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ABSTRACT

A Numerical Study of Steady-State Vortex Configurations

and Vortex Pinning in Type-II Superconductors. (December 2004)

Sangbum Kim, B.S., M.S., Pohang University of Science and Technology

Co–Chairs of Advisory Committee: Dr. Malcolm J. Andrews
Dr. Chia-Ren Hu

In part I, a numerical study of the mixed states in a mesoscopic type-II supercon-

ducting cylinder is described. Steady-state configurations and transient behavior of

the magnetic vortices for various values of the applied magnetic field H are presented.

Transitions between different multi-vortex states as H is changed is demonstrated by

abrupt changes in vortex configurations and jumps in the B vs H plot. An efficient

scheme to determine the equilibrium vortex configuration in a mesoscopic system at

any given applied field, not limited to the symmetry of the system, is devised and

demonstrated.

In part II, a superconducting thin film is subject to a non-uniform magnetic field

from a vertical magnetic dipole, consisting of two magnetic monopoles of opposite

charges. For a film with constant thickness and with no pins, it has been found that

the film carries two pairs of vortex-antivortex in the steady state in the imposed

flux range of 2.15 < Φ+ < 2.90 (in units of flux quantum) and no vortex at all for

Φ+ ≤ 2.15. Transitions from a superconducting state with 3 pairs of vortex-antivortex

to one with 2 pairs, where a pair of vortex-antivortex annihilates, have been observed

in the pseudo-time sequence. With a perturbation with antidots (holes), vortex-

antivortex pair has been created for lower magnetic fluxes down to Φ+ = 1.3.

In the sample of size 16ξ × 16ξ, the attraction force between the vortex and

antivortex always dominates over the pinning force, so that they eventually come out
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of pins, move toward each other, and annihilate each other. The annihilation rate,

measured with time taken for the annihilation, is reduced noticeably by the increase

of the distance between pins, or the increase in the pin size. A simulation of the

magnetic vortex pinning in the sample of size 32ξ × 32ξ suggests we are likely to

achieve pinning of the vortex-antivortex pair with the sample size around this and

vortex-antivortex separation of 22ξ. Using this sample as a template, the maximum

density of pinned vortices achievable is calculates to be about 7.6 ×1014 vortices/m2

for ξ ∼= 1.6Å.
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CHAPTER I

INTRODUCTION

Superconductivity is the superfluidity of electron liquid. At sufficiently low temper-

atures, lattice vibrations in the crystal induce interactions among the electrons such

that the electrons “pair” (in momentum space) and form an electron liquid that no

longer experiences friction when it flows. Such materials are known as “superconduc-

tors,” because they show no resistance to electrical current. Superconductivity and

superfluidity are novel quantum phenomena. A branch of physics that studies of the

collective behavior of a large number of atoms is called Condensed-Matter Physics.

It gave birth to many wonders of modern technology such as transistor, integrated

circuit, computer CPUs and memories, laser, and optical fibers, to name a few.

According to classical Physics, as temperature goes down the kinetic energies of

all particles vanish, and the system of particles settles in the configuration of minimum

potential energy. That is, it solidifies. Quantum mechanics says the most stable state

of a system is not static equilibrium with the minimum potential energy, but rather

a dynamic state with the lowest total (potential+kinetic) energy, where the particle

motion is subject to the Heisenberg uncertainty principle. The dispersion ∆q of the

particle position q from its mean value q̄, and the corresponding dispersion ∆p of the

momentum cannot vanish simultaneously: ∆q∆p ≥ h̄/2.

At low enough temperatures the de Broglie wavelength λ = 2πh̄/p, of the thermal

motion of the atoms in a liquid, becomes comparable with interatomic distances. The

resultant weak interaction between light particles can lead to coherent motion of the

particles (small ∆p) with little kinetic energy. In this case ∆q can be large for small

This dissertation follows the style of the Physical Review B.
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∆p by the uncertainty relation. This means a long-range order of the momentum

vector. The particle momenta are locked to each other’s. Clearly the long-range order

is of a quantum mechanical origin. Therefore superconductivity and superfluidity are

examples of quantum mechanics in action in a macroscopic scale. [1]

Superconductors have been a field of great interest since their discovery both for

their theoretical importance, and for the important technological applications they

have in superconducting magnets, sensors based on superconducting quantum inter-

ference devices (SQUIDs), and a wide variety of electromagnetic equipments (e.g.

motors, power transmission cables, etc.). The discovery of High Temperature Su-

perconductors (HTSC’s) in 1980’s [2] opened a floodgate of renewed interests and a

variety of research areas worldwide. Their manufacturing, measurement, and con-

trol, provide researchers with a grand challenge. Since their properties are not yet

completely understood, a quantitative modeling itself is not a trivial task.

In this study we consider the behaviors of type-II superconductors under external

magnetic fields. We consider two kinds of samples, a square cylinder of mesoscopic

size with free boundary conditions and a thin square film with periodic boundary

conditions. The numerical simulations of vortex arrangements in the former, and

vortex pinning in the latter are the main content of this dissertation.

In chapter II, we present the macroscopic characteristics of superconductors such

as perfect conductivity and perfect diamagnetism. The peculiar electromagnetic be-

havior of superconductors is presented and a phenomenological model for the elec-

trodynamics, called the London model is reviewed. Finally the difference between

type-I and type-II superconductors are explained and illustrated in a phase diagram

in H − T coordinates.

Chapter III presents a microscopic theory that gives the precise definition of

superconductivity, shows the existence of macroscopically large pool (condensate)
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of superconducting electron pairs (Cooper pairs), and derives the macroscopic wave

function of this condensate. A ground-breaking model for superconducting electron

gas, called the BCS model is introduced. Yet no microscopic model can fully account

for the motion of electron liquid in superconductors, since the strong interaction

between particles in a liquid is hard to solve. Thus a phenomenological but powerful

model will be briefly reviewed in chapter IV.

Chapter IV opens with introducing new concepts such as a second-order phase

transition and critical phenomena, which in some sense can be regarded as looking

at superconductivity from a different angle. While chapter II focused on the elec-

tromagnetic characteristics of superconductors, in chapter IV superconductivity is

characterized in terms of internal symmetry of matter. (In short, superconductiv-

ity corresponds to a state of “broken symmetry” to be explained later.) Landau’s

theory of second-order phase transition is introduced, and uses the condensate wave

function derived in chapter III as an order parameter required by Landau theory, to

derive the celebrated Ginzburg-Landau equations. A brief discussion on the time-

dependent Ginzburg-Landau equations follows, concluding the chapter by outlining

how to simplify the TDGL for computational simulation in the following chapters.

Chapter V is an introductory chapter to part I, “Steady-state and equilibrium

vortex configurations, transitions, and evolution in a mesoscopic superconducting

cylinder.” Here we consider a mesoscopic square cylinder with free boundary condi-

tions. The magnetization process of this type-II superconductor subject to a magnetic

field parallel to its axis, is simulated. Section V.1 presents the epoch-making theory

of magnetic vortices by Abrikosov.

Chapter VI presents the derivation of the simplified TDGL and, discretization

and calculation procedure. The stability and convergence issues are discussed.

Chapter VII presents the magnetic penetration under the symmetry conditions.
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A magnetization curve and a table are provided. A time sequence of pictures giving

qualitative information on the continuous transition to arrive at a steady state is

presented.

Chapter VIII presents a systematic study to find an equilibrium state, by break-

ing the geometric symmetry binding the system at the metastable states. Final

equilibrium state is determined by plotting and comparing the Gibbs free energies of

the steady states of different vortex number and configurations. This part has been

published in Physical Review B. [3]

Simulations under different conditions, under a field gradient and a periodic

boundary condition, were presented in Appendices A, B, and C.

Chapters IX to XIII corresponds to Part II, “Optimal Pinning Configuration to

Trap a Vortex-Antivortex Pair in a Superconducting Film Under the Non-Uniform

Magnetic Field of a Magnetic Dipole.” A quest for pinning of a vortex-antivortex

pair created in a thin film, is presented.

Chapter IX gives a description of the system and the survey of literature. In

turn, it presents the theory of vortices in thin films by J. Pearl and a mathematical

model for vortex pinning by a cavity in a bulk superconductor by Mkrtchyan and

Shmidt.

Chapters X presents the mathematical model of the problem. Ginzburg-Landau

equations are nondimensionalized with different scales from the those in Part I. The

mathematical model for the dipole field is presented. The supercurrent is modeled as

a current sheet at the film plane, and then the vector potential is solved analytically

by Green’s function method.

Chapters XI presents the solution method. All the equations from chapter X

are discretized on the staggered grid, and discrete relaxation equation for the order

parameter is derived. Finally two-dimensional fast Fourier transform technique in
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parallel computers is employed to update the vector potential at each iteration step.

Chapter XII presents the simulations for magnetic penetration process into the

film, with and without pins. The number of vortex-antivortex pairs created in the

film is constant in a range of the imposed magnetic flux by the magnetic dipole. In-

troduction of the pins int the film creates vortex-antivortex pair at lower values of

the imposed magnetic flux. Next, the method of artificial vortex-antivortex pair is

employed for the magnetic relaxation process, and the results of the numerical ex-

periments using the method are presented. From the obtained pinning configuration,

the density of pinned vortices achieved is estimated to be about 4.7 GB/cm2.

Chapter XIII carries the conclusions to Part I and II.
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CHAPTER II

CHARACTERISTICS OF SUPERCONDUCTING PHENOMENA

In this chapter we describe macroscopic characteristics of superconductivity, in par-

ticular, perfect conductivity and perfect diamagnetism. An earlier phenomenological

model of superconductivity by F. London and H. London is introduced in this con-

text. [4] The London model gives a good description of the electrodynamic behavior

of superconductors, and is still widely used. The last section introduces type-II su-

perconductors, which will be the focus of subsequent study.

II.1. Two hallmarks of superconductivity

The liquefaction of helium in 1908 by H. Kamerlingh Onnes paved the way to the

discovery of superconductors. After this major accomplishment in low temperature

physics, Onnes began using liquid helium as a cryogenic fluid to obtain low tempera-

tures to study material properties below temperature T = 4.2K, which is the normal

boiling point of liquid helium.

In 1911 it was found during the measurement of the electrical resistance of a

rod of solid mercury that the voltage fell rapidly to zero below T = 4.15K. After

observing that the voltage reappeared at higher temperature, Onnes concluded that

the mercury entered a new state that has zero resistance to electrical current. [5] In

other words, a superconductor is a perfect conductor.

Another fundamental macroscopic property of superconductors was discovered

by Walter Meissner and Robert Ochsenfeld in 1933. [6] They observed that magnetic

fields do not penetrate into a material in a superconducting state below a temperature

(the critical temperature). Furthermore, if a superconductor placed in a magnetic

field is cooled through the critical temperature, the magnetic field is expelled from
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inside the material as it changes from the normal to the superconducting state. This

expulsion of a magnetic field is now called the Meissner effect, and it demonstrates

the second characteristic of a superconductor, perfect diamagnetism.

The Meissner effect cannot be explained in terms of perfect conductivity, which

is illustrated in Fig. 1 and Fig. 2:

The perfect conductor model implies that electric field E = 0 required for an

infinite conductivity (σ = ∞) in order for a non-zero current density j = σE. From

the Maxwell equation curl E = Ḃ/c, a magnetic state cannot change in time (Ḃ = 0)

in a perfect conductor. Fig. 1 is the expected behavior of a superconductor if it were

merely a perfect conductor when it is brought into a magnetic field.

Assume a material becomes a perfect conductor below a critical temperature. In

Fig. 1 (a), a normal conductor is placed in a magnetic field B0, thus the magnetic

field inside the specimen is B = B0, too. As we cool the specimen, it enters a perfect

conducting state and the magnetic field cannot change (B = B0). In Fig. 1 (b), a

normal conductor is cooled down without any external magnetic field (B = 0). After

it enters a perfect conducting state, the magnetic state in the system must remain

the same (B = 0). Thus an applied magnetic field cannot penetrate the specimen.

This perfect conducting behavior is troublesome, since the final state is obviously

path-dependent.

On the other hand, in Fig. 2 an initial magnetic field B = B0 inside the specimen

is pushed out of it as it is cooled below its critical temperature. Thus magnetic fields

are expelled from the superconductor regardless of the path it takes to arrive at the

superconducting state (B = 0). The Meissner effect proves that the superconducting

state is a thermodynamic equilibrium state.
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(a)

(b)

Fig. 1. The expected behavior if a superconductor is a perfect conductor. (a) The

specimen in the normal state is brought into a magnetic field and then cooled

below its critical temperature. The penetrated magnetic field in the specimen

does not change. (b) The specimen in the normal state is first cooled below

its critical temperature and then brought into a magnetic field. The magnetic

field does not penetrate the specimen.
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Fig. 2. Meissner effect of a superconductor: The specimen in the normal state is

brought into a magnetic field and then cooled below its critical temperature.

The penetrated magnetic field is pushed out.

II.2. London’s model for the electrodynamics of superconductivity

The discovery of the Meissner effect has inspired H. London and F. London to develop

a new model of the electrodynamics of superconductivity in 1934. The vanishing

electric field inside a perfect conductor sustains a non-zero diamagnetic current j = σE

(Fig. 1(b)) due to the infinitely large conductivity. The Meissner effect suggests that

there should be an electric current sustained by the vanishing magnetic field inside

a superconductor. Based on the argument that there seems to be no reason for

assuming that the diamagnetic currents for Meissner effect should be different from

the diamagnetic currents induced in the perfect conductor, the Londons suggested a

model of supercurrents sustained by magnetic field. [1, 4]

∇× (Λjs) = −1

c
H (2.1)

∂

∂t
(Λjs) = E (2.2)
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where js is the supercurrent density, E is the electric field and H is the magnetic

field, c is the speed of light, t is time, σ is electric conductivity and Λ ≡ 4πλ2

c2
is a

phenomenological parameter of a superconductor. The equations (2.1) and (2.2) are

known as the London equations.

The equation (2.1) together with the Maxwell equation curl H = 4π
c
j can be

combined to obtain

∇2H =
1

λ2
H. (2.3)

In one-dimensional space, this becomes d2H/dx2 = H/λ2, and for a boundary condi-

tion H(x = 0) = H0, it gives

H(x) = H0e
−x/λ. (2.4)

Thus there is a thin layer of thickness λ, known as the London penetration depth, where

the magnetic field penetrates the superconductor. The derivation above requires

∇ · H = 0. From the defining relation of the vector potential A (H = ∇ × A), the

vector potential is required to be in the class of functions satisfying ∇ · A = 0 to

satisfy a similar equation. This class of vector potential fields is called London gauge.

II.3. Two types of superconductors

The superconductors discussed so far are called type-I, and have two separate states,

superconducting or normal state. Superconductivity is destroyed as the magnetic field

H reaches some critical level Hc. This critical magnetic field depends on temperature

T . Thus, superconducting state exists only in a particular region in a phase diagram

in H-T plane (Fig. 3). In the phase diagram in H-T plane, type-I superconductors

are superconducting below an Hc(T ) curve (dashed line), normal above the curve.

The sample is either superconducting or normal as a whole, except the surface layer
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Fig. 3. Phase diagram of superconductors

of the penetration depth λ. 1 In the phase diagram there are two other critical fields

Hc1 and Hc2, and they border the regions corresponding to different superconducting

states, which will be explained below.

In 1957, a Russian physicist A. A. Abrikosov discovered from his solution to the

Ginzburg-Landau equations 2 a new kind of superconducting state in which magnetic

1There is a metastable state called the intermediate state in which the super-
conducting phase coexists with the normal phase below Hc in a finite sample, as it
typically happens in the first-order phase transitions.

2Ginzburg-Landau theory (1950) [7] was suggested before the BCS theory
(1957) [8].
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flux penetrates the superconductor in a form of vortex filaments. This new state

is called appropriately the mixed state since the two states are mixed. Abrikosov

has found that the new state occurs depending only on a single property of super-

conductors called the Ginzburg-Landau parameter κ. The mixed state occurs for

κ > 1/
√

2. So the superconductors with κ > 1/
√

2 are called type-II, while the ones

with κ < 1/
√

2 are called type-I. [9]

The mixed state in type-II superconductors exists between the lower critical field

Hc1 and the upper critical field Hc2 curves in the phase diagram. When Hc1 < H <

Hc2, the magnetic flux can penetrate the material but not completely or uniformly,

rather in the form of discrete flux lines, which are also super-current vortex lines.

Around the center of each vortex line, a neighborhood with the radius of order ξ

(called the coherence length) remains in the normal state. Around this vortex core,

superconducting electrons move in circular paths like vortex flows in fluid dynamics.

These supercurrents induce a magnetic field persisting over a distance on the order

of the penetration depth λ. In the region between the vortices, the material is in the

superconducting state. The material returns to its normal state when H > Hc2. In

this case, superconductivity is completely destroyed being saturated with vortices.

It is remarkable that A. A. Abrikosov has found a new superconducting state

and created a currently very active field of research by solving the Ginzburg-Landau

equations. He was awarded the Nobel prize in Physics in 2003, with V. L. Ginzburg

and A. J. Leggett. [10, 11]

D. Saint-James and P. G. Gennes [12, 13] have shown (again by solving the

Ginzburg-Landau equations!) that at a metal-insulator interface, superconductivity

can nucleate in a surface layer of thickness ∼ ξ in a magnetic field parallel to the

surface. The corresponding critical magnetic field Hc3 is about 70 percent higher

than Hc2, at which nucleation occurs in the entire volume of the material. This
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Hc3(T ) = 1.695Hc2(T ) may be represented in another curve on the phase diagram.

One of the consequences of this surface conductivity is that a sample can carry a

surface supercurrent over a wide range of fields in which no volume superconductivity

could be measured. This surface sheath of supercurrent in a finite sample is sometimes

called a giant vortex. [14, 15, 16, 17, 18] This giant vortex state regained research

interests recently, e.g. [19].
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CHAPTER III

MICROSCOPIC THEORY

Many introductory textbooks on superconductivity start with a chapter about the

Ginzburg-Landau equations typically with a statement such as, Landau’s theory of

second-order transition applied to a “postulated” free energy produces the Ginzburg-

Landau equations. Although correct, the statement is nevertheless closer to the end

rather than the beginning of a long chain of reasonings. Landau’s theory of second-

order transition is a refined theory elucidating the relation between crystal symmetry

and phase transitions. By applying the paradigm taken from the Landau theory to

superconductors, the Ginzburg-Landau theory nicely weaves the microscopic theory

of quasi-particles around the atomic lattice and a macroscopic description for the

evolution of a superconducting phase in a material. In that sense, the Ginzburg-

Landau theory penetrates to a deeper level than other phenomenological models. The

microscopic theory presented in this chapter is at the foundation of Ginzburg-Landau

theory and also reveals its beauty. At the same time, this fundamental understanding

is valuable for those who study superconductivity at a research level. Ultimately this

chapter is aimed at showing the existence of a macroscopically large pool of the

carriers of superfluid motion in superfluids (called the Bose-Einstein condensate),

and an analogous condensate of paired electrons (Cooper pairs) in superconductors.

The wave functions of these condensates (not of individual particles) provide the link

between the microscopic and macroscopic descriptions. The contents of this chapter

are mostly from Refs. [20, 21, 22, 23, 24, 25] and the papers quoted therein.
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III.1. Quasi-particles in quantum liquids

The calculation of thermodynamic quantities for a macroscopic body starts with its

partition function, which requires the knowledge of the energy spectrum of the system,

i.e. energy levels EnN . In a liquid (i.e. systems of strongly interacting particles)

we cannot refer to states of the individual atoms, but only to quantum-mechanical

stationary states of the whole liquid.

At sufficiently low temperatures, we consider only the weakly excited levels of the

liquid, that lie close to the ground state. According to the quantum-mechanical corre-

spondence principle, these elementary excitations behave like quasi-particles moving

in the volume occupied by the body and possessing definite energies ε and momenta

p.

An elementary excitation is not a single stationary state of the system, but a

superposition of a large number of stationary states within a narrow range of energy

(packet). There is a finite probability of transition between the constituent states

in the packet, leading to the broadening of the energy spectrum. This is prescribed

as the diffusion of a packet (or in other words, damping of the excitation). This

damping process can be viewed as the result of “decomposition” and “scattering”

of quasi-particles as they interact between one another. The process of decomposi-

tion of one excitation into several others occurs only for fairly large energies, while

the scattering of excitations occurs for fairly high density of quasi-particles. Since

neither is important at low temperatures, an ideal gas model of quasi-particles can

be employed. [23] So it is assumed that any energy level can be written as the sum

of the energies of a certain number of quasi-particles, as in the case of ideal gases.

