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ABSTRACT

Minimax Methods for Finding Multiple Saddle Critical Points in Banach Spaces and

Their Applications. (August 2004)

Xudong Yao, B.S; M.S., Shanghai University of Science and Technology, China

Chair of Advisory Committee: Jianxin Zhou

This dissertation was to study computational theory and methods for finding

multiple saddle critical points in Banach spaces. Two local minimax methods were

developed for this purpose. One was for unconstrained cases and the other was for

constrained cases. First, two local minmax characterization of saddle critical points in

Banach spaces were established. Based on these two local minmax characterizations,

two local minimax algorithms were designed. Their flow charts were presented. Then

convergence analysis of the algorithms were carried out. Under certain assumptions, a

subsequence convergence and a point-to-set convergence were obtained. Furthermore,

a relation between the convergence rates of the functional value sequence and cor-

responding gradient sequence was derived. Techniques to implement the algorithms

were discussed. In numerical experiments, those techniques have been successfully

implemented to solve for multiple solutions of several quasilinear elliptic boundary

value problems and multiple eigenpairs of the well known nonlinear p-Laplacian op-

erator. Numerical solutions were presented by their profiles for visualization. Several

interesting phenomena of the solutions of quasilinear elliptic boundary value prob-

lems and the eigenpairs of the p-Laplacian operator have been observed and are open

for further investigation. As a generalization of the above results, nonsmooth critical

points were considered for locally Lipschitz continuous functionals. A local minmax

characterization of nonsmooth saddle critical points was also established. To estab-
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lish its version in Banach spaces, a new notion, pseudo-generalized-gradient has to

be introduced. Based on the characterization, a local minimax algorithm for finding

multiple nonsmooth saddle critical points was proposed for further study.
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CHAPTER I

INTRODUCTION

This dissertation is to study numerical methods and their related theory for computing

multiple saddle critical points in Banach spaces. For a given Banach space B, let B∗

be its topological dual, 〈, 〉 the dual relation and ‖·‖ the norm on B. Let J ∈ C1(B, R).

A point u∗ ∈ B is said to be a critical point of J iff u∗ satisfies the Euler-Lagrange

equation

∇J(u) = 0

where ∇J(u) is the gradient of J at u in the sense of the Fréchet derivative. Critical

points of a C1 functional are called smooth critical points (SCP). Let J : B → R be

locally Lipschitz continuous. Then the generalized-gradient of J in the sense of Clark

[7] is defined as follows.

Definition I.1 Let J be Lipschitz continuous near u0 ∈ B. The generalized direc-

tional derivative J0(u0; v) of J at u0 in the direction of v ∈ B is defined by

J0(x; v) = lim sup

u → u0

t ↓ 0

J(u + tv) − J(u)

t
.

The generalized gradient ∂J(u0) of J at u0 is a subset of B∗ given by

∂J(u0) = {ζ ∈ B∗ : J0(u0; v) ≥ 〈ζ, v〉,∀v ∈ B}.

According to Chang [3], u∗ ∈ B is a critical point of J iff u∗ satisfies

0 ∈ ∂J(u∗).

This dissertation follows the style and format of Mathematics of Computation.
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Critical points of a locally Lipschitz continuous functional are called nonsmooth crit-

ical points (NCP). If J is C1, then ∂J(u) = {∇J(u)}, i.e., two definitions coincide.

When u∗ is a critical point (SCP or NCP), c = J(u∗) is called the critical value of

J at u∗ and the set J(c)−1 = {u ∈ B : J(u) = J(u∗)} is called a critical level. A

problem is said to be variational if it can be converted to solving its Euler-Lagrange

equation. Critical point theory is concerned with variational problems. The first

candidates for critical points are the local maxima or minima to which the classical

critical point theory was devoted in calculus of variation. Critical points u∗ that are

not local extrema are called saddle (critical) points, i.e., in any neighborhood N (u∗)

of u∗ there exist two points v, w such that J(v) < J(u∗) < J(w). In physical systems,

saddle points appear as unstable equilibria or transient excited states. Due to unstable

nature, saddle critical points are very elusive to numerical approximation. Conven-

tional numerical algorithms are designed to find stable (local extremum) solutions.

New approaches and methods must be developed.

Variational methods have been proved to be powerful tools in solving nonlin-

ear boundary value problems appearing in many disciplines where other methods

may fail. The study of variational problems can be traced back to early as Fermat

who proved in 1650 that the light follows the path that takes the least time to go

from one point to an other. Newton and Leibnitz simultaneously and independently

made the connection between calculus and derivatives with the variation of functions.

Many great mathematicians, such as, Cauchy, Euler, Dirichlet, Lagrange, Poincare,

etc., have made important contributions to critical point theory. Until beginning of

the 20th century, mathematicians were looking for absolute minimizers of functions

bounded from below. In 1905, in his thesis, Poincare treated a variational problem

whose solution corresponded neither to a minimum nor to a maximum. This approach

was revisited by Birkhoff in 1917 who succeeded to obtain a minimax principle in crit-
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ical point theory and this principle was further generalized in late 1920s and early

1930s independently by Morse and Ljusternik-Schnirelman.

Since then, the minimax principle, which characterizes a saddle point as a solu-

tion to

min
A∈A

max
v∈A

J(v) (1.1)

for some collection A of subsets A in B, becomes one of the most popular approaches

in critical point theory. As a typical example, the mountain pass lemma proved by

Ambrosetti and Rabinowtz in 1973 [1] set a milestone for modern nonlinear analysis,

since then many minimax theorems, such as various linking and saddle point theorems,

have been successfully established to prove the existence of multiple critical points

[4,10,19,21,1,25,26,27,2,24,3,13,etc.]. But most of them focus mainly on the existence

issue and require one to solve a two-level global optimization problem, and therefore

are not useful for algorithm implementation.

The first numerical minimax algorithm for finding smooth saddle critical points

(SSCPs) basically with MI=1 was developed by Choi-McKenna [6] in 1993, where

MI is the Morse index of a critical point u∗ in a Hilbert space H which is defined

as the maximum dimension of a subspace H− of H on which J ′′(u∗) is negative

definite and MI is not defined in a Banach space. Ding-Costa-Chen [11] proposed

a numerical minimax method in 1999 to capture SSCPs basically with MI=2. But

no mathematical justification or convergence of the algorithms was established. A

numerical local minimax algorithm together with its mathematical justification and

convergence was successfully developed by Li-Zhou [17,18] in 2001, to find multiple

SSCPs of MI=1,2,...n. All those three algorithms are formulated in Hilbert spaces,

where the gradient and orthogonality played important roles. In fact, the gradient is

used to find a search direction to update an approximation point and the orthogonality
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is used to prevent the search from degenerating to a lower critical level. In terms of

minimax approach, in (1.1), at the first level, A is a 1D simplex in Choi-McKenna’s

method, a 2D simplex in Ding-Costa-Chen’s method and an nD subspace in Li-Zhou’s

method.

However, many nonlinear problems in application, such as the wellknown non-

linear p-Laplacian equation in the study of non-Newtonian fluid flows [9, 15, 25], are

formulated in Banach spaces and possess multiple solutions. How to find multiple

SSCPs in Banach spaces? So far no such numerical methods are available in the

literature. In this dissertation, a numerical local minimax method will be developed

for this purpose. The key step in this development is to establish a mathematical

justification, a local minmax characterization for SSCPs, in Banach spaces.

On the other hand, the popular hemivariational inequalities, which arise in me-

chanics when one wants to consider more realistic nonmonotone and multivalued

stress-strain laws or bounded condition [22,23,14], require us to deal with NCPs. In

fact, the local minmax characterization for SSCPs in a Banach space can be general-

ized to be a local minmax characterization for NCPs. The generalized local minmax

characterization gives us a starting point to design a numerical local minimax method

to find multiple nonsmooth saddle critical points (NSCPs).

When theory and methods for finding multiple SCPs are developed, it is quite

natural to consider multiple constrained smooth critical point (CSCP) problems,

which constitute an important part of critical point theory. An important class of

multiple CSCP problems is nonlinear variational eigenpair problems. Linear eigenpair

problems are a classical research topic both theoretically and numerically [28]. Huge

literature is available. On nonlinear eigenpair problems, although many theoretical

studies exist in the literature [28, 8], people’s understanding is still limited. In par-

ticular, few numerical methods [16] can be found. In this dissertation, a numerical
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local minimax method will be developed to find multiple nonlinear eigenpairs.

In the sections of Chapter I, some related milestone results on the existence and

computation of critical points and eigenpairs in contemporary critical point theory

will be recalled. In Chapter II, a local minmax characterization for SSCPs will be

established, a local minimax algorithm for finding multiple SSCPs will be designed,

implementation techniques of the algorithm will be discussed and numerical experi-

ment results on quasilinear elliptic PDEs will be presented by figures of their solution

profiles for visualization. In Chapter III, some convergence results of the algorithm

will be established and a relation between convergence rates of the functional values

and their gradients will be presented. The smoothness of peak-selection will be dis-

cussed. As an application of our frame work, we give a proof to the existence of a

nontrivial weak solution to a class of quasilinear elliptic PDEs. In Chapter IV, a local

minmax characterization for a class of CSCP problems, i.e., iso-homogeneous non-

linear eigenpair problems will be established, a local minimax algorithm for finding

multiple eigenpairs of this class eigenpair problems will be designed, numerical ex-

periment results on eigenpairs of the wellknown nonlinear p-Laplacian operator, will

be exhibited by figures of eigenfunction profiles with the corresponding eigenvalues

for visualization. In Chapter V, several convergence results of the algorithm will be

stated and the smoothness of peak-selection will be discussed. In Chapter VI, a local

minmax characterization for NSCPs will be established. In order to establish such

minmax characterization in Banach spaces, pseudo-generalized-gradient for locally

Lipschitz continuous functionals has to be defined. A minimax algorithm for finding

multiple NSCPs will be designed.
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A. Existence of Multiple Saddle Critical Points

Many existence results for multiple SSCPs and NSCPs in various nonlinear problems

are available in literatures. Some of them will be recalled in this section.

1. Existence of Multiple SSCPs

The following wellknown Palais-Smale condition [1] is frequently used in the study of

the existence of SSCPs as a compactness assumption, which is, although not always,

frequently satisfied by nonlinear PDE problems.

Definition I.2 A functional J ∈ C1(B, R) is said to satisfy the Palais-Smale (PS)

condition if any sequence {ui} ⊆ B such that J(ui) is bounded and ∇J(ui) → 0

possesses a convergent subsequence.

One of the simplest and most useful minimax theorems in the literature for

saddle critical points, is the mountain pass lemma, established by Amhrosetti and

Rabinowitz [1] in 1973.

Theorem I.1 (Mountain Pass Lemma) Given a Banach space B and a functional

J ∈ C1(B, R) satisfying the PS condition with J(0) = 0. Assume that

(1) there exist constants ρ, α > 0 such that J |∂Bρ ≥ α, and

(2) there is an e ∈ B \ ∂Bρ such that J(e) ≤ 0.

Then

c = inf
p∈C([0,1],B),p(0)=0,p(1)=e

max
t∈[0,1]

J(p(t))

is a critical value of J .

The mountain pass lemma sets a milestone for contemporary nonlinear analysis. It is

used to prove the existence of the ground state. Since then, many linking theorems
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are also established to prove the existence of more saddle critical points in various

nonlinear problems. The following linking theorem is due to Rabinowitz.

Theorem I.2 (Linking Theorem) Given a Banach space B such that B = L ⊕ X,

where X,L are two closed subspaces of B and L has finite dimension. Assume that

J ∈ C1(B, R) satisfies the PS condition and

(1) there are ρ, α > 0 such that J(v) ≥ α, ∀v ∈ ∂Bρ ∩ X,

(2) there are u ∈ X with ‖u‖ = 1 and a number R > ρ such that J(v) ≤ 0, ∀v ∈ ∂Q,

where Q = (B̄R ∩ L) ⊕ {ru|r ∈ (0, R)}.

Then

c = inf
Γ

max
v∈Q

J(h(u))

is a critical value, where

Γ = {h ∈ C(Q̄, B)|h = id on ∂Q}.

2. Existence of Multiple NSCPs

The nonsmooth version of the Palais-Smale condition is frequently used in the proof

of the existence for NSCP and due to Chang [3].

Definition I.3 (Nonsmooth Palais-Smale Condition) A locally Lipschitz continuous

functional J : B → R satisfies the nonsmooth Palais-Smale (PS) condition, if any

sequence {J(un)} ⊂ B such that {J(un)} is bounded blow and {zn} → 0, where

zn ∈ ∂J(un) with minimum norm, has a strongly convergent subsequence.

By the nonsmooth version of the PS condition, several minimax theorems and

linking theorems have been established and used to prove the existence of multiple

NSSCPs. Similar to smooth cases, the following Theorem I.3 is for the existence of
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the ground state and Theorem I.4 is for the existence of more saddle critical points.

These two minimax theorems are due to N. Kourogenis, P. Kandilakis and N. S.

Papageorgiou.

Theorem I.3 If

(1) B is a reflexive Banach space, B = L ⊕ M with dim L < +∞,

(2) J : B → R is a locally Lipschitz functional,

(3) there is r > 0 such that

max{J(u) : u ∈ L, ‖u‖ = r} < inf{J(v) : v ∈ M},

(4) J satisfies the non-smooth Palais-Smale condition, and

(5) c0 ≡ infγ∈Γ maxu∈D J(γ(u)) with D ≡ {u ∈ L : ‖u‖ ≤ r} and

Γ ≡ {γ ∈ C(D; X) : γ(u) = u for ‖u‖ = r},

then c0 ≥ infv∈MJ(v) and c0 is a critical value of J . Moreover, if c0 = infv∈MJ(v),

then there is a critical point v0 ∈ M with c0 = J(v0).

Theorem I.4 If

(1) B is a reflexive Banach space, B = L ⊕ M with dim L < +∞,

(2) J : B → R is a locally Lipschitz functional which is bounded below,

(3) J satisfies the non-smooth Palais-Smale condition,

(4) J(0) = 0 and infv∈B J(v) < 0, and

(5) there is r > 0 such that

J(u) ≤ 0 if u ∈ L and ‖u‖ ≤ r,

J(u) ≥ 0 if u ∈ M and ‖u‖ ≤ r,
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then, J has at least two non-trivial critical points.

B. Numerical Methods on Finding Multiple SSCPs

In this section, three numerical methods for finding SSCPs, which are related to the

minimax algorithms in this dissertation, will be recalled. The first method is proposed

by Choi and McKenna [6] in 1993. The flow chart of the algorithm in [6] is long. It

is rewritten in [5]. The version in [5] reads basically as follows.

Algorithm I.1 Modified Mountain Pass Method (Choi-Mckenna)

Step 1. Given an increasing direction v0. Set k = 0.

Step 2. Solve tk = arg maxt>0 J(tvk).

Step 3. Find the steep descent direction dk of J at uk = tkvk. If ‖dk‖ ≤ ε, stop the

algorithm. Otherwise, do Step 4.

Step 4. Solve sk = arg maxs>0{maxt>0 J(t(vk + sdk)) < J(uk)}.

Step 5. Let vk+1 = vk + skdk. Update k = k + 1 and go to Step 2.

The second method is designed by Ding, Costa and Chen [11] in 1999. The flow

chart of the algorithm reads as follows.

Algorithm I.2 High Linking Method (Ding-Costa-Chen)

Step 1. Find a point v such that v0 �= 0 and J(v0) ≤ 0.

Step 2. Apply the Modified Mountain Pass Method to find a mountain pass solution

v1 and u1, u2 satisfying

J(v1 + tu1) < J(v1), J(v1 + tu2) < J(v1) for small t �= 0.
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Step 3. Find t1 > 0 and t2 < 0 such that J(v1 + t1u1) ≤ 0 and J(v1 + t2u1) ≤ 0, and

set g1 = v1 + t1u1 and g2 = v1 + t2u1.

Step 4. Find t3 > 0 such that J(v1 + t3u2) ≤ J(v1), and set g3 = v1 + t3u2.

Step 5. Construct the triangle � by

� = {λ1g1 + λ2g2 + (1 − λ1 − λ2)g3|λ1, λ2 ≥ 0, λ1 + λ2 ≤ 1},

and find v∗ ∈ � such that J(v∗) = maxg∈� J(g).

Step 6. If v∗ is an interior point of �, then go to next step. Otherwise, set u2 =

v∗ − v1 and go to Step 4.

Step 7. Set v2 = v∗, compute w = ∇J(v2).

Step 8. If ‖v‖ ≤ ε, then output v2 and stop. Otherwise, set u2 = (−v + v2)− v1 and

go to next step.

Step 9. Repeat the same procedures as Step 4-6 to construct a new triangle � and

find an interior point v∗ ∈ � such that J(v∗) = maxg∈� J(g).

Step 10. If J(v∗) < J(v2), go to Step 7. Otherwise, set w = 1
2
w and u2 = (−w +

v2) − v1, then go to Step 9.

The third method is established by Li and Zhou [17] in 2001. The flow chart of

the algorithm reads as follows.

Algorithm I.3 Local Minimax Method in the Hilbert Space (Li-Zhou)

Assume that u1, ..., un−1 are n−1 found critical point of J , L = [u1, ..., un−1] and

λ, ε are two positive numbers.

Step 1. Find an ascent direction v1
n ∈ L⊥ at un−1.
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Step 2. Solve for

u1
n =

n−1∑
i=1

t1i ui + t1nv
1
n = arg max

ti∈R,i=1,...,n−1,tn>0
J(

n−1∑
i=1

tiui + tnv
1
n)

with initial point (0, ..., 0, 1) and set k = 1.

Step 3. Compute the descent direction wk
n of J at uk

n, wk
n = −∇J(uk

n).

Step 4. If ‖wk
n‖ < ε, then stop and output uk

n. Otherwise, go to Step 5.

Step 5. Let vk
n(s) = vk

n+swk
n

‖vk
n+swk

n‖ and solve for

p(vk
n(s)) =

n−1∑
i=1

tki ui + tknv
k
n(s) = arg max

ti∈R,i=1,...,n
J(

n−1∑
i=1

tiui + tnv
k
n(s)).

with initial guess (tk1, t
k
2, ..., t

k
n). Set

sk
n = max{s|λ ≥ s‖wk

n‖ ≥ 0, J(p(vk
n(s))) − J(p(vk

n)) ≤ −1

2
stkn‖wk

n‖2}.

Let vk+1
n = vk

n(sk
n) = vk

n+sk
nwk

n

‖vk
n+sk

nwk
n‖ and uk+1

n = p(vk+1
n ) =

∑n−1
i=1 tk+1

i ui + tk+1
n vk+1

n .

k = k + 1 and go to Step 3.

C. A Class of Quasilinear Elliptic PDEs

All three numerical methods in Section B are for finding critical points in Hilbert

spaces. However, many problems in application have to be formulated as finding

critical points in Banach spaces. For example, the weak solutions of the following

class of quasilinear elliptic PDEs

⎧⎪⎨
⎪⎩

∆pu + f(x, u) = 0, in Ω

u = h, on ∂Ω,
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are the SCPs of some functional in Banach spaces where ∆p denotes the p-Laplacian

operator defined, for p > 1, by

∆pu = div(|∇u|p−2∇u) =
n∑

i=1

∂

∂xi

(|∇u|p−2 ∂u

∂xi

),

| · | is the Euclidean norm, f satisfies some standard conditions [20], h is a constant

and Ω is a domain in R
n. When p = 2, ∆p becomes the usual Laplacian operator

∆. This class of quasilinear elliptic PDEs (p �= 2) appears in non-Newtonian fluids,

some reaction-diffusion problems, flow through porous media, nonlinear elasticity,

glaceology and petroleum extraction [9]. It has also geometrical interest for p ≥ 2 [9].

D. Existence of Eigenpairs

Eigenpair problems constitute an important class of multiple CSCP problems. In this

section, some important existence results will be recalled. The first wellknown result

is of linear eigenpair problems.

Theorem I.5 (Courant Maximum-Minimum Principle, [28]) Consider the linear

eigenvalue problem

Au = λu, u ∈ H, λ ∈ R

with the aid of

±λ±
n

2
=

⎧⎪⎨
⎪⎩

supSk∈L±
n

infu∈Sk
±F (u),

0 L±
n .

(1.2)

for n = 1, 2, .... In this connection, we assume

(H1) H is a real separable Hilbert space with inner product 〈, 〉 and dim(H) = ∞.

The operator A : H → H is nonzero, linear, symmetric and compact. Denote

F (u) = 2−1〈Au, u〉, G(u) = 2−1〈u, u〉.
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(H2) S = {u ∈ H|‖u‖ = 1} and Sk = S ∩ Hk, where Hk is a k-dimensional linear

subspace of H.

(H3) Ln is the set of all Sk with k ≥ n and

L±
n = {Sk ∈ Ln| ± F (u) > 0 on Sk}.

Let ±λ±
n > 0 for + or −. Then the following four assertions hold:

(a) λ = λ±
k is an eigenvalue of A. All eigenvalues λ �= 0 of A can be obtained in this

way with the aid of (1.2).

(b) The multiplicity of λ is equal to the number of indices k for which λ±
k = λ.

(c) There exist eigenvectors u1, ..., un of A such that 〈ui, uj〉 = δij for i, j = 1, ..., n

and such that

±λ±
n

2
= min

u∈Sn

±F (u),

where Sn = S ∩ span{u1, ..., un} ∈ L±
n .

(d) λ±
n → 0 as n → ∞.

The second theorem is for nonlinear eigenpair problems.

Theorem I.6 ([28]) For fixed α > 0, consider the eigenvalue problem

F ′(u) = λG′(u), u ∈ Nα λ ∈ R, (1.3)

where the level set

Nα = {u ∈ B|G(u) = α}.

with the aid of

±λ±
n

2
=

⎧⎪⎨
⎪⎩

supSk∈K±
n

infu∈K ±F (u),

0 K±
n

(1.4)
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n = 1, 2, ..., where K±
n denotes the class of all compact symmetric subsets K of Nα

such that gen(K) ≥ n and ±F (u) > 0 on K and

±χ± =

⎧⎪⎨
⎪⎩

supremum over all m such that ±cm > 0,

0 for c±1 = 0.
(1.5)

In this connection, we assume

(H1) B is a real reflexive separable Banach space with dim(B) = ∞ and F,G : B → R

are even function functionals such that F,G ∈ C1(B, R) and F (0) = G(0) = 0.

In particular, it follows from this that F ′ and G′ are odd potential operators.

(H2) The operator F ′ is strongly continuous and F (u) �= 0, u ∈ c̄o(Nα) implies that

F ′(u) �= 0.

(H3) The operator G′ is uniformly continuous on bounded sets and satisfies

un ⇀ u, G′(un) → v implies un → u as n → ∞.

(H4) The level set Nα is bounded and

u �= 0 implies 〈G′(u), u〉 > 0, lim
t→∞

G(tu) = +∞,

and

inf
u∈Nα

〈G′(u), u〉 > 0.

Then the following five assertions hold:

(1) Existence of an eigenvalue. If ±c±n > 0 (+ or −), then (1.3) possesses a pair

(u±
m,−u±

m) of eigenvectors with the eigenvalue λ±
m �= 0 and F (u±

m) = c±m.

If F ′ and G′ are positive homogeneous, i.e., F ′(tu) = tF ′(u) and G′(tu) = tG′(u)

for all u ∈ B and t > 0, then c±m = αλ±
m.
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(2) Multiplicity. (1.3) has at least χ+ + χ− pairs (u,−u) of eigenvectors with eigen-

values that are different from zero.

If ±c±n = ±c±n+1 = · · · = ±c±n+p > 0, p ≥ 1 (+ or −), then the set of all eigen-

vectors of (1.3) such that F (u) = c±n has genus great than or equal to p + 1. In

particular, this set is infinite.

(3) Critical levels. ±∞ ≥ ±c±1 ≥ ±c±n ≥ · · · ≥ 0 and c±n → 0 as n → ∞.

(4) Infinitely many Eigenvalues. If χ+ = ∞ or χ− = ∞ and F (u) = 0, u ∈ c̄o(Nα)

implies 〈F ′(u), u〉 = 0, then there is a sequence {λn} of infinitely many distinct

eigenvalues for (1.3) such that λn → 0 as n → ∞.

(5) Weak convergence of eigenvectors. Assume that F (u) = 0, u ∈ c̄o(Nα) implies

u = 0. Then max(χ+, χ−) = ∞ and there is a sequence of eigenpairs (λn, un)

of (1.3) such that un ⇀ 0, λn → 0 as n → ∞ and λn �= 0 for all n.

Remark I.1 The symmetry of a subset and the genus of a symmetric subset need an

explanation.

(1) A subset K of a Banach space B is said to be symmetric iff u ∈ K implies

−u ∈ K.

(2) The genus of a symmetric subset K of a Banach space B, denoted as gen(K),

is defined as

〈1〉 gen(φ) = 0.

〈2〉 If K �= φ, gen(K) is the smallest natural number n ≥ 1 for which a zero-free

mapping f : K → Rn − 0, where f is odd and continuous, exists.

〈3〉 If K �= φ and no such n exists, gen(K) = +∞.
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E. Nonlinear Eigenpair Models

Many models in physics and chemistry are related to nonlinear eigenpairs. As exam-

ples, three models are presented.

Example 1.(Non-Newtonian Fluids [9]) The quasilinear elliptic equation

∆pu + λu = 0, p > 1, λ > 0, (1.6)

appears in the study of non-Newtonian fluids. Indeed, when studying the laws of

motion of fluid media, Newton fluids are usually considered to be those for which the

relation between the shear stress τ and the velocity gradient du
dx

(for simplicity we will

here restrict ourselves to the plane case) takes form

τ = µ
du

dx
. (1.7)

However, this approximation is satisfactory only for a limited number of actual fluid

media. Dispersive media treated according to a continuum model do not obey the

law given by (1.7). The motions of such non-Newtonian fluids are studied in rheology.

Usually (1.7) is substituted by the power rheological law

τ = µ|du

dx
|p−2du

dx
, p > 1. (1.8)

The quantities µ and p are the rheological characteristics of the medium. Media with

p > 2 are called dilatant fluids, and those with p < 2 are called pseudoplastics. When

p = 2, they are Newtonian fluids.

Example 2.(Singular equations [9]) The study of some reaction-diffusion problems

leads to formulations such as the following

⎧⎪⎨
⎪⎩

∆u + λu−k = 0 in Ω

u = 1 on ∂Ω
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where λ > 0 and 0 < k < 1. This eigenpair problem appears as the limiting case

of some models in heterogeneous chemical catalyst kinetics (Langmuir-Hinshelwood

model) where the equation is

∆u + λum(
ε + 1

ε + u
)m+k = 0 in Ω, (1.9)

with k > 0, m ≥ 1, λ > 0 and ε > 0 small, as well as in models in enzyme kinetics

∆u + λ
um

ε + um+k
= 0 in Ω. (1.10)

When ε → 0, the equations (1.9) and (1.10) become

∆u + λu−k = 0 in Ω.

Example 3.(p-Laplacian Operator [15]) The p-Laplacian operator has various appli-

cations, for instance, in stellar dynamic structure and in flows through porous media

when the D’Arcy’s law does not remain valid. The weighted eigenpair problem of the

p-Laplacian operator is defined as

⎧⎪⎨
⎪⎩

∆pu + λw|u|p−2u = 0, x ∈ Ω,

u = 0, ∈ ∂Ω

where w is a weight function, Ω is a bounded region and p > 1. When w ≡ 1, the

problem becomes the standard eigenpair problem of the p-Laplacian operator

⎧⎪⎨
⎪⎩

∆pu + λ|u|p−2u = 0, x ∈ Ω,

u = 0, ∈ ∂Ω.
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CHAPTER II

A MINIMAX METHOD FOR SSCPS IN BANACH SPACES

Assume that B is a Banach space and J ∈ C1(B, R). u∗ is critical point of J iff u∗

satisfies the Euler-Lagrange equation, i.e.,

∇J(u∗) = 0.

A. A Local Minmax Characterization for SSCPs

For a subspace B′ ⊆ B, denote SB′ = {v|v ∈ B′, ‖v‖ = 1} as the unit sphere in B′.

Assume that B = L ⊕ L′, where L (called a support) and L′ are closed subspaces of

B, and P : B → L′ is the corresponding linear projection with a bound M ≥ 1.

Definition II.1 A set-valued mapping P : SL′ → 2B is the peak mapping of J w.r.t.

L if ∀v ∈ SL′, P(v) is the set of all local maximum points of J in the subspace

[L, v] = {tv + w|w ∈ L, t ∈ R}. A single-valued mapping p : SL′ → B is a peak

selection of J w.r.t. L if

p(v) ∈ P (v), ∀v ∈ SL′ .

For a given v ∈ SL′, we say that J has a local peak selection w.r.t. L at v if there is

a neighborhood N (v) of v and a single-valued mapping p : N (v)∩ SL′ → B satisfying

p(u) ∈ P (u), ∀u ∈ N (v) ∩ SL′ .

Definition II.2 Let u ∈ B be a point s.t. ∇J(u) �= 0. For given θ ∈ (0, 1], a point

Ψ(u) ∈ B is a pseudo-gradient of J at u w.r.t. θ if

‖Ψ(u)‖ ≤ 1, 〈∇J(u), Ψ(u)〉 ≥ θ‖∇J(u)‖. (2.1)

Denote B̂ = {u ∈ B : ∇J(u) �= 0}. A pseudo-gradient flow of J with a constant θ is
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a continuous mapping Ψ : B̂ → B s.t. ∀u ∈ B̂, Ψ(u) satisfies (2.1).

Remark II.1 Note that the number 1 in (2.1) can be replaced by any number m ≥ 1,

since it can be absorbed by the constant θ to become 0 < θ
m

≤ 1.

Lemma II.1 Let 0 < θ < 1 be given. For v0 ∈ SL′, if p is a local peak selection of

J w.r.t. L at v0 s.t. ∇J(p(v0)) �= 0 and Ψ(p(v0)) ∈ B is a pseudo-gradient of J at

p(v0) w.r.t. the constant θ, then there exists a (modified) pseudo-gradient G(p(v0)) of

J at p(v0) w.r.t. the constant θ s.t.

(a) G(p(v0)) ∈ L′, 0 < ‖G(p(v0))‖ ≤ M where M ≥ 1 is the bound of the linear

projection P from B to L′;

(b) 〈∇J(p(v0)), G(p(v0))〉 = 〈∇J(p(v0)), Ψ(p(v0))〉;

(c) If Ψ(p(v0)) is the value of a pseudo-gradient flow Ψ(·) of J at p(v0), then G(·)
is continuous and G(p(v0)) is called the value of a modified pseudo-gradient flow

of J at p(v0).

Proof. Let G(p(v0)) = P(Ψ(p(v0))) ∈ L′. Then ‖G(p(v0))‖ ≤ M‖Ψ(p(v0))‖ ≤ M .

Denote Ψ(p(v0)) = ΨL(p(v0)) + G(p(v0)) for some vector ΨL(p(v0)) ∈ L. By the

definition of a peak selection p, we have 〈∇J(p(v0)), ΨL(p(v0))〉 = 0. Thus

〈∇J(p(v0)), G(p(v0))〉 = 〈∇J(p(v0)), Ψ(p(v0))〉 ≥ θ‖∇J(p(v0))‖ > 0.

Therefore G(p(v0))) �= 0 is a pseudo-gradient of J at p(v0) w.r.t. θ. The results

follow.

Lemma II.2 For each v ∈ X with ‖v‖ = 1, it holds

‖v − v − w

‖v − w‖‖ ≤ 2‖w‖
‖v − w‖ , ∀w ∈ B.



20

Proof. In fact,

‖v − v − w

‖v − w‖‖ =
‖v(‖v − w‖ − 1) + w‖

‖v − w‖ ≤ ‖v‖ | ‖v − w‖ − 1| + ‖w‖
‖v − w‖

=
| ‖v − w‖ − ‖v‖ | + ‖w‖

‖v − w‖ ≤ 2‖w‖
‖v − w‖ .

The next lemma is crucial, which shows the relation between the gradient of J

and the variation of a peak selection. It will be used to establish a local minmax

characterization of saddle points and to design a stepsize rule in a local minimax

algorithm.

Lemma II.3 For v0 ∈ SL′, if there is a local peak selection p of J w.r.t. L at v0

satisfying (1) p is continuous at v0, (2) d(p(v0), L) > 0 and (3) ∇J(p(v0)) �= 0, then

there exists s0 > 0 s.t. as 0 < s < s0

J(p(vs)) − J(p(v0)) < −sθ|t0|‖∇J(v0)‖
4

(2.2)

where p(v0) = t0v0 + w0 with t0 �= 0 and w0 ∈ L,

vs =
v0 − sign(t0)sG(p(v0))

‖v0 − sign(t0)sG(p(v0))‖

and G(p(v0)) is a modified pseudo-gradient of J at p(v0) as defined in Lemma II.1.

Proof. Since J ∈ C1(B, R), we have

J(p(vs) = J(p(v0)) + 〈∇J(p(v0)), p(vs) − p(v0)〉 + o(‖p(vs) − p(v0)‖). (2.3)

Since p is a peak selection, we have 〈∇J(p(v0)), v0〉 = 〈∇J(p(v0)), v〉 = 0, ∀v ∈ L.

Thus

〈∇J(p(v0)), p(vs) − p(v0)〉 = ts〈∇J(p(v0)), vs〉
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= −sign(t0)tss〈∇J(p(v0)), G(p(v0))〉
‖v0 − sign(t0)sG(p(v0))‖ = −sign(t0)tss〈∇J(p(v0)), Ψ(p(v0))〉

‖v0 − sign(t0)sG(p(v0))‖

by Lemma II.1 where p(vs) = tsvs + ws and ws ∈ L. When p is continuous at v0 and

B = L ⊕ L′, we have ts → t0 and ws → w0 as s → 0. Then, by the definition of a

pseudo-gradient, as s > 0 is small

〈∇J(p(v0)), p(vs) − p(v0)〉 ≤ − sθ|t0|
‖v0 − sign(t0)sG(p(v0))‖‖∇J(p(v0))‖. (2.4)

Hence, by (2.3) and (2.4), there is s0 > 0 s.t. as 0 < s < s0,

J(p(vs)) − J(p(v0)) < − sθ|t0|‖∇J(p(v0))‖
2‖v0 − sign(t0)sG(p(v0))‖ . (2.5)

Choose s > 0 small such that ‖v0 − sign(t0)sG(p(v0))‖ ≤ 2. Then

J(p(vs)) − J(p(v0)) < −sθ|t0|‖∇J(p(v0))‖
4

. (2.6)

The following theorem characterizes saddle points as local minimax solutions.

Theorem II.1 Let v0 ∈ SL′. Suppose that J has a local peak selection p w.r.t. L

at v0 satisfying (1) p is continuous at v0, (2) d(p(v0), L) > 0 and (3) v0 is a local

minimum point of J(p(·)). Then p(v0) is a critical point of J .

Proof. Suppose p(v0) is not a critical point, then, by Lemma II.3, there is s0 > 0 s.t.

J(p(vs)) < J(p(v0)) − sθ|t0|‖∇J(v0)‖
4

, ∀s ∈ (0, s0)

where p(v0) = t0v0 + w0 (t0 �= 0 and w0 ∈ L), vs =
v0 − sign(t0)sG(p(v0))

‖v0 − sign(t0)sG(p(v0))‖ and

G(p(v0)) is a modified pseudo-gradient of J with the constant θ at p(v0) as defined

in Lemma II.1. This contradicts the assumption that v0 is a local minimum point of

J(p(v)).
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The following Ekeland’s variational principle will be used later.

Lemma II.4 (Ekeland’s variational principle, [27]) Let X be a complete metric space

and J : X → R ∪ {+∞} be a lower semi-continuous functional bounded from below.

Then for any ε > 0 and x0 ∈ X with J(x0) < +∞, there is x̄ ∈ X such that

J(x̄) + εd(x0, x̄) ≤ J(x0) and J(x) + εd(x, x̄) > J(x̄), ∀x ∈ X and x �= x̄.

By Ekeland’s variational principle and the PS condition, we have the following

existence theorem.

Theorem II.2 Let J ∈ C1(B, R) satisfy the PS condition. If there is a peak selection

p of J w.r.t. L satisfying (1) p is continuous, (2) d(p(v), L) ≥ α,∀v ∈ SL′ for some

α > 0 and (3) infv∈SL′ J(p(v)) > −∞, then there is v0 ∈ SL′ s.t. p(v0) is a critical

point of J , and

J(p(v0)) = min
v∈SL′

J(p(v)).

Proof. Since SL′ is a closed subset and J(p(·)) is a continuous function on SL′ ,

bounded from below, by Ekeland’s variational principle, for any integer n, there is

vn ∈ SL′ s.t.

J(p(vn)) ≤ inf
v∈SL′

J(p(v)) +
1

n
(2.7)

and

J(p(v)) − J(p(vn)) ≥ −1

n
‖v − vn‖, ∀v ∈ SL′ , v �= vn. (2.8)

By Lemma II.3 and Lemma II.2, for some v ∈ SL′ and close to vn,

J(p(v)) − J(p(vn)) < −θd(p(vn), L)‖∇J(vn)‖
16M

‖v − vn‖.

Thus

‖∇J(p(vn))‖ <
16M

nθd(p(vn), L)
≤ 16M

nθα
. (2.9)
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By the PS condition, {p(vn)} has a subsequence, denoted again by {p(vn)}, converging

to a point u0 ∈ B. If denote p(vn) = tnvn + xn where tn ∈ R and xn ∈ L, then,

{tnvn} is convergent since B = L ⊕ L′. Hence, {|tn|} is convergent. Assume {tn}
is a convergent subsequence. Denote t0 = limn→∞ tn. Then, by our assumption (2),

|t0| ≥ α > 0. Thus, vn → v0 ∈ SL′ . Since p is continuous, by (2.9), p(v0) is a critical

point of J and by (2.7), J(p(v0)) = minv∈SL′ J(p(v)).

B. A Local Minimax Algorithm for SSCPs in Banach Spaces

1. Flow Chart of the Algorithm

Let u1, u2, ..., un−1 be n−1 previously found critical points of J , L = [u1, u2, ..., un−1],

B = L ⊕ L′. Given ε, λ > 0 and θ ∈ (0, 1). A flow chart of the algorithm reads:

Step 1: Let v1 ∈ SL′ be an increasing-decreasing direction at un−1.

Step 2: Set k = 1 and solve for

uk = p(vk) = tk0v
k + tk1u1 + · · · + tkn−1un−1

= arg max{J(t0v
k + t1u1 + · · · + tn−1un−1)|ti ∈ R, i = 0, 1, ..., n − 1}.

Step 3: Find a descent direction wk = −sign(tk0)G
k of J at uk, where Gk ∈ L′ is a

modified pseudo-gradient of J at uk = p(vk) with the constant θ as defined in

Lemma II.1.

Step 4: If ‖∇J(p(vk))‖ < ε, then output uk, stop. Otherwise, do Step 5.

Step 5: For each s > 0, let vk(s) = vk+swk

‖vk+swk‖ and use the initial point (tk0, t
k
1, ..., t

k
n−1)

to solve for

uk(s) = p(vk(s)) = arg max
{

J(t0v
k(s) +

n−1∑
i=1

tiui)|ti ∈ R, i = 0, 1, ..., n − 1
}

,
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then set uk+1 = p(vk+1) = p(vk(sk)) where

sk = max
m∈N

{s =
λ

2m
|2m > ‖wk‖, J(uk(s)) − J(uk) ≤ −θ

4
|tk0|s‖∇J(uk)‖}.

Step 6: Update k = k + 1 and go to Step 3.

Remark II.2 It is worthwhile making some remarks on the algorithm:

(a) If B is a Hilbert space, by taking L′ = L⊥ and Gk = ∇J(uk), it becomes Li-

Zhou’s algorithm.

(b) Step 5 will not stop until ‖∇J(uk)‖ < ε since by Lemma II.1, ∇J(uk) �= 0 implies

G(uk) �= 0.

(c) There are two key steps: (1) computation of a modified pseudo-gradient, (2)

optimization. (2) can be done by some standard optimization method. The

implementation of (1) will be addressed later.

(d) To implement Step 3, we can either follow a modified pseudo-gradient flow given

by Lemma II.1, i.e., to keep the continuity of Gk in uk or just find a modified

pseudo-gradient.

(e) The following theorem indicates that the algorithm is stable.

Theorem II.3 In the algorithm, if uk = p(vk) /∈ L, ∇J(uk) �= 0 and p is contin-

uous at vk ∈ SL′, then sk > 0 and uk+1 = p(vk(sk)) is well defined. Consequently

J(uk+1) < J(uk).

Proof. By the setpsize rule and Lemma II.3.
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2. Computation of Pseudo-Gradient

In this section, we present some formulas to compute a pseudo-gradient and a pseudo-

gradient flow in Lp(Ω) (p > 1). Their modified versions follow from a projection to a

subspace. Assume that Ω is a measurable space with measure µ and ‖ · ‖p represents

the norm in Lp(Ω). Let us recall some wellknown results.

Lemma II.5 ([10]) Let f, {fn} be in Lp(Ω), 1 ≤ p < ∞,

(a) if fn → f in Lp(Ω), then {fn} has a subsequence that converges to f pointwise

a.e.;

(b) if fn
a.e.→ f and ‖fn‖p → ‖f‖p, then fn → f in Lp(Ω).

Lemma II.6 Let p, q > 1 satisfy 1
p

+ 1
q

= 1 and f, fn ∈ Lq(Ω) s.t. fn → f . Then

sign(fn)|fn|
1

p−1 → sign(f)|f | 1
p−1 in Lp(Ω), where

sign(g)(x) =

⎧⎪⎨
⎪⎩

1 if g(x) ≥ 0,

−1 if g(x) < 0,
∀g ∈ Lq(Ω).

Proof. It suffices to show that any subsequence, denoted always by {sign(fn)|fn|
1

p−1},
has a subsequence that converges to sign(f)|f | 1

p−1 in Lp(Ω). Since fn → f in Lq(Ω),

by Lemma II.5, we have |fn|
1

p−1
a.e.→ |f | 1

p−1 . It follows,

sign(fn)(x)|fn(x)| 1
p−1

a.e.→ sign(f)(x)|f(x)| 1
p−1 .

Since 1
p

+ 1
q

= 1 and fn → f in Lq(Ω), it leads to

‖sign(fn)|fn|
1

p−1‖p
p = ‖fn‖q

q → ‖sign(f)|f | 1
p−1‖p

p = ‖f‖q
q.

By Lemma II.5, the proof is complete.



26

Theorem II.4 Let p ≥ 2 and 1
p

+ 1
q

= 1. Assume that J : Lp(Ω) → R is Fréchet

differentiable at f ∈ Lp(Ω) s.t. ∇J(f) �= 0. Let G(f) = sign(∇J(f))|∇J(f)| 1
p−1 .

Then

Ψ(f) =
G(f)

‖∇J(f)‖q−1
q

is a pseudo-gradient of J at f with the constant 1. If in addition, J is C1, then Ψ is

a pseudo-gradient flow of J with constant 1.

Proof. ‖Ψ(f)‖p = 1 can be seen from

‖G(f)‖p = (

∫
Ω

|∇J(f)| p
p−1 dµ)

1
p = ‖∇J(f)‖

q
p
q = ‖∇J(f)‖q−1

q .

On the other hand,

〈∇J(f), G(f)〉 =

∫
Ω

∇J(f)(x)G(f)(x)dµ =

∫
Ω

|∇J(f)(x)| p
p−1 dµ = ‖∇J(f)‖q

q.

Hence 〈∇J(f), Ψ(f)〉 = ‖∇J(f)‖q and Ψ(f) is a pseudo-gradient at f with the con-

stant 1.

To show Ψ is continuous. Let f0 ∈ Lp(Ω) with ∇J(f0) �= 0 and {fn} ⊆ Lp(Ω)

s.t. fn → f0. Since J ∈ C1(Lp(Ω), R), we have ∇J(fn) → ∇J(f0) in Lq(Ω) and

‖∇J(fn)‖q → ‖∇J(f0)‖q. Then Lemma II.6 leads to

G(fn) → G(f0) in Lp(Ω), i.e. Ψ(fn) → Ψ(f0) in Lp(Ω).

Theorem II.5 Let 1 < p < 2, 1
p

+ 1
q

= 1, µ(Ω) < ∞ and θ = max(1, (µ(Ω))
1
p
− 1

2 ). If

J : Lp(Ω) → R is Fréchet differentiable at f with ∇J(f) �= 0. Then

Ψ(f) =
∇J(f)

θ‖∇J(f)‖2
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is a pseudo-gradient of J at f with the constant θ−2. If in addition, J is C1, then Ψ

is a pseudo-gradient flow of J with the constant θ−2.

Proof. By the Hölder inequality, we have

‖∇J(f)‖p ≤ ‖∇J(f)‖2(µ(Ω))
1
p
− 1

2 or ‖Ψ(f)‖p ≤ 1. (2.10)

It follows

〈∇J(f), Ψ(f)〉 =

∫
Ω

∇J(f)(x)
∇J(f)(x)

θ‖∇J(f)‖2

dµ =
‖∇J(f)‖2

θ
≥ ‖∇J(f)‖p

θ2
.

Hence Ψ(f) = ∇J(f)
θ‖∇J(f)‖2

is a pseudo-gradient of J at f with the constant θ−2.

To show Ψ is continuous, let {fn} ⊂ Lp(Ω) s.t. fn → f in Lp(Ω). Since J ∈
C1(Lp(Ω), R), ∇J(fn) → ∇J(f) in Lq(Ω). It follows ∇J(fn) → ∇J(f) in Lp(Ω)

and ‖∇J(fn)‖2 → ‖∇J(f)‖2, since 1
p

+ 1
q

= 1, 1 < p < 2 < q and µ(Ω) < ∞. Hence

Ψ(fn) → Ψ(f) in Lp(Ω), i.e., Ψ is a pseudo-gradient flow of J with the constant θ−2.

In a general Banach space B, when ∇J(f) �= 0 is computed in B∗ at some f ∈ B,

a pseudo-gradient of J at f corresponding to a constant 0 < θ < 1 can be computed

through

sup
ψ∈B,‖ψ‖B=1

〈 ∇J(f)

θ‖∇J(f)‖B∗
, ψ〉,

which has an upper bound 1
θ
. It seems to us that it is extremely difficult, in this

case, to derive an explicit formula for computing a pseudo-gradient for a functional

J : W 1,p(Ω) → R. Instead we develop some numerical techniques to do the job in the

next section.
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C. Numerical Experiment to Quasilinear Elliptic PDEs

Consider solving the following quasilinear elliptic BVP for multiple solutions:

∆pu(x) + f(x, u(x)) = 0, x ∈ Ω, u ∈ B ≡ W 1,p
0 (Ω), p > 1, (2.11)

where Ω is an open bounded domain in R
n and ∆pu(x) = div(|∇u(x)|p−2∇u(x)) is

the nonlinear p-Laplacian differential operator, which has a variety of applications in

physical fields, such as in fluid dynamics when the shear stress �τ and the velocity

gradient ∇u of the fluid are related in the manner �τ(x) = r(x)|∇u|p−2∇u, where

p = 2, p < 2, p > 2 if the fluid is Newtonian, pseudoplastic, dilatant, respectively.

The p-laplacian operator also appears in the study of flow in a porous media (p = 3
2
),

nonlinear elasticity (p > 2) and glaciology (p ∈ (1, 4
3
)) [9]. So far people’s knowledge

about solutions to (2.11) is still very limited. We hope to examine the qualitative

behavior of solutions and find new phenomena through numerical investigation. We

have B∗ ≡ W−1,q
0 (Ω) where 1

p
+ 1

q
= 1. Under certain standard conditions on f , weak

solutions of (2.11) coincide with critical points of the functional

J(u) =
1

p

∫
Ω

|∇u(x)|pdx −
∫

Ω

F (x, u(x))dx where F (x, t) =

∫ t

0

f(x, s)ds. (2.12)

For u ∈ B, to find the gradient d = ∇J(u) ∈ B∗, for each v ∈ B, we have

〈d, v〉 =

∫
Ω

∇d(x)∇v(x) dx =

∫
Ω

−∆d(x)v(x) dx =
d

dt
|t=0J(u + tv)

=

∫
Ω

(
|∇u(x)|p−2∇u(x)∇v(x) − f(x, u(x))v(x)

)
dx

=

∫
Ω

(−∆pu(x) − f(x, u(x)))v(x)dx.
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Thus d = ∇J(u) can be computed through solving the linear elliptic equation

⎧⎪⎨
⎪⎩

∆d(x) = ∆pu(x) + f(x, u(x)), x ∈ Ω,

d(x) = 0, x ∈ ∂Ω.
(2.13)

Where since ∆pu(x) + f(x, u(x)) ∈ W−1,q
0 (Ω), we have d ∈ W 1,q

0 (Ω). When u = p(v)

for some v ∈ SL′ , by the definition of a peak selection, d = ∇J(u) satisfies

〈d, w〉 =

∫
Ω

∇d(x)∇w(x) dx = 0, ∀w ∈ L,

i.e., d = ∇J(u) ⊥ L. In our numerical examples, we check the ratio

γ =
‖d‖2

2

‖d‖p · ‖d‖q

, (2.14)

where ‖ · ‖r is the norm in W 1,r(Ω). γ ≤ 1 by the Hölder inequality. If γ > α > 0,

then G(u) = d
‖d‖p

∈ L′ is a modified pseudo-gradient of J at u as in Lemma II.1.

It is interesting to point out that although we have not been able to analytically

prove γ > α > 0, we can numerically check this ratio in each computation. All our

numerical examples show that the ratio γ is a way above 0. For p > 2, since B ⊂ B∗,

we define L′ = L⊥ = {v ∈ B : 〈u, v〉 = 0,∀u ∈ L}. For p < 2, ∇J(u) ∈ B∗ ⊂ B, it

can be used directly in the algorithm.

Next, we apply our numerical minimax algorithm to find multiple solutions for

the p-Emden-Fowler Equation:

∆pu(x) + |u(x)|q−1u(x) = 0, x ∈ Ω, u ∈ W 1,p
0 (Ω) (2.15)

and the p-Henon Equation:

∆pu(x) + |x −�1|r|u(x)|q−1u(x) = 0, x ∈ Ω, u ∈ W 1,p
0 (Ω) (2.16)

where | · | is the Euclidean norm, �1 = (1, ..., 1), 1 < p < q + 1 < p∗ with p∗ = np
n−p

for
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p < n and p∗ = ∞ for n ≤ p, and n is the dimension of the domain space. In our

computation, Ω = [0, 2] × [0, 2] ⊂ R
2.

Note that the right-hand-side of (2.13) involves an evaluation of a higher-order

derivative of a numerical solution u, i.e., ∆pu(x), which causes difficulty for using

linear finite elements. To solve the problem, we utilize a weak form of (2.13)

∫
Ω

∆d(x)v(x) dx =

∫
Ω

(∆pu(x) + f(x, u(x))) v(x) dx ∀v ∈ W 1,p
0 (2.17)

and the identity

∫
Ω

∆pu(x)v(x) dx = −
∫

Ω

|∇u(x)|p∇v(x) dx ∀v ∈ W 1,p
0 (2.18)

to replace the higher-order derivative term by a first-order derivative term. Thus

linear finite elements can be applied. Here either 400×400 or 800×800 linear square

elements are used. Since different values of p have different physical applications,

we will use different values for p also for the parameter r to examine their solution

profiles. We use ε = ‖∇J(uk)‖ < 10−3 to stop the iterations. The profiles of solutions

are presented as follows, Fig.1-Fig.18.
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Fig. 1. Equation (2.15) with p = 3.0, q = 7.0. The ground state with J = 4.4829 (left)

and a solution with J = 40.9568 (right).
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Fig. 2. Same equation as Fig. 1. Two solutions with J = 34.4457 (left) and

J = 181.7966 (right).
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Fig. 3. Same equation as Fig. 1. Two solutions with J = 1124.8750 (left) and

J = 124.8750 (right).
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Fig. 4. Same equation as Fig. 1, a solution with J = 228.2925 (left). Equation (2.15)

with p = 2.5, q = 5.0, the ground state with J = 5.9398 (right).
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Fig. 5. Equation (2.15) with p = 2.5, q = 5.0. Two solutions with J = 40.1451 (left)

and J = 35.4001 (right).
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Fig. 6. Same equation as Fig. 5. Two solutions with J = 149.7131 (left) and

J = 115.84532 (right).
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J = 193.5180 (right).
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Fig. 8. Equation (2.15) with p = 1.75, q = 3.0. The ground state with J = 7.0745

(left) and a solution with J = 25.4653 (right).
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Fig. 9. Same equation as Fig. 8. Two solutions with J = 24.0274 (left) and

J = 59.4209 (right).
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Fig. 10. Same equation as Fig. 8. Two solutions with J = 61.1246 (left) and

J = 70.6261 (right).
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Fig. 11. Same equation as Fig. 8, a solutions with J = 77.2337 (left). The ground

state of (2.16) with J = 4.48854, p = 3.0, q = 7.0, r = 0.001 (right).
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Fig. 12. Two ground states of (2.16) with J = 5.947472, p = 2.5, q = 5.0, r = 0.001

(left) and with J = 7.082540, p = 1.75, q = 3.0, r = 0.001 (right).
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Fig. 13. Equation (2.16) with p = 3.0, q = 7.0, r = 7.0. A ground state with

J = 60.4600 (left) and a solution with J = 116.2310 (right).
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Fig. 14. Same equation as Fig. 13. Two solutions with J = 118.9060 (left) and

J = 219.8671 (right).
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Fig. 15. Equation (2.16) with p = 2.5, q = 5.0, r = 7.0. A ground state with

J = 54.2139 (left) and a solution with J = 105.6687 (right).
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Fig. 16. Same equation as Fig. 15. Two solutions with J = 107.1374 (left) and

J = 203.5262 (right).
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Fig. 17. Equation (2.16) with p = 1.75, q = 3.0, r = 7.0. A ground state with

J = 15.7588 (left) and a solution with J = 31.3832 (right).
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Fig. 18. Same as Fig. 17. Two solutions with J = 31.4178 (left) and J = 62.2163

(right).

Remark II.3 It is to the best of our knowledge that the above solutions are the first

time to be computed and visualized. Several interesting phenomena have been ob-

served, e.g., for fixed p and q and let r increase, the ground state breaks its symmetry,

compare Fig. 11 with Fig 13, Fig. 12 with Figs 15 and 17. Once the symmetry is

broken, it leads to four asymmetric ground states. Those phenomena are still open

to be analytically verified.
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Table.I and Table.II show some argument and symmetry used in the algorithm.

Table I. γmin is the minimum among ratios defined by (2.14) in the last 10 iterations

of the computation for each solution and L is the support in the computation.

Solution γmin L Solution γmin L

left, Fig.1 (u1) 0.88 {0} right, Fig.6 0.93 {0}
right, Fig.1 0.93 {u1} left, Fig.7 0.92 {0}
left, Fig.2 0.65 {u1} right, Fig.7 0.91 {u2}

right, Fig.2 0.73 {0} left, Fig.8 (u3) 0.90 {0}
left, Fig.3 0.83 {0} right, Fig.8 (u4) 0.96 {u3}

right, Fig.3 0.88 {0} left, Fig.9 0.91 {u3}
left, Fig.4 0.74 {u1} right, Fig.9 0.93 {0}

right, Fig.4 (u2) 0.95 {0} left, Fig.10 0.98 {u3, u4(x, y), u4(y, x)}
left, Fig.5 0.97 {u2} right, Fig.10 0.94 {0}

right, Fig.5 0.98 {u2} left, Fig.11 0.91 {u3}
left, Fig.6 0.91 {0} right, Fig.11 {0}

Fig.12∼Fig.18 {0}
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Table II. Symmetry listed is used in the computation for each solution.

Solutions Symmetry

right, Fig.2; left, Fig.6; right, Fig.9 locally odd about x = 2
3
, 4

3

left, Fig.3; right, Fig.6 odd about x = 1, y = 1

right, Fig.3; left, Fig.7; right, Fig.10 odd about y = x, x + y = 2

left, Fig.4; right, Fig.7; left, Fig.11 4-rotation

right, Fig.13; right, Fig.15; right, Fig.17 even about x = 1

left, Fig.14; left, Fig.16; right, Fig.18 even about x + y = 2

right, Fig.14; right, Fig.16; right, Fig.18 4-rotation
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CHAPTER III

CONVERGENCE OF THE 1ST MINIMAX ALGORITHM

For a subspace B′ ⊆ B, denote SB′ = {v|v ∈ B′, ‖v‖ = 1}. Assume that B = L ⊕ L′

for some closed subspaces L and L′ and P is the corresponding linear projection

operator B → L′ with bound M ≥ 1. For each v ∈ SL′ , let [L, v] = {tv + w|w ∈
L, t ∈ R}.

Definition III.1 A set-valued mapping P : SL′ → 2B is the L-⊥ mapping of J if

∀v ∈ BL′ , P (v) = {u ∈ [L, v] : 〈∇J(u), w〉 = 0,∀w ∈ [L, v]}. A single-valued mapping

p : SL′ → B is an L-⊥ selection of J if p(v) ∈ P (v),∀v ∈ SL′ . For a given v ∈ SL′ ,

we say that J has a local L-⊥ selection at v if an L-⊥ selection p is locally defined

near v.

Lemma III.1 If J is C1, then the graph G = {(u, v) : v ∈ SL⊥ , u ∈ P (v) �= ∅} is

closed.

Proof. Let (un, vn) ∈ G and (un, vn) → (u0, v0). We have un ∈ [L, vn], ∇J(un) ⊥
[L, vn] and un = tnvn + vL

n → u0 for some scalar tn and point vL
n ∈ L. Denote

u0 = u′
0+uL

0 for some u′
0 ∈ L′ and uL

0 ∈ L. It follows vL
n−uL

0 = un−u0−P(un−u0) → 0

and tnvn − u′
0 = P(un − u0) → 0, i.e., tnvn → u′

0 = t0v0 for some scalar t0, because

vn → v0. Thus un → u0 = t0v0 + uL
0 ∈ [L, v0] and ∇J(u0) ⊥ [L, v0] because J is C1.

Therefore v0 ∈ SL⊥ and u0 ∈ P (v0), i.e., (u0, v0) ∈ G.

It is clear that if P is the peak mapping of J w.r.t. L, then P is the L-⊥ mapping

of J . This generalization exceeds the scope of a minimax principle, the most popular

approach in critical point theory. It enables us to treat non-minimax type saddle

points, such as the wellknown monkey saddle, or a problem without a mountain pass

structure at all. See Example 2.1 in [29].
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Lemma III.2 Let 0 < θ < 1 be given. For v0 ∈ SL′, if p is a local L-⊥ selection of

J at v0 s.t. ∇J(p(v0)) �= 0 and Ψ(p(v0)) ∈ B is a pseudo-gradient of J at p(v0) w.r.t.

θ, then there exists a (modified) pseudo-gradient G(p(v0)) of J at p(v0) w.r.t. θ s.t.

(a) G(p(v0)) ∈ L′, 0 < ‖G(p(v0))‖ ≤ M where M ≥ 1 is the bound of the linear

projection P from B to L′;

(b) 〈∇J(p(v0)), G(p(v0))〉 = 〈∇J(p(v0)), Ψ(p(v0))〉;

(c) If Ψ(p(v0)) is the value of a pseudo-gradient flow Ψ(·) of J at p(v0), then G(·)
is continuous and G(p(v0)) is called the value of a modified pseudo-gradient flow

of J at p(v0).

Lemma III.3 For v0 ∈ SL′, if J has a local L-⊥ selection p at v0 satisfying (1) p is

continuous at v0, (2) d(p(v0), L) > α > 0 and (3) ∇J(p(v0)) �= 0. Then, there exists

s0 > 0 such that for 0 < s < s0

J(p(v(s))) − J(p(v0)) < −θs

4
|t0|‖∇J(p(v0))‖ (3.1)

where p(v0) = t0v0+w0 for some t0 ∈ R,w0 ∈ L, v(s) =
v0 − sign(t0)sG(p(v0))

‖v0 − sign(t0)sG(p(v0))‖ and

G(p(v0)) is a modified pseudo-gradient of J with θ at p(v0) as defined in Lemma III.2.

The proof of the above two lemmas can follow a similar argument of Lemma II.1 and

II.3. The inequality in (3.1) will be used to define a stepsize rule for the algorithm.

We have

Theorem III.1 Let v0 ∈ SL′. Assume that J has a local L-⊥ selection p at v0 such

that (1) p is continuous at v0, (2) d(p(v0), L) > 0 and (3) v0 is a local minimum point

of J(p(v)). Then, p(v0) is a critical point of J .
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A. A Unified Convergence Result

In this section, we prove a unified and abstract convergence result which is indepen-

dent of the algorithm. This result is designed to cover several different cases for the

algorithm.

Denote

K = {u ∈ B|∇J(u) = 0} and Kc = {u ∈ B|∇J(u) = 0, J(u) = c}.

If J satisfies the PS condition, Kc is a compact set. Now we are ready to prove an

abstract convergence result.

Theorem III.2 Let V ⊂ B be open and U = V ∩SL′ �= ∅. Assume that J ∈ C1(B, R)

satisfies the PS condition,

(1) p is a continuous L-⊥ selection of J in Ū , where Ū is the closure of U on SL′,

(2) infv∈U d(p(v), L) > α > 0,

(3) infv∈∂Ū J(p(v)) > c = infv∈U J(p(v)) > −∞, where ∂Ū is the boundary of Ū on

SL′.

Then, Kp
c = p(U) ∩ Kc �= ∅ and for any {vk} ⊂ U with J(uk) → c where uk = p(vk),

(a) ∀ε > 0, there is k̄ > 0 such that d(Kp
c , uk) < ε, ∀k > k̄;

(b) If in addition, ∇J(p(·)) is Lipschitz continuous in U , then there is a constant C

such that ‖∇J(uk)‖ ≤ C(J(uk) − c)
1
2 .

Proof. Define

Ĵ(p(v)) =
{ J(p(v)) v ∈ Ū ,

+∞ v /∈ Ū .
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Then, Ĵ(p(·)) is lower semicontinuous and bounded from below on the complete metric

space SL′ . Let {vk} ⊂ U be any sequence such that J(p(vk)) → c. By our assumption

(c), such sequence always exists. Denote uk = p(vk). Applying Ekeland’s variational

principle to Ĵ(p(·)), for every vk ∈ U and δk = (J(uk) − c)
1
2 , there is v̄k ∈ SL′ such

that

Ĵ(p(v̄k)) − Ĵ(p(v)) ≤ δk‖v̄k − v‖, ∀v ∈ SL′ (3.2)

Ĵ(p(v̄k)) − Ĵ(p(vk)) ≤ −δk‖v̄k − vk‖. (3.3)

By the definition of Ĵ(p(·)) and assumptions on p, we have v̄k ∈ Ū ,

J(p(v̄k)) − J(p(v)) ≤ δk‖v̄k − v‖, ∀v ∈ SL′ (3.4)

J(p(v̄k)) − J(p(vk)) ≤ −δk‖v̄k − vk‖. (3.5)

It follows c ≤ J(p(v̄k)) ≤ J(uk) − δk‖v̄k − vk‖, or

‖v̄k − vk‖ ≤ δ
1
2
k . (3.6)

and d(L, p(v̄k)) > α when k is large. Then J(p(vk)) → c implies J(p(v̄k)) → c. By

condition (3), we have v̄k ∈ U for large k. For those large k, if ∇J(p(v̄k)) �= 0, by

Lemma II.3, when s is small,

J(p(v̄k(s))) − J(p(v̄k)) ≤ − αθ

8M
‖∇J(p(v̄k))‖‖v̄k(s) − v̄k‖

where v̄k(s) = v̄k+sw̄k

‖v̄k+sw̄k‖ ∈ U , w̄k = −sign(tk0)G(p(v̄k))), p(v̄k) = tk0 v̄k + uk
L for some

uk
L ∈ L and G(p(v̄k)) is a modified pseudo-gradient of J at p(v̄k). Hence

‖∇J(p(v̄k))‖ ≤ 16M

αθ
δ

1
2
k (3.7)

which implies ∇J(p(v̄k)) → 0 and then ∇J(p(vk)) → 0 by (3.6). {J(p(vk))} is already
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bounded. By the PS condition, {uk} has a subsequence that converges to a critical

point u∗. It is clear that J(u∗) = c and u∗ ∈ Kp
c �= ∅. Let β be any limit point

of {d(Kp
c , uk)} and uki

= p(vki
) ∈ {uk} such that limi→∞ d(Kp

c , uki
) = β. By the

PS condition, {p(v̄ki
)} has a subsequence that converges to a critical point ū. Again

J(ū) = c and ū ∈ Kp
c , i.e., β = 0. Thus conclusion (a) holds.

If in addition, ∇J(p(·)) is Lipschitz continuous in U with a Lipschitz constant

�1, from (3.6) and (3.7), we have

‖∇J(p(vk))‖ ≤ ‖∇J(p(v̄k))‖ + ‖∇J(p(vk)) −∇J(p(v̄k))‖

≤ 16M

αθ
δ

1
2
k + �1‖v̄k − vk‖ ≤ (

16M

αθ
+ �1)(J(uk) − c)

1
2 .

Corollary III.1 Let J ∈ C1(B, R) satisfy the PS condition, V1 and V2 be open in L′

with ∅ �= U2 ≡ V2 ∩ SL′ ⊂ V1 ∩ SL′ ≡ U1. If p is a continuous L-⊥ selection of J in

U1 with

(1) infv∈U1 d(p(v), L) ≥ α > 0, c = infv∈U1 J(p(v)) > −∞ and Kp
c = p(U1)∩K ⊂ Kc,

(2) there is d > 0 with

inf{J(p(v))|v ∈ U1, d(v, ∂U1) ≤ d} = a > b = sup{J(p(v))|v ∈ U2},

(3) given {vk} such that v1 ∈ U2, ‖vk+1 − vk‖ < d, J(uk+1) < J(uk) and {uk} has a

subsequence that converges to a critical point u0, where uk = p(vk). Then

(a) ∀ε > 0, there is k̄ > 0 such that d(Kp
c , uk) < ε, ∀k > k̄;

(b) If in addition, ∇J(p(·)) is Lipschitz continuous in U1, then there is a constant

C such that ‖∇J(uk)‖ ≤ C(J(uk) − c)
1
2 .

Proof. First, we prove that vk ∈ U1 and d(vk, ∂U1) > d, k = 1, 2, .... In fact, if
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vk ∈ U1, d(vk, ∂U1) > d and J(uk) ≤ b, then vk+1 ∈ U1 and J(uk+1) < b, i.e., vk+1 ∈ U1

and d(vk+1, ∂U1) > d. Thus, for v1 ∈ U2, vk ∈ U1 and d(vk, ∂U1) > d, k = 1, 2, ....

Since Kp
c = p(U1) ∩ K ⊂ Kc and {uk} has a subsequence that converges to a critical

point u0, we have u0 ∈ Kp
c �= ∅. Denote U = {v ∈ U1|d(v, ∂U1) > d}. Then by the

monotonicity of {J(uk)}, we have J(uk) → c = infv∈U J(p(v)) as k → ∞, and

inf
v∈∂Ū

J(p(v)) ≥ a > b ≥ J(p(v1)) ≥ c = inf
v∈U

J(p(v)).

Thus all the assumptions of Theorem III.2 are satisfied and the conclusions follow.

B. A Min-Orthogonal Algorithm & Subsequence Convergence

Definition III.2 Let v0 ∈ SL′ and p be a local L-⊥ selection of J at v0 with ∇J(p(v0))

�= 0. A point w ∈ L′ is a descent direction of J(p(·)) at v0 if there is s0 > 0 such that

J(p(v0(s))) < J(p(v0)), ∀ 0 < s < s0 where v0(s) =
v0 + sw

‖v0 + sw‖ .

The local min-orthogonal characterization of a saddle point, Theorem III.1, sug-

gests to devise the following local min-orthogonal algorithm.

Assume that L = [u1, u2, ..., un−1] where u1, u2, ..., un−1 are n−1 previously found

critical points of J . For given λ, ε > 0 and θ ∈ (0, 1). Let B = L ⊕ L′.

Step 1: Let v1 ∈ SL′ be an ascent-descent direction at un−1.

Step 2: Set k = 1. Solve for uk ≡ p(vk) ≡ tk0vk + tk1u
1 + · · · + tkn−1u

n−1 such that

tk0 �= 0,

〈∇J(p(vk)), vk〉 = 0 and 〈∇J(p(vk)), u
i〉 = 0, i = 1, 2, ..., n − 1.

Step 3: Find a descent direction wk of J(p(·)) at vk.

Step 4: If ‖∇J(uk)‖ ≤ ε, then output uk = p(vk), stop. Otherwise, do Step 5.
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Step 5: For each s > 0, denote vk(s) =
vk + swk

‖vk + swk‖ and set vk+1 = vk(sk) where

sk = max{ λ

2m
|m ∈ N, 2m > ‖wk‖, J(p(vk(

λ

2m
)))−J(uk) < −θ|tk0|

4
(

λ

2m
)‖∇J(uk)‖}.

Step 6: Update k = k + 1 and go to Step 3.

Remark III.1 About the algorithm, we need point out the following facts.

(1) In Step 2, one way to solve the equations while satisfying the nondegenerate

condition tk0 �= 0 is to find a local maximum point uk of J in the subspace

[L, vk], i.e., uk = p(vk) and p becomes a peak selection of J w.r.t. L.

(2) In Step 3, there are many different ways to select a descent direction wk. How-

ever, when a descent direction is selected, a corresponding stepsize rule in Step 5

has to be designed such that it can be achieved and leads to converge to a critical

point. For example, when a negative modified pseudo-gradient flow −Gk, or a

negative modified pseudo-gradient is used as a descent direction, a positive step

size sk for the current stepsize rule in Step 5 can always be obtained. In some

case, when the negative gradient −∇J(p(vk)) is used as a descent direction, the

stepsize rule in Step 5 has to be modified as in Case 3 below.

Now let us first assume that a negative modified pseudo-gradient (flow) is used

as a descent direction.

Definition III.3 For each v ∈ SL′ with ‖∇J(p(v))‖ �= 0, write p(v) = t0v + vL for

some vL ∈ L and define the stepsize at v as

s(v) = max
λ≥s>0

{s|λ > s‖w‖, J(p(v(s))) − J(p(v)) ≤ −1

4
θ|t0|s‖∇J(p(v))‖}

where

v(s) =
v + sw

‖v + sw‖ , w = −sign(t0)G
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and G is either a modified pseudo-gradient of J with θ at p(v) or the value of a

modified pseudo-gradient flow of J with θ at p(v).

Then it is easy to check that 1
2
s(vk) ≤ sk ≤ s(vk) and by Lemma 3.1 we have

Lemma III.4 If p is a local L-⊥ selection of J at v ∈ SL′ such that (1) p is contin-

uous at v, (2) d(p(v), L) > 0 and (3) ∇J(p(v)) �= 0, then s(v) > 0.

To verify the condition that {uk} has a subsequence that converges to a critical

point in Corollary III.1, let us make the following uniform stepsize assumption for

{uk} and then verify it for different cases.

(H) if v0 ∈ SL′ with ∇J(p(v0)) �= 0 and uk → p(v0), then there is s0 > 0 such that

s(vk) ≥ s0 when k is large.

Theorem III.3 Let J ∈ C1(B, R) satisfy the PS condition and p be an L-⊥ selection

of J such that (1) p is continuous on SL′, (2) inf1≤k<∞ d(p(vk), L) ≥ α > 0,

(3) inf1≤k<∞ J(p(vk)) > −∞, (4) {p(vk)} satisfies Assumption (H), then

(a) {vk}∞k=1 has a subsequence {vki
} such that uki

= p(vki
) converges to a critical point

of J;

(b) if a subsequence uki
→ u0 as i → ∞, then u0 = p(v0) is a critical point of J .

Proof. (a) By the stepsize rule and Lemma II.2, for k = 1, 2, ..., we have

J(uk+1) − J(uk) ≤ −1

4
θαsk‖∇J(p(vk))‖ ≤ − 1

16M
θα‖vk+1 − vk‖‖∇J(p(vk))‖. (3.8)

Suppose that there is δ > 0 such that ‖∇J(p(vk))‖ ≥ δ for any k. From (3.8), we

have

J(uk+1) − J(uk) ≤ − 1

16M
θαδ‖vk+1 − vk‖, ∀k = 1, 2, ... (3.9)



50

Adding up (3.9) gives

lim
k→∞

J(uk) − J(u1) =
∞∑

k=1

[J(uk+1) − J(uk)] ≤ − 1

16M
θαδ

∞∑
k=1

‖vk+1 − vk‖, (3.10)

i.e., {vk} is a Cauchy sequence. Thus vk → v̂ ∈ SL′ . By the continuity of p,

‖∇J(p(v̂))‖ ≥ δ > 0. On the other hand, adding up (3.8) gives

lim
k→∞

J(uk) − J(u1) ≤ −1

4
θα

∞∑
k=1

sk‖∇J(p(vk))‖ ≤ −1

4
θαδ

∞∑
k=1

sk,

or sk → 0 as k → ∞. It leads to a contradiction to assumption (4). Therefore,

there is a subsequence {vki
} such that ‖∇J(p(vki

))‖ → 0 as i → ∞ and {J(p(vki
))}

is convergent. By the PS condition, {p(vki
)} has a subsequence that converges to a

critical point u0.

(b) Suppose u0 = p(v0) is not a critical point. Then there is δ > 0 such that

‖∇J(uki
)‖ > δ, i = 1, 2, .... Similar to (3.8), we have

J(uki+1) − J(uki
) ≤ −1

4
θαski

‖∇J(uki
)‖ < −1

4
θαδski

.

Since
∑∞

k=1[J(uk+1)−J(uk)] = limk→∞ J(uk)−J(u1), limi→∞(J(uki+1)−J(uki
)) = 0.

Hence, lim
i→∞

ski
= 0. It leads to a contradiction to Assumption (H). Thus u0 is a

critical point.

First, we discuss case 1, i.e., use a negative modified pseudo-gradient flow as a

descent direction.

In Step 3 of the algorithm we choose wk = −sign(tk0)G(p(vk)) where G(p(vk))

is the value of a modified pseudo-gradient flow of J at p(vk) = tk0vk + vL
k for some

vL
k ∈ L.

Lemma III.5 If p is a local L-⊥ selection of J at v0 ∈ SL′ such that (1) p is con-

tinuous at v0, (2) d(p(v0), L) > 0 and (3) ∇J(p(v0)) �= 0, then Assumption (H) is
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satisfied, or, there exist ε, s0 > 0 such that for each v ∈ SL′ with ‖v − v0‖ < ε,

J(p(v(s0))) − J(p(v)) < −s0θ|tv|
4

‖∇J(p(v))‖

where v(s0) =
v+sign(tv)s0G(p(v))

‖v+sign(tv)s0G(p(v))‖ , p(v) = tvv +wv for some w ∈ L and G(p(v)) is the

value of a modified pseudo-gradient flow of J at p(v) with constant θ.

Proof. By Lemma III.4, there is s̄ > 0 such that as 0 < s < s̄

J(p(v0(s))) − J(p(v0)) < −sθ|t0|
4

‖∇J(p(v0))‖ (3.11)

where v0(s) = v0−sign(t0)sG(p(v0))
‖v0−sign(t0)sG(p(v0))‖ and p(v0) = t0v0 + w0 for some w0 ∈ L. Actually,

for fixed s, the two sides of (3.11) are continuous in v0. Thus, there are ε, s0 > 0 such

that

J(p(v(s0))) − J(p(v)) < −s0θ|tv|
4

‖∇J(p(v))‖, ∀v ∈ SL′ with ‖v − v0‖ ≤ ε.

Second, we discuss case 2, i.e., use a negative modified pseudo-gradient as a

descent direction.

In Step 3 of the algorithm we choose wk = −sign(tk0)G(p(vk)) where G(p(vk))

is a modified pseudo-gradient of J at p(vk) = tk0vk + vL
k for some vL

k ∈ L. Since

pseudo-gradients may be chosen from different pseudo-gradient flows, we lost the

continuity. To compensate the loss, we assume that an L-⊥ selection p of J is Lipschitz

continuous.

Lemma III.6 Let p be a local L-⊥ selection of J at v0 ∈ SL′. If (1) p is Lipschitz

continuous in a neighborhood of v0, (2) d(p(v0), L) > 0 and (3) ∇J(p(v0)) �= 0, then
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Assumption (H) is satisfied, or there are ε, s0 > 0 such that

J(p(v(s0))) − J(p(v)) < −1

4
s0θ|tv|‖∇J(p(v))‖, ∀v ∈ BL′ with ‖v − v0‖ < ε

where

v(s0) =
v − sign(tv)s0G(p(v))

‖v − sign(tv)s0G(p(v))‖ , p(v) = tvv + vL for some vL ∈ L

and G(p(v)) is a modified pseudo-gradient of J at p(v) with constant θ.

Proof. First, denote p(v(s)) = tsvv(s) + wv(s) for some wv(s) ∈ L, we have

J(p(v(s)))−J(p(v)) = 〈∇J(p(v))+(∇J(ζ(v, s))−∇J(p(v))), p(v(s))−p(v)〉 (3.12)

where ζ(v, s) = (1 − λ)p(v) + λp(v(s)) for some λ ∈ [0, 1]. By assumption (1) and

Lemma II.2,

‖p(v(s)) − p(v)‖ ≤ �‖v(s) − v‖ ≤ 2�s‖G(p(v))‖
‖v − sign(tv)sG(p(v))‖ ≤ 4�Ms. (3.13)

On the other hand, by the definition of an L-⊥ selection of J , as s > 0 is small and

for any v close to v0, denote v(s) =
v − sign(tv)sG(p(v))

‖v − sign(tv)sG(p(v))‖ , we have

〈∇J(p(v)), p(v(s)) − p(v)〉 = −sign(tv)t
s
vs〈∇J(p(v)), G(p(v))〉

‖v − sign(tv)sG(p(v))‖
= −|tsv|s〈∇J(p(v)), Ψ(p(v))〉

‖v − sign(tv)sG(p(v))‖ ≤ −sθ|tv|‖∇J(p(v))‖
2

< 0, (3.14)

|〈∇J(ζ(v, s)) −∇J(p(v)), p(v(s)) − p(v)〉|

≤ ‖∇J(ζ(v, s)) −∇J(p(v))‖ ‖p(v(s)) − p(v)‖ ≤ sθ|tv|‖∇J(p(v))‖
4

(3.15)

where in the last inequality, since J is C1 and by assumptions (2) and (3), we have

‖∇J(ζ(v, s)) −∇J(p(v))‖ ≤ θ|tv|‖∇J(p(v))‖
16�M

. (3.16)
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By (3.12) there exist s0, ε > 0 such that

J(p(v(s0))) − J(p(v)) ≤ −s0θ|tv|‖∇J(p(v))‖
4

, ∀v ∈ SL′ with ‖v − v0‖ < ε.

(3.17)

Finally, we discuss case 3, i.e., use a practical technique for a descent direction.

To solve a class of quasilinear elliptic PDEs, some very useful practical techniques

are developed in Chapter II for numerical implementation to compute descent search

directions. Let B = W 1,p
0 (Ω) = L⊕L′ for some closed subspaces L,L′ in B, p > 1 and

B∗ = W−1,q
0 (Ω) with 1

p
+ 1

q
= 1. Let P be an L-⊥ selection of J . For v ∈ SL′ , u = P(v),

let δJ(u) be the gradient of J at u w.r.t. the usual (B,B∗) duality. By the definition

of P , δJ(u) ⊥ L. But δJ(u) ∈ B∗, thus cannot be used as a search direction in B.

Our gradient d = ∇J(u) is a solution to

∆d(x) = −δJ(u)(x), x ∈ Ω, d(x)|∂Ω = 0.

We have ∇J(u) ∈ W 1,q
0 (Ω) ⊂ B∗ and for any w ∈ B,

〈d, w〉W 1,q
0 ×W 1,p

0
≡ 〈∇d,∇w〉Lq×Lp ≡

∫
Ω

∇d(x) · ∇w(x) dx

=

∫
Ω

−∆d(x)w(x) dx =

∫
Ω

δJ(u)(x)w(x) dx ≡ 〈δJ(u), w〉W−1,q
0 ×W 1,p

0
.

In this sense, d = ∇J(u) can be used as a gradient of J at u and in particular

〈∇J(u), w〉W 1,q
0 ×W 1,p

0
= 〈δJ(u), w〉W−1,q

0 ×W 1,p
0

= 0, ∀w ∈ L. (3.18)

Then we will discuss, a few paragraphs late, how to choose L′ such that ∇J(u) ∈ L′.

Since

‖δJ(u)‖W−1,q
0

= sup
‖w‖

W
1,p
0

=1

|〈δJ(u), w〉W−1,q
0 ×W 1,p

0
|
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= sup
‖w‖

W
1,p
0

=1

|〈d, w〉W 1,q
0 ×W 1,p

0
| = sup

‖∇w‖Lp=1

|〈∇d,∇w〉Lq×Lp| ≤ ‖d‖W 1,q
0

,

∇J(uk) → 0 =⇒ δJ(uk) → 0, i.e., the PS condition of J in terms of δJ implies

the PS condition of J in terms of ∇J . From now on, 〈·, ·〉(1,1) = 〈·, ·〉W 1,q
0 ×W 1,p

0
,

〈·, ·〉(−1,1) = 〈·, ·〉W−1,q
0 ×W 1,p

0
and 〈·, ·〉 means 〈·, ·〉(1,1) whenever ∇J is involved. Based

on the understanding that when a nice smooth initial guess v0 is used, we may expect

that actually nice functions are used to approximate a critical point, i.e., all the points

vk, uk = P(vk) and ∇J(uk) are nice. Motivated by pseudo-gradients, to find a descent

search direction, we check the ratio

‖∇J(uk)‖2
2

‖∇J(uk)‖q‖∇J(uk)‖p

≥ θ > 0 ∀k = 1, 2, ..., (3.19)

where ‖ · ‖r is the W 1,r
0 (Ω)-norm. When (3.19) is satisfied, φ(uk) = ∇J(uk)

‖∇J(uk)‖p
is not

only in W 1,r
0 (Ω) with r = q, 2, p, but also a modified pseudo-gradient of J w.r.t. θ

at uk, i.e., φ(uk) ∈ SL′ , ‖φ(uk)‖p = 1 and 〈δJ(uk), φ(uk)〉(−1,1) ≥ θ‖δJ(uk)‖W−1,q
0

.

However, we cannot assume that φ(uk) is the value of a modified pseudo-gradient

flow of J at P(vk), simply because we do not have any information about the ratio

at other points.

Thus, when −φ(uk) is used as a descent search direction, this case can be covered

by Case 2. But in implementation, the lower bound θ in (3.19) is usually not known

beforehand. In particular, we do not know whether or not the ratio is satisfied at a

limit point of the sequence. Hence, Step 3 in the algorithm is modified to be

Step 3: Find a descent direction wk of J at uk = P(vk), wk = −sign(tk0)∇J(uk).

Compute the ratio θk =
‖wk‖2

2

‖wk‖p‖wk‖q

> 0;
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and the stepsize rule in Step 5 has to be changed to

sk = max
{

s =
λ

2m
|m ∈ N, 2m > ‖wk‖, J(P(vk(s)))−J(uk) ≤ |tk0|s

−4
‖∇J(uk)‖2

2

}
.

(3.20)

Next we show that if 0 < ‖∇J(P(v0))‖2 < +∞, a positive stepsize can always be

attained.

Lemma III.7 For v0 ∈ SL′, if J has a local L-⊥ selection P at v0 satisfying (1) P is

continuous at v0, (2) d(P(v0), L) > α > 0 and (3) 0 < ‖∇J(P(v0))‖2 < +∞. Then

there exists s0 > 0 such that as 0 < s < s0

J(P(v0(s))) − J(P(v0)) < −|t0|s
4

‖∇J(P(v0))‖2
2 (3.21)

where v0(s) =
v0−sign(t0)s∇J(P(v0))

‖v0−sign(t0)s∇J(P(v0))‖ and P(v0) = t0v0 + wL for some t0 ∈ R, wL ∈ L.

Proof. Since ‖P(v0(s)) − P(v0)‖ → 0 as s → 0, we have

J(P(v0(s)) − J(P(v0))

= 〈∇J(P(v0)),P(v0(s)) − P(v0)〉 + o(‖P(v0(s)) − P(v0)‖)

= − |ts0|s‖∇J(P(v0))‖2
2

‖v0 − s∇J(P(v0))‖ + o(‖P(v0(s)) − P(v0)‖) < −|t0|s
4

‖∇J(P(v0))‖2
2

where P(v0(s)) = ts0v0(s) + ws
L for some ts0 ∈ R, ws

L ∈ L and the last inequality holds

for 0 < s < s0 for some s0 > 0.

Now we discuss how to choose L′ such that ∇J(uk) ∈ L′.

For p < 2, ∇J(v) ∈ W 1,q
0 ⊂ B. Although when L is finite-dimensional, theoreti-

cally there is a closed subspace L′ such that B = L ⊕ L′, in general it is difficult to

find an explicit formula for L′. Here we develop a different approach for convergence

analysis. Denote L⊥ = {v ∈ W 1,q
0 |〈v, u〉(1,1) = 0, ∀u ∈ L} and L′ to be the ‖ ·‖p-norm

closure of L⊥ in B. It is clear that L′ is closed in B. When L = {0}, L′ = B holds.
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But when dim(L) > 0, B = L ⊕ L′ fails to hold. Thus this case has to be handled

with extra care. We still use SL′ as the domain to define an L-⊥ selection P as in

Definition III.1. However if an initial guess v1 is chosen in SL⊥ , we have vk ∈ SL⊥ for

all k = 2, 3, ....

Lemma III.8 Let J ∈ C1(B, R) and v0 ∈ SL′. Let P be a local L-⊥ selection of J

at v0 such that P is continuous at v0 and d(P(v0), L) > 0. If ∇J(P(v0)) �= 0, then

there exists s0 > 0 and ε > 0 such that

J(P(v(s0)) − J(P(v)) < −|tv|s0

4
‖∇J(P(v))‖2

2, ∀v ∈ SL′ , ‖v − v0‖ < ε,

where P(v) = tvv + wv and wv ∈ L.

Proof. By Lemma III.7, we have

J(P(v0(s))) − J(P(v0)) < −|t0|s
4

‖∇J(P(v0))‖2
2, (3.22)

where P(v0) = t0v0 + w0 and w0 ∈ L. When p < 2, we have q > 2. J is C1 implies

that ∇J is continuous in ‖·‖2-norm. For fixed s, all the terms in (3.22) are continuous

in v0. Thus there exists s0 > 0 and ε > 0 such that

J(P(v(s0))) − J(P(v)) < −|tv|s0

4
‖∇J(P(v))‖2

2, ∀v ∈ SL′ , ‖v − v0‖ < ε.

With the new stepsize rule and Lemma III.8, if θk > θ > 0 in Step 3 is satisfied, we

can verify Theorem III.3. The proof is similar. We only need to replace (3.8) by

J(uk+1) − J(uk) < −αsk

4
‖∇J(uk)‖2

2 < −αθsk

4
‖∇J(uk)‖p‖∇J(uk)‖q

< −αθ

8
‖vk+1 − vk‖‖∇J(uk)‖ (3.23)

and then follow the proof.
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Then the unified convergence result, Corollary III.1 holds for this practical tech-

nique.

In all our numerical examples carried out so far, (3.19) is satisfied. We also note

that the ratio is stable for 1 < p ≤ 2 and gets worse as p → +∞. Thus for p > 2,

instead of assuming (3.19) holds and using −φ(uk) as a descent search direction, we

only assume ‖∇J(uk)‖p ≤ M for some M > 0 and directly verify that −∇J(uk) is a

descent search direction in B.

For p > 2, B ⊂ B∗. Let L′ = L⊥ = {u ∈ B|〈u, v〉(1,1) = 0, ∀v ∈ L}. Thus

it can be verified that L′ is closed in B and B = L ⊕ L′ holds at least when L is

finite-dimensional. If ‖∇J(P(vk))‖p < +∞, then ∇J(P(vk)) ∈ L′ by the definition

of P at vk ∈ SL′ and (3.18). Since J is C1 means that δJ is continuous in W−1,q
0 (Ω),

but ∇J is not necessarily continuous in ‖ · ‖2-norm or ‖ · ‖p-norm, we need an L-⊥
selection P to be locally Lipschitz continuous.

Lemma III.9 If wk → w �= 0 in W 1,q
0 (Ω)(q > 1) and wk ∈ W 1,r

0 (Ω)(r > 1), k =

1, 2, ... and Ω is bounded, then inf
k
‖wk‖r > 0.

Proof. (1) The case q ≥ r is trivial, since wk → w in W 1,q
0 (Ω) ⇒ wk → w in W 1,p

0 (Ω).

(2) For q < r, if infk ‖wk‖r = 0, then there is {wkn} such that lim
n→∞

‖wkn‖r = 0,

i.e., lim
n→∞

wkn = 0 in W 1,r
0 (Ω). Then lim

n→∞
wkn = 0 in W 1,q

0 (Ω), i.e., w = 0. It is a

contradiction.

Lemma III.10 Let J ∈ C1(B, R) and v0 ∈ SL′. Assume P is a local L-⊥ selection

of J at v0 such that (1) P is locally Lipschitz continuous (2) d(P(v0), L) > 0 and (3)

∇J(P(v0)) �= 0. Then for any vk ∈ SL′, limk→∞ vk = v0 and ‖∇J(P(vk))‖ < M for

some constant M , uk = P(vk) satisfies Assumption (H).
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Proof. Let uk = tkvk + vL
k and P(vk(s)) = tskvk(s) + vL

k (s) for some vL
k , vL

k (s) ∈ L, we

have

J(P(vk(s))) − J(uk) = 〈∇J(uk) + (∇J(ζ(vk, s)) −∇J(uk)),P(vk(s)) − uk)〉 (3.24)

where ζ(vk, s) = (1−λk)uk +λkP(vk(s)) for some λk ∈ [0, 1]. By assumption (1) and

Lemma II.2, it leads to

‖P(vk(s)) − uk‖ ≤ �‖vk(s) − vk‖ ≤ 2�s‖∇J(uk)‖
‖vk − sign(tk)s∇J(uk)‖ .

On the other hand, by the definition of an L-⊥ selection of J , as s > 0 is small and

k is large,

〈∇J(uk),P(vk(s)) − uk)〉 = − sign(tk)t
s
ks‖∇J(uk)‖2

2

‖vk − sign(tk)s∇J(uk)‖ ≤ −s|tk|
2

‖∇J(uk)‖2
2 < 0

where vk(s) =
vk − sign(tk)s∇J(uk)

‖vk − sign(tk)s∇J(uk)‖ . Since J is C1 and by assumptions (2) and

(3), and Lemma III.9, there exist δ > 0 such that when s > 0 is small and k is large,

|tk|‖vk − sign(tk)s∇J(uk)‖‖∇J(uk)‖2
2

8�‖∇J(uk)‖ > δ > 0.

Thus we can choose s > 0 small and k large such that

‖∇J(ζ(vk, s)) −∇J(uk)‖ ≤ |tk|‖vk − sign(tk)s∇J(uk)‖‖∇J(uk)‖2
2

8�‖∇J(uk)‖ .

Hence

|〈∇J(ζ(vk, s)) −∇J(uk),P(vk(s)) − uk〉|

≤ ‖∇J(ζ(vk, s)) −∇J(uk)‖‖P(vk(s)) − uk‖ ≤ s|tk|‖∇J(uk)‖2
2

4
.

By (3.24), there exist k̄, s0 > 0 such that when 0 < s < s0,

J(P(vk(s))) − J(uk) ≤ −s|tk|‖∇J(uk)‖2
2

4
, ∀k > k̄.
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With the new stepsize rule and the conditions ‖∇J(uk)‖p < M , we can also verify

Theorem III.3. The proof is similar. Note that when ‖∇J(uk)‖q > δ0 for some δ0 > 0,

‖∇J(uk)‖2 > δ for some δ > 0 and there is always a β > 0 such that ‖vk+skwk‖p ≥ β,

k = 1, 2.... We only need to replace (3.8) and (3.9) by

J(uk+1) − J(uk) < −αsk

4
‖∇J(uk)‖2

2 ≤ −αsk

4
δ2 = −αskδ

2

4M
M

≤ −αskδ
2

8M
‖∇J(uk)‖p ≤ −αβδ2

16M
‖vk+1 − vk‖

where the last inequality follows from Lemma II.2 and then follow the proof. The

unified convergence result, Corollary III.1 also follows.

C. An Application to Nonlinear p-Laplacian PDE

As an application, let us consider the following quasilinear elliptic boundary-value

problem on a bounded smooth domain Ω ⊂ R
n

⎧⎪⎨
⎪⎩

∆pu(x) + f(x, u(x)) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
u ∈ B ≡ W 1,p(Ω), p > 1, (3.25)

where ∆p defined by ∆pu(x) = div(|∇u(x)|p−2∇u(x)) is the p-Laplacian operator

which has a variety of applications in physical fields, such as in fluid dynamics when

the shear stress and the velocity gradient are related in certain manner where p =

2, p < 2, p > 2 if the fluid is Newtonian, pseudoplastic, dilatant, respectively. The

p-Laplacian operator also appears in the study of flow in a porous media (p = 3
2
),

nonlinear elasticity (p > 2) and glaciology (p ∈ (1, 4
3
)). Under certain standard

conditions on f , it can be shown that a point u∗ ∈ W 1,p
0 (Ω) is a weak solution of

(3.25) if and only if u∗ is a critical point of the functional

J(u) =
1

p

∫
Ω

|∇u(x)|pdx −
∫

Ω

F (x, u(x))dx where F (x, t) =

∫ t

0

f(x, s)ds. (3.26)
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Since conditions (1), (2) and (3) in Theorem III.2 are basic assumptions in our results

and new in the literature, we verify them in this section. Let us assume some of the

standard growth and regularity conditions in the literature. Set the Sobolev exponent

p∗ = np
n−p

for p < n and p∗ = ∞ for p ≥ n. Assume

(a) f ∈ C1(Ω̄ × R, R), f(x, 0) = 0, f(x,tξ)
|tξ|p−2tξ

monotonically increases to +∞ in t,

(b) For each ε > 0, there is c1 = c1(ε) > 0 such that f(x, t)t < ε|t|p + c1|t|p∗ , ∀t ∈
R, x ∈ Ω.

It is clear that u = 0 is a critical point of least value J and f(x, u) = |u|q−2u for q > p

satisfies condition (a). For each v ∈ B with ‖v‖ = 1 and t > 0, let g(t) = J(tv). We

have

g′(t) = 〈∇J(tv), v〉 =

∫
Ω

(
tp−1|∇v(x)|p − f(x, tv(x))v(x)

)
dx

= tp−1
(
1 −

∫
Ω

f(x, tv(x))|v(x)|p
|tv(x)|p−2tv(x)

)
dx.

Thus, by condition (a), there is a unique tv > 0 such that g′(tv) = 0, i.e., for L = {0}
and each v ∈ SB, the L-⊥ selection (actually a peak selection) P(v) = tvv is uniquely

determined with J(P(v)) > 0 and

g′′(t) = (p − 1)t(p−2) −
∫

Ω

f ′
ξ(x, tv(x))v2(x) dx

< (p − 1)t(p−2) −
∫

Ω

(p − 1)

t
f(x, tv(x))v(x) dx =

p − 1

t
g′(t).

The last inequality follows from taking a derivative of condition (a) w.r.t. t. Thus

condition (3) in Theorem III.2 is always satisfied for any L. Next let us recall that

when L = [u1, u2, ..., un−1], by the definition of an L-⊥ selection, P(v) = t0v + t1u1 +

· · · + tn−1un−1 is solved from

〈∇J(t0v + t1u1 + · · · + tn−1un−1), v〉 = 0, (3.27)
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〈∇J(t0v + t1u1 + · · · + tn−1un−1), ui〉 = 0, i = 1, ..., n.

If u = P(v) = t0v + t1u1 + · · · + tn−1un−1 satisfies (3.27) and at u, the n × n matrix

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

〈J ′′(u)v, v〉(−1,1) 〈J ′′(u)u1, v〉(−1,1) · · · 〈J ′′(u)un−1, v〉(−1,1)

〈J ′′(u)v, u1〉(−1,1) 〈J ′′(u)u1, u1〉(−1,1) · · · 〈J ′′(u)un−1, un−1〉(−1,1)

· · · · · ·
〈J ′′(u)v, un−1〉(−1,1) 〈J ′′(u)u1, un−1〉(−1,1) · · · 〈J ′′(u)un−1, un−1〉(−1,1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is invertible, i.e., |Q| �= 0, then by the implicit function theorem, around u, the L-⊥
selection P is well-defined and continuously differentiable. The condition |Q| �= 0

can be easily and numerically checked. For the current case L = {0}, we have

Q = g′′(tv) < 0. Thus the L-⊥ selection P is C1. To show that d(P(v), L) ≥ α > 0

for all v ∈ SB, by (b), for any ε > 0, there is c1 = c1(ε) such that f(x, v(x))v(x) <

ε|v(x)|p + c1|v(x)|p∗ . It follows

∫
Ω

f(x, v(x))v(x) dx < ε

∫
Ω

|v(x)|p dx + c1

∫
Ω

|v(x)|p∗ dx

(by the Poincare and Sobolev inequalities)

≤ εc0(Ω)

∫
Ω

|∇v(x)|p dx + c1c2(Ω)
( ∫

Ω

|∇v(x)|p dx
) p∗

p

=
[
εc0(Ω) + c1c2(Ω)

( ∫
Ω

|∇v(x)|p dx
) p∗

p
−1] ∫

Ω

|∇v(x)|p dx.

Thus

〈∇J(v), v〉 ≥
[
1 − εc0(Ω) − c1c2(Ω)

( ∫
Ω

|∇v(x)|p dx
) p∗

p
−1] ∫

Ω

|∇v(x)|p dx

=
[
1 − εc0(Ω) − c1c2(Ω)‖v‖p∗−p

]
‖v‖p.

It follows that for any small ε > 0, c1, c0(Ω) and c2(Ω), there is t0 > 0 such that when

0 < ‖v‖ = t < t0, we have 〈∇J(v), v〉 ≥
[
1− εc0(Ω)− c1c2(Ω)tp

∗−p
]
tp > 0. Therefore

the L-⊥ selection P(v) satisfies ‖P(v)‖ > t0 or d(P(v), L) > t0 > 0,∀v ∈ SB where
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L = {0}.
To assure that the energy function J in (3.26) satisfies the PS condition, we need

(c) |f(x, u)| ≤ C(1 + |u|q−1), ∀u ∈ R, x ∈ Ω for some positive constant C and

1 ≤ q ≤ p∗,

(d) there is θ > p, M > 0 such that |u| ≥ M implies

0 < θF (x, u) ≤ uf(x, u),

[20]. It is easy to check f(x, u) = |u|q−2u, where p < q ≤ p∗, satisfies (c) and (d).

By the above discussion and Theorem III.2, we have following existence theorem.

Theorem III.4 If f in (3.25) and F in (3.26) satisfy the conditions (a), (b), (c)

and (d), then the quasilinear elliptic boundary value problem (3.25) has a nontrivial

weak solution.
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CHAPTER IV

A MINIMAX METHOD FOR NONLINEAR EIGENPAIRS

Let B be a Banach space, 〈, 〉 the dual relation and ‖ · ‖ the norm in B. Consider the

following eigenpair problem, for given α > 0, find (λ, u) ∈ R × (B \ {0}) such that

⎧⎪⎨
⎪⎩

F ′u = λG′u or 〈F ′u, v〉 = λ〈G′u, v〉, ∀v ∈ B

subject to G(u) = α
(4.1)

where F ′ and G′ are the Fréchet derivatives of two functionals F and G in C1(B, R).

Such (λ, u) is called an eigenpair where λ is an eigenvalue and u is an eigenfunction

corresponding to λ. Since (4.1) is a constrained critical point problem, let us define

the Lagrange functional

L(u, λ) = F (u) − λ(G(u) − α). (4.2)

Then critical points (u, λ) of L(u, λ) are eigenpairs (λ, u) of (4.1) and vice versa.

Under certain conditions, existence of countable critical points (um, λm) to (4.2) can

be established (see Proposition 44.26 in [28]). We assume that the eigenpair problem

(4.1) satisfies the following iso-homogeneous condition, i.e., there is k �= 0 such that

F ′(tu) = tkF ′(u) and G′(tu) = tkG′(u), ∀t > 0, u ∈ B. (4.3)

Let U = {u ∈ B|G(u) = 0}. We assume that U ∩ S contains only isolated points on

the unit sphere S of B and F (u) �= 0, ∀u ∈ U \ {0}. Then the Rayleigh quotient J

can be defined by

J(u) =
F (u)

G(u)
, ∀u ∈ B \ U. (4.4)

It is easy to check that J ∈ C1(B \ U, R).
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A. Characterization of Eigenpairs

Lemma IV.1 Under the homogeneous condition, a pair (λ, u) is an eigenpair of

(4.1), if and only if u is a critical point of J and λ = J(u) is the corresponding

critical value.

Proof. The “if” part is always true. To see the “only if” part, let u ∈ B \U , we have

∫ 1

0

〈F ′(tu), u〉dt =

∫ 1

0

d

dt
F (tu)dt = F (u).

Similarly,
∫ 1

0
〈G′(tu), u〉dt = G(u). Thus, if (λ, u) is an eigenpair of (4.1), i.e., F ′(u) =

λG′(u), then with the homogeneous condition we have F (u) = λG(u),

λ =
F ′(u)

G′(u)
=

F (u)

G(u)
≡ J(u) and J ′(u) =

F ′(u)G(u) − F (u)G′(u)

G2(u)
= 0.

Remark IV.1 Several points need to be remarked.

(a) Due to the homogeneous condition, α in (4.1) can be replaced by any nonzero

number. For the Rayleigh quotient, we have J(tu) ≡ J(u) for any u ∈ B \ U .

Thus 〈∇J(u), u〉 = 0. From now on we limit J on the unit sphere S of B \ U ;

(b) Lemma IV.1 gives the equivalence between eigenpairs of (4.1) and critical points

of (4.4);

(c) Another important consequence of Lemma IV.1 is that if critical points uk are

found in a way that their critical values are in a monotone (increasing) manner,

then eigenvalues λk are obtained in the same monotone (increasing) manner.

Thus it is easy for us to discuss whether or not we miss any eigenfunctions.
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1. A Local Minmax Characterization of Eigenpairs

In order to solve our eigenpair problems, we need to modify the local minimax method

in Chapter II. Let us introduce the following definitions. Let L = [u1, u2, ..., un−1] be

the space spanned by given linearly independent u1, u2, ..., un−1 ∈ B and B = L⊕L′.

Let P : B → L′ be the corresponding linear projection operator. Let SL′ be the unit

sphere in L′ \U . For each u ∈ SL′ denote [L, u]S = {w =
∑n−1

k=1 tkuk + t0u|
∑n−1

k=1 t2k +

t20 = 1}.

Definition IV.1 A mapping P : SL′ → 2B is the peak mapping of J w.r.t. L if

for each u ∈ SL′, P (u) is the set of all local maximum points of J on [L, u]S, i.e.,

w ∈ [L, u]S is in P (u) if and only if there is a neighborhood N (w) of w such that

J(v) ≤ J(w), ∀v ∈ [L, u]S ∩ N (w). A single-valued mapping p : SL′ → B is a peak

selection of J w.r.t. L if p(v) ∈ P (v), ∀v ∈ SL′. For a given u ∈ SL′, p is said to be

a local peak selection of J at u if the peak mapping P is locally defined near u and

p(v) ∈ P (v) when v is near u.

Remark IV.2 Several points should be remarked for the definition IV.1.

(a) If U = {0}, J is a continuous function on the nonempty compact set [L, u]S for

each u ∈ SL′. Since any global maximum point of J on [L, u]S is indeed a local

maximum point of J on [L, u]S as well, P (u) is always nonempty;

(b) According to the definition, P (u) contains no points of U except at points v ∈
U ∩ [L, u]S where limw∈[L,u]S ,w→v J(v) = +∞. Due to the monotone decreasing

feature of our local minimax method, J(p(·)) has a barrier at u. Thus the search

of the algorithm will keep away from such points. We may simply exclude all

those points and focus our discussion only on those u ∈ SL′ with P (u)∩U = ∅.
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Lemma IV.2 For each u0 ∈ SL′, if p is a local peak selection of J at u0 such that

p(u0) �∈ U , then 〈∇J(p(u0)), ui〉 = 0, i = 0, 1, ..., n − 1.

Proof. By the assumption, let w = p(u0) =
∑n−1

i=0 tiui ∈ [L, u0]S \U where
∑n−1

i=0 t2i =

1. Thus ∇J(w) exists. For each i = 0, 1, ..., n − 1, if 〈∇J(w), ui〉 �= 0, we denote

w(s) = w+sui

c(s)
where c(s) = [(ti + s)2 +

∑n−1
k=0,k �=i t

2
k]

1
2 . Since B \ U is open, w ∈ B \ U

and w(s) → w as s → 0, there exists s0 > 0 such that when 0 < |s| < s0, we have

w(s) ∈ [L, ui]S \ U and

J(w(s)) − J(w) = 〈∇J(w),
s

c(s)
ui〉 + o(‖w(s) − w‖),

where we have used the fact that 〈∇J(w), w〉 = 0. Thus when |s| is small, the term

s
c(s)

〈∇J(w), ui〉 dominates the difference of J(w(s)) − J(w). Since this term can be

made either positive or negative as we wish by properly selecting s �= 0, it leads to a

contradiction that w is a local maximum of J on [L, u0]S. Therefore 〈∇J(w), ui〉 = 0.

Lemma IV.3 Let a local peak selection p of J be continuous at ū ∈ SL′ with ∇J(p(ū))

�= 0. When s > 0 is small and ū(s) = ū+sw(ū)
‖ū+sw(ū)‖ , we have

J(p(ū(s))) < J(p(ū)) − 1

4
sθ|tn|‖∇J(p(ū))‖

where w(ū) = −sign(tn)P(G(p(ū))), p(ū) = t1u1 + · · · + tn−1un−1 + tnū with tn �= 0
∑n

k=1 t2k = 1 and G(p(ū)) is a pseudo-gradient of J at p(ū) with constant θ ∈ (0, 1),

i.e.,

‖G(p(ū))‖ ≤ 1, and 〈∇J(p(ū)), G(p(ū))〉 ≥ θ‖∇J(p(ū))‖.
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Proof. Since 〈∇J(w), w〉 = 0, ∀w ∈ B \ U and p is continuous at ū implies that

p(ū) �∈ U , when s > 0 is small, we have

J(p(ū(s))) = J(p(ū)) + 〈∇J(p(ū)), p(ū(s))〉 + o(‖p(ū(s)) − p(ū)‖).

On the other hand, by Lemma IV.2, as s > 0 is small,

〈∇J(p(ū)), p(ū(s))〉 = −sign(tn)tn(s)s

‖ū + sw(ū)‖ 〈∇J(p(ū)),P(G(p(ū)))〉

< −1

2
sθ|tn|‖∇J(p(ū))‖

where p(ū(s)) ≡ p( ū+sw(ū)
‖ū+sw(ū)‖) = t1(s)u1 + · · · + tn−1(s)un−1 + tn(s) ū+sw(ū)

‖ū+sw(ū)‖ . Hence,

when s > 0 is small,

J(p(ū(s))) < J(p(ū)) − 1

4
sθ|tn|‖∇J(p(ū))‖

Remark IV.3 Several points on Lemma IV.2 and IV.3 need to be remarked.

(a) The last inequality in the proof of Lemma IV.3 implies that if p(ū) �∈ U , then

p(ū(s)) �∈ U as well;

(b) From the last two lemmas, it is clear that the notion of a peak selection p(ū) can

be generalized to satisfy 〈J(p(ū)), ū〉 = 〈J(p(ū)), ui〉 = 0, i = 1, ..., n − 1.

As a direct consequence of Lemma IV.3, we have the following local minmax charac-

terization of eigenpairs of (4.1).

Theorem IV.1 Assume that a local peak selection p of J is continuous at ū ∈ SL′. If

J(p(ū)) = minu∈SL′ J(p(u)) and d(p(ū), L) > 0, then p(ū) is a critical point of J , i.e.,

p(ū) is an eigenfunction of (4.1) and λ = J(p(ū)) is the corresponding eigenvalue.



68

2. Comparison with Other Characterizations

Theorem IV.1 serves as a local minmax characterization of eigenpairs to (4.1) under

the iso-homogeneous condition. It states that when the first n−1 linearly independent

eigenfunctions u1, u2, ..., un−1 are found this way, by setting L = [u1, ..., un−1] and

M = {p(u)|u ∈ SL′}, the nth eigenfunction un can be found through finding a local

minimum of J on M or solving a local minimax problem

min
u∈SL′

max
v∈[u1,...,un−1,u]S

J(v), (4.5)

Theorem IV.2 For the wellknown linear eigenpair problem, find (λ, u) ∈ R × (B −
{0}) such that

Fu = λGu, (4.6)

where F and G are two linear, self-adjoint operators and G is positive definite in a

Hilbert space B, the local minimax method (4.5) is equivalent to the Rayleigh-Ritz

method, i.e., by letting 〈u, v〉G = 〈Gu, v〉 and ‖u‖G = (〈u, v〉G)
1
2 be the equivalent

inner product and norm on B, L′ = L⊥ = {u ∈ B|〈u, ui〉G = 0, i = 1, ..., n − 1} and

SL⊥ = {u ∈ L⊥|‖u‖G = 1}, thus

(1) if un = arg minu∈S
L⊥ maxv∈[u1,...,un−1,u]S J(v), then un = arg minu∈S

L⊥ J(u);

(2) if un = arg minu∈S
L⊥ J(u), then un = arg minu∈S

L⊥ maxv∈[u1,...,un−1,u]S J(v).

Proof. (1) It is known that 〈ui, uj〉G = 0, 1 ≤ i < j ≤ n. Thus we only have

to find v = p(u) ∈ L⊥. Then (4.5) reduces to the wellknown orthogonal method of

Rayleigh-Ritz

min
u∈S

L⊥
max
v∈[u]S

J(v) = min
u∈S

L⊥
J(u). (4.7)
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(2) if un = arg minu∈S
L⊥ J(u) = arg minu∈S

L⊥ 〈Fu, u〉. Then there is a neighborhood

N (un) of un such that for all u ∈ N (un) ∩ SL⊥ ,

max
v∈[u1,...,un−1,u]S

〈Fv, v〉 ≥ 〈Fu, u〉 ≥ 〈Fun, un〉.

On the other hand, ∀u ∈ [u1, ..., un−1, un]S, we have u =
∑n

i=1 ciui with
∑n

i=1 c2
i = 1.

Then

J(u) = 〈Fu, u〉 =
n∑

i=1

n∑
j=1

cicj〈Fui, uj〉 =
n∑

i=1

n∑
j=1

cicjλi〈Gui, uj〉

=
n∑

i=1

c2
i λi ≤ λn = J(un),

where λi is the eigenvalue corresponding to ui. Therefore

J(un) = 〈Fun, un〉 = min
u∈S

L⊥
max

v∈[u1,...,un−1,un]S
〈Fv, v〉 = min

u∈S
L⊥

max
v∈[u1,...,un−1,un]S

J(v).

As for nonlinear eigenpair problems, the Courant-Fischer minimax principle

states that un can be found through solving min
Wn

max
v∈Wn∩S

J(v) where the minimum

is taken over all the subspaces Wn of dimension n in B and S is the unit sphere in

B. The Courant-Fischer minimax principle is originally designed for linear eigenpair

problems. People then found that it was also valid for nonlinear eigenpair problems

where the homogeneous condition is satisfied. The Ljusternik-Schnirelman minimax

principle which is commonly regarded as a generalization of the Courant-Fischer

minimax principle, is used to characterize saddle points of a nonlinear functional J

through solving inf
K∈Kn

sup
u∈K

J(u) where Kn is the class of all compact subsets K of B

with ind(K) ≥ n, sup is the global maximum of J on K and inf is the global min-

imum over Kn. When the homogeneous condition is satisfied and J is the Rayleigh

quotient, the Ljusternik-Schnirelman minimax principle coincides with the Courant-
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Fischer minimax principle. But they are all two-level global minmax characterizations

and do not provide much help in algorithm implementation. While our local minmax

characterization in (4.5) can be implemented as the following numerical algorithm.

B. A Local Minimax Algorithm for Eigenpairs

Assume that u1, u2, ..., un−1 are previously found n−1 critical points of J with ‖ui‖ =

1, i = 1, 2, ..., n − 1. Let L = [u1, u2, ..., un−1], B = L ⊕ L′ and P : B → L′ be the

corresponding linear continuous projection operator. Given θ ∈ (0, 1) and λ > 0.

Step 1. Let k = 1. Choose v1 ∈ SL′ such that p(v1) ∈ [L, v1]S \ U where

u1 = p(v1) =
∑n−1

i=1 t1i ui + t1nv
1 is solved from

u1 = arg max
{

J(v)|v =
n−1∑
i=1

tiui + tnv
1,

n∑
i=1

t2i = 1
}

.

Step 2. Compute a descent direction wk = −sign(tkn)P(Gk), where Gk is a pseudo-

gradient of J at uk with constant θ.

Step 3. If ‖∇J(p(vk))‖ ≤ ε, then output uk = p(vk), stop. Otherwise, do Step 4.

Step 4. Denote vk(s) =
vk + swk

‖vk + swk‖ and

uk(s) = p(vk(s)) = arg max
{

J(v)|v =
n−1∑
i=1

tiui + tnv
k(s) �∈ U,

n∑
i=1

t2i = 1
}

,

where (tk1, ..., t
k
n) is used as an initial point. Let

sk = max
m∈N

{
s =

λ

2m
|2m > ‖wk‖, J(uk(

λ

2m
)) − J(uk) ≤ −sθ|tkn|

4
‖∇J(uk)‖

}
,

Step 5. Set vk+1 = vk(sk), uk+1 = p(vk+1) ≡ ∑n−1
i=1 tk+1

i ui + tk+1
n vk+1 and k = k + 1.

Go to Step 2.
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Remark IV.4 About the algorithm, we need point out the followings.

(a) If p(v1
n) ∈ [L, v1

n] \ U is satisfied, then p(vk
n) ∈ [L, vk

n] \ U for all k = 1, 2, ....

(b) In Step 3, we can either following a pseudo-gradient flow or just find a pseudo-

gradient at the current point. The projection is important to avoid the degener-

acy. For computation of a pseudo-gradient or a pseudo-gradient flow in Lp(Ω)

and W 1,p
0 (Ω) spaces, see Chapter II and Chapter III.

(c) It is easy to check that 1
2
sk ≤ sk ≤ sk where sk is the step-size defined by sk

= max
0<s≤λ

{s|J(uk(s)) − J(uk) ≤ −1

4
sθtkn‖∇J(uk)‖, λ ≥ s‖∇J(uk)‖ > 0}. (4.8)

(d) A computational technique can be used to find a pseudo-gradient, Chapter II. In

this case wk in Step 2 should be wk = −sign(tkn)∇J(uk) and the inequality to

decide sk in Step 4 should be

J(p(vk(
λ

2m
))) − J(uk) ≤ −tkn

4

λ

2m
‖∇J(p(vk))‖2

2.

In fact, the expression of w(ū) in Lemma IV.3 should be w(ū) = −sign(tn)∇J(ū)

and the inequality should be J(p(ū(s))) < J(p(ū)) − 1
4
s|tn|‖∇J(p(ū))‖2

2 under

the assumption ‖∇J(p(ū))‖2 < +∞, where ‖ · ‖2 is the norm of W 1,2(Ω).

(e) The algorithm is stable in the sense J(uk+1) < J(uk).

C. Numerical Experiment to Eigenpairs of p-Laplacian

In this section we carry out several numerical experiments to find the (weighted)

eigenpairs of the p-Laplacian operator on the domain Ω = [0, 2] × [0, 2]. The weight

function is either w(x) ≡ 1 or w(x) = |x − 1̄|q, where 1̄ = (1, ..., 1) ∈ R
n and | · | is

the Euclidean norm in R
n. In Section 2, the Rayleigh quotient J has been defined.
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To compute the gradient d = ∇J(u) at u, for each v ∈ W 1,p
0 (Ω), we have

〈d, v〉 = −
∫

Ω

∆d(x)v(x) dx ≡ d

dt
|t=0J(u + tv)

=
p

b2

∫
Ω

(−b∆pu(x) − aw(x)|u(x)|p−2u(x))v(x) dx

which leads to solve a linear Poisson problem

⎧⎪⎨
⎪⎩

∆d(x) = p
b2

(b∆pu(x) + aw(x)|u(x)|p−2u(x)), x ∈ Ω

d|∂Ω = 0

where a =
∫

Ω
|∇u(x)|pdx and b =

∫
Ω

w(x)|u(x)|pdx. Then by using ∇J(u), we can

follow the practical techniques developed in Chapter II and Chapter III to find a

pseudo-gradient.

In our numerical computations, 800× 800 or 1000× 1000 linear square elements

are used. Next for each case, the profiles of the first seven numerically computed

eigenfunctions and their eigenvalues λi for w(x) = 1 and the first five for w(x) =

|x− 1̄|q are displayed. The profiles of eigenfunctions are presented as follows, Fig.19-

39.
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Fig. 19. Eigenfunctions of ∆p, p=1.75. λ1 = 4.245837 (left) and λ2 = 9.317313 (right).
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Fig. 20. Eigenfunctions of ∆p, p=1.75. λ3 = 9.407816 (left) and λ4 = 14.280496

(right).
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Fig. 21. Eigenfunctions of ∆p, p=1.75. λ5 = 16.837822 (left) and λ6 = 17.254568

(right).
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Fig. 22. Eigenfunction of ∆p, p=1.75. λ7 = 23.366003 (left) and eigenfunction of ∆p,

p=2.5. λ1 = 20.798476 (right).
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Fig. 23. Eigenfunctions of ∆p, p=2.5. λ2 = 20.289627 (left) and λ3 = 20.798476
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Fig. 24. Eigenfunctions of ∆p, p=2.5. λ4 = 35.944786 (left) and λ5 = 48.259806

(right).

0

0.5

1

1.5

2

0

0.5

1

1.5

2
−0.15

−0.1

−0.05

0

0.05

0.1

0

0.5

1

1.5

2

0

0.5

1

1.5

2
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 25. Eigenfunctions of ∆p, p=2.5. λ6 = 49.679394 (left) and λ7 = 51.104811

(right).
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Fig. 26. Eigenfunctions of ∆p, p=3.0. λ1 = 7.844420 (left) and λ2 = 32.098661 (right).
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Fig. 27. Eigenfunctions of ∆p, p=3.0. λ3 = 33.947805 (left) and λ4 = 62.748593

(right).



77

0

0.5

1

1.5

2

0

0.5

1

1.5

2
−1.5

−1

−0.5

0

0.5

1

1.5

0

0.5

1

1.5

2

0

0.5

1

1.5

2
−0.15

−0.1

−0.05

0

0.05

0.1

Fig. 28. Eigenfunction of ∆p, p=3.0. λ5 = 90.795294 (left) and λ6 = 94.932100 (right).
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Fig. 29. Eigenfunction of ∆p, p=3.0. λ7 = 102.660394 (left) and weighted eigenfunc-
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Fig. 30. Weighted eigenfunctions of ∆p, p=1.75, q=0.5. λ2 = 11.775095 (left) and

λ3 = 11.938270 (right).
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Fig. 31. Weighted eigenfunctions of ∆p, p=1.75, q=0.5. λ4 = 16.633820 (left) and

λ5 = 23.366003 (right).
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Fig. 32. Weighted eigenfunctions of ∆p, p=1.75, q=6.0. λ1 = 18.714875 (left) and

λ2 = 20.312840 (right).
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Fig. 33. Weighted eigenfunctions of ∆p, p=1.75, q=6.0. λ3 = 20.425545 (left) and

λ4 = 20.738396 (right).
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Fig. 34. Weighted eigenfunctions of ∆p, p=1.75, q=6.0. λ5 = 34.801623 (left) and

p=2.5, q=0.5. λ1 = 10.185286 (right).
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Fig. 35. Weighted eigenfunctions of ∆p, p=2.5, q=0.5. λ2 = 26.174362 (left) and

λ3 = 26.991732 (right).
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Fig. 36. Weighted eigenfunctions of ∆p, p=2.5, q=0.5. λ4 = 42.140740 (left) and

λ5 = 69.931326 (right).
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Fig. 37. Weighted eigenfunctions of ∆p, p=2.5, q=6.0. λ1 = 65.223275 (left) and

λ2 = 70.878805 (right).
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Fig. 38. Weighted eigenfunctions of ∆p, p=2.5, q=6.0. λ3 = 71.815461 (left) and

λ4 = 74.271235 (right).
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Fig. 39. Weighted eigenfunctions of ∆p, p=2.5, q=6.0. λ5 = 161.729721.
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Several interesting phenomena related to the (weighted) eigenpairs of ∆p on the

square domains have been observed in our numerical experiments.

(a) By comparing Fig. 19 (left), Fig. 22 (right) and Fig. 26 (left), Fig. 19 (right),

Fig. 23 (right) and Fig. 27 (left), Fig. 20 (left), Fig. 23 (left) and Fig. 26 (right),

Fig. 21 (left), Fig. 25 (right) and Fig. 29 (left), Fig. 21 (right), Fig. 24 (right) and

Fig. 28 (left), Fig. 20 (right), Fig. 24 (left) and Fig. 27 (right), Fig. 22 (left), Fig. 25

(left) and Fig. 28 (right), we observe that for different values of p, the eigenfunctions

in the same group have the same number of peaks, their locations are also quite

similar and peaks become sharper when p becomes larger.

(b) By comparing Fig. 19 (right), Fig. 23 (right) and Fig. 27 (left) (side-to-side peaks),

Fig. 20 (left), Fig. 23 (left) and Fig. 26 (right) (corner-to-corner peaks), we found

that when p crosses 2, the sequential order of the eigenvalues of the eigenfunctions

with side-to-side peaks and the eigenfunctions with corner-to-corner peaks switches.

Numerical computation shows that when p = 2, the eigenvalues of the eigenfunctions

with side-to-side peaks and the eigenfunctions with corner-to-corner peaks are the

same. By comparing Fig. 21 (left), Fig. 25 (right) and Fig. 29 (left) (3-peak), Fig. 21

(right), Fig. 24 (right) and Fig. 28 (left) (4-peak), Fig. 22 (left), Fig. 25 (left) and

Fig. 28 (right) (5-peak), the sequential order of the eigenvalues of the eigenfunctions

with 3-peak, 4-peak, 5-peak changes when p crosses 2. Numerical computation shows

when p = 2, it seems their eigenvalues are same.

(c) If we pay attention to the peak locations and compare Fig. 29 (right) and Fig.32

(left), Fig. 30 (left) and Fig.32 (right), Fig. 31 (right) and Fig. 34 (left), Fig. 34 (right)

and Fig. 37 (left), Fig. 35 (right) and Fig. 38 (left), Fig. 36 (right) and Fig. 39, we

can see that the peaks prefer the corners when q increases and crosses some number.

(d) To the weighted eigenpair problem of the p-Laplacian, there is a corresponding
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p-Henon equation

−∆pu + |x −�1|r|u|qu = 0, x ∈ Ω, u|∂Ω = 0.

Usually, q > p− 2. By the numerical experiments in Chapter II, the symmetry of the

ground state will be broken when the difference r− q becomes large. This interesting

case is called a symmetry breaking phenomenon. But by our numerical experiments

in this chapter, it seems that for the weighted eigenfunction problems, the symmetry

breaking phenomenon never took place.
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CHAPTER V

CONVERGENCE OF THE 2ND MINIMAX ALGORITHM

Let L = [u1, u2, ..., un−1] be the space spanned by given linearly independent ui ∈ B,

i = 1, ..., n − 1, B = L ⊕ L′ and P : B → L′ the corresponding linear projection

operator. Let SL′ be the unit sphere in L′ \ U where U = {u ∈ B|G(u) = 0}. For

each u ∈ SL′ denote [L, u]S = {w =
∑n−1

k=1 tkuk + t0u|
∑n−1

k=1 t2k + t20 = 1}.

Definition V.1 A set-valued mapping P : SL′ → 2B is the L-⊥ mapping of J if

∀v ∈ SL′ , P (v) = {u ∈ [L, v]S|
∑n

i=1 t2i = 1, 〈∇J(u), ui〉 = 0, i = 1, .., n− 1}. A single-

valued mapping p : SL′ → B is an L-⊥ selection of J if p(v) ∈ P (v), ∀v ∈ SL′. For a

given v ∈ SL′, we say that J has a local L-⊥selection at v if there is a neighborhood

N (v) of v and p : N (v) ∩ SL′ → B such that p(u) ∈ P (u), ∀u ∈ N (v) ∩ SL′.

By L-⊥ selection, we have the following lemma and theorem which generalize

Lemma IV.3 and Theorem IV.1.

Lemma V.1 Given an L-⊥ peak selection p of J which is continuous at ū ∈ SL′ with

∇J(p(ū)) �= 0. When s > 0 is small and ū(s) = ū+sw(ū)
‖ū+sw(ū)‖ , we have

J(p(ū(s))) < J(p(ū)) − 1

4
sθ|tn|‖∇J(p(ū))‖

where w(ū) = −sign(tn)P(Ψ(p(ū))), p(ū) = t1u1 + · · · + tn−1un−1 + tnū with tn �= 0,
∑n

k=1 t2k = 1 and Ψ(p(ū)) is a pseudo-gradient of J at p(ū) with constant θ ∈ (0, 1).

Theorem V.1 Assume that an L-⊥ peak selection p of J is continuous at ū ∈ SL′. If

J(p(ū)) = minu∈SL′ J(p(u)) and d(p(ū), L) > 0, then p(ū) is a critical point of J , i.e.,

p(ū) is an eigenfunction of (4.1) and λ = J(p(ū)) is the corresponding eigenvalue.
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A. A Min-Orthogonal Algorithm

By Lemma V.1 and Theorem V.1, a min-orthogonal algorithm can be designed

through replacing a peak selection in the minimax algorithm by an L-⊥ selection.

The flow chart reads as follows.

Assume that L = [u1, u2, ..., un−1] where u1, u2, ..., un−1 are n − 1 previously

found eigenfunctions. For given λ, ε > 0 and θ ∈ (0, 1). Let B = L ⊕ L′.

Step 1: Let v1 ∈ SL′ be an ascent-descent direction at un−1.

Step 2: Set k = 1. Solve for uk ≡ p(vk) ≡ tk1u
1 + · · · + tkn−1u

n−1 + tknvk such that

tkn �= 0,

〈∇J(tk1u1 + · · · + tkn−1un−1 + tknvk), ui〉 = 0, i = 1, .., n − 1,
n∑

i=1

(tki )
2 = 1.

Step 3: Find a descent direction wk of J(p(·)) at vk.

Step 4: If ‖∇J(uk)‖ ≤ ε, then output uk = p(vk), stop. Otherwise, do Step 5.

Step 5: For each s > 0, denote vk(s) =
vk + swk

‖vk + swk‖ and set vk+1 = vk(sk) where

sk = max{ λ

2m
|m ∈ N, 2m > ‖wk‖, J(p(vk(

λ

2m
)))−J(uk) < −θ|tkn|

4
(

λ

2m
)‖∇J(uk)‖}.

Step 6: Update k = k + 1 and go to Step 3.

To establish some convergence results of the algorithm, for simplicity we assume

that U = {0} and the following version of the PS condition is needed.

Definition V.2 Given ui ∈ B with ‖ui‖ = 1, i = 1, ..., n − 1. A functional J ∈
C1(B, R) is said to satisfy the Palais-Smale (PS) condition if any sequence {vi} ⊆ B

with ‖vi‖ = 1 satisfies J(wi) is bounded and ∇J(wi) → 0, where wi =
∑n−1

j=1 tj(vi)uj +

tn(vi)vi,
∑n

j=1(tj(vi))
2 = 1, then {wi} possesses a convergent subsequence.
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B. Statement of Convergence Results

Similar convergence results as in Chapter III can be established through some mod-

ifications in the corresponding proofs. We only state our conclusions and omit all

proofs.

1. A Unified Convergence Result

Theorem V.2 Let V ⊂ B be open and W = V ∩SL′ �= ∅. Assume that J ∈ C1(B, R)

satisfies the PS condition,

(1) p is a continuous L-⊥ selection of J in W̄ , where W̄ is the closure of W on SL′,

(2) infv∈W d(p(v), L) > α > 0,

(3) infv∈∂W̄ J(p(v)) > c = infv∈W J(p(v)) > −∞, where ∂W̄ is the boundary of W̄

on SL′.

Then, Kp
c = p(W )∩Kc �= ∅ and for any {vk} ⊂ W with J(uk) → c where uk = p(vk),

(a) ∀ε > 0, there is k̄ > 0 such that d(Kp
c , uk) < ε, ∀k > k̄;

(b) If in addition, ∇J(p(·)) is Lipschitz continuous in W , then there is a constant

C such that ‖∇J(uk)‖ ≤ C(J(uk) − c)
1
2 .

Corollary V.1 Let J ∈ C1(B, R) satisfy the PS condition, V1 and V2 be open in L′

with ∅ �= W2 ≡ V2 ∩ SