
 
 
 
 

GROUND PENETRATING RADAR TECHNIQUE TO LOCATE COAL 

MINING RELATED FEATURES: CASE STUDIES IN TEXAS 

 
 
 

A Thesis 
 

by 
 

NEELAMBARI SAVE 
 
 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 
 
 
 
 
 

December 2004 
 
 
 
 
 
 

Major Subject: Geophysics



 
GROUND PENETRATING RADAR TECHNIQUE TO LOCATE COAL 

MINING RELATED FEATURES: CASE STUDIES IN TEXAS 

 
A Thesis  

by 

NEELAMBARI SAVE 

 
Submitted to Texas A&M University 

in partial fulfillment of the requirements  
for the degree of 

MASTER OF SCIENCE 

 
Approved as to style and content by: 
 

____________________________ 
Mark E. Everett 

(Chair of Committee) 
 
 

 ____________________________ 
Brian J. Willis 

(Member) 
 

 
____________________________ 

Christopher D. Ellis 
(Member) 

 
 

 ____________________________ 
Richard Carlson 

(Head of Department) 
 

 
 

December 2004 

Major Subject: Geophysics



 iii

ABSTRACT 

Ground Penetrating Radar Technique to Locate Coal Mining Related Features: Case 

Studies in Texas.   

(December 2004) 

Neelambari Save, B.S., Indiana University, Bloomington 

Chair of Advisory Committee: Dr. Mark E. Everett 

 

The goal of this research project is to identify the efficacy of the ground 

penetrating radar (GPR) technique in locating underground coal mine related subsidence 

features at Malakoff and Bastrop, Texas.  The work at Malakoff has been done in 

collaboration with the Railroad Commission of Texas (RRC).  RRC has been carrying 

out reclamation of abandoned underground coal mines at Malakoff since the early 

1990’s.  The history of the specific mining operations (at Malakoff and Bastrop) that 

took place in the early 1900’s has been difficult to ascertain; therefore, the use of a 

geophysical techniques like ground penetrating radar to identify hidden voids and 

potential subsidence features is vital for future reclamation process.  Some of the 

underground mine workings at the field site have collapsed over time affecting the 

topography by creating sinkholes.  GPR data, employing 25 MHz, 50 MHz and 100 

MHz frequency antennae, have been collected in common offset patterns and azimuthal 

pattern.   GPR data indicate the mine tunnels possibly connecting existing sinkholes by 

radargram hyperbolae that correspond with mine openings observed visually or during 

reclamation.  This study also denotes the importance of understanding the variable 



 iv

physical properties of the stratigraphy, which could lead to false alarms by 

misinterpretation of the radar signals.  Natural and man-made above-ground structures 

cause obstructions in data collection, and hence an optimal design is required for each 

survey.  RRC successfully ground-truthed the data during its reclamation process.  In 

turn, the acquired geophysical data helped to guide the reclamation.  At Bastrop, GPR 

data along with historical documentation led to the conclusion that coal mining did exist 

in this region but is not a major concern to the immediate stability and safety of the field 

site.  It can be concluded from both the studies that the GPR technique identifies 

anomalous shafts/tunnels possibly connecting potential failure. 
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INTRODUCTION 

The main objective of this research project is to identify and investigate how well 

ground penetrating radar (GPR) performs in characterizing near surface coal mine 

related features.  Coal mining in the Eocene – Paleocene Wilcox Formation (Fisher, 

1963) was carried out at Malakoff (near Dallas), Texas and Bastrop (near Austin), Texas 

in the first half of the 20th century: generally during the period from 1905 to 1940.  Most 

of the mining operations were underground even for shallow excavations (≤ 5 m) due to 

a lack of surface mining techniques.  Unfortunately, few maps or records survive 

describing these abandoned mine workings.  Today, many of these underground coal 

mining locations are residential zones.  This research describes efforts to identify non-

invasively mine workings in pastures and a residential setting at Malakoff and Bastrop, 

respectively.  Land subsidence due to the coal mine workings can be hazardous to 

occupants and livestock and can cause property damage.  Coal mining related surficial 

features can also reduce the value of the property and hence it is important from an 

economic perspective to map these features. Subsidence due to karst topography or due 

to underground mining is a common problem in many parts of the world.  Hence, it is 

also important to understand the natural (geologic) and human induced factors which 

lead to sinkhole formation.  Geophysics provides non-invasive techniques to investigate 

sub-surface features by detecting spatial contrasts in physical properties of the soil, as 

well as buried objects and void spaces.   

_______________ 

This thesis follows the style and format of Geophysics. 
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 The findings of this research have been used to guide reclamation of 

abandoned coal mining sites at Malakoff, which in turn provided ground truth for a 

posteriori evaluation of the geophysical data.  GPR mapping helps to assess the risk 

associated with coal mining subsidence. 

The field sites at Malakoff and Bastrop are similar with respect to 

geomorphology, the extent of mining, and socio-cultural electromagnetic interference, 

but there are several differences.  It is important to identify and understand the natural 

and man-made constraints at each site that deter the design of an ideal survey and 

accurate interpretation of the radargrams.  Azimuthal as well as linear GPR data 

acquisition schemes can be restricted by obstacles such as sinkholes, trees, fences, 

buildings and other natural or man-made features.  A novel azimuthal data acquisition 

technique is used in this study to detect possible connections between different 

subsurface excavated rooms.   This information is used to identify the future risk of 

subsidence of these rooms.  Data acquisition can also be restricted by the type of GPR 

antennae used, the sub-surface lithology and the physical properties of this lithology.   
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COAL MINING IN TEXAS 

Coal is a product of plant remains that have been compacted, hardened, 

chemically altered, and metamorphosed by heat and pressure over geologic time.  Coal 

forming plants are buried in a swampy oxygen-poor ecosystem, where the low oxygen 

levels prevent complete decomposition of the plant remains.  Subsequently, the reduced 

organic matter is transformed into coal.  Most of the coal mined today formed during the 

Carboniferous era (280 - 345 Ma).   

 

Fig. 1. Location of Malakoff and Bastrop, Texas. Field site location on coal-bearing 
units in the Gulf Region of Texas. (Map: National Coal Resource Assessment, USGS) 

 

Malakoff 
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Classification of coal is based upon the intensity and duration of the geologic 

processes which have affected the sediments. The classification from low intensity - 

short duration to high intensity - long duration is: 

Peat  Lignite  Bituminous Coal  Anthracite  Graphite. 

 

In Texas, the late Eocene period was dominated by cycles of transgressive -

regressive marine sediment deposition.  These cycles were separated with intervals of 

non-marine sedimentation and bedding of volcanic ash (Yancey, 1995).  Lignite 

outcrops in some of these intervals in association with deltaic and coastal plain 

sediments.  Trending northeast-southwest in east central Texas (Fig. 1), the Wilcox 

group (coal bearing formations at Malakoff and Bastrop) occurs near the surface beneath 

Quaternary alluvium in a broad belt roughly parallel to the Texas section of the Gulf of 

Mexico coastline (Mathewson, et al., 1980).  The Wilcox group is divided into three 

formations in east Texas: from the lowest unit to the highest, these are the Hooper 

Formation, the Simsboro Formation and the Calvert Bluff Formation (Middleton and 

Luppens, 1995).  Middleton and Luppens (1995) estimate the thickness of the Wilcox 

group to be 365 to 1,060 m in east-central Texas. 
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PAST, PRESENT, AND FUTURE OF US COAL MINING 

Coal Production 

With the introduction of the railroad, coal mining was developed as a means to 

provide fuel for the trains.  The first written records of coal mining in the US are found 

from 1819 (Mathewson, 1980).  The total US coal production in 1880 was ~ 20,000 tons.  

The gradual development of oil fields reduced the dependence on coal as a source of 

energy and hence its production.  The country saw a renewed interest in coal production 

during the 1970’s oil crises as is evident from Fig. 2.  Coal production declined again in 

2002 and 2003, probably because of a slow down of the economy. 

