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ABSTRACT

Covariant Weyl Quantization, Symbolic Calculus,

and the Product Formula. (May 2006)

Kamil Serkan Güntürk, B.S., Istanbul Technical University;

M.S., Boğaziçi University

Chair of Advisory Committee: Dr. Stephen A. Fulling

A covariant Wigner-Weyl quantization formalism on the manifold that uses

pseudo-differential operators is proposed. The asymptotic product formula that leads

to the symbol calculus in the presence of gauge and gravitational fields is presented.

The new definition is used to get covariant differential operators from momentum

polynomial symbols. A covariant Wigner function is defined and shown to give

gauge-invariant results for the Landau problem. An example of the covariant Wigner

function on the 2-sphere is also included.
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Falahatphisheh, Ercan Sırakaya, Sonalee Bhattacharyya, my brother Sinan and my

parents for all their support.



vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A. Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . 10

1. Classical Electromagnetism . . . . . . . . . . . . . . . 10

2. Motion in an Electromagnetic Field . . . . . . . . . . 11

3. The Relativistic Problem . . . . . . . . . . . . . . . . 12

4. Quantum-Mechanical Problem . . . . . . . . . . . . . 14

B. Some Useful Geometrical Apparatus . . . . . . . . . . . . . 18

1. The Covariant Derivative of ψ . . . . . . . . . . . . . 18

2. The Intrinsic Meaning of ∇μ and Parallel Transport . 19

3. Geodesics and Curvature . . . . . . . . . . . . . . . . 22

4. More on Geodesic Theory . . . . . . . . . . . . . . . . 25

III CLASSICAL WEYL-WIGNER FORMALISM . . . . . . . . . . 30

A. Pseudo-Differential Operators . . . . . . . . . . . . . . . . 30

1. The Operator Ordering Problem . . . . . . . . . . . . 30

2. The Multi-Index Notation . . . . . . . . . . . . . . . . 31

3. ψDO Formulae . . . . . . . . . . . . . . . . . . . . . . 32

B. Weyl-Wigner Correspondence . . . . . . . . . . . . . . . . 33

1. Weyl Quantization and Wigner Transform . . . . . . . 33

2. Product Rule . . . . . . . . . . . . . . . . . . . . . . . 35

3. The Wigner Function . . . . . . . . . . . . . . . . . . 38

4. Weyl’s Original Definition . . . . . . . . . . . . . . . . 38

5. Operator Bases and the Quantizer . . . . . . . . . . . 40

IV INTRINSIC SYMBOLS OF ψDO’S AND WEYL SYMMETRY 45

A. The Electromagnetic Case . . . . . . . . . . . . . . . . . . 45

1. Gauge Invariant Symbols and the Magnetic Product . 46

B. General Case . . . . . . . . . . . . . . . . . . . . . . . . . 48

1. Intrinsic Widom Calculus . . . . . . . . . . . . . . . . 48

2. Covariant Weyl Formalism: Fulling’s Definition . . . . 50

V A COVARIANT WEYL CALCULUS . . . . . . . . . . . . . . . 53



vii

CHAPTER Page

A. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B. Differential Operators . . . . . . . . . . . . . . . . . . . . . 57

1. First Order . . . . . . . . . . . . . . . . . . . . . . . . 59

2. Second Order . . . . . . . . . . . . . . . . . . . . . . . 62

VI PRODUCT RULE . . . . . . . . . . . . . . . . . . . . . . . . . 69

A. Derivation of the Product Rule . . . . . . . . . . . . . . . 69

1. Integral Formula . . . . . . . . . . . . . . . . . . . . . 70

2. Expansions and the Asymptotic Formula . . . . . . . 74
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CHAPTER I

INTRODUCTION

Hermann Weyl, in his Symmetry [1], relates a brief account of the early 18th century

rather theological controversy between Leibniz and Clarke1 on the relative concepts

of position and direction, whether God had a sufficient reason to favor right over left

in the beginning of creation. Although the details of this debate and Weyl’s personal

resolution to it can be considered off topic for this dissertation, the remarks made by

the great mathematician, philosopher and physicist of the last century – despite his

acknowledgment of not being a member of the physics community to Sommerfeld in

1922 [2]– upon the importance of the asymmetries which are secondary in nature, but

“superimposed on the basic bilateral-symmetrically built ground plan” are worthy of

quoting here. He wrote:

If nature were all lawfulness then every phenomenon would share the full

symmetry of the universal laws of nature as formulated by the theory of

relativity. The mere fact that this is not so proves that contingency is an

essential feature of the world. ([1], emph. in orig.)

Interestingly enough, one among the dozens of beautiful illustrations he chose for his

book is the human heart, an asymmetric screw.

Nevertheless, by the end of the 1920’s he had become one of the main contribu-

tors to the newly discovered theory of Quantum Mechanics by introducing symmetry

to this novel way of understanding of the “ground plan” [3]. Much later, in 1958,

Wolfgang Pauli would call this period the “preliminary end” of the “initial phase”:

The journal model is IEEE Transactions on Automatic Control.

1A “clergyman acting as the spokesman for Newton” according to Weyl [1].
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The last decisive turning point of quantum theory came with de Broglie’s

hypothesis of matter waves, Heisenberg’s discovery of matrix mechanics,

and Schrodinger’s wave equation, the last establishing the relationship be-

tween the first two sets of ideas. With Heisenberg’s uncertainty principle

and Bohr’s fundamental discussions thereon the initial phase of develop-

ment of the theory came to a preliminary end. ([4], p. 1.)

One should note that this humble list excludes some other prominent figures like

Dirac, Wigner and the discoverer of the exclusion principle himself.

Classical mechanics had no problem with position and momentum being scalar

quantities (or so called c-numbers) and the idea that the two can be measured si-

multaneously with a precision that had no limits, at least in principle. The new

mechanics though, introduced an alien concept of measurement into this determinis-

tic world where observables were now represented by operators (or q-numbers) which

did not necessarily commute. The quantum state |ψ〉 describing the system before

the measurement collapses to the eigenstate of the operator Ô that represents the

observable. Thus a subsequent measurement of a different observable has to be de-

scribed by the corresponding operator Ô′ acting on that particular eigenstate. Unless

the two operators share eigenstates, in other words ÔÔ′ = Ô′Ô, the outcome of this

second measurement is unrelated to the pre-collapsed quantum state. There was no

such concept as the order of measurements in classical mechanics. The case for simul-

taneous measurement is quite similar. Since Q̂ and P̂ do not commute it is impossible

to have definite simultaneous values for position and momentum.

The process of finding the quantum operators corresponding to classical observ-

ables is called quantization [5]. This usually involves the quantization of not only posi-

tion and momentum but any given function (also called the symbol) of these variables
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such as the classical Hamiltonian. In mathematics, the result is called a pseudodif-

ferential operator (ψDO). Obviously as these functions get complicated this process

becomes ambiguous, for instance, the ordering of non-commuting operators becomes

a matter of choice. In some problems terms like
∑

k[Âk(Q)P̂k + P̂kÂk(Q)] are needed

in the Hamiltonian so that Hermiticity is preserved2 ([4], pp. 37–39), and certain

schemes like Weyl quantization, or McCoy’s formula, where 1
2n

∑n
l=0

(
n
l

)
Q̂n−lP̂mQ̂l is

the quantization of qnpm in one dimension, can produce Hermitian operators that

possess a natural (preferred) operator ordering [6], [7].

It is interesting to note here that it would be wrong to say that quantum me-

chanics is just classical mechanics under some sort of operation or deformation, when

we do not even have a rigorous proof that the self-adjoint operator Ĥ which deter-

mines the time evolution should be the quantum mechanical analogue of the classical

Hamiltonian! [5]. The fact that equations of motion are similar if the Poisson bracket

(with the classical Hamiltonian) is replaced by i times the commutator (with the

Hamiltonian operator) should not lead us to the assumption that this replacement is

a quantization because this connection is not total. In Weyl quantization it is possible

to write a formula for the symbol of the product of two operators, Sym(ÂB̂), in terms

of the symbols of these operators, Sym(Â) and Sym(B̂). In the physics literature this

is referred to as the star, twisted, or Weyl product. In fact the Poisson bracket is only

one of the low order terms in the Moyal bracket, which is an anti-symmetrization of

the Weyl product [7].

Weyl quantization tells us only how symbols define operators; it is the Wigner

transform that gives the unique real phase space function for each quantum observ-

able. This transform can be regarded as the inverse of Weyl quantization (only up

2If Ĥ1 and Ĥ2 are linear Hermitian operators, so is Ĥ1Ĥ2 + Ĥ2Ĥ1.
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to a factor, to be precise [8]). This formulation has its roots in statistical mechanics

where one has to deal with systems of very large degrees of freedom and a phase

space probabilistic approach is needed. All one needs is a density function ρ which

carries information about the energy of the system by means of the Hamiltonian

function. Then the average value (or the expectation value) 〈A〉 of any observable

A(q, p) is found by integrating A(q, p)ρ(q, p) over the phase space [9]. Landau and

von Neumann (see [10], p. 328) observed that there should be a quantum mechanical

analogue of the density function (called the density matrix ρ̂) such that the average

of a function of position and momentum operators can be written as 〈Â〉 = Tr(Âρ̂).

Wigner’s contribution was to show that 〈Â〉 could also be obtained from a phase space

distribution function, which is essentially the Wigner transform of the density matrix.

In 1949, the Jerusalem-born Australian electrical engineer, statistician, mathemati-

cian and theoretical physicist Jose Enrique Moyal established the above mentioned

“Wigner-Weyl correspondence” [7], [10], [11]. One should note here that at the heart

of this formalism lies the faithful companion of physicists, the Fourier transform, and

the mathematical interest on the issue has lead to some elegant formulations includ-

ing the Heisenberg translation operator and quantizer3 methods [12]. One can also

find group-theoretical aspects in [13], [14].

Recalling the dangers of false interpretations of the quantization process, we

should be careful when trying to interpret the reverse process of “dequantization”

[5]. Many quantum systems are found to have a discrete energy spectrum, whereas

their classical counterparts are allowed to take any value for energy. Some quan-

tum mechanical observables do not even have any classical analogues. The famous

way of explaining these physical phenomena is to set up a classical limit of quantum

3Also called the Stratonovich quantizer.
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mechanics by taking the formal limit � → 0. One must ensure that this limit is math-

ematically well-defined and physically makes sense4. There are other methods like

Bohr’s correspondence principle (the limit of large quantum numbers) and Ehrenfest

Theorem. The former does not refer to dynamics and fails to work in certain physical

systems like the harmonic oscillator [15], while the latter is restricted to special forms

of potential [5].

Another method for obtaining the classical limit is the insertion of ψ(x, t) =

exp[iS(x, t)/�] into the Schrodinger equation to find the Hamilton-Jacobi equation

for S(x, t), provided that certain asymptotics exist. This is the celebrated Wentzel-

Kramers-Brillouin (WKB) method and despite its weakness of incompatibility with

the superposition principle of quantum mechanics [15], it has been fruitful in semiclas-

sical calculation of wavefunctions [16]. In physics literature one can find several WKB

type expansion methods under the name of Schwinger-DeWitt, Wigner-Kirkwood

(large mass limit), Birkhoff-VanVleck series and varieties [17], [18]. Molzahn and Os-

born showed that the Weyl formalism could be used as a foundation for semiclassical

analysis in either the Schrödinger [19] or the Heisenberg [7] evolution picture. While

[19] demonstrates an ansatz-free derivation of the Schrödinger propagator’s WKB ex-

pansion, the Heisenberg-Weyl description of evolution presented in [7] is advantageous

over the WKB approximation for propagators, since it does not involve singularities,

multiple trajectories, caustics or Maslov indices. Their work is also of great mathe-

matical interest for employing cluster expansions, which have a graph-combinatorial

structure and also arise in quantum transport equation solutions [20]. For a detailed

analysis of graph representations and semiclassical expansions one should also refer

to [17], [21] and [22].

4For instance, the fine structure constant α = e2/�c gives rise to a divergence as
� → 0 if the other constants are fixed [15].
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It is well known that in classical electrodynamics, the physical fields E and B are

unchanged under a gauge transformation5 of the scalar (φ) and magnetic (A) poten-

tials. When the wave function simultaneously goes under a phase transformation of

the second kind ψ(x, t) → e
ie
�c
θ(x,t)ψ(x, t), the Schrödinger equation is covariant pro-

vided that the ordinary derivative operators are replaced6 by ∇− i(e/�c)A [24]. It is

easy to check that the canonical momentum operator is not gauge invariant; therefore,

it cannot represent a physical observable. On the other hand the operator represent-

ing the kinetic momentum �π = p − (e/c)A turns out to be gauge independent and

therefore physical. In the conventional symbol-operator correspondence this covari-

ance issue is addressed in various ways. In the quantizer approach of Weyl formalism

one includes gauge invariance by replacing the canonical momentum appearing in the

definitions by the kinetic momentum [25], [26], [27], [28]. Recently, Karasev and Os-

born developed a gauge invariant symbol calculus based on their “magnetic product”

	
F
, where F stands for the electromagnetic Faraday 2-form F = 1

2
Fjk(q)dq

k ∧ dqj,

which is used to modify the usual symplectic form ω [29].

Since covariant derivatives are also used in physics in order to explain the cou-

pling of matter to gravitational fields [24], one may argue that a general geomet-

rical framework is needed to establish a covariant operator-symbol correspondence.

Indeed, the components of the electromagnetic vector potential (or Yang-Mills po-

tential) are the connection coefficients wμ on the vector bundle, just like Christoffel

symbols Γμνλ represent a connection on the tangent bundle of the manifold. Parallel

transport defined by a connection is one of the basic notions in Riemannian ge-

ometry and is required for a geometrically covariant, or intrinsic, formalism. One

5φ→ φ− 1
c
∂
∂t
θ(x, t) and A → A + ∇θ(x, t).

6This is often called a “minimal substitution” [23].
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of the first attempts7 to apply the operator-symbol correspondence to manifolds

came from Gilkey in 1975 [31], where he calculated the coefficients in the expan-

sion K(t, x, x) ∼ (4πt)−d/2
∑∞

n=0En(x)t
n/2 for the kernel function that defines the

operator e−tH on a d-dimensional Riemannian manifold where H is a second order

differential operator. Only the leading term of the symbol of H is an invariant; the

lower order terms depend upon the local system chosen. The En are complicated

combinations of the covariant objects like Rμνλρ (the Riemann curvature tensor), and

Wμν = ∂μwν−∂νwμ+[wμ, wν], the curvature of the bundle (or the gauge field strength)

and covariant derivatives8 of these.

An intrinsic pseudo-differential calculus needs to be covariant from the start;

the symbol should be defined as a function on T ∗(M), the cotangent bundle of the

configuration space [6]. The credit here goes to Bokobza-Haggiag [30], Widom [32] and

Drager [33]. In this formalism, the geodesic flow y = expx(u) that arises from a given

connection, plays the major role. The symbol, now a function of the “momentum

variable” ∈ T ∗
x (M) and u, is accompanied by τE (which will be renamed I later in this

dissertation), the parallel transport with respect to a given connection on the vector

bundle E. The formula for the symbol of a product, the application of the intrinsic

calculus to the asymptotic expansion of the symbol of a resolvent parametrix9, and

reduction to the conventional calculus upon specialization to flat connections can be

found in [35].

Despite its success in establishing a manifestly covariant quantization, intrinsic

calculus lacks the symmetry of conventional Weyl calculus. With the physical motiva-

7The earliest seems to be the paper by Juliane Bokobza-Haggiag [30] in 1969.
8Note that in the most general case, the covariant derivative of the covector ∇μφ

is ∇ν∇μφ = ∂ν(∇μφ) + wν∇μφ− Γρνμ∇ρφ.
9The symbol of the operator (Â− λ)−1, roughly speaking [34].



8

tions presented in [7] and [19] in mind, one may ask the question of how to construct

a covariant analogue of the Weyl calculus. Fulling proposed such a formalism in 1998

where an operator is covariantly obtained from the symbol function that is symmetric

in the points on the manifold [6]. This can be considered to be the first systematic

discussion of the conventional, Weyl and Widom ψDO formalisms (and the fusion of

them) from both a mathematical and a physical point of view. A covariant Wigner

function which may be of interest for relativistic quantum field theorists (see [36],

[37], [38], [39]) is also provided. For a generic second-order momentum polynomial

Aμν(q)pμpν case, one gets a second-order covariant differential operator with intrinsic

coefficients, i.e., the covariant derivatives of the tensor Aμν and the curvature tensor

Rμν . In the special case of Aμν = gμν , which can be thought of as a case where the

symbol becomes the classical Hamiltonian of a free particle of unit mass on a manifold,

one gets the Laplace-Beltrami operator Δ = −gμν∇μ∇ν plus a parameter-dependent

Ricci scalar curvature term.

The product formula in this new formalism is found by Fulling in the special

case of flat space [6] (the paper also includes an exponential version of the asymptotic

product rule in Widom calculus, which is published for the first time). The asymptotic

expansion for the product formula for the general case (manifold) is not known.

This was the motivation for the work in this dissertation. The integrals used in the

definition of operator � symbol relations are over Tx(M) and T ∗
x (M). The difficulty

arises from the fact that the steps towards an expression for the symbol of Ĉ = ÂB̂

necessitate the handling of such integrals on the tangent and cotangent spaces of more

than one point, which cannot be carried out by brute force calculations. I try to solve

the problem by modifying the operator � symbol formulae by introducing a fiducial

point on the manifold where all integrations are to be carried out. With this approach

I was able to obtain an asymptotic product formula on the manifold. Some of the
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point separation techniques given in [40], [41], [42] and [43] are used in analyzing

the product rule and testing the formalism in the case of momentum polynomial

symbols. The related covariant Wigner function is defined and its application to a)

the Landau problem (charged particle moving in a magnetic field) in flat space with

gauge invariance and b) a test function on the 2-sphere subject to a rotation by π/2,

are discussed as examples.
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CHAPTER II

PRELIMINARIES

Physicists commonly refer to covariance in the context of the mathematical concept

of form invariance. If the written form of an equation describing a physical law does

not change under a particular transformation of a certain kind, it is said to be co-

variant under that transformation. A quantity that is invariant under such a change

may also be called covariant (in that case it is also an observable). Apart from the

physical motivations, it is sometimes the beauty factor that attracts theoreticians to

covariance. It is often stated that “a theoretical physicist who had never heard of

magnetism might be led to predict its existence, on the basis of the purely aesthetic

requirement that quantum mechanics be invariant under the local phase transforma-

tions” ([24], p. 161). This reverse logic actually is responsible for some of the major

discoveries in science, especially in the field of high energy physics [44].

A. Gauge Invariance

1. Classical Electromagnetism

The discovery of the vector potential A and its connection to the magnetic field

B = ∇× A (2.1)

and the induced electromotive force, in the form cE = −dA/dt, goes all the way back

to Carl Friedrich Gauss10. Later Helmholtz and Maxwell noticed the arbitrariness in

10He did not publish his handwritten notes of 1835 until 1867, and the credit went
to Wilhelm Weber (1846), Franz E. Neumann (1847), Gustav Kirchhoff (1857) and
Hermann von Helmholtz (1870) [45].
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the choice of this potential11, and stated that the physical fields B and

E = −∇φ− 1

c

∂A

∂t
(2.2)

are invariant under the transformation

A → A′ = A + ∇θ. (2.3)

Maxwell did not mention the accompanying transformation of the scalar potential

φ→ φ′ = φ− 1

c

∂θ

∂t
(2.4)

in his 1873 paper, although a few years earlier, in 1867, the Danish physicist Ludvig

Valentin Lorenz had stated this fact indirectly with the introduction of his retarded

potentials [45]. Lorenz also established that these potentials are solutions of the wave

equation and satisfy12

∇ · A +
1

c

∂φ

∂t
= 0. (2.5)

2. Motion in an Electromagnetic Field

The force on a particle with charge e and mass m in the presence of electric and

magnetic fields is

d

dt
(mv) = e

(
E +

v

c
× B

)

= e
[
−∇

(
φ− v · A

c

)
− 1

c

dA

dt

]
(2.6)

11Maxwell used three different expressions for this quantity: Electro-tonic intensity,
electromagnetic momentum and electrokinetic momentum [45]

12This condition is often erroneously attributed to the more famous Dutch physicist
Hendrik Antoon Lorentz.
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where v is the particle’s velocity. This force equation can be derived from the La-

grangian [46]

L =
1

2
mv2 +

e

c
v · A − eφ. (2.7)

Then the momentum p = ∂L/∂v is related to the kinetic momentum k = mv through

p = mv +
e

c
A. (2.8)

Using (2.7) and (2.8) one can write the Hamiltonian function as

H = p · v − L

=
1

2m

(
p− e

c
A
)2

+ eφ. (2.9)

Then the canonical equations are

dp

dt
= −e∇

(
φ− v · A

c

)
and v =

1

m

(
p− e

c
A
)
, (2.10)

which are identical with eqs. (2.6) and (2.8), respectively [46]. One can easily check13

that (2.6) is covariant under the transformations given by (2.3) and (2.4).

