covariance can then be computed as  
2

2 ii i
P πθ −= .          (2.5) 

If 0=iθ , then the probabilities in (2.4) reduce to binomial probabilities that are 

equivalent to those modeled by FSM. Hence, the binomial model used in the derivation 

of FSM is a special case of the CorrBT model. 
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In general, we assume that the observed bands can be divided into subsets based 

on their probability of breakage and correlation. This makes it possible to model various 

degrees of correlation for sites with different probabilities of breakage. A subset may 

include only a single band or consist of the entire set of observed sites. The derivations 

that follow will be presented using the generalized notation with the subscript b 

indicating that the results apply to a subset of sites. Simulation studies in Chapter III will 

be presented where the results derived in this chapter are applied to subsets of various 

sizes. 

In this chapter we present the CorrBT model adapted to four different cases. The 

cases arise based on the type of breakage data reported (PBCT or BCT) and whether or 

not sites with break counts equal to zero are included in the analysis. The four cases are 

listed below. 

 
1. PBCT and sites with observed break counts equal to zero included. 
2. BCT and sites with observed break counts equal to zero included. 
3. PBCT and sites with positive break counts only (i.e., sites with observed break 

counts equal to zero are excluded). 
4. BCT and sites with positive break counts only (i.e., sites with observed break 

counts equal to zero are excluded). 
 

The first two cases are motivated by FSM, where all sites (including those with 

no observed breaks) are included in the analysis. The latter two cases are motivated by 

FSM3, where the possible presence of zero-breakage sites leads to the exclusion of all 

sites for which no breaks were observed. The models for cases involving only positive 

break counts would be useful when the data potentially contains zero-breakage site 

contamination. As stated in Section 1.7.1, however, correlation is believed to exist for 

fragile sites only. Therefore, the CorrBT model should be used to detect correlation only 

in subsets of sites declared fragile. This would eliminate the possibility of including a 

zero-breakage site in the subset of fragile sites since a site must display some breaks to 

be declared fragile. Thus, the latter two cases are not applicable to identifying correlation 

in fragile site breakage data. We present them only for their potential application to a 

modified FSM3 algorithm, should modeling correlation prove to be useful in 
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identification of fragile sites. The distributions for the latter two cases are derived in this 

chapter and are briefly mentioned in Chapter III when deriving likelihood ratio test 

statistics for detecting correlation. The latter two cases are not included in any 

simulation studies and are not applied to breakage data. 

 

2.1 Distribution of Partitioned Break Count Totals (PBCT) and Maximum 

 Likelihood Estimators Under the CorrBT Model 

We first consider the case where zero-, single-, and double-break counts are 

reported for each band. This type of information is usually observed by fragile-site 

researchers but is usually summarized into break count totals, which are reported and 

analyzed. 

 

2.1.1 Distribution of PBCT, ( )210 MMMM   ,,=  

Recall from (1.4) that 
i

M 0 represents the number of metaphases examined for 

which no breaks are observed at band i, 
i

M1 represents the number of metaphases for 

which only one break is observed at band i, and 
i

M 2 represents the number of 

metaphases examined for which a break is observed at band i in both homologs. For c 

metaphases with 
iii

PPP 210  and ,, as in (2.4), the distribution of ( )
iii
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multinomial with pmf 
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Marginally,  

( )
( ). ,~

, ,~

22

11

ii

ii

PcBinomialM

PcBinomialM
              (2.8) 

The PBCT likelihood for k bands is the product of the individual multinomial likelihoods 

of (2.7). That is, 
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2.1.2 PBCT Maximum Likelihood Estimators of 1P , 2P , π , θ  and ρ  

Suppose a subset of bands, b, of size kb, kb = 1, 2, …, k, are assumed to have the 

same probability of breakage, i.e. bkb
ππππ ≡=== ...21 , and the same covariance 

between maternal and paternal homologs, i.e. bkb
θθθθ ≡=== ...21 . This subset may 

include only a single band or consist of the entire set of k observed sites. Further, let the 

members of the subset be indexed by i, where i = 1, 2, …, kb.    

With M multinomially distributed, it is known (Johnson, Kotz, and Balakrishnan 

1997, p. 51) that the MLEs of 
b
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respectively. By the invariance property of MLEs (Casella and Berger 2002), the 

maximum likelihood estimators of bπ  and bθ can then be computed using (2.4), 
b

P1̂ and 

b
P2̂ using the identity 
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The MLE of bπ  is  
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where ni can be computed as in (1.2). Note that (2.12) implies the MLE of bπ under the 

CorrBT model is exactly the same that of the fully-independent Bernoulli trials model 

used by FSM and FSM3. That is, under the CorrBT model and using the partitioned 

break counts, modeling correlation does not affect the MLE of bπ . The MLE of bθ  

using (2.5) with (2.12) is  
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Using (2.3) and (2.13), the MLE of bρ  is 
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2.2 Distribution of Break Count Totals (BCT) and Maximum Likelihood 

 Estimators Under the CorrBT Model 

We now consider the case where only break count totals for each band are 

known. This is the type of data most often reported by fragile site researchers (Barbi et 

al. 1984; Glover et al. 1984; Craig-Holmes et al. 1987; Yunis et al.1987; Nagesh Rao et 

al. 1988; Böhm et al. 1995; Denison et al. 2003).  
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2.2.1 Distribution of BCT, ( )kNN ,...,1=N  

To obtain the distribution of Ni under the CorrBT Model, we use the distribution 

given in (2.7), 
ii

MMNi 21 2+= , and define 

.1MS ≡               (2.15) 
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Inserting the values from (2.16) into (2.7) and completing the change of variables we get  
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where  ,2 ..., 2, 1, ,0 cni = and  
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The distribution of iN  is obtained from (2.17) by summing over all possible 

values of Si for a fixed value of iN . That is 
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where ni = 0, 1, 2, …, 2c, sj{even} = 0, 2, 4, …, min(ni, 2c – ni), sj{odd} = 1, 3, 5, …, 

min(ni, 2c – ni),  

( )   
otherwise,   0 

even, is  if    1 
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i
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and 
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The mean of the distribution of iN is 
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The variance of the distribution of iN  is 
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The mean and variance of the distribution of iN  are given for informational purposes 

only and will not be used in further derivations or calculations. The mean and variance 

formulas are derived based on properties of the multinomial distribution (Johnson, Kotz, 

and Balakrishnan 1997, p. 34). The likelihood for k bands is 
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2.2.2 BCT Maximum Likelihood Estimators of 1P , 2P , π , θ  and ρ  

Suppose a subset of bands, b, of size kb, kb = 1, 2, …, k, are assumed to have the 

same probability of breakage, i.e. bkb
ππππ ≡=== ...21 , and the same covariance 

between maternal and paternal homologs, i.e. bkb
θθθθ ≡=== ...21 . This subset may 

include only a single band or consist of the entire set of k sites observed. Further, let the 

members of the subset be indexed by i, where i = 1, 2, …, kb.    

The MLEs of 
b

P1 , 
b

P2 , bθ , and bρ can be determined by first solving for the MLE 

of bπ , which is the same as that given in (2.12). By the invariance property of MLEs 

(Casella and Berger 2002), we can solve for the MLEs of 
b

P1  and 
b

P2 sequentially by 

solving for the MLE of 
b

P2 conditional on bπ̂  and then using the identity in (2.11) to 

compute the MLE of 
b

P1 . Noting that 21 22 PP −= π , the likelihood for the bk  bands is 
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In order to simplify the notation, define  
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The derivative of the log-likelihood from (2.25) with respect to
b

P2 is 

( )
( )

( ) ,
ˆ|

ˆ|
ˆ,|log

1

2

2

2 ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=
b

i

b

i

b

b
k

i biN

biN

b

nf

dP
ndf

dP
PLd

π

π

πnN               (2.27) 
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The MLE of
b

P2 , 
b
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The MLE of
b

P1 ,
b

P1̂ , is then  
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21 bb

PP b −= π         (2.30) 

The MLE of bθ  based on (2.12) and (2.29) is  
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2 bb b

P πθ −=         (2.31) 

Using the estimators in (2.12) and (2.31), the MLE of bρ  is 
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The R code written to calculate the MLEs of 
b

P1 , 
b

P2 , and bπ  given by (2.30), (2.29), 

and (2.12), respectively, is presented in Appendix A. 
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2.3 Distribution of Partitioned Break Count Totals (PBCT) and Maximum 

 Likelihood Estimators Under the CorrBT Model Where Only Positive Break  

 Counts Are Included 

2.3.1 Distribution of PBCT, ( )210 MMMM   ,,= , With Positive Counts Only 

The conditional likelihood for positive counts is obtained by dividing the 

likelihood in (2.9) by the probability that the number of breaks is positive (which is 

equal to one minus the probability that cM
i
=0 , 01 =

i
M , and 02 =

i
M ). That is  
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where kp is the number of sites with positive break counts. 

 

2.3.2 PBCT Maximum Likelihood Estimators of 1P , 2P , π , θ  and ρ  With Positive  

  Counts Only 

Suppose a subset of bands with positive break counts, b+, of size 
+bk , 

+bk = 1, 2, 

…, kp, have the same probability of breakage, i.e. 
++

≡=== bkb
ππππ ...21 , and the 

same covariance between homologs, i.e. 
++

≡=== bkb
θθθθ ...21 . This subset may 

include only a single band or consist of the entire set of the kp sites with positive break 

counts. Further, let the members of the subset be indexed by i, where i = 1, 2, …, 
+bk .    

The MLEs of 
+b

P1 , 
+b

P2 ,
+bθ , and

+bρ can be determined by first solving for the 

MLE of 
+bπ . The positive binomial MLE of 

+bπ  given by Johnson, Kotz, and Kemp 

(1993) is the solution,
+bπ̂ , to the equation 
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By the invariance property of MLEs (Casella and Berger 2002), we can solve for the 

MLEs of 
+b

P1  and 
+b

P2 sequentially by first solving for the MLE of 
+b

P2 conditional on 

+bπ̂  from (2.34) and then using the identity in (2.11) to compute the MLE of 
+b

P1 . If we 

note that 21 22 PP −= π , then the likelihood for the 
+bk  bands is 

( )
( ) ( ) { }( )

( )( ) .
!!))!((ˆ211

,2ˆ2ˆ21!
    

ˆ,,,|

1 21212

210or  022
)(

2

2

21

2121

2,1

∏
+

++

+++++

++

=

>>
+−

+

+−+−−

−+−
=

b

iiiib

iiii

i
b

i
b

ii
b

b

k

i
c

b

mm
mm

b
mmc

b

b

mmmmcP

mmIPPPc

cPL

π

ππ

π21 mm
MM

(2.35) 

The derivative with respect to
+b

P2 of the log-likelihood in (2.35) is  
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So, the MLE of
+b

P2 , 
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P2̂ , solves 
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The MLE of
+b

P1 ,
+b

P1̂ , is then  
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The MLE of 
+bθ  based on (2.34) and (2.37) is  
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Using (2.34) and (2.39), the MLE of
+bρ  is 
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The R code written to calculate the MLEs of 
+b

P1 , 
+b

P2 , and 
+bπ  given by (2.38), (2.37), 

and (2.34), respectively, is presented in Appendix A. 

 

2.4 Distribution of Break Count Totals (BCT) and Maximum Likelihood  

 Estimators Under the CorrBT Model Where Only Positive Break  

 Counts Are Included 

2.4.1 Distribution of BCT, ( )kNN ,...,1=N , With Positive Counts Only 

The conditional distribution of positive break counts is obtained by dividing the 

distribution of Ni in (2.25) by the probability that Ni ≠  0. That is,  
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The mean of the positive counts distribution is 
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The variance of the positive counts distribution is  
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Again, the mean and variance of the positive counts distribution are given for 

informational purposes only and will not be used in further derivations or calculations. 

The mean and variance formulas are derived based on properties of the multinomial 

distribution (Johnson, Kotz, and Balakrishnan 1997, p. 34). The likelihood for kp positive 

break count totals becomes 
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where kp is the number of sites with positive break counts and ( )iN nf
i

+  is given by (2.41). 

 

2.4.2 BCT Maximum Likelihood Estimators of 1P , 2P , π , θ  and ρ  With Positive Counts  

 Only 

Suppose we select a subset of bands with positive break counts, b+, of size 
+bk , 

+bk = 1, 2, …, kp, with the same probability of breakage, i.e. 
++

≡=== bkb
ππππ ...21 , 

and the same covariance between homologs, i.e. 
++

≡=== bkb
θθθθ ...21 . This subset 

may include only a single band or consist of the entire set of the kp sites with positive 
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break counts. Further, let the members of the subset be indexed by i, where i = 1, 2, …, 

+bk .    