That is, the role of gas particles is taken by elementary excitations (quasi-particles)

of the same number as atoms and obey statistics that corresponds to the nature of
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particles. 1

III.2. Superfluidity

Below 2.19K, liquid He4 (called helium II in this region) shows several extraordinary

properties, one of which is that it flows through narrow capillaries or slits without

exhibiting viscosity. This remarkable property is called superfluidity. 2

Consider a liquid flowing along a capillary at a constant velocity v. (We call this

coordinate system K.) In a coordinate system moving with the liquid, the walls of

the capillary move with velocity -v, and the liquid is at rest, initially. (We call this

coordinate system K0.) With no viscosity, nothing can happen further. With viscos-

ity, however, as time passes, the liquid at rest must also begin to move. Gradually

elementary excitations begin to appear in the liquid.

The energy E0 and momentum P0 of the liquid in K0 is related to those in K

as 3

E = E0 + P0 · v +
1

2
Mv2, P = P0 + Mv, (3.1)

where M is the mass of the liquid. A single elementary excitation with momentum p

and energy ε(p) appears in the liquid, E0 = ε and P0 = p, since the rest of the liquid

is quiescent. Then E = ε + p · v + 1
2
Mv2 and P = p + Mv.

1In nature the wave function of a system of N identical particles is either totally
symmetrical or totally antisymmetrical under the interchange of any pair. If it is
symmetrical, the wave function remains the same when two particles are exchanged
in the system. Such particles are called bosons and satisfy Bose-Einstein statistics. In
the other case, the wave function changes sign under exchange of two particles. The
particles are called fermions and satisfy Fermi-Dirac statistics. That is to say, the
state of the system of identical Fermi particles is not the same after a pair of identical
fermions in it are exchanged. The spin statistics theorem asserts that integer spin
particles are bosons and half-integer spin particles are fermions.

2He3 also becomes superfluid, but at ∼ 10−3 K. [22]
3This is a consequence of Galileo’s relativity principle.
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The expression ε+p ·v in E is the change in energy due to the appearance of the

excitation and 1
2
Mv2 is the kinetic energy of the liquid. if the excitation is to appear,

the change ε + p · v must be negative, since the energy of the moving liquid cannot

increase. That is, ε + p · v < 0. This leads to v > ε/p, since −pv ≤ p · v ≤ pv, hence

ε−pv < ε+p ·v < 0. Hence excitations cannot appear in the liquid for velocities less

than ε/p. If (ε/p)min is finite, then a flow with velocity v < (ε/p)min cannot become

slower, and the liquid exhibits superfluidity. Thus we have the superfluidity condition

v < ε/p. (3.2)

Note the superfluidity condition (3.2) depends on the shape of the energy spec-

trum ε(p) of the excitations appearing in the liquid. Geometrically, the ratio ε/p is

the slope of a line drawn from the origin to a point on the curve ε(p), in the p − ε

plane. The superfluidity condition (3.2) says the curve ε(p) should not touch or pass

the origin except at p = 0. For example, when there is an energy gap in the spectrum

between the excited states and the ground state, the liquid is a superfluid.

III.2.1. Wave function of the Bose superfluid

In a Bose superfluid, a macroscopically large number of particles have exactly zero

momentum. 4 These particles form the Bose-Einstein condensate in momentum space.

In an ideal Bose gas at T = 0, all its particles are in the condensate. In a general

Bose liquid, only small portion of particles are in the condensate even at T = 0.

We use the method of second quantization [21] which defines the quantum-

mechanical operators to create (or annihilate) a particle with an appropriate wave

function. Considering an ideal Bose gas (a system of non-interacting bosons, not

4This does not mean that the particles are at rest. They have zero momentum
under the Heisenberg uncertainty principle as was discussed in the chapter I.
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quasi-particles), the Heisenberg field operator Ψ̂(r, t) is written in the expansion of

the plane wave function

Ψ̂(r, t) =
1√
V

∑

p

âpψ(r, t) =
1√
V

∑

p

âp exp

{

i

h̄
p · r − i

h̄

p2

2m
t

}

. (3.3)

where âp is the annihilation operator for a particle. The particle creation operator

â+
p follows from the commutation rule

âpâ+
p − b̂+

p b̂p = 1. (3.4)

The creation field operator Ψ̂+(r, t) is defined as a similar sum of â+
pψ∗(r, t). Note

the term with p = 0 does not change in time. When an ideal Bose gas is in the

ground state (p=0), all the particles are in the condensate and their number is called

an occupation number, N0. It can be shown the creation and annihilation operators

applied to the ground state results in â+
0 â0 = N0 and â0â

+
0 = N0 + 1. This non-

commutativity (â0â
+
0 − â+

0 â0 6= 0) of the operators â0 and â+
0 may be ignored if N0 is

very large. That is, changing the order of the operators â0 and â+
0 makes differences in

the occupation number of the state by one, but for already large occupation number

this is negligible. Putting â0â
+
0 − â+

0 â0 ≈ 0 enables us to regard the operators as

classical quantities, i.e. numbers, and it immediately follows â0 = â+
0 =

√
N0. We

give the operator Ψ̂(r, t)p=0 a special symbol Ξ. That is,

Ξ̂ = â0/
√

V . (3.5)

For a condensate with a macroscopically large number of particles, this operator can

be regarded as an ordinary number that does not change in time.

In the general case of an arbitrary Bose liquid, we note that changing the number

of particles in the condensate by 1 does not essentially affect the state of the system

because the number of particles in the condensate is still large. That is, adding (or
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removing) one particle in the condensate converts a state of a system of N particles

into essentially the “same” state of a system of N ± 1 particles. 5 In particular, the

ground state remains the ground state. These operations of addition and removal

expressed with the creation and annihilation operators above, lead to defining Ξ̂ and

Ξ̂+, the part of the Ψ̂ operators that changes the number of particles in the condensate

by 1. Ξ̂ and Ξ̂+ are defined as

Ξ̂|m,N + 1 >= Ξ|m,N > (3.6)

and

Ξ̂+|m,N >= Ξ∗|m,N + 1 > (3.7)

where the symbols |m,N > and |m,N + 1 > denote two “like” states, differing only

as regards the number of particles in the system, m denotes the level in the energy

spectrum in the condensate, and Ξ is a complex number. 6 It can be shown there

exists a limiting expected value for this Ξ as N → ∞. That is,

lim
N→∞

〈

m,N |Ξ̂|m,N + 1
〉

= limN→∞ 〈m,N |Ξ|m,N〉 = Ξ

lim
N→∞

〈

m,N + 1|Ξ̂+|m,N
〉

= limN→∞ 〈m,N + 1|Ξ∗|m,N + 1〉 = Ξ∗ (3.8)

The the difference between the states |m,N > and |m,N +1 > disappears as N → ∞

and Ξ becomes the mean value of that state. [20] Ξ is related to the population of

the condensate as shown below.

In a homogeneous liquid at rest, Ξ is independent of the coordinates and is simply

Ξ =
√

n0, (3.9)

5The addition or removal of the particle is to occur in an infinitely slow process.
6Ξ is the eigenvalue of the operator Ξ̂ applied to the eigenket |m,N >.
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where n0 = N0/V is the number of condensate particles per unit volume of the liquid.

That is, we have N0 particles in the state of p = 0 in a volume V of the liquid. If

the liquid is in a superfluid motion, (or in non-uniform and non-stationary external

conditions) the Bose-Einstein condensation again occurs, but not in the state with

p = 0. The quantity Ξ is now a function of coordinates and time, representing

the wave function of particles in the condensate state. Normalized by the condition

|Ξ|2 = n0, Ξ can be expressed as

Ξ(r, t) =
√

n0(r, t)e
−iφ(r,t). (3.10)

Because of the macroscopically large number of particles in the condensate state, the

wave function of this state becomes a classical macroscopic quantity. From this wave

function, for example, the macroscopic current density of condensate particles can be

calculated

j =
ih̄

2m
(Ξ∇Ξ∗ − Ξ∗∇Ξ) =

h̄

m
n0∇φ (3.11)

One can see the large population in the Bose-Einstein condensate provides with the

macroscopic appearance of superfluidity.

III.3. Superfluidity of a Fermi gas

In this section we consider a degenerate almost ideal Fermi gas with attraction

between the particles, known as BCS model. (BCS stands for Bardeen-Cooper-

Schrieffer.) The attractive interaction between identical particles is unusual and

should result in a different kind of energy spectrum. Normally one would assume

repulsive interactions between the fermions, such as electrons.

Cooper [26] showed that the ground state of the system (Fermi sea) is unstable

with respect to the formation of bound states of pairs of particles, when the net inter-
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action between the particles is attractive. The physical consequence of this instability

is an “avalanche” of the particles that form bound states lying near the Fermi sur-

face in p-space and having equal and opposite momenta and antiparallel spins - the

Cooper effect. Here we show briefly the nature of superfluidity of the gas of Cooper

pairs.

The electron pairing precludes the use of operators âpα and â+
pα, defined for

free state of individual particles of the gas. A different set of operators needs to be

defined, the simplest will be the linear combinations of the operators of particles with

opposite momenta and spins; the suffixes + and - refer to the two values of the spin

components.

b̂p− = upâp− + vpâ+
−p+ (3.12)

b̂p+ = upâp+ − vpâ+
−p− (3.13)

The creation operators b̂+
pα come from the commutation rule

b̂pαb̂+
pα + b̂+

pαb̂pα = 1. (3.14)

The operators b̂+
pα create quasi-particles that are mutually orthogonal and also orthog-

onal to the ground state. [24] The quasi-particle occupation number npα is defined

with these new operators

b̂+
pαb̂pα = npα, (3.15)

b̂pαb̂+
pα = 1 − npα. (3.16)

The coefficients up and vp are the wave functions in the method of second quan-

tization (c.f. eq.(3.3)), of the particles in the bound states. After some tedious
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calculation 7 up and vp are given by

u2
p =

1

2



1 +
ηp

√

∆2 + η2
p



 , (3.18)

v2
p =

1

2



1 − ηp
√

∆2 + η2
p



 . (3.19)

where ηp = p2/2m−µ (kinetic energy minus chemical potential), the energy gap ∆ =

g/V
∑

p upvp(1−np+−np−), and g is the coupling constant. Noting np+ = np− ≡ np

for pairing, the Fermi distribution function for occupation numbers np = [eε/T + 1]−1

in equilibrium leads to the energy spectrum 8

ε(p) =
√

∆2 + η2
p. (3.20)

It is clear the quasi-particle energy cannot be less than the value ∆ at ηp = 0.

(When ηp = 0, µ = εF = p2
F /2m hence p = pF on Fermi surface.) This energy

spectrum satisfies the superfluidity condition since the minimum value of ε/p is not

zero. Thus a Fermi gas with attraction between the particles must have the property

of superfluidity for v < ε/p. The excited states of the system are separated from the

ground state by this energy gap. The quasi-particles (i.e. the elementary excitations),

due to half-integral spin, must appear in pairs. In this sense the gap may be said to be

2∆. This quantity 2∆ may be interpreted as the binding energy of the Cooper pair.

Since only the interaction between pairs of particles in the singlet s-state (spherically

7A Hamiltonian for negative interaction needs to be defined with coupling constant
V , then the energy of the system

E = 2
∑

p

ηpv2
p +

∑

p

ηp(u2
p − v2

p)(np+ + np−)− g

V

[

∑

p

upvp(1 − np+ − np−)

]2

(3.17)

is minimized to obtain up and vp by variational method, such as δE/δup = 0.
8Here again variational method is used to obtain ε = (δE/δnpα)up,vp

. Again
εp+ = εp− ≡ εp.
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symmetric) were considered, the pairs have zero total spin. Thus they behave like Bose

particles and may accumulate in any numbers at the level with the total momentum

zero. In this sense, the phenomenon is analogous to the Bose-Einstein condensation

in a Bose gas; in this case the condensate is the ensemble of Cooper pairs.

III.3.1. Wave function of the superfluid Fermi gas

Previously, the existence of a Bose-Einstein condensate in a Bose system was trans-

lated as a statement that the removal or addition of one condensate particle does not

change the state of a macroscopic system. The same must be true for the condensate

of Cooper pairs in a superfluid Fermi system. The state of the system cannot be

altered when the number of pairs in the condensate increases or decreases by unity.

This is expressed mathematically by the presence of non-zero limiting values

(N → ∞) of the matrix elements for the operator products Ψ̂β(X2)Ψ̂α(X1) and

Ψ̂+
α (X1)Ψ̂

+
β (X2).

9 The former is the pair annihilation operator and the latter the

pair creation operator, which is also the Hermitian conjugate of the former. These

matrix elements relate the “like” states of systems, differing only by the removal or

addition of one pair of particles. The the difference between the states |m,N > and

|m,N + 2 > disappears as N → ∞ if

lim
N→∞

〈

m,N |Ψ̂β(X2)Ψ̂α(X1)|m,N + 2
〉

= lim
N→∞

〈

m,N + 2|Ψ̂+
α (X1)Ψ̂

+
β (X2)|m,N

〉∗ 6= 0. (3.21)

This is the mathematical statement of the existence of the condensate and the ex-

pected values converge to a mean value.

In general, Green’s functions need to be defined to treat the interactions of the

9The symbols X1, X2 represent the space-time coordinates (r1, t1) and (r2, t2).
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particles in the system in the space-time (r, t). This leads to the celebrated Feynmann

diagram technique. We do not go in that direction, rather we only pay attention to

the “anomalous” Green functions defined by 10

iFαβ(X1, X2) =
〈

N |T Ψ̂α(X1)Ψ̂β(X2)|N + 2
〉

iF+
αβ(X1, X2) =

〈

N + 2|T Ψ̂+
α (X1)Ψ̂

+
β (X2)|N

〉

. (3.23)

where the symbol T denotes the chronological product. The operators following the

symbol T have to be arranged from right to left in order of increasing times t1, t2.

These functions contain the operator products defining the condensate of Cooper

pairs in eq. (3.21) and express the interaction of particles in space-time. Recalling

the spherical symmetry of the state of Cooper pair, we can isolate the spin dependence

of the Green function for a non-ferromagnetic system by a unit antisymmetric spinor

gαβ (which is not of interest here):

Fαβ = gαβF (X1, X2), F+
αβ = gαβF+(X1, X2). (3.24)

Just as the function Ξ(X) in Bose liquids had the sense of a wave function for particles

in the condensate, so the function iF (X1, X2) may be regarded as the wave function

of Cooper pairs in the condensate. Then the function

Ξ(X) ≡ iF (X,X) (3.25)

will be the wave function for the motion of these pairs as a whole. The other function

F+ is related to Ξ by the relation F+(X,X) = iΞ∗(X). Interested readers are referred

10The ordinary Green functions are defined as

iGαβ(X1, X2) =
〈

N |T Ψ̂α(X1)Ψ̂
+
β (X2)|N

〉

. (3.22)
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to references for more details. [20, 23]
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CHAPTER IV

GINZBURG-LANDAU THEORY

The existence of crystal lattice makes superconductors more complicated system to

study than superfluids. Modeling the interactions between electrons and ions makes

the mathematics involved with the process laborious and thus hard to apply to a

system of macroscopic size.

In this chapter we introduce a phenomenological but powerful model proposed by

V. L. Ginzburg and L. D. Landau. [7] The basic concepts such as second-order phase

transition, critical phenomena, and order parameter are introduced in connection

with Landau’s theory of second-order phase transition. Applying Landau’s theory

of second-order transition to the normal-superconductor transition phenomena, the

Ginzburg-Landau equation is derived in terms of the order parameter.

The Ginzburg-Landau equation is a governing equation for the order parameter.

However, an order parameter is not exactly a physical quantity, nor a reserved term

solely for superconductors. The order parameter is defined in any critical phenomena.

That is the reason why we visit basic terms in this chapter, although only the nominal

number of necessary terms. The contents of this chapter are mostly from Refs. [27,

28, 20, 24, 29, 25] and the papers quoted therein.

IV.1. Second-order phase transitions and critical phenomena

Ordinary phase transitions like the phase change associated with freezing or boiling

of water is termed as a first-order transition. In the phase diagram of water in the

P − v plane, the transitions between liquid-solid or liquid-vapor occur across the

phase equilibrium curve, when it is below critical point. The difference in molar

entropies of each phase incurs the heats of phase change, which is known as latent
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heats. Since the two states between which a first-order transition occurs are distinct,

they occur at separate regions in the thermodynamic configuration space. When the

system is going through a first-order transition from one phase to the other, there

occurs a coexistence of different phases such as liquid-solid (e.g. ice forming inside

the water) corresponding to the the linear combination of the two minimum energies

corresponding to each of the pure phases. The point at which all the three phases

(solid, liquid, and vapor) coexist is called the triple point.

As the critical point is approached, the phases lose their distinctive identities,

and finally disappears beyond critical point into a single phase called the fluid. This

transition to the new phase right across the critical point is defined as a second-

order transition. Since the coexistence of distinctive phases is no longer possible,

entropy is continuous and heat of transition is absent. One other noteworthy point

is that the thermodynamic fluctuations show divergent growth as critical point is

approached. Enormous fluctuations, in such a quantity as density (reported as the

“critical opalescence”) is observed and “generalized susceptibilities” such as heat ca-

pacity and compressibility diverge at the critical point.

These characteristics of critical phenomena discussed above are observed in many

systems. For example, the magnetic susceptibility in a ferromagnetic system diverges

near the critical transition, and the magnetic moment shows divergent fluctuation.

Similar transition happens in a ferroelectric system with electric dipole moment. [27,

5] One may notice that, fluctuations that are suppressed and averaged out in stable

thermodynamic systems below the critical point, would have a dominant role in the

physical processes beyond it.
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IV.2. Landau’s theory of second-order phase transition

The quantitative theory of second-order phase transitions is due to L. D. Landau,

who first showed the general relation between the phase transitions and the change

in symmetry of the body. The state of a body changes when it goes through the

transition between phases of different symmetry, such as between crystal and liquid

or between different crystal structures. However, in any state the body has only one

symmetry.

The transition between different crystal structures usually takes place with a

sudden rearrangement of the crystal lattice and thus the state of the body changes

discontinuously. This results in the discontinuous changes in the thermodynamic

properties, i.e. first-order phase transition. However, there are transitions such that

the change in the state is continuous while a change in symmetry occurs. For exam-

ple, BaTiO3 changes instantly from cubic to tetragonal lattice with no discontinuous

change in the state of the body at the transition temperature. The reason is that an

arbitrarily small displacement of the atoms from their original lattice sites is sufficient

to change the symmetry of the lattice to the other in this crystal. The crystal sym-

metry changes instantly and abruptly, even though the positions (and arrangement)

of atoms in the crystal make infinitesimally small changes. The resulting transition

from one crystal structure to another is called a phase transition of the second-order.

Thus a second-order phase transition is continuous in the change of the state of the

body and discontinuous in the change of the symmetry. The body, however, belongs

to only one of the two phases of symmetry at any instant. Whereas two phases of

different states are in equilibrium at a phase transition point of first-order, the two

phases have the same state at a transition point of second-order.

BaTiO3 is an example of a change in crystal symmetry by atomic displacements.
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The change in symmetry in a second-order transition may occur from a change in the

ordering of the crystal. The concept of ordering arises when there are more lattice

points to be occupied than atoms available to occupy. Since we cannot actually count

the number of lattice sites or atoms, the probabilities of occupation at the lattice sites

are evaluated. If these probabilities become uniform, this means a new configuration

of invariance (symmetry) has appeared. The symmetry of the lattice is increased and

the crystal is said to be disordered. That is, if symmetry increases, order decreases.

A second-order transition can be induced by a change in symmetry of some other

property instead of the atomic configuration. For example, at the Curie points 1 there

is a change in symmetry of the arrangement of the elementary magnetic moments in

a ferromagnetic or antiferromagnetic substance, at which the currents j in the body

disappears. Other examples are the transition of a metal to the superconducting state

and that of liquid helium to the superfluid state.

Since the states of the two phases are the same at a transition point of the

second-order, the symmetry of the body at the transition point itself must contain all

the symmetry elements (rotations, reflections and translational periods, etc.) of both

phases. On the other hand, the symmetry of the state at the transition point is the

symmetry of only one of the two phases as discussed above. Thus they cannot be two

totally different kinds of symmetries, one symmetry must be higher than the other.

The phase of the higher symmetry includes all the symmetry elements of that of the

lower symmetry and all the other additional symmetry elements. Therefore, we can

define a quantity η, called the order-parameter, that is zero in the symmetrical phase

and non-zero otherwise. 2 The continuity of the change of state in a phase transition

1Phase transition points of the second-order are also called Curie points, especially
for magnetic materials.

2For brevity we shall arbitrarily call the more symmetrical phase simply the sym-
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of second-order is expressed mathematically by the fact that the quantity η takes

arbitrarily small values near the transition point. Since the thermodynamic functions

of the state of the body (its entropy, energy, volume, etc.) vary continuously as the

transition point of the second-order is passed, we expand the Helmholtz free energy

F(P , T , η) in powers of η:

F(P, T, η) = F0 + αη + Aη2 + Cη3 + Bη4 + · · · , (4.1)

where the coefficients α,A,B,C, · · · are functions of P and T . Further analysis and

simplification of this expression varies depending on each application.

IV.3. The Ginzburg-Landau equations

In the Landau theory of phase transitions of the second-order, an order parameter

was defined to describe quantitatively the change between the “unsymmetrical” and

“symmetrical” phase. For a superconductor, the natural choice for the order parame-

ter is the condensate wave function, Ξ(r, t) =
√

n0(r, t)e
iφ(r,t), where n0 is the number

of Cooper pairs per unit volume in the condensate. In our Fermi liquid we define a

quantity Ψ that is proportional to Ξ but is normalized such that |Ψ|2 = ns, where ns

can be taken as the number density of superconducting electrons. 3 Once we define

the wave function

Ψ =
√

nse
iφ, (4.2)

metrical one, and the less symmetrical phase the unsymmetrical one.
3To simplify derivation, a cubic symmetry (isotropy) is assumed. This has two

consequences. First, the superconducting state is characterized by ns, the superelec-
tron density. Next, the supercurrent is seen to be simply proportional to the gradient
of the phase of the condensate wave function, with no need of second-order tensor
coefficient depending on anisotropy.
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the supercurrent density is expressed as

js =
esh̄

ms

|Ψ|2∇φ = − iesh̄

2ms

(Ψ∗∇Ψ − Ψ∇Ψ∗), (4.3)

where es is the charge of a Cooper pair and ms is the mass of a Cooper pair. Note

that the definition of supercurrent density depends on the existence of the condensate

wave function only, prior to the definition of the order parameter.

Following the general idea of the Landau theory, we start with the free energy

being expressed as a functional of Ψ(r). Near the transition point, the free energy

density is expanded in powers of the small order parameter Ψ and its derivatives with

respect to the coordinates. The order parameter Ψ defined above is a quantity pro-

portional to the Green’s function F (X,X) ≡ −iΞ(X) (see eq.(3.25)). Since F (X,X)

is constructed from two field operators Ψ̂ (see eq.(3.23)), an arbitrary change of phase

of these operators by α
2
, i.e. Ψ̂ → Ψ̂eiα/2, introduces a change of phase of the function

F by α. And this phase change appears in the order parameter: Ψ → Ψeiα. Since

physical quantities must not change by this arbitrariness, this excludes odd powers

of Ψ in the expansion of the free energy.

Now the Helmholtz free energy per unit volume in a superconducting body is

written as an expansion of the non-relativistic form (in the absence of magnetic field)

fs = f 0
n + α|Ψ|2 +

1

2
β|Ψ|4 +

1

2ms

∣

∣

∣

∣

∣

h̄

i
∇Ψ

∣

∣

∣

∣

∣

2

. (4.4)

Here, the order parameter Ψ is assumed to be complex scalar-valued function of

position, such that |Ψ|2 represents the local Cooper pair density, f 0
n is the free energy

of the normal state in the absence of field, and ms is the effective mass of the Cooper

pair. The fact that the above free energy contains only the first derivative of Ψ

means only sufficiently slow variation of Ψ in space is considered. In a homogeneous
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superconductor, (4.4) reduces to

fs = f 0
n + α|Ψ|2 +

1

2
β|Ψ|4, (4.5)

where the temperature dependent quantities α(T ) and β(T ) satisfy:

α(T ) = α0 (T − Tc) , α0 > 0, β(T ) > 0 (4.6)

Minimizing (4.5) with respect to the real and imaginary parts of Ψ yields two equilib-

rium values; one of which is Ψ = 0 for T > Tc, which is a trivial solution for normal

state. The other solution is

|Ψ|2 = −α/β ≡ Ψ2
∞, (4.7)

for T < Tc, which characterizes a uniformly superconducting (Meissner) state. The

critical field strength Hc, which is used as a fundamental scale for the magnetic field,

is given by

Hc = (4πα2/β)1/2. (4.8)

The Ginzburg-Landau penetration depth is defined as,

λ(T ) =

(

msβc2

4π|α|e2
s

)1/2

. (4.9)

Finally, the Ginzburg-Landau coherence length, which is related to Pippard’s coher-

ence length, is given by

ξ(T ) =

(

h̄2

2ms|α(T )|

)1/2

. (4.10)

Both penetration depth and coherence length are temperature dependent and behave

like (T − Tc)
−1/2. The Ginzburg-Landau parameter

κ(T ) =
λ(T )

ξ(T )
(4.11)

is a slowly varying function of temperature.
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When a magnetic field is present, (4.4) has to be modified in two ways. First, the

magnetic energy density h2/8π (where the magnetic field h = ∇×A) must be added.

Secondly, the gradient term should be changed to satisfy the gauge invariance. This

is done by replacing the phase gradient ∇φ with ∇φ − esA/h̄c. This results in the

substitution ∇Ψ → ∇Ψ − (ies/h̄c)AΨ. Thus the integrated energy is

Fs = F 0
n +

∫

Ω



α|Ψ|2 +
1

2
β|Ψ|4 +

1

2ms

∣

∣

∣

∣

∣

(

h̄

i
∇− es

c
A

)

Ψ

∣

∣

∣

∣

∣

2

+
1

8π
|∇ × A|2



 dΩ. (4.12)

Here, in addition to the parameters defined above, the vector potential A is a three-

dimensional vector-valued function of position, and es = 2e is the effective charge of

the Cooper pairs. (Strictly speaking, this free energy is actually the magnetic Gibbs’

energy.)

The desired differential equations for Ψ and A are now found by minimizing the

free energy as a functional of the three independent functions Ψ, Ψ∗, and A. (Since

the complex function Ψ has two real components, Ψ and Ψ∗ must be regarded as

independent functions in the variation. However, due to the symmetry of F with re-

spect to Ψ and Ψ∗, minimization with respect to Ψ does not produce a new equation.)

Varying the free energy integral with respect to Ψ∗ results in

δF =
∫

Ω



αΨ + β|Ψ|2Ψ +
1

2ms

(

h̄

i
∇− es

c
A

)2

Ψ



 δΨ∗dΩ+
1

2ms

∮

S

(

h̄

i
∇− es

c
A

)

ΨδΨ∗dS.

(4.13)

Putting δF = 0, we obtain the Ginzburg-Landau equation

1

2ms

(

h̄

i
∇− es

c
A

)2

Ψ + αΨ + β|Ψ|2Ψ = 0. (4.14)

Similarly, the variation with respect to A gives Maxwell’s equation

∇×∇× A =
4π

c
j (4.15)
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and the current density

j = − iesh̄

2ms

(Ψ∗∇Ψ − Ψ∇Ψ∗) − e2
s

msc
|Ψ|2A (4.16)

or

j =
esh̄

ms

|Ψ|2∇φ − e2
s

msc
|Ψ|2A. (4.17)

The surface integral in (4.13) gives the boundary condition at free surfaces of the

sample:

n ·
(

h̄

i
∇− es

c
A

)

Ψ = 0 (4.18)

IV.3.1. Flux quantization

Inside the body far enough from the surface layer of the penetration of the field, the

current density j = 0. The vector potential A is not zero, but only the magnetic field

H = ∇ × A is zero. For slow enough variations of the phase φ and the potential

A, the circulation of A along an arbitrary contour C is equal to the flux Φ of the

magnetic field through a surface S bounded by the contour, i.e.

∮

C
A · dl =

∫

S
∇× A · df = Φ. (4.19)

On the other hand, since j = esh̄
ms

|Ψ|2
(

∇φ − es

hbarc
|Ψ|2A

)

= 0,

∮

C
A · dl =

h̄c

es

∮

C
∇φ · dl =

h̄c

es

δφ (4.20)

where δφ is the change of phase of the wave function on passing round the contour.

Since this function must be single-valued, it follows that the phase change δφ can

only be an integral multiple of 2π. Thus we have the result

Φ =
h̄c

es

2πn = nΦ0. (4.21)
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Since 2πh̄ = h and es = 2e, the flux quantum Φ0 is usually written as

Φ0 = hc/2e = 2 × 10−7 G · cm2 (4.22)

IV.3.2. Gauge symmetry

The free energy (4.12) shown above contains terms in the form of covariant deriva-

tive [30]

Dµ ≡ ∂µ − iAµq, (4.23)

which is to ensure the gauge invariance required for all physical phenomena. The

free energy does not change under a gauge transformation with an arbitrary scalar

function χ,

A → A + ∇χ, Φ → Φ + χ (4.24)

and

Ψ(x) → eiesχΨ(x), (4.25)

which can be immediately observed by introducing the gauge transformation into the

free energy (4.12).

There is another and more profound viewpoint regarding the gauge symmetry in

terms of the quantum state of the system. When there are more than one quantum

states corresponding to a single energy level, they are called degenerate. The non-

degenerate ground state is invariant under the gauge transformation since it is unique.

If the ground state is degenerate, these degenerate states transform into each other

under the gauge transformation. However, if we choose one particular state of these

equivalent states, this state is not invariant under the gauge transformation any more.

It is then said that the symmetry (invariance) of the Hamiltonian is spontaneously
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broken in this state. 4 For a superconductor the Hamiltonian is invariant under global

gauge transformations (χ = const). In the ground state the phase of the condensate

wave function (order parameter) is arbitrary since it can be changed arbitrarily by χ.

It can be fixed if we choose a specific gauge, and then the symmetry is spontaneously

broken. [31]

Above statements can be illustrated more clearly in terms of Gibbs free energy

(4.4). It is invariant under a global gauge transformation, i.e. Ψ(x) → eiesχΨ(x)

where χ = const. To simplify further, we assume the gradient is zero (or the spatial

variation is extremely slow), in the remaining free energy terms β must be positive

in order to have a finite minimum. If α > 0, the minimum energy occurs at |Ψ| = 0,

which corresponds to the normal state. The symmetry of this state is the same as

the free energy. On the other hand, if α < 0, the minimum energy occurs for |Ψ| =
√

−α/β ≡ Ψ∞. (See Figure 4). Thus the ground state is infinitely degenerate since

any state with |Ψ| = Ψ∞eiesχ describe the same minimum energy configuration in the

global gauge transform. If we fix χ, e.g. χ = 0, we have a state with spontaneously

broken symmetry. In the case of the free energy in a magnetic field (4.12), the free

energy satisfies local gauge symmetry, with χ = χ(x). The local gauge symmetry is

spontaneously broken in the same way as global gauge symmetry. Furthermore, we

can choose a local gauge to remove the coupling of the gauge field A(x) to the order

parameter Ψ(x) introduced by the original local gauge.

Moriarty et al. has applied the covariant derivative to ensure their Hamiltonian

4This argument can be broadened further, since gauge symmetry is just one of
many symmetries, and in particular electromagnetic gauge is the simplest gauge
group. Landau’s phase transition theory also hinges on watching the internal symme-
try of matter. Symmetry in modern physics is not merely an invariance in observation
but a character of space-time, deciding the nature of matter and force. The three
main pillars of modern physics are relativity, quantization, and symmetry. [32] The
author is by no means qualified to expound this vast amount of theories in detail.
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Fig. 4. Ginzburg-Landau free energy function for α > 0 (T > Tc) and for α < 0

(T < Tc). Heavy dots indicate equilibrium positions.

and action are symmetric over the sample and across the lattice sites in their exten-

sive numerical simulation with Ginzburg-Landau equations. Since Ginzburg-Landau

model for superconductors is identical with Abelian-Higgs model in cosmology, their

simulation results can be interpreted both as the evolution of vortex filaments and

that of cosmic strings. [33]

IV.4. Time-dependent Ginzburg-Landau equations (TDGL)

Gor’kov(1959,1960) [34, 35] has derived the static Ginzburg-Landau equation based

on his Green function formulation of the BCS theory. A. Schmid [36] has derived

a set of time-dependent Ginzburg-Landau equations semi-phenomenologically. How-

ever, the microscopic derivation of the time-dependent Ginzburg-Landau equations

is more difficult, mainly due to the singularity in the density of states at the gap
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edge. Paramagnetic impurities are known to be pair breakers destroying the pairing

of electrons since they destroy the symmetry of the system under time reversal. At a

sufficiently high concentration of those paramagnetic impurities the energy spectrum

of the superconductor becomes gapless. Gor’kov and Eliashberg [37] have made the

first breakthrough to obtain a rigorous microscopic derivation of this set of time-

dependent Ginzburg-Landau equations in the gapless regime.

From the TDGL equations, Schmid also derived a dissipation theorem:

dF

dt
= −W − div JE, (4.26)

where

W = σ

[

1

c

∂

∂t
A + ∇Φ̃

]2

+
2γ

h̄

∣

∣

∣

∣

∣

(

h̄
∂

∂t
− 2ieΦ̃

)

Ψ

∣

∣

∣

∣

∣

2

, (4.27)

and

JE = S − µj/e − Re
1

m

[(

h̄∇− 2ie

c
A

)

Ψ∗
]

[(

h̄
∂

∂t
− 2ieΦ̃

)

Ψ

]

(4.28)

Here σ is the normal conductivity, γ a diffusion constant, and e the electron charge.

The symbol µ denotes the chemical potential and Φ̃ = Φ − µ/e is called the electro-

chemical potential (Φ is the electric potential). Finally, S = c
4π

E×H is the Poynting

vector. While JE is the current of energy, the positive definite W is the power dis-

sipated in the irreversible process. Thus in the physical process described by the

time-dependent Ginzburg-Landau (TDGL) equations there are always irreversible

dissipations.

Since we are mostly interested in the steady-state of the superconductors, we

want to simplify TDGL into a numerically easier form to solve. In the following

chapters we derive our simplified TDGL by a relaxation approach. Into the process we

do not take account the terms involving the electric potential Φ (the electrochemical

potential Φ̃), hence ignore the ohmic dissipation due to normal current in the Schmid’s
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dissipation theorem.
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CHAPTER V

INTRODUCTION TO PART I: STEADY-STATE AND EQUILIBRIUM VORTEX

CONFIGURATIONS, TRANSITIONS, AND EVOLUTION IN A MESOSCOPIC

SUPERCONDUCTING CYLINDER

In this opening chapter of Part I, we present the result of a numerical study about

the magnetization process inside a superconducting square cylinder, with sub-micron

lateral dimension in an external magnetic field. This part has been published in

Physical Review B. [3] We have restricted the work to a square cross section of a

linear size equal to 4.65 times λ (the magnetic penetration depth). Taking λ at 500

Å, then the cross-sectional area is 0.054 µm2.

Previous works on the magnetization of a mesoscopic superconductor without

pinning centers have been reported by Peeters et al. [19, 38, 39, 40] and others, [41, 42]

who presented extensive calculations on the superconducting state in mesoscopic,

type-I, superconducting thin films. In most cases they found transitions between

giant vortex states of different circulation quantum numbers L, with some multi-

vortex states occasionally appearing as thermodynamically stable states, but mostly

as metastable states. These predictions appear to have already received some level

of experimental confirmation, although some discrepancies still exist. [43] (Ref. [42]

mainly compared the energy of a “3-2” vortex-antivortex molecule state with that of

a single off-centered vortex state at L = 1, as both evolve to the equilibrium state

of a single vortex at the center.) Misko et al. [44] studied both type-I and type-II

mesoscopic trianglular cylinders, and have shown that a vortex-antivortex molecule

appears only if the sample is type-I. They considered only one field value at which

L = 2 is favored, and did not consider vortex configurational transitions as the field
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changes. 1

Our aim is to simulate how vortices enter and settle in stable arrangements when

a mesoscopic type-II superconductor of a given symmetry is first cooled below the

critical temperature, and then an external magnetic field is applied. This is often

termed zero field cooling (ZFC). We find that only vortex numbers and configura-

tions consistent with the sample symmetry can appear in this case. It is known that

global minimum-energy vortex configurations exist with reduced symmetry, with cor-

responding final equilibrium states at general values of the applied field. To find these

equilibrium states we developed an efficient numerical scheme.

Our approach is to solve a set of simplified (and discretized) TDGL equations, in

which the coupling to the electric field is neglected, and the superconducting order pa-

rameter and the magnetic field are assumed to relax with the same time scale. These

assumptions are not physical, but are acceptable here, since we are only interested

in obtaining the final steady-state vortex configurations, and the symmetry-related

qualitative behavior of the transient configurations and their evolution. For a more

physical set of TDGL equations see Tinkham. [25] For an example of the numerical

solution of such a set of TDGL equations, see. [45]

Our numerical method may be understood to be a relaxation procedure with a

pseudo time. [33, 46] Since the equations we have solved do not contain any thermal

fluctuation terms, and the sample we considered has a perfect square symmetry, we

find that when starting with the Meissner state and no field penetration, then the

final steady-state vortex configurations we obtain all have perfect square symmetry,

with vortex numbers also limited to only multiples of four (the symmetry number).

1In this brief survey of literature, we have not included solutions of linearized
GL equations to study the vortex configurations near the phase boundary, studies of
vortex configurations in the presence of pinning center(s), and studies based on the
London approximation.
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These configurations would correspond to physical situations under zero-field cooling,

if the physical sample has perfect symmetry, and the temperature is sufficiently low,

so that thermal fluctuations are not able to overcome any energy barrier for vortex

entry, expulsion, or rearrangement. If the sample surface has slight imperfection, or

if the temperature is not sufficiently low, then these configurations are, in most cases,

not in equilibrium at the given magnetic field strength. Even the vortex number

may not be correct; however, if we insert terms to simulate thermal fluctuation into

the equations, as in the method of simulated annealing, [47, 48] then the simulation

computer program will take a much longer time to run, and may become impractical

even with a supercomputer.

We have devised an efficient scheme to find the equilibrium vortex configurations:

We solve the same set of relaxation equations without any thermal fluctuation terms,

but instead of starting the solution with the Meissner state as the initial state, we

devise artificial initial states with a given number of vortices in random positions.

We present analytic expressions for such initial states in terms of a widely known

approximate expression for a singly-quantized vortex in cylindrical coordinates. Then,

for vortex numbers not too different from the equilibrium number, the final steady

states obtained by solving our relaxation equations will, in most cases, have the

number of vortices close to those of the initial states. By comparing the total Gibbs

energies of these steady states with different vortex numbers we can find the state

with the lowest total Gibbs energy, which we identify as the equilibrium state with the

equilibrium vortex number. Sometimes we obtain more than one configuration for the

same vortex number (when the vortex number exceeds four), then their Gibbs energies

are also compared. We give an explicit demonstration of this scheme, 2 that might

2For a larger sample in a sufficiently large magnetic field, we can occasionally
obtain configurations with a reduced symmetry when solving the equations starting
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be very useful in view of the recent interest in nanoscience and nanotechnology. 3 We

note that in a bulk sample vortices like to form a triangular lattice. Thus, when the

sample does not conform with this symmetry, and if the sample is sufficiently small so

that the boundary effect on the equilibrium vortex configurations is important, then

the system is frustrated, 4 and the equilibrium vortex configurations can be quite

intriguing and difficult to foresee.

V.1. Abrikosov vortex theory

Abrikosov [9] discovered that if the κ parameter, now known as the Ginzburg-Landau

parameter, is larger than 1/
√

2, then when a bulk superconductor is placed in a

sufficiently large magnetic field, the magnetic field penetrates the superconductor in

the form of singly-quantized vortices. Around each vortex flows a supercurrent, [9]

confining a single quantum of magnetic flux within it.

Abrikosov’s work which is of interest here is summarized with the order parameter

function Ψ and a parameter βA defined in terms of the order parameter shown in the

following equations.

Ψ =
∞
∑

n=−∞
Cne

iknyψn(x), (5.1)

with the uniform superconducting state, but this is very rare, and very difficult to
control. We think that this is because the numerical program does not observe the
perfect square symmetry, but this violation of symmetry is a weak one. This way to
get an asymmetric steady state is not reliable, so we do not recommend its use to
find any asymmetric equilibrium state.

3As far as we know, previous approaches used random initial conditions with no
control of L, so the magnetic field must be changed in very small steps to obtain
speedy convergence. If so, the present scheme represents an important improvement,
which allows direct implementation at any applied field. Note that the scheme also
applies to the situation when a given distribution of pinning centers exist in the
system or on its surface.