3. The Relativistic Problem

The kinetic term in the Lagrangian given in (2.7) does not impose any limit on the

magnitude of v, in contrast to special relativity where it is impossible to accelerate

beyond the speed of light. One needs an action which is also Lorentz invariant. In

special relativity [47], it is postulated that there should be a quantity, defined in

terms of time and space intervals between two events, that is invariant under the

13Using dθ(r, t)/dt = ∂θ/∂t + ∇θ · v
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transformation (ct, r) → (ct′, r′). This invariant is defined as

Δs2 = (cΔt)2 − (Δx1)2 − (Δx2)2 − (Δx3)2 (2.11)

or

ds2 = (cdt)2 − (dx1)2 − (dx2)2 − (dx3)2 (2.12)

for infinitesimal intervals. Any change of coordinates that leaves ds2 invariant, i.e.,

ds2 = ds′ 2 (2.13)

is called a Lorentz transformation (examples are: Linear boost14 along the x direction,

rotations etc.). For timelike infinitesimal intervals, ds2 > 0 and ds ≡ √
ds2. In the

special case of dr = 0, the quantity ds/c is called the proper time which is a good

candidate for the action. With a little arrangement to get the dimension right (energy

× time) and an appropriate choice of sign15, the relativistic action should look like

S = −mc2
∫
ds+ e.m. terms. (2.14)

Therefore the relativistic Lagrangian for the particle in an electromagnetic field (see

[47] and [48]) is

L = −mc2
√

1 − v2

c2
+
e

c
v · A − eφ. (2.15)

Some textbooks [49] also include an additional term mc2 in (2.15) so that one gets

the classical Lagrangian (2.7) in the v � c limit, which does not affect the equations

of motion. Using (2.15) and p = γmv + eA/c one writes the relativistic Hamiltonian

function as

H = c
√
m2c2 + (p− eA/c)2 + eφ (2.16)

14x′ = γ(x− vt) and ct′ = γ(ct− vx/c) where γ ≡ (1 − v2/c2)−1/2.
15Negative for consistency with E2 = p2c2 +m2c4 (free particle case).
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and find the equations of motion

dp

dt
= −e∇

(
φ− v · A

c

)
and v =

c(p− e
c
A)√

m2c2 + (p − eA/c)2
. (2.17)

4. Quantum-Mechanical Problem

In a paper submitted to Annalen der Physik in June 1926 [50], Erwin Schrödinger

presented the wave equation for the relativistic particle in an electromagnetic field

[45]. Following his footsteps, we state that the Hamilton-Jacobi equation

H
(
qi,

∂S

∂qi

)
+
∂S

∂t
= 0, (2.18)

where S is the modern conventional notation for his contemporaries’ Wirkungsfunk-

tion, applied to (2.16) reads

c
√
m2c2 + (∇S − eA/c)2 + eφ+

∂S

∂t
= 0. (2.19)

The square of (2.19), after a little manipulation, is

(1

c

∂S

∂t
+
e

c
φ
)2

−
(
∇S − e

c
A
)2

−m2c2 = 0. (2.20)

The magical replacement of ∂S/∂t and ∇S by the operators

± h

2πi

∂

∂t
and ± h

2πi
∇

and letting the resultant operator act on the wavefunction ψ, leads to

∇2ψ − 1

c2
∂2ψ

∂t2
∓ 2 ie

�c

(φ
c

∂ψ

∂t
+ A · ∇ψ

)
+

e2

�2c2

(
φ2 − A2 − m2c4

e2

)
ψ = 0 (2.21)

where � ≡ h/2π. In obtaining (2.21), Schrödinger used the Loren(t)z condition given

in (2.5).

Also in June of the same year, Vladimir Aleksandrovich Fock submitted a paper
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[51] to Zeitschrift für Physik where he solved the wave equations for the “Kepler

problem16 in a magnetic field” and the “relativistic Kepler problem” [45]. The method

he used to derive these equations begins with the Hamilton-Jacobi equation (2.19) as

Schrödinger did, and then makes the following pair of substitutions:

∂S

∂t
−→ −E = −E (∂ψ/∂t)

(∂ψ/∂t)
, (2.22)

∂S

∂qi
−→ −E (∂ψ/∂qi)

(∂ψ/∂t)
, (2.23)

where E is the energy constant of the system. After multiplication by (∂ψ
∂t

)2, he moves

on to deriving the wave equations from a variational principle using the quadratic form

obtained.

In his succeeding paper submitted in July [48], he studied the wave mechanics

of the problem described by the Lagrangian (2.15). Independently from Schrödinger

([50] was published in September), Fock also ended up with the wave equation (2.21)

for ψ except his version included a term with

∇ ·A +
1

c

∂φ

∂t
(2.24)

which he kept there for a reason! In this article gauge invariance in quantum me-

chanics was explicitly introduced for the first time [45].

The new Ansätze are

∇S =
∇ψ

(∂ψ/∂p)
, (2.25)

∂S

∂t
=

(∂ψ/∂t)

(∂ψ/∂p)
, (2.26)

where p is a parameter with a dimension matching that of the action. Then one

16Motion under the influence of the potential U = −e2/r.
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considers variating the integral of the quadratic form

Q = (∇ψ)2 − 1

c2

(∂ψ
∂t

)2

− 2e

c

(
A · ∇ψ +

φ

c

∂ψ

∂t

)(∂ψ
∂p

)

+
[
m2c2 +

e2

c2
(A2 − φ2)

](∂ψ
∂p

)2

. (2.27)

in five dimensions17 with

ds2 = c2dt2 − dx2 − dy2 − dz2 − (dΩ)2 (2.28)

where

dΩ =
e

mc
φ dt− e

mc2
(Axdx+ Aydy + Azdz) − 1

mc
dp. (2.29)

Fock stated that the variation related to (2.27) and the linear differential form in

(2.29) are invariant under the transformations

A = A1 + ∇θ (2.30)

φ = φ1 − 1

c

∂θ

∂t
(2.31)

p = p1 − e

c
θ (2.32)

where θ = θ(r, t) is an arbitrary function. The invariance of the former can be verified

by employing the identity

e±(eθ/c)∂/∂pψ(p) = ψ(p ± e

c
θ). (2.33)

Using the well-known techniques of variation and integration by parts, the following

Laplace equation for ψ is obtained:

∇2ψ − 1

c2
∂2

∂t2
− 2e

c

(
A · ∇∂ψ

∂p
+
φ

c

∂2ψ

∂t∂p

)

17The identical results of a similar five-dimensional general-relativistic formalism
by Oscar Klein were published 10 days before Fock submitted his work [45] (also see
the footnote in [48] p. 226).
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−e
c

(
∇ · A +

1

c

∂φ

∂t

)(∂ψ
∂p

)
+
[
m2c2 +

e2

c2
(A2 − φ2)

](∂2ψ

∂p2

)
= 0. (2.34)

At this point, if ψ is assumed to have the form

ψ = ψ0e
ip/�, (2.35)

(2.34) reduces to

∇2ψ0 − 1

c2
∂ψ0

∂t2
− 2 ie

�c

(
A · ∇ψ0 +

φ

c

∂ψ0

∂t

)
− ie

�c

(
∇ · A +

1

c

∂φ

∂t

)
ψ0

− 1

�2

[
m2c2 +

e2

c2
(A2 − φ2)

]
ψ0 = 0 (2.36)

which is identical to (2.21). Now the presence of the (2.24) term in (2.36) is the

guarantor for invariance under the transformations (2.3) and (2.4), provided that one

makes the simultaneous substitution

ψ0 → ψ′
0 = eie θ(r,t)/�cψ0. (2.37)

For the first time this fact was referred to as the “principle of gauge invariance” by

Weyl. The use of the term gauge arose from the desire to establish contact with his

1919 attempt to unify electromagnetism and gravitation, which was invariant under

a scale change of the metric tensor [45].

Note that gauge invariance exists in the non-relativistic Schrödinger equation for

matter-electromagnetic field coupling also. As a matter of fact modern textbooks use

this as an introduction to the subject of covariant derivatives [24]. A phase transfor-

mation of the second kind in the form of (2.37) has no effect on the probability density,

however the expected value of the canonical momentum in the transformed state is

gauge dependent (unlike the kinetic momentum, which is an invariant observable).
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The Schrödinger equation is covariant under (2.37) only in the form

i�
∂ψ

∂t
= − �2

2m

(
∇− ie

�c
A
)2

ψ + eφ ψ (2.38)

as the potentials A and φ change according to (2.3) and (2.4), respectively18.

B. Some Useful Geometrical Apparatus

In this section we will summarize the tools of differential geometry that will be used

in the remainder of this dissertation. Our approach is going to be practical, rather

than formal. A lemma-theorem-proof fashion mathematical rigor with heavy jargon

will be avoided, although an introductory level familiarity with objects like the metric

tensor or Christoffel symbols is assumed.

1. The Covariant Derivative of ψ

Let’s begin with setting � = c = 1, and rewrite equation (2.38) in a generic way as

i
( ∂
∂t

+ ieφ
)
ψ = − 1

2m

[( ∂

∂x1
− ieA1

)2

+
( ∂

∂x2
− ieA2

)2

+ . . .
]
ψ. (2.39)

As usual, we will treat time as the zeroth member of the (d + 1)-dimensional gener-

alized coordinate system xμ (i.e. x0 = t), and use the shorthand ∂μ ≡ ∂/∂xμ. Upon

redefining the potentials in (2.39) as A0 = eφ and eAj → Aj (for j = 1, . . . , d), we

get

i(∂0 + iA0)ψ = − 1

2m

d∑
j=1

(∂j − iAj)2ψ. (2.40)

18This equation may be obtained from the classical Hamiltonian (2.9) using the

“quantum correspondence rules”: p → −i�∇ and E → i� ∂
∂t

in the equation Ĥψ =
Eψ.
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To resolve the discrepancy between sub and superscripts, and also to fix the relative

signs of the derivatives and components of the potential, we introduce the following

rule of lowering the indices:

A0 = A0 and Aj = −Aj , j = 1, . . . , d. (2.41)

Finally we define

∇μψ(x) = [∂μ + iAμ(x)]ψ(x) (2.42)

as the covariant derivative of the complex-valued wave function ψ and write the

gauge-invariant Schrödinger equation in the form

i∇0ψ = − 1

2m

d∑
j=1

∇j
2ψ. (2.43)

The components of the generalized potential, Aμ, are called the connection coeffi-

cients and the gauge transformations of (2.3) and (2.4) are summarized by the single

substitution formula Aμ → Aμ − ∂μθ.

2. The Intrinsic Meaning of ∇μ and Parallel Transport

Now we will try to give a geometrical meaning to the connection coefficients. Let the

(complex) number a = ψ(x) be an element of a vector space called the fiber19 at x.

In this vector space, it is possible to introduce a basis {ej}rj=1 in each x [24], such

that

ψ(x) =

r∑
j=1

ψj(x) ej(x). (2.44)

19Technically, the inverse image of a set with exactly one element is called a fiber.
Example: In R2, f−1[{9}] is the fiber at x = (

√
6,
√

3) which is a circle of radius = 3
about the origin where f(x1, x2) = (x1)2 + (x2)2.
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If we change to a new basis given by e′
j(x) = (U−1)kj ek(x), the components ψj should

transform20 according to ψ′k(x) = Uk
jψ

j(x) so that the function ψ, which is called a

section in this context, remains invariant:

ψ → Uk
jψ

j(U−1)lk el = δljψ
j el = ψ. (2.45)

Here the change of basis is the gauge transformation, so there should be a link between

this and the covariant differentiation of (2.42) in the intrinsic sense. The ∇μψ should

be considered as a mapping of ordinary sections to covector-valued sections and the

connection coefficients wμ (previously iAμ) are now defined by

∇μ ek ≡ (wμ)
j
k ej (2.46)

and they are matrices. If we include coordinate transformations in a manifold21 of

dimension n into this general framework (the principle of gauge invariance is broad-

ened to include gravity), the covariant derivative of the covector vμ ≡ ∇μψ is given

by

∇νvμ = ∂νv
μ − Γρμνvρ + wνvμ (2.47)

where the connection coefficients on the manifold are Christoffel symbols [52]. Higher

order combinations of these non-commutative derivatives will involve other objects

such as the curvature (see next section) or the torsion (see [24]). But first, let us

briefly explain the concept of parallel transport.

Parallel transport is the act of moving a vector (or a section) along a curve

without changing it. In a flat world this is something we do all the time, but on a

manifold (like our universe) it is meaningless to compare (add, subtract, etc.) two

20From now on we will suppress the summation sign
∑

whenever summation must
be made over an index that occurs twice, once as a superscript and once as a subscript.

21A manifold is a space that looks, locally, like an Euclidean space.
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vectors living in different tangent spaces. One needs to carry the vector in Tx′ to the

other tangent space Tx while keeping it constant along the selected curve x(λ) that

joins x′ and x. The requirement is that the absolute derivative of ψ, ∇μψ, or any

tensor of higher rank should be equal to zero:

dxμ

dλ
∇μ(·) = 0. (2.48)

This operation will be connection dependent as well as path dependent since the

definition is given in terms of the covariant derivative. When applied to sections and

vectors, (2.48) reads

dψ

dλ
+
dxμ

dλ
wμψ = 0 “ gauge ” (2.49)

and

dvν

dλ
+
dxμ

dλ
Γνρμv

ρ = 0 “ gravitational ”. (2.50)

In general (2.49) is a system of differential equations since the connection coefficients

include matrices (Yang-Mills theory). If ψ(λ) is the solution of (2.49) with the initial

value ψ(0), then suppose ψ(1) is given by

ψ(1) = I(x, x′)ψ(0) (2.51)

where x′ = x(0) and x = x(1). I(x, x′) is called the parallel displacement matrix (see

[24], [40] p. 151) and satisfies

lim
x′→x

I = unit matrix. (2.52)

Let us leave the discussion of the second case (2.50) aside for now (we will come

back to it later) and work out the electromagnetic parallel transport for Abelian gauge

fields Aμ = −iwμ. One may multiply both sides of (2.49), which is now a first order
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differential equation, by dλ/ψ and integrate to get

ψ(1) = exp

(
− i

∫ x

x′
Aμ(x̄)dx̄

μ

)
ψ(0) (2.53)

where the line integral is along the curve x̄ = x(λ) [24].

3. Geodesics and Curvature

If the curve x(λ) of the previous section parallel transports its own tangent vector, it

is called a geodesic. In other words, it is the solution of

d2xν

dλ2
+ Γνρμ

dxμ

dλ

dxρ

dλ
= 0, (2.54)

which is equation (2.50) with the special choice vν = dxν/dλ. Alternatively, one

may consider the variation of the (proper time) action integral of (2.14) introduced

in section A-3 to find the shortest-distance path:

δ

∫
ds = δ

∫ √
gμν

dxμ

dλ

dxμ

dλ
dλ. (2.55)

The gμν(x) is the metric tensor, which provides a generalization of (2.12). The result-

ing equation is identical to (2.54) if the metric satisfies the compatibility condition

∇ρgμν = 0, (2.56)

and the parameter λ turns out to be the proper time itself (actually, any other param-

eter related to the proper time in a linear fashion22 works just fine). The coincidence

of these two notions tell us that, quoting [53], the “straightest curve” is also the

“shortest curve”.

Geodesics can also be used in mapping the tangent space at a point x′ to a local

22They are called affine parameters.
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neighborhood of x′. Given an arbitrary vector u ∈ Tx′(M), one can solve the geodesic

equation (2.54) with the initial conditions

xμ(0) = x′μ and
dxμ(0)

dλ
= uμ (2.57)

and find the point y on the geodesic where the parameter is equal to 1. This is the

definition of the exponential map or the “geodesic flow”

y = expx′(u), (2.58)

which is invertible:

u = exp−1
x′ (y). (2.59)

This definition makes sense only locally; spacetimes in general relativity usually have

singularities which geodesics may “fall” into. A converse definition is as follows: If

two points on M are “sufficiently close”, then there is a tangent vector given by

(2.59) which can be found after solving the two-point boundary problem (2.54) for

the shortest distance [6].

Now let us consider an example regarding parallel transport which may be intu-

itive. Due to the fact that parallel transport is a path-dependent operation in curved

space, the results of parallel transporting a vector from point A to a nearby point B

along two distinct paths, let’s say along the edges of a “rectangle” (i.e., along some

ACB and ADB), are expected to be different. Similarly, if the vector is brought back

to the starting point along the other path, therefore completing the loop, it will be

transformed to a new vector. Since it is the curved nature of space that we blame,

one may attempt to quantitatively express the change experienced by this vector in

terms of the total curvature enclosed by the loop; or even better, may consider an

infinitesimal loop and associate a local curvature to point A. If the above mentioned
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path dependence and the anti-symmetry attached to it23 are taken into account, the

goal is to find a geometrical object of the form

Rα
βμν = −Rα

βνμ. (2.60)

The formula for this tensor in terms of the connection coefficients can be found by

computing the commutator of covariant derivatives, therefore finding the difference

between parallel transporting along paths ACB and ADB:

[∇μ,∇ν ]v
α = Rα

βμνv
β, (2.61)

where we assumed Γαμν = Γανμ (no torsion). Then [24],

Rα
βμν ≡ ∇μΓ

α
βν −∇νΓ

α
βμ + ΓαγμΓ

γ
βν − ΓαγνΓ

γ
βμ, (2.62)

which is called the Riemann curvature tensor.

We have not mentioned what happens in the bundle in this context, but the

situation is very similar. The commutator of the covariant derivatives of a section ψ

is

[∇μ,∇ν]ψ = Yμνψ, (2.63)

where

Yμν ≡ ∂μwν − ∂νwμ + [wμ, wν ] (2.64)

is the curvature tensor of the bundle (electromagnetic field strength tensor in the

Abelian case). In the same fashion as (2.47), the general formula is [24]

[∇ν ,∇ρ]∇μψ = Rα
μνρ∇αψ + Yνρ∇μψ. (2.65)

23A loop can be completed clockwise or counterclockwise.
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4. More on Geodesic Theory

Let s be the geodesic distance between x′ = x(0) and x = x(1). Using (2.55), this is

s =

∫ 1

0

√
gμν

dxμ

dλ

dxν

dλ
dλ. (2.66)

Let us again assume that the points are close and there is only one geodesic connecting

them. In other words, x is closer than first caustic we would meet. The Synge-deWitt

world function is defined by (see [6], [24], [40], [41], [42], [43])

σ(x′, x) ≡ 1

2
s2. (2.67)

The bi-scalar σ(x′, x) is a symmetric function of x and x′, and can be considered as

related to an action24 (different from (2.55)) that produces the geodesic equation in

a dynamic way [40]:

S =
1

2

∫ λ

λ′
gμν

dxμ

dλ̃

dxν

dλ̃
dλ̃ =

σ(y′, y)
λ− λ′

, (2.68)

where y′ = x(λ′) and y = x(λ). The advantage of this formal approach over the

prominent definition (2.67) becomes apparent when one realizes that the Hamilton-

Jacobi equation based on this action can be written in the form

1

2
gμν∇μσ∇νσ = σ. (2.69)

The abundancy of occurrence of these derivatives of σ in calculations made the fol-

lowing notation customary among physicists:

σμ ≡ ∇μσ or σμ ≡ gμν∇νσ. (2.70)

24The two actions give the same extremal curve when the parameter λ̃ grows linearly
with arc-length (or proper time for a timelike geodesic) [54].
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Note that (2.69) can be equivalently written in terms of covariant derivatives with

respect to the other end point x′. From now on we will adopt the notation of putting

primes on the indices that live in x′, and keep in mind that an inattentive look at the

total number of mixed indices can be misleading25. The Hamilton-Jacobi equation at

x′ is

1

2
σμ′σ

μ′ = σ, (2.71)

where

σμ
′
= gμ

′ν′(x′)∇ν′σ. (2.72)

The significance of (2.69) and (2.71) is better understood if σμ (σμ
′
) is associated with

the tangent vector at x (x′) of length equal to the geodesic distance. Technically, σμ

(σμ
′
) is a vector that points away from x′ (x) (see Fig. 1), therefore the following

notation [24] will be used frequently:

σ̂μ
′ ≡ −σμ′ . (2.73)

In terms of the exponential map introduced in the previous section, we may write

σμ
′

σμσ̂μ
′

s
x′

x

Fig. 1. The tangent vectors on the geodesic.

25For instance, the bi-vector bμν′(x, x
′) is an object that transforms as a vector, not

a tensor of rank 2.
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this vector as

σ̂μ
′
(x′, x) = exp−1

x′ (xμ). (2.74)

Since the vectors σ̂μ
′
and σμ are self-parallel by definition, there should be a parallel

transport bi-vector gμ
′
ν(x

′, x), which is the solution of (2.50), or in the new notation

σμ∇μg
ν′
α = 0, (2.75)

and satisfies

−σμ′ = gμ
′
νσ

ν , −σμ′ = gμ′
νσν . (2.76)

The boundary conditions for the world function, tangent vectors and the parallel

transport are

[σ] = [σμ] = [σμ
′
] = 0, [gμ

′
ν ] = δμν , (2.77)

where [ · ] stands for the coincidence limit x′ → x. By differentiating (2.69) twice

and using (2.77), one finds

[∇ρσ
μ] = δμρ. (2.78)

Similarly, differentiation of (2.76) yields [∇ρσ
μ′ ] = −δμρ. One needs to take the

derivative of (2.75), and employ (2.77) to get

[∇κg
ν′
α] = 0. (2.79)

Considering higher order derivatives in a similar fashion, the following coincidence

limits of symmetrized derivatives of gν
′
α and σν are found:

[∇(μ1
. . .∇μn)g

ν′
α] = 0, (2.80)

and

[∇(μ1 . . .∇μn)σ
ν ] = [∇(μ1 . . .∇μn)σ

ν′] = 0. (2.81)
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One has (see Appendix A, [41], [43])

[∇α∇βg
μ′
ν ] =

1

2
Rμ

νβα and [∇τ∇σ∇νσ
μ] = −1

3
(Rμ

σντ +Rμ
τνσ). (2.82)

Two other significant objects are ημ
′
ν ≡ ∇νσ

μ′ and its inverse η−1 ≡ γ = {γμν′}.
These will be used frequently later when we need to make a change of variables from

the tangent vectors to the geodesic flow or vice versa, i.e.,

∂σμ′ (x′,x)f(x) = γνμ′(x
′, x)∇νf(x), (2.83)

and

∇μg(σ
μ′(x′, x)) = ην

′
μ(x

′, x)∂σν′ (x′,x)g(σ
μ′(x′, x)). (2.84)

The coincidence limits of these matrices and their derivatives are straightforward:

[ην
′
μ] = [γνμ′ ] = −δνμ, [∇μγ

ν
β′ ] = 0, etc. (2.85)

The matrix Dμν′ ≡ −∇ν′σμ (or its inverse) may be used as a measure of how

much xμ varies as a result of the variation of the tangent vector σν′ [40],

δxμ = −D−1μν′δσν′ (2.86)

and the Jacobian

∂(σν′ , x
′τ )

∂(xμ, x′ρ)
= − det(Dμν′) (2.87)

describes the rate at which geodesics emanating from a point diverge (or conversely,

one may consider a point where they start converging). This is called the VanVleck-

Morette determinant and we will be using it in the more common form

Δ(x′, x) ≡ g(x′)−1/2 det(Dμν′)g(x)
−1/2 (2.88)

where g(x) = det[gμν(x)]. This determinant is employed in the Jacobian one needs
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when passing from integrals26 over the tangent space to integrals on the manifold (or

vice versa) [6]

∫
Tx′

√
g(x′) dσ̂(x′, x) . . . �

∫
M

Δ(x′, x)
√
g(x) dx . . . , (2.89)

and it satisfies [43]

Δ−1/2(σμ∇μΔ
1/2) =

1

2
(d− �σ) (2.90)

where �σ ≡ ∇μ∇μσ and d is the dimension of the manifold. Some of the coincidence

limits are (see Appendix A for derivation)

[Δ] = 1, [∇μΔ] = 0, [∇μ∇νΔ] =
1

3
Rμν , (2.91)

[Δ1/2] = 1, [∇μΔ
1/2] = 0, [∇μ∇νΔ

1/2] =
1

6
Rμν , (2.92)

where Rμν = Rα
μαν is the Ricci tensor. Before we finish this section let us note

that the coincidence limits of the parallel displacement matrix I(x′, x) of (2.51) will

include the gauge strength (bundle curvature) Yμν in analogy with (2.82).