The MLEs of 
+b

P1 , 
+b

P2 ,
+bθ , and

+bρ can be determined by first solving for the 

MLE of 
+bπ , which is the same as that given in (2.34). By the invariance property of 

MLEs (Casella and Berger 2002), we can solve for the MLEs of 
+b

P1  and 

+b
P2 sequentially by first solving for the MLE of 

+b
P2 conditional on 

+bπ̂  from (2.34) and 

then using the identity in (2.11) to compute the MLE of 
+b

P1 . If we note that 

21 22 PP −= π , then the likelihood for the 
+bk  bands with positive break counts is 
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The derivative with respect to
+b

P2 of the log-likelihood in (2.45) is  

( )
( )

( )
( )
( ) ,

ˆ211

ˆ21
ˆ|

ˆ|
ˆ,|log

1 2

1
22

2

2 ∑
+

++

+++

+

+

+

+

++

=

−+

+−−

+−
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=
b

b

b

i

b

i

b

b
k

i
c

b

c
bb

biN

biN

b

P

Pck

nf

dP
ndf

dP

PLd

π

π

π

π

πnN        (2.46) 

where 
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+

+

b
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ˆ|π
 is defined as in (2.28). So, the MLE of
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P2 , 

+b
P2̂ , solves 
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The MLE of
+b

P1 ,
+b

P1̂ , is then  
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The MLE of 
+bθ  based on (2.34) and (2.47) is  
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Using (2.34) and (2.49), the MLE of
+bρ  is 
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The R code written to calculate the MLEs of 
+b

P1 , 
+b

P2 , and 
+bπ  given by (2.48), (2.47), 

and (2.34), respectively, is presented in Appendix A. 
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CHAPTER III 

HYPOTHESIS TESTS FOR CORRELATION 

With a model which accounts for correlation, we can now construct and evaluate 

hypothesis tests to detect non-zero correlation. Recall that correlation in this context is 

assumed to be between identical sites on homologous chromosomes (i.e., for 

homozygous fragile sites). We present two hypothesis tests which use the PBCT, 

Neyman’s C(α ) test and a Likelihood Ratio (LR) test, and a LR test which uses the 

BCT. These three tests are evaluated in a comprehensive simulation study of type I error 

rates and power for various degrees of correlation and simulation parameters based on 

practical experimental situations. Neyman’s C(α ) test, which will be shown to be the 

most powerful, is then applied to fragile site data obtained from 14 human subjects 

(Denison et al. 2003). 

 

3.1 Neyman’s C(α ) Test for Correlation Using PBCT 

Rao (1963), among others, proposed that the efficient score vector be used in 

testing a composite hypothesis about parameters in a likelihood-based model. For a 

hypothesis about the true values of the parameter vector β , such as 00 : ββ =H , Lachin 

(2000) shows that the efficient scores test statistic for testing the null hypothesis is   

( ) ( ) ( )0
1

00
2 βUβIβU −= T
SX ,        (3.1) 

where ( )0βU  is the score vector and ( )0βI  is the expected information matrix, both 

evaluated using the null hypothesized values of β . The test statistic, 2
SX , is 

asymptotically distributed as 2χ  with degrees of freedom equal to the dimension of β . 

When constructing hypothesis tests, it is often necessary to estimate nuisance 

parameters whose values affect the outcome of the test. Neyman (1959) proposed an 

efficient score test, called the C(α ) test, for a sub-hypothesis regarding elements of the 

parameter vector β , where α  denotes nuisance parameters that must be estimated. We 
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derive the C(α ) test following the presentation of Lachin (2000) for the case where 

[ ]Tθπ ,=β  in the notation of Chapter II. Though we derive the test for only two 

parameters, the theory extends to tests involving more than two parameters. We wish to 

test 00 : θθ =H , but in doing so we must estimate π . Therefore, the composite null 

hypothesis becomes [ ]TH 00 ,:
0

θπ== βββ , where the value of π  is unrestricted. If 

( )βL  is the likelihood of β , then under the composite null hypothesis, the bivariate 

score vector is 

( ) ( ) ( )[ ] ,0
TUU θπ βββU =       (3.2) 

where 

( ) ( ) .log

i

LU
i ββ ∂

∂
=

ββ              (3.3) 

Because the nuisance parameter, π , is unrestricted, we must estimate π  under the null 

hypothesis that 0θθ = . We designate this estimate as 0π̂ , which is the solution to  

( ) .00 =πβU       (3.4) 

Thus, the resulting parameter vector under 
0β

H  is [ ]T000 ,ˆˆ θπ=β . The resulting bivariate 

score vector then becomes 

( ) ( )[ ] ,ˆ0ˆ
00

T
U θββU =              (3.5) 

since by definition ( ) 0ˆ
0 =πβU . The corresponding estimated information matrix is  
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The general form of the C(α )  test statistic is 

( ) ( ) ( ) ( )0

1

00
2 ˆˆˆ βUβIβU

−
=

T

CX α  ,       (3.7) 

which has a form similar to that of (3.1), but differs in its use of 0β̂  rather than 0β . 
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In order to apply (3.7) to fragile site data, we first select a subset of bands as 

outlined in Section 2.1.2 and assume that all kb bands have the same probability of 

breakage, bπ , and the same covariance, bθ . To determine the exact form of the C(α )  

test statistic for the test of the null hypothesis, 0:0 =bH θ , we first write the likelihood 

of (2.9) in terms of bπ  and bθ  using the identities in (2.4). That is, 
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Thus, the log-likelihood is proportional to 
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Taking derivatives, it follows that 
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Using (3.4) together with (3.10), the MLE of bπ  when 0=bθ  is the solution to the 

equation 
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which is identical to the estimator given in (2.12), that is, 
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The bivariate score vector becomes 
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where the second element is defined in (3.11). Taking second derivatives we have 
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and 
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Substituting the second derivatives of (3.15), (3.16), and (3.17) into (3.6) and finding the 

expectations, we obtain 
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Using the PBCT and (3.7) along with (3.14) and (3.19), the C(α ) test statistic for testing 

the null hypothesis, 0:0 =bH θ , is  
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The statistic ( )
2
αCX  is asymptotically distributed as 2χ  with one degree of freedom.  

Lachin (2000) gives the form of the statistic in (3.7) for the general case where 

β  has more than two elements. This result can be applied to fragile-site modeling when 

simultaneously testing q subsets, q = 1, 2, …, k, each with different assumed correlations 

and breakage probabilities. The generalized C(α ) test statistic takes the form 
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which is asymptotically distributed as 2χ  with q degrees of freedom. 

 

3.2 Likelihood Ratio Test for Correlation Using PBCT 

Derivation of the Likelihood Ratio (LR) test of the null hypothesis of zero 

correlation (or equivalently zero covariance) is straight-forward. The LR test statistic is 

simply computed using the ratio of the likelihood evaluated under the null hypothesis to 

the likelihood evaluated under the alternative hypothesis. More specifically, for a subset 

of kb bands, direct evaluation of (3.8) yields 
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with 0ˆbπ  defined as in (3.13). The statistic 2
)(PBCTLRX  is asymptotically distributed as 2χ  

with one degree of freedom. When simultaneously testing q subsets, q = 1, 2, …, k, 

where each subset is assumed to have unique values of bπ  and bθ , the LR test statistic 

takes the form 

,
1

2
)(

2
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=

=
q

b
PBCTLRPBCTLR b

XX               (3.24) 

with 2
)( bPBCTLRX defined as in (3.22) for a single subset. The test statistic in (3.24) is 

asymptotically distributed as 2χ  with q degrees of freedom.  

It is possible to adapt this LR test to the situation where only sites with positive 

break counts are used to eliminate the effects of zero-breakage site contamination. The 

test statistic for a single subset using only positive counts becomes 
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where ( )21MM mm
21

,,|,, cL θπ+  is defined as in (2.33). Furthermore, 0ˆ
+bπ  is equal to 

+bπ̂  

as given in (2.34). The estimator 
+bθ̂  is calculated as in (2.39). The test statistic 

2
)( +PBCTLR

X  is asymptotically distributed as 2χ  with one degree of freedom. As discussed 

at the beginning of Chapter II, since all sites declared fragile have positive break counts 

and there is no potential for zero-breakage sites among subsets of sites declared fragile, 

this test statistic based on positive counts will not receive further attention. 

 

3.3 Likelihood Ratio Test for Correlation Using BCT 

When only BCT are known, the LR test for correlation does not have an explicit 

form. As with the test in Section 3.2, the likelihood ratio test involves ratio of the BCT 

likelihood under the null hypothesis to that under the alternative hypothesis which 

allows non-zero correlation. Using (2.19) and (2.24), for a subset of bands as defined in 
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the previous section with homogeneous covariance, bθ , and breakage probability, bπ , 

the likelihood of BCT can be written as 
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with Aij and Bij as defined in (2.26). The LR test statistic for testing the null hypothesis 

of no correlation is 
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The estimators 0ˆbπ  and bπ̂  are equivalent and defined in (3.13). The estimate of 

covariance, bθ̂ , is given by (2.31). The test statistic 2
)(BCTLRX  is asymptotically distributed 

as 2χ  with one degree of freedom. A simultaneous test of q subsets has a test statistic of 

the form 
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and is asymptotically distributed as 2χ  with q degrees of freedom.  

When only positive break counts are analyzed, the likelihood ratio test statistic in 

(3.27) takes on a slightly different form. This test statistic is 
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where ( )nN |,θπ+L  is given by (2.44). The estimators 0ˆ
+bπ  and 

+bπ̂  are both computed as 

in (2.34). The estimator 
+bθ̂  is calculated as in (2.49). The statistic 2

)( +BCTLR
X  is 

asymptotically distributed as 2χ  with one degree of freedom. As discussed at the 

beginning of Chapter II, since all sites declared fragile have positive break counts and 
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there is no potential for zero-breakage site contamination among subsets of sites 

declared fragile, this test statistic will not receive further attention. 

 

3.4 Simulation Studies 

Simulation is a useful tool for studying complex situations in statistics. For 

model-based inference, such as that described in this research, Monte Carlo simulation is 

useful for estimating the true alpha level and power of statistical tests using empirical 

results. If the simulated data can be assumed to be random (or at least semi-random), the 

empirical estimates of power, alpha level, etc. based on simulated data are unbiased 

estimators of the true power, alpha level, etc. In our simulation study, we simulated data 

based on the number of metaphases analyzed and the multinomial probabilities of 

observing zero, one and two breaks (which depend on the assumed correlation) using a 

Uniform(0,1) random number generator. Since we know the true distribution from which 

the random numbers were generated, we can determine whether or not an inference 

made based on a given test is correct. The empirical estimates of alpha and power based 

on simulation follow a Binomial(s, p) distribution, where s is the number of simulated 

datasets and p is the proportion of null hypotheses rejected. Thus, confidence intervals 

can be constructed to portray the error associated with the empirical estimate. We 

construct 83% confidence intervals based on the normal approximation as 

( )
s

ppestimateempirical −
±

137.1 .           (3.30) 

The individual confidence intervals are based on an alpha of 0.17 instead of an alpha of 

0.05 because multiple confidence intervals are being plotted together. When making a 

pairwise comparison using two 83% confidence intervals, the effective level of the test 

for a difference is 0.05. If one is to make multiple comparisons, the confidence intervals 

should be further adjusted to control the overall error rate. 

With the three test statistics described, we now present simulation studies to 

estimate the alpha level and power of our tests for various parameter combinations. 

Simulation parameters were chosen based on the fragile-site data and experimental 
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protocol given in Böhm et al. (1995). In this section we present only the graphs 

necessary to discuss the overall outcome of the simulation studies. We have included 

results for simulations where bπ  is either 0.01 or 0.05 since the results depend on the 

probability of breakage (see discussions that follow). All simulations were performed 

using R (R Core Development Team (2003)) version 1.8.1. Complete simulated results 

are presented in Appendix B. 
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Figure 2. Simulated Alpha Level of Three Tests for Correlation Where the Breakage 
Probability Is 0.01. Simulated results are based on 1,000 Monte Carlo samples of chromosomal 
breakage data from 100 metaphases where correlation is equal to zero. The alpha level was 
computed as the percentage of simulations for which the null hypothesis of zero correlation was 
rejected. The curves in (a) are separated into plots (b), (c) and (d) and include 83% confidence 
intervals based on 1,000 simulations. 
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Figure 3. Simulated Alpha Level of Three Tests for Correlation Where the Breakage 
Probability Is 0.05. Simulated results are based on 1,000 Monte Carlo samples of chromosomal 
breakage data from 100 metaphases where correlation is equal to zero. The alpha level was 
computed as the percentage of simulations for which the null hypothesis of no correlation was 
rejected. The curves in (a) are separated into plots (b), (c) and (d) and include 83% confidence 
intervals based on 1,000 simulations. 
 