4Here “frustration” refers to the fact that the presence of the boundary frustrates
the desire of the system to minimize its energy in the triangular lattice.
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where

ψn(x) = exp



−κ2

2

(

x − kn

κ2

)2


 , (5.2)

and

βA ≡ |Ψ|4
(

|Ψ|2
)2 . (5.3)

The order parameter function is a solution to linearized Ginzburg-Landau equa-

tion in the vicinity of the critical point (where |Ψ| ¿ 1). In a bulk superconductor

filling the space this must be a periodic array of vortices. In a bulk superconductor

(a long cylinder) subject to an external magnetic field H = const = H0 near Hc2,

with a gauge A = H0x chosen, Abrikosov showed that the Ginzburg-Landau equation

reduces to an oscillator type of equation

d2Ψ/dx2 − κ2(1 − H2
0x

2)Ψ(x) = 0, (5.4)

which has the vortex solutions (5.1) and (5.3). It is observed from the this equa-

tion that the parameter βA is a purely geometric parameter. Since the free energy

takes its minimum at the lowest value of βA, Abrikosov could determine the co-

efficients Cn for the minimum-energy solution by calcluating βA. For a triangular

lattice (iC2n+1 = C2n = const) βA = 1.16, while βA = 1.18 for a square lattice

(Cn+1 = Cn = const). Once βA is determined, all the thermodynamic properties

can be calculated subsequently. Therefore in a bulk superconductor there is a trian-

gular lattice of vortices. Figure 34 in Appendix A is two-dimensional simulation of

mesoscopic cylinder subject to periodic boundary condition. As the sample area gets

sufficiently large for the vortices penetrated, the vortices arrange themselves in an

arrangement close to triangular lattice.
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CHAPTER VI

THE SIMPLIFIED TIME-DEPENDENT GINZBURG-LANDAU EQUATION

In an external magnetic field H, the Gibbs free energy density g of a superconducting

state is given by [25]:

g = fn + α|Ψ|2 +
β

2
|Ψ|4

+
1

2ms

∣

∣

∣

∣

(

−ih̄∇− es

c
A

)

Ψ
∣

∣

∣

∣

2

+
|h|2
8π

− h · H
4π

(6.1)

Here, fn is the free energy density in the normal state in the absence of the magnetic

field; Ψ is the complex-valued order parameter, with the superscript * denoting com-

plex conjugation; A the magnetic vector potential, h = ∇×A the induced magnetic

field, and H the applied magnetic field. Then the supercurrent density is expressed

as

js =
c

4π
∇×∇× A =

esh̄

2ims

(Ψ∗∇Ψ − Ψ∇Ψ∗) − e2
s

msc
|Ψ|2 A. (6.2)

The physical parameters are as follows: es is the “effective charge” of a Cooper pair

which is twice the charge of an electron, and ms its “effective mass” which can be

selected arbitrarily, but the conventional choice is twice the mass of an electron. Also,

c is the speed of light, and h̄ = h/2π where h is Planck’s constant.

Ginzburg-Landau theory postulates that the Gibbs free energy, G, of a super-

conducting sample Ω is at a minimum in the superconducting state. The celebrated

Ginzburg-Landau equations are obtained by minimizing this functional with respect

to Ψ and A using the variational principle.

Since a constant term does not change the end result of the variational technique,

an algebraic manipulation is made to subtract fn and add H · H/8π to the g above,
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giving: [49]

G (Ψ,A) =
∫

Ω

(

α|Ψ|2 +
β

2
|Ψ|4 +

|h − H|2
8π

+
1

2ms

∣

∣

∣

∣

(

−ih̄∇− es

c
A

)

Ψ
∣

∣

∣

∣

2
)

dΩ (6.3)

We introduce dimensionless variables as follows:

x′ =
x

λ
, h′ =

h√
2Hc

, Ψ′ =
Ψ

Ψ0

. (6.4)

The other variables are subsequently nondimensionalized as

H′ =
H√
2Hc

, j′ =
2
√

2πλ

cHc

j, A′ =
A√
2Hcλ

. (6.5)

The characteristic scales are: |Ψ0| =
√

−α/β, which is the magnitude of Ψ that

minimizes the free energy in the absence of a field; the thermodynamic critical field

strength Hc =
(

4π|α| |Ψ0|2
)1/2

, which divides the normal state and superconducting

state regions in Type-I superconductor phase diagram; the London penetration depth

λ =
(

msc2

4π|Ψ0|2e2
s

)1/2
; the coherence length ξ =

(

h̄2

2ms|α|

)1/2
; and, the Ginzburg-Landau

parameter κ = λ/ξ.

We obtain the dimensionless gauge-invariant free energy functional, omitting

primes for convenience.

G (Ψ,A) =
∫

Ω

(

−|Ψ|2 +
1

2
|Ψ|4 + |∇ × A − H|2

+
∣

∣

∣

∣

(∇
κ

− iA
)

Ψ
∣

∣

∣

∣

2
)

dΩ (6.6)

The simplified TDGL model we employ to find solutions of the static GL equa-

tions may be viewed as a gradient flow of the energy functional. That is, the variation

of (Ψ,A) w.r.t. time should be in the opposite direction of the gradient of the energy

functional, ∂Ψ
∂t

= − δG
δΨ∗

, ∂A
∂t

= −1
2

δG
δA

with time, t, in units of the only relaxation time
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of the equations.

This corresponds to the so-called Relaxation Method to solve a partial differential

equation of an elliptic type, or a boundary value problem (BVP). [47, 50] In this

method a solution u to an equation of a form ∂u
∂t

= Lu − ρ relaxes to an equilibrium

solution u∞ as ∂u
∂t

→ 0 as t → ∞. u∞ is a solution to an equation Lu = ρ, which

is of our true interest. (Here L is a symbolic notation for differential operators and

ρ denotes a source term.) Usually a reasonably guessed initial condition leads to a

solution.

The time-dependent Ginzburg-Landau equation describes a relaxation process

to find the state of minimum energy, as can be seen in the various energy transfer

terms in Schmid’s dissipation theorem (4.26). We can reach the same steady-state by

solving this simplified TDGL. The difference is, by eliminating the electric potential

in the original TDGL, we are ignoring the electric fields and ohmic dissipation by

normal currents in superconductors. By using relaxation method we do not have to

worry about the initial condition too much, at the same time, the transient solutions

from our simplified TDGL give qualitative information about the actual physical

relaxation process.

The natural boundary conditions are given as follows.

(∇× A) × n = H × n, (6.7)

which is the continuity of the parallel component of the magnetic field across the

boundary surface, and
(∇

κ
− iA

)

Ψ · n = 0, (6.8)

which is the vanishing gauge-invariant normal derivative of Ψ with n denoting the

outward surface normal. [51]
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VI.1. Discretization and calculation procedure

For long square cylindrical samples, we need only solve a 2-D problem. We take

A = (A(x, y), B(x, y), 0) and H = (0, 0, H) where H = (∇× A)z = ∂B
∂x

− ∂A
∂y

.

Defining the link variables 1 as

W (x, y) = exp
(

iκ
∫ x

A(ς, y)dς
)

, (6.9)

and

V (x, y) = exp
(

iκ
∫ y

B(x, η)dη
)

, (6.10)

the gauge invariance is preserved in discretizing the Gibbs free energy and the conse-

quent simplified-TDGL equations. Noting that

|∂x (W ∗Ψ)| = |(∂x − ıκA) Ψ| , (6.11)

and

|∂y (V ∗Ψ)| = |(∂y − ıκB) Ψ| , (6.12)

we have

G (Ψ,A) =
∫

Ω

(

−|Ψ|2 +
1

2
|Ψ|4 + |∇ × A − H|2

+
∣

∣

∣

∣

1

κ
∂x (W ∗Ψ)

∣

∣

∣

∣

2

+
∣

∣

∣

∣

1

κ
∂y (V ∗Ψ)

∣

∣

∣

∣

2
)

dΩ . (6.13)

We discretize the free energy functional on a staggered grid over Ω shown in

Fig.5. [46, 52] This gives us a second-order approximation in hx and hy to the con-

1The path-ordered product of of these link variables (via the path-ordered integral
of the continuum gauge field A along the lattice) can be interpreted as the “parallel

transporter” along the link. That is, eiκ
∫ x+µ

x
A(ς,y)dς , for example, transports vectors

under gauge group at x to vectors at x + µ along the link from x to x + µ. It is
also known that this link variable method leads to smaller discretization errors in the
action integral. [30]
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Fig. 5. The staggered grid arrangement for cell nodes P,E,W,N,S and faces e,w,n,s.

tinuous energy functional, where the hx and hy are the spatial increments in the x-

and y-direction. The staggered grid also leads to a satisfactory way of discretizing

the natural boundary conditions. [53] For a rectangular grid, the first component of

the vector potential is constant in time on one pair of the edges of the boundary, and

the second component is constant in time on the other pair, which is derived below.

In this paper, we assume that the cylindrical superconductor has a square cross-

section and is subject to an applied field along the central axis. The applied field is

assumed to be constant in time. We further assume the order parameter Ψ varies in

the cross-sectional plane of the square cylindrical sample, and the vector potential A

has only two nonzero components (A,B), which also lie in this plane. We also assume

that the superconductor has no pinning sites. Then at steady-state conditions, the

vortices settle at maximal distances due to mutual repulsion. This requirement leads

to a triangular lattice of vortices in an infinitely large domain. [25]

In the staggered grid the lattice evaluation points for Ψ, A, and B are all different,

with Ψ evaluated at the node center (i,j), A evaluated at the east cell face (i+1/2,

j), and B evaluated at the north cell face (i,j+1/2). According to Refs. [52, 46], this
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formulation keeps second order accuracy in the derivative evaluations as they appear

in each of the discretized equations.

The discrete equations are obtained by minimizing the discrete energy functional

Gd with respect to the variation in Ψ and A as:

∂ΨP

∂t
=

hxhy

κ2

(

eıAwκhxΨW − 2ΨP + e−ıAeκhxΨE

h2
x

+
eıBsκhyΨS − 2ΨP + e−ıBnκhyΨN

h2
y

)

+hxhyN1 (ΨP ) (6.14)

(6.15)

∂Ae

∂t
= − hx

(

BnE − Bn + Bs − BsE

hx

− ANe − 2Ae + ASe

hy

)

+
hy

κ
N2 (Ae, ΨP , ΨE) (6.16)

(6.17)

∂Bn

∂t
= − hy

(

Aw − Ae + ANe − ANw

hy

− BnE − 2Bn + BnW

hx

)

+
hx

κ
N3 (Bn, ΨP , ΨN) (6.18)

with

N1(ΨP ) = (1 − |ΨP |2)ΨP (6.19)

N2(Ae, ΨP , ΨE) = (ΦP ΘE−ΘP ΦE) cos(Aeκhx)−(ΦP ΦE +ΘP ΘE) sin(Aeκhx) (6.20)

N3(Bn, ΨP , ΨN) = (ΦP ΘN − ΘP ΦN) cos(Bnκhy) − (ΦP ΦN + ΘP ΘN) sin(Bnκhy)

(6.21)

where Θ and Φ are the real and imaginary parts of Ψ, i.e. Ψ = Φ + iΘ. The

boundary conditions for Ψ are obtained by integrating (6.8) at the boundary in the

normal direction:

ΨP = ΨSeıκhyBs , on ΩT (6.22)

ΨP = ΨNe−ıκhyBn , on ΩB (6.23)
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ΨP = ΨEe−ıκhxAe , on ΩL (6.24)

ΨP = ΨW eıκhxAw , on ΩR (6.25)

Here T , B, L, and R denote top, bottom, left, and right of the computational domain

Ω, respectively. The boundary condition (6.7) can be written on the staggered grid

as:

Ae = ASe −
(

H − BnE − Bn

hx

)

hy on ΩT (6.26)

Ae = ANe +
(

H − BnE − Bn

hx

)

hy on ΩB (6.27)

Bn = BnE −
(

H +
ANe − Ae

hy

)

hx on ΩL (6.28)

Bn = BnW +

(

H +
ANe − Ae

hy

)

hx on ΩR (6.29)

Here we derive an additional set of boundary conditions for A. From (6.25) we

have

ΦP = ΦE cos(Aeκhx) + ΘE sin(Aeκhx) (6.30)

ΘP = ΘE cos(Aeκhx) − ΦE sin(Aeκhx) (6.31)

Using the results we can derive

ΦP ΘE − ΘP ΦE = (Φ2
E + Θ2

E) sin(Aeκhx) (6.32)

ΦP ΦE + ΘP ΘE = (Φ2
E + Θ2

E) cos(Aeκhx) (6.33)

This makes N2(Ae, ΨP , ΨE) = 0 on ΩL. On the other hand, looking at the boundary

conditions (6.27)-(6.29), we have H = ∂B/∂x − ∂A/∂y = const on boundaries.

Therefore the equation (6.17) becomes ∂Ae/∂t = 0 on ΩL. Thus we have Ae(t) =

Ae(0) for all t > 0 on ΩL, which gives us a supplementary boundary condition. The

other supplementary boundary conditions, Ae(t) = Ae(0) for all t > 0 on ΩR and
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Bn(t) = Bn(0) for all t > 0 on ΩB and ΩT are derived similarly. [51]

The finite difference equations are solved by the Forward Euler method with

hx = hy = 0.15 and ∆t = 0.05, and taking κ = 4. In the numerical computations

that follow, the all details are kept the same except for the strength of the applied

magnetic field and/or the initial conditions.

VI.2. Stability of the numerical scheme

In this section we will derive necessary and sufficient conditions under which the

numerical solution to the Ginzburg-Landau equation converge to the exact solution as

the mesh is refined. [54] The problem of convergence is reduced to that of consistency

and stability by Lax equivalence theorem.

A system of algebraic equations generated by the discretization process is called

finite difference equations (FDEs). A finite difference equation is said to be consistent

with the original partial differential equation (PDE) if the difference between the PDE

and its FDE vanishes as the mesh is refined, i.e. lim∆t,∆x,∆y→0(PDE − FDE) = 0.

The forward Euler method applied to TDGL yields the truncation error (TE)

TE(i, j, k) ≡ TE(ihx, jhy, k∆t) = O(∆t) + O(∆x2, ∆y2). (6.34)

Therefore, lim∆t,∆x,∆y→0(TE) = 0 and Forward Euler is consistent with TDGL.

A numerical scheme is said to be stable if errors from any source (round-off,

truncation, mistakes) do not grow, but decay or remain negligible as the calculation

proceeds.

The theorem due to Lax [55] is repeated here withot proof.

Lax Equivalence Theorem: Given a properly posed initial-value problem and

a finite-difference approximation to it that satisfies the consistency condition, stability
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is a necessary and sufficient condition for convergence.

There is no general method of analysis for the stability of nonlinear problems. A

common approach is to linearize the nonlinear problem and assume that the stability

of linear problems apples locally. However, here we take a little different approach.

We give the linear part of TDGL a rigorous analysis and treat the nonlinear term as

perturbation. In the analysis in the following sections we need the following theorem

by Kreiss. [55]

Theorem. If the difference scheme

U (n+1) = C(∆t)U (n) (6.35)

is stable, and Q(∆t) is a bounded family of operators, then the difference system

U (n+1) = [C(∆t) + ∆tQ(∆t)]U (n) (6.36)

is also stable.

Above theorem states that the stability is not destroyed by a small perturbation.

Also the well-known theorem of Gerschgorin [56] will be frequently used:

Gerschgorin’s Circle Theorem: Every eigenvalue of a matrix A = [aij] lies

in at least one of the circles C1, . . . , Cn, where Ci has its center at the diagonal entry

aii and its radius ri =
∑

j=1

j 6=i
|aij| equal to the absolute sum along the rest of the row.

VI.2.1. Matrix method

From eqs. (6.19) - (6.21) we define an operator N : C×R2 → C×R2 for U = (Ψ, A,B)

N(U) = [N1(Ψ), N2(A, Ψ), N3(B, Ψ)]T (6.37)
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with the norm

‖N(U)‖ = ‖N1(Ψ)‖2 + ‖N2(A, Ψ)‖2 + ‖N3(B, Ψ)‖2. (6.38)

Then it is easy to show that there exists a nonnegative constant c such that

‖N(U(t))‖ < c for all t ≥ 0. (6.39)

The Forward Euler applied to TDGL yields the following difference scheme (see

eq. (6.15) - 6.18)

U (n+1) = [1 + ∆t(L + N)]U (n) = [C + ∆tN)]U (n) (6.40)

By the Kreiss theorem we can reduce the stability problem for a nonlinear FDE

(6.40) to that of a linear FDE,

Ũ (n+1) = CŨ (n) = (1 + ∆tL)Ũ (n) (6.41)

For convenience we drop the tilde signs in (6.41). Then the first equation in

(6.41) can be written as

Ψ
(n+1)
P =

(

1 − 2∆t

κ2

(

hy

hx

+
hx

hy

))

Ψ
(n)
P

+
∆t

κ2

hy

hx

(WwΨW + W ∗
e ΨE)(n) +

∆t

κ2

hx

hy

(VsΨS + V ∗
n ΨN)(n)

= C(∆t, A,B)Ψ(n), (6.42)
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where the matrix C(∆t, A,B) can be written as

C(∆t, A,B) =

































D1 F1

E1 D2 F2

· · ·

ENx−2 DNx−1 FNx−1

ENx−1 DNx

































(6.43)

where the block matrices of the dimension Nx × Ny have the following form

Di =

























d W
∗
ij

W i−1,j d

· · ·

W i+Nx−2,j+Ny−2 d

























(6.44)

Ei(∆t, V ) =

















V i,j−1

. . .

V i+Nx−1,j+Ny−2

















(6.45)

and

Fi(∆t, V ) =

















V
∗
i,j

. . .

V
∗
i+Nx−1,j+Ny−1

















(6.46)

where,

d = 1 − 2∆t

κ2

(

hy

hx

+
hx

hy

)

, (6.47)

W ij =
∆t

κ2

hy

hx

Wij, (6.48)

V ij =
∆t

κ2

hx

hy

Vij. (6.49)

Then by Gerschgorin’s theorem, the eigenvalues λi of C(∆t, A,B) will satisfy the
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inequality

|λi − d| ≤ ri (6.50)

where

ri =
∆t

κ2















































hy

hx
+ hx

hy
, if i = 1, i = Nx, i = (Nx − 1) × Ny + 1, i = Nx × Ny

2hy

hx
+ hx

hy
, if i = 2, . . . , Nx − 1; i = (Nx − 1) × Ny + 2, . . . , Nx × Ny − 1

hy

hx
+ 2hx

hy
, if i = mNx + 1, i = mNx + Nx, i = 1, . . . , Nx − 2

2
(

hy

hx
+ hx

hy

)

, if i = mNx + 2, i = mNx + Nx − 1, i = 1, . . . , Nx − 2

Then we have

|λi| ≤ |d| + rmax, 1 ≤ i ≤ Nx × Ny (6.51)

where

rmax = max ri, i = 1, . . . , Nx × Ny (6.52)

For stability, we require that

|λi| ≤ |d| + rmax ≤ 1, ∀i (6.53)

The inequality above will hold if

d = 1 − 2∆t

κ2

(

hy

hx

+
hx

hy

)

≥ 0 (6.54)

i.e., the difference scheme (6.41) is stable provided that

∆t ≤ κ2

2
(

hy

hx
+ hx

hy

) . (6.55)

VI.2.2. Von Neumann’s method

Since the equations for the vector potential form a linear system with constant coef-

ficients, it is appropriate to apply von Neumann method. The equations (6.17) and
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(6.18) can be written as

A(n+1)
e − A(n)

e

∆t
=

[

(Bn − BnE + BsE − Bs) +
hx

hy

(AeN − 2Ae + AeS)

](n)

(6.56)

B(n+1)
n − B(n)

n

∆t
=

[

(Ae − Aw + AwN − AeN) +
hy

hx

(BnE − 2Bn + BnW )

](n)

(6.57)

We now consider the following basis for the Nx ×Ny dimensional space to which the

error at any fixed time belongs

B =
{

eIlxi+Imyj , i = 0, . . . , Nx, j = 0, . . . , Ny

}

(6.58)

for l = 1, . . . , Nx, m = 1, . . . , Ny where I =
√
−1.

Let the exact solution of the finite difference equations above as Se. This the

solution of the FDEs to be obtained using a computer with infinite accuracy. If we

denote by Sn the numerical solution of the FDEs with a real computer with finite

accuracy, the round-off error can be defined as Sn = Se+ε [57]. The error at (xi, yj, tn),

where tn = n∆t, can be expanded as a linear combination of the basis vectors:

εA(xi, yj, tn) =
Ny
∑

m=0

Nx
∑

l=0

aml(tn)eI(lxi+myj) (6.59)

εB(xi, yj, tn) =
Ny
∑

m=0

Nx
∑

l=0

bml(tn)eI(lxi+myj) (6.60)

Noting that FDE = PDE − TE, and we expand the truncation errors as

TEA(xi, yj, tn) =
Ny
∑

m=0

Nx
∑

l=0

TA
ml(tn)eI(lxi+myj) (6.61)

TEB(xi, yj, tn) =
Ny
∑

m=0

Nx
∑

l=0

TB
ml(tn)eI(lxi+myj) (6.62)

Combining all these yields the following system for the Fourier coefficients

aml(tn+1) − aml(tn)

∆t
=

(

−1 + e−Imhy

) (

−1 + eIlhx

)

bml(tn)
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+
hx

hy

(

−2 + eImhy + e−Imhy

)

aml(tn) − TA
ml(tn) (6.63)

bml(tn+1) − bml(tn)

∆t
=

(

−1 + e−Ilhx

) (

−1 + eImhy

)

aml(tn)

+
hy

hx

(

−2 + eIlhx + e−Ilhx

)

bml(tn) − TB
ml(tn) (6.64)

(6.65)

or in matrix form

En+1 = G(∆t)En + Cn (6.66)

where

En =









aml(tn)

bml(tn)









, (6.67)

and

G(∆t) =









1 − 4∆thx

hy
sin2

(

1
2
mhy

)

∆t
(

1 − e−Imhy

) (

1 − eIlhx

)

∆t
(

1 − e−Ilhx

) (

1 − eImhy

)

1 − 4∆thy

hx
sin2

(

1
2
lhx

)









(6.68)

and

Cn = −









∆t TA
ml(tn)

∆t TB
ml(tn)









. (6.69)

By means of the recursive relation (6.66), we have

En+1 = GEn + Cn

En+1 = G[GEn−1 + Cn−1] + Cn = G2En−1 + GEn−1 + Cn

...