26The reader should keep in mind that the exponential map and σ̂(x′, x) are not
globally defined because of caustics. Therefore, our spatial integrals are not globally
defined either. One has to put in cutoff functions and argue that the contribution
from distant points are rather unimportant contributions.
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CHAPTER III

CLASSICAL WEYL-WIGNER FORMALISM

In this chapter we discuss the “non-covariant” Weyl quantization in the classical

sense, both in the standard pseudo-differential form [6] [8], and in quantizer schemes

[12]. After a brief introduction to Wigner distribution functions we will derive the

classical product formula for the symbol of the operator Ĉ = ÂB̂.

A. Pseudo-Differential Operators

1. The Operator Ordering Problem

The classical �→ quantum correspondence relation pj = −i�∂/∂qj of Schrödinger

inevitably leads to a non-commutative character for the operators representing po-

sition and momentum. The quantization of a phase space function of the form

a(q, p) = qmpn has an ambiguity in the ordering of these operators. One may push

all P̂ ’s to the right of Q̂’s,

qmpn �→ Q̂mP̂ n (3.1)

or vice versa:

qmpn �→ P̂ nQ̂m. (3.2)

A common way of ordering called McCoy’s formula is the association [6], [7]

qmpn �→
m∑
l=0

(
m

l

)
Q̂m−lP̂ nQ̂l, (3.3)

which is a symmetrization of (3.1) and (3.2). It is also possible to assume a momentum

polynomial of the form

a(q,p) = A0(q) + Ai1(q)pi + Aij2 (q)pipj + · · · (3.4)
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in 2d-dimensional phase space and work out the symmetrized quantum operator or-

dering. For instance, the third term in (3.4) will yield [6]

Aij2 (q)pipj �→ 1

4
P̂iP̂jA

ij
2 (Q̂) +

1

2
P̂iA

ij
2 (Q̂)P̂j +

1

4
Aij2 (Q̂)P̂iP̂j . (3.5)

The result is a second order differential operator.

These generalizations are not limited to momentum polynomials, of course. The

quantum mechanical problem may involve the quantization of a function of practically

any form. The proper mathematical term for such an operator is a pseudo-differential

operator or ψDO for short. The phase space function is called a symbol.

2. The Multi-Index Notation

Before we move further, let us introduce the multi-index notation. In an expres-

sion such as (3.4), one frequently encounters clusters of the nith power of the ith

component where i ≤ d, therefore a handy notation which would summarize lengthy

expansions is needed. A d-tuple of nonnegative integers (α1, α2, . . . , αd) will be called

the multi-index α when the index i occurs αi times in the cluster. For example in

d = 3 dimensions, terms factored around p1(p2)
2p4 in (3.4) are represented by only

one index, which is (1, 2, 0, 1). This allows us to write that expansion as a single sum

a(q,p) =
∑
α

Aα(q)pα (3.6)

where the coefficients now represent the sum of redundant terms in (3.4). For instance,

A(1,2,0,1) = A1224
4 + A2124

4 + etc . . . . (3.7)

Note that in the case of multi-indices, we will not be using the Einstein summation

convention of the previous chapter. Also the regular p subscript qˆsuperscript index-

ing will be swapped to emphasize multi-indices. There are two numbers associated
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to a multi-index, which are quite practical:

|α| ≡ α1 + · · ·+ αd (the length of α), (3.8)

and

α! ≡ α1! · · ·α2!. (3.9)

Finally, note the following notation for partial derivatives (with respect to p):

∂αp ≡ ∂|α|

∂p1
α1 · · ·∂pdαd

. (3.10)

3. ψDO Formulae

In general the action of an operator Â on a function Ψ can be given in the form of

an integral

[ÂΨ](x) =

∫
Rd

ddyA(x,y)Ψ(y), (3.11)

where A(x,y) is called the integral kernel. In general, A(x, y) is a distribution, not

a function (as in the case of differential operators). If it is a ψDO, studying the

p �→ −i�∇ example and Fourier transform techniques, one may intuitively decide

that the definition involves the symbol of Â and the Fourier transform of Ψ:

[ÂΨ](x) = (2π)−d/2
∫

Rd

ddp eip·xa(x,p)Ψ̃(p). (3.12)

Using (3.11), (3.12) and the definition of the d-dimensional Fourier transform

Ψ̃(p) = (2π)−d/2
∫

Rd

ddy e−ip·yΨ(y), (3.13)

the kernel can be expressed in terms of the symbol as

A(x,y) = (2π)−d
∫

Rd

ddp eip·(x−y)a(x,p), (3.14)
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which is a Fourier transform itself. Inverting this, one gets the “kernel to symbol”

formula

a(x,p) =

∫
Rd

ddy e−ip·(x−y)A(x,y). (3.15)

Note that it may be necessary to cutoff the contribution from widely seperated argu-

ment points of A(x, y) because of caustics27.

B. Weyl-Wigner Correspondence

1. Weyl Quantization and Wigner Transform

The following interpretation of Weyl quantization follows the symbol � kernel style

of the previous section and [6]. Weyl’s original definition (see [3], [5], [7] and [8]) will

be discussed separately.

The equations that are to be modified in the Weyl calculus are (3.14) and (3.15).

The basic idea is to symmetrize x and y in the definitions by introducing a “new”

variable q, the classical position, which turns out to be equally far from each point.

The easiest way to do this is to take the midpoint (x+y)/2, therefore the new “symbol

to kernel” formula becomes

A(x,y) = (2π)−d
∫

Rd

ddp eip·(x−y)a[(x + y)/2,p]. (3.16)

To invert this formula one defines a difference vector v ≡ x − y and works out the

solutions for x and y in terms of v and q:

x → q +
v

2
, y → q − v

2
. (3.17)

27A differential operator is an excellent example where the cutoff is unnecessary,
since derivatives of delta functions have support on the diagonal!
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Therefore,

a(q,p) =

∫
Rd

ddv e−ip·vA(q + v/2,q − v/2). (3.18)

This is also called the Wigner transform [7] [11], and usually written as

Sym(Â)(q,p) ≡
∫

Rd

ddv e−ip·v〈q + v/2|Â|q − v/2〉. (3.19)

Sometimes the Wigner transform is defined as (3.19) divided by (2π)d [8] and (3.19)

is referred as the inverse Weyl transform. It follows from (3.19) that

Sym(Â) = Sym(Â†)
∗

(3.20)

and in the case of Hermitian operators, the symbols are real.

In order to demonstrate the symmetry of the definition (3.16), let us try to find

the operator corresponding to the symbol

a(q,p) = bμν(q)pμpν + cμ(q)pμ + d(q). (3.21)

Plugging the definition of the kernel (3.16) into (3.11) one gets

[ÂΨ](x) = (2π)−d
∫
ddyΨ(y)

∫
ddp eip·(x−y)a(q,p). (3.22)

If multi-index notation is used in the symbol this is

[ÂΨ](x) = (2π)−d
∑
α

∫
ddyΨ(y)

∫
ddp eip·(x−y)Aα(q)pα

= (2π)−d
∑
α

∫
ddyΨ(y)

∫
ddpAα(q)(−i∂y)αeip·(x−y), (3.23)

and integration by parts yields

[ÂΨ](x) = (2π)−d
∑
α

∫
ddp

∫
ddy eip·(x−y)(+i∂y)α

[
Aα

(x + y

2

)
Ψ(y)

]
. (3.24)
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If one employs the definition of Dirac delta-function

δ(x − y) ≡ (2π)−d
∫
ddp eip·(x−y) (3.25)

and

f(x) =

∫
ddyδ(x− y)f(y), (3.26)

(3.24) becomes

[ÂΨ](x) =
∑
α

(+i∂y)α
[
Aα

(x + y

2

)
Ψ(y)

]∣∣∣∣
y=x

. (3.27)

Now the terms in (3.21) correspond to the |α| = 2, |α| = 1 and |α| = 0 terms above,

for example,

[Op(bμνpμpν)Ψ](x) = −∂μ∂ν
[
bμν
(x + y

2

)
Ψ(y)

]∣∣∣∣
y=x

. (3.28)

Upon taking the derivatives and setting y = x one finds

−
[1
4
(∂μ∂νb

μν)Ψ + ∂νb
μν∂μΨ + bμν∂μ∂νΨ

]
(x), (3.29)

or after a rearrangement of the terms,

−
[1
4
∂μ∂ν(b

μνΨ) +
1

2
∂ν(b

μν∂μΨ) +
1

4
bμν∂μ∂νΨ

]
(x), (3.30)

which has the manifest symmetry of (3.5).

2. Product Rule

The symbol representation of quantum mechanics is practically useful if there is a

symbol calculus. On many occasions one needs to consider the product of operators

or commutators of these. The simplest problem is to write the symbol of operator
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Ĉ = ÂB̂ in terms of the symbols of Â and B̂. The starting point is the equation

[ĈΨ](x) =

∫
ddz C(x, z)Ψ(z), (3.31)

which may also be written as

[Â(B̂Ψ)](x) =

∫
ddyA(x,y)[B̂Ψ](y)

=

∫
ddyA(x,y)

∫
ddz B(y, z)Ψ(z). (3.32)

Comparing (3.31) and (3.32),

C(x, z) =

∫
ddyA(x,y)B(y, z). (3.33)

Then one has

c(q,p) =

∫
ddv e−ip·vC(q + v/2,q − v/2)

=

∫
ddv e−ip·v

∫
ddyA(q + v/2,y)B(y,q− v/2) (3.34)

The kernels on the right hand side of (3.34) can be written in terms of their symbols

as follows:

A(q + v/2,y) = (2π)−d
∫
ddp′1 e

ip′
1·(q+v

2
−y)a

(q + v
2

+ y

2
,p′

1

)
, (3.35)

B(y,q − v/2) = (2π)−d
∫
ddp′2 e

ip′
2·(y−q+v

2
)b
(y + q − v

2

2
,p′

2

)
. (3.36)

Using (3.35) and (3.36) in (3.34) and passing from (v,y,p′
1,p

′
2) to (q1,q2,p1,p2) in

the resulting integral, via

p′
1 = p1 + p (3.37)

p′
2 = p2 + p (3.38)

y = q1 + q2 + q (3.39)
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v = 2(q1 − q2) (3.40)

one obtains the 4-tuple integral

c(q,p) = (π)−2d

∫
ddq1

∫
ddq2

∫
ddp1

∫
ddp2 e

2i(p2·q1−q2·p1)

×a(q1 + q,p1 + p)b(q2 + q,p2 + p), (3.41)

which is called the twisted product [8]. Other names include star or Weyl product

[7]. This is an exact identity, but the asymptotic expansion of it is more popular. If

the symbols a and b are expanded as power series in p1 and p2, respectively, as

a(q1 + q,p1 + p) =
∑
α

1

α!
∂p

αa(q1 + q,p)p1
α (3.42)

b(q2 + q,p2 + p) =
∑
β

1

β!
∂p

βb(q2 + q,p)p2
β (3.43)

and put into (3.41), one realizes that

p1
αp2

βe2i(p2·q1−q2·p1) =
(
− i

2
∂q1

)β(
+
i

2
∂q2

)α
e2i(p2·q1−q2·p1). (3.44)

The partial integration that comes after this shifts the derivatives onto the symbols:

c(q,p) = (π)−2d

∫
ddq1

∫
ddq2

∫
ddp1

∫
ddp2

∑
α, β

1

α!β!

i|α|−|β|

2|α|+|β|

×e2i(p2·q1−q2·p1)∂q1

β∂p
αa(q1 + q,p)∂q2

α∂p
βb(q2 + q,p). (3.45)

The final step is to replace the following integrals by Dirac deltas,

(π)−d
∫
ddp2 e

2i(p2·q1) → δ(q1), (3.46)

(π)−d
∫
ddp1 e

−2i(p1·q2) → δ(q2), (3.47)
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and integrate over q1 and q2 to get

c(q,p) =
∑
α, β

1

α!β!

i|α|−|β|

2|α|+|β|∂q
β∂p

αa(q,p)∂q
α∂p

βb(q,p). (3.48)

The exponential version of (3.48) [6] [8],

c(q,p) = exp
[ i
2

( ∂

∂q1
· ∂

∂p2
− ∂

∂p1
· ∂

∂q2

)]
a(q1,p1)b(q2,p2)

∣∣∣∣
(q,p)

(3.49)

is known as Groenewold’s formula [7].

3. The Wigner Function

This function has a long history in physics (see [11] and references therein). For

brevity we will only concern ourselves with the fact that it is proportional to the

Wigner transform of the density matrix,

W (q,p) = (2π)−d
∫

Rd

ddv e−ip·vΨ(q + v/2)Ψ(q − v/2)�, (3.50)

and the expectation value of Â is found in terms of the Wigner distribution function

as

〈Â〉 =

∫
Rd

ddqddp a(q,p)W (q,p). (3.51)

4. Weyl’s Original Definition

Weyl’s method for quantization was very straightforward but beautiful at the same

time. If one cannot simply replace all the p’s and q’s in a function (symbol) by their

quantum counterparts P̂ and Q̂ to get the corresponding quantum operator, he should

first take the Fourier transform of the symbol and then perform this substitution in

the inverse transform. This necessitates the employment of an auxiliary symbol called
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ã:

a(q,p) =

∫
dds

∫
ddt e−i(s·q+t·p)ã(s, t). (3.52)

Then the quantum operator that corresponds to the function a(q,p) is28

Â =

∫
dds

∫
ddt e−i(s·Q̂+t·P̂)ã(s, t) (3.53)

where

Q̂Ψ(x) = xΨ(x), P̂Ψ(x) = −i∇Ψ(x), [Q̂, P̂] = 1̂ (3.54)

as usual. It can be shown by using (3.11) and the Baker-Campbell-Haussdorff formula

(BCH)29

eÂ+B̂ = e−[Â,B̂]/2eÂeB̂ (3.55)

and the identity

e−iP̂·tΨ(x) = Ψ(x − t) (3.56)

that the integral kernel of Â can be written in terms of the auxiliary symbol ã(s, t)

as

A(x,y) =

∫
dds e−is·(x+y)/2 ã(s,x − y) (3.57)

after a change of variables y = x − t.

Finally, if one inverts (3.52) and plugs it in (3.53), we have the (alternative30)

“symbol to operator” relation

Â = (2π)−2d

∫
ddq

∫
ddp

∫
dds

∫
ddt a(q,p)ei(s·q+t·p)e−i(s·Q̂+t·P̂). (3.58)

For completeness let us also give the formulae for the auxiliary symbol in terms of

28Recall that we are using units where � = 1. In this choice of units, h just means
2π (see Chapter V).

29refer to [8], pp. 7–8 for a derivation of BCH.
30In comparison with the form [ÂΨ](x) that one gets after putting (3.16) in (3.11).
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the symbol and the kernel:

ã(s, t) = (2π)−2d

∫
ddq

∫
ddp ei(s·q+t·p)a(q,p), (3.59)

ã(s,v) = (2π)−2d

∫
ddq eis·qA(q + v/2,q− v/2). (3.60)

A summary of these relations is given in Fig. 2, where the factors by the arrows are

to be placed in the integrand along with functions of the proper set of variables.

5. Operator Bases and the Quantizer

The definitions of the previous section give the motivation to establish a notion of

operator basis. The Heisenberg translation operators defined by [12] [26]

T̂ ≡ exp[i(s · Q̂ + t · P̂)], (3.61)

which satisfy

Tr[T̂ (s, t)] ≡
∫
ddx 〈x|T̂ (s, t)|x〉 = (2π)dδ(s)δ(t), (3.62)

form a basis called the Weyl basis. The product of two Heisenberg operators can be

expressed as a single Heisenberg operator with a phase factor:

T̂ (s, t)T̂ (s′, t′) = e(i/2)(t·s
′−t′·s)T̂ (s + s′, t + t′), (3.63)

which is called the duplication formula. Taking the the trace of the product in (3.63),

Tr[T̂ (s, t)T̂ (s′, t′)] = (2π)dδ(s− s′)δ(t − t′), (3.64)

one finds the inverse of the basis T̂ (s, t) as (2π)−dT̂ (−s,−t) .

Another common basis which we can extract from (3.58) is the operator con-
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(2π)−2d × ei(s·q+t·p)e−i(s·Q̂+t·P̂)

e−i(s·Q̂+t·P̂)

Ψ(y)

e−is·(x+y)/2

(2π)−d × eis·q

e−ip·v

(2π)−d × eip·(x−y)

(2π)−2d × ei(s·q+t·p)

e−i(s·q+t·p)

a(q,p)

a(x+y
2
,p)

ã(s, t)

ã(s,x − y)

ã(s,v)

A(x,y)

A(q + v
2
,

q − v
2
)

Â

[ÂΨ](x)

Fig. 2. The integral machinery in the symbol-kernel-operator formalism.
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structed from T̂ (s, t) in the form

�̂(q,p) = (2π)−d
∫
dds

∫
ddt ei(s·q+t·p) T̂ (−s,−t). (3.65)

This is called Wigner’s basis [12] or the quantizer [55] [27]. These operators satisfy

Tr�̂(q,p) = 1̂, (3.66)

Tr[�̂(q,p)�̂(q′,p′)] = (2π)dδ(q − q′)δ(p − p′). (3.67)

Therefore the inverse base to �̂(q,p) is (2π)−d�̂(q′,p′). There is no simple duplica-

tion formula for �̂’s; the analogue of (3.63) is that the product of two operators is a

combination of an infinite number of �̂’s [12]:

�̂(q,p)�̂(q′,p′) =
( 2

π

)d ∫
ddq̄

∫
ddp̄ e2iϕ �̂(q̄, p̄), (3.68)

where the ‘phase factor’ ϕ is given by

ϕ = (q − q′) · (p′ − p̄) − (p− p′) · (q′ − q̄). (3.69)

In obtaining this, one uses (3.65), (3.63) and

s̄ = s + s′ (3.70)

t̄ = t + t′ (3.71)

q̄ = q′ + t/2 (3.72)

p̄ = p′ − s/2 (3.73)

Using Fig. 2 and the definitions (3.61) and (3.65), one can write an arbitrary operator

Â in both Weyl and Wigner bases as

Â =

∫
dds

∫
ddt ã(s, t) T̂ (−s,−t), (3.74)
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and

Â = (2π)−d
∫
ddq

∫
ddp a(q,p) �̂(q,p). (3.75)

Conversely, it can be shown that the symbols ã and a can be expressed in terms of

the operator Â in the following way:

ã(s, t) = (2π)−d Tr[T̂ (−s,−t)Â], (3.76)

a(q,p) = Tr [�̂(q,p)Â]. (3.77)

By these relations one completes (see Fig. 3) the ‘symbol-kernel-operator’ chart. For

completeness let us also give the representations of T̂ and �̂ in the coordinate basis

[12] that are needed to derive the trace formulas in this section:

〈x|T̂ (s, t)|x′〉 = δ(x − x′ + t) exp[is · (x + x′)/2], (3.78)

and

〈x|�̂(q,p)|x′〉 = δ(
x + x′

2
− q) exp[ip · (x − x′)]. (3.79)

Let us finish this chapter with the following remarks: First, if one replaces the arbi-

trary operator in (3.77) by the density matrix and evaluates the trace using (3.79)

the result is the Wigner function multiplied by (2π)d. Secondly, it can be shown

that the product formula in the exponential form (Groenewold’s formula) is easily

obtained in this formalism as a consequence of the duplication relation of the Heisen-

berg translation operators [7] [12]. Finally, as we will see in the next chapter, the

gauge invariant versions of the Weyl calculus are mostly based on the ‘magnetic’ ana-

logue of (3.63) (see [26]), and we will present our version of a covariant representation

of the quantizer in a form similar to (3.79).
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Tr [Δ̂(q,p)Â]

(2π)−d Tr[T̂ (−s,−t)Â]
a(q,p)

a(x+y
2
,p)

ã(s, t)

ã(s,x − y)

ã(s,v)

A(x,y)

A(q + v
2
,

q − v
2
)

Â

[ÂΨ](x)

Fig. 3. The trace formulas for obtaining the symbols.
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CHAPTER IV

INTRINSIC SYMBOLS OF ψDO’S AND WEYL SYMMETRY

A. The Electromagnetic Case

The problem of semiclassically describing the motion of a charged particle interacting

with an electromagnetic field has attracted much attention in past years due to its

vast area of applications. Some of these areas include plasma physics, accelerator

physics and quantum Hall effect (see [25], [26] and references therein). Gauge invariant

Wigner functions may be used in � expansions to study photon recoil effects [56] on

an atom and the center of mass motion of an ion trapped in a travelling light wave

[57]. In a recent paper [26], Müller derived a product rule for gauge invariant Weyl

symbols using the quantizer approach, which is a generalization of the Moyal bracket

defined by [7]

i�{a, b}M ≡ a ∗ b− b ∗ a (4.1)

for the symbols a and b. The ∗ product was defined in the previous chapter by (3.41)

and (3.48), in the form of a 4-tuple integral and a multi-index summation, respectively.