3.4.1 Type I Error Rates (Alpha Level) in Detecting Correlation for Subsets of Size kb 

Prior to estimating of the power of our tests for correlation, we must estimate the 

type I error rate (or alpha level) of each test to ensure that power comparisons among 

tests are fair. Simulated results for a nominal alpha level of 5% are presented in Figure 2 

and Figure 3. Each simulated result in this section is based on 1,000 Monte Carlo 

samples of induced chromosomal breakage data from 100 metaphases. No more than 

1,000 Monte Carlo samples were taken because of the extensive time involved in 

maximizing the BCT likelihood given by (2.24). 
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Overall, the likelihood ratio test for correlation using only the break count totals 

(LR(BCT)) performed poorly. Regardless of the breakage probability or number of 

bands in a subset, Figure 2 and Figure 3 indicate that the true alpha level for LR(BCT) 

was consistently below the nominal 5% level. The only exception was found for a subset 

of five bands with breakage probability equal to 0.01 (Figure 2(d), first confidence 

interval).  

Estimated levels for the C(α ) and LR(PBCT) tests using partitioned break count 

totals were much closer to the nominal 5% level than was the case with the LR(BCT) 

test. For both C(α ) and LR(PBCT) most of the simulated 83% confidence intervals for 

the true level covered the nominal 5% level when bπ  is 0.05 and the subset size, kb, is 

large (Figure 3), suggesting that the true alpha level for both C(α ) and LR(PBCT) is 

close to the nominal level. Furthermore, the simulated 83% confidence interval for the 

true level of the C(α ) test nearly contained the nominal level even when bπ  is 0.01 and 

kb is small, with exception of the test for a subset of ten bands (Figure 2(b), highest 

point). The LR(PBCT) test for correlation with bπ  equal to 0.01 consistently 

demonstrated an estimated error rate significantly lower than the nominal level for 

subsets with 100 bands or less (Figure 2(c)), as demonstrated by the fact that the 83% 

confidence intervals do not cover the nominal level. Based on these results, we conclude 

that the C(α ) test for correlation out-performs the others in achieving the nominal alpha 

level for nearly all subset sizes.  

Note in Figure 2 that when testing for correlation in a single band, the estimated 

alpha level for all three tests was significantly below 5% when the breakage probability 

is 0.01 (Figure 2). Only the C(α ) test had an estimated level not significantly different 

from the nominal level for a single site when the breakage probability is 0.05 (Figure 3). 

Sections 3.4.3 and 3.4.4 include further discussion on alpha levels and power for testing 

for correlation at a single band. 
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3.4.2 Power Curves for Detecting Correlation Using Subsets of Size kb 

We now present results of simulations designed to estimate the power of the 

C(α ), LR(PBCT), and LR(BCT) tests for detecting correlation. Again, each simulation 

was performed using a nominal alpha level of 5%, 100 metaphases, and a Monte Carlo 

sample size of 1,000. A comprehensive set of the power plots is given in Appendix B.  

Figure 4 and Figure 5 indicate that the C(α ) test is significantly more powerful 

than its two competitors for both breakage probabilities examined. Moreover, we 

observe an increase in estimated power with larger breakage probabilities; greater  
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Figure 4. Simulated Power Curves of Three Tests for Correlation When the Probability of 
Breakage Is 0.01. Simulated results are based on 1,000 Monte Carlo samples with 100 
metaphases. Correlations range from 0.10 to 1.00. Power was computed as the percentage of 
simulations for which the null hypothesis of no correlation was rejected. 
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Figure 5. Simulated Power Curves of Three Tests for Correlation When the Probability of 
Breakage Is 0.05. Simulated results are based on 1,000 Monte Carlo samples with 100 
metaphases. Correlations range from 0.10 to 1.00. Power was computed as the percentage of 
simulations for which the null hypothesis of no correlation was rejected. 

 

breakage probabilities likely results in more observed breaks and, therefore, yield more 

information for detecting correlation. The rate of detection of correlation increases with 

the number of sites included in a subset in both Figure 4 and Figure 5. 

 Perhaps a more important inference to be made from both Figure 4 and Figure 5 

is that the LR(BCT) test, as a practical matter, has insufficient power to detect 

correlations less than 0.50. The estimated power never gets above 20% for detecting a 

correlation of 0.10 with the LR(BCT) test. At least 50 sites with correlation equal to 0.50 

must be present to detect the correlation with estimated power of about 60%. The 

LR(BCT) test detects correlation of one existent in five sites having the same breakage 

probability with over 90% power (Figures 4 and 5, Correlation = 1.00), an unrealistic 
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situation for fragile site data. Based on these results, we eliminate the LR(BCT) test 

from consideration as a useful test for detecting correlation between identical sites on 

homologous chromosomes. Furthermore, because of the poor performance of the 

LR(BCT) test, we decided that it was unnecessary to derive and compute Neyman’s 

C(α ) test for BCT data. 

Partitioned break count totals are required to detect correlation with sufficient 

power. The C(α ) test performs at least as well or better than the LR(PBCT) test in terms 

of power for all subset sizes and for both breakage probabilities. In Figure 4 and Figure 

5, the estimated power for the C(α ) test is always greater than equal to estimated power 

of  the LR(PBCT) test. Also, the C(α ) test generally out-performs the LR(PBCT) test in 

comparisons of estimated levels. Consequently, we conclude that the C(α ) test is the 

best test of those compared for detecting all levels of correlation between identical sites 

on homologous chromosomes for subset sizes and breakage probabilities represented in 

our simulation study.  

In application of this methodology to breakage data, each site is individually 

analyzed for the presence of correlation. Without more knowledge about the true 

breakage probabilities than is currently available, validation of the assumption that sites 

with equivalent observed break totals have the same breakage probability is problematic. 

Results of Olmsted (1999), Böhm et al. (1995), McAllister and Greenbaum (1997), and 

Denison et al. (2003) indicate that data from each individual should be analyzed 

separately because of substantial variation in per-site breakage from individual to 

individual. Thus, the pooling of chromosomal breakage data across individuals in an 

inappropriate method of achieving sufficient sample sizes to detect correlation. We 

recommend that the C(α ) test for correlation between identical sites on homologous 

chromosomes should only be applied to individual sites with appropriate adjustments to 

the experiment-wise alpha level made to control overall type I error. We now present 

simulation studies of the C(α ) test using PBCT for a single site. 

In the simulation studies that follow we present the results as they relate to the 

breakage probability and number of metaphases observed. Greenbaum et al. (1997) 
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pointed out that the critical parameter involved in consideration of adequate sample size 

is not the number of metaphases observed, but the number of breaks observed. The 

expected number of breaks observed at a given site is a function of the number of 

metaphases observed and the site’s probability of breakage. Thus, in our simulation 

study where the parameters are fixed, the expected number of breaks observed can be 

easily computed from the number of metaphases (c) and the probability of breakage (π ) 

as 2cπ . We have presented the results based on the probability of breakage and the 

number of metaphases in order to see the effects of changing c and π  individually and to 

maintain a consistent scale for comparison. 

 

3.4.3 Type I Error Rates (Alpha Level) for Detecting Correlation at a Single Site Using 

 the C(α ) Test 

We now present simulation studies of the alpha level for the C(α ) test for 

correlation at a single site. Each simulated result in this section is based on 10,000 

Monte Carlo samples. (We were able to increase the number of Monte Carlo samples 

over the number used in sections 3.4.1 and 3.4.2 since we were free of the computational 

constraints accompanying calculation of the LR(BCT) test.) All simulations were 

performed with a nominal alpha level of 5%. The number of metaphases varied from 10 

to 200 and the breakage probabilities varied from 0.01 to 0.11. Denison et al. (2003) 

used FSM to analyze breakage data from 20 humans with numbers of metaphases 

ranging from 60 to 123. Thus, the number of metaphases used in our simulation covers a 

plausible range of metaphases that might be characteristic of actual experimental 

situations. 

Figure 6 illustrates that the C(α ) test for a single site apparently does not always 

achieve the nominal alpha level (5%). For numbers of metaphases greater than 100, the 

estimated alpha level achieved by the C(α ) test is generally less than 5%. If the fragile-

site breakage probability is equal to 0.05, the C(α ) test comes the closest to achieving 

the correct level for large numbers of metaphases. For the lowest simulated breakage 

probability, 0.01, the C(α ) test for a single site consistently achieves a level much lower 
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than the target 5%. The estimated alpha level generally gets closer to the nominal level 

as both the breakage probability and the number of metaphases increase. (The failure of 

the estimated level to achieve the nominal level is likely due to the discrete nature of the 

test statistic at these parameter values.) Thus, the performance in terms of type I error of 

the C(α ) test for correlation at a single site appears to depend on the breakage 

probability and number of metaphases analyzed (hence, the expected number of breaks), 

but there exists no identifiable pattern for this dependence. 

 

3.4.4 Power Curves for Detecting Correlation at a Single Site Using the C(α ) Test 

Using the same simulation parameters of Section 3.4.3 (10,000 Monte Carlo 

samples, 10 to 200 metaphases, alpha level of 5%), with the exception that correlation is 

now non-zero, we present simulation studies of the power associated with the C(α ) test 

for correlation at a single fragile site. Correlation values range from 0.1 to 1.0. Simulated 

breakage probabilities ranged from 0.01 to 0.11, but only results for a breakage 

 

 

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 20 40 60 80 100 120 140 160 180 200

Number of Metaphases (c )

A
lp

ha
 L

ev
el

0.01
0.03
0.05
0.07
0.09
0.11

 
Figure 6.  Simulated Alpha Level of the C(α ) Test for Correlation at a Single Site. 

Simulated results are based on 10,000 Monte Carlo samples where correlation equals zero. The 
alpha level was computed as the percentage of simulations for which the null hypothesis of no 
correlation was rejected. Confidence interval bars are not included since the interval width is 
less than the height of the points on the graph. 
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probability of 0.05 (typical of the other breakage probabilities in terms of overall trend) 

are included in Figure 7. Complete simulation results are presented in Appendix B. 

 Figure 7 indicates that power increases with the correlation and with the number 

of metaphases analyzed. This might be expected since the amount of breakage data (i.e., 

the expected number of breaks) increases with the number of analyzed metaphases for a 

fixed breakage probability. If 60 metaphases were analyzed (corresponding to six 

expected breaks), which is the fewest metaphases examined by Denison et al. (2003), 

then the correlation had be about 0.6 or greater in order for us to detect it with at least 

80% power. If 120 metaphases were analyzed (12 expected breaks), a correlation of 0.4 

or greater was detected with about 85% or more power. For correlations equal to 0.1 and 

0.2, the estimated power never reached 80%. These results indicate that the true 

correlation must be relatively high in order for us to detect it with the range of  
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Figure 7. Simulated Power Curves for Detecting Various Levels of Correlation at a Single 

Site When the Probability of Breakage is 0.05. Simulated results are based on 10,000 Monte 
Carlo samples, where correlations range from 0.1 to 1.0 and the number of metaphases range 
from 10 to 200. Power was computed as the percentage of simulations for which the null 
hypothesis of no correlation was rejected. Confidence interval bars are not included since the 
interval width is less than the height of the points on the graph. See Appendix B for similar 
power curves with other breakage probabilities between 0.01 and 0.11. 
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metaphases commonly used. Also, the power curves change significantly with the 

breakage probability. As the breakage probability increased from 0.01 to 0.11, the power 

to detect correlation also increased (Appendix B). 

 

3. 5 Application of the C(α ) Test to Breakage Data 

 Having concluded that the C(α ) test is preferable to the LR(BCT) and 

LR(PBCT) tests for detecting correlation between homologous chromosomes, we now 

apply the C(α ) test to human chromosomal breakage data. Breakage data from 20 

individuals (humans) were collected and reported in Table 2 of Denison et al. (2003). 

Denison et al. (2003) do not report the occurrence of single-breaks and double-breaks 

since the FSM algorithm only requires the break count totals. However, the original data 

for 14 of the 20 individuals were obtained (Denison, personal communication, Feb. 25, 

2005), enabling determination of the partitioned break count totals for each reported site. 

Table 2 (below) presents a summary of the sites for which double-breaks were observed 

and the associated C(α ) test for per-site correlation.  

In total, 15 of 58 sites (25.9%) with double-breaks were found to have 

statistically significant non-zero correlation (Table 2). However, closer inspection of this 

table reveals that no sites with more than six total breaks displayed significant positive 

correlation and that the five sites with the highest estimated correlation (0.66) had one 

single-break and one double-break. The lowest estimated correlation that was also 

statistically significant was 0.317 at the 6p21 site of Individual 2. Only one site with 

multiple double-breaks had statistically-significant estimated correlation. Furthermore, 

all but two sites for which the null hypothesis of no correlation was rejected were also 

declared non-fragile by FSM3, the more conservative of the two FSM algorithms (i.e., 

FSM3 declares fewer sites to be fragile than does FSM). Four sites (each with 3 total 

breaks) with significant correlation were declared non-fragile by both FSM and FSM3 

(Table 2).  
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Table 2. Summary of C(α ) Tests for Correlation in Human Chromosomal Breakage Data  

( )
2
αCX  Indiv Site c m1 m2 n π̂  ρ̂  FS.FSM FS.FSM3 

46.88 12 4p11-q11 107 1 1 3 0.014 0.662* no no 
43.77 10 7q32 100 1 1 3 0.015 0.662* yes no 
31.32 9 1q24 72 1 1 3 0.021 0.660* no no 
31.32 9 8q24 72 1 1 3 0.021 0.660* no no 
25.10 1 1p11-q11 58 1 1 3 0.026 0.658* no no 
41.30 13 1p21 96 2 2 6 0.031 0.656* yes yes 
29.74 2 Xq22 123 2 1 4 0.016 0.492* yes no 
23.99 16 1p21 100 2 1 4 0.020 0.490* yes no 
22.99 13 5p14 96 2 1 4 0.021 0.489* yes no 
21.49 14 2p11-q11 90 2 1 4 0.022 0.489* yes no 
16.99 9 7p11-q11 72 2 1 4 0.028 0.486* yes no 
16.99 9 9q12 72 2 1 4 0.028 0.486* yes no 
18.47 2 1p21 123 3 1 5 0.020 0.388* yes no 
13.67 3 7q31 93 3 1 5 0.027 0.383* yes no 
12.33 2 6p21 123 4 1 6 0.024 0.317* yes yes 
8.98 1 3p14 58 7 3 13 0.112 0.394 yes yes 
8.07 1 14q24 58 3 1 5 0.043 0.373 yes no 
9.78 10 1p21 100 4 1 6 0.030 0.313 yes yes 
9.33 13 11p14 96 4 1 6 0.031 0.312 yes yes 
8.22 17 14q23 86 4 1 6 0.035 0.309 yes no 
5.12 1 16q23 58 4 1 6 0.052 0.297 yes yes 
7.26 20 3p14 101 12 3 18 0.089 0.268 yes yes 
6.83 20 1p21 101 5 1 7 0.035 0.260 yes yes 
6.42 13 7q22 96 5 1 7 0.036 0.259 yes yes 
6.42 13 7q31 96 5 1 7 0.036 0.259 yes yes 
4.47 15 2p11-q11 72 5 1 7 0.049 0.249 yes yes 
5.22 12 2q33 107 6 1 8 0.037 0.221 yes yes 
4.79 10 14q23 100 6 1 8 0.040 0.219 yes yes 
3.76 13 3p14 96 15 3 21 0.109 0.198 yes yes 
2.19 1 2q33 58 6 1 8 0.069 0.194 yes yes 
2.04 1 7q32 58 10 2 14 0.121 0.188 yes yes 
3.25 13 2q33 96 7 1 9 0.047 0.184 yes yes 
2.76 17 2q33 86 7 1 9 0.052 0.179 yes yes 
3.11 12 3p14 107 28 7 42 0.196 0.171 yes yes 
2.09 9 2q33 72 7 1 9 0.063 0.170 yes yes 
2.09 15 16q23 72 7 1 9 0.063 0.170 yes yes 
1.95 19 3p14 79 21 5 31 0.196 0.157 yes yes 
2.17 3 3p14 93 23 5 33 0.177 0.153 yes yes 
1.80 4 2q33 82 8 1 10 0.061 0.148 yes yes 
1.85 17 3p14 86 17 3 23 0.134 0.147 yes yes 
1.83 20 16q23 101 9 1 11 0.054 0.135 yes yes 
1.80 16 Xp22 100 9 1 11 0.055 0.134 yes yes 
1.58 3 1p21 93 9 1 11 0.059 0.130 yes yes 
1.24 14 3p14 90 15 2 19 0.106 0.117 yes yes 
0.94 15 7q32 72 9 1 11 0.076 0.114 yes yes 
1.19 13 Xp22 96 10 1 12 0.063 0.111 yes yes 
0.83 19 16q23 79 15 2 19 0.120 0.103 yes yes 
0.83 4 14q23 82 10 1 12 0.073 0.101 yes yes 
0.38 17 16q23 86 12 1 14 0.081 0.067 yes yes 
0.32 4 7q22 82 12 1 14 0.085 0.063 yes yes 
0.27 14 16q23 90 13 1 15 0.083 0.055 yes yes 
0.18 15 3p14 72 12 1 14 0.097 0.051 yes yes 
0.00 9 3p14 72 23 3 29 0.201 0.007 yes yes 
0.00 12 16q23 107 19 1 21 0.098 -0.003 yes yes 
0.01 4 3p14 82 29 4 37 0.226 -0.012 yes yes 
0.05 10 3p14 100 20 1 22 0.110 -0.021 yes yes 
0.20 2 3p14 123 25 1 27 0.110 -0.040 yes yes 
0.17 16 3p14 100 22 1 24 0.120 -0.042 yes yes 

NOTE: A Bonferroni-type adjustment for 58 tests was used to control the overall experimental type I error rate. 
Individual correlations marked with a * are significantly different from zero at the α = 0.05/58 = 0.000862 level. The 
column titled “Indiv” refers to the individual given in Denison et al. (2003), Table 2. The columns titled “FS.FSM” and 
“FS.FSM3” refer to whether or not each site was declared fragile by FSM and FSM3, respectively.  
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These results from Table 2 suggest that the declaration of significant correlation 

at a site is closely tied to the total number of breaks observed. Only sites with relatively 

few total breaks displayed significant correlation. Because of the sparse nature of the 

data, it is difficult to believe that the correlation at any site could truly be as high as 0.66. 

Furthermore, the theory upon which the C(α ) test is based assumes that the sample size 

is large enough for the true distribution of the C(α ) test statistic to be approximated by a 
2χ  distribution. With only three to six observed breaks for sites with significant 

correlation, the validity of this large-sample approximation is doubtful. The sparseness 

in the data, together with the fact that most sites with correlation were declared non-

fragile by FSM3 and fragile by FSM, indicates that these sites likely represent 

moderately fragile sites exhibiting unusually low breakage numbers. Based on a 

Mendelian model for fragile site inheritance, however, it is likely that correlation does 

exist to some degree if an individual is homozygous fragile. The Bonferroni adjustment 

is very conservative when a large number of tests are performed, so the rejection of the 

null hypothesis of no correlation indicates that at least some significant correlation is 

present.  

 

3.6 Chapter Summary 

We have concluded that the C(α ) test using PBCT is preferable to the LR(BCT) 

and LR(PBCT) test for detecting correlation between identical sites on homologous 

chromosomes (Figures 2 through 5). The estimated level of the LR(BCT) test was 

consistently below the nominal alpha level for nearly all subset sizes and for both 

breakage probabilities presented (Figures 2 and 3). Furthermore, the LR(BCT) test has 

insufficient power to detect correlations less than 0.50 (Figures 4 and 5); for practical 

applications, the PBCT must be reported in order to detect correlation. We have 

presented power curves useful for determining the number of metaphases (or expected 

number of breaks) needed to detect specific levels of correlation at various breakage 

probabilities (Figure 7 and Appendix B). We found that the C(α ) test consistently had 

higher power for detecting correlation than the LR(BCT) test. Finally, we have shown 
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using actual breakage data that the detection of correlation is closely tied to the total 

number of breaks observed (Table 2). Without a substantial increase in the amount of 

data collected for each individual, i.e., without increasing the total number of breaks 

observed for each individual at each site, even the C(α ) test has insufficient power to 

detect correlation less than 0.5 at a single site.  
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CHAPTER IV 

FSM AND FSM3 SIMULATION STUDIES 

An important goal of this research is to establish whether or not one should 

model correlation between fragile sites on homologous chromosomes when attempting 

to identify fragile sites. Both FSM and FSM3, which are the only two computer software 

packages available (to our knowledge) for fragile site identification, assume total 

independence of all sites observed. To determine the effects of correlation on FSM and 

FSM3, we simulate data with correlation present at varying degrees and study the effects 

of that correlation on the ability of FSM and FSM3 to distinguish fragile sites from non-

fragile sites. We consider the case where correlation exists only for fragile bands. As 

described in Section 1.7.1, our assumed Mendelian model for fragile site inheritance 

suggests that correlation would exist for an individual who is homozygous at some 

particular fragile-site locus. There would be no reason to believe that non-fragile sites 

would display any degree of correlation since the breaks, by definition, in non-fragile 

sites are assumed to be random. Thus, we only simulate the case where correlation exists 

at fragile sites. 

The breakage probabilities used in our simulations are based on parameters used 

by Olmsted (1999) in her performance tests of the FSM and FSM3 algorithms. Olmsted 

(1999) presented the results for ten simulated datasets, each with 100 metaphases, 44 

non-fragile bands having a breakage probability of 0.005, and six fragile bands having 

breakage probabilities equal to 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055. Note that 

Olmsted presented the simulation parameters in terms of expected numbers of breaks 

(λ ) instead of breakage probabilities. We computed the breakage probabilities, π , using 

λ  as c2/λπ = , where c is the number of metaphases (100 in our simulations).  

Olmsted (1999) also presented results demonstrating the effects of an excess of 

zero-breakage sites (i.e., sites with breakage probability equal to zero) on the FSM and 

FSM3 algorithms. Although performing a comparison of the FSM and FSM3 algorithms 
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is not the main objective in this research, we present an auxiliary simulation study of the 

performance of FSM and FSM3 in the presence and absence of zero-breakage sites.  

In our simulation study, band resolutions of 300 and 400 were assumed, 

consistent with the band resolutions for G-banding chromosomes from deer mice and 

humans, respectively (Olmsted, 1999). Six, 12 or 18 bands were assumed fragile. 

Breakage probabilities for the case of six fragile sites were those used by Olmsted 

(1999); for the cases of 12 and 18 fragile sites, we assumed an equal number of fragile 

bands for each breakage frequency. For example, in the case of 18 fragile sites, there 

would be three bands with breakage probability equal to 0.022, three bands with 

probability of 0.024, and so forth. For 20 individuals, Denison et al. (2003) found a 

range of 7 to 20 fragile sites in each individual. For simplicity, we used 6, 12, and 18 

fragile sites. In addition, we looked at fragile-site breakage probabilities equal to and 

half those of Olmsted (1999) and included a scenario in which 20% of all sites are zero-

breakage sites. Each simulated result is based on 1,000 Monte Carlo samples. 

We present for discussion only results needed to illustrate effects of correlation 

on FSM and FSM3. Consequently, not all of the cases we simulated are given in the 

following sections. Complete simulation results are presented in Appendix C. 

 

4.1 FSM Simulation  

The Fortran-compiled FSM697 executable version of FSM described in 

Greenbaum and Dahm (1995) was used in our simulation study of the effects of 

correlation on FSM. One thousand Monte Carlo samples of breakage data were 

generated using R (R Core Development Team (2003)) version 1.8.1. A Perl (Perl 

Programming Language (freeware) (2004)) script was used to parse the FSM output and 

determine the percentage of false positives and false negatives. The percentage of false 

positives (% FP) is defined as  

100
000,1

) -   (
)    -  (

FP %

000,1

1 ×=
∑
=i

i

SitesFragileNonofNumberTotal
FragileasIdentifiedSitesFragileNonofNumber

.   (4.1) 
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Figure 8. FSM (a) False-Positive and (b) False-Negative Rates for 6, 12, and 18 Fragile 

Sites. These graphs are based on 300 total bands and breakage probabilities of 0.022, 0.0264, 
0.033, 0.0396, 0.044, and 0.055. There are an equal number of fragile sites for each breakage 
frequency, e.g. for 18 fragile sites, there are three bands with breakage probability equal to 
0.022, three bands at 0.024, and so forth. The upper left-hand graph in (a) contains curves for 6, 
12 and 18 fragile sites; these same curves are then plotted separately in the other graphs of (a) 
to make it possible to see the individual 83% confidence intervals. Results are based on 1,000 
Monte Carlo simulations. 



 59

The percentage of false negatives (% FN) is defined as  

100
000,1

)    (
)-      (

FN %

000,1

1 ×=
∑
=i

i

SitesFragileofNumberTotal
FragileNonasIdentifiedSitesFragileofNumber

.     (4.2) 

Representative results for the FSM simulation with the fragile-site breakage probabilities 

derived from those in Olmsted (1999) are presented in figures 8 through 10. The reader 

is referred to Appendix C to view the complete simulation results.  

Correlation between maternal and paternal homologs does not appear to have 

significant effects on either false-positive rate or false-negative rate of FSM. As the level 

of correlation present increases from 0.0 to 1.0, there is not a statistically significant 

change in the false-positive rate (Figure 8(a)), as demonstrated by the overlapping 83% 

confidence intervals moving from left to right in each graph. (For example, for 18 fragile 

sites and correlations of zero and 0.5 (Figure 8(a), upper right-hand graph), the 83% 

confidence intervals for the percentage of false positives are (0.0120%, 0.0192%) and 

(0.0092%, 0.0150%), respectively. These two confidence intervals overlap, indicating 

that there is not a significant difference between the two corresponding false-positive 

rates. Similar comparisons can be made for all confidence intervals in the graph.) This is 

not surprising since correlation is only introduced for fragile sites; the false-positive rate 

relates to the number of non-fragile sites declared fragile. Recall that FSM determines 

the maximal set of non-fragile sites and declares the others fragile, so it makes sense that 

the false-positive rate would not be grossly affected by correlation in fragile sites. The 

false-negative rate is only slightly affected by the introduction of correlation into the 

model.  We observe an increase of only about 3% to 7% in the false-negative rate when 

correlation changes from 0.0 to 1.0 (Figure 8(b)). This 7% change represents the worse 

case scenario. For correlation between 0.1 and 0.5, the change in false-negative rate is 

less than 3%. In reality, our data (Table 2) suggest that correlation is likely to be less 

than 0.5. Only six out of 58 sites with double breaks had estimated correlation over 0.5; 

all of these six sites had fewer than seven total breaks, indicating that these six estimates 

are probably based on insufficient information. In the absence of correlation, the FSM 

algorithm performs with an overall false-negative rate of somewhere between 45% and  
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56%, depending on the number of fragile sites present (Figure 8(b)). Our study indicates 

that the introduction of correlation does little to raise the already high false-negative rate. 

Thus, we contend that correlation in fragile sites is unlikely to have a significant adverse 

effect on the performance of the FSM algorithm as applied to breakage data for mice and 

humans. 

Figure 9 demonstrates the effect of decreasing the breakage probability of the 

fragile sites. When the breakage probabilities are halved to 0.011, 0.0132, 0.0165, 

0.0198, 0.022, and 0.0275, while maintaining a homogeneous non-fragile breakage 

probability of 0.005, the false-negative rate for 18 fragile sites rises from just below 50% 

to between 80% and 90% (Figure 9(b)). For most correlations, the false-positive rate 

nearly doubles from between 0.01% and 0.02% to between 0.02% and 0.035% (Figure 

9(a)). The performance of the FSM algorithm is closely tied to the magnitude of the 
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Figure 9. FSM (a) False-Positive and (b) False-Negative Rate Comparison for Different 

Breakage Probabilities. The green curve represents results where breakage probabilities are 
exactly half those for the blue curve. The results for 18 fragile sites are displayed with 83% 
confidence intervals. There are an equal number of fragile sites for each breakage frequency, 
e.g. for the blue curve, three bands have breakage probability equal to 0.022, three bands have 
probability of 0.024, and so forth. Results are based on 1,000 Monte Carlo simulations. 
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Figure 10. FSM (a) False-Positive and (b) False-Negative Rate Comparison Between 300- 
and 400-Band Resolutions. Fragile site breakage probabilities are equal to 0.022, 0.0264, 0.033, 
0.0396, 0.044, and 0.055. The results for 18 bands are displayed. There are an equal number of 
fragile sites for each breakage frequency, i.e., three bands have breakage probability equal to 
0.022, three bands have 0.024, and so forth. Results are based on 1,000 Monte Carlo 
simulations. 

 

breakage probabilities of the fragile sites in relation to that of the non-fragile sites. 

Lower fragile-site breakage probabilities tend to yield break counts closer to those 

generated by non-fragile sites, making it difficult to distinguish fragile sites from non-

fragile sites given such sparse information.  

This simulation study supports the claim that the FSM algorithm is conservative 

(i.e., controls the false-positive rate and has a high false-negative rate) in fragile-site 

identification (Olmsted (1999)). About half of the 18 fragile sites with breakage 

probabilities ranging from 0.022 to 0.055 were misclassified by FSM as non-fragile, 

while only 0.01% to 0.02% of non-fragile sites were misidentified as fragile (Figure 9). 

In contrast, Section 4.2 results will indicate that in the presence of an excess of zero-

breakage sites, the FSM algorithm becomes very liberal (i.e., has a relatively low false-

negative rate and a high false-positive rate) in its classification of fragile sites. 

Several other observations can be made based on this FSM simulation study. An 

increase in the total number of sites, both fragile and non-fragile, seems to be 

accompanied by a small increase in the false-negative rate (Figure 10(b)).  For several 
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correlations in Figure 10(b), the 83% confidence intervals based on 300 bands do not 

overlap the 83% confidence intervals based on 400 bands. All of the 83% confidence 

intervals for the false-positive rate, however, do overlap (Figure 10(a)). Furthermore, a 

decrease in the number of fragile sites present is accompanied by a significant increase 

in the false-negative rate (Figure 8(b); for any correlation, the 83% confidence intervals 

do not overlap from curve to curve). There is, however, no significant increase in the 

FSM false-positive rate with an increase in the number of fragile sites (Figure 8(a); for 

any correlation, the 83% confidence intervals overlap from curve to curve).  

 

4.2 FSM3 Simulation  

The FSM3 simulations were performed using parameter combinations identical 

to those in the FSM simulations. The FSM3j.exe Fortran-compiled, executable version 

of FSM3 (Olmsted (1999)) was used in our simulation study. For a detailed description 

of the FSM3 algorithm, see Olmsted (1999). Again, we simulated the data in R (R Core 

Development Team (2003)) and used a Perl (Perl Programming Language (freeware) 

(2004)) script to parse the FSM3 output and determine false-positive and false-negative 

rates as defined in (4.1) and (4.2), respectively. Complete simulated results, including 

those for the scenario where zero-breakage sites are present, are given in Appendix C. 

All results are based on 1,000 Monte Carlo samples. 

The FSM3 simulation results are similar to results of the FSM simulation 

presented in Section 4.1. Figure 11(a) suggests that correlation does not have any 

significant effect on the false-positive rate for FSM3; for each curve, the 83% 

confidence intervals overlap with the increase in correlation (i.e., left to right). Similarly, 

neither the number of fragile sites (Figure 11(a)) nor the total number of sites (Figure 

12(a)) seems to have a significant effect on the FSM3 false-positive rate. In contrast to 

the results for FSM, neither the number of fragile sites (Figure 11(b)) nor the total 

number of bands (Figure 12(b)) affects the false-negative rate of FSM3, as demonstrated 

by the overlapping 83% confidence intervals at each level of correlation. An estimated 
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Figure 11. FSM3 (a) False-Positive and (b) False-Negative Rates for 6, 12, and 18 Fragile 

Sites. These graphs are based on 300 total bands and breakage probabilities of 0.022, 0.0264, 
0.033, 0.0396, 0.044, and 0.055. There are an equal number of fragile sites for each breakage 
frequency, e.g. for 18 fragile sites, there are three bands with breakage probability equal to 
0.022, three bands at 0.024, and so forth. The upper left-hand graph in (a) contains curves for 6, 
12 and 18 fragile sites; these same curves are then plotted separately in the other graphs of (a) 
to make it possible to see the individual 83% confidence intervals. Results are based on 1,000 
Monte Carlo simulations. 
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Figure 12. FSM3 (a) False-Positive and (b) False-Negative Rate Comparison Between 300- 
and 400-Band Resolutions. Fragile site breakage probabilities are equal to 0.022, 0.0264, 0.033, 
0.0396, 0.044, and 0.055. The results for 18 bands are displayed. There are an equal number of 
fragile sites for each breakage frequency, i.e. three bands have breakage probability equal to 
0.022, three bands have probability of 0.024, and so forth. Results are based on 1,000 Monte 
Carlo simulations. 
 

increase of only about 4% to 7% in the percentage of false negatives accompanies an 

increase in correlation from zero to one; the estimated increase is less than 2% for 

correlation less than 0.5.  No significant change in the false-positive rate occurs as 

correlation varies from zero to one (Figures 11(b) and 12(b)). The estimated false-

negative rate for FSM3 ranges between 40% and 50%, indicating that the FSM3 

algorithm is conservative. The estimated false-positive rate for FSM3 is between about 

0.005% and 0.025%. (Figure 11). Figure 13 indicates that the estimated percentage of 

false positives for FSM3 remains constant (Figure 13(a)), while the estimated FSM3 

false-negative rate nearly doubles when the fragile-site breakage probabilities are halved 

(Figure 13(b)).  In conclusion, correlation between homologous chromosomes itself does 

not appear to significantly affect either the false-positive or false-negative rate of the 

FSM3 algorithm.  
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Figure 13. FSM3 (a) False-Positive and (b) False-Negative Rate Comparison for Different 

Breakage Probabilities. The green curve represents results where breakage probabilities are 
exactly half those of the blue curve. The results for 18 fragile sites are displayed. There are an 
equal number of fragile sites for each breakage frequency, e.g. for the blue curve, three bands 
have breakage probability equal to 0.022, three bands have probability of 0.024, and so forth. 
Results are based on 1,000 Monte Carlo simulations. 
 

4.3 Comparison of the FSM and FSM3 Algorithms in the Presence of Zero- 

 Breakage Sites 

We now consider the case where 20% of all sites have zero probability of 

breakage (i.e., are zero-breakage sites). Specifically, at a 300-band resolution, 60 sites 

will never break and at a 400-band resolution, 80 sites will never break. We still consider 

a range of 6, 12, and 18 fragile sites. Results for 300 bands and 18 fragile sites with 

probabilities of breakage equal to 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055 are 

presented in Figure 14 and Figure 15 as representative of results for all parameter 

combinations. Complete simulation results are presented in Appendix C. 

Figure 14 compares error rates of the FSM and FSM3 algorithms when no zero-

breakage sites are present. The FSM3 algorithm appears to outperform the FSM 

algorithm to a very small degree in the absence of zero-breakage sites in terms of false-

negative rate. FSM3 declares significantly fewer fragile sites to be non-fragile than does 

the FSM algorithm (Figure 14(b)) while maintaining a false-positive rate that is not 
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significantly different from that of FSM (Figure 14(a)). When 20% of all sites have zero 

probability of breakage, FSM3 significantly outperforms the FSM algorithm in terms of 

the false-positive rate (Figure 15). Zero-breakage sites cause an increase in the total 

number of sites being declared fragile by FSM. Thus, for FSM we see a significant drop 

in the estimated false-negative rate (Compare Figure 14(b) and Figure 15(b)) with nearly 

a ten-fold increase in the estimated false-positive rate (Compare Figure 14(a) and Figure 

15(a)). The FSM algorithm is more liberal in declaring sites as fragile in the presence of 

zero-breakage sites than in the absence of such sites. The false-positive and false 

negative rates for the FSM3 algorithm, on the other hand, do not significantly change in 

the presence or absence of zero-breakage sites (Compare Figure 14 and Figure 15). 

These results indicate that the FSM3 algorithm is preferable to the FSM algorithm in 

terms of controlling the false-positive rate both with and without zero-breakage sites 

present. 
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Figure 14. Comparison Between FSM and FSM3 (a) False-Positive and (b) False-Negative 

Rates With No Zero-Breakage Sites. These results are for 18 fragile sites, 300 total bands, and 
breakage probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055. There are an equal 
number of fragile sites for each breakage frequency, i.e. three bands have breakage probability 
equal to 0.022, three bands have probability of 0.024, and so forth. Results are based on 1,000 
Monte Carlo simulations. 
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Figure 15. Comparison Between FSM and FSM3 (a) False-Positive and (b) False-Negative 

Rates With 20% Zero-Breakage Sites Present. These results are based on 18 fragile sites, 300 
total bands, and breakage probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055. There 
are an equal number of fragile sites for each breakage frequency, i.e. three bands have breakage 
probability equal to 0.022, three bands have probability of 0.024, and so forth. Results are based 
on 1,000 Monte Carlo simulations. 
 

4.4 Chapter Summary 

Our simulation study indicates that correlation does not significantly affect either 

the FSM or FSM3 algorithm. The observed 2% to 3% increase in false-negatives for 

correlations as high as 0.5 is relatively small compared to the false-negative rates of 40% 

to 60% for FSM and FSM3. The false-positive rate remained unchanged over the entire 

range of fragile-site correlations for both algorithms unless zero-breakage sites were 

present. The FSM3 algorithm performed significantly better than the FSM algorithm in 

the presence of zero-breakage sites by effectively controlling the false-positive rate. 

Both the FSM and FSM3 algorithms appear to be conservative, which is consistent with 

Olmsted (1999). Our results suggest that in the presence of 20% zero-breakage sites the 

FSM algorithm is more liberal than the FSM3 algorithm in declaring sites fragile. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Correlation between homologous chromosomes is characterized by the 

occurrence of more double-breaks than would be expected in the case of full 

independence. If an individual is homozygous fragile at a particular locus, the 

occurrence of a break on one homolog (at that locus) would be correlated with the 

occurrence of a break on the second homolog. Non-fragile sites, however, would not 

display this type of correlation, since breaks at non-fragile sites are, by definition, 

random events.  

We first investigated detection of correlation using maximum likelihood-based 

hypothesis testing procedures. In Chapter II we derived the likelihood functions and 

maximum likelihood estimators for correlation and single-break and double-break 

probabilities under two scenarios: when only the total number of breaks per site (BCT) is 

known, and when partitioned break count totals (PBCT) are known. In Chapter III we 

derived Neyman’s C(α ) and likelihood ratio tests to detect correlation when the PBCT 

are known (LR(PBCT)) and when only the BCT are given (LR(BCT)). For realistic 

sample sizes based on experimental constraints, a simulation study of the three 

hypothesis tests for correlation demonstrated that the LR(BCT) test for correlation fails 

to achieve the correct level and has low power except in cases either of high correlation 

( 5.0>ρ ) or large fragile site subset sizes (kb > 100) with equal breakage probabilities 

and equal correlation. In the extreme case wherein each site is assumed to have a unique 

breakage probability and correlation, the LR(BCT) test has no power for detecting 

correlation. Thus, break count totals alone provide insufficient information for detecting 

correlation, i.e., known partitioned break count totals are required in order to achieve 

adequate power for detection of correlation via the likelihood ratio test. Simulation 

studies suggested that the C(α ) test is the most powerful test of the three were 

investigated for detecting correlation at any of the breakage probabilities we considered. 

We provide power curves for different breakage probabilities and correlations that 
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indicate sample size requirements for application of the C(α ) test for correlation to a 

single site (Chapter III and Appendix B). Application of the C(α ) test to human 

breakage data (Denison et al. 2003) revealed that the rejection of the null hypothesis of 

no correlation is strongly influenced by the total number of observed breaks. The null 

hypothesis was never rejected for sites with more than six total breaks. The sparse nature 

of chromosomal breakage data appears to impose severe limitations on the ability to 

detect correlation.  

Significant adverse effects of correlation on the FSM and FSM3 fragile site 

identification algorithms were not evident (Chapter IV). The false-negative error rate of 

FSM and FSM3 in the absence of zero-breakage sites is estimated to be between 40% 

and 60% for the fragile-site breakage probabilities of Olmsted (1999). The false-negative 

error rate exhibits an increase of only about 2% to 3% as correlation changes uniformly 

in all fragile sites from 0.0 to 0.5. The false-positive rate, estimated to range from about 

0.005% to 0.025% for both algorithms, was not significantly affected by changes in 

correlation. Our empirical studies suggest that both the FSM and FSM3 algorithms are 

conservative, which is consistent with the results of Olmsted (1999). Restriction of 20% 

of all sites to have zero probability of breakage resulted in nearly a ten-fold increase in 

the percentage of false positives for the FSM algorithm. In contrast, the FSM3 algorithm 

maintains the observed range of 0.005% to 0.025% false positives in the presence of 

zero-breakage sites. Our results suggest that if one desires to control the rate of false 

positives, FSM3 should be used instead of FSM for fragile site identification because of 

the possibility that zero-breakage sites contaminate the data. In contrast, if the goal is to 

identify all sites that may be fragile, our results indicate that the FSM algorithm would 

be preferable. Since the FSM and FSM3 algorithms were not significantly affected by 

any degree of correlation, we believe that the two algorithms do not need to be modified 

to account for the presence of correlation between fragile sites on homologous 

chromosomes. 
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APPENDIX A 
 

R CODE FOR CALCULATING NON-TRIVIAL MAXIMUM LIKELIHOOD  

ESTIMATORS 

The R code used to find the MLEs for 1P , 2P , and π  given in Chapter II is found 

in this Appendix. The functions that determine the MLEs also return the value of the 

log-likelihood evaluated at the corresponding MLE values. The functions that return the 

MLEs are given first, followed by a list of necessary functions which are called during 

the maximization routines. 

 

PBCT Maximum Likelihood Estimators of P1, P2, and π  With Positive Counts 

Only 

## Usage: posMult.MLE.P1.P2.Pi(M,Band,cutoff) 
## M = # of metaphases(c) 
## Band = k x 3 Matrix whose first column contains zero-break counts  
##  (M0), second column contains single-break counts (M1), and 
##  third column contains double-break counts (M2) 
## T = Vector of k break counts 
## t = Single break count 
## P1,P2,P = Values of P1,P2,Pi for calculating likelihood 
## cutoff = Precision for ML estimates (1E-9 works fine) 
## Returns vector (P1.hat,P2.hat,Pi.hat,log-Likelihood) 
## 
## The function Exact.MLE.P1.P2.Pi(M,T,Cutoff) requires the functions 
## posBinomial.MLE(M,T) 
## F.PMultpos<-function(M,T,P,P2) 
## logLikelihood.posExact(M,T,P) 
## posExact.MLE.above(M,T,cutoff) 
## posExact.MLE.below(M,T,cutoff) 
 
posMult.MLE.P1.P2.Pi(M,Band,cutoff) 

  

BCT Maximum Likelihood Estimators of P1, P2, and π  

## Usage: Exact.MLE.P1.P2.Pi(M,T,Cutoff) 
## M = # of metaphases(c) 
## T = Vector of k break counts 
## t = Single break count 
## P1,P2,P = Values of P1,P2,Pi for calculating likelihood 
## Cutoff = Precision for ML estimates (1E-9 works fine) 
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## Returns vector (P1.hat,P2.hat,Pi.hat,log-Likelihood) 
## 
## The function Exact.MLE.P1.P2.Pi(M,T,Cutoff) requires the functions 
## Binomial.MLE(M,T) 
## Sum.f.of.P.t(M,t,P1,P2) 
## Sum.dP2.h.of.P.t(M,t,P1,P2) 
## F.P<-function(M,T,P,P2) 
## logLikelihood.Exact(M,T,P) 
## Exact.MLE.above(M,T,cutoff) 
## Exact.MLE.below(M,T,cutoff) 
 
Exact.MLE.P1.P2.Pi(M,T,cutoff) 

 

BCT Maximum Likelihood Estimators of P1, P2, and π  With Positive Counts Only 

## Usage: posExact.MLE.P1.P2.Pi(M,T,cutoff) 
## M = # of metaphases(c) 
## T = Vector of k break counts 
## t = Single break count 
## P1,P2,P = Values of P1,P2,Pi for calculating likelihood 
## cutoff = Precision for ML estimates (1E-9 works fine) 
## Returns vector (P1.hat,P2.hat,Pi.hat,log-Likelihood) 
## 
## The function Exact.MLE.P1.P2.Pi(M,T,Cutoff) requires the functions 
## posBinomial.MLE(M,T) 
## Sum.f.of.P.t(M,t,P1,P2) 
## Sum.dP2.h.of.P.t(M,t,P1,P2) 
## F.Ppos<-function(M,T,P,P2) 
## logLikelihood.posExact(M,T,P) 
## posExact.MLE.above(M,T,cutoff) 
## posExact.MLE.below(M,T,cutoff) 
 
posExact.MLE.P1.P2.Pi(M,T,cutoff) 

 

Necessary Functions 

######################## Binomial.MLE ################################# 
## Returns MLE of Pi & log-Binomial Likelihood 
Binomial.MLE<-function(M,T){ 
 b<-length(T) 
 Bin.MLE<-mean(T)/(2*M) 
 Bin.Like<-0 
 for (i in 1:b){ 
  Bin.Like<-Bin.Like + log(dbinom(T[i],2*M,Bin.MLE)) 
 } 
c(Bin.MLE,Bin.Like) 
} 
 
######################### Sum.f.of.P.t ################################ 
## Returns sum f(n) 
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Sum.f.of.P.t <- function(M,t,P1,P2){ 
 #EVEN t 
 if(floor(t/2) == ceiling(t/2)){ 
  Sum <- 0 
  for (s in 0:(min(t,2*M-t))){ 
   #EVEN s 
   if(floor(s/2) == ceiling(s/2)){ 
    A<-s*log(P1) + sum(log(seq(1,M))) 
    B<-((t-s)/2)*log(P2) 
    C<-(M-(s+t)/2)*log(1-P1-P2) 
    if(s == t){ 
     D<-0 
    }else{ 
     D<-sum(log(seq(1,(t-s)/2))) 
    } 
    if(M == (s+t)/2){ 
     E<-0 
    }else{ 
     E<-sum(log(seq(1,M-(s+t)/2))) 
    } 
    if(s == 0){ 
     F<-0 
    }else{ 
     F<-sum(log(seq(1,s))) 
    } 
    log.sum <- A+B+C-D-E-F 
    Sum <- Sum + exp(log.sum) 
   } 
  } 
 } 
 #ODD t 
 if(floor(t/2) != ceiling(t/2)){ 
  Sum <- 0 
  for (s in 1:(min(t,2*M-t))){ 
   #ODD s 
   if(floor(s/2) != ceiling(s/2)){ 
    A<-s*log(P1)+ sum(log(seq(1,M))) 
    B<-((t-s)/2)*log(P2) 
    C<-(M-(s+t)/2)*log(1-P1-P2) 
    if(s == t){ 
     D<-0 
    }else{ 
     D<-sum(log(seq(1,(t-s)/2))) 
    } 
    if(M == (s+t)/2){ 
     E<-0 
    }else{ 
     E<-sum(log(seq(1,M-(s+t)/2))) 
    } 
    if(s == 0){ 
     F<-0 
    }else{ 
     F<-sum(log(seq(1,s))) 
    } 
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    log.sum <- A+B+C-D-E-F 
    Sum <- Sum + exp(log.sum) 
   } 
  } 
 } 
Sum 
} 
 
######################## Sum.dP2.h.of.P.t ############################# 
##Returns derivative wrt P2 of h(P,n) 
Sum.dP2.h.of.P.t <- function(M,t,P1,P2){ 
 #EVEN t 
 if(floor(t/2) == ceiling(t/2)){ 
  Sum <- 0 
  for (s in 0:(min(t,2*M-t))){ 
   #EVEN s 
   if(floor(s/2) == ceiling(s/2)){ 
    A<-s*log(P1)+ sum(log(seq(1,M))) 
    B<-((t-s)/2)*log(P2) 
    C<-(M-(s+t)/2)*log(1-P1-P2) 
    if(s == t){ 
     D<-0 
    }else{ 
     D<-sum(log(seq(1,(t-s)/2))) 
    } 
    if(M == (s+t)/2){ 
     E<-0 
    }else{ 
     E<-sum(log(seq(1,M-(s+t)/2))) 
    } 
    if(s == 0){ 
     F<-0 
    }else{ 
     F<-sum(log(seq(1,s))) 
    } 
    G<-((t-s)/2)/P2 + (M-(s+t)/2)/(1-P1-P2)  
    if (s>0){ 
     G<-G - 2*s/P1 
    } 
    if (G<0){ 
     log.sum <- A+B+C-D-E-F+log(-G) 
     Sum<-Sum - exp(log.sum) 
    } else { 
     log.sum <- A+B+C-D-E-F+log(G) 
     Sum<-Sum + exp(log.sum) 
    } 
   } 
  } 
 } 
 #ODD t 
 if(floor(t/2) != ceiling(t/2)){ 
  Sum <- 0 
  for (s in 1:(min(t,2*M-t))){ 
   #ODD s 
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   if(floor(s/2) != ceiling(s/2)){ 
    A<-s*log(P1)+ sum(log(seq(1,M))) 
    B<-((t-s)/2)*log(P2) 
    C<-(M-(s+t)/2)*log(1-P1-P2) 
    if(s == t){ 
     D<-0 
    }else{ 
     D<-sum(log(seq(1,(t-s)/2))) 
    } 
    if(M == (s+t)/2){ 
     E<-0 
    }else{ 
     E<-sum(log(seq(1,M-(s+t)/2))) 
    } 
    if(s == 0){ 
     F<-0 
    }else{ 
     F<-sum(log(seq(1,s))) 
    } 
    G<-((t-s)/2)/P2 - (2*s)/P1 + (M-(s+t)/2)/(1-P1-P2)  
    if (G<0){ 
     log.sum <- A+B+C-D-E-F+log(-G) 
     Sum<-Sum - exp(log.sum) 
    } else { 
     log.sum <- A+B+C-D-E-F+log(G) 
     Sum<-Sum + exp(log.sum) 
    } 
   } 
  } 
 } 
Sum 
} 
 
############################## F.P #################################### 
## Returns Sum Ratio of (dlogL/dP2)/f(P,n) 
F.P<-function(M,T,P,P2){ 
 b<-length(T) 
 P1<-2*P-2*P2 
 Ratio<-0 
 for(i in 1:b){ 
  t<-T[i] 
  Denominator<-Sum.f.of.P.t(M,t,P1,P2) 
  Numerator<-Sum.dP2.h.of.P.t(M,t,P1,P2) 
  Ratio<-Ratio + Numerator/Denominator 
 } 
Ratio 
} 
 
####################### logLikelihood.Exact ########################### 
## Returns Likelihood Evaluated for k break totals 
logLikelihood.Exact <- function(M,T,P){ 
 P1<-P[1] 
 P2<-P[2] 
 if (P1+P2<1 && P1>=0 && P2>=0){ 
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  b<-length(T) 
  Prob<-0 
  for (i in 1:b){ 
   t<-T[i] 
   Prob <- Prob + log(Sum.f.of.P.t(M,t,P1,P2)) 
  } 
 }else{Prob <- -1E308} 
 if (Prob == "NaN" | Prob == -Inf) {Prob <- -1E308}  
(Prob) 
} 
 
######################### Exact.MLE.above ############################# 
## Returns MLEs of P1, P2, and Pi Searching for P2.hat from above 
Exact.MLE.above <- function(M,T,cutoff){ 
 P<-Binomial.MLE(M,T)[1] 
 precision<-0.1 
 P2<-P-precision 
 while(P2<=0){ 
  P2<-P2+precision 
  precision<-precision*0.1 
  P2<-P2-precision 
 } 
 
 while (precision>cutoff){ 
  out<-F.P(M,T,P,P2) 
  if (out<0 | out=="NaN") { 
   P2<-P2-precision 
   while(P2<=0){ 
    P2<-P2+precision 
    precision<-precision*0.1 
    P2<-P2-precision 
   } 
   
  } else { 
   P2<-P2+precision 
   precision<-precision*0.1 
   P2<-P2-precision 
  } 
 } 
 P1<-2*P-2*P2 
c(P1,P2,P,logLikelihood.Exact(M,T,c(P1,P2))) 
} 
 
######################## Exact.MLE.below ############################## 
## Returns MLEs of P1, P2, and Pi Searching for P2.hat from below 
Exact.MLE.below <- function(M,T,cutoff){ 
 P<-mean(T)/(2*M) 
 precision<-0.1 
 P2<-precision 
 while(P2>=P){ 
  P2<-P2-precision 
  precision<-precision*0.1 
  P2<-P2+precision 
 } 
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 while (precision>cutoff){ 
  out<-F.P(M,T,P,P2) 
  if (out>0 | out=="NaN") { 
   P2<-P2+precision 
   while(P2>=P){ 
    P2<-P2-precision 
    precision<-precision*0.1 
    P2<-P2+precision 
   } 
   
  } else { 
   P2<-P2-precision 
   precision<-precision*0.1 
   P2<-P2+precision 
  } 
 } 
 P1<-2*P-2*P2 
c(P1,P2,P,logLikelihood.Exact(M,T,c(P1,P2))) 
} 
 
##################### Exact.MLE.P1.P2.Pi ############################## 
## Finds MLE of P1,P2, and Pi & evaluates likelihood. 
Exact.MLE.P1.P2.Pi<-function(M,T,cutoff){ 
 Above<-Exact.MLE.above(M,T,cutoff) 
 Below<-Exact.MLE.below(M,T,cutoff) 
 if(Above[4]<Below[4]){ 
  Exact.MLE<-Below 
 }else{Exact.MLE<-Above} 
Exact.MLE 
} 
 
####################### posBinomial.MLE ############################### 
## Returns Pi.hat & Likelihood for positive binomial distribution 
posBinomial.MLE <- function(M,T,cutoff){ 
 b<-length(T) 
 mean.T<-mean(T) 
 phat<-mean(T)/(2*M) 
 F.L<-function(phat){ 
  ratio=2*M*phat/(1-(1-phat)^(2*M)) 
 ratio 
 } 
 diff<-F.L(phat) - mean.T 
 precision<-0.1 
 while (precision>cutoff){ 
  out<-F.L(phat) 
  diff<-out-mean.T 
  if (diff>0) { 
   phat<-phat-precision 
   while(phat<=0){ 
    phat<-phat+precision 
    precision<-precision*0.1 
    phat<-phat-precision 
   } 
  } else { 
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   phat<-phat+precision 
   precision<-precision*0.1 
   phat<-phat-precision 
   while(phat<=0){ 
    phat<-phat+precision 
    precision<-precision*0.1 
    phat<-phat-precision 
   } 
  } 
 } 
 logPosBin.Like<-0 
 for (i in 1:b){ 
  new<-dbinom(T[i],2*M,phat) / (1-(1-phat)^(2*M)) 
  logPosBin.Like<-logPosBin.Like + log(new) 
 } 
c(phat,logPosBin.Like) 
} 
 
############################## F.Ppos ################################# 
## Returns Sum Ratio of (dlogL/dP2)/h(P,n) for positive data 
F.Ppos<-function(M,T,P,P2){ 
 b<-length(T) 
 P1<-2*P-2*P2 
 Ratio<-b*M*((1-2*P+P2)^(M-1))/(1-((1-2*P+P2)^M)) 
 for(i in 1:b){ 
  t<-T[i] 
  Denominator<-Sum.f.of.P.t(M,t,P1,P2) 
  Numerator<-Sum.dP2.h.of.P.t(M,t,P1,P2) 
  Ratio<-Ratio + Numerator/Denominator 
 } 
Ratio 
} 
 
####################### logLikelihood.posExact ######################## 
## Returns Likelihood Evaluated for k positive break totals 
logLikelihood.posExact <- function(M,T,P){ 
 P1<-P[1] 
 P2<-P[2] 
 if (P1+P2<1 && P1>=0 && P2>=0){ 
  b<-length(T) 
  Prob<- -b*log(1-(1-P1-P2)^M) 
  for (i in 1:b){ 
   t<-T[i] 
   Prob <- Prob + log(Sum.f.of.P.t(M,t,P1,P2)) 
  } 
 }else{Prob <- -1E308} 
 if (Prob == "NaN" | Prob == -Inf) {Prob <- -1E308}  
(Prob) 
} 
 
######################### posExact.MLE.above ########################## 
## Returns MLEs of P1, P2, and Pi Searching for P2.hat from above for 
## positive count data. 
posExact.MLE.above <- function(M,T,P,cutoff){ 



 84

 precision<-0.1 
 P2<-P-precision 
 while(P2<=0){ 
  P2<-P2+precision 
  precision<-precision*0.1 
  P2<-P2-precision 
 } 
 
 while (precision>cutoff){ 
  out<-F.Ppos(M,T,P,P2) 
  if (out<0 | out=="NaN") { 
   P2<-P2-precision 
   while(P2<=0){ 
    P2<-P2+precision 
    precision<-precision*0.1 
    P2<-P2-precision 
   } 
   
  } else { 
   P2<-P2+precision 
   precision<-precision*0.1 
   P2<-P2-precision 
   while(P2<=0){ 
    P2<-P2+precision 
    precision<-precision*0.1 
    P2<-P2-precision 
   } 
 
  } 
 } 
 P1<-2*P-2*P2 
c(P1,P2,P,logLikelihood.posExact(M,T,c(P1,P2))) 
} 
 
######################### posExact.MLE.below ########################## 
## Returns MLEs of P1, P2, and Pi Searching for P2.hat from below for 
## positive count data. 
posExact.MLE.below <- function(M,T,P,cutoff){ 
 precision<-0.1 
 P2<-precision 
 while(P2>=P){ 
  P2<-P2-precision 
  precision<-precision*0.1 
  P2<-P2+precision 
 } 
 while (precision>cutoff){ 
  out<-F.Ppos(M,T,P,P2) 
  if (out>0 | out=="NaN") { 
   P2<-P2+precision 
   while(P2>=P){ 
    P2<-P2-precision 
    precision<-precision*0.1 
    P2<-P2+precision 
   } 
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  } else { 
   P2<-P2-precision 
   precision<-precision*0.1 
   P2<-P2+precision 
   while(P2>=P){ 
    P2<-P2-precision 
    precision<-precision*0.1 
    P2<-P2+precision 
   } 
 
  } 
 } 
 P1<-2*P-2*P2 
c(P1,P2,P,logLikelihood.posExact(M,T,c(P1,P2))) 
} 
 
##################### posExact.MLE.P1.P2.Pi ########################### 
## Finds MLE of P1,P2, and Pi & evaluates likelihood for positive total 
## break count data. 
posExact.MLE.P1.P2.Pi<-function(M,T,cutoff){ 
 i<-1 
 j<-0 
 T.pos<-c(1) 
 while(i<=length(T)){ 
  if (T[i] != 0){ 
   if (j == 0){ 
    T.pos[1]<-T[i] 
    j=1 
   }else{ 
    T.pos<-c(T.pos,T[i]) 
   } 
  } 
  i=i+1 
 } 
 P<-posBinomial.MLE(M,T.pos,cutoff)[1] 
 Above<-posExact.MLE.above(M,T.pos,P,cutoff) 
 Below<-posExact.MLE.below(M,T.pos,P,cutoff) 
 if(Above[4]<Below[4]){ 
  posExact.MLE<-Below 
 }else{posExact.MLE<-Above} 
posExact.MLE 
} 
 
############################## F.PMultpos ############################# 
## Returns Sum Ratio of (dlogL/dP2)/h(P,n) for positive partitioned  
## data 
F.PMultpos<-function(M,Band,P,P2){ 
 m0<-sum(Band[,1]) 
 m1<-sum(Band[,2]) 
 m2<-sum(Band[,3]) 
 b<-length(Band[,1]) 
 P1<-2*P-2*P2 
 Ratio<- b*M*((1-2*P+P2)^(M-1))/(1-((1-2*P+P2)^M)) 
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 Ratio<-Ratio + m0/(1-2*P+P2) - 2*m1/P1 + m2/P2 
Ratio 
} 
 
####################### Multinom.logLikelihood ######################## 
## Returns Likelihood Evaluated for k partitioned break totals 
Multinom.logLikelihood <- function(M,Band,P1,P2){ 
 P0<-1-P1-P2 
 M1<-Band[,2] 
 M2<-Band[,3] 
 M0<-Band[,1] 
 b<-length(M1) 
 if (P1+P2<1 && P1>=0 && P2>=0){ 
  A<-b*sum(log(seq(1,M))) 
  B<-sum(M1)*log(P1) 
  C<-sum(M2)*log(P2) 
  D<-sum(M0)*log(P0) 
  E<-0 
  for (i in 1:b){ 
   if (M1[i]>1){ 
    E<-E + sum(log(seq(1,M1[i]))) 
   }  
   if (M2[i]>1){ 
    E<-E + sum(log(seq(1,M2[i]))) 
   } 
   if (M0[i]>1){ 
    E<-E + sum(log(seq(1,M0[i]))) 
   } 
  } 
  F<-b*log(1-P0^M) 
  log.sum<-A+B+C+D-E-F 
  Like<-log.sum 
 }else{Like <- -1E308} 
 if (Like=="NaN" | Like=="-Inf") {Like<--1E308} 
Like 
} 
 
######################### posMult.MLE.above ########################## 
## Returns MLEs of P1, P2, and Pi Searching for P2.hat from above for 
## partitioned positive count data. 
posMult.MLE.above <- function(M,Band,P,cutoff){ 
 precision<-0.1 
 P2<-P-precision 
 while(P2<=0){ 
  P2<-P2+precision 
  precision<-precision*0.1 
  P2<-P2-precision 
 } 
 while (precision>cutoff){ 
  out<-F.PMultpos(M,Band,P,P2) 
  if (out<0 | out=="NaN") { 
   P2<-P2-precision 
   while(P2<=0){ 
    P2<-P2+precision 
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    precision<-precision*0.1 
    P2<-P2-precision 
   } 
   
  } else { 
   P2<-P2+precision 
   precision<-precision*0.1 
   P2<-P2-precision 
   while(P2<=0){ 
    P2<-P2+precision 
    precision<-precision*0.1 
    P2<-P2-precision 
   } 
 
  } 
 } 
 P1<-2*P-2*P2 
c(P1,P2,P,Multinom.logLikelihood(M,Band,P1,P2)) 
} 
 
######################### posMult.MLE.below ########################### 
## Returns MLEs of P1, P2, and Pi Searching for P2.hat from below for 
## partitioned positive count data. 
posMult.MLE.below <- function(M,Band,P,cutoff){ 
 precision<-0.1 
 P2<-precision 
 while(P2>=P){ 
  P2<-P2-precision 
  precision<-precision*0.1 
  P2<-P2+precision 
 } 
 while (precision>cutoff){ 
  out<-F.PMultpos(M,Band,P,P2) 
  if (out>0 | out=="NaN") { 
   P2<-P2+precision 
   while(P2>=P){ 
    P2<-P2-precision 
    precision<-precision*0.1 
    P2<-P2+precision 
   } 
   
  } else { 
   P2<-P2-precision 
   precision<-precision*0.1 
   P2<-P2+precision 
   while(P2>=P){ 
    P2<-P2-precision 
    precision<-precision*0.1 
    P2<-P2+precision 
   } 
 
  } 
 } 
 P1<-2*P-2*P2 
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c(P1,P2,P,Multinom.logLikelihood(M,Band,P1,P2)) 
} 
 
##################### posMult.MLE.P1.P2.Pi ########################### 
## Finds positive MLE of P1,P2, and Pi & evaluates likelihood for  
## partitioned break count data. 
posMult.MLE.P1.P2.Pi <-function(M,Band,cutoff){ 
 i<-1 
 j<-0 
 T<-Band[,2]+2Band[,3] 
 Band.pos<-matrix(1,1,3) 
 while(i<=length(T)){ 
  if (T[i] != 0){ 
   if (j == 0){ 
    Band.pos[1,]<-Band[i,] 
    j=1 
   }else{ 
    Band.pos<-rbind(Band.pos,Band[i,]) 
   } 
  } 
  i=i+1 
 } 
 T.pos<-Band.pos[,2]+2Band.pos[,3] 
 P<-posBinomial.MLE(M,T.pos,cutoff)[1] 
 Above<-posMult.MLE.above(M,Band.pos,P,cutoff) 
 Below<-posMult.MLE.below(M,Band.pos,P,cutoff) 
 if(Above[4]<Below[4]){ 
  posMult.MLE<-Below 
 }else{posMult.MLE<-Above} 
posMult.MLE 
} 
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APPENDIX B 

ALPHA LEVEL PLOTS AND POWER CURVES FOR DETECTING 

CORRELATION IN BINARY COUNT DATA 

Here we present the full array of alpha level plots and power curves for detecting 

correlation discussed in Chapter III. Simulation parameters were chosen based on the 

fragile-site data and experimental protocol given in Böhm et al. (1995). All results are 

based on a nominal alpha level of 5%, 100 observed metaphases, and 1,000 Monte Carlo 

samples unless otherwise indicated. All simulations were performed using R (R Core 

Development Team (2003)) version 1.8.1. 
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B.1  Type I Error Rate (Alpha Level) in Detecting Correlation for Subsets of Size kb 
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Figure B-1. Simulated Alpha Level of Three Tests for Correlation Where the Breakage 
Probability is 0.01. Simulated results are based on 1,000 Monte Carlo samples of chromosomal 
breakage data from 100 metaphases where correlation is equal to zero. The alpha level was 
computed as the percentage of simulations for which the null hypothesis of zero correlation was 
rejected. The curves in (a) are separated into plots (b), (c) and (d) and include 83% confidence 
intervals based on 1,000 simulations. 
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Breakage Probability ( bπ ) = 0.05 
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Figure B-2. Simulated Alpha Level of Three Tests for Correlation Where the Breakage 
Probability is 0.05. Simulated results are based on 1,000 Monte Carlo samples of chromosomal 
breakage data from 100 metaphases where correlation is equal to zero. The alpha level was 
computed as the percentage of simulations for which the null hypothesis of no correlation was 
rejected. The curves in (a) are separated into plots (b), (c) and (d) and include 83% confidence 
intervals based on 1,000 simulations. 
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B.2  Power Curves for Detecting Correlation Using Subsets of Size kb 

Breakage Probability ( bπ ) = 0.01 
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Figure B-3. Simulated Power Curves of Three Tests for Correlation When the Probability of 
Breakage is 0.01. Simulated results are based on 1,000 Monte Carlo samples with 100 
metaphases. Correlations range from 0.10 to 1.00. Power was computed as the percentage of 
simulations for which the null hypothesis of no correlation was rejected. 
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Breakage Probability ( bπ ) = 0.05 
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Figure B-4. Simulated Power Curves of Three Tests for Correlation When the Probability of 
Breakage is 0.05. Simulated results are based on 1,000 Monte Carlo samples with 100 
metaphases. Correlations range from 0.10 to 1.00. Power was computed as the percentage of 
simulations for which the null hypothesis of no correlation was rejected. 
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B.3  Type I Error Rates (Alpha Level) for Detecting Correlation in a Single Site 

 Using the C(α ) Test 

 
Figure B-5.  Simulated Alpha Level of the C(α ) Test for Correlation at a Single Site. 

Simulated results are based on 10,000 Monte Carlo samples where correlation equals zero. The 
alpha level was computed as the percentage of simulations for which the null hypothesis of no 
correlation was rejected. Confidence interval bars are not included since the interval width is 
less than the height of the points on the graph. 
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B.4  Power Curves for Detecting Correlation in a Single Site Using the C(α ) Test 
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Figure B-6. Simulated Power Curves for Detecting Various Correlations When the 

Probability of Breakage Ranges From 0.01 to 0.11. Simulated results are based on 10,000 
Monte Carlo samples, where correlations range from 0.1 to 1.0 and the number of metaphases 
range from 10 to 200. Power was computed as the percentage of simulations for which the null 
hypothesis of no correlation was rejected. Confidence interval bars are not included since the 
interval width is less than the height of the points on the graph.  
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APPENDIX C 

FSM AND FSM3 SIMULATION RESULTS 

The full complement of FSM and FSM3 simulation results discussed in Chapter 

IV are given here. All simulations are based on 1,000 Monte Carlo samples where the 

non-fragile breakage probability is 0.005 and 100 metaphases are observed. There are an 

equal number of fragile sites for each breakage probability. For example, if the breakage 

probabilities are 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055, then for 18 fragile sites, 

there are three bands with breakage probability equal to 0.022, three bands with 

probability equal to 0.024, and so forth.  
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C.1  FSM Simulation Results 

C.1.1 FS Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055 
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Figure C-1. FSM (a) False-Positive and (b) False-Negative Rates for 300 Bands and 6 to 18 Fragile 

Sites With Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055. The curves in (a) are 
first plotted together and then separately to make it possible to see the individual 83% confidence 
intervals. The curves in (b) are plotted on two different Y-axis scales. 
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Figure C-2. FSM (a) False-Positive and (b) False-Negative Rates for 400 Bands and 6 to 18 Fragile 

Sites With Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055. The curves in (a) are 
first plotted together and then separately to make it possible to see the individual 83% confidence 
intervals. The curves in (b) are plotted on two different Y-axis scales. 
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C.1.2 FS Breakage Probabilities of 0.011, 0.0132, 0.0165, 0.0198, 0.022, and 0.0275 
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Figure C-3. FSM (a) False-Positive and (b) False-Negative Rates for 300 Bands and 6 to 18 Fragile 

Sites With Breakage Probabilities of 0.011, 0.0132, 0.0165, 0.0198, 0.022, and 0.0275. The curves in (a) 
are first plotted together and then separately to make it possible to see the individual 83% confidence 
intervals. The curves in (b) are plotted on two different Y-axis scales. 
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Figure C-4. FSM (a) False-Positive and (b) False-Negative Rates for 400 Bands and 6 to 18 Fragile 

Sites With Breakage Probabilities of 0.011, 0.0132, 0.0165, 0.0198, 0.022, and 0.0275. The curves in (a) 
are first plotted together and then separately to make it possible to see the individual 83% confidence 
intervals. The curves in (b) are plotted on two different Y-axis scales. 
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C.1.3 FS Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055 with  

 20% Zero-Breakage Sites 
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300 Bands, 20% Zero-Breakage Sites
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Figure C-5. FSM (a) False-Positive and (b) False-Negative Rates With 20% Zero-Breakage Sites for 

300 Bands and 6 to 18 Fragile Sites With Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, 
and 0.055. The curves in (a) are first plotted together and then separately to make it possible to see the 
individual 83% confidence intervals. Note that the Y-axis scales of (a) are different than those for the case 
where zero-breakage sites are not present. The curves in (b) are plotted on two different Y-axis scales. 
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Figure C-6. FSM (a) False-Positive and (b) False-Negative Rates With 20% Zero-Breakage Sites for 

400 Bands and 6 to 18 Fragile Sites With Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, 
and 0.055. The curves in (a) are first plotted together and then separately to make it possible to see the 
individual 83% confidence intervals. Note that the Y-axis scales of (a) are different than those for the case 
where zero-breakage sites are not present.  The curves in (b) are plotted on two different Y-axis scales. 
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C.2  FSM3 Simulation Results 

C.2.1 FS Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055 
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Figure C-7. FSM3 (a) False-Positive and (b) False-Negative Rates for 300 Bands and 6 to 18 Fragile 

Sites With Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055. The curves in (a) are 
first plotted together and then separately to make it possible to see the individual 83% confidence 
intervals. The curves in (b) are plotted on two different Y-axis scales. 
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Figure C-8. FSM3 (a) False-Positive and (b) False-Negative Rates for 400 Bands and 6 to 18 Fragile 

Sites With Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055. The curves in (a) are 
first plotted together and then separately to make it possible to see the individual 83% confidence 
intervals. The curves in (b) are plotted on two different Y-axis scales. 
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C.2.2 FS Breakage Probabilities of 0.011, 0.0132, 0.0165, 0.0198, 0.022, and 0.0275 
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Figure C-9. FSM3 (a) False-Positive and (b) False-Negative Rates for 300 Bands and 6 to 18 Fragile 

Sites With Breakage Probabilities of 0.011, 0.0132, 0.0165, 0.0198, 0.022, and 0.0275. The curves in (a) 
are first plotted together and then separately to make it possible to see the individual 83% confidence 
intervals. The curves in (b) are plotted on two different Y-axis scales. 
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Figure C-10. FSM3 (a) False-Positive and (b) False-Negative Rates for 400 Bands and 6 to 18 Fragile 

Sites With Breakage Probabilities of 0.011, 0.0132, 0.0165, 0.0198, 0.022, and 0.0275. The curves in (a) 
are first plotted together and then separately to make it possible to see the individual 83% confidence 
intervals. The curves in (b) are plotted on two different Y-axis scales. 
 

 



 107

C.2.3 FS Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 0.044, and 0.055 with  

 20% Zero-Breakage Sites 
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Figure C-11. FSM3 (a) False-Positive and (b) False-Negative Rates With 20% Zero-Breakage Sites 

for 300 Bands and 6 to 18 Fragile Sites With Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 
0.044, and 0.055. The curves in (a) are plotted together and then separately to make it possible to see the 
individual 83% CIs. Note that the Y-axis scale of the upper-left plot in (a) is different than those for the 
case where zero-breakage sites are not present. The curves in (b) are plotted on two different Y-axis 
scales. 
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Figure C-12. FSM3 (a) False-Positive and (b) False-Negative Rates With 20% Zero-Breakage Sites 

for 400 Bands and 6 to 18 Fragile Sites With Breakage Probabilities of 0.022, 0.0264, 0.033, 0.0396, 
0.044, and 0.055. The curves in (a) are first plotted together and then separately to make it possible to see 
the individual 83% confidence intervals. Note that the Y-axis scale of the upper-left plot in (a) is different 
than those for the case where zero-breakage sites are not present. The curves in (b) are plotted on two 
different Y-axis scales. 
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