En+1 = Gn+1E0 + GnC1 + Gn−1C2 + · · · + Cn

thus we have

‖En+1‖∞ ≤ [‖Gn‖∞ + ‖Gn−1‖∞ + · · · + ‖I‖∞] max[‖C1‖∞, . . . , ‖Cn‖∞],

where E0 = 0, i.e. there is no error initially.

We seek conditions under which the powers of G are uniformly bounded. Since G
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is a normal matrix, the necessary and sufficient condition for this would be to require

that ρ(G) < 1. By Gerschgorin’s theorem, the eigenvalues of G satisfy

|λ − g11| ≤ r1, (6.70)

or

|λ − g22| ≤ r2, (6.71)

where

r1 =
∣

∣

∣∆t
(

1 − e−Imhy

) (

1 − eIlhx

)∣

∣

∣ ≤ 4∆t (6.72)

r1 =
∣

∣

∣∆t
(

1 − e−Ilhx

) (

1 − eImhy

)∣

∣

∣ ≤ 4∆t (6.73)

By (6.70)
∣

∣

∣

∣

∣

λ −
{

1 − 4∆t
hx

hy

sin2
(

1

2
mhy

)

}∣

∣

∣

∣

∣

≤ 4∆t (6.74)

which implies that

∆t ≤ 1

2
(

1 + hx

hy

) (6.75)

Similarly, from (6.71) we get

∆t ≤ 1

2
(

1 + hy

hx

) (6.76)

These conditions satisfy

‖En+1‖∞ ≤ Constant × max[‖C1‖∞, . . . , ‖Cn‖∞]. (6.77)
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CHAPTER VII

MAGNETIC PENETRATION UNDER SYMMETRY

VII.1. Steady States under zero-field cooling in a perfectly square sample at low

temperatures

We first solve the above set of equations assuming that the initial state is the perfect

Meissner state with no field penetration. As explained in the introduction, this corre-

sponds to applying a magnetic field after zero-field cooling. Fig. 6 shows plots of |Ψ|2

(the left figure in (a) through (k)) and h = ∇×A (the right figure in (a) through (k))

for the final steady states reached for a sequence of increasing H values. In the left

figures |Ψ|2, which is interpreted physically as the density of Cooper pairs, runs from

0 to 1, with level 1 corresponding to the full superconducting state. Each isolated

group of contours is called a “vortex,” representing the supercurrent J circling around

the vortex core, with Ψ = 0 at the vortex core. In the 3-D plots of Fig. 6 (b), it is

clear that the vortices reach close to |Ψ|2 = 0 at the core.

We note that the number of vortices increases in multiples of 4. This is a con-

sequence of the fact that the vortices are symmetrically created at the mid-points of

the sample edges. Perfect symmetry in the sample geometry dictates that each side

creates an equal number of vortices. For sample sizes less than λ, it is to be expected

that simultaneous penetration of four vortices is energetically unfavorable compared

with a single vortex penetration. However, a single vortex entry is still prohibited if

symmetry is strictly preserved. The magnetic field will simply penetrate the sample

without entry of vortices in that case. When symmetry is not strictly preserved,

and if the sample size is much smaller than λ, then no vortex will enter the sample

since the magnetic field already penetrates the sample. If the sample size is of the
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Fig. 6. Plots of |Ψ|2 and h = ∇× A for various applied field H [|Ψ|2 is shown on the

left in (a) to (k), and h on the right in (a) to (k)]. These final steady-state

solutions are obtained by a relaxation method from a uniform superconducting

state.
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(a) H = 0.839
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(c) H = 1.144

(d) H = 1.145

(e) H = 1.429

Fig. 6 (cont.)
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Fig. 6 (cont.)
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(k) H = 2.058

Fig. 6 (cont.)
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order of λ, then one vortex will enter and move to its center. In these calculations,

symmetry is closely preserved, and in which case, vortices enter in multiples of 4 for

a square cross-section. For a hexagonal cross-section, it should be a multiple of six.

For a large circular cylinder, vortices of the usual kind (with line singularities) cannot

enter. Rather, “cylindrical vortex sheets,” with phase-winding quantum number, n,

about the axis, change from n at radial coordinate ρ−ε, to n+1 at ρ+ε, and must be

created at the boundary and then move radially inward. This is true only if symmetry

is strictly preserved. However, this can only happen in an actual sample if the sam-

ple strictly obeys the symmetry, and the temperature is very close to absolute zero.

Otherwise, vortices will enter one at a time via defect sites at the surface, or through

thermal fluctuations to destroy the symmetry. Then it will not be a multiple of four

for a square cross-section, or a multiple of six for a hexagonal cross-section, and the

relationship between sample size and number of vortices becomes a less significant

concern.

The symmetry here manifests itself in this geometry-dominated problem, and

vortices arrange themselves in the square-symmetric configurations. The resultant

steady states are mostly not true equilibrium states, since the vortex arrangements

do not reflect the intrinsic tendency of vortices to form a triangular lattice known to

appear in bulk samples. The natural next step is to add a thermal fluctuation term to

find the true equilibrium states which may or may not conform with this symmetry.

Such an approach would then be like simulated annealing. [47, 48] We believe it would

not be practical to perfect this approach since it will likely be difficult to determine

the appropriate rate of cooling and the starting temperature. In addition the run-

time of the computer program might also be expected to be much longer than we have

found here, so we have devised a different approach which we believe is much more

efficient at finding the equilibrium states. This is given in a later section. We shall
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Table I. The resultant number of vortices n∞ and the induced magnetic field B for

the applied magnetic field H.

n∞ 0 4 4 8 8 12 12 16 16

H 0.839 0.84 1.144 1.145 1.429 1.43 1.732 1.733 2.058

B 0.6163 0.7331 0.9779 1.0694 1.3022 1.3790 1.6288 1.6986 1.9719

see that even the cases with a low number of vortices are not the true equilibrium.

Also of interest is the fact that for various H, the vortex configuration requires much

longer run-times to get to a steady state. Geometry controls the settling time more

than the energy in these cases.

Our results are summarized in Table I, which lists the range of H for each resul-

tant number of vortices, and the corresponding induced magnetic field B = 1
|Ω|

∫

Ω hdΩ.

The table shows that the final number of vortices does not change within various bands

of the applied magnetic field H. The H’s listed correspond to the threshold values

(upper and lower limits) for each band. They were found on a trial-and-error basis,

and can be refined to any desired accuracy. The table and Fig. 6 show that, below

H = 0.839, there is no vortex. Between H = 0.84 and 1.144, the vortex number

n∞ = 4, and so on.

The B vs H plot shown in Fig. 7, reveals that B is much lower than H when

the number of vortices is small, but as the vortices increase, the curve approaches

the B = H curve asymptotically. The figure also shows an abrupt increase in B

between the regions of different number of vortices. For example, when H changes

from 1.144 to 1.145, B changes from 0.9779 to 1.0694. If the limit ∆H → 0 is
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taken, we expect a sudden configurational phase transition increasing the number of

vortices, as is apparent in Figs. 6 (c) and (d). Such mini-first-order transitions are

known [19, 38, 39, 40, 41] to occur in a mesoscopic superconductor as H is changed,

but the details are quite different, because different parameter (κ) regimes and sample

geometries (cylinder vs. film) were studied.

H

B

1 1.5 2 2.5 3

1

1.5

2

2.5

3

B=H

n∞=4

n∞=8

n∞=12

n∞=16

Fig. 7. The effect of an applied magnetic field H on the induced average magnetic field

B.

Comparison of Fig. 6 (g) with 6 (h) reveals a phase transition is also evident

for the n∞ = 12 case, where the vortex configuration shows a sudden change in

arrangement, even with the same number of vortices, for a slight increase of the

applied field from H = 1.454 to H = 1.455.
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VII.2. Pseudo-time sequence showing vortex entry dynamics

Figure 8 shows the transient development of Cooper pair density for H = 1.145 and

there are eight vortices. The perfect symmetry in the sample geometry dominates

the transient process, but in the middle of the process the whole configuration makes

a rotation to rearrange itself into a new configuration. (Note that time advances

from 3000 to 17500 between the 8th and 9th frames.) The final result is still a

square-symmetric configuration. We note that during the rotation process, the vortex

configuration loses some mirror symmetries of the sample, but it still preserves the

90◦ rotation symmetry. These transient states need not possess the full symmetry

of the sample. We think this is possible because our numerical method has very

weakly broken the sample symmetry. That is, the state just before the rotation is

metastable only within the subspace of configurations preserving the full symmetry

of the sample. Thus, in a physical situation, where the sample has perfect symmetry

and the temperature is sufficiently low, this rotation may take a long time to take

place. For samples with imperfect symmetry this relaxation time may be shorter.

Since this is a symmetry-induced qualitative property of the vortex-entry dynamics

in a mesoscopic superconductor, we believe its general validity is independent of the

fact that we have obtained it by solving a simplified set of TDGL equations which

are not truly physical.
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Fig. 8. Pseudo-time sequence of vortex dynamics showing vortex-entry for H = 1.145.

Note that the initial state is the uniform superconducting state.
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CHAPTER VIII

EQUILIBRIUM STATE

VIII.1. Steady states with reduced symmetry and the equilibrium state

The previous sections present solutions for a mesoscopic type-II superconducting

square cylinder with initially no vortex inside the system. The validity of such so-

lutions requires a perfectly square sample without any defect at the boundary, and

temperature sufficiently low so that thermal fluctuations are too weak to help the

system find lower-energy configurations of reduced symmetry. This is an ideal con-

dition, producing only solutions consistent with the sample symmetry. Even during

the transient, the system is bound to this symmetry (except in rare cases when the

transient solutions can keep only fourfold rotation symmetry but not mirror symme-

tries — See Fig. 8). In principle, one can reproduce this ideal system in a laboratory

with special care.

In real situations, there likely exists some small defects or perturbations at the

boundary, then vortices can enter the system asymmetrically to produce steady-state

configurations with reduced symmetry of lower total Gibbs energy than any symmetric

solution. A strong enough thermal fluctuation could also change the vortex number

and rearrange the vortices to such a configuration. Previous work has taken into

account these perturbations by adding a random fluctuation term to the governing

equation. [58] This term breaks the symmetry governing the equations by energizing

the system to jump out of the local minima in energy and over the energy barrier, [25]

but this increases the computing time greatly. (This method is essentially “simulated

annealing” [47, 48].)

As an alternative approach, we employ perturbed initial conditions (similar to
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Peeters et al., [19, 39]) instead of the perfectly superconducting initial condition as

used in Figs. 6 and 8. In addition, we introduce a new idea to make the numerical

scheme much more efficient. We have first used randomly perturbed initial condi-

tions. This can lead to final steady-state solutions with reduced symmetry and lower

energies, but we find this way is very inefficient for finding the equilibrium state at

any given H. We also tried to use a lower-symmetry configuration from such a calcu-

lation as the initial condition for a new H value, but we found that the vortex number

can often be trapped in an uncontrollable non-equilibrium value due to the existence

of surface energy barriers against vortex entry or exit. This method of adopting an

existing solution as the initial condition can not be reliably used to find the true

equilibrium state in a given system and field. (Peeters et al. changes the field in

small steps to avoid this difficulty, [59] but such a procedure is tedious.)

To obtain the true equilibrium vortex configuration at any given magnetic field

without employing a simulated annealing method, we have devised a systematic ap-

proach to generate initial states with given numbers of vortices at random distri-

butions. We start with an analytic expression as follows: for one vortex at the

origin in circular coordinates (r, θ), we use the widely-known approximate expres-

sion [36, 60, 61]

Ψ(r, θ) =
reiθ

√
r2 + κ−2

. (8.1)

By converting it to Cartesian coordinates, we can move the center of the vortex to

any arbitrary position (x′, y′) by simply replacing (x, y) by (x− x′, y − y′). Denoting

this expression as Ψx′,y′(x, y), an n-vortex expression can be simply constructed as:

Ψ(x, y) = Ψx1,y1
(x, y)Ψx2,y2

(x, y) · · ·Ψxn,yn
(x, y) . (8.2)

This expression obeys the important topological condition that the phase of Ψ must
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increase by 2π when any one vortex center is circumnavigated. The magnetic field

inside the sample does not obey any topological condition, so it can be simply set

equal to zero for the initial condition. The positions of vortices can be generated using

random number generators, only if they are inside the sample. This is a straightfor-

ward idea, but it does not appear to have been employed before. We illustrate below

various initial conditions used to obtain steady-state vortex configurations of any

given numbers of vortices n∞. Comparing the total Gibbs free energy per unit area

Ḡ (obtained by integrating Eq. 4 and normalized by the sample size Nxhx × Nyhy)

of solutions with different n∞, we can then determine the equilibrium vortex number

and configuration.

For illustrative purposes, we consider the case H = 0.840. Figure 9 shows the

initial conditions for Ψ with 1 through 8 randomly-placed (artificial) vortices (the left

figures in (a) through (o)), and the steady-state vortex configurations they evolve to

(the right figures in (a) through (o)). Indeed in Figures 9 (i),(l),(m),(o), the initial

number of vortices is not always the final number. This is because the energy of

the initial state is high when vortices are initially very close to each other, in which

case there is enough energy to overcome the surface barrier to eject excess vortices.

In particular, comparison of the initial and final states in Fig. 9 (h) reveals that

one vortex was expelled during the evolution. This is because the surface barrier

was weakened, perhaps by one vortex in the initial state being close to the edge of

the sample, and the total number of vortices being too high compared with the final

equilibrium vortex number. The corresponding total Gibbs free energies, Ḡ, of these

steady states are plotted in Fig. 10 as a function of the final vortex number n∞. The

minimum-energy configuration at n∞ = 5 is seen to display the square-symmetry of

a five-vortex configuration with a vortex in the center.
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(a) H = 0.839
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Fig. 9. The initial, random vortex configurations, and the corresponding steady-state

vortex configurations they evolve to [The initial vortex configurations is shown

on the left in (a) to (o), and the steady-state vortex configurations on the

right in (a) to (o)]. Most of these final steady-state solutions are metastable

states with a given number of trapped vortices in a field-cooled situation. The

one with the lowest Gibbs energy among them may be identified as the true

equilibrium state at the chosen field value, see Fig.10.
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Fig. 10. The steady-state total Gibbs free energy per unit area Ḡ and the correspond-

ing final number of vortices, n∞.
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VIII.2. Grid independence

Grid independence checks were performed, and Fig.11(a) shows this 5 vortex case

using grids of 64 × 64, and in Fig.11(b) a uniformly superconducting initial condition

with H = 1.733 corresponding to Fig.6(j). Comparison of Fig.9(e) (32 × 32 grid)

with Fig.11(a) (64 × 64 grid) reveals close agreement. Similarly comparison of Fig.6(j)

and Fig.11(b) shows close agreement. A more stringent grid independence test was

to consider the resultant total Gibbs free energy for each grid, and given in Table II.

Inspection of the table reveals convergence to less than a 1% change when moving to

different grids. The percent error was defined as:

%error = |Ḡ64×64 − Ḡ32×32| × 100/|Ḡ32×32|, (8.3)

and similarly for other cases. These grid independence results support our use of 32

× 32 grids for this study. The large error of 14.1% for the uniform initial condition

case in Table II was associated with a decrease from 16 vortices to 12 when the grid

was coarsened from 32 × 32 to 16 × 16. The reduction in resolution caused the

vortex number to cross the H-threshold and produced a 12 vortex configuration. Our

exploration of finer grids ensured that we determined an accurate H-threshold, and

not one dependent on the grid.

Although we have not yet applied this scheme to other field values of H, the

method we have devised to find the equilibrium vortex configurations for a given size

and shape of the sample, and different values of the external magnetic field should

now be clear.
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Fig. 11. Examples of the steady-state vortex configurations for larger grid size

(64×64). (a) artificial vortex initial condition under H = 0.84, and (b) uni-

formly superconducting initial condition under H = 1.733.

Table II. The steady-state total Gibbs free energy Ḡ and % error in Ḡ for changing

grid size for artificial vortex initial condition (H = 0.84) and uniformly

superconducting initial condition (H = 1.733).

Grid Artificial IC Uniform IC

Ḡ %error Ḡ %error

16×16 -0.3487 -0.1814

32×32 -0.3513 0.71 -0.2069 14.1

32×32 -0.3513 -0.2069

64×64 -0.3519 0.17 -0.2078 0.41
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CHAPTER IX

INTRODUCTION TO PART II: OPTIMAL PINNING CONFIGURATION TO

TRAP A VORTEX-ANTIVORTEX PAIR IN A SUPERCONDUCTING FILM

UNDER THE NON-UNIFORM MAGNETIC FIELD OF A MAGNETIC DIPOLE

In this part, the parameters for nano-pinning inside a type-II, thin-film supercon-

ductor are investigated by numerical experiments. The film is subject to a non-

uniform magnetic field from a magnetic dipole above the film, and has pinning cen-

ters such as holes (called antidots) of various sizes and locations (Figure 12). Since

dfilm = 0.1ξ ¿ λ, the film is virtually transparent to magnetic penetrations in the

thickness direction, and “soaked” in the applied magnetic field (Figure 13). In a

superconduction film, the induced magnetic fields by the supercurrents incur only

negligible change in the applied magnetic field.

The simulation involves two distinctive parts: (i) magnetic flux penetration into

a thin film by the external magnetic field from a magnetic dipole, which creates a

vortex and antivortex pair; (ii) pinning of the pair of vortex-antivortex at a hole or

defect configuration in the film with the external magnetic source is removed. The

situation is not as simple as it might look, since there are magnetic interactions in

and out of the film, which is not the case in an infinitely long cylinder.

Ferromagnetic particles, fabricated onto a superconductor, have many effects of

fundamental interest. Van Bael et.al. [62] have considered a ferromagnetic dot array

with a magnetic dipole moment parallel to the surface of superconducting substrate.

They showed that the flux lattice (FL) is pinned at the ends of the ferromagnetic

dots (FD), where a flux quantum of opposite sign is induced by the stray field.

Nozaki et.al. [63] investigated the effect of the spatially modulated local field by

a ferromagnetic dot array on a Nb film. Since the magnetic field line from the ferro-
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Fig. 12. A superconducting film under a magnetic dipole. Stray field lines penetrating

the film creates vortex-antivortex pair(s). They may be pinned at pinning

centers such as holes (antidots) made in the film in a proper configuration,

shown here in the distance ε apart.

Fig. 13. A superconducting film under a magnetic dipole. Stray field lines penetrating

the film creates vortex-antivortex pair(s). Since dfilm = 0.1ξ, the film is

virtually transparent to magnetic penetration in the thickness direction, and

“soaked” in the applied magnetic field. In the superconducting film, the

induced magnetic fields by the supercurrents incur only negligible change in

the applied magnetic field.
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magnetic dots supresses superconductivity where it penetrates, these magnetic dipoles

(i.e. FD’s) can effectively create vortices and antivortices and also have pinning effect

on those vortices.

Milošević and Peeters [64] have considered a ferromagnetic disk on top of thin

superconducting film. They found that, as the magnetic field lines penetrate and

change polarity in the film, vortex-antivortex pairs are created and arrange themselves

in a symmetrical pattern. Giant vortex and later multivortices are located under the

FD and antivortices locate themselves around the circumference. As the magnetic

moment of the dot increases, vorticity increases, and eventually a giant vortex under

the ferromagnetic disk splits itself into multivortices.

Here the total flux conservation and the flux quantization condition dictates the

creation of vortex-antivortex pairs. The field lines from the magnetic dipole should

change its polarity as a function of distance since the total flux through the sample is

zero. Since vortices are topological excitations, there should be an equal production

of vortices and antivortices.

Priour and Fertig [65] performed a similar Ginzburg-Landau study for the vortex

states in a superconducting thin film, subject to the magnetic field of a magnetic

dot array, with the dipole moments oriented perpendicular to the film. They found

the vortex-antivortex pair density shows broad plateaus as a function of the dipole

strength, and many of the plateaus correspond to vortex configurations that break

dot lattice symmetries.

Vortex pinning is a mechanism that attracts and holds the vortices in place. It

is this pinning mechanism that is responsible for the critical current and hysterisis in

the magnetic behavior of the superconductor. [25, 29] Any defects such as magnetic

dots above, twin boundaries [45], local spots with lower critical temperature Tc [66],

or variable thickness [67] act as pinning centers.
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Submicronic holes, called antidots, are a well-known, strong pin. The free en-

ergy of a system consisting of a vortex and a cavity in a superconductor is obtained

analytically by solving the London equation [68, 69]. It has been shown that a small

antidot induces a negative potential around its center, which attracts vortices and be-

comes repulsive after trapping a vortex of a single quantum. Budzin [70] has shown

that for large enough antidots, multiple flux quanta can be trapped. Takezawa and

Fukushima [71] presented a formulation for the pinning force on a vortex moving

around a square antidot, with the distance and the dot size as the key parameters.

Priour and Fertig [72] performed numerical studies of vortices in the presence of

arrays of artificial defects for a thin film. They show that when a vortex approaches

the vicinity of a defect, the vortex core extends to the defect boundary and simulta-

neously supercurrents and associated magnetic flux spread out, engulfing the defect.

Regarding the GL energy, EGL, as a pinning potential, they considered the gradient

of the energy to evaluate the pinning force and observed a phase transition after the

vortices pass a critical distance dc.

Most topics discussed above relate to vortex lines, implying an infinitely long

vortex column or vortex line. Columnar defects created by heavy-ion irradation tech-

nique have been known as an efficient pinning centers strongly enhancing the critical

current density. [73] Thin film presents a new challenge to the analysis. The vortices

inside the film are no longer the Abrikosov type, but become Pearl vortices. Pearl [74]

has solved the London equation for vortices moving in a thin film, and showed that

the vortices have a longer range interaction force and are harder to pin. This leads

to the concept of an effective penetration depth λeff = λ2/d, which is much longer

than λ in thin films. One common method to investigate the pinning characteristics

of a superconductor is to perform an electric transport measurement. The critical

current Jc can be determined by slowly raising the current density until dissipation
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suddenly appears. By balancing the Lorentz force induced by this current with the

pinning force, the pinning strength can be determined. Machida and Kaburaki [75]

is one example of the work done in this context.

IX.1. Pearl vortex theory

J. Pearl [74, 24] has presented a mathematical analysis for vortex dynamics in an

(infinitely) thin superconducting film in the framework of London model. We will

numerically solve Ginzburg-Landau equations instead of London’s. Yet Pearl’s ana-

lytical work gives us a good introduction to this problem. 1

In a continuous superconducting film of thickness d and of infinite extent, for

d/λ ¿ 1 (λ is the London penetration depth), the current density in the film is

essentially uniform across the thickness and can be represented as an infinitesimally

thin current sheet as the following (not non-dimensionalized in this section):

js = j2D(x, y) d δ(z) (9.1)

According to the London model j2D = −A(z = 0)/λ2, the Maxwell-London

equation can be written as

∇2A = −jtotal = −je − j2D d δ(z) = −je +
d

λ2
Aδ(z) (9.2)

where H = curlA and je is an external current arbitrarily applied parallel to the film.

This can be rewritten in Fourier transform

A(k) =
1

k2
[je(k) + j2D(k2D)] (9.3)

where k = kxêx + kyêy + kzêz = k2D + kzêz is the wave number vector in the Fourier

1In this section, MKS unit system is employed according to Pearl’s original work.
The rest of the dissertation is in Gaussian units.
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space.

The supercurrent (9.1) and the London model (j2D = −A(z = 0)/λ2) lead to

j2D(k2D) =
1

2πλ2

∫

A(k)dkz. (9.4)

Solving these together we obtain the supercurrents’ projection function in k-

space:

j2D(k2D) = − 1

1 + 2k2Dλ2/d
je(k2D − ik2Dêz) (9.5)

In a situations in which the film supports a finite fluxoid, in an analogy with non-

viscous flow, we define supercurrent’s potential field Φ. [1] That is, from rewriting

the London equation (2.1) as ∇× (Λjs + 1
c
A) = 0, we can define the potential field

Φ = A + λ2js (9.6)

where Φ is the same as A in normal region and describes a “streamline flow” in

superconducting area. Putting this potential field into the Maxwell-London equation,

∇2A =
d

λ2
(−Φ + A)δ(z) (9.7)

Comparing this expression with eq. (9.2), Φ may be considered to correspond to

an externally applied current sheet of strength (d/λ2)Φ on the film. From Pearl’s

equation (9.5) above, the supercurrent is related to Φ by

j2D(k2D) =
d

λ2
Φ(k2D)

(

1 − 1

1 + 2k2Dλ2/d

)

(9.8)

If we put a potential for a vortex carrying a flux quantum Φ0 = ch/2e and located

at the origin, i.e. Φ(r) = Φ0

2πr
êφ (where êφ is a unit vector in the azimuthal direction

in the cylindrical coordinates), the Maxwell-London equation becomes

∇2A =
d

λ2

(

− Φ0

2πr
êφ + A

)

δ(z) (9.9)
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Fig. 14. Superconducting film carrying a pair of vortex-antivortex. There is an at-

tractive interaction force between the vortex and antivortex. The effective

penetration depth λeff increases as the film thickness d decreases. Hence for

a thin film (d ¿ 1) the interaction force between the vortex-antivortex pair

has a much longer range than the penetration depth λ.

and solved by Hankel transform, results in

j2D(r) ≈ êφ
1

π
Φ0

(

d

2λ2r

)

for r ¿ 2λ2/d (9.10)

and

j2D(r) ≈ êφ
1

π
Φ0

(

1

r2

)

for r À 2λ2/d (9.11)

Using this result, we can calculate the interaction of, e.g. a pair of vortex and an-

tivortex(see Fig.14). That is,

curlΦ = Φ0êz[δ(x − b) − δ(x + b)]δ(y). (9.12)

Using the fact that the total energy is 1
2
µφ0 times the total current flowing

between the vortices [1], we get the interaction force between the vortices

f12 = −1

2
µ0Φ0 · 2j2D(r12) ≈ −µ0

Φ2
0

π

1

r2
12

, for r12 À 2λ2/d (9.13)
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and

f12 = −1

2
µ0Φ0 · 2j2D(r12) ≈ −µ0

Φ2
0

π

(

d

2λ2r12

)

, for r12 ¿ 2λ2/d (9.14)

Thus the vortices have a long range interaction force in thin films, unlike the

short range of interactions in bulk superconductors. Such a long range force would

cause the vortices to migrate toward each other and eventually annihilate each other

unless there are pins to hold them.

IX.2. Antidots in a bulk superconductor

Mkrtchyan and Shmidt [68] have presented a mathematical analysis for the pinning

of a vortex by a cavity in a type-II superconductor. 2 Solving the generalized London

equation for the magnetic field in the superconductor

H(ρ) + curlcurl H(ρ) =
2π

κ
δ(ρ − ρ0) êz, H|s = H0, (9.15)

Here the S is the surface of the cavity of radius R, êz is a unit vector along the vortex

axis, and ρ0 is the position vector of the vortex.

In the cylindrical coordinate system (ρ, φ) with center on the cavity axis, we have

the system to solve

∂2H

∂ρ2
+

1

ρ

∂H

∂ρ

1

ρ2

∂2H

∂φ2
− H = −2π

κρ
δ(φ)δ(ρ − ρ0),

H(R, φ) = H0, (9.16)

H(∞, φ) = 0

2This two-dimensional analysis is presented on the purpose of demonstrating ba-
sic physical mechanism in which pins attract vortices. In thin films, the magnetic
interaction is three-dimensional through the field lines in and out of the film.
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Solving this equation we get

H(ρ, φ) = H0
K0(ρ)

K0(r)
+

∞
∑

k=−∞
Hk(ρ)eikφ (9.17)

where

Hk(ρ) =
1

κ

Kk(ρ0)

Kk(r)
[Ik(ρ)Kk(r) − Ik(r)Kk(ρ)], r ≤ ρ ≤ ρ0 (9.18)

and

Hk(ρ) =
1

κ

Kk(ρ)

Kk(r)
[Ik(ρ0)Kk(r) − Ik(r)Kk(ρ0)], ρ0 ≤ ρ < ∞ (9.19)

where Kk and Ik are defined in Ref. [76].

Here the flux quantization condition plays a pivotal role to determine H0. That

is, writing current as

curl H =
1

κ
∇Φ − A (9.20)

where Φ is the phase of the order parameter. Integrating this equation along the

circular contour of the cavity of radius r, we have

r
∫ 2π

0
curlφ H dφ =

2π

κ
n − πr2H0 (9.21)

after finishing the integral with H (9.17) derived earlier, we finally have

H0 =
K0(ρ0)

κ
+ n

K0(r)

κ
. (9.22)

The first term is the field produced in the cavity by the nearby vortex filament. The

second term is the field determined by the number n of the magnetic flux quanta

captured by the cavity. This quantity is quantized and equals the field remaining in

the cavity if the vortex filament is removed to infinity.

With all these information, the free energy of the system

F =
∫

[H2 + (curlH)2]dV (9.23)
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Fig. 15. Free energy of the system F in the direction of the coordinate ρ0.

is calculated as

F = F0 +
4π

κ2

[

1

2
ln

(

1 − r2

ρ2
0

)

+ nK0(ρ0)

]

, ρ0 ¿ 1 (9.24)

and

F = F0 +
4π

κ2
nK0(ρ0), ρ0 À 1, n 6= 0 (9.25)

where

F0 =
4π

κ

[

Hc1 +
n

2κ
K0(r)

]

(9.26)

Fig. 15 show the free energy decreases as the vortex gets near to the cavity when
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there is no vortex already trapped inside. That is, cavity attracts the vortex. We can

find the mechanical force of interaction between the vortex filament and the cavity,

i.e. the pinning force from

fp = − ∂F
∂ρ0

∣

∣

∣

∣

∣

ρ0=r+1/κ

(9.27)

We do not expect, however, this theory would apply exactly to our current study.

Since they solved a generalized London equation, the vortex core energy is ignored and

only electromagnetic contribution to the pinning force is considered. Furthermore, in

the thin film geometry we will study, magnetic flux is not quantized. 3 Thus we cannot

fix the H0 in terms of ρ0, r, and κ. nevertheless, this examplar work by Mkrtchyan

and Shmidt gives a vivid account for the interaction and mechanism of how pinning

work.

Similar study using a prismatic insulating inclusion and a vortex was done by

Takezawa and Fukushima [71] by numerically solving Ginzburg-Landau equations.

Major conclusion from their work was that the pinning was strongest for a pin of

size of about λ(T ), the penetration depth, in contrast to the conventional belief for

2ξ(T ). Again, this result for two-dimensional vortex filaments is not expected to

apply exactly to our thin film, but can be a reference point of thinking.

3In any geometry involving thin surfaces such as a cylinder with thickness less
than the penetration depth, there exists no closed loop of supercurrents j = 0. Thus
the topological condition for flux quantization is not satisfied any more.
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CHAPTER X

GINZBURG-LANDAU EQUATION FOR THIN FILM

Starting with the Gibbs free energy given in eq.(6.3), we nondimensionalize it in the

following form (omitting primes for convenience):

G (Ψ,A) =
∫

Ω

(

−|Ψ|2 +
1

2
|Ψ|4 + |(−i∇− A) Ψ|2 + κ2|∇ × A − H|2

)

dΩ (10.1)

Here the distance is measured in units of the coherence length ξ, the vector potential

in ch̄/2eξ, and the magnetic field in Hc2 = ch̄/2eξ2 =
√

2κHc, where κ = λ/ξ is

the Ginzburg-Landau parameter, and λ is the penetration depth. (That is, x′ = x
ξ
,

A′ = A
ch̄/2eξ

, H′ = H
ch̄/2eξ2 , h′ = h

ch̄/2eξ2 , etc., before omitting the primes.)

The Ginzburg-Landau equations obtained by minimizing this functional are,

(−i∇− A)2 Ψ = Ψ
(

1 − |Ψ|2
)

, (10.2)

j = κ2∇×∇× A =
1

2i
(Ψ∗∇Ψ − Ψ∇Ψ∗) − |Ψ|2 A (10.3)

For thin film superconductors ( d < ξ, λ ), we can average the GL equations over

the film thickness d. [64] Then the first Ginzburg-Landau equation remains the same

form except that the gradient term becomes two-dimensional.

(−i∇2D − A)2 Ψ = Ψ
(

1 − |Ψ|2
)

, (10.4)

However, the supercurrent density over the thickness becomes j = dfilmδ(z)j2D(x, y)

where j2D is the supercurrent density on the film plane. That is, we assume the current

is uniform across the thickness. Then applying the identity ∇×∇×A = ∇∇·A−∇2A,

the second equation becomes

−∆3DA =
d

κ2
δ(z)j2D, (10.5)
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and

j2D =
1

2i
(Ψ∗∇2DΨ − Ψ∇2DΨ∗) − |Ψ|2 A (10.6)

Here the London gauge ∇ · A = 0 is employed for the vector potential A.

Figure 16 shows an arbitrary sample spanned by the lattice vectors b1 and b2.

Fig. 16. A periodic sample spanned by the lattice vectors b1 and b2.

The periodic boundary conditions for A and Ψ have the form

A (x + bi) = A (x) + ∇ηi (x) (10.7)

Ψ (x + bi) = Ψ (x) exp (2πıηi (x) /Φ0) (10.8)

where bi, i = 1, 2 are the lattice vectors, and ηi is the gauge potential which cannot be

chosen freely but must preserve the single-valuedness of A and Ψ. These boundary
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conditions mean that a lattice translation amounts to a gauge transformation of A

and Ψ. Physical observables such as the magnetic field, the current, and the Cooper

pair density are periodic. It has been shown [77] that the change in the values of

gauge potential along the lattice vectors specify the number of flux quanta carried by

the system in a unit cell. Here we have ηi = 0 since the total net flux in the cell is

zero.

X.1. Induced magnetic field by supercurrents

The second Ginzburg-Landau equation for the induced magnetic field by supercur-

rents in the film, can be solved analytically with periodic boundary conditions.

−∆3DA =
d

κ2
δ(z)j2D (10.9)

decomposed in Cartesian components A = (Ax, Ay, Az) and j2D = (jx, jy), becomes

∇2
3DAx = − d

κ2
δ(z)jx(x, y) (10.10)

∇2
3DAy = − d

κ2
δ(z)jy(x, y) (10.11)

∇2
3DAz = 0 (10.12)

To solve these PDEs, we apply the well-known Green’s function method. [78] A

Green function for the given PDE satisfies

∇2
3DG(x,x′) = −4πδ(x − x′) = −4πδ(x − x′)δ(y − y′)δ(z − z′) (10.13)

Solving this PDE for G using the method of separation of variables, we get

G(x,x′) =
2π

ab

∞
∑

l=−∞

∞
∑

m=−∞

1

γlm

ei 2πl
a

(x−x′)ei 2πm
b

(y−y′)e−γlm|z| (10.14)

where γlm = 2π
√

l2

a2 + m2

b2
and a, b are the size of the sample. That is, a = Lx and
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b = Ly.

The general solutions to the PDE is obtained via Green’s theorem

Φ(x) =
∫

V
ρ(x′)G(x,x′)d3x′ +

1

4π

∮

S

[

G(x,x′)
∂Φ

∂n′ (x
′) − Φ(x′)

∂G(x,x′)

∂n′ (x′)

]

da′

(10.15)

To solve for Ax, let Φ(x) = Ax(x), and ρ(x) = d
4πκ2 δ(z)jx(x, y) from eq.(10.10). Then

the volume integral in the Green’s theorem (10.15) produces

Ax =
d

2abκ2

∞
∑

l=−∞

∞
∑

m=−∞

1

γlm

Cx,lmei 2πl
a

xei 2πm
b

ye−γlm|z|, (10.16)

where l,m cannot be zero at the same time. The surface integral part in the Green’s

theorem, vanishes due to the periodic boundary condition of both A and G(x,x′).

Similarly

Ay =
d

2abκ2

∞
∑

l=−∞

∞
∑

m=−∞

1

γlm

Cy,lmei 2πl
a

xei 2πm
b

ye−γlm|z|, (10.17)

and

Az = 0. (10.18)

The Fourier coefficients Cx,lm, Cy,lm are given by

Cx,lm =
∫ ∞

−∞

∫ ∞

−∞
jx (x, y) e−i 2πl

a
xe−i 2πm

b
ydxdy, (10.19)

Cy,lm =
∫ ∞

−∞

∫ ∞

−∞
jy (x, y) e−i 2πl

a
xe−i 2πm

b
ydxdy. (10.20)

The Fourier transform of the supercurrents (jx, jy) is done numerically by the

well-known Fast Fourier Transform (FFT) algorithm discussed in the next chapter.

When there are holes or the film is of variable thickness, they should be taken into

account in the Fourier transform:

Cx,lm =
∫ ∞

−∞

∫ ∞

−∞
d (x, y) jx (x, y) e−i 2πl

a
xe−i 2πm

b
ydxdy, (10.21)

Cy,lm =
∫ ∞

−∞

∫ ∞

−∞
d (x, y) jy (x, y) e−i 2πl

a
xe−i 2πm

b
ydxdy. (10.22)
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X.2. Magnetic dipole field

We need a mathematical model for an external magnetic source which is to create

vortices by magnetic penetration (Fig. 12)

The magnetic field from a magnetic monopole is written as

HM (r) =
qM

r2
êr (10.23)

Since HM = ∇× AM , we have to solve the differential equation

∇× AM =
qM

r2
êr (10.24)

In the spherical coordinate system where AM = Arêr + Aθêθ + Aφêφ,

∇× AM =
1

r2 sin θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

êr rêθ r sin θêφ

∂
∂r

∂
∂θ

∂
∂φ

Ar rAθ r sin θAφ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(10.25)

Expanding the curl of AM above decomposes the eq.(10.24) into three equations as

1

r2 sin θ

[

∂

∂θ
(r sin θAφ) −

∂

∂φ
(rAθ)

]

=
qM

r2
(10.26)

∂Ar

∂φ
− ∂

∂r
(r sin θAφ) = 0 (10.27)

∂

∂r
(rAθ) −

∂Ar

∂θ
= 0 (10.28)

The simplest solution for these PDE’s is given in the spherical coordinate system as

AM (x) = Aφ (r, θ) êφ = −qM cos θ

r sin θ
êφ (10.29)

This expression has a singularity along the z-axis (θ = 0, π). Anticipating the qM be
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placed above the film, we remove the singularity on the negative axis (θ = π) as

Aφ (r, θ) = −qM (1 + cos θ)

r sin θ
(10.30)

Thus the singularity on the negative axis below qM is removed. To convert it to a

Cartesian coordinate system, we notice the relationships

êφ = −êx sin φ + êy cos φ (10.31)

and

r =
√

(x − x0)2 + (y − y0)2 + (z − z0)2 (10.32)

cos θ =
z − z0

√

(x − x0)2 + (y − y0)2 + (z − z0)2
(10.33)

sin θ =

√

(x − x0)2 + (y − y0)2

√

(x − x0)2 + (y − y0)2 + (z − z0)2
(10.34)

cos φ =
x − x0

√

(x − x0)2 + (y − y0)2
(10.35)

sin φ =
y − y0

√

(x − x0)2 + (y − y0)2
(10.36)

(10.37)

with the origin at an arbitrary point (x0, y0, z0). Thus the gauge is given by

AM = Axêx + Ayêy (10.38)

where

Ax(x, y, z) =
qM

(√

(x − x0)2 + (y − y0)2 + (z − z0)2 + z − z0

)

(y − y0)
√

(x − x0)2 + (y − y0)2 + (z − z0)2 [(x − x0)2 + (y − y0)2]
(10.39)
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Ay(x, y, z) = −
qM

(√

(x − x0)2 + (y − y0)2 + (z − z0)2 + z − z0

)

(x − x0)
√

(x − x0)2 + (y − y0)2 + (z − z0)2 [(x − x0)2 + (y − y0)2]
(10.40)

This form is more convenient for programming.

The vector potential for the magnetic dipole (qM ,−qM) is the superposition of

the two vector potentials of opposite charges which are at a variable distance apart

from each other. In our simulation, we use a dipole located along the z-axis normal to

the film plane (xy-plane), thus we put a monopole and an antimonopole at (x0, y0, z1)

and (x0, y0, z2), respectively. Then the gauge should be

Ax(x, y, z) =
qM

(√
(x−x0)2+(y−y0)2+(z−z1)2+z−z1

)

(y−y0)
√

(x−x0)2+(y−y0)2+(z−z1)2[(x−x0)2+(y−y0)2]
(10.41)

−
qM

(√
(x−x0)2+(y−y0)2+(z−z2)2+z−z2

)

(y−y0)
√

(x−x0)2+(y−y0)2+(z−z2)2[(x−x0)2+(y−y0)2]
(10.42)

Ay(x, y, z) = −
qM

(√
(x−x0)2+(y−y0)2+(z−z1)2+z−z1

)

(x−x0)√
(x−x0)2+(y−y0)2+(z−z1)2[(x−x0)2+(y−y0)2]

(10.43)

+
qM

(√
(x−x0)2+(y−y0)2+(z−z2)2+z−z2

)

(x−x0)√
(x−x0)2+(y−y0)2+(z−z2)2[(x−x0)2+(y−y0)2]

(10.44)

Note that the periodic boundary conditions imply the periodicity of not only

the superconductor, but also of the magnetic dipole lattice (see Fig.17). The vector

potential for this periodic array of dipoles is

AP
x (x, y, z) =

M
∑

m=−M

N
∑

n=−N

Ax(x, y, z; xm, yn) (10.45)

AP
y (x, y, z) =

M
∑

m=−M

N
∑

n=−N

Ay(x, y, z; xm, yn) (10.46)
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Fig. 17. A periodic array of the systems. In each system, a magnetic dipole is located

above the center of each block of the sample, which is in a periodic array by

itself.

where

Ax(x, y, z; xm, yn) =
qM

(√
(x−xm)2+(y−yn)2+(z−z1)2+z−z1

)

(y−ym)
√

(x−xm)2+(y−yn)2+(z−z1)2[(x−xm)2+(y−yn)2]
(10.47)

−
qM

(√
(x−xm)2+(y−yn)2+(z−z2)2+z−z2

)

(y−yn)
√

(x−xm)2+(y−yn)2+(z−z2)2[(x−xm)2+(y−yn)2]
(10.48)

Ay(x, y, z; xm, yn) = −
qM

(√
(x−xm)2+(y−yn)2+(z−z1)2+z−z1

)

(x−xm)
√

(x−xm)2+(y−yn)2+(z−z1)2[(x−xm)2+(y−yn)2]
(10.49)

+
qM

(√
(x−xm)2+(y−yn)2+(z−z2)2+z−z2

)

(x−xm)
√

(x−xm)2+(y−yn)2+(z−z2)2[(x−xm)2+(y−yn)2]
(10.50)

Here M,N → ∞ for the definition of array, but in practice we should use a finite

number of dipoles. We have used M = N = 24. So there are 49 × 49 pieces of the

sample in the array, and we solve for the sample at the center.
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CHAPTER XI

SOLUTION METHOD

XI.1. Discretization of Ginzburg-Landau equation

To solve the system of equations above, we obtain a time-dependent equation for Ψ for

relaxation method as before, i.e. ∂Ψ
∂t

= − ∂G
∂Ψ∗

, and use the link variable approach. [58]

Following the same procedure as eq.(6.15), the semi-discrete equation is

∂ΨP

∂t
= hxhy





dw

(

eıAwhxΨW − ΨP

)

+ de

(

e−ıAehxΨE − ΨP

)

h2
x

+
ds

(

eıBshyΨS − ΨP

)

+ dn

(

e−ıBnhyΨN − ΨP

)

h2
y





+ hxhydp

(

1 − |ΨP |2
)

ΨP (11.1)

with

jxe =
1

hx

[(ΦP ΘE − ΘP ΦE) cos (Aehx) − (ΦP ΦE + ΘP ΘE) sin (Aehx)] (11.2)

jyn =
1

hy

[(ΦP ΘN − ΘP ΦN) cos (Bnhy) − (ΦP ΦN + ΘP ΘN) sin (Bnhy)] (11.3)

The periodic boundary conditions for Ψ have the form

Ψ (x + Lx) = Ψ (x) (11.4)

Ψ (y + Ly) = Ψ (y) (11.5)

For numerical implementation of periodic boundary conditions, see e.g. Roache [79]

The vector potential is obtained from the Fast Fourier transform technique. A

64 × 64 staggered grid is used with the spatial increments hx = hy = 0.25 and the

time step ∆t = 0.05. In addition, the local thickness d(i, j) = 0 at all the nodes (i, j),



101

where the antidots occupy.

XI.2. Discretized solutions for magnetic potential A

The discretized solution for A is obtained as

Axe =
d

2abκ2

2lmax−1
∑

l=0

2mmax−1
∑

m=0

1

γlm

Cxe,lmei 2πl
a

xei 2πm
b

ye−γlm|z|, (11.6)

Ayn =
d

2abκ2

2lmax−1
∑

l=0

2mmax−1
∑

m=0

1

γlm

Cyn,lmei 2πl
a

xei 2πm
b

ye−γlm|z|, (11.7)

where l,m cannot be zero at the same time, and 2lmax−1 = Nx and 2mmax−1 = Ny.

These expressions are still complex, and we take the real part of the final results. The

discrized forms of eqs. (10.20, 10.20) are

Cxe,lm =
2lmax−1

∑

l=0

2mmax−1
∑

m=0

jxee
−i 2πl

a
xe−i 2πm

b
y, (11.8)

Cyn,lm =
2lmax−1

∑

l=0

2mmax−1
∑

m=0

jyne
−i 2πl

a
xe−i 2πm

b
y. (11.9)

XI.3. Two-dimensional fast Fourier transform in parallel computers

To evaluate the Fourier coefficients Cxe,lm and Cyn,lm above, we use the Fast Fourier

Transform (FFT) technique.

For one-dimensional case, the discrete Fourier Transform 1 is given as

Hn ≡
N−1
∑

k=0

hke
2πikn/N =

N−1
∑

k=0

hkW
nk (11.11)

1If the set of sampling points is large enough, this discrete Fourier series can
approximate the continuous Fourier transform:

H(fn) =
∫ ∞

−∞
h(t)e2πifntdt ≈

N−1
∑

k=0

hke
2πikn/N∆t = (∆t) · Hn (11.10)
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with the inverse Fourier Transform

hk =
1

N

N−1
∑

n=0

Hne
−2πikn/N (11.12)

This series can be rearranged 2 to results in the efficient algorithm of FFT by observing

Fk =
N−1
∑

j=0

e2πijk/Nfj

=
N/2−1
∑

j=0

e2πik(2j)/Nf2j +
N/2−1
∑

j=0

e2πik(2j+1)/Nf2j+1

=
N/2−1
∑

j=0

e2πikj/(N/2)f2j + W k
N/2−1
∑

j=0

e2πikj/(N/2)f2j+1

= F e
k + W kF o

k (11.13)

So we have divided the FFT into two FFTs in each the half data sets of the

original data. If N = 2n, we can keep doing this process until we subdivide the

original data all the way down to transforms of length 1. Note the Fourier transform

of this data of length one is just itself. That is, after n recursive subdivision into

even and odd intervals, we have a one-point transform that is just one of the input

numbers fn:

F eoeoeo···oee
k = fn (11.14)

Then we have only two tasks left: (1) Finding the even-odd subdivision sequence

(eoeoeo · · · oee) for each input data (for each n). This is easily done by expressing the

the even-odd subdivision sequence in binary number, as e = 0 and o = 1. This idea

is called bit reversal. (2) Multiplying out the W k having occurred in each stage of

the subdivision sequentially. This results in the famous Cooley-Tukey algorithm. If

we change the order of the steps (1) and (2), it becomes Sande-Tukey algorithm. [47]

2Sometimes this is called Danielson-Lanczos Lemma.
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In our study the supercurrents j(x) = (jx(x, y), jy(x, y)) need to be Fourier trans-

formed to obtain the magnetic potential. Here we have two-dimensional Fourier

transform in x and y. The two-dimensional Fourier transform can be viewed as two

successive one-dimensional transforms. [80] That is,

H(u, v) =
∫ ∞

−∞

∫ ∞

−∞
h(x, y)e−j2π(ux+vy)dxdy

=
∫ ∞

−∞
e−j2πvy

[∫ ∞

−∞
h(x, y)e−j2πuxdx

]

dy

=
∫ ∞

−∞
Z(u, y)e−j2πvydy (11.15)

where we have denoted the term in brackets by Z(u, y).

H(n/NTx,m/MTy) =
M−1
∑

q=0





N−1
∑

p=0

h(pTx, qTy)e
−j2πnp/N



 e−j2πmq/M

=
M−1
∑

q=0

Z(n/NTx, qTy)e
−j2πmq/M (11.16)

Since a two-dimensional FFT is just two one-dimensional FFT, the two-dimensional

data array (matrix) needs to be FFT’ed in both of row and column direction. The

well-known Cooley-Tukey algorithm is employed for each rowwise FFT. Once FFT

is done in every row, the data matrix is transposed and again rowwise FFT is per-

formed. One convenient thing is that the transpose operation is a built-in command

in Fortran 90. In this sense, Fortran 90 is a programming language well suited for

parallelism. [81]

Due to the still severe amount of computation, a parallel computation is imple-

mented using OpenMP directives [82, 83] in a 128-processor supercomputer in Texas

A&M University.
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CHAPTER XII

SIMULATION RESULTS

In this chapter, a variety of simulations of magnetic penetrations and relaxations are

presented.

XII.1. Magnetic penetration in a film of constant thickness

In this section we present the simulation of the magnetic penetration process of vor-

tices into the film. When a magnetic tip (dipole) is located above the film, the stray

field from the tip passing through the film creates the vortex-antivortex pairs. The

magnetic flux Φ =
∫

Sfilm
H ·ndσ, applied onto the film by the dipole, is calculated by

numerical integration of the magnetic field passing through the film plane. Since the

magnetic field lines change their polarity passing through the film, the total flux pen-

etrating the film is zero. However, by calculating Φ+ and Φ−, (in units of Φ0 ≡ hc/2e)

by integrating the positive and negative values of magnetic field (z-component) sepa-

rately, we can have some idea of how many vortex-antivortex pairs the dipole attempts

to create in the sample.

Figure 18 is a demonstration of magnetic penetrations onto the thin film with

thickness df = 0.1, under the external magnetic field imposed by a dipole above,

along the axis through the center of the film. The dipole consists of two magnetic

charges of opposite sign, i.e. qM1
= 8 and qM2

= −8, displaced in dl = 2.3, which

is slightly larger than penetration depth λ(=2.0), since we here assumed κ = 2 and

all lengths are in units of ξ. qM1
is located at zM = 0.85, which is 0.8ξ above the

film surface and qM2 is farther away by dl. The film carries three vortex-antivortex

pairs. The antivortices are located together around the center, while vortices spread

outward repelling each other. This can be seen more clearly through the plots of the
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(a) superelectron density

(b) phase of order parameter
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Fig. 18. The magnetic penetration into a film with no pins in it, under the external

field from a magnetic dipole. (a) The evolution of the superelectron density.

(b) The corresponding evolution of phase of the order parameter. The film

size is Lx ×Ly = 16ξ × 16ξ, and thickness df = 0.1ξ. Here Φ+ = 2.90 and the

film carries three vortex-antivortex pairs in the steady state.
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phase of the order parameter. There is a 2π variation of phase around a vortex and

so is antivortex, only in the opposite direction. The phase plots show clearly that the

vortices and antivortices are paired one by one. The flux sent by the dipole through

the sample is calculated Φ+ = 2.90 and the return flux antivortices Φ− = −2.92. The

error of about 7% between Φ+ and Φ− is due to discretization, the fact we cannot

make the system perfectly periodic, since a perfectly periodic array of dipole require

an infinite number of dipoles. However, in the lower values of Φ+ the errors fall

sharply below 1%. For example, for Φ+ = 1.90 case which is used in the majority of

simulations in the following, the difference between Φ+ and Φ− is 0.6%.

Milošević and Peeters [64] suggested that the number of vortex-antivortex pairs

increase based on a non-integral increment of magnetic flux ∆Φ = 1.073 in units

of Φ0 in their simulation of a film with a ferromagnetic dot of finite radius. The

ferromagnetic dot is right on top of their film (although insulated with a thin layer

of oxide) imposing a dipole magnetic field. In our simulation we use a different kind

of dipole, consisting of two magnetic charges. This corresponds to an extremely thin

magnetic tip, and produces highly focused magnetic field.

In our simulations, no vortex-antivortex pairs are created in the film for imposed

fluxes up to Φ+ = 2.15 shown in Fig. 19 (a) and (d). A large area on the film

becomes non-superconducting, nevertheless no vortex-antivortex pairs are formed.

For Φ+ = 2.90 we have three pairs (Fig. 19 (c) and (f)), and in 2.15 < Φ+ < 2.90 we

have two pairs of vortex-antivortex (Fig. 19 (b) and (e)). So it seems that a single

pair of vortex-antivortex is not favorable for this square film geometry.

In Fig. 20 two vortex-antivortex pairs are formed at Φ+ = 2.49. Interestingly,

there are created three vortex-antivortex pairs initially. Afterwards a pair of vortex-

antivortex annihilate each other and two pairs remain in the steady state. This is

more discernable in the phase plots. This “partial annihilation” happens to all two-
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Fig. 19. The steady-states of magnetic penetration into the film with no pins under

the external field from a magnetic dipole. Top row is the evolution of the

superelectron density, bottom row the corresponding evolution of phase of

the order parameter. The film is of the same size and thickness as in Fig. 18.

Here Φ+ = 2.15 for (a) and (d), Φ+ = 2.50 for (b) and (e), and Φ+ = 2.90 for

(c) and (f). It is found that in the interval 2.15 < Φ+ < 2.90 the film carries

two vortex-antivortex pairs in the steady state.
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(a) superelectron density

(b) phase of order parameter

Fig. 20. A magnetic penetration into the film with no pins under the external field

from a magnetic dipole. (a) The evolution of the superelectron density. (b)

The corresponding evolution of the phase of the order parameter. The film is

of the same size and thickness as in Fig. 18. Here Φ+ = 2.49 is in the interval

2.15 < Φ+ < 2.90 discussed in Fig. 19. three vortex-antivortex pairs initially

appear in the film early (t=3000), then one pair annihilates itself (t=6000

and 7000). This process is more discernible in the phase plot. Finally the film

carries two vortex-antivortex pairs in the steady state.
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pair cases tried, i.e. for Φ+ = 2.49, 2.58, 2.62, 2.65, 2.68, 2.74, 2.80. Exception is the

case for Φ+ = 2.20. In that case the film carried two pairs all throughout, suggesting

that it is on the border between the range in Φ+ where no vortex is created and

the range of Φ+ for two-pair creation. This 3-pair-to-2-pair transition by “partial

annihilation” suggests that the magnetic field adjust itself to obtain equilibrium by

controlling vortices, in their movement and annihilation. It seems that here the

system is “contemplating” for which one to select from one pair, two pairs, or three

vortex-antivortex pairs.

XII.2. Magnetic penetration in a film with pins

In this section we explore the possibility to control the magnetic penetration process

in the film. Previous section showed that the film does not carry a single pair of

vortex-antivortex. When a pair of antidots (holes) is introduced into the film, a pair

of vortex-antivortex can be created and pinned at the holes. Here we use a square pin

clipped at its corners, making an octagonal shape. By this we create an approximately

round pin, and the “approximate diameter” is measured by the distance between the

sides facing each other, not by a vertex-to-vertex distance. In Fig. 21 in the following,

a film is initially in the Meissner state but with two holes. The dipole field creates

a pair of vortex and antivortex around the center of the film. The figure shows the

process a vortex is attracted by the pin while outside, move toward, and get pulled

into the hole in the end. While the antivortex stay in the central area, pinned by

another antidot closer to the center. Final state has a vortex and an antivortex, each

of which is pinned at an antidot. Note the vortex pair was created at Φ+ = 1.90, in

the region where no vortex was created in the film without holes. So here the pins

are playing a role of perturbation breaking the geometric symmetry of the system,
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enabling the system to seek an equilibrium at the lower energy. We have obtained

the vortex-antivortex pair down to Φ+ = 1.3.

Comparison of the Fig. 21 above with Fig. 22 in the following, shows the

vortices are pulled into bigger holes faster. So the bigger holes attract the vortices

with stronger force.

Figure 23 shows that the external field is controlling the position of vortices.

In (a) and (b) there are two antidots of an approximate diameter 2ξ, centered at

the nodes (ip1
, jp1

) = (28, 28) and (ip2
, jp2

) = (45, 45) each, while in (c) and (d) the

antidots of the same size are at the nodes (ip1
, jp1

) = (29, 29) and (ip2
, jp2

) = (46, 46).

Note that the distance between the pins in these two cases is the same. That is, for

the spatial increments hx = hy = 0.25ξ on the grid,

d(p1, p2) =
√

(ip1 − ip2)2h2
x + (jp1 − jp2)2h2

y ' 6ξ (12.1)

for both cases. In the steady state, in (a),(b) the antivortex stays on the edge of the pin

at (28,28) without being pulled further. On the other hand in (c) and (d) both vortices

are fully pulled into the pins. In (e) and (f), the pins of bigger size (approximate

diameter 2.5ξ) are located at (28,28) and (44,44). It is clear the antivortex is not

fully pulled into the pin at (28,28).

The above results suggest that the curvature of the dipole field is strongly influ-

encing the positions of vortices. This is already clear from Fig. 13. The film is soaked

in the magnetic field from the dipole and the vortices created should stay in the field.

There exists the locations and distances of vortices that the external field “prefer.”

Thus there should exist an optimal configuration of pin locations for the best pinning

of vortices. For Φ+ = 1.90 we believe (29,29) and (44,44) is the pin location that

vortices are fully pulled into the pin. However, as will be seen below, this optimal

configuration of pins is not enough for pinning without an aiding external magnetic
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(a) superelectron density

(b) phase of order parameter

Fig. 21. The magnetic penetration into the film with two pins under the external field

from a magnetic dipole. The dipole provides the magnetic flux Φ+ = 1.90. (a)

The evolution of the superelectron density. (b) The corresponding evolution

of the phase of the order parameter. The film is of the same size and thickness

as in Fig. 18. The film center is at the node (32,32). There are two antidots

of an approximate diameter 2ξ, centered at the nodes (29,29) and (45,45)

respectively. In the steady state there is a pair of vortex-antivortex caught at

the pins.
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(a) superelectron density

(b) phase of order parameter

Fig. 22. The magnetic penetration into the film with two larger pins under the external

field from a magnetic dipole. (a) The evolution of the superelectron density.

(b) The corresponding evolution of the phase of the order parameter. The two

antidots have an approximate diameter 2.5ξ and the other parameters are the

same as Fig. 21. In the steady state there is a pair of vortex-antivortex caught

at the pins.
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(c) Density at t=14000 (d) Phase at t=14000

Fig. 23. The steady-states of magnetic penetrations into the film with two pins, under

the external field from a magnetic dipole. The film is of the same size and

thickness as Fig.21. Here again Φ+ = 1.90. In (a) and (b) there are two

antidots of an approximate diameter 2ξ, centered at the nodes (28,28) and

(45,45). In the steady state the antivortex stays on the edge of the pin at

(28,28) without being pulled further into the pin. In (c) and (d), where the

antidots are at nodes (29,29) and (46,46), both vortices are pulled well into

the pins. In (e) and (f), pins of bigger size (approximate diameter 2.5ξ) are

located at (28,28) and (44,44). It is clear the antivortex is not fully pulled

into the pin at (28,28).
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(e) Density at t=14000 (f) Phase at t=14000

Fig. 23 (cont.)

field.

From the strong influence of the external magnetic field, it is not surprising the

pinning is greatly weakened when the external magnetic field is removed. Figure 24

shows a magnetic relaxation process with the external magnetic field removed (turned

off), starting from an initial vortex state with a pair of vortex-antivortex pinned

found previously for Φ+ = 1.90. There are two antidots of an approximate diameter

2.5ξ, centered at the nodes (29,29) and (45,45). The vortex and antivortex are found

to come out of the pins and annihilate each other quickly.

XII.2.1. The effect of artificial vortex method

In Fig. 25 is presented the time sequences of two magnetic penetrations into a film

with two antidots of an approximate diameter 2.5ξ, centered at nodes (29,29) and

(44,44) each, with Φ+ = 1.90. In (a), the magnetic penetration starting with the

Meissner state results in a steady state with a pair of vortex-antivortex caught at

the pins. In (b) The magnetic penetration starts with a pair of artificial vortex and

antivortex instead of the Meissner state as in (a). The result is the same steady state
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(a) superelectron density

(b) phase of order parameter

Fig. 24. A magnetic relaxation process with the external magnetic field removed

(turned off) from an initial vortex state with a pair of vortex-antivortex inside

the pins. The film thickness is df = 0.1. There are two antidots of an ap-

proximate diameter 2.5ξ, centered at nodes (29,29) and (45,45). The vortex

and antivortex are found to come out of the pins and annihilate each other

quickly.
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(a) Penetration from Meissner state with pins at t=0

(b) Penetration from artificial vortex state at t=0

Fig. 25. Pseudo-time sequences of two cases of magnetic penetration into a film with

thickness df = 0.1 with two antidots of an approximate diameter 2.5ξ, cen-

tered at nodes (29,29) and (44,44), and Φ+ = 1.90. (a) The magnetic pene-

tration starting with the Meissner state results in a steady state with a pair

of vortex-antivortex caught at the pins. (b) The magnetic penetration starts

with a pair of artificial vortex and antivortex inside the pins instead of the

Meissner state as in (a). The result is the same steady state with a pair of

vortex-antivortex caught at the pins, which is achieved in a faster time.
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with a pair of vortex-antivortex caught at the pins, which is achieved in a faster time.

In several cases we randomly picked, the initial conditions with artificial vortex pair

always lead to the identical final state as would be expected for a thermodynamic

equilibrium state, in a shorter time.

XII.3. Magnetic relaxation in a film with pins

After some trials and errors such as shown in Fig. 24, it emerged that the pinning

force is not strong enough to hold the vortices against the attractive force between

vortex and antivortex. Since it was found that the external magnetic field restricts the

pin distance, an approach to magnetic relaxation using artificial vortices was devised

to allow us to study longer pin separations. Figure 26 is a demonstration. To create

an energy barrier big enough to hinder the vortices from moving, it was given the

maximum distance possible in the periodic sample between pins (and vortices). That

is, The pins at (ip1
, jp1

) = (16, 16) and (ip2
, jp2

) = (48, 48) has the longest separation

from each other in the 64 × 64 grid of the sample in a periodic array of identical

samples. The vortex and antivortex, located at (ip1
, jp1

) and (ip2
, jp2

) initially, move

out of the pins and annihilate each other eventually.

We repeat this simulation with decreasing pin distance d(p1, p2) from this max-

imum distance to the closest possible. In Fig. 27 the pins are located at (ip1
, jp1

) =

(16, 16), (17, 17), · · · , (28, 28) and (ip2
, jp2

) = (48, 48), (47, 47), · · · , (36, 36), getting

closer to each other by one node at each pin. At t=0, the artificial vortex-antivortex

pair are located two nodes outward from the center of the pins.

The time until the vortices come out of the pins and annihilate is plotted in Fig.

28 below. Figure 28 is indicative of the fact that the vortices get harder to annihilate

as they get farther. However, this is not a rigorous measure since the distance in which
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(a) Density at t=0 (b) Phase at t=0

(c) Density at t=3000 (d) Phase at t=3000

(e) Density at t=3800 (f) Phase at t=3800
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Fig. 26. Steady-states of a magnetic relaxation in a film with thickness df = 0.1. There

are two antidots of an approximate diameter of 2ξ, centered at nodes (16,16)

and (48,48) each. Here a pair of artificial vortex and antivortex attract each

other under no external magnetic field. They eventually move out of the pins

and annihilate each other.
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Fig. 27. The initial pin and vortex-antivortex arrangements of the simulation cases in

which a pair of vortex and antivortex evolve with the external magnetic field

removed. In the first case (shown in the upper left corner) the pins are located

at (ip1
, jp1

) = (16, 16) and (ip2
, jp2

) = (48, 48). In the next case (to the right

of the first sample), (ip1
, jp1

) = (17, 17) and (ip2
, jp2

) = (47, 47). In this way,

the pins are put closer to each other by one node for the cases we consider one

after another. In the last case, (ip1
, jp1

) = (28, 28) and (ip2
, jp2

) = (36, 36).

At t=0, the artificial vortex-antivortex pair is located further outward by two

nodes than the center of the pins. This is intended to prevent that any initial

“overshoot” of the numerical simulation, instead of the actual attraction force,

drives the vortices out of the pins.
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Fig. 28. Total time for the process where a pair of artificial vortex and antivortex

attract, move out of the pins, and annihilate each other. It is a magnetic

relaxation in a film with thickness df = 0.1 under no external dipole magnetic

field. The abscissa is the distance in which the centers of the antidots of an

approximate diameter of 2ξ are separated.
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the vortices travel to annihilate each other is not a constant. We want to measure

the time it takes for a vortex to escape from the pin. However, since the vortices are

distorted and elongated while escaping from the pins (see, for example, Fig.26), it is

hard to determine the position of the core. (If the pins are close enough to each other,

the vortex and antivortex merge even before the complete escape, forming a “trough”

of normal conducting region.) Thus, we pick an ad hoc density level |Ψ|2 = 0.3 (Note

that |Ψ|2 = 0 in the core of a vortex) and measure the time this level of density

contour “coming out” of the pin. This is illustrated in the Fig. 29 below.

In between the adjacent outputs at t=1550 and 1600, a contour level 0.308114

comes out (small triangular contour in (d)). This time can give a time scale for the

vortex core to come out of the pin. The plot for this “escape time” results from the

the visual measurement of the density levels. Note this measurement cannot be too

accurate since the data files are output from the code for t = n∆t = 0, 100, 200, · · ·,

not for each time step ∆t, due to the limited storage. However, this can always be

made more accurate if necessary. The resulting curve is given in the Fig. 30, which

fits as y = 1480 ln(x) − 1806 well. Note that tesc < 1800 in this sample.

In Fig. 31 the density levels in a sample of the size 32ξ × 32ξ are shown. Note

this sample is 4 times bigger than the 16ξ × 16ξ sample studied so far. At t=16300

the contour of the level 0.312317 is at the edge of the pin. At t=16400 this contour

has come out of the pin, which can be seen as the little triangular contour near the

upper right corner. The escape time is determined to be t=15900.

The pin distance is 16
√

2ξ = 22.6ξ in this sample. The curve-fit formula from the

small sample produces far less tesc = 1480 ln(22.6) − 1806 ' 2808.5 than the escape

time tesc = 15900 determined above. This may imply the the attraction force between

the vortex and the antivortex is weaker than the trend of the force that the curve-

fit of the escape time in the small sample may suggests. Recalling Pearl’s theory,
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Fig. 29. Defining the “escape time” of the vortex-antivortex pair for the 16ξ × 16ξ

sample. (a) and (b) are the density plots produced in a given time interval. (c)

and (d) give the enlarged view of the lower left pin. At t=1550 the |Ψ|2 = 0.3

contour lies inside the pin surface. At t=1600 there is a small triangular

contour of |Ψ|2 = 0.3 having just emerged outside the pin. Thus |Ψ|2 = 0.3

contour “escaped” from the pin between t=1550 and 1600. We set t=1550

the “escape time”
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Fig. 30. Pseudo-time measure for how long a vortex would take to escape from the

pins as defined in Fig. 29. It is chosen as the time the density contour of level

0.3 emerges from the pin. This “time” can give a time scale for the vortex

core to emerge from the pin. The states are obtained in magnetic relaxations

in a film with thickness df = 0.1 under no external dipole magnetic field. The

abscissa is the distance in which the centers of the antidots of an approximate

diameter of 2ξ are separated.
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Fig. 31. Defining the “escape time” of the vortex-antivortex pair for the 32ξ × 32ξ

sample. (a) and (b) are the density plots produced in a given time interval.

(c) and (d) give the enlarged view of the lower left pin. At t=15900 the

|Ψ|2 = 0.3 contour lies inside the pin surface. At t=16000 there is a small

triangular contour of |Ψ|2 = 0.3 having just emerged outside the pin. Thus

|Ψ|2 = 0.3 contour “escaped” from the pin between t=15900 and 16000. We

set t=15900 the “escape time”
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the attractive force between a vortex and an antivortex has a rather slow variation

depending on 1
r

for their separation r ¿ λeff . For the small sample the maximum

pin distance possible is 11.4ξ = 0.285λeff , which is still small in comparison with

λeff = 40ξ. When the pin centers are 2.8ξ apart from each other, the attraction force

is very strong, leading to a quick annihilation. This dominance of the attraction force

over the constant pinning force continues due to the slow decrease of the attraction

force. Since the pin distance 22.6ξ is not so small when compared with the effective

penetration depth λeff , we expect the change in the variation of the force toward the

other asymptotic behavior of 1
r2 . This is reflected in the fact that we have tesc > 12600

for the pin distance of 17ξ. About 50% increase from the maximum pin distance 11.4ξ

of the small sample leads to over 700% increase in the escape time. So the attraction

force should decrease faster than 1
r
-dependence in the range of pin distances larger

than 11.4ξ.

In the small sample, the vortices actually escaped from the pins soon after reach-

ing the escape time. Thus the estimated escape time is close to the real escape time.

However, in the bigger sample, the vortices have reached steady-state without appre-

ciable movement from the pins after t ∼ 25000. So the estimated escape time t=15900

for the larger sample is not really an escape time, since the vortices do not escape.

Nevertheless they are still useful for comparison with the small sample. Figure 32

shows virtually no change between t=25200 and t=42400. Even after the escape time

t=15900 there have been only minor shifts in the contours of the higher density level.

The |Ψ|2 = 0.3 core shows little movement.

The vortex and antivortex are attempting to come out of the pins and annihilate

each other, but they have eventually failed to come out. So the pin distance 22.6ξ

must be very close to the critical distance to pin the vortex and the antivortex at

the pinning spots permanently. This simulation has taken 26 days in wall clock time
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Fig. 32. (a) and (c) are the density plots produced in a given time interval. (b) and

(d) give the enlarged view of the lower left pin. Comparing Figs. (b) and (d),

the contour levels have no change between t=25200 and 42400 after passing

the escape time t=15900. The pins are still holding the vortex-antivortex

pair after a long time in the large sample. We conclude the pinning has been

achieved.
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to reach t=42400. It is not feasible to do simulation with this size of sample in the

current facility, but this sample could be a starting point of another long, extensive

study. It takes about 35 hours in wall clock time to reach t=25200 in the small

sample in our current facility. Comparison with 14 days to reach the same t in the

large sample shows the difficulty we are facing.

If the vortex-antivortex pair can be pinned by the pins without the creating dipole

field, then they could represent 1 in non-volatile data storage. Since the last studied

case looks close to pinning, we can use it as an “optimum” case for the data storage.

Then the density is of vortices will be (1 vortex-antivortex pair)/(32ξ)2 ∼ 3.8 × 1014

vortex-antivortex-pairs/m2 ∼= 4.7GB/cm2, assuming ξ = 16 Å for high temperature

cuprate superconductors.
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CHAPTER XIII

CONCLUSIONS

In this dissertation, the numerical simulations on the steady-state vortex configura-

tions in type-II superconductors have been performed. We have considered a meso-

scopic square cylinder with free boundary conditions in part I and a thin square film

with periodic boundary conditions in part II. Part I presents an efficient numerical

scheme to find the equilibrium vortex configuration inside the superconductor under

a given external magnetic field. Part II presents the systematic numerical experiment

to find an optimal vortex pinning configuration. Each part is summarized in the

following sections.

XIII.1. Summary and conclusion to Part I

A numerical scheme to study the mixed states in a mesoscopic type-II superconducting

square cylinder in a longitudinal external magnetic field H has been developed. It is

based on solving a set of simplified time-dependent Ginzburg-Landau equations.

We have first applied this scheme to the case of field penetration into a zero-field

cooled sample. Case studies for various values of the external magnetic field were

presented. Contour plots of the Cooper pair density, and the induced magnetic field

inside the sample, display the magnetic vortex solution first discovered by Abrikosov,

but in a small sample the vortex arrangement is not simply triangular.

Giant vortices and anti-vortices are not found in this study, unlike previous

studies of type-I mesoscopic thin films. (But at sufficiently high magnetic field we

still expect the system to favor a single giant vortex at the center as it goes into a

surface superconducting state, but only if the sample is not too small.)

Since we start the solution with a uniformly superconducting initial condition,
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and the sample has perfect square symmetry, both the number of vortices and their

steady-state configurations are governed by the square sample geometry. Changes in

the configuration and the number of vortices occur as H is varied through first-order

configurational phase transitions, similar to those found earlier, but different in detail.

This phase transition characteristic is confirmed by the contour plots, and jumps in

the values of the induced magnetic field B at certain discrete H values.

A time sequence shows that the system passes through intermediate configura-

tions, and remains in some of them for a long time. Eventually the system settles

down to the steady-state configuration, which corresponds to the lowest-Gibbs-energy

configuration consistent with the symmetry constraints to the vortex number and

configuration.

True equilibrium states would appear in actual samples when there are symmetry-

breaking surface defects forming vortex-nucleation centers, or when thermal fluctua-

tions are sufficiently strong to move the system out of metastable states, but not too

strong to melt the vortex lattice. We could have determined these true equilibrium

states by adding additional terms in the equations to simulate thermal fluctuations,

but here we have devised a different approach which we believe is more efficient. We

introduce a way to generate analytic initial states of prescribed numbers of vortices,

but allow their positions to be random. They evolve to steady-state vortex arrange-

ments of all possible vortex numbers near the equilibrium number, from which we can

compare total Gibbs energy to determine the equilibrium vortex number and config-

uration. In this way, we avoid the problem of surface and bulk energy barriers, which

can trap the system in non-equilibrium vortex numbers and configurations — an un-

desirable situation which usually happens if one chooses the initial state randomly

without controlling the vorticity quantum number L.
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XIII.2. Conclusion to Part II

1. A numerical study of the magnetization process in a thin type-II superconducting

film has been performed. The film is subject to a non-uniform magnetic field created

by a dipole above the film. The dipole axis passes through the center of the film in the

normal direction to the film plane. The magnetic flux Φ+ sent by the dipole through

the film is estimated by numerically integrating only the region where Hz > 0.

2. For a film with constant thickness and with no pin, it has been found that the

film carries two pairs of vortex-antivortex in the steady state in the range of 2.15 <

Φ+ < 2.90. The 3-pair-to-2-pair transitions, in which a pair of vortex-antivortex

annihilates, have been observed. For Φ+ ≤ 2.15 no vortex-antivortex pair has been

created in the film.

3. Two antidots (holes) have been used to create a perturbation in the film, and

vortex-antivortex pair has been created for lower magnetic fluxes down to Φ+ = 1.3.

4. It is observed that the magnetic field is controlling the situation, deciding the

optimal locations of vortex and antivortex. Therefore the pin locations are necessarily

fixed by the magnetic field, too. For the present study this restricts the numerical

experiment with variable pin locations, so we have divided the study into two sep-

arate stages, (1) the magnetic penetration with antidots discussed so far, and (2)

the magnetic relaxation of a vortex-antivortex pair with the external magnetic field

removed (turned off), which will be discussed later.

4. Aligning the dipole axis in the direction parallel to the film surface may

remedy this restriction, giving an extra degree of freedom to control the curvature

of magnetic field lines by changing the location of the magnetic charges. Reducing

the curvature of the filed lines penetrating the film will create more widely separated

vortex-antivortex pair.
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5. In the sample of size 16ξ × 16ξ, the attraction force between the vortex and

antivortex always dominates over the pinning force, so that they eventually come out

of pins, move toward each other, and annihilate each other.

6. The annihilation rate, measured with time taken for the annihilation, is

reduced noticeably as the distance between the vortex and antivortex increases. An

increase in pinning force is also observed that as the pins get bigger. Therefore, it is

concluded that we will have vortex-antivortex pair pinned as we increase the sizes of

sample and pins.

6. In order to pursue the merit of engineering (to create high-density data stor-

age), the use a new kind of pins which has stronger pinning force such as para-

magnetic dots is recommended, so that the increase in the distance between the

vortex-antivortex pair (hence the increase in sample size) can be minimized.

7. A simulation of the magnetic simulation in the sample of size 32ξ × 32ξ

suggests we are likely to achieve pinning of the vortex-antivortex pair with the sample

size around this. Using this sample as a template, the maximum density of pinned

vortices achievable is calculated to be about 3.8 ×1014 vortex-antivortex-pairs /m2,

or about 4.7GB/cm2.
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APPENDIX A

VORTEX CONFIGURATION IN A TWO-DIMENSIONAL PERIODIC DOMAIN

Figure 33 shows an arbitrary sample spanned by the lattice vectors t1 and t2. For

simplicity t1 is aligned parallel to the x axis.

Fig. 33. A periodic sample spanned by the lattice vectors t1 and t2.

The periodic boundary conditions discussed in chapter 10 are written as 1

A (x + ti) = A (x) + ∇gi, i = 1, 2, (A.1)

1Here the variables are nondimensionalized as in part I: x′ = x
λ
,H′ = H√

2Hc
, h′ =

h√
2Hc

, j′ = 2
√

2πλ
cHc

j, A′ = A√
2Hcλ

, Ψ′ = Ψ
Ψ0

. Primes are omitted for convenience.
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Ψ (x + ti) = Ψ (x) eiκgi i = 1, 2, (A.2)

where gk(x; ti), i = 1, 2, is given by [49]

gk = −1

2

(

ti × B̄êz

)

· x, (A.3)

Along the boundaries of the cell depicted in Fig. 33, the periodic boundary conditions

become

A(x + x2, y2) = A(x, 0) +
1

2
B̄ (x2êy − y2êx) for 0 < x < x1, (A.4)

A

(

x1 +
x2

y2

y, y

)

= A

(

x2

y2

y, y

)

+
1

2
B̄x1êy for 0 < y < y2, (A.5)

Ψ(x + x2, y2) = Ψ(x, 0) exp
(

−i
1

2
κB̄y2x

)

for 0 < x < x1, (A.6)

Ψ

(

x1 +
x2

y2

y, y

)

= Ψ

(

x2

y2

y, y

)

exp
(

i
1

2
κB̄x1y

)

for 0 < y < y2, (A.7)

where the average magnetic field B̄, the number of flux quanta n and the lattice cell

area |Ω| = |t1 × t2| are related by

|Ω| =
2πn

κB̄
. (A.8)

We apply the periodic boundary conditions given by Du et al. [49] to a two-

dimensional, periodic system of square cells (i.e. x2 = 0, y1 = 0) carrying n flux

quanta. An example for n = 9 is given below.
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Fig. 34. Triangular-ish lattice of vortices in a square superconducting cylinder with

periodic boundary conditions carrying 9 flux quanta.
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APPENDIX B

VORTEX PINNING IN A FILM WITH VARIABLE THICKNESS

Chapman [84] has derived a mathematical model for superconductivity in thin

films with variable thickness. Through an averaging process across the thickness, he

has derived a Ginzburg-Landau model where the variations in thickness appear as

spatially varying coefficients in the differential equations. This model has been used

by several authors to study the characteristics of superconducting thin-films under

a uniform magnetic field. It has been found that even type-I bulk superconductors

behave as type-II when their thickness is made sufficiently thin by an asymptotic

analysis and numerical simulations. [84, 85] Numerical simulations show that the

thinner spots in the variable thickness film attract vortices. [84, 67]

Here is an example of pinning by variable thickness using Chapman’s model. This

work has been done using the relaxations equations with free boundary conditions

from Part I. In the same nondimesionalized variables, an external magnetic field

H = 1 was applied to a superconductor of the size 15 × 15 and thickness df = 1.

The Ginzburg-Landau parameter κ = 4. On the 60 × 60 grid, the pin thickness

dpin = 0.001 are assigned at the nodes (i, j) where i, j = 10, 20, 30, 40, 50 along each

x, y direction. Thus we have 25 pins. The four neighborhood points adjacent the pin,

(i + 1, j), (i − 1, j), (i, j + 1), and (i, j − 1), are given dneighbor = 0.005. The spatial

increments hx = hy = 0.25, and the time step ∆t = 0.05. In the figure 35 the system

is full of vortices at t=20000. Then the magnetic field is turned off. At t=50000 the

system is in the steady state, with vortices pinned at the thin sites in the film. Note

that there are some vortices trapped between these pinning sites.
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(a) Magnetic penetration process ( H = 1)
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(b) Magnetic relaxation process (H = 0)
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Fig. 35. Vortex pinning and flux trapping in a film of variable thickness by a regular

array of thin regions (pins). H = 1; κ = 4; film thickness = 1; pin thickness

= 0.001; and pin neighbor thickness = 0.005.
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APPENDIX C

FLOW OF VORTICES UNDER A LINEARLY VARYING MAGNETIC FIELD

Figure 36 presents a simulation of the movement of vortices across the sample

driven by a linearly varying magnetic field. This work has been done using the relax-

ations equations with free boundary conditions (with the linearly varying magnetic

field) from Part I. The external magnetic field is H0 = 1.2 on ΩL while zero on

ΩR. Along the boundaries on top and bottom, the external magnetic field varies as

H(x) = H0(1 − x/L). The spatial increments hx = hy = 0.25 on 80 × 40 grid points,

and the time step ∆t = 0.05.

From a physical point of view, this corresponds to a situation that a superconduc-

tor is located near the medium creating strong magnetic field such as power sources.

The magnetic field from the medium is assumed to decrease linearly. The simulation

shows that the vortices will be created and move away from the source of the external

magnetic field. [54]

Due to the Lorentz force density F = j × B
c

between the current j and the

magnetic induction B, each flux line (vortex) is subject to the force density

f = j × Φ0

c
, (C.1)

where j is the total current density in the superconductor and Φ0 the flux density

(vector) threading through it. When there are no pins to hold the flux lines, they

move transverse to the current. Moving with velocity v, they induce an electric field

E = B × v

c
(C.2)

Since E is in the parallel direction to j, it impedes the current. The resulting power

dissipation can lead to heating, and loss of superconductivity, eventually. [25]
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Fig. 36. Flow of vortices driven by the linearly varying magnetic field.
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