Karasev and Osborn, from a more elegant geometric point of view, developed a gauge

invariant quantization over a linear phase space endowed with the electromagnetic

2-form F = 1
2
Fjk(q)dq

k ∧ dqj in addition to the usual symplectic canonical 2-form

w = 1
2
Jjkdx

k ∧ dxj which generates Hamilton’s equations of motion31 [29].

31Here, J is a skew-symmetric matrix equal to

[
0 1̂
−1̂ 0

]
and x = (q, p) stands for

a point in the 2d-dimensional phase space.
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1. Gauge Invariant Symbols and the Magnetic Product

The gauge dependence of the canonical momentum P̂ causes the basis operators

�̂(q,p) to be gauge dependent as well. Upon inspecting (3.58), (3.77) and (3.79), one

concludes that a gauge invariant operator (Weyl symbol) leads to a gauge dependent

Weyl symbol (operator). To remedy this problem one replaces the gauge32 dependent

canonical momentum by the gauge independent kinetic momentum [26]:

Π̂i = P̂i − e

c
Ai(Q̂) (4.2)

and writes the new quantizer as

�̂q(q,p) = (2π)−d
∫
dds

∫
ddt ei(s·q+t·�π) T̂q(−s,−t), (4.3)

where

T̂q ≡ exp[i(s · Q̂ + t · Π̂)]. (4.4)

The operator � symbol relations (3.74)-(3.77) are unchanged.

It can be shown [25] by studying the operator

T̂ (s, t; τ) ≡ exp[iτ(s · Q̂ + t · Π̂)] (4.5)

parametrized by τ and a (2.33)-type relation that

exp[i(t · Π̂)] = exp
[
− i

e

c
t ·
∫ 1

0

dτ A(Q̂ + τt)
]
exp[i(t · P̂)]. (4.6)

Using this and the BCH formula (3.55), the following duplication relation can be

found [26]:

T̂ (s, t)T̂ (s′, t′) = eiκ̂(t,A,t′)e(i/2)(t·s
′−t′·s)T̂ (s + s′, t + t′). (4.7)

32One may also include time dependent gauge fields [29].
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(4.7) differs from the zero field duplication relation (3.63) by the factor exp[iκ̂(t,A, t′)]

where

κ̂(t,A, t′) =
e

c
t ·
∫ 1

0

dτ [A(Q̂ + τ(t + t′)) −A(Q̂ + τt)]

+
e

c
t′ ·
∫ 1

0

dτ [A(Q̂ + τ(t + t′)) − A(Q̂ + τt′ + t)]. (4.8)

The resulting gauge independent symbol product formula analogous to (3.49) by

Müller and its derivation are too long and technical to quote here (an elegant version

can be found in [29] which also attempts to find an extended formula for the product

of N operators) but let us stress one important result he obtained. The (3.41)-like

integral formula of the twisted product for the auxiliary symbol in the electromagnetic

case reads [26]

c̃(s, t) = (2π)−d
∫
ddq

∫
dds′

∫
ddt′
∫
ddS ei�(t,A(q),t′) ã(s′, t′)b̃(S− s′, t− t′)

× exp[i(S− s) · q)] exp
[ i
2

(
(t + t′) · S− t · (s + s′)

)]
, (4.9)

where

�(t,A(q), t′) ≡ e

c
t′ ·
∫ 1

0

dτ [A(q + (1 − τ)t′ + τt) − A(q + τt′)]

− e

c
t ·
∫ 1

0

dτ [A(q + (1 − τ)t′ + τt) −A(q + τt)]. (4.10)

If (4.10) is expanded into a Taylor series in 3 dimensions, it is seen that the result

�

(
t′ + t′′,A

(
q − t′ + t′′

2

)
, t′
)

=
∞∑
n=1

3∑
r,j,l=1

3∑
i1,...,in−1=1

n∑
k=1

ℵ(n, k)
∂n−1Br

∂qi1 · · ·∂qin−1

× t′′lt′jt′i1 · · · t′ik−1
t′′ik · · · t′′in−1 (4.11)

is only a function of the derivatives of the physical magnetic field B(q). Here, ℵ(n, k)
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is a combinatorial factor of the form

ℵ(n, k) =
1

n!

(
− 1

2

)n+1 1

(n + 1)2

(
n+ 1

k

)
. (4.12)

Therefore, the integrand in (4.9) is gauge inedependent. Finally, let us finish this

section by quoting a gauge invariant Wigner function from [25],

Wg(q, �π) = (2π)−d
∫
ddt 〈q − 1

2
t|ρ̂|q + 1

2
t〉

× exp
[
it ·
(
π +

e

c

∫ 1/2

−1/2

dτA(q + τt)
)]
. (4.13)

B. General Case

In this section we will briefly summarize the main results of the efforts to make ψDO’s

and the Weyl calculus geometrically covariant, in the style of [6].

1. Intrinsic Widom Calculus

The covariant calculus of pseudo-differential operators was defined by Bokobza [30],

Widom [32] and Drager [33] and developed for calculating heat kernels by Fulling

and Kennedy [34] [35]. In this formalism the symbol is a function on the cotangent

bundle; from the very start the calculations are to be kept manifestly covariant. If

one wants to mimic the kernel � relations of Chapter III on the manifold33, what

would replace the vectorial difference x − y = −(y − x) in (3.14) and (3.15)? The

most likely candidate is the negative tangent vector at x pointing in a direction that

gives the point y as the solution of the geodesic equation. In the language of Chapter

33From now on, the points on the manifold will be denoted by x, y, . . . , the vectors
in the cotangent space by p, k, . . . , and vectors in the tangent space by σ̂, �v, �u,
. . . etc.
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III, this is the inverse exponential map

σ̂(x, y) ≡ exp−1
x y. (4.14)

Secondly, the parallel transport matrix on the bundle, I(x, y), should accompany the

symbol (and the kernel) to assure covariance:

T ∗
x (M) ↘M : e−ip·σ̂(x,y) a(x,p)I(x, y) ��� A(x, y),

M ↗ T ∗
x (M) : e−ip·σ̂(x,y) A(x, y)I(y, x) ��� a(x,p). (4.15)

Finally, to make the integrals covariant, one needs to include the “
√
g ” in the appro-

priate places, i.e.,

∫
M

dx
√
g(x),

∫
T ∗

x

dp√
g(x)

,

∫
Tx

dσ̂(x, y)
√
g(x) etc . . . (4.16)

Then, in the spirit of (3.15), the covariant symbol is defined as

a(x,p) =

∫
M

dy
√
g(y) eip·σ̂(x,y) A(x, y)I(y, x). (4.17)

In order to invert this Fourier transform, one multiplies both sides of (4.17) by

(2π)−d exp(−ip · �v) and integrates over the cotangent space at x:

(2π)−d
∫
T ∗

x

ddp√
g(x)

e−ip·�va(x,p)

= (2π)−d
∫
M

dy
√
g(y)

∫
T ∗

x

ddp√
g(x)

eip·(σ̂−�v)A(x, y)I(y, x)

=

∫
M

dy
√
g(y) δ(σ̂ − �v)A(x, y)I(y, x). (4.18)

The integral over M can be converted to an integral over Tx by (2.89), and the right

hand side of (4.18) becomes

∫
Tx

Δ−1(x, expx σ̂)dσ̂(x, y)
√
g(x) δ(σ̂ − �v)A(x, expx σ̂)I(expx σ̂, x)
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= Δ−1(x, expx �v)A(x, expx �v)I(expx �v). (4.19)

Upon renaming expx �v as y, and solving for A(x, y), the covariant ‘symbol to kernel’

formula can be written as

A(x, y) = (2π)−dΔ(x, y)

∫
ddp√
g(x)

e−ip·σ̂(x,y)a(x,p)I(x, y). (4.20)

In [6], one reads (4.17) and (4.20) with parametrized Van Vleck-Morette determinants

Δγ(x, y) and Δ1−γ(x, y), respectively, for the purpose of comparison with Drager’s

earlier work on the study of the choices γ = 0 and γ = 1 [33]. The latter choice has a

clear advantage: If the symbol is taken to be a momentum polynomial Aα(x)p
α, the

resulting operator, which can now in general be found from the kernel by

[Âψ](x) =

∫
M

dy
√
g(y)A(x, y)ψ(y), (4.21)

is a covariant differential operator of the form Aα(x)(−i∇)α without any extra terms!

In other words one just replaces the ordinary derivatives by covariant derivatives.

2. Covariant Weyl Formalism: Fulling’s Definition

Let x and y be two given points on a geodesic. By definition, the tangent vector to

the geodesic at a point continues to be a tangent vector wherever on the geodesic it is

parallel transported to. So if �u0 = exp−1
x (y) and �v0 = exp−1

y (x), then �u0 = −g(x, y)�v0

where g(x, y) is the parallel transport bi-vector. Now pick an arbitrary point on this

geodesic line segment and let �v ∈ Tq and �u ∈ Tq be the vectors that satisfy

y = expq(�u/2), (4.22)

x = expq(�v/2). (4.23)
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If �u/2 = −�v/2 then q is called the ‘midpoint’. With this symmetrical choice at hand,

the ‘symbol to kernel’ formula is defined as [6]

A(x, y) = (2π)−dΔγ(x, y)

∫
T ∗

q

ddp√
g(q)

eip·�v I(x, q)a(q,p)I(q, y). (4.24)

Here q and �v should be understood as the dependent variables (on x and y) and they

should form a unique pair if x and y are sufficiently close (no caustics). To find the

symbol in terms of the kernel, one should invert the Fourier transform to get

a(q,p) =

∫
Tq

d�v
√
g(q) e−ip·�v I(q, x)A(x, y)I(y, q) Δ−γ(x, y), (4.25)

where x and y are defined by

x ≡ expq(
1
2
�v), y ≡ expq(−1

2
�v). (4.26)

The Weyl quantization of momentum polynomials in this case yields a symmetric

operator of the form (3.30). For the second order case, in addition to the ‘ordi-

nary derivatives replaced by covariant ones’ terms in (3.30), there is a γ dependent

curvature term:

Â = −Aμν∇μ∇ν − (∇μA
μν)∇ν − 1

4
(∇μνA

μν) − γ − 1

3
AμνRμν . (4.27)

The special case of Aμν = gμν is related to the Laplace-Beltrami operator and is of

interest from the quantum gravity point of view. The quantization of the relativistic

action (2.55) using the Feynman path integral method results in a similar term in the

Schrodinger equation:

i
∂ψ

∂t
= −1

2

1√
g

∂

∂qm

(√
g gmn

∂ψ

∂qn

)
+
R

6
ψ. (4.28)

This curvature term could be taken care of, if one starts with a Lagrangian that com-

pensates for it; but some authors [58] find it “contradictory to the spirit of Feynman’s
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formulation of quantum dynamics”. The reader should refer to [6] for more about

this controversy.

It is also possible to look at these definitions from the quantizer point of view.

The coordinate representation (3.79) of �̂(q,p) may now be written as

〈x|�̂(q,p)|y〉 = g(q)−1/2�(x, y)γδ(q − expx(−1
2
v))eip·vI(x, y) (4.29)

for an Abelian gauge field. This can be used in the (covariant modification of) oper-

ator � symbol formulas (3.75) and (3.77) of Chapter III:

Â = (2π)−d
∫ √

g(q)dq

∫
dp√
g(q)

a(q,p)�̂(q,p), (4.30)

or

〈x|Â|y〉 = (2π)−d
∫ √

g(q)dq

∫
dp√
g(q)

a(q,p)〈x|�̂(q,p)|y〉, (4.31)

and

a(q,p) = Tr[�̂(q,p)Â]. (4.32)

(4.29) shows that the quantizer formalism has an advantage over the “Heisenberg

translation” formalism, because it is far from obvious what are the proper covariant

analogues of Q̂ and T̂ in a curved space. The formula (4.29) does not have an obvious

generalization to a non-Abelian gauge field.

As a closing remark for this chapter let us note that a product formula for the

symbols is not known in this case and quote Fulling’s definition of the covariant

Wigner function:

W (q,p) = (2π)−d
∫
Tq

d�v
√
g(q) e−ip·�vΔ−γ(x, y)ψ(x)ψ(y)∗. (4.33)

One can find papers in the mathematics literature which deal with Weyl symmetry

and geometrical covariance together; for a rigorous study the reader may refer to [59].
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CHAPTER V

A COVARIANT WEYL CALCULUS

In this chapter we propose a new method to establish a covariant Weyl calculus. The

motivation for such a task comes from the fact that an asymptotic product formula

for the symbols could not be achieved using Fulling’s definition. The ‘midpoint’ q

itself is the point where the tangent and cotangent space integrals are carried out. In

the problem of constructing a symbol for Ĉ = ÂB̂ in terms of a and b, one encounters

a “geodesic triangle” and three pairs of integral domains to use in the operator �

symbol relations. After the asymptotic expansions for the symbols about momenta

living in these cotangent spaces are obtained, the problem of what to do with these

integrals and how to get rid of them using Dirac delta distributions arises. In order

to remedy this problematic situation, we introduce a fiducial point x′ separate from

the ‘midpoint’, which carries the responsibility of housing the ‘σ̂’s and ‘p’s in its Tx′

and T ∗
x . After defining the kernel � symbol relations we directly move on to the

momentum polynomial test and work out the corresponding operators for |α| = 1

and |α| = 2. After taking the coincidence limits we obtain the familiar ‘ordinary

derivatives replaced by covariant ones’ form.

A. Definitions

Operators are defined through integral kernels as usual:

[Ĉψ](X) =

∫
M

dZ
√
g(Z)C(X,Z)ψ(Z). (5.1)
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We define a ‘symbol to kernel’ formula in the following manner: Given points X and

Z,

C(X,Z) = Δγ(x′, X)Δγ(x′, Z)h−d
∫
Tx′ ∗

ddP̃μ′√
g(x′)

eiP̃μ′V μ′
c(x′;Q,P), (5.2)

where

Q = expx′
1

2
[σ̂μ

′
(x′, X) + σ̂μ

′
(x′, Z)] (5.3)

V μ′ = σ̂μ
′
(x′, X) − σ̂μ

′
(x′, Z) (5.4)

P̃μ′ = gμ′
ν(x′, Q)Pν (5.5)

Note that σ̂μ
′
(x′, ·) ∈ Tx′ , P̃μ′ ∈ T ∗

x′ and Pμ ∈ T ∗
Q. γ is an arbitrary constant kept

in for generality. For definitions of Δ(x′, X) and σ̂(x′, X), see (2.67)–(2.89). The

schematic representation of (5.3)–(5.5) is given in Fig. 4. Note also that Q is not the

exact midpoint of the geodesic joining X and Z, but it is “close” in the sense that

the two merge in the limit when the local radii of curvature are large compared to

the lengths in the point configuration. The inverse formula which lets one pass from

the kernel to the symbol is given by:

c(x′; q,p) =

∫
Tx′
ddξμ

′√
g(x′)Δ−γ(x′, x)Δ−γ(x′, z)e−ip̃μ′ξμ′C(x, z) (5.6)

where x and z are defined by

x = expx′ [σ̂
μ′(x′, q) +

1

2
ξμ

′
] (5.7)

z = expx′ [σ̂
μ′(x′, q) − 1

2
ξμ

′
]. (5.8)

Here pμ′ ∈ T ∗
q and p̃μ′ ∈ T ∗

x′ are related by means of the parallel transport:

p̃μ′ = gμ′
ν(x′, q)pν (5.9)

Relations (5.7)–(5.9) are summarized in Fig. 5. The addition of gauge fields in this
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x′

Z

Q

P̃

P

X

�V

σ̂
(x

′ , Z
)

σ̂(x′, X)

σ̂(x
′ , Q

)

Fig. 4. The points used in symbol �→ kernel formula.
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x′

q

�ξ

z

x

σ̂
(x

′ , z
)

σ̂(
x
′ , q)

σ̂(x′ , x)

p̃

p

Fig. 5. The points used in kernel �→ symbol formula.
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formalism will be in the style of (4.24) and (4.25) as follows:

C(X,Z) = Δγ(x′, X)Δγ(x′, Z)h−d
∫
Tx′ ∗

ddP̃μ′√
g(x′)

eiP̃μ′V μ′

×I(X, x′)I(x′, Q)c(x′;Q,P)I(Q, x′)I(x′, Z), (5.10)

and

c(x′; q,p) =

∫
Tx′
ddξμ

′√
g(x′)Δ−γ(x′, x)Δ−γ(x′, z)e−ip̃μ′ξμ′

×I(q, x′)I(x′, x)C(x, z)I(z, x′)I(x′, x). (5.11)

B. Differential Operators

Since we already know from classical Weyl formalism that symbols in the form of

momentum polynomials produce differential operators, the next task is to see whether

we get covariant derivatives in the general case. Before we begin to analyze the

polynomial symbol, let us list the coincidence limits for some of the geometrical

objects that we will need most. These are already defined and calculated in Chapter

II and some details are in Appendix A.

The derivatives with respect to tangent vectors and points on the manifold are

related by:

∂σμ′ (x′,x) = γνμ′(x
′, x)∇ν , (5.12)

and

∇μ = ην
′
μ(x

′, x)∂σν′ (x′,x). (5.13)

The coincidence limits of γμν′ and its first derivative are

[γμν′ ] = −δμν , (5.14)

[∇μγ
ν
β′ ] = 0; (5.15)
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the coincidence limits of the parallel transport bi-vector gν
′
μ and its derivative are

[gν
′
μ] = δνμ, (5.16)

[∇αg
ν′
μ] = 0; (5.17)

the coincidence limits of the Synge-deWitt world function σ and its first and second

order derivatives are

[σμ] = 0, (5.18)

[∇ασ
μ] = δμα; (5.19)

and finally, the coincidence limits of the Van Vleck-Morette determinant Δ and its

derivatives are

[Δγ] = 1, (5.20)

[∇μΔ
γ ] = 0, (5.21)

for γ = 1 and γ = 1/2; and

[∇β∇ϕΔ
γ ] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
6
Rβϕ , γ = 1

2

0 , γ = 0

1
3
Rβϕ , γ = 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (5.22)

The covariant Fourier integral can be defined as [43]

f(x) =

∫
dkμ′

(2π)d
g−1/2(x′) exp

(
−ikμ′σμ′(x′, x)

)
f̃(k; x). (5.23)

The inverse transformation has the form

f̃(k; x) =

∫
dx g1/2(x)Δ(x′, x) exp

(
ikμ′σ

μ′(x′, x)
)
f(x). (5.24)
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The covariant Fourier integral for the delta function has the form [43]

δ(x, y) = g1/4(x)g1/4(y)Δ1/2(x′, x)Δ1/2(x′, y)

×
∫

dkμ′

(2π)d
g−1/2(x′) exp

(
ikμ′
(
σμ

′
(x′, y) − σμ

′
(x′, x)

))
. (5.25)

The equation defining the action of the delta function is

f(x) =

∫
dy δ(x, y)f(y). (5.26)

1. First Order

Let

c(x′;Q,P) = Cμ
1 (Q)Pμ, (5.27)

= Cμ
1 (Q)gν

′
μ(x

′, Q)P̃ν′.