Some of the negative factors that affected production in early 2003 are expected 

to change in 2004 due to increased coal demand.  Factors like high natural gas prices and 

continued economic recovery are responsible for the increased demand predicted for 

2004 and beyond (Annual Coal Report, 2003).  The US Department of Energy ‘s (DOE) 

Strategic Center for Coals (Overview, 2004) emphasizes the importance of developing 

advanced technologies and improving scientific knowledge regarding coal production in 

order to enable economic prosperity and strengthen the energy security of the nation by 

reducing the dependence on imported oil, while avoiding environmental costs by using 

effective pollution control technologies. 
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Coal Production in United States from 1950 - 2003
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Fig. 2.  Coal production in US from 1950 to 2003 (Mathewson, et al., 1980; US DoE 
Strategic Center for Coals (Overview, 2003). 
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Mining Subsidence 

Coal production has been increasing steadily since the 1970’s and the prospects 

of coal mining in the United States in the future look promising since coal is a domestic 

source of energy.  Present rules and regulations help to prevent current mining 

operations from later developing into hazardous situations.  But past underground coal 

mining, which were mainly room and pillar method were less regulated, can give rise to 

conditions which are hazardous to the property and life.  Some of the consequences of 

underground coal mining are: disturbance of the surface leading to possible subsidence; 

pollution of surface and ground water; and spontaneous ignition leading to fires in the 

cavities (Dunrud and Osterwald, 1980).   

While there exists a lack of information about mining activities from the early 

20th century, it is important to understand the process and factors that lead to mine 

subsidence.  The Ohio Department of Natural Resources, Division of Geological 

Services (Crowell, 2001) describes some of the factors controlling mine subsidence as: 

height of mined out area, width of the mine, thickness of overburden, strength of 

bedrock, hydrogeology, fracture/joints and time.  The deeper the mine, the longer the 

time for it to collapse, though the larger the surface area affected.  Fluctuation of water 

circulation in the mine weakens the roof rock so that it could collapse if unsupported.  

As the roof sags, it ruptures and caves into the mined out area.  The roof rock then 

fragments, crumbles, rotates and is deposited, as incompletely compacted fill (Fig. 3).  

Existence of fractures and joints increases the likelihood of the subsidence. As a result of 
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the complexity and the variability of different aspects related to mine subsidence, the 

time a mine can take to collapse can not be predicted with much certainity.  

 
 
 

 

Fig. 3. Coal mining subsidence. Typical subsidence emerging from mine roof collapse 
resulting into a sinkhole formation (Source: Ohio Department of Natural Resources). 
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PREVIOUS STUDIES 

A number of geophysical techniques have been used to detect void spaces.  

Micro-gravity easily detects the anomalies due to spatial variation in the density of the 

void space and surrounding host material.  Magnetic anomalies are caused by variation 

in magnetic properties of the subsurface.  Resistivity tomography can also be used since 

it detects anomalies generated by the spatial variation in electrical resistivity of the target 

verses the surrounding.  The resistivity of the void space is higher than the resistivity of 

the host material.  These techniques are adequate if general information about the void or 

anomaly is available, but it can be difficult to detect unknown voids or anomalies 

(Chamberlain, et al., 2000).    All these techniques can locate the anomaly but do not 

identify the exact location of the anomaly and require a significant amount of 

processing.   

Some recent studies that use GPR for subsurface void investigation are: surveys 

of potential sinkholes, underground storage tanks, underground vaults (Mellet, 1995); 

survey of buried sinkhole at Ghor al Haditha, Jordan showing buried sinkholes 

indicating deeper hydraulic activities (Batayneh, et al., 2002); detection of caves in 

limestone for archaeological and palaeontological investigation (Chamberlain, et al., 

2000); study of karst features and the associated topography at Herault, France (Al-fares, 

et al., 2002).  Many other such studies exist in the applied geophysics literature. 

Ground penetrating radar uses electromagnetic wave propagation and scattering 

to image and locate changes in electrical and magnetic properties of the ground.  Likely 

underground mine void spaces or tunnels (Fig 4(a)) are typically represented in GPR 
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sections (radargrams) as two parallel, concave—upwards hyperbolae cresting at the top 

and bottom of the mine workings (Powers and Ohloeft, 1996).  Following to the 

discussion in Davis and Annan (1989), the radargram in Fig. 4(c) represents the 

idealized GPR signature of the anomalous zone shown in Fig. 4(b).  The reflections are 

governed by the electrical properties of the media through which the radar waves 

propagate.  The antennae’s are sensitive to see the anomalous zone prior to arriving over 

it (as seen in Fig. 4(b)), resulting in hyperbolic reflections (as seen in Fig. 4(c)).  Further 

details and the theory of the radar are discussed later. 

 
 
 

 

Fig. 4 GPR anomaly. (a) Example of a mine addet (shaft opening into a tunnel) opening 
at Malakoff, (b) Conceptual illustration detection of an anomaly using GPR. (From 
Davis and Annan, 1989), (c) Conceptual illustration of GPR radargram being used to 
detect an anomaly. 

 

(a) 
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Fig 4. Continued 

 

 

Field studies indicate that radar wave behavior is influenced by water content, 

physicolo-chemical characteristics of pore water, solid-liquid-air proportion, and 

(b) 

(c) 
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structure and void ratio of the solid phase (Carreon-Freyre, et al. 2003).  Multiple 

reflections are commonly found in GPR data.  These are recognized by their lower 

amplitude owing to attenuation and somewhat discontinuous nature due to multiple 

scattering of the waves.  Shallower anomalies result in many strong multiple reflections 

whereas the deeper anomalies result in fewer weaker multiple reflections (Friedel, et al., 

1990).  It is also noticed that coarse material lenses occurring within a stratigraphic layer 

such as silt create radar patterns which look chaotic (Beres, and Haeni, 1991).   Further 

more, according to Carreon-Freyre (2003), increase in water content in such varied grain 

size lenses enhance the contrast in the signal and hence can aid in identification of an 

anomaly.  Near surface boulders can lead to hyperbolic diffraction patterns (Beres, and 

Haeni, 1991,).  A void space could also possibly create a bow-tie like feature and a 

velocity pull-up or pull-down depending upon the velocities of the media through which 

the EM wave propagates (Powers and Olhoeft, 1996).   

  At Malakoff and Bastrop, the underground coal mine rooms were connected by 

tunnels or shafts.  These tunnels or shafts today are either void spaces or void spaces 

filled with sediments that have been washed in.  In both cases there is a material property 

contrast with the surrounding host sediments.  The tunnels or shafts act as point radar 

reflectors and generate hyperbolic move out in the radargram.  Many of the radargram 

features discussed in the previous paragraphs were observed in the GPR data from 

Malakoff and Bastrop sites.  
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FIELD SITE DESCRIPTION 
 
Malakoff 
 

The Rail Road Commission of Texas (RRC) has been carrying out reclamation of 

abandoned underground coal mines at Malakoff since the early 1990’s.   

 
 
 

 

Fig. 5.  Aerial photograph of the Malakoff, Texas, field 
site (TNRIS) 

Tx 31
Athens, Tx 
10 km west 

1 cm = 60 m
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The landscape at the field site (Fig. 5) is rolling hills with a moderate-relief 

underlain by Paleocene – Eocene Wilcox Group deposits: Indio Formation (~ 21 m 

thick) below which lies the Wills Point Formation.  The lithology mainly consists of 

thin-bedded and laminated, moderate to fine grained sand and some shale.  There are 

common massive clay layers and lenses of sandstone with few beds of lignite.  The soil 

is poor to moderately well drained and the permeability is low to moderate, hence the 

water capacity is medium to high with varying erosion.  The coal seams around this area 

are 2.0-3.0 m thick (Fisher, 1963).  A detailed history of the lignite coal mining 

operations that took place in the 1920s and 1930s has been difficult to ascertain; 

therefore, the use of a geophysical technique like GPR to identify hidden voids and 

potential subsidence features is an important component of the reclamation process.  

Some of the underground mine workings have collapsed over time and have created 

sinkholes as deep as 10-12 m with varying diameter (but at least ~ 3 m wide). By early 

2003, there were at least 10 collapse features at the site enclosed by the orange rectangle 

in Fig 5.  These were identified as high priority for reclamation by the RRC.  
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Malakoff: Previous Reclamation Work 

More than 9 Texas coal sites have been reclaimed by the Abandoned Mine Land 

(AML) program since 1980 (Re-inventory of abandoned coal mines in Texas, 1995).  

The main criterion for prioritization of reclamation work, as defined by RRC, is the 

protection of public health, safety, general welfare, and property from extreme danger 

due to adverse effects of coal mining practices.  Priority is given to sites that are in the 

immediate vicinity of a residential area in which coal mining has already had an adverse 

impact upon a community. 

Previous reclamation and restoration work in 1994 was conducted by RRC at the 

Henderson’s property at Malakoff.  Since then, global positioning system (GPS) 

observations have been used to record the subsidence and location of new collapse 

features.  Physical characteristics such as variations in vegetation, fresh collapses, creep 

in the soil, etc., were also noted as they are good indicators of fresh subsidence or future 

failure zones.  Taking into consideration the main criterion for prioritization, 10 

sinkholes (one of them seen in Fig. 6) were marked for reclamation in the summer of 

2003 at the Henderson’s property by the RRC (Fig. 7).  Information regarding the 

dimensions of these high priority sinkholes which were surveyed using GPR is provided 

in Table 1.  The rows highlighted indicate the sinkholes that are studied in this report 

using GPR.   
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Table 1. Sinkhole dimension information for Malakoff field site. Adapted from 
Railroad Commission of Texas Invitation for Bids for Malakoff Underground II 
Abandoned Mine Land (AML) site (FY 2003)  
          
Sinkhole Approximate  Approximate Approximate Comments 
 Width and Length (m) Depth (m) Volume (cu. m.)   
     
S-1 12 x 9 2 157  
S-2 12 x 11 2 318 Holds water 
S-4 8 x 6 2 100   
S-5 8 x 6 5 323   
JBR-10 8 x 7 2 158 Holds water 

JBR-16 11 x 7 3 77 
May have 
water 

JBR-19 13 x 13 2 154   
JBR-26 12 x 12 2 19 Holds water 
JBR-29 8 x 8 2 106 Holds water 
JBR-30 2 x 2 1 5  
          
    Total 1419   
Note: Sinkholes highlighted in the table were surveyed using GPR  

 
 

 
Fig. 6. Surficial subsidence features (sinkhole) at Malakoff.  Mr. William Reimer in 
(high priority) Sinkhole S-4 at Malakoff, Texas (Source: RRC Texas) 
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Fig. 7. Location of subsidence features (on Henderson’s property), Malakoff field site 
(Mapquest.com and RRC, Malakoff Underground II AML Project invitation for bids).

~ 122 m 

N
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Bastrop 
 

Following the survey at Malakoff, with the help of RRC, we identified another 

field site at Bastrop, Texas.  This field site (Fig. 8) is in a residential area located along 

the Colorado River floodplain near the town of Phelan in Bastrop County, Texas. 

 
 

 

 

Fig. 8.  Aerial photograph of the Bastrop, Texas, field 
site (Source: TNRIS) 

“kidney 
shaped” tank 

1 cm = 60 m
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  The property owner was unaware (before the property was purchased) of the 

earlier coal mining in the immediate area.  The field site is underlain by Paleocene – 

Eocene Wilcox Group: Calvert Bluff Formation (~ 21 m thickness) below which lies the 

Simsboro Formation.  The ground surface is mostly terrace and stream alluvial deposits 

with rounded pebbles and cobbles, of generally moderate to fine sandy loam texture. The 

permeability of the soils is low; hence the movement of water and air is restricted.  The 

surface erosion is moderate to high with increased erosion in non-vegetated areas with 

sediments accumulating in low lying regions.  The deeper strata are mainly sandy layers, 

with intermittent shales and coal beds of thickness ~0.2 m to 5 m (Fisher, 1963) (Fig. 9, 

Table 2).   

 This area was the site of lignite coal mining that flourished briefly in the early 

to mid 20th century.  Similar to the field site at Malakoff, a detailed history of mining 

operations that took place at Bastrop in the early 1900’s has been difficult to ascertain, 

which suggests application of a geophysical technique to help identify hidden voids and 

potential subsidence hazards.  Geophysical imaging can reduce the safety and property 

risk faced by residents of this area.  Surficial erosion is distinctly visible in the top soil 

horizon, in association with small gullies and sand accumulations.  There are no other 

distinct, visible subsidence features on this property in contrast to the numerous 

Malakoff study area sinkholes.  There exists at Bastrop a large kidney-shaped depression 

or tank with an approximate depth of ~10 m on the property, which seasonally fills with 

water (Fig. 10).  The sides and the base of this feature are smooth, indicating that it is 
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probably a man made feature and not directly induced by the coal mining subsidence 

activity.   

   
 
 

 
Fig. 9. Location of field site and lignite outcrop at Bastrop.  Fisher (1963) 
identified exposed lignite outcrops at locations numbered in red and represented 
in table 2.  Inset picture: TNRIS Aerial photograph (1995). Map source: 
Mapquest.com. 
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Table 2. Exposed lignite section (lignite occurrence) near Bastrop field site 
      

Location Lignite Occurrence (depth intervals) 
 (from fig. 8) I (m) II (m) 

13 12.6 - 14.3 14.5 - 16.3 
15 1.9 - 2.1 4.9 - 5.7 
16 3.7 - 5.4  
18 2.1 - 2.2 5.3 - 5.9 
19 2.5 - 2.8 8.9 - 11.9 

Source: Fisher 1963   
 

 
 
 

 
 
Fig. 10. Surficial features (tank) at Bastrop field site.  Mr. Carl Pierce in the bean shaped 
empty/dry tank at Bastrop, Texas.  This tank is also seen in the historical aerial 
photograph from the 1950’s with minor visual differences in shape. (Picture taken by 
Neelambari Save) 
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GROUND PENETRATING RADAR 
 

Theory of Ground Penetrating Radar (GPR)  
 

The GPR transmitter antenna emits a narrow pulse of several ~ns duration and 

consequently has a broad frequency spectrum.  The dipolar antennae used in this 

experiment have two octave bandwidths, which means the transmitted frequencies vary 

between one half and two times the dominant frequency (Conyers and Goodman, 1997).  

For example, antennae with a dominant frequency of 50 MHz will transmit most 

efficiently within a range of frequencies between 25 MHz to 100 MHz.  The spatial 

resolution depends on pulse duration and hence bandwidth. Resolution can be improved 

by increasing the bandwidth and center frequency simultaneously.  The depth of 

investigation varies depending upon material properties and the frequency.  Detection of 

subsurface features depends upon the existence of contrasts in electrical and magnetic 

properties, and the geometric relationship/orientation of the transmitter and receiver 

antennae.   

When electromagnetic waves from GPR are incident on an interface in which the 

electromagnetic properties exhibit contrast in the product, part of the energy is reflected 

back and the remainder is transmitted into the subsurface (Beres and Haeni, 1991). 

Relative permittivity rε , the property of a material which measures its ability to store 

electric charge when an electric field is applied, is defined as  

 
0

r   
ε
εε =       (1) 
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where ε is the permittivity of the material and 0ε is the dielectric permittivity of free 

space. 

  The amount of reflected energy depends upon the reflection coefficient R of the 

interface which in turn is dependent upon the permittivity.  The reflection coefficient is 

defined by: 

  
( )
( )12

12
VV

VV
R

+

−
=      (2) 

where Vi is the electromagnetic velocity in medium i, for i = 1, 2.    

The velocity of electromagnetic waves is given by  

rr

cV
µε

= ,     (3) 

where the speed of light in vacuum is represented by 
00

1
µε

=c  = 3 x 108 m/s 

and relative magnetic permeability is represented by rµ , which in non-magnetic 

geologic media is rµ  = 1 and is represented as 0µ  in free space.  In the case of 

magnetic geologic media, such as those containing the permeability rµ > 1, and the 

electromagnetic wave velocity decreases accordingly (Van Dam, 2002). 

Assuming a non-magnetic media, rµ = 1, 

 
00

1
µεεε rr

CV ==     (4) 

so that, 
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εε

εε

+

−
=R      (5) 

where є1 and є2 are the relative permittivities of the two media.  The material properties 

that control the attenuation of electromagnetic waves are permittivity and conductivity.  

Attenuation (dB/m) is expressed as  

rε
σα

310693.1 ×
=      (6)  

where σ is the electrical conductivity; defined as the ability of a material to support the 

long-term flow of an electric current.  Table 3 shows the relative permittivity and 

conductivity of media which are representative of near-surface materials at the Malakoff 

and Bastrop field sites. 

 
The relative permittivity increases with increasing moisture content. Table 3 

indicates that rε  for water is 81 (maximum possible value), which increases the bulk 

permittivity of the material through which the electromagnetic waves propagate.   Thus 

moisture can slow the propagation speed significantly in unconsolidated material 

(Church and Webb, 1986) because of the large water holding capacity in the pore space.   
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Table 3. Permittivity and conductivity values for various 
materials (Source: Davis and Annan, 1989) 
 
 
        

Material Permittivity (є) Conductivity (σ)   
Water 81 0.01 - 0.5   
Dry Sand 3 - 5 0.01   
Shale 5 - 15 1 – 100   
Coal 3.5 -   
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Fig. 11.  GPR survey techniques: reflection (common offset) and CMP. Arrows indicate 
relative movements of transmitter (Tx) & receiver (Rx). (Source: Sensors & Software Inc) 

Data Acquisition Technique 

Over a period of time, underground rooms and other void features created during 

removal of the lignite can collapse due to the overlying overburden pressure.  If this 

happens, the void space is filled with disturbed soil and often a surficial feature in the 

form of a sinkhole is created.  The voids/tunnels connecting various rooms also fill with 

the overlying sediment and sediments that wash in through the mine shafts.  The 

resulting variability in the soil type filling the void/tunnel structure and its contrast with 

the host sedimentary material could possibly be detected with a GPR survey.    
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The Sensor & Software Pulse EKKO 100 GPR equipment consists of two 

antennae: transmitter (Tx) and receiver (Rx); plus a console, fiber optic cables 

connecting the antennae to the console, and computer to record the data.  Two data 

acquisition strategies commonly used in GPR surveying are reflection (common offset) 

and common midpoint (CMP) (see Fig. 11).  In reflection mode there is a fixed offset 

between Tx and Rx, which are moved along the survey line at a fixed step size.  In the 

CMP mode, the Tx and Rx are separated from one another in constant increments, but 

their midpoint is fixed.  The information acquired in CMP mode is often used to identify 

the velocity of the electromagnetic waves.  These data acquisition modes are well known 

in reflection seismology. 

 
 An azimuthal pattern of data acquisition is also possible depending upon its 

feasibility with respect to environmental or man-made obstructions like trees, house, 

Fig. 12. Sketch of azimuthal survey 
setup around a sinkhole. 

Sinkhole

GPR Antennae
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fence, utility poles etc.  In an azimuthal survey (Fig. 12), data are collected at a constant 

radius along the circumference of the sinkhole. Azimuthal surveys are designed to 

identify tunnels emanating from the sinkhole thus providing critical risk assessment 

information regarding connectivity between existing sinkholes.  In the absence of a 

subsurface connection, radar reflections from the edge of the sinkhole should be 

azimuthally symmetric and in such cases would appear as a consistent feature in the 

radargram.  At the location of an anomaly caused by a subsurface target, such as a 

tunnel, the azimuthal symmetry of the radargram is broken. 

 A common midpoint survey (CMP) performed at the field site indicates 

that the EM wave velocity is 0.1 (± 0.05) m/ns at Malakoff and is 0.1 (± 0.01) m/ns at 

Bastrop.  This velocity (GPR Win_EKKOV10 Manual) is typical for the sandy, shaley 

lithology seen at Malakoff and Bastrop.  

 Using the velocity V of the subsurface obtained from CMP mode, and the two 

way travel time τ of the electromagnetic waves to reflect a particular anomaly, or point 

on the survey, the depth d can be calculated as, 

  
2
τVd =      (7) 
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Malakoff: GPR Survey Results and Observation during Reclamation 

The subsidence and mine shaft openings at Malakoff studied using GPR are 

highlighted in Fig. 13. 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13. Sinkholes surveyed using GPR at Malakoff. Red dashed lines indicate some of 
the trends in sinkhole occurrence.  Sinkholes surveyed are boxed.  This figure is 
modified from the RRC document entitled “Malakoff Underground II AML Project 
invitation for bids”. 
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GPR data were gathered on nine parallel common offset survey lines between 

sinkholes S-4 and S-5 were gathered.  This data set was collected to identify a potential 

subsurface link between S-4 and S-5.  To further test this possibility azimuthal survey 

around sinkholes S-4 and S-5 were performed.  If there is a tunnel connecting sinkhole 

S-4 and S-5, an anomaly should appear in both the azimuthal surveys and the 9 survey 

lines.  That is, there might be a GPR anomaly heading from sinkhole S-4 toward S-5.  

Such a connection, if apparent in the azimuthal radargram should also be visible in the 9 

survey lines which cross the line joining two sinkholes.  Of all the sinkholes that were 

surveyed, S-4, S-5, JBR-19 and JBR-16 are high priority sinkholes characterized by the 

team from RRC.  In addition to the nine survey lines and sinkholes S-4 and S-5, JBR-19 

was also azimuthally surveyed before reclamation in July 2003.  JBR-16 was surveyed 

during the reclamation at Malakoff. Sinkhole NS lines up with adjacent sinkholes 

represented by a red dotted line-arrow (Fig. 13). Though this is not a high priority 

sinkhole and was not reclaimed during the 2003 reclamation work, there exists fresh 

miniature (1.5 m diameter) sinkhole development between these northwest – southeast 

trending pre-existing sinkholes, strongly suggesting a subsurface connection.  Hence, 

sinkhole NS, in spite of being a non - priority sinkhole, was surveyed.  In Fig. 14, a 

sketch is provided of the survey set up for GPR linear and azimuthal surveys around 

sinkhole S-4, S-5, JBR-19 and NS and Table 5 summarize these different azimuthal 

surveys. 
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Fig 14. Sketch of GPR survey at Malakoff field site.  Orientation of related sinkholes also seen. 
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Table 4.  GPR azimuthal surveys around sinkholes at Malakoff  
         

Sinkhole Survey Name Survey GPR   

     Performed 
Frequency 

(MHz)  
     

S-4 S-4 Pre-reclamation 25  
S-5 S-5 Pre-reclamation 25  

JBR-19 JBR-19 Pre-reclamation  25  

JBR-16 JBR-16 
During 

reclamation 100  
NS NS-1 Post-reclamation 50  
NS NS-11 Post-reclamation 50  
NS NS-111 Post-reclamation 100  
NS NS-112 Post-reclamation 100  

     
 

 

 The findings of the GPR linear common offset survey data and azimuthal 

survey data at Malakoff are presented in the format: 

1. Radargram (image); 

2. Results; 

3. RRC reclamation results. 

Each radargram describes the location of apex of a hyperbola by distance x from the start 

position of the survey, its depth d, and its two way travel time τ. 

 Most of the radargrams on the nine survey lines are similar in appearance with 

hyperbola occurring at a similar depth and location.  There is some lateral variability in 

the anomaly occurrence on the radargrams depending upon the start position of the 

survey.    
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 25 MHz GPR linear survey at Malakoff between sinkhole S-4 and S-5 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 15  Radargram of line 5 at Malakoff.  25 MHz GPR linear survey lines located in 
the area between sinkhole S-4 and S-5. 
 
 
 
Results: Hyperbola (marked with red dashed line) observed centered at x ~40 m from 

the start position and at τ ~80 ns (d ~4 m) in the near surface zone. 

Reclamation: The nine lines were not ground-truthed during reclamation and no 

definitive link between sinkhole S-4 and S-5 using these lines and the azimuthal survey 

could be identified.  Hence, only one (radargram) out of the nine lines has been shown 

(Fig. 15).  Data represented in Figs. 16 – 22 represent azimuthal radargrams around 

sinkholes at Malakoff. 
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25 MHz GPR azimuthal survey at Malakoff around sinkhole S-4 
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Fig. 16. Radargram for 25 MHz GPR azimuthal survey around sinkhole S-4. 

 
Results:  Hyperbolae observed with centers at x ~20 m and x ~35 m from start position 

with τ ~220 ns and τ ~235 ns (d ~11 m and d ~11.8 m) respectively.  The radargram 

illustrates a washed out image between x ~ 15 – 25 m and x ~ 45 – 55 m.  Ambiguous 

hyperbolae also seen in the near surface zone τ ~80 ns depth (d ~ 4 m). 

Reclamation: During reclamation, no tunnels or cavities were found at shallower 

depths.  The backhoe reached a maximum excavation depth of 8 m, and hence the two 

deeper hyperbolae (seen in Fig. 16) during excavation (d > 8 m) could not be ground 

truthed.   
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25 MHz GPR azimuthal survey at Malakoff around sinkhole S-5 
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Fig. 17. Radargram for 25 MHz GPR azimuthal survey around sinkhole S-5. 

 
 
Results: Washed out image at the beginning/end of the azimuthal survey (in Fig. 17).  

Also seen is a washed out/hazy image with faint hyperbolae at x ~ 38 m and τ ~ 100 ns 

(d ~ 5 m).  Prominent disturbed area seen in the near surface zone at x ~25 m and τ ~ 85 

ns (d ~ 5 m). 

Reclamations: During reclamation, a tunnel-like feature was observed at depth d ~ 5.5 

m (τ ~ 110 ns).  This tunnel matched the depth of the hyperbola seen in the radargram.   

The tunnel is possibly heading towards JBR-19 or a sinkhole adjacent to JBR-19. 
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25 MHz GPR azimuthal survey at Malakoff around sinkhole JBR-19 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 18.  Radargram for 25 MHz GPR azimuthal survey around sinkhole JBR-19. 
 
 
 
 
 
 
 
 
Results: Hyperbola observed at x ~ 10 m and τ ~ 200 ns (d ~10 m) and another relatively 

horizontal feature visible between x ~ 30 to 40 m and τ ~ 300 ns (d ~15 m).  In the region 

(in Fig. 18) below these two features, the radargram has a washed out appearance.  Also, 

an ambiguous hyperbola is seen in the near surface zone (τ ~ 50-100 ns region).  
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Reclamation:  During reclamation, a tunnel-like feature with the x value vaguely 

corresponding (spatially shifted) to the near surface disturbed zone was seen at d ~ 4.12  

m. No indication were found of the deeper anomalies observed by GPR. During 

reclamation, sand lenses with varying iron oxidation and grain size were seen on the 

walls of the sinkhole. These iron-oxides with rµ > 1 may have caused the GPR 

reflections. 

 Reclamation identified the anomalies which were located in the hazy/disturbed 

near surface zone for sinkholes S-5 and JBR-19.  It was found that most of the causative 

subsurface targets were much shallower than expected, and hence at the low frequency 

(25 MHz), a lot of important subsurface information was obscured in the near surface 

zone.  Hence, an azimuthal survey using 100 MHz antennae was performed around 

sinkhole JBR-16 during the reclamation work in 2003, which provided better resolution 

of the near surface targets. 
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100 MHz GPR azimuthal survey at Malakoff around sinkhole JBR-16 
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Fig. 19. Radargram for 100 MHz GPR azimuthal survey around sinkhole JBR-16.  This 
dataset was collected during reclamation (after excavation of sinkhole S-4, S-5 and JBR-
19). 

 
 
 
 
 
 
 
 

 
Results: Hyperbola observed at x ~12 m and τ ~112 ns (d ~ 6.6 m), with multiples, and a 

bow tie effect below it in Fig. 19.  Hyperbola also seen at x ~22 m and τ ~ 25 - 60 ns (d~ 
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1.2 – 3.0 m) followed by multiples and washed out image.  Disturbed regions seen in the 

near surface zone.      

Reclamation: Tunnel like feature seen starting at d ~2.74 m with a base at d ~ 4.27 m at  

x ~22 m.  When visually inspected before the reclamation, a surficial depression was  

observed between JBR-16 and an adjacent sinkhole.  During excavation of JBR-16, 

water started accumulating in the sinkhole and as a result the backhoe was used to dig up 

to d ~ 6 m and not much information could be obtained at d > 5.     

 Post reclamation, more data were collected around sinkhole NS to try to 

develop a technique which reduces false alarms and confirms an anomaly by line to line 

repeatability.  Hence, azimuthal surveys were performed around sinkhole NS using 50 

MHz and 100 MHz GPR antennae with multiple radii around the circumference of the 

sinkhole. 
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50 MHz GPR azimuthal survey at Malakoff around sinkhole NS with 3 m radii 
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Fig. 20. Radargram NS-1 for 50 MHz GPR azimuthal survey (around sinkhole NS). 
Survey radius is 3 m greater than the radius of the sinkhole.  
 
 
 
Observations: At x ~ 15 m the survey passed over a small opening (future possible 

massive sinkhole opening) creating a small tight hyperbola.  Hyperbolae observed on the 

radargram (in Fig. 20.) at around x~ 47 m and τ ~ 100 ns (d ~5 m).  

Reclamation: Data were collected after the reclamation was performed, and hence no 

ground truthing for the data. 
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50 MHz GPR azimuthal survey at Malakoff around sinkhole NS with 5 m radii 
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Fig. 21. Radargram NS-11 for 50 MHz GPR azimuthal survey.  Radius 5 m greater than 
the radius of sinkhole NS.  
 
Observation: Major hyperbola seen at around x ~57 m and τ ~ 100 ns (d ~ 5 m).  Hazy 

image detected between 45 m and 55 m in Fig. 21.  The sinkhole passed over a small 

opening at x ~ 19 m creating a small tight hyperbola.  

Reclamation: Data were collected after the reclamation was performed. 

The 100 MHz antenna was used to collect data along the same azimuthal set up (as in 

NS-11), but the survey abruptly ended at x ~ 20 m due to technical difficulty (battery 

drain).  Since no strong signals were seen in the azimuthal surveys NS-1 and NS-11 in 

the first 50 m, a newer dataset was named NS-112 and data was gathered later starting at 

x ~ 52 m and ending at x ~ 80 m after replacing the battery.  This range x ~ 52 - 80 m 

was chosen because hyperbolae were seen on Line NS-1 and NS-11 in this region. 
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100 MHz GPR azimuthal survey at Malakoff around sinkhole NS with 5 m radii 

 

Observation: Hyperbola seen centering at x ~ 56 m and τ ~ 110ns (d ~ 5.5 m).  This 

hyperbola seen in Fig. 22 occurs at the same general location as the one seen at NS-11. 

Reclamation: Data were collected post reclamation phase, hence no ground truthing. 
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Fig. 22.  Radargram NS-112 for 100 MHz GPR azimuthal survey. 
Radius 5 m greater than the radius of sinkhole NS.  
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50 MHz GPR linear survey at Malakoff 6.7 m from the circumference of sinkhole NS 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observations: Hazy image spread out hyperbolae seen centering x ~ 12 m and τ ~100 ns 

(d ~ 5 m) in Fig 23. 

Reclamations: Data were collected post reclamation phase, hence no ground truthing. 

 

 

 

0 5 10 15 20

-50

0

50

100

150

200

250

300

350

400

Position in metres

T
i
m
e
 
i
n
 
n
an

o
s
e
c
o
n
d
s

-25000 -12500 0 12500 25000

NS-LN 1 Time Section

Sinkhole Survey NS-LN 1 (50 MHz antennae)

 

Fig. 23. Radargram NS-LN1 for 50 MHz linear survey 
(sinkhole NS).  The survey set up is set up 6.7 m away 
from the circumference of the sinkhole NS. 
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50 MHz GPR linear survey at Malakoff 11 m from the circumference of sinkhole NS 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Observations: Hazy image, spread out hyperbolae seen centering x ~ 10 m and τ ~100 

ns (d ~ 5 m) in Fig. 24. 

 Reclamations: Data was collected post reclamation phase. 

A map has been created showing the different anomalies detected and identified 

during ground truthing in the discussion section of the thesis.  The next section describes 

the survey at Bastrop.  The data is reported in the following format: 

1. Radargram       2. Observation 
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Fig. 24.   Radargram NS-LN2 for 50 MHz linear survey 
(sinkhole NS).  The survey set up is set up 11 m away 
from the circumference of the sinkhole NS. 
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Bastrop Area 1: GPR Survey Results 

The survey at Bastrop Area 1field site is surrounded by a lot of man-made and 

natural structures as seen in Fig. 25 thus increasing the noise level in the data set    

 

Fig 25. GPR survey set up for Bastrop Area 1  
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25 MHz GPR linear survey at Bastrop Area 1 – Line 1 

 

Fig. 26. Radargram for 25 MHz GPR linear survey on line 1 at Bastrop (Area 1).  
Reflection from several man-made and natural objects is observed. 
 
 
 
Observation: Reflection from the surficial features like the fence, power line, tress, and 

house are seen in the radargram in Fig. 26.  A disturbed hyperbola (A) is seen at x ~ 20 

m and τ ~ 80 ns (d ~ 4 m) depth (interfering with the reflection of the power line).  

Hyperbola (B) at x ~ 30 m and another hyperbola (C) at x ~85 m and τ ~ 180 ns (d ~ 9 

m) depth seen in the radargram.  The latter hyperbola signal is dominated by strong 

reflections, possibly from trees between which the survey line passes. 
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25 MHz GPR linear survey at Bastrop Area 1 – Line 2 
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Fig. 27. Radargram for 25 MHz GPR linear survey on line 2 at Bastrop (Area 1). 

 
 
 
Results: Line 2 is adjacent to the house, a couple of trees and a metallic shed containing 

heavy farm equipment. The hyperbolae seen in the radargram (Fig. 27) occurred when 

the GPR unit passed by these objects, essentially meaning that it is caused by cultural 

noise.  At Malakoff, there occurred hazy region or disturbed region below a hyperbola 

where a possible tunnel was identified.  Line 2 lacks any such prominent features.   
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25 MHz GPR linear survey at Bastrop Area 1 – Line 3, 4 and 5 

 

Fig. 28. Radargrams for 25 MHz GPR linear survey on line (a) 3, (b) 4, and (c) 5 at 
Bastrop (Area 1). 
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Results: Bastrop Area 1 – Lines 3, 4 and 5 are parallel to each other with a separation of 

4 m between each survey line.  All the three radargrams (Fig. 28) are similar with 

hyperbolae B present and disturbances at relatively the same distance from the start 

position and at approximately the same depth.  These radargrams match with the first 36 

m of data for line 1 (Fig. 26). 

 A 3-D grid was surveyed, but the grid was too small with not much of an overlap 

with the other data that was collected.  The image was not very informative and needed a 

higher resolution and area coverage. 
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Discussion 

The data collected at Malakoff were ground-truthed by RRC Texas in June 2003 

during the reclamation process.  The linear survey lines were not ground truthed, only 

sinkhole S-4, S-5, JBR-16 and JBR-19 along with some other sinkholes were reclaimed.  

Sinkhole S-4, S-5 and JBR-19 azimuthal surveys were performed before the reclamation 

process using the 25 MHz antenna.  A tunnel-like feature (Fig. 29) was observed in S-5 

during the reclamation whose depth matched with the GPR data depth prediction, though 

there appeared to be a slight shift in the lateral position.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29. A tunnel found at Malakoff in 
sinkhole S-5 during reclamation.  The 
tunnel was filled with oxidized sand 
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The anomalies predicted at S-4 were very deep, beyond the reach of the backhoe, 

and hence these anomalies could not be verified.  A tunnel was located during 

reclamation at JBR-19 which probably appeared in the ambiguous near surface zone on 

the GPR data.  Occurrence of anomalies in the near surface zone, leads to ambiguity 

about their existence and hence a better survey design or approach is required.  Ground 

truthing suggested that the tunnels were much shallower than expected. Hence, the 25 

MHz antenna was probing too deep and the most informative signal was being ignored 

since it manifested itself in the near surface zone.  As a result, 100 MHz antenna was 

used for the survey of JBR-16 during the reclamation.  The anomaly detected at this 

sinkhole matched with a tunnel like feature observed during reclamation.  Also, during 

the reclamation it was noticed that there were abundant clay/sand lenses with great 

variation in its color (oxidation of the Fe rich minerals) and grain size (Fig. 30).  

 
 

 

 

 

 

 

 

 

 

Fig. 30. Color variation in soil observed during 
reclamation of sinkhole JBR-19. (Source: RRC, Tx) 
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 Some of the (broad) hyperbolae could have been reflection from these lenses.  

Variation in the physical properties can also lead to variation in the water holding 

capacity of the various stratigraphic layers or lenses, resulting in greater attenuation of 

the EM signal in some regions and a washed out hazy image in the radargram.  

According to Crowell, (2001), when a mine roof collapses, there exists incomplete 

compaction due to crumbling and falling of the roof.  This could possibly result in a hazy 

radar signature due to small scale reflection and scattering of the electromagnetic waves.   

The GPR data and the ground-truthing indicated a need for a technique to verify 

anomalies using multiple frequency antennae and multiple surveys around a sinkhole.  

Hence, a multiple radii survey was performed using 50 and 100 MHz antennae around 

sinkhole NS.  After noting a consistent anomaly (relatively same location on survey and 

same depth underground) on multiple azimuthal surveys around sinkhole NS, data were 

gathered on 2 linear lines moving farther away from the sinkhole.  This was done to 

verify if the anomaly continued laterally in space.  Hyperbolae were observed on all the 

surveys (Fig. 20 to Fig. 24: Survey NS-1, NS-11, NS-112, NS-LN1, NS-LN2) that were 

performed around sinkhole NS indicating that multiple radii and frequency can be used 

to identify and confirm an anomaly.  Had this approach been used in the earlier surveys 

(S-4, S-5 and JBR-19), the anomalies that were not detected with GPR may have been 

identified.  The results of the GPR survey at Malakoff for sinkhole S-4, S-5, JBR-16, 

JBR-19 and NS are shown in Fig. 31.   The identification of tunnel-like features for 

reclaimed sinkhole or un-reclaimed sinkhole have been color coded in order to identify 

the success rate verses the false alarm for the GPR data.  



 

 

53

 
Fig 31. Sketch of GPR survey at Malakoff with identified anomalies and results of ground truthing.
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Unlike Malakoff, no ground-truthing or reclamation has been performed at 

Bastrop Area 1 (until September 2004).  Bastrop Area 1 also lacked any physical 

evidence of fresh collapse or sinkhole openings at the field site.  There was however 

sinkholes like the ones at Malakoff a mile west of the Bastrop field site.  There was 

abundant surficial erosion, in which sand is transported and deposited in lower elevated 

areas.  The erosion appears to be a result of lack of vegetation at the field site.  The 

owner also complained about small holes opening up and swallowing water after 

rainfalls. Hyperbolae on the GPR lines are in good spatial alignment on lines 1, 3, 4 and 

5, but there are no supporting data (ground-truthing, sinkholes, collapses etc) available.  

An alternative geophysical method is required to do that.  Hence, data was collected 

using the Wenner Resistivity method at the field site (described in section “Supporting 

Data for Bastrop Field Site”).  GPR survey was also performed in an area adjacent to the 

main survey area at Bastrop.  The new site was called survey Area 2 and the data for this 

survey is represented in Appendix A. 
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RECLAMATION AT MALAKOFF 

Since reclamation provides ground-truthing, it is important to have a basic 

understanding of the procedure.   Soil is dug out from sinkholes using a backhoe (Fig. 32 

(a)), which can reach a maximum depth of around 8 m. The soil is then piled beside the 

excavated sinkhole.  Any non-stable collapsed part of the sinkhole is stabilized and then 

filled up.  In this case 300 truck load of fill material (clayey loam) from Trinidad, Texas 

was required to seal the sinkholes.  The imported soil is used to fill the base of the 

sinkhole after which the soil dug out of the sinkhole is used to fill the rest of the 

sinkhole.  The backhoe is used to compact the soil (Fig. 32 (b)).   

 
 
 

 

 

Fig. 32.  Reclamation process at Malakoff (July 2003). (a) Backhoe 
used to dig and remove soil from a sinkhole, (b) Backhoe thumping 
the ground to compact the soil while filling the sinkhole

(a) (b) 
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Filling of the sinkholes was followed by re-vegetation of the area to give it a 

natural look and to reduce surface erosion.  The reclamation process of a sinkhole is 

depicted in Fig. 33.  The total cost of the project was approximately $ 46,000 and the 

reclamation work lasted for about 10 days. 

 
 

 

Fig. 33. Typical mine subsidence sinkhole closure sequence (Modified from Railroad 
Commission of Texas Invitation for Bids for Malakoff Underground II Abandoned Mine 
Land (AML) site (FY 2003)). 
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SUPPORTING DATA FOR BASTROP FIELD SITE 

Resistivity Theory 

Wenner electrode resistivity configuration (Fig. 34) was used along the survey 

lines setup using Advanced Geosciences, Inc. STING R1 
TM 

resistivity equipment. In the 

Wenner configuration, the two outside electrodes (I1 and I2) introduce a current into the 

ground, and the two inside electrodes (P1 and P2) measure the potential difference (V) 

between them caused by the DC current (Fig. 34). 

 
 
 

 

 

Fig. 34. Wenner resistivity arrangement used at Bastrop. 
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The property of the electrical resistance of a material is usually expressed in 

terms of its resistivity (measured in ohm meter (Ωm)) (Sharma, 1997).  For a conducting 

body of length l, area A and resistance R, the resistivity ρ is  

l
RA

=ρ .      (8) 

According to Ohm’s law, the potential difference across the conducting body is  

  RIV =∆ .      (9) 

Hence in case of a homogeneous isotropic earth layer, 

A
I

l
V ρ
=

∆
      (10) 

If the conducting layer length (l) tends to zero in Equation 10, then 

  IV ρ=∆−       (11) 

If a current I is passed through the ground surface, it will flow radially and spread out 

uniformly over a hemispherical shell of a surface area of 2πr2 at a distance r from the 

current source.  Hence, the current density i is 

  22 r

Ii
π

=  .      (12)  

Therefore, 

  22 r

Ii
r
V

π

ρρ
δ
δ

==
−

;     (13) 

and potential at a distance r is 

  C
r
I

rV +=
π
ρ
2

,     (14) 
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where C is a constant of integration  

The potential difference between the two potential electrodes (Fig. 34) caused by the 

current at the source I1 is 
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Similarly the potential difference between the two potential electrodes (Fig. 34) at the 

sink I2 is 
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Hence, the total potential difference is 
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therefore, 

  
GI

VP 12 ∆
=

π
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G
π2

 denotes the “geometric factor” 

of electrode configuration. Equation 18 is valid under homogeneous conditions; 

therefore resistivity in an inhomogeneous medium is conceptualized as an apparent 
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resistivity (ρa).  In case of Wenner array, the four electrodes are equally spaced (‘a 

spacing ’) along a straight line, thus reducing the equation for the apparent resistivity to  

  
I
Vaa

∆
= πρ 2 .     (19) 

 

The technique of Wenner resistivity allows geoelectric mapping of the 

subsurface which measures the spatial variation of earth resistivity within a certain depth 

range (Bhattacharya and Patra, 1968).  The effective depth of penetration varies 

depending upon factors such as: current source, presence of in homogeneities, resistivity 

contrast, and degree of electrical anisotropy (Sharma, 1997).  However, assuming that 

the subsurface is homogeneous, the depth of penetration of the Wenner configuration 

according to Burger (1992) is  

2
3az = .      (20) 

Most of the anomalies seen in the GPR radargrams are less than 10 m in depth.  Hence if 

there exists a possible anomaly caused by a (filled/empty) tunnel, it should be detected 

due to the resistivity contrast by Wenner technique using an ‘a spacing’ of ~7 m.     

A Wenner resistivity survey was performed at Area 1 (Fig. 35) along lines1, 2, 3 

and 4 with ‘a spacing’ of 7 m and a step size of 7 m.  To increase the resolution and 

probability of identifying an anomaly, additional surveys were performed at lines 3, line 

3.5 (between line 3 and 4), and 4 (lines spaced 2 m apart) with a step size of 1 m.  In 

case an anomaly is present, it should be seen in adjacent survey lines at similar spatial 

locations. 
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Fig. 35.  Wenner resistivity survey setup at Bastrop. 
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Results  
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Fig. 36. Wenner resistivity survey for 4 lines with ‘a spacing’ = 7m (at Bastrop). 
Increasing resistivity as the survey moves away from the start position. 
 
 
 

As seen in Fig. 36 the apparent resistivity increases with increasing distance from 

the start points of line 1 to 4 to the kidney-shaped open tank-like feature (see Fig. 35).  

Not much information can be derived from this set up since the step size is large (7 m), 

leading to the next surveys to be performed with a step size of 1 m. 
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Fig. 37. Wenner resistivity survey along line 3 at Bastrop.  Sudden spike seen at around 
30 m from the start position. 
 
 
 

Shown in Fig. 37, the apparent resistivity increases with increasing distance from 

start point of line 3.  There exists a region of elevated apparent resistivity at around 30 m 

possibly because of some anomaly with high resistivity.  If this anomaly is a void space 

related to coal mining, and is a continuous 3-D tunnel-like feature, then the higher 

resistivity of the cavity will also be detected in other survey lines adjacent to line 3. 
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Fig. 38. Wenner resistivity survey along line 3.5 (between line 3 and 4) at Bastrop.   
 
 
 

As seen in Fig 38 no specific trend is observed in line 3.5.  During data 

collection, at some locations, no readings were measured by the instrument and hence 

the data are not continuous because of the highly resistive ground. 
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Fig. 39. Wenner resistivity survey along line 4 at Bastrop.   
 
 
 

The data from line 4 (Fig. 39) indicates that there is an increase in the resistivity 

while moving away from the start point as in case of line 3 (Fig. 37).  Though no sudden 

spike (increase in resistivity) observed in line 4, instead there is a small dip at 30 m.   
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Discussion 

The surficial deposits at the survey are dominated by cobbles and pebbles, 

making it very difficult to ground the electrodes required for collecting the data.  Also, 

the soil was very dry; such resistive conditions make data acquisition difficult.  The 

survey area is also constricted and as a result few data could be obtained, which is 

unable to strongly support the GPR data.  Decreasing the ‘a spacing’ would lead to a 

decrease in current penetration and hence decrease in the effective depth of penetration.   

 While gathering resistivity data, it was brought to our attention that the 

neighboring property (Area 2) had big sinkholes, a situation not observed at Area 1.  

These sinkholes were similar to those at Malakoff, but in a much more stable condition 

(visually).  Hence, additional GPR data were collected at Area 2. Azimuthal surveys as 

in case of Malakoff were not possible since there were too many trees and shrubs at Area 

2.  These data are presented in Appendix A. About 1.6 km west of Area 1, fresh 

collapses are observed similar to ones seen at Malakoff.  A previous study conducted by 

RRC indicated the existence of coal mining around the survey area.  Owner of Area 2 

conveyed that no new collapses or subsidence features have occurred on the property in 

the previous 15 years.  At Area 1, there prevails extensive surface erosion, due to lack of 

vegetation.  Repetition of anomalies (possible tunnels) occurrences on adjacent GPR 

survey lines in Area 1, stable sinkholes in Area 2 and surrounding regions, and historical 

background information indicates that this region was probably once a coal mining area.  

But, it is difficult to ascertain the exact nature and extent of coal mining related features 

at Bastrop without ground-truthing. 
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CONCLUSION 

At Malakoff, one sinkhole was detected (JBR16), two roughly indicated (S5 & 

JBR19), 4 not accessible by backhoe (due to depth) or missed (not identified during 

reclamation) or anomaly not a mining related feature.  Overall GPR technique using the 

azimuthal survey method was moderately successful in detecting coal mine related 

features at Malakoff.  The tunnel-like features identified were filled with washed in 

sediments with different physical properties than the host soil surrounding it.   

Several possible anomalies were identified before the ground truthing, but these 

were not necessarily located during the ground truthing done by RRC.  A geophysical 

technique like GPR provides a pointer toward further investigation of the site survey.  

The reclamation at Malakoff was ground-truthing in a true sense, since false alarms were 

identified and shortcomings of the survey designs could be recognized.  The occurrence 

of the tunnels found during reclamation in the near surface zone of the azimuthal GPR 

radargrams (for sinkhole S-5 and JBR-19) suggested the use of higher frequency (50 

MHz and 100 MHz) antennae which, in turn, enabled the inspection of shallower regions 

of the subsurface (for sinkhole JBR-16 and NS).  Multiple radii surveys around sinkhole 

NS with 50 MHz and 100 MHz antennae helped identify the anomaly with more 

confidence even without ground-truthing.   

To begin with, data were collected along 9 linear survey lines.  The location 

selected was a region lacking sinkholes within the area of inspection, but surrounded by 

sinkholes (S-4, S-5).  The idea behind selecting this location was to identify any 

subsurface connection between these sinkholes.  The linear surveys did suggest a 
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connection between the sinkholes, but no evidence was found in the azimuthal survey 

and the ground-truthing of sinkhole S-4 and S-5.  In case of the multiple radii around 

sinkholes NS, a linear trend emanating out from the sinkhole could be identified.  This 

suggests that a useful procedure would involve performing azimuthal surveys and 

following any anomaly heading away from the sinkhole.  In theory, this cost effective 

procedure would lead to another sinkhole or location which might be in danger of 

collapse or subsidence.  Also, all the anomalies found during ground-truthing were not at 

the same depth, which indicates that use of a single frequency GPR antenna may not be 

able to identify all tunnels/shafts.  Multiple frequencies (GPR antennae) also help to 

reduce the false alarms, since varying the frequency can help confirm the existence of an 

anomaly due to repeatability.      

 The Bastrop survey area is a residential area, unlike the Malakoff site which is 

a ranch setting.  Due to environmental/physical limitations (trees, fence etc) data 

acquisition was constrained affecting the resolution of data and increasing the cultural 

noise.  Hyperbolae observed in various survey lines were observed at identical depths 

and relative positions, implying that they are probably produced by the same linearly 

trending anomaly.  But this might not be the case always, and hence ground-truthing is 

important.   

 At Bastrop site Area 1, GPR anomaly exists at around 30m from fence line 

(start of survey) at a depth of around 9 m.  A hazy appearance was seen in the near 

surface zone, indicating a disturbed soil zone above a collapsed anomaly, but this is 

difficult to ascertain without ground truthing.  Supporting data for Area 1 at Bastrop are 
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necessary, especially since the site lacked physical/visual evidence (sinkholes, surface 

collapse features etc).  Hence, a Wenner resistivity survey was performed at Area 1.  The 

resistivity survey did identify some regions of high apparent resistivity.  But each survey 

line varied distinctly with little co-relation and hence the apparent resistivity data were 

insufficient to derive definitive conclusions about the field site and to compare with the 

GPR survey.  Further GPR survey was performed at Area 2 at Bastrop (property west of 

Area 1) to identify any possible tunnel like feature (data in Appendix A).  Stable 

sinkholes, the presence of anomalies similar to Malakoff in the GPR data at Bastrop 

Area 2 and background information gathered lead to the conclusion that coal mining did 

occur in and around the vicinity of the field site at Bastrop.  Since there hasn’t been any 

major subsidence in the past decade in the two areas that were surveyed at Bastrop, the 

risk associated with the property is probably moderate to low.  The data needs to be 

confirmed by ground-truthing.  The property should be re-vegetated in order to reduce 

surficial erosion and washing off of the soil.  The information obtained through GPR 

survey and the subsequent ground truthing, can be used by the property owners to better 

understand the risk associated with erection of major structures in close proximity to any 

possible coal mining related feature.   

GPR data acquisition and processing is not very difficult and hence, GPR can be 

widely used for anomaly detection in industrial and research related fields like, 

environmental geosciences, engineering geology, archaeology, anthropology etc.  

Though, lack of experience in field survey set up, acquisition and interpretation can lead 

to increased false alarms.  It was observed at Malakoff that the anomaly detection was 
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more successful when the survey design was altered and adapted to suit the geological 

and environmental constraints at the field site.  The ground-truthing at Malakoff helped 

in making the required changes in the survey design to reduce the false alarm, thus 

indicating the importance of ground-truthing in developing geophysical investigation 

skills.   In turn, the acquired geophysical data helped guide the reclamation.  It can be 

concluded that GPR technique proficiently identifies anomalous coal mining related 

shafts/tunnels.  Hence, extensive high quality GPR survey with a good survey design and 

under experienced supervision can reduce the time and cost of reclamation. 
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APPENDIX A 

GPR at Bastrop Area 2 

Lack of active coal mining subsidence features like the ones seen at Malakoff, lead to 

the investigation of the property located to the west of Bastrop survey area 1.  Given 

below is a sketch of the survey set up (Fig. 40).   

 
 
 
 

 
 

Fig. 40.  GPR survey setup at Bastrop Area 2.  Located adjacent to the survey Area 1.  
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Azimuthal survey could not be collected due to the heavy vegetation and lack of open 

space around the sinkholes.  Linear common-offset reflection method was used to gather 

data in close proximity to the sinkholes.  Two sinkholes (SH 1 and SH 2) are seasonally 

filled with water, and are known to be of depth ~5 m.  Hence water table should be seen 

in the radar gram. 
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Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 41. Radargrams for line 1 at Bastrop (Area 2) using 25 MHz GPR. 
 
 
 
Observation: Bow tie effect seen in the Fig. 41 above. Faint hyperbolae as seen at τ ~ 

100 ns and at x ~ 23 m 
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Fig. 42. Radargrams for line 2 at Bastrop (Area 2) using 25 MHz GPR. 
 
 
 

Observation: At x ~20 m τ ~ 100 ns, a hyperbola is seen. Bow tie effect and multiples 

also observed.  The relatively flat reflector is possibly the reflection of the sinkhole.  A 

longer survey line would have enabled obtaining information about the reflector seen at 

the end of the radar gram. 
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Line 1 and Line 2 are parallel to each other with line 2 starting three m ahead of line 1.  

Hence, occurrence of a hyperbola at the same depth and relatively the same location 

from start position indicates a linear anomaly (oriented perpendicular to the lines).   

 

 

 

 

 

 

 

 

 

 

 

Fig. 43. Radargrams for line 3 at Bastrop (Area 2) using 25 MHz GPR. 
 
 
 
Observation: Line 3 is very close to sinkhole SH 2 and crosses line 1 and line 2.  

Hyperbolae centering at x ~ 25 is seen.   
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Fig. 44. Radargrams for line 4 - 5 at Bastrop (Area 2) using 25 MHz GPR. 
 
 
 
Observation: Line 5 is a continuation of line 4 with a break and shift (survey line 

adjusted for the occurrence of trees and sinkholes).  Bow tie effect below a hyperbola 

seen on line 4.  Where as a possible water table can be seen in line 5.  
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Fig. 45. Radargram for line 6 at Bastrop (Area 2) using 25 MHz GPR. 
 
 
 
Observation: Line 6 is a short line and hence it is difficult to conclude much from it.  

There is no significant anomaly seen in the Fig. 45.  The abrupt ending of the hyperbolae 

(due to the end of the line) and no adjacent data together makes the radar gram un-

conclusive.  Possible water table is seen in blue in Fig. 45.  Since 25 MHz antennae were 

used, noise due to tree roots was eliminated because the signal produced by the roots 

occurred in the near surface zone 
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Discussion 

 The sinkholes at area 2 have been in existence for the past 15+ years with no 

major change in its structure.  Two of the sinkholes fill up with water seasonally.  

Anomalies seen in the radargram for line 1 and 2 head towards the trough which lies in 

between Bastrop Area 1 and Area 2.  This anomaly could possibly be connecting Area 1 

to Area 2.  Even though Area 2 was densely vegetated, using 25 MHz antennae lead to 

minimizing the effect of plant and tree roots since they occurred in the near surface zone. 

Ground-truthing is required to confirm the existence of coal mining in this region. 
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APPENDIX B 

Table 5.  GPR data collection key at Malakoff and Bastrop 
      
Location Survey Sinkhole Survey Name Reclamation Frequency 

  Type       (MHz) 
Malakoff Azimuthal S-4 S-4 Pre 25 
Malakoff Azimuthal S-5 S-5 Pre 25 
Malakoff Azimuthal JBR-19 JBR-19 Pre 25 
Malakoff Azimuthal JBR-16 JBR-16 During 100 
Malakoff Azimuthal NS NS-1 Post 50 
Malakoff Azimuthal NS NS-11 Post 50 
Malakoff Azimuthal NS NS-111 Post 100 
Malakoff Azimuthal NS NS-112 Post 100 
Malakoff Linear - NS-LN 1 Post 50 
Malakoff Linear - NS-LN 2 Post 50 
Malakoff Linear - Malakoff Line 1 None 25 
Malakoff Linear - Malakoff Line 2 None 25 
Malakoff Linear - Malakoff Line 3 None 25 
Malakoff Linear - Malakoff Line 4 None 25 
Malakoff Linear - Malakoff Line 5 None 25 
Malakoff Linear - Malakoff Line 6 None 25 
Malakoff Linear - Malakoff Line 7 None 25 
Malakoff Linear - Malakoff Line 8 None 25 
Malakoff Linear - Malakoff Line 9 None 25 
Bastrop Linear - Bastrop Area 1 - Line 1 None 25 
Bastrop Linear - Bastrop Area 1 - Line 2 None 25 
Bastrop Linear - Bastrop Area 1 - Line 3 None 25 
Bastrop Linear - Bastrop Area 1 - Line 4 None 25 
Bastrop Linear - Bastrop Area 1 - Line 5 None 25 
Bastrop Linear - Bastrop Area 2 - Line 1 None 25 
Bastrop Linear - Bastrop Area 2 - Line 2 None 25 
Bastrop Linear - Bastrop Area 2 - Line 3 None 25 
Bastrop Linear - Bastrop Area 2 - Line 4 None 25 
Bastrop Linear - Bastrop Area 2 - Line 5 None 25 
Bastrop Linear - Bastrop Area 2 - Line 6 None 25 

Note: Data acquisition time period with respect to reclamation indicated by: pre (survey performed before 
reclamation), during (survey performed during reclamation), post (survey performed after reclamation) 
and none (reclamation not performed). 
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