Then

[Ĉψ](X) =

∫
M

dZ
√
g(Z) h−dΔγ(x′, X)Δγ(x′, Z)

×
∫
Tx′ ∗

ddP̃μ′√
g(x′)

ψ(Z)Cμ
1 (Q)gν

′
μ(x

′, Q)P̃ν′e
iP̃·�V . (5.28)

Rewrite the last two factors in the integrand as

P̃ν′e
iP̃·�V = −i∂V ν′eiP̃·�V ,

= −i∂σν′ (x′,Z)e
iP̃·�V ,

= −iγαν′(x′, Z)∇(Z)
α eiP̃·�V , (5.29)

where we used (5.12); then

[Ĉψ](X) = −i
∫
M

dZ
√
g(Z) h−dΔγ(x′, X)Δγ(x′, Z)ψ(Z)
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×
∫
Tx′ ∗

ddP̃μ′√
g(x′)

Cμ
1 (Q)gν

′
μ(x

′, Q)γαν′(x
′, Z)∇(Z)

α eiP̃·�V . (5.30)

Integrate by parts to get

[Ĉψ](X) = +i

∫
M

dZ
√
g(Z) h−d

∫
Tx′ ∗

ddP̃μ′√
g(x′)

eiP̃·�V

×∇(Z)
α

[
Δγ(x′, X)Δγ(x′, Z)ψ(Z)Cμ

1 (Q)gν
′
μ(x

′, Q)γαν′(x
′, Z)

]
.(5.31)

The Dirac delta is given by

δ(X,Z) = g1/4(X)g1/4(Z)Δ1/2(x′, X)Δ1/2(x′, Z)h−d
∫
Tx′ ∗

ddP̃μ′√
g(x′)

eiP̃·�V ; (5.32)

plug this into (5.31) to get

[Ĉψ](X) = i

∫
M

dZ
√
g(Z) g−1/4(X)g−1/4(Z)Δγ−1/2(x′, X)Δ−1/2(x′, Z)δ(X,Z)

×∇(Z)
α

[
Δγ(x′, Z)ψ(Z)Cμ

1 (Q)gν
′
μ(x

′, Q)γαν′(x
′, Z)

]
, (5.33)

or

[Ĉψ](X) = iΔγ−1(x′, X)∇(Z)
α

[
Δγ(x′, Z)ψ(Z)Cμ

1 (Q)gν
′
μ(x

′, Q)γαν′(x
′, Z)

]∣∣∣∣
Z=X

= K1 +K2, (5.34)

where K1 and K2 are defined as

K1 ≡ iΔγ−1(x′, X)Cμ
1 (Q)gν

′
μ(x

′, Q)∇(Z)
α

[
Δγ(x′, Z)ψ(Z)γαν′(x

′, Z)
]∣∣∣∣
Z=X

= iΔγ−1(x′, X)Cμ
1 (X)gν

′
μ(x

′, X)∇(X)
α

[
Δγ(x′, X)ψ(X)γαν′(x

′, X)
]

(5.35)

and

K2 ≡ iΔ2γ−1(x′, X)γαν′(x
′, Z)ψ(Z)∇(Z)

α

[
Cμ

1 (Q)gν
′
μ(x

′, Q)
]∣∣∣∣
Z=X

, (5.36)



61

where we used the definition of Q given by (5.3) in (5.35). In order to express ∇(Z)

in terms of ∇(Q) one starts with (5.13) and writes

∇(Z)
α = ημ

′
α(x

′, Z)∂σμ′ (x′,Z),

= ημ
′
α(x

′, Z)
∂σθ

′
(x′, Q)

∂σμ′(x′, Z)
∂σθ′ (x′,Q);

again using (5.3),

∇(Z)
α = ημ

′
α(x

′, Z)(
1

2
δθ

′
μ′)∂σθ′ (x′,Q),

=
1

2
ημ

′
α(x

′, Z)∂σμ′ (x′,Q); (5.37)

as a final step one uses (5.12) again to write

∇(Z)
α =

1

2
ημ

′
α(x

′, Z)γβμ′(x
′, Q)∇(Q)

β . (5.38)

Therefore

K2 =
i

2
Δ2γ−1(x′, X)γαν′(x

′, Z)ψ(Z)

×ημ′α(x′, Z)γβμ′(x
′, Q)∇(Q)

β

[
Cμ

1 (Q)gν
′
μ(x

′, Q)
]∣∣∣∣
Z=X

,

=
i

2
Δ2γ−1(x′, X)γαν′(x

′, X)ψ(X)

×ημ′α(x′, X)γβμ′(x
′, X)∇(X)

β

[
Cμ

1 (X)gν
′
μ(x

′, X)
]
.

Since γ is η−1, we have

ημ
′
α(x

′, X)γβμ′(x
′, X) = δβα (5.39)

and

K2 =
i

2
Δ2γ−1(x′, X)γαν′(x

′, X)ψ(X)∇(X)
α

[
Cμ

1 (X)gν
′
μ(x

′, X)
]
. (5.40)

Now let’s try to see what K1 and K2 look like in the coincidence limit x′ → X.

Eq (5.35) has two terms with derivatives of Δ and γαν′ which will vanish in the
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coincidence limit according to (5.21) and (5.15). The third term is

iΔγ−1(x′, X)Cμ
1 (X)gν

′
μ(x

′, X)Δγ(x′, X)γαν′(x
′, X)∇(X)

α ψ(X). (5.41)

The x′ → X limit of the VanVleck-Morette determinant, the parallel transport and

γαν′ are given in (5.20), (5.16) and (5.14), therefore

[K1] = −i Cμ
1 (X)∇μψ(X). (5.42)

Similarly, in equation (5.40), the term with ∇αg
ν′
μ should vanish because of (5.17)

and

i

2
Δ2γ−1(x′, X)γαν′(x

′, X)ψ(X)gν
′
μ(x

′, X)∇(X)
α Cμ

1 (X) (5.43)

becomes

[K2] = − i

2
ψ(X)∇μC

μ
1 (X). (5.44)

Therefore

[Ĉψ](X)
∣∣∣
x′→X

= −i Cμ
1 (X)∇μψ(X) − i

2
ψ(X)∇μC

μ
1 (X). (5.45)

The symbol (5.27) gives a differential operator of the first order. The Weyl symmetry

is easily seen if one writes (5.45) in the following form:

− i

2

(
Cμ

1∇μψ + ∇μ(C
μ
1ψ)
)

(5.46)

or

Op
(
Cμ

1 (Q)Pμ

)
= − i

2

(
Cμ

1 (Q̂)∇̂μ + ∇̂μC
μ
1 (Q̂)

)
. (5.47)

2. Second Order

The symbol is

c(x′;Q,P) = Cμν
2 (Q)PμPν . (5.48)
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The momenta Pμ ∈ TQ
∗, and Cμν

2 (Q) is symmetric. Define

gμ
′
μ
ν′
ν(x

′, Q) ≡ 1

2
(gμ

′
μg

ν′
ν + gμ

′
νg

ν′
μ)(x

′, Q), (5.49)

then

[Ĉψ](X) =

∫
M

dZ
√
g(Z) h−dΔγ(x′, X)Δγ(x′, Z)

×
∫
Tx′ ∗

ddP̃μ′√
g(x′)

ψ(Z)Cμν
2 (Q)gμ

′
μ
ν′
ν(x

′, Q)P̃μ′P̃ν′e
iP̃·�V . (5.50)

With the help of (5.29),

P̃μ′P̃ν′e
iP̃·�V = −γϕμ′(x′, Z)∇(Z)

ϕ {γαν′(x′, Z)∇(Z)
α eiP̃·�V }; (5.51)

plug (5.51) into (5.50) and integrate by parts to get

[Ĉψ](X) = h−d
∫
M

dZ
√
g(Z)

∫
Tx′ ∗

ddP̃μ′√
g(x′)

γαν′(x
′, Z)Bν′Δγ(x′, X)∇(Z)

α eiP̃·�V (5.52)

where

Bν′ = ∇(Z)
ϕ

{
Δγ(x′, Z)ψ(Z)Cμν

2 (Q)gμ
′
μ
ν′
ν(x

′, Q)γϕμ′(x
′, Z)

}
. (5.53)

Integrate by parts again to obtain

[Ĉψ](X) = −h−d
∫
M

dZ
√
g(Z)

∫
Tx′ ∗

ddP̃μ′√
g(x′)

eiP̃·�V Δγ(x′, X)∇(Z)
α

{
γαν′(x

′, Z)Bν′
}

(5.54)

and use the Dirac delta given in (5.32) to get

−
∫
M

dZ(g(Z)/g(X))1/4δ(X,Z)Δ−1/2(x′, Z)Δγ−1/2(x′, X)∇(Z)
α

{
γαν′(x

′, Z)Bν′
}

;

(5.55)

therefore,

[Ĉψ](X) = −Δγ−1(x′, X)∇(Z)
α

{
γαν′(x

′, Z)Bν′
}∣∣∣

Z=X
. (5.56)
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Using the Leibnitz rule,

[Ĉψ](X) = −Δγ−1(x′, X)
{
∇(X)
α γαν′(x

′, X)Bν′ + γαν′(x
′, X)∇(Z)

α Bν′
}∣∣∣

Z=X
. (5.57)

The first term in (5.57) will vanish in the coincidence limit due to (5.15). So we need

to focus on the second term only, in particular:

∇(Z)
α Bν′ = ∇(Z)

α ∇(Z)
ϕ

{
Δγ(x′, Z)ψ(Z)Cμν

2 (Q)gμ
′
μ
ν′
ν(x

′, Q)γϕμ′(x
′, Z)

}
. (5.58)

The derivatives in (5.58) are to be distributed over the factors in parantheses in a

regular fashion. Let’s group the resulting terms in four,

∇(Z)
α Bν′ = D1 + D2 + D3 + D4 (5.59)

and analyze these terms one by one. The first one is

D1 = ∇(Z)
α ∇(Z)

ϕ

{
Δγ(x′, Z)ψ(Z)γϕμ′(x

′, Z)
}
gμ

′
μ
ν′
ν(x

′, Q)Cμν
2 (Q). (5.60)

The rule in this rather lengthy analysis is to ignore the terms which will vanish in the

coincidence limit according to (5.15), (5.17) and (5.21). For instance in (5.60) these

are the terms containing ∇αγ
μ
ν′ and ∇αΔ

γ. Then we are left with

D1 =
{
∇(Z)
α ∇(Z)

ϕ Δγ(x′, Z)ψ(Z)γϕμ′(x
′, Z) + Δγ(x′, Z)∇(Z)

α ∇(Z)
ϕ ψ(Z)γϕμ′(x

′, Z)

+ψ(Z)Δγ(x′, Z)∇(Z)
α ∇(Z)

ϕ γϕμ′(x
′, Z)

}
gμ

′
μ
ν′
ν(x

′, Q)Cμν
2 (Q) (5.61)

Similarly,

D2 = ∇(Z)
ϕ

{
Δγ(x′, Z)ψ(Z)γϕμ′(x

′, Z)
}
∇(Z)
α

{
gμ

′
μ
ν′
ν(x

′, Q)Cμν
2 (Q)

}
(5.62)

is reduced to

D2 = Δγ(x′, Z)∇(Z)
ϕ ψ(Z)γϕμ′(x

′, Z)gμ
′
μ
ν′
ν(x

′, Q)∇(Z)
α Cμν

2 (Q). (5.63)
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Here we used the fact that ∇(Z)
α gμ

′
μ
ν′
ν(x

′, Q) is zero in the coincidence limit. This

is seen better if one writes ∇(Z)
α as 1

2
ηα

′
α(x

′, Z)γβα′(x′, Q)∇(Q)
β as in (5.38) and uses

(5.17) and the definition of gμ
′
μ
ν′
ν given in (5.53). The third term coming out of (5.58)

is almost identical to D2 except for the fact that α and ϕ derivatives are interchanged:

D3 = ∇(Z)
α

{
Δγ(x′, Z)ψ(Z)γϕμ′(x

′, Z)
}
∇(Z)
ϕ

{
gμ

′
μ
ν′
ν(x

′, Q)Cμν
2 (Q)

}
(5.64)

and again it is enough to focus on

D3 = Δγ(x′, Z)∇(Z)
α ψ(Z)γϕμ′(x

′, Z)gμ
′
μ
ν′
ν(x

′, Q)∇(Z)
ϕ Cμν

2 (Q) (5.65)

only. Finally we have

D4 = Δγ(x′, Z)ψ(Z)γϕμ′(x
′, Z)∇(Z)

α ∇(Z)
ϕ

{
gμ

′
μ
ν′
ν(x

′, Q)Cμν
2 (Q)

}
(5.66)

which can be shortened to

D4 = Δγ(x′, Z)ψ(Z)γϕμ′(x
′, Z)

{
∇(Z)
α ∇(Z)

ϕ gμ
′
μ
ν′
ν(x

′, Q)Cμν
2 (Q)

+gμ
′
μ
ν′
ν(x

′, Q)∇(Z)
α ∇(Z)

ϕ Cμν
2 (Q)

}
(5.67)

since the first derivatives of the parallel transport are zero at the coincidence limit.

Now it is time to calculate the coincidence limit of (5.57). We are going to

multiply each Di by −Δγ−1(x′, X)γαν′(x
′, X), set Z = X and see what happens

when x′ → X. Let’s introduce another variable for shorthand:

Mi ≡ −Δγ−1(x′, X)γαν′(x
′, X)Di

∣∣∣
Z=X

. (5.68)

The interesting terms are the ones with the second derivatives of the parallel trans-

port, γαν′ and the VanVleck-Morette determinant. Manipulating the Kronecker deltas
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that would arise in [M1] we get

[M1] = −[∇(μ∇ν)Δ
γ]ψCμν

2 −∇(μ∇ν)ψC
μν
2 + ψCμν

2 [∇(μ∇|ϕ|γϕν′)]. (5.69)

Here is where we meet the Riemann curvature tensor. The Rμν arises in the first

term of (5.69) according to (5.22) and the coefficient will depend on the parameter

γ. (See Appendix A). In order to find an expression for 1
2
Lμν ≡ [∇(μ∇|ϕ|γϕν′)] in the

third term of (5.69) we should evaluate [∇(μ∇θ)γ
ϕ
ν′ ] first. The matrix γϕν′ satisfies

the second order linear differential equation [43]

D2γ + Dγ + K · γ = 0 (5.70)

where D ≡ σμ∇μ and Kϕ
ν ≡ Rϕ

ανβσ
ασβ . If we differentiate (5.70) twice,

∇θ∇μ

{
σλ∇λ(σ

ν∇νγ
ϕ
ν′) + σλ∇λγ

ϕ
ν′ +Rϕ

ανβσ
ασβγνν′

}
= 0 (5.71)

and take the coincidence limit while keeping (5.18) and (5.19) in mind, we get

3[∇(θ∇μ)γ
ϕ
ν′] = Rϕ

(θ|ν|μ). (5.72)

Now rewrite Lμν as

Lμν = 2
{

[∇(μ∇ϕ)γ
ϕ
ν′ ] + [∇(ν∇ϕ)γ

ϕ
μ′ ] − [∇ϕ∇(μγ

ϕ
ν′)]
}
, (5.73)

and use the fact that

∇ϕ∇μγ
ϕ
ν′ = ∇μ∇ϕγ

ϕ
ν′ −Rϕ

βμϕγ
β
ν′ (5.74)

in the third term of (5.73). Take the coincidence limits according to (5.72) and (5.14)

to get

Lμν = 2
{1

3
Rϕ

(μ|ν|ϕ) +
1

3
Rϕ

(ν|μ|ϕ) − [∇(μ∇|ϕ|γϕν′)] +Rμν

}
(5.75)
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or

Lμν =
2

3
Rμν , (5.76)

where we used the following symmetry property of the Riemann curvature tensor

Rϕ
θνμ = −Rϕ

θμν (5.77)

and the Ricci tensor Rμν ≡ Rϕ
μϕν

Rμν = Rνμ. (5.78)

Thus the final term of (5.69) is also found to contain a curvature factor along with

the first term, and the coefficient is 1/3. Now with this good luck and (5.22), we can

rewrite (5.69) as

[M1] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1
6

+ 1
3

= 1
6

, γ = 1
2

0 + 1
3

= 1
3

, γ = 0

−1
3

+ 1
3

= 0 , γ = 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
ψRμνC

μν
2 − Cμν

2 ∇(μ∇ν)ψ. (5.79)

So the γ = 1 choice gets rid of the curvature term. The remaining terms are relatively

easier to find. In a few steps one can show that

[M2] = [M3] = −1

2
∇(μψ∇ν)C

μν
2 . (5.80)

The 1/2 pops up as a chain rule factor as in (5.38). In the fourth term, i.e., [M4],

one needs two of them so the coefficient is 1/4: ∇(Z)
α ∇(Z)

ϕ gμ
′
μ
ν′
ν(x

′, Q) which is equal

to

1

2
ηκ

′
α(x

′, Z)γψκ′(x
′, Q)∇(Q)

ψ

{1

2
ηβ

′
ϕ(x

′, Z)γθβ′(x′, Q)∇(Q)
ψ gμ

′
μ
ν′
ν(x

′, Q)
}

(5.81)

gives 1
4
∇(X)
α ∇(X)

ϕ gμ
′
μ
ν′
ν(x

′, X) when Z → X. The ∇γ can be omitted since it will

vanish in the coincidence limit. The final step in this analysis is to show that the
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[∇α∇ϕg
μ′
μ
ν′
ν ] term in (5.67) will have zero contribution to [M4]. According to (5.68)

and (5.49) this term is the [. . .] of

−1

8
Δ2γ−1ψCμν

2 γαν′γ
ϕ
μ′∇α∇ϕ(g

μ′
μg

ν′
ν + gμ

′
νg

ν′
μ). (5.82)

It can easily be shown that (5.82) is proportional to

ψCνα
2 δϕμ′ [(∇α∇ϕ + ∇ϕ∇α)g

μ′
ν ]. (5.83)

The coincidence limits of the symmetrized derivatives of gμ
′
ν are zero (see Appendix

A). However, the second term of (5.67) does have a non-zero contribution:

M4 = −1

4
ψ∇(μ∇ν)C

μν
2 (5.84)

Let us put together all the terms in (5.69), (5.80), and (5.84) and choose γ = 1:

[Ĉψ](X)
∣∣∣
x′→X

= M1 + M2 + M3 + M4

= −Cμν
2 ∇(μ∇ν)ψ −∇(μψ∇ν)C

μν
2 − 1

4
ψ∇(μ∇ν)C

μν
2 (5.85)

One can again write this in the operator form, where the symmetry of the momentum

and position operators is easy to see:

Op
(
Cμν

2 (Q)PμPν

)
= −1

4
∇̂μ∇̂νC

μν
2 (Q̂) − 1

4
Cμν

2 (Q̂)∇̂μ∇̂ν − 1

2
∇̂μC

μν
2 (Q̂)∇̂ν . (5.86)

We may even include the curvature term we found in (5.79) with a γ-dependent

coefficient.

Op
(
Cμν

2 (Q)PμPν

)
= −1

4
∇̂μ∇̂νC

μν
2 (Q̂) − 1

4
Cμν

2 (Q̂)∇̂μ∇̂ν

−1

2
∇̂μC

μν
2 (Q̂)∇̂ν − γ − 1

3
Rμν(Q̂)Cμν

2 (Q̂). (5.87)

The reader may refer back to (3.30) for comparison with the classical case.
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CHAPTER VI

PRODUCT RULE

A. Derivation of the Product Rule

Let the operator Ĉ be equal to a product of two operators Â and B̂:

Ĉ = ÂB̂ (6.1)

where

[Âψ](x) =

∫
M

dy
√
g(y)A(x, y)ψ(y) (6.2)

and

[B̂ψ](y) =

∫
M

dz
√
g(z)B(y, z)ψ(z). (6.3)

Then the kernel C(x, z) can be written as

C(x, z) =

∫
M

dy
√
g(y)A(x, y)B(y, z). (6.4)

Here we note that the kernels A and B are also written in terms of the symbols of

the operators Â and B̂, respectively, in the following way:

A(x, y) = Δγ(x′, x)Δγ(x′, y)h−d
∫
Tx′ ∗

ddk̃μ′√
g(x′)

eik̃μ′wμ′
a(x′; r, k̄) (6.5)

where

wμ
′ ≡ σ̂μ

′
(x′, x) − σ̂μ

′
(x′, y), (6.6)

r ≡ expx′
1

2
[σ̂μ

′
(x′, x) + σ̂μ

′
(x′, y)], (6.7)

k̃μ′ = gμ′
ν(x′, r)k̄ν, (6.8)
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and

B(y, z) = Δγ(x′, y)Δγ(x′, z)h−d
∫
Tx′ ∗

dd l̃μ′√
g(x′)

eil̃μ′uμ′
b(x′; s, l̄) (6.9)

where

uμ
′ ≡ σ̂μ

′
(x′, y) − σ̂μ

′
(x′, z), (6.10)

s ≡ expx′
1

2
[σ̂μ

′
(x′, y) + σ̂μ

′
(x′, z)], (6.11)

l̃μ′ = gμ′
ν(x′, s)l̄ν . (6.12)

1. Integral Formula

Our goal is to find a formula for c, the symbol of Ĉ, in terms of a and b. Plugging

(6.5) and (6.9) into (6.4),

C(x, z) =

∫
M

dy
√
g(y)Δγ(x′, x)Δγ(x′, y)h−d

∫
Tx′ ∗

ddk̃μ′√
g(x′)

eik̃μ′wμ′
a(x′; r, k̄)

×Δγ(x′, y)Δγ(x′, z)h−d
∫
Tx′ ∗

dd l̃μ′√
g(x′)

eil̃μ′uμ′
b(x′; s, l̄)

and converting the integration over the manifold to an integral over the tangent space

at x′ by ∫
M

dy
√
g(y) . . . =

∫
Tx′
ddσ̂μ

′
(x′, y)

√
g(x′)Δ−1(x′, y) . . . (6.13)

one gets

C(x, z) =

∫
Tx′
ddσ̂μ

′
(x′, y)

√
g(x′)Δ2γ−1(x′, y)Δγ(x′, x)Δγ(x′, z)h−2d

∫
Tx′ ∗

ddk̃μ′√
g(x′)

eik̃μ′wμ′
a(x′; r, k̄)

∫
Tx′ ∗

dd l̃μ′√
g(x′)

eil̃μ′uμ′
b(x′; s, l̄). (6.14)

Plug (6.14) into (5.6) to get:

c(x′; q,p) = h−2d

∫
Tx′
ddξμ

′√
g(x′)

∫
Tx′ ∗

ddk̃μ′√
g(x′)

∫
Tx′
ddσ̂(x′, y)

√
g(x′)

∫
Tx′ ∗

ddl̃μ′√
g(x′)

× Δ2γ−1(x′, y)ei(k̃·�w+l̃·�u−p̃·�ξ)a(x′; r, k̄)b(x′; s, l̄). (6.15)
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σ̂(x′, q)

�ξ σ̂(x′, r)

σ̂(x′, s)

x′

σ̂(x′, y)

Fig. 6. The vectors σ̂(x′, r) and σ̂(x′, s) in (6.15).

In (6.15), r and s should be thought of as points determined by �ξ, σ̂(x′, y) and σ̂(x′, q)

(see Fig. 6). If one writes (5.7) and (5.8) as

σ̂μ
′
(x′, x) = σ̂μ

′
(x′, q) +

1

2
ξμ

′
, (6.16)

σ̂μ
′
(x′, z) = σ̂μ

′
(x′, q) − 1

2
ξμ

′
, (6.17)

and uses the definitions (6.7) and (6.11), then

σ̂μ
′
(x′, r) =

1

2
[σ̂μ

′
(x′, q) + σ̂μ

′
(x′, y)] +

1

4
ξμ

′
, (6.18)

σ̂μ
′
(x′, s) =

1

2
[σ̂μ

′
(x′, q) + σ̂μ

′
(x′, y)] − 1

4
ξμ

′
. (6.19)

Now if we solve (6.16) and (6.17) for ξμ
′
:

ξμ
′
= σ̂μ

′
(x′, x) − σ̂μ

′
(x′, z). (6.20)
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Using (6.6) and (6.10) one sees that this is equal to

ξμ
′
= wμ

′
+ uμ

′
. (6.21)

From (6.6) and (6.10)

wμ
′ − uμ

′
= σ̂μ

′
(x′, x) − 2σ̂μ

′
(x′, y) + σ̂μ

′
(x′, z) (6.22)

and plugging in the expressions for σ̂μ
′
(x′, x) and σ̂μ

′
(x′, z) from (6.16) and (6.17),

yields

wμ
′ − uμ

′
= 2σ̂μ

′
(x′, q) − 2σ̂μ

′
(x′, y). (6.23)

Solve this for σ̂μ
′
(x′, y):

σ̂μ
′
(x′, y) = σ̂μ

′
(x′, q) − 1

2
(wμ

′ − uμ
′
). (6.24)

Using (6.21) and (6.24) one can switch from integrals over �ξ and σ̂(x′, y) to integrals

over �w and �u with

d�ξdσ̂(x′, y) =

∣∣∣∣∂(
�ξ, σ̂(x′, y))
∂(�w, �u)

∣∣∣∣d�w d�u (6.25)

The Jacobian of this transformation is 1 and using (6.21) in the exponent, (6.15) can

now be written as

c(x′; q,p) = h−2d

∫
Tx′
d�w
√
g(x′)

∫
Tx′ ∗

dk̃√
g(x′)

∫
Tx′
d�u
√
g(x′)

∫
Tx′ ∗

d̃l√
g(x′)

× Δ2γ−1(x′, y)ei(k̃−p̃)·�wei(̃l−p̃)·�ua(x′; r, k̄)b(x′; s, l̄). (6.26)

(6.26) is an integral formula for c(x′; q,p) in terms of the symbols a(x′; r, k̄) and

b(x′; s, l̄). Note that y, r, and s are points defined in terms of �w, k̃ , l̃ and �u as follows

(see Fig. 7): we begin by rewriting (6.24) as

y = expx′ [σ̂
μ′(x′, q) − 1

2
(wμ

′ − uμ
′
)]. (6.27)
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x′

�w
�u

σ̂(
x
′ , q

)

σ̂(x′, r)

σ̂(x′, y)

σ̂(x′, s)

Fig. 7. The vectors σ̂(x′, r), σ̂(x′, y) and σ̂(x′, s) in (6.26).



74

Using (6.21) for �ξ, write (6.16) as

σ̂μ
′
(x′, x) = σ̂μ

′
(x′, q) +

1

2
(wμ

′
+ uμ

′
) (6.28)

and plug (6.28) and (6.24) into (6.7) to get

r = expx′ [σ̂
μ′(x′, q) +

1

2
uμ

′
]. (6.29)

Similarly, (6.17) and (6.11) give

s = expx′[σ̂
μ′(x′, q) − 1

2
wμ

′
]. (6.30)

Finally, we also note that the momenta p ∈ Tq
∗, k̄ ∈ Tr

∗, and l̄ ∈ Ts
∗ are related to

p̃, k̃, l̃ ∈ Tx′ by parallel transport as in (5.9), (6.8), and (6.12).

2. Expansions and the Asymptotic Formula

Let k ∈ Tr
∗ be the momentum covector p̃ ∈ Tx′

∗ parallel transported to the cotangent

vector space at r:

kν = gμ
′
ν(x

′, r)p̃μ′ (6.31)

We expand the symbol a(x′; r, k̄) into a Taylor series about k ∈ Tr
∗,

a(x′; r, k̄) =
∑
α

1

α!
∂αka(x

′; r,k)(k̄− k)α. (6.32)

Here α ≡ (α1, α2, · · · , αd) is a multi-index and kα = kα1
1 kα2

2 · · · kαd
d . The factorial is

α! ≡ α1! · · ·αd! and the derivative operator in (6.32) is given as

∂αk =
∂|α|

∂kα1
1 · · ·∂kαd

d

, |α| ≡ α1 + · · ·+ αd. (6.33)
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The formula corresponding to (6.31) in multi-index notation can be found from

d∏
i=1

kαi
i =

d∏
i=1

[g1′
ip̃1′ + g2′

ip̃2′ + · · ·+ gd
′
ip̃d′ ]

αi (6.34)

or

kα =
∑
β′
Gβ′α(x′, r)p̃β

′
(6.35)

where |α| = |β ′|. The factor Gβ′α is a product of parallel transport matrices.

Example: Let α = (0, 1, 2) and β ′ = (1′, 2′, 0′) so that

k(0,1,2) = k2k
2
3 = · · ·+G(1′,2′,0′)

(0,1,2)p̃1′ p̃
2
2′ + · · · , (6.36)

then

G(1′,2′,0′)
(0,1,2) = g1′

2 g
2′

3 g
2′

3 + cyclic permutations of 1′, 2′, 2′

= g1′
2 g

2′
3 g

2′
3 + 2g2′

2 g
1′

3 g
2′

3. (6.37)

The non-primed multi-index (0, 1, 2) tells us how to arrange the lower indices in the

‘g’ bundle on the right hand side: one 2, two 3’s and no 0’s. The number of g’s

multiplied is already determined to be |α| = 3. Once the lower indices are fixed, we

can add the distinct cyclic permutations of the primed indices to the product (note

that this is not always needed, for example in the case of β ′ = (3′, 0′, 0′):

G(3′,0′,0′)
(0,1,2) = g1′

2 g
1′

3 g
1′

3

since there are not any such permutations). Using (6.35) and (6.8), the expansion

(6.32) can be rewritten as

a(x′; r, k̄) =
∑
α

∑
β′

1

α!
∂αka(x

′; r,k)Gβ′α(x′, r)(k̃ − p̃)β
′
. (6.38)



76

A similar Taylor expansion for b(x′; s, l̄) about lν = gμ
′
ν(x

′, s)p̃μ′ is as follows:

b(x′; s, l̄) =
∑
θ

1

θ!
∂θl b(x

′; s, l)(̄l − l)θ

=
∑
θ

∑
δ′

1

θ!
∂θl b(x

′; s, l)Gδ′
θ(x′, s)(̃l − p̃)δ

′
. (6.39)

As in the previous case, Gδ′
θ(x′, s) can be found by (6.12). Let us now plug (6.38)

and (6.39) into (6.26) and rearrange the factors in the integrand,

c(x′; q,p) = h−2d
∑

α, θ, β′, δ′

1

α!γ!

∫ ∫ ∫ ∫
d�w d�u dk̃ d̃l Δ2γ−1(x′, y)

×∂αka(x′; r,k)Gβ′α(x′, r)∂θl b(x
′; s, l)Gδ′

θ(x′, s)

×(k̃ − p̃)β
′
ei(k̃−p̃)·�w (̃l − p̃)δ

′
ei(̃l−p̃)·�u. (6.40)

For brevity, we suppressed the notation here:

d�w d�udk̃ d̃l = d�w
√
g(x′) d�u

√
g(x′)

dk̃√
g(x′)

d̃l√
g(x′)

. (6.41)

The next step will be integration by parts after modifying the ingredients of the last

line a little bit:

(k̃ − p̃)β
′
ei(k̃−p̃)·�w = (−i∂�w)β

′
ei(k̃−p̃)·�w (6.42)

(̃l − p̃)δ
′
ei(̃l−p̃)·�u = (−i∂�u)δ′ei(̃l−p̃)·�u. (6.43)

Then we have

c(x′; q,p) = h−2d
∑

α, θ, β′, δ′

1

α!θ!

∫ ∫ ∫ ∫
d�w d�u dk̃ d̃l Δ2γ−1(x′, y)

×∂αka(x′; r,k)Gβ′α(x′, r)∂θl b(x
′; s, l)Gδ′

θ(x′, s)

×(−i∂�w)β
′
ei(k̃−p̃)·�w(−i∂�u)δ′ei(̃l−p̃)·�u, (6.44)
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and

c(x′; q,p) = h−2d
∑

α, θ, β′, δ′

i|β
′|+|δ′|

α!θ!

∫ ∫ ∫ ∫
d�w d�udk̃ d̃l

×ei(k̃−p̃)·�wei(̃l−p̃)·�u ∂β
′
�w ∂

δ′
�u

[
Δ2γ−1(x′, y)

×∂αka(x′; r,k)Gβ′α(x′, r)∂θl b(x
′; s, l)Gδ′

θ(x′, s)
]
. (6.45)

The Dirac delta can be written as the scalar

δ(�w) = h−d
∫
Tx′ ∗

ddk̃μ′√
g(x′)

eik̃·�w, (6.46)

therefore,

c(x′; q,p) =
∑

α, θ, β′, δ′

i|β
′|+|δ′|

α!θ!

∫
Tx′
ddwμ

′√
g(x′)

∫
Tx′
dduμ

′√
g(x′) δ(�w)δ(�u)e−ip̃·(�u+�w)

×∂β′
�w ∂

δ′
�u

[
Δ2γ−1(x′, y)∂αka(x

′; r,k)Gβ′α(x′, r)∂θl b(x
′; s, l)Gδ′

θ(x′, s)
]
.

Carrying out the �u and �w integrals, we have

c(x′; q,p) =
∑

α, θ, β′, δ′

i|β
′|+|δ′|

α!θ!
∂β

′
�w ∂

δ′
�u

[
Δ2γ−1(x′, y)∂αka(x

′; r,k)Gβ′α(x′, r)

×∂θl b(x′; s, l)Gδ′
θ(x′, s)

]
�w=0,�u=0

. (6.47)

Now we need to apply the Leibniz rule for the derivative of a product for the multi-

index case. The formula looks like

∂α(FG) =
∑

|β|≤|α|

α!

β!(α− β)!
∂βF∂α−βG (6.48)

but we are going to use a slightly modified version of it by transforming α → α + β

and then renaming α as β (and vice versa):

∑
α

Aα∂
α(FG) =

∑
α, β

(α + β)!

α!β!
Aα+β ∂

αF∂βG. (6.49)
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From the definitions of y and r ((6.27) and (6.29)), we know that the �u derivative

will be distributed over functions of y and r only, in (6.47):

c(x′; q,p) =
∑

α, θ, β′, δ′, κ′, ρ′

i|β
′|+|δ′+κ′+ρ′|

α!θ!

(δ′ + κ′ + ρ′)!
δ′!κ′!ρ′!

∂β
′
�w

[
∂δ

′
�u Δ2γ−1(x′, y)

×∂κ′�u ∂αka(x′; r,k)∂ρ
′
�u Gβ′α(x′, r)∂θl b(x

′; s, l)Gδ′+κ′+ρ′
θ(x′, s)

]
�w=0,�u=0

.

Similarly, according to (6.27) and (6.30), it is enough to distribute the �w derivatives

on functions of y and s only:

c(x′; q,p) =
∑

α, θ, β′, λ′, φ′, δ′, κ′, ρ′

i|β
′+λ′+φ′|+|δ′+κ′+ρ′|

α!θ!

(δ′ + κ′ + ρ′)!
δ′!κ′!ρ′!

(β ′ + λ′ + φ′)!
β ′!λ′!φ′!

×∂β′
�w ∂

δ′
�u Δ2γ−1(x′, y)∂κ

′
�u ∂

α
ka(x

′; r,k)∂ρ
′
�u Gβ′+λ′+φ′

α(x′, r)

×∂λ′�w ∂θl b(x′; s, l)∂φ
′
�wGδ′+κ′+ρ′

θ(x′, s)
∣∣∣
�w=0,�u=0

. (6.50)

At this moment we have to stop and think about how to apply the �u and �w derivatives

on functions of y, s, and r. For instance let us consider point s defined in equation

(6.30) and the case of derivatives with regular covariant derivative indices (not multi-

index). We start with the object

ημ
′
v(x

′, s) = ∇νσ
μ′(x′, s). (6.51)

This matrix is assumed to have an inverse

η−1 = γ = {γνμ′(x′, s)} (6.52)

which can be used as a “chain rule factor” in going from derivatives with respect

to the tangent vector (technically it’s −σ̂, see (2.73 and (2.76)) to derivatives with

respect to the point given by the exponential map associated with that vector:

∂σμ′ (x′,s)f(s) = γνμ′(x
′, s)∇(s)

ν f(s). (6.53)
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If we rewrite (6.30) as

σμ
′
(x′, s) = σμ

′
(x′, q) +

1

2
wμ

′
(6.54)

we see that all we need is a 1/2 factor to get the result

∂wμ′f(s) =
1

2
γνμ′(x

′, s)∇(s)
ν f(s). (6.55)

In a similar fashion, using (6.27) and (6.29) we get

∂uμ′f(r) = −1

2
γνμ′(x

′, r)∇(r)
ν f(r) (6.56)

and

∂wμ′f(y) = +
1

2
γνμ′(x

′, y)∇(y)
ν f(y) (6.57)

∂uμ′f(y) = −1

2
γνμ′(x

′, y)∇(y)
ν f(y). (6.58)

One can apply this easily to higher order derivatives. For instance,

∂wμ′∂wν′f(s) =
1

2
γμμ′(x

′, s)∇(s)
μ

(1

2
γνν′(x

′, s)∇(s)
ν f(s)

)

=
1

4
γμμ′
(
(∇μγ

ν
ν′)∇νf + γνν′∇μ∇νf

)
(6.59)

etc. It is obvious that in a sum over multi-indexed �w and �v derivatives we will see

such mixed derivatives of any order

∑
α′
aα′∂�w

α′
f(s) = a0f(s) + aμ

′
1 ∂wμ′f(s) + aμ

′ν′
2 ∂wμ′∂wν′f(s) + · · · , (6.60)

therefore we need to consider a multi-index notation for the covariant derivatives of

both γμμ′(x
′, s) and f(s). Since y, r and s are given by (6.27)–(6.30) we need to use

the two-century old Faà di Bruno formula [60] [61] [62], but we need the multi-variate

form of it.
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3. The Multivariate Faà di Bruno Formula and the Product Rule

The Faà di Bruno formula is an explicit expression for the nth derivative of the

composition f(y), y = g(x) at x = x̄:

dn

dxn
f [g(x)]

∣∣∣∣
x̄

=

n∑
k=1

dkf

dyk

∣∣∣∣
ȳ

∑
p(n,k)

n!

n∏
j=1

1

λj !
(
1

j!

djg

dxj
)λj

∣∣∣∣
x̄

(6.61)

where

p(n, k) = {(λ1, . . . , λn) : λj ∈ N0,

n∑
j=1

λj = k,

n∑
j=1

jλj = n} (6.62)

and ȳ = g(x̄) with N0 being the set of nonnegative integers.

The multivariate extension of this formula is as follows [63]. Let f be a compo-

sition of functions f = f(y1, . . . , ym), yj = g(j)(x1, . . . , xd) and x̄ = (x̄1, . . . , x̄d). One

can define Dλ
yf , the multi-indexed arbitary derivative of f in a similar way as it is

defined in (6.33):

Dλ
yf =

∂|λ|f

∂yλ1
1 · · ·∂yλm

m

(6.63)

with |λ| = λ1 + · · · + λm and y = (y1, . . . , ym). Then the arbitrary partial derivative

of

h(x1, . . . , xd) = f [g(1)(x1, . . . , xd), . . . , g
(m)(x1, . . . , xd)] (6.64)

is given by the formula

Dν
xh

∣∣∣∣
x̄

=
∑

1≤|λ|≤|ν|
Dλ
yf

∣∣∣∣
ȳ

|ν|∑
s=1

∑
ps(ν,λ)

ν!
s∏
j=1

1

kj!(lj !)|kj | (D
lj
x g)

kj

∣∣∣∣
x̄

. (6.65)

Here ν = (ν1, . . . , νd), kj = (kj1, . . . , kjm), and lj = (lj1, . . . , ljd) are multi-indices with

|ν| = ν1 + . . .+ νd, kj! = kj1! · · ·kjm! and lj ! = lj1! · · · ljd!. Therefore

(Dlj
x g)

kj = (Dlj
x g

(1))kj1 · · · (Dlj
x g

(m))kjm ,

Dlj
x g

(i) =
∂|lj |g(i)

∂x
lj1
1 · · ·∂xljd

d

. (6.66)
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The generalization of (6.62) is

ps(ν, λ) = {(k1, . . . , ks; l1, . . . , ls) : |ki| > 0, 0̄ ≺ l1 ≺ · · · ≺ ls,
s∑
j=1

ki = λ and

s∑
j=1

|kj|lj = ν}. (6.67)

Given μ = (μ1, . . . , μd) and ν = (ν1, . . . , νd) one writes μ ≺ ν if one of the following

holds:

(i) |μ| < |ν|;
(ii) |μ| = |ν| and μ1 < ν1; or

(iii) |μ| = |ν|, μ1 = ν1, . . . , μk = νk and μk+1 < νk+1 for some 1 ≤ k < d.

In order to see how this applies to our case, let’s consider one of the �w derivatives

in (6.50):

∂φ
′
�w Gδ′+κ′+ρ′

θ(x′, s)
∣∣∣
�w=0

=
1

2|φ′|
∂φ

′
σ(x′,s)Gδ′+κ′+ρ′

θ(x′, s)
∣∣∣
σ(x′,s)=0

=
1

2|φ′|
∑

1≤|λ|≤|φ′|
∇λ

(s)Gδ′+κ′+ρ′
θ(x′, s)Sφ

′
(λ)

∣∣∣
σ(x′,s)=0

.(6.68)

Here Sφ
′

(λ) is a shorthand for the sum

Sφ
′

(λ)(x
′, s) =

|φ′|∑
m=1

∑
pm(φ′,λ)

φ′!
m∏
j=1

1

ζj!(ξ′j!)|ζj |
(∂

ξ′j
σ(x′,s)s)

ζj (6.69)

where

pm(φ′, λ) = {(ζ1, . . . , ζm; ξ1, . . . , ξm) : |ζj| > 0, 0̄ ≺ ξ1 ≺ · · · ≺ ξm,
m∑
j=1

ζj = λ and

m∑
j=1

|ζj|ξ′j = φ′}. (6.70)

∂
ξ′j
σ(x′,s)s can be viewed as a higher order multivariate form of γνμ′(x

′, s).
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Then (6.50) becomes:

c(x′; q,p) =
∑

α, θ, β′, λ′, φ′, δ′, κ′, ρ′

i|β
′+λ′+φ′|+|δ′+κ′+ρ′|

α!θ!

(δ′ + κ′ + ρ′)!
δ′!κ′!ρ′!

(β ′ + λ′ + φ′)!
β ′!λ′!φ′!

×∂β′
�w

( 1

(−2)|δ′|
∑

1≤|ψ|≤|δ′|
∇ψ

(y)Δ
2γ−1(x′, y)Sδ

′
(ψ)(x

′, y)
)

× 1

(−2)|κ′|
∑

1≤|ϕ|≤|κ′|
∇ϕ

(r)∂
α
ka(x

′; r,k)Sκ
′

(ϕ)(x
′, r)

× 1

(−2)|ρ′|
∑

1≤|η|≤|ρ′|
∇η

(r)Gβ′+λ′+φ′
α(x′, r)Sρ

′
(η)(x

′, r)

× 1

2|λ′|
∑

1≤|Γ|≤|λ′|
∇Γ

(s)∂
θ
l b(x

′; s, l)Sλ
′

(Γ)(x
′, s)

× 1

2|φ′|
∑

1≤|Ω|≤|φ′|
∇Ω

(s)Gδ′+κ′+ρ′
θ(x′, s)Sφ

′
(Ω)(x

′, s). (6.71)

Note that the second line can also be written as

1

(−2)|δ′|
∑

1≤|ψ|≤|δ′|

1

2|β′|
∑

1≤|ν|≤|β′|
∇ν

(y)

(
∇ψ

(y)Δ
2γ−1(x′, y)Sδ

′
(ψ)(x

′, y)
)
Sβ

′
(ν)(x

′, y)

or

1

(−2)|δ′|
∑

1≤|ψ|≤|δ′|

1

2|β′|
∑

1≤|ν+μ|≤|β′|

(ν + μ)!

ν!μ!

×∇ν
(y)∇ψ

(y)Δ
2γ−1(x′, y)∇μ

(y)S
δ′
(ψ)(x

′, y)Sβ
′

(ν+μ)(x
′, y).

Arrange the factors a little bit to get

c(x′; q,p)

=
∑

α, θ, β′, λ′, φ′, δ′, κ′, ρ′

i|β
′+λ′+φ′|+|δ′+κ′+ρ′|−2|δ′|−2|κ′|−2|ρ′|

2|δ′|+|β′|+|κ′|+|ρ′|+|λ′|+|φ′|
(δ′ + κ′ + ρ′)!(β ′ + λ′ + φ′)!

α!θ!δ′!κ′!ρ′!β ′!λ′!φ′!

×
∑

1≤|ψ|≤|δ′|, 1≤|ν+μ|≤|β′|, 1≤|ϕ|≤|κ′|, 1≤|η|≤|ρ′|, 1≤|Γ|≤|λ′|, 1≤|Ω|≤|φ′|

×(ν + μ)!

ν!μ!
∇ν

(y)∇ψ
(y)Δ

2γ−1(x′, y)∇μ
(y)S

δ′
(ψ)(x

′, y)Sβ
′

(ν+μ)(x
′, y)
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×∇ϕ
(r)∂

α
ka(x

′; r,k)Sκ
′

(ϕ)(x
′, r)∇η

(r)Gβ′+λ′+φ′
α(x′, r)Sρ

′
(η)(x

′, r)

×∇Γ
(s)∂

θ
l b(x

′; s, l)Sλ
′

(Γ)(x
′, s)∇Ω

(s)Gδ′+κ′+ρ′
θ(x′, s)Sφ

′
(Ω)(x

′, s)
∣∣∣
�w=0,�u=0

. (6.72)

When �w = 0 and �u = 0, the points y, r, and s go to q as dictated by the definitions

given in (6.27), (6.29), and (6.30). Similarly, the momenta k and l both go to p

according to (6.31) and (5.9). Therefore,

c(x′; q,p)

=
∑

α, θ, β′, λ′, φ′, δ′, κ′, ρ′

i|β
′+λ′+φ′|+|δ′+κ′+ρ′|−2|δ′|−2|κ′|−2|ρ′|

2|δ′|+|β′|+|κ′|+|ρ′|+|λ′|+|φ′|
(δ′ + κ′ + ρ′)!(β ′ + λ′ + φ′)!

α!θ!δ′!κ′!ρ′!β ′!λ′!φ′!

×
∑

1≤|ψ|≤|δ′|, 1≤|ν+μ|≤|β′|, 1≤|ϕ|≤|κ′|, 1≤|η|≤|ρ′|, 1≤|Γ|≤|λ′|, 1≤|Ω|≤|φ′|

(ν + μ)!

ν!μ!

×∇ν∇ψΔ2γ−1(x′, q)∇μSδ
′

(ψ)(x
′, q)Sβ

′
(ν+μ)(x

′, q)

×∇ϕ∂αpa(x
′; q,p)Sκ

′
(ϕ)(x

′, q)∇ηGβ′+λ′+φ′
α(x′, q)Sρ

′
(η)(x

′, q)

×∇Γ∂θpb(x
′; q,p)Sλ

′
(Γ)(x

′, q)∇ΩGδ′+κ′+ρ′
θ(x′, q)Sφ

′
(Ω)(x

′, q). (6.73)

In principle, ∇G and S can be worked out in terms of the curvature tensor Rμ
ναβ

in the coincidence limit according to the rules given in Chapter II. The coincidence

limits of the desired order of derivatives of σ and gμ
′
ν can always be found using

the basic defining relations (2.75) and (2.76) (also see Appendix A). We also point

out that in (6.73), only α and θ are unrestricted. Because of the G factors we have

|β ′ + λ′ + φ′| = |α| and |δ′ + κ′ + ρ′| = |θ|. The other multi-indices are explicitly

restricted in the limits on the second sum sign. (6.73) is understood better if one

identifies terms of the same order and considers the expansion parameters. Assuming

“classical” behaviour of the symbols as functions of p (i.e., each p derivative increases

the power of falloff at infinity by 1), we should group terms with the same number

of p derivatives, namely |α + θ|. Alternatively (but with the same result), one can

count x derivatives (including derivatives of the metric tensor implicit in R), since
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they are always paired with p derivatives. Indeed, the total number of x derivatives

is |ν + ψ + μ + φ + η + Γ + Ω+ (derivatives implicit in S factors)|. Referring back

to (6.68)–(6.70) we see that the first derivative of S yields γνμ′ , whose coincidence

limit is trivial and dimensionless. But further differentiations will yield (in principle)

curvature tensors, so they need to be counted. Thus the number of derivatives in

∇ξS is ξ − 1, so the total in Sφ is (from (6.70))
∑
ζ(ξ − 1) = |φ− λ|. Applying this

argument to the six S factors in (6.73) brings the total number of derivatives up to

|β ′ + δ′ + κ′ + ρ′ + λ′ + φ′| = |α+ θ|.

B. First Terms in the Expansion

The asymptotic product formula (6.73) results from the expression for c(x′; q,p) at

an earlier stage of the analysis given in the previous section, namely (6.47):

c(x′; q,p) =
∑

α, θ, β′, δ′

i|β
′|+|δ′|

α!θ!
∂β

′
�w ∂

δ′
�u

[
Δ2γ−1(x′, y)∂αka(x

′; r,k)Gβ′α(x′, r)

×∂θl b(x′; s, l)Gδ′
θ(x′, s)

]
�w=0, �u=0

. (6.74)

The sum is over the multi-indices α, β ′, θ, and δ′. Our approach is to bring together

terms with same length and therefore keep the sum of the order of derivatives constant

in each step. The length of a multi-index is defined in (6.33). Once all possible

derivatives are covered in a particular set, one can move to a higher step. Let

m ≡ |α| + |β ′| + |θ| + |δ′|.

The cases m = 0, m = 1, and m = 2 will be covered here. The presence of Gβ′α and

Gδ′
θ dictates that |α| = |β ′| and |θ| = |δ′|. The parameter γ is chosen to be equal to

one.
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1. m = 0

This is when |α| = |β ′| = |θ| = |δ′| = 0. Neither the derivatives nor the parallel

transport factors exist and we get

Δ(x′, y)a(x′; r,k)b(x′; s, l)

∣∣∣∣
�w=0, �u=0

= Δ(x′, q)a(x′; q,p)b(x′; q,p). (6.75)

If we consider the coincidence limit again (i.e., x′ → q), the first term in the expansion

for c(x′; q,p) becomes just

a(q,p)b(q,p). (6.76)

2. m = 1

There are two possibilities here, the first one being |α| = |β ′| = 1, |θ| = |δ′| = 0. The

double sum associated with this case is

i
∂

∂wν′
[Δ(x′, y)

∂a

∂kμ
(x′; r,k)gν

′
μ(x

′, r)b(x′; s, l)]

∣∣∣∣
�w=0, �u=0

. (6.77)

The �w derivatives act on functions of y and s only, therefore one can rewrite (6.77)

as

i
∂a

∂kμ
(x′; r,k)gν

′
μ(x

′, r)
[ ∂Δ
∂wν′

(x′, y)b(x′; s, l) + Δ(x′, y)
∂b

∂wν′
(x′; s, l)

]∣∣∣∣
�w=0, �u=0

.

One can use (6.57) and (6.55) to get

i

2

∂a

∂kμ
(x′; r,k)gν

′
μ(x

′, r)
[
γλν′(x

′, y)∇(y)
λ Δ(x′, y)b(x′; s, l)

+ Δ(x′, y)γλν′(x′, s)∇(s)
λ b(x′; s, l)

]∣∣∣∣
�w=0, �u=0

which becomes

i

2

∂a

∂pμ
(x′; q,p)gν

′
μ(x

′, q)
[
γλν′(x

′, q)∇(q)
λ Δ(x′, q)b(x′; q,p)
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+ Δ(x′, q)γλν′(x′, q)∇(q)
λ b(x′; q,p)

]
. (6.78)

With the help of (5.16), (5.14), and (5.21), the coincidence limit of (6.78) is found to

be

− i

2

∂a

∂pμ
(q,p)∇μb(q,p). (6.79)

The reason we look at the coincidence limit is again to see if the presence of the fiducial

point in the definitions had any effect on some of the expected results (remember the

classical Poisson bracket analogue).

The second possibility for case m = 1 is |α| = |β ′| = 0, |θ| = |δ′| = 1. Summation

(6.74) is reduced to

i
∂

∂uν′

[
Δ(x′, y)a(x′; r,k)

∂b

∂lμ
(x′; s, l)gν

′
μ(x

′, s)
]
�w=0, �u=0

. (6.80)

This time we use (6.56) and (6.58), keeping in mind that s has no �u dependence and

write

− i

2

∂b

∂lμ
(x′; s, l)gν

′
μ(x

′, s)
[
γλν′(x

′, y)∇(y)
λ Δ(x′, y)a(x′; r,k)

+ Δ(x′, y)γλν′(x′, r)∇(r)
λ a(x′; r,k)

]∣∣∣∣
�w=0, �u=0

or

− i

2

∂b

∂pμ
(x′; q,p)gν

′
μ(x

′, q)
[
γλν′(x

′, q)∇λΔ(x′, q)a(x′; q,p)

+ Δ(x′, q)γλν′(x′, q)∇λa(x
′; q,p)

]

which is equal to

i

2

∂b

∂pμ
(q,p)∇μa(q,p) (6.81)

in the coincidence limit. For comparison the reader may refer to corresponding terms

in the expansions (3.48) or (3.49).
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3. m = 2

We have this one in three ways. First, |α| = |β ′| = 2, |θ| = |δ′| = 0. The quadruple

sum obtained from (6.74) is

i2

2!

∂2

∂wν′∂wλ′

[
Δ(x′, y)

∂2a

∂kμ∂kρ
(x′; r,k)gν

′
μ(x

′, r)gλ
′
ρ(x

′, r)b(x′; s, l)
]
�w=0, �u=0

. (6.82)

There will arise many terms in (6.82) but here we shall ignore all those that will vanish

in the coincidence limit. These are the terms with the first derivatives of Δ(x′, q) and

γκλ′(x
′, q). The remaining part is

i2

2!

∂2a

∂pμ∂pρ
(x′; q,p)gν

′
μ(x

′, q)gλ
′
ρ(x

′, q)

× 1

4

[
γθν′(x

′, q)γκλ′(x′, q)∇(q)
θ ∇(q)

κ Δ2γ−1(x′, q)b(x′; q,p)

+Δ2γ−1(x′, q)γθν′(x′, q)γκλ′(x′, q)∇(q)
θ ∇(q)

κ b(x′; q,p)
]

(6.83)

where we have now a curvature term due to [∇α∇βΔ] = 1
3
Rαβ . Taking the coincidence

limit, we find

−1

8

∂2a

∂pμ∂pρ
(q,p)

[1
3
Rμρ(q) b(q,p) + ∇μ∇ρb(q,p)

]
. (6.84)

The second way is |α| = |β ′| = 0, |θ| = |δ′| = 2. In this case the sum will be

i2

2!

∂2

∂uν′∂uλ′

[
Δ(x′, y)a(x′; r,k)

∂2b

∂lμ∂lρ
(x′; s, l)gν

′
μ(x

′, s)gλ
′
ρ(x

′, s)
]
�w=0, �u=0

(6.85)

and the coincidence limit will be similar to (6.84):

−1

8

∂2b

∂pμ∂pρ
(q,p)

[1
3
Rμρ(q) a(q,p) + ∇μ∇ρa(q,p)

]
. (6.86)
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The third possibility is |α| = |β ′| = 1, |θ| = |δ′| = 1. Here we have derivatives with

respect to both �w and �u:

i2
∂2

∂wν′∂uλ′

[
Δ(x′, y)

∂a

∂kμ
(x′; r,k)gν

′
μ(x

′, r)
∂b

∂lρ
(x′; s, l)gλ

′
ρ(x

′, s)
]
�w=0, �u=0

(6.87)

and the result in the coincidence limit x′ → q is

− 1

12
Rμρ(q)

∂a

∂pμ
(q,p)

∂b

∂pρ
(q,p) +

1

4
∇μ

∂a

∂pρ
(q,p)∇ρ

∂b

∂pμ
(q,p). (6.88)

We will stop here and summarize. Using our results (6.76), (6.79), (6.81), (6.84), and

(6.88), the expansion for c(q,p) in terms of a(q,p) and b(q,p) is

c(q,p) = a(q,p)b(q,p) − i

2

∂a

∂pμ
(q,p)∇μb(q,p) +

i

2

∂b

∂pμ
(q,p)∇μa(q,p)

−1

8

∂2a

∂pμ∂pρ
(q,p)

[1
3
Rμρ(q) b(q,p) + ∇μ∇ρb(q,p)

]

−1

8

∂2b

∂pμ∂pρ
(q,p)

[1
3
Rμρ(q) a(q,p) + ∇μ∇ρa(q,p)

]

− 1

12
Rμρ(q)

∂a

∂pμ
(q,p)

∂b

∂pρ
(q,p) +

1

4
∇μ

∂a

∂pρ
(q,p)∇ρ

∂b

∂pμ
(q,p)

+ · · · . (6.89)

If the curvature terms are factored out, this becomes

c = ab+
i

2

(
∇μa

∂b

∂pμ
− ∂a

∂pμ
∇μb
)

− 1

24
Rμν

( ∂2a

∂pμ∂pν
b+ a

∂2b

∂pμ∂pν
+ 2

∂a

∂pμ

∂b

∂pν

)

+
1

8

(
2∇μ

∂a

∂pν
∇ν

∂b

∂pμ
− ∂2a

∂pμ∂pν
∇μ∇νb−∇μ∇νa

∂2b

∂pμ∂pν

)

+ · · · , (6.90)

or

c = ab+
i

2

(
∇μa

∂b

∂pμ
− ∂a

∂pμ
∇μb
)
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+
1

8

(
2∇μ

∂a

∂pν
∇ν

∂b

∂pμ
− ∂2a

∂pμ∂pν
∇μ∇νb−∇μ∇νa

∂2b

∂pμ∂pν

)

− 1

24
Rμν

∂2(ab)

∂pμ∂pν

+ · · · . (6.91)

At this level it can be said that the only difference between the classical Weyl expan-

sion and the covariant one, besides the fact that ordinary derivatives are replaced by

covariant derivatives, is the additional curvature (Rμν) term .
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CHAPTER VII

THE COVARIANT WIGNER FUNCTION AND EXAMPLES

We define the Wigner function in the covariant formalism of Chapter V and study the

cases of a gauge field in flat space and a curved manifold (with no gauge field). The

motivation for looking at Wigner functions for examples (but not Weyl symbols of

nonpolynomial observables, for instance) is to have some results that are of physical

interest. The first example is the problem of a charged particle in a constant mag-

netic field. The energy levels associated with this problem are known as the Landau

states in the literature [64] [65] [66]. Gauge invariant results are obtained using a

covariant definition. The second example is the Wigner function obtained from a

test function on the 2-sphere. The covariant definition is not affected by coordinate

transformations.

A. The Landau Problem

1. Equations of Motion

This is the problem of a charged particle of mass m and charge e moving in a magnetic

field B = (0, 0, B) on the x − y plane (the 3D problem reduces to the 2D one when

the z-dependence is separated out). The Hamiltonian

Ĥ =
1

2m
Π̂2

=
1

2m

[(
P̂x − e

c
Ax

)2

+
(
P̂y − e

c
Ay

)2

+
(
P̂z − e

c
Az

)2
]

(7.1)

is used to derive the equations of motion in the Heisenberg picture

d(·)
dt

=
i

�
[Ĥ, (·)]. (7.2)
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Then,

dΠ̂x

dt
= −ωΠ̂y, (7.3)

dΠ̂y

dt
= ωΠ̂x, (7.4)

dΠ̂z

dt
= 0, (7.5)

where ω ≡ −eB/mc. Here one uses the fact that B = ∇×A and [Π̂x, Π̂y] = i�eB/c.

Since Π̂ represents the kinetic momentum, (7.3) and (7.4) can be written as

d

dt

(
Π̂x + ωmŶ

)
= 0, (7.6)

and

d

dt

(
Π̂y − ωmX̂

)
= 0, (7.7)

whence

X̂ =
1

mω
Π̂y − X̂0, Ŷ = Ŷ0 − 1

mω
Π̂x. (7.8)

Due to the seemingly classical nature of these equations of motion, the operators

(integration constants) (X̂0, Ŷ0) can be identified as the center of the orbit. These

operators do not commute with each other

[X̂0, Ŷ0] = il2, (7.9)

where l =
√−c�/eB, but commute with the Hamiltonian creating an infinitely de-

generate energy. Since the problem is formally identical with the one dimensional

harmonic oscillator [65], the energy levels are given by

En =
1

2
�ω

(
n+

1

2

)
. (7.10)
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Practically any combination of X̂0 and Ŷ0 can be used to get eigenstates for these

energies; even for the ‘ground state’ there are infinitely many possibilities to choose

from. Therefore the covariant Wigner function will be independent of the gauge

chosen but will be a consequence of the particular state.

2. Gauge Dependent Solutions

There are two popular gauges for this problem, the Landau gauge,

AL = (0, Bx) or AL = (−By, 0), (7.11)

and the symmetric gauge:

AS =
B

2
(−y, x); (7.12)

note that we no longer use 3D notation, since the problem reduces to two dimensions.

They both give the same magnetic field through B = ∇× A. These two are related

by a gauge transformation

AL = AS + ∇Λ (7.13)

where Λ = 1
2
Bxy. Accordingly, the wave solutions in both gauges should be related

also:

ψL = ψSe
ie
c�

Λ. (7.14)

Note that the gauges (7.11) and (7.12) are not unique, since one could add any

constant vector to A without essentially changing them. That amounts to changing

the origin; the “popular” gauges tacitly make the origin a preferred point. Textbooks

which pick a certain gauge and find the solution in that particular gauge usually

neglect to show this last point explicitly, for instance in the symmetric gauge the
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ground state functions are given as

ψS0 (z, z̄) ∝ f(z)ezz̄/4l
2

(7.15)

where f(z) is an arbitrary function of z = x+ iy. On the other hand the ground state

function in the Landau gauge is usually given as

ψL,0(x, y) ∝ e−ix0y/l2e−(x−x0)2/2l2 . (7.16)

It can easily be checked that (7.14) is not trivial for these two solutions. It is only

in [66], that I could find a satisfactory answer. The solution is worked out in the

symmetric gauge for the so-called “squeezed states”:

ψn=0;x0,z(x, y) =
1

l
√

2π
e−y

2(1−tanh z)/4l2e−ix0y(1+tanh z)/2l2

×e−(x−x0)2(1+tanh z)/4l2e2ixy tanh z/4l2 (7.17)

where z is a complex parameter. The Landau state can be recovered by choosing a

real parameter, and letting z → ∞. In this limit one obtains

ψn=0;x0,z(x, y) =
1

(l
√
π)1/2

e−ix0y/l2e−(x−x0)2/2l2eixy/2l
2

(7.18)

which is more suitable for demonstrating (7.14) than the rather vague form given in

(7.15) because one can multiply (7.18) by

exp{−ixy
2l2

} = exp{ ie
c�

(
1

2
Bxy)} (7.19)

and get (7.16) as predicted by (7.14).

Finally, we need to consider what happens in the case of higher energy levels.

The system is analogous to a simple harmonic oscillator, we can apply â† many times

and get the desired wave function. Higher harmonic oscillator states are given using
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Hermite polynomials; the same applies for the Landau states. Using the appropriate

normalization factors one can write the wave functions in both gauges as following:

a) symmetric gauge

ψSn;x0
(x, y) =

1

(l
√
π2nn!)1/2

e−ix0y/l2e−(x−x0)2/2l2eixy/2l
2

Hn(
x− x0

l
), (7.20)

b) Landau gauge

ψLn;x0
(x, y) =

1

(l
√
π2nn!)1/2

e−ix0y/l2e−(x−x0)2/2l2Hn(
x− x0

l
). (7.21)

3. Gauge Invariant Wigner Function

Since the wave functions (7.20) and (7.21) are different, the ‘classical’ Wigner function

(see [11] for the one-dimensional version)

Wc(r,p) = (π�)−2

∫
d2r′ψ∗(r + r′)ψ(r − r′) e2

i
h
p·r′ (7.22)

will have different forms in the Landau and symmetric gauges. We propose a new

definition which is covariant under gauge and gravitational fields:

W (x′; q,k) = h−d
∫
Tx′
ddξμ

′√
g(x′) Δ−γ(x′, x)Δ−γ(x′, z)

× exp(−ik̃μ′ξμ′/�)I(x′; q, x)ψ∗(x)ψ(z)I(x′; z, q) (7.23)

where

I(x′; q, x) ≡ exp
{ ie
c�

∫ x

q

A(X) · dX
}

(7.24)

X(s) ≡ expx′[ σ̂
μ′(x′, q) + s ξμ

′
] (7.25)

and

X(−1/2) = z, X(1/2) = x. (7.26)
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The momenta k̃ and k are related by the parallel transport

k̃μ′ = gμ′
ν(x′, q)kν . (7.27)

Now let us specialize to flat space and use this formula in the Landau problem. In

flat space the VanVleck-Morette determinants are equal to 1.

W (x′; q,k) = (2π�)−2

∫ ∞

−∞
dξ1

∫ ∞

−∞
dξ2e

−i(k1ξ1+k2ξ2)/�I(x′; q, x)ψ∗(x)ψ(z)I(x′; z, q)

(7.28)

Choose x′ = (0, 0), then X = (q1 + s ξ1, q2 + s ξ2) and pick the Landau gauge:

A = (0, Bx),

then

I(x′; q, x) = exp
{ ie
c�

∫ 1/2

0

ds A(X(s)) · dX(s)

ds

}

= exp
{ ie
c�

∫ 1/2

0

ds (q1 + s ξ1)Bξ2

}

= exp
{ ie
c�

(
1

2
Bq1ξ2 +

1

8
Bξ1ξ2

)}
(7.29)

and

I(x′; z, q) = exp
{ ie
c�

∫ 0

−1/2

ds (q1 + s ξ1)Bξ2

}

= exp
{ ie
c�

(
1

2
Bq1ξ2 − 1

8
Bξ1ξ2

)}
. (7.30)

These two give an exponential factor essentially equal to

exp
{ ie
c�

(Bq1ξ2)
}

= exp
{
− i

q1ξ2
l2

}
, (7.31)
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and we can rewrite (7.28) as

W (q,k) = (2π�)−2

∫ ∞

−∞
dξ1

∫ ∞

−∞
dξ2 ψ

∗(q1 +
ξ1
2
, q2 +

ξ2
2

)ψ(q1 − ξ1
2
, q2 − ξ2

2
)

× exp
{
− i

�
(k1ξ1 + k2ξ2) − i

q1ξ2
l2

}
. (7.32)

Then using the wave function (7.21)

ψ∗(q1 +
ξ1
2
, q2 +

ξ2
2

)ψ(q1 − ξ1
2
, q2 − ξ2

2
)

=
1

l
√
π2nn!

eiq0(q2+
ξ2
2

)/l2e−(q1+
ξ1
2
−q0)2/2l2e−iq0(q2−

ξ2
2

)/l2

×e−(q1− ξ1
2
−q0)2/2l2Hn(

q1 + ξ1
2
− q0

l
)Hn(

q1 − ξ1
2
− q0

l
).

Therefore,

W (q1, q2, k1, k2) =
(2π�)−2

l
√
π2nn!

e−(q1−q0)2/l2
∫
dξ2 exp(

iq0ξ2
l2

− i

�
k2ξ2 − iq1ξ2

l2
)

×
∫
dξ1 exp(− ξ2

1

4l2
− i

�
k1ξ1)Hn(

q1 − q0 − ξ1/2

l
)Hn(

q1 − q0 + ξ1/2

l
).

The first integral is equal to the Dirac delta function:

2πδ(
q0
l2

+
1

�
k2 − q1

l2
) = 2πlδ(

q1 − q0
l

− k2l

�
). (7.33)

This means we may replace (q0 − q1)/l by k2l/� in the expression for the Wigner

function. The wave function we use is not normalizable in the q2 direction, this is

why we encounter the Dirac delta. We don’t need to keep it in the final result.

The second integral is not hard either. First write the exponent as

− 1

4l2

[
(ξ1 − 2l2

i

�
k1)

2 − (2l2
i

�
k1)

2
]

(7.34)

and define a new variable z as

z =
ξ1
2l

− β (7.35)
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where β = −ilk1/�. Then the integral becomes

2leβ
2

∫
dz e−z

2

Hn(
q1 − q0

l
− z − β)Hn(

q1 − q0
l

+ z + β). (7.36)

Using Hn(−ζ) = (−1)nHn(ζ) and the result

∫
dz e−z

2

Hn(−q1 − q0
l

+ z+ β)Hn(
q1 − q0

l
+ z+ β) = 2n

√
πn!Ln

(
2(
q1 − q0

l
)2 − 2β2

)

(see [11]) where Ln is the nth the Laguerre polynomial, we get

W (q1, q2, k1, k2) =
(2π�)−2

l
√
π2nn!

e−(q1−q0)2/l2(2πl)δ(
q1 − q0

l
− k2l

�
)

×(2l)e−l
2k2

1/�
2

(−1)n2n
√
πn!Ln

(
2(
q1 − q0

l
)2 + 2

l2k2
1

�2

)
(7.37)

or

W =
(−1)nl

π�2
e−

l2

�2 (k2
1+k2

2)Ln

((k2
1 + k2

2)

�2/2l2

)
. (7.38)

This is a gauge invariant result and it is in accordance with the gauge invariant

Wigner function for the squeezed states in the limit |z| → ∞ [66]. The difference

in our definition is the two-step parallel transport to the fiducial point. For this

particular problem, the choice x = (0, 0) worked fine, an arbitrary choice of x′ can be

seperately analyzed, by calculating W (x′; q,k) first and then taking the ‘coincidence

limit’ q → x′; this would correspond to shifting x′ to the origin in flat space.

If one uses the symmetric gauge instead of the Landau gauge, then the parallel

transport factors are

I(x′; q, x) = I(x′; z, q) = exp

[
− i

4l2
(q1ξ2 − q2ξ1)

]
, (7.39)

and using (7.20), the Wigner function integral reduces to the form preceding (7.33).

Therefore, the gauge chosen does not affect the final answer.
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B. Wigner Functions on the 2-Sphere

The formula we use for the Wigner function is

W (x′; q,p) = h−2

∫
Tx′
ddξ
√
g(x′)Δ−1(x′, x)Δ−1(x′, z)e−ip̃μ′ξμ′

/�ψ∗(x)ψ(z) (7.40)

where points x and z are defined as

x = expx′ [σ̂
μ′(x′, q) +

1

2
ξμ

′
] (7.41)

and

z = expx′[σ̂
μ′(x′, q) − 1

2
ξμ

′
]. (7.42)

Here σ̂μ
′
(x′, q) is the tangent vector at x′ pointing in the direction of q (the inverse

exponential map):

σ̂μ
′
(x′, q) ≡ exp−1

x′ q. (7.43)

The one-half-square of the geodetic distance s between x′ and q is known as the

Synge-deWitt world function,

σ(x′, q) =
1

2
s2 (7.44)

and its covariant derivative with respect to x′ is equal to this tangent vector up to a

minus sign:

σ̂μ
′
(x′, q) ≡ −σμ′(x′, q)

≡ −gμ′ν′(x′)∇ν′σ(x′, q). (7.45)

Another useful object that could be obtained from this σ(x′, q) is the VanVleck-

Morette determinant:

Δ(x′, q) ≡ −g−1/2(x′) det[−∇ν′∇μσ(x′, q)]g−1/2(q). (7.46)
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Here the derivative with respect to a nonprimed index refers to a derivative at point

q and g is the determinant of the metric.

The parallel transport of momentum co-vector p from q to x′ is done by the

matrix gμ′
ν(x′, q):

p̃μ′ = gμ′
νpν . (7.47)

1. The Sphere

The sphere is a good example to demonstrate the details of this calculation since the

world function is easy to find. The geodesics on the 2-sphere are the segments of the

great circles and the arc length on such a great circle on a sphere of radius R is s = Rα,

where α is the angle between two radii. Let the two end points be given by r′ = (θ′, φ′)

and r = (θ, φ) (these are the usual spherical coordinates 0 ≤ θ ≤ π, 0 ≤ φ ≤ π/2).

The 2-sphere is embedded in three dimensional space with the cartesian coordinates

x = R sin θ cosφ,

y = R sin θ sinφ,

z = R cos θ. (7.48)

Then

cosα =
r′ · r
R2

= sin θ′ sin θ cos(φ− φ′) + cos θ′ cos θ (7.49)

and therefore

s = R cos−1[ sin θ′ sin θ cos(φ− φ′) + cos θ′ cos θ ]. (7.50)
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Now we can write the world function (7.44) as

σ(r′, r) =
1

2

(
R cos−1[ sin θ′ sin θ cos(φ− φ′) + cos θ′ cos θ ]

)2

(7.51)

Now in order to find the tangent vectors (defined in (7.43)) we need the covariant

derivatives of this with respect to θ′ and φ′. Since σ is a scalar, these are equal to the

ordinary partial derivatives

∂σ

∂θ′
= [ cos θ sin θ′ − cos(φ− φ′) cos θ′ sin θ]h−1R2

∂σ

∂φ′ = −h−1R2 sin θ′ sin(φ− φ′) sin θ (7.52)

where h = sinα/α. These are ∇θ′σ and ∇φ′σ, respectively; but we need the form

given in (7.45). The metric can easily be found from the line element on the sphere:

dl2 = R2dθ2 +R2 sin2 θdφ2 (7.53)

(gμν) =

⎛
⎜⎝ R2 0

0 R2 sin2 θ

⎞
⎟⎠ , (7.54)

therefore

σ̂θ
′

= −[ cos θ sin θ′ − cos(φ− φ′) cos θ′ sin θ]h−1 (7.55)

σ̂φ
′

= h−1 csc θ′ sin(φ− φ′) sin θ. (7.56)

The calculation of the VanVleck-Morette determinant also does not involve any

Christoffel symbols since the r′ and r derivatives are independent. We get

Δ(r′, r) =
1

R4 sin θ′ sin θ

∣∣∣∣∣∣∣
∂2σ
∂θ′∂θ

∂2σ
∂θ′∂φ

∂2σ
∂φ′∂θ

∂2σ
∂φ′∂φ

∣∣∣∣∣∣∣
. (7.57)

The result is rather lengthy so let’s not include it here but instead see what happens

when we pick a certain (θ′, φ′) pair. A point on the equator (θ′ = π/2) should work
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just fine. Let the longitudinal angle be φ′ = π/2 (obviously the poles are not good

because φ′ is undefined there).

When θ′ = π/2 and φ′ = π/2, (7.57) which is now only a function of θ and φ

becomes

Δ(θ, φ) =
4 cos−1[sinφ sin θ]

√
1 − sin2 θ sin2 φ

3 + cos 2θ + 2 cos 2φ sin2 θ
. (7.58)

Let’s define A ≡ σ̂θ
′|(θ′=π/2,φ′=π/2) and B ≡ σ̂φ

′|(θ′=π/2,φ′=π/2). Then (7.55) and (7.56)

become

A = −cos−1[cosφ sin θ] cos θ√
1 − sin2 φ sin2 θ

, (7.59)

B = −cos−1[sin φ sin θ] cosφ sin θ√
1 − sin2 φ sin2 θ

. (7.60)

These are the components of the tangent vector pointing in the direction of any (θ, φ)

on the sphere. We also need the expressions for θ and φ in terms of A and B. Define

β as

cosβ ≡ sin φ sin θ, (7.61)

then

A = −β cos θ

sin β
, (7.62)

B = −β cosφ sin θ

sin β
. (7.63)

Now from above

(A2 +B2)
sin2 β

β2
= cos2 θ + cos2 φ sin2 θ (7.64)

and adding cos2 β to both sides,

(A2 +B2)
sin2 β

β2
+ cos2 β = cos2 θ + cos2 φ sin2 θ + sin2 θ sin2 φ

= cos2 θ + sin2 θ



102

= 1

= cos2 β + sin2 β (7.65)

from which it follows that

2(A2 +B2)
sin2 β

β2
= 2 sin2 β (7.66)

and hence

β =
√
A2 +B2 (7.67)

(ignoring the negative solution). From (7.62),

θ = cos−1
(
− A sin β

β

)

= cos−1
(
− A sin

√
A2 +B2

√
A2 +B2

)
(7.68)

and from (7.63),

φ = cos−1
(
− B sin β

β sin θ

)
. (7.69)

Now

sin2 θ = 1 − cos2 θ

= 1 − A2 sin2 β

A2 +B2

=
B2 + A2(1 − sin2 β)

β2
(7.70)

and hence

β sin θ =
√
B2 + A2 cos2 β. (7.71)

Therefore

φ = cos−1
(
− B sin

√
A2 +B2√

B2 + A2 cos2
√
A2 +B2

)
. (7.72)

Now we can actually analyze the integrals in the Wigner function formula given
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in (7.40). For notational consistency we define

�ξ = (A,B), (7.73)

σ̂μ
′
(x′, q) = (Aq, Bq), (7.74)

σ̂μ
′
(x′, x) = (Ax, Bx), (7.75)

σ̂μ
′
(x′, z) = (Az, Bz), (7.76)

and

q = (θq, φq), (7.77)

x = (θx, φx), (7.78)

z = (θz, φz). (7.79)

In this calculation the independent variables will be θq, φq, A and B. The rest can

be written in terms of these as follows:

Aq = −cos−1[sinφq sin θq] cos θq√
1 − sin2 φq sin2 θq

, (7.80)

Bq = −cos−1[sinφq sin θq] cosφq sin θq√
1 − sin2 φq sin2 θq

, (7.81)

Ax = Aq +
A

2
, (7.82)

Az = Aq − A

2
, (7.83)

Bx = Bq +
B

2
, (7.84)

Bz = Bq − B

2
, (7.85)

θx = cos−1
(
− Ax sin

√
A2
x +B2

x√
A2
x +B2

x

)
, (7.86)

θz = cos−1
(
− Az sin

√
A2
z +B2

z√
A2
z +B2

z

)
, (7.87)
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φx = sin−1
(
− Bx sin

√
A2
x +B2

x√
B2
x + A2

x cos2
√
A2
x +B2

x

)
, (7.88)

φz = sin−1
(
− Bz sin

√
A2
z +B2

z√
B2
z + A2

z cos2
√
A2
z +B2

z

)
. (7.89)

An ideal test function ψ for this analysis should be localized around (θ′, φ′) and

decay fast enough so that there wont be any problems around caustics. We will

consider a fixed momentum and try to obtain a Wigner function W (θq, φq). Let the

test function be of the form

ψ(θ, φ) =
1 − ζ(θ, φ)

1 − bζ(θ, φ)
e−c(θ−θ0)2 (7.90)

where

ζ(θ, φ) = [tan−1 a(φ− φ0)]
2. (7.91)

In our numeric calculations a = 5, b = 0.96, c = 40 and φ0 = θ0 = π/2. The function

viewed from the +ŷ direction in the form of a contour plot is given in Fig. 8. Note

the symmetry here (a rotation of π about the ŷ axis should preserve this symmetry).

A π/2 rotation can be done by swapping z and x. In spherical coordinates this is

done by the transformations

θ → cos−1(sin θ cos φ), (7.92)

φ → tan−1(tan θ sinφ). (7.93)

2. The Non-covariant Wigner Function

What does one get when he uses the classical definition? Here we have no way to

plot the four-variable function

W ∼
∫
du

∫
dve−i(pθu+pφv)ψ∗(θ + u/2, φ+ v/2)ψ(θ − u/2, φ− v/2) (7.94)
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Fig. 8. Contour plot of the test function.
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so we will assume the momentum is constant and plot the coordinate part of the

Wigner function. Remember, our goal is to see whether this function is invariant

under rotations. The answer is no. A numerical analysis shows that the Wigner

function calculated using the definition above (Fig. 9) is distorted when a rotation is

performed on φ and θ (Fig. 10).

3. The Covariant Wigner Function on the 2-Sphere

Now it is time to employ the covariant function defined in the beginning. The integral

is very complicated and it is impossible to obtain an analytical result, therefore the

numerical integration will be done at each point on a 70×70 mesh. The integration

method is quasi Monte-Carlo in Mathematica with an iteration of 2000. The real

part of the integrand is used in the evaluation and the momenta are equal to 10.

The covariant Wigner function (Fig. 11) in this case preserves its symmetry under

a rotation of ψ. Note that this is an active transformation of the function; it is

expected that the Wigner function will reorient itself (Fig 12). What we mean by

covariance here is that the shape of the result should also be rotated by π/2 without

any distortion.
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Fig. 9. Contour plot of the non-covariant Wigner function (pθ=pφ=10, −π/2< u <π/2,

−π< v <π).
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Fig. 10. Contour plot of the non-covariant Wigner function after the coordinate trans-

formation.
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Fig. 11. Covariant Wigner function of the state ψ.
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Fig. 12. Covariant Wigner function after ψ rotated by π/2.
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CHAPTER VIII

CONCLUSION

The application of the gauge-invariant Wigner function in flat space to the Landau

problem was relatively easier than exploring the covariant Wigner function on the

manifold. The spherical symmetry did help in constructing the world function an-

alytically, but a numerical analysis was inescapable considering the complexity of

the integral defining the Wigner function. The study of arbitrary manifolds in this

context needs more work due to the fact that the geodesic distance should also be

calculated numerically.

The new quantization scheme introduced in Chapter V is only a definition. As

Prof. Fulling wrote, “A definition is not true or false. On the other hand, some

definitions are more useful or more elegant than others” [6]. Finding a ‘tasteful

richness of design’ or ‘scientific neatness and simplicity’ in (5.2)–(5.9) is a subjective

matter yet the definitions proved to be useful in obtaining the asymptotic product

formula of Chapter VI. On the other hand, the cumbersome task of getting (6.73)

and the lack of simplicity of the final formula itself were practical barriers to find

asymptotic expressions for the symbols of operators such as eÂ.

According to Sigurdsson, “Weyl wanted to understand and not merely to produce

mechanically like a factory worker” [2].
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tiable,” Annales de l’institut Fourier, vol. 19, no. 1, pp. 125-177, 1969.

[31] P. B. Gilkey, “The spectral geometry of a Riemannian manifold,” Journal of

Differential Geometry, vol. 10, pp. 601–618, 1975.

[32] H. Widom, “A complete symbolic calculus for pseudodifferential operators,” Bul-
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[48] V. Fock, “Über die invariante Form der Wellen- und der Bewegungsgleichungen

für einen geladenen Massenpunkt,” Zeitschrift für Physik, vol. 39, pp. 226–232,

October 1926.

[49] R. K. Pathria, The Theory of Relativity. Elmsford, New York: Pergamon Press

Inc., 1974.

[50] E. Schrödinger, “Quantisierung als Eigenwertproblem IV,” Annalen der Physik,

vol. 81, pp. 109–139, September 1926.



118
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APPENDIX A

DERIVATION OF THE COINCIDENCE LIMITS USED IN THIS

DISSERTATION

One starts with the basic equation

σ =
1

2
σμσ

μ (A.1)

and the boundary conditions

[σ] = 0 and [σμ] = 0. (A.2)

Then

σν =
1

2
(∇νσμ)σ

μ +
1

2
σμ∇νσ

μ

= σμ∇νσ
μ (A.3)

and

∇ασν = (∇ασμ)∇νσ
μ + σμ∇α∇νσ

μ. (A.4)

At the coincidence limit,

[∇ασν ] = [∇ασμ][∇νσ
μ] + [σμ][∇α∇νσ

μ]; (A.5)

the rightmost term vanishes according to (A.2). Therefore,

[∇νσ
μ] = δμν (A.6)

or, equivalently,

[∇νσμ] = gμν . (A.7)
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The derivative of (A.4) is

∇β∇ασν = (∇β∇ασμ)∇νσ
μ + (∇ασμ)∇β∇νσ

μ + (∇βσμ)∇α∇νσ
μ + σμ∇β∇α∇νσ

μ,

(A.8)

which at the coincidence limit reads

[∇β∇ασν ] = [∇β∇ασμ]δ
μ
ν + gμα[∇β∇νσ

μ] + gμβ[∇α∇νσ
μ], (A.9)

or

[∇β∇νσα] + [∇α∇νσβ ] = 0. (A.10)

Since σ(x′, x) is a bi-scalar,

∇νσβ = ∇ν∇βσ = ∇βσν (A.11)

and (A.10) can be written as

[∇β∇ασν ] + [∇α∇βσν ] = 0. (A.12)

In a torsion-free space

∇α∇βσν = ∇β∇ασν +Rνλαβσ
λ, (A.13)

which one uses to find

[∇β∇ασν ] = 0. (A.14)

The derivative of (A.8) and the coincidence limits derived so far can be used to get

the following:

[∇δ∇β∇νσα] + [∇δ∇α∇νσβ ] + [∇β∇α∇νσδ] = 0. (A.15)

Using (A.13) one gets

∇δ∇α∇βσν = ∇δ∇β∇ασν + ∇δ(Rνλαβσ
λ), (A.16)
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and hence

[∇δ∇α∇βσν ] = [∇δ∇β∇ασν ] +Rνδαβ . (A.17)

Then

2[∇δ∇β∇ασν ] +Rνδαβ + [∇β∇α∇δσν ] = 0. (A.18)

Similarly, using

[∇β∇α∇δσν ] = [∇β∇δ∇ασν ] +Rνβαδ (A.19)

and

[∇β∇δ∇ασν ] = [∇δ∇β∇ασν ] +Rανδβ +Rναδβ (A.20)

one finds

3[∇δ∇β∇ασν ] +Rνδαβ +Rνβαδ +Rανδβ +Rναδβ = 0. (A.21)

Finally, since Rανδβ = −Rναδβ ,

[∇δ∇β∇ασν ] = −1

3
(Rνδαβ +Rνβαδ). (A.22)

The coincidence limit of ∇λ∇βg
ν′
α can be found in a similar manner. One starts

with

σμ∇μg
ν′
α = 0 (A.23)

and differentiates twice to get

(∇λ∇βσ
μ)∇μg

ν′
α + (∇βσ

μ)∇λ∇μg
ν′
α

+(∇λσ
μ)∇β∇μg

ν′
α + σμ∇λ∇β∇μg

ν′
α = 0. (A.24)

Taking the coincidence limit one finds that

[∇λ∇βg
ν′
α] + [∇β∇λg

ν′
α] = 0. (A.25)
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Using

∇β∇λg
ν′
α = ∇λ∇βg

ν′
α +Rα

ρ
βλg

ν′
ρ (A.26)

and

[gν
′
ρ] = δνρ, (A.27)

(A.25) can be written as

[∇λ∇βg
ν′
α] =

1

2
Rν

αβλ. (A.28)

In order to find the coincidence limits of derivatives of the VanVleck-Morette

determinant, one uses

Δ−1∇μ(Δσ
μ) = d, (A.29)

or

dΔ = (∇μΔ)σμ + Δ∇μσ
μ. (A.30)

in d-dimensions. Differentiating twice:

d∇β∇αΔ = (∇β∇α∇μΔ)σμ + (∇α∇μΔ)∇βσ
μ + (∇β∇μΔ)∇ασ

μ

+(∇μΔ)∇β∇ασ
μ + (∇β∇αΔ)∇μσ

μ + (∇αΔ)∇β∇μσ
μ

+(∇βΔ)∇α∇μσ
μ + Δ∇β∇α∇μσ

μ. (A.31)

In the coincidence limit, (A.31) becomes

d[∇β∇αΔ] = [∇α∇μΔ]δμβ + [∇β∇μΔ]δμα + d[∇β∇αΔ]

−1

3
(Rμ

βμα +Rμ
αμβ), (A.32)

or

[∇α∇βΔ] + [∇β∇αΔ] − 1

3
(Rβα +Rαβ) = 0; (A.33)

therefore,

[∇α∇βΔ] =
1

3
Rβα. (A.34)
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Rewriting (A.29) as

Δ−1/2∇μ(Δ
1/2Δ1/2σμ) = Δ1/2d, (A.35)

differentiating repeatedly and taking the coincidence limits, one finds

[∇β∇αΔ
1/2] =

1

6
Rαβ . (A.36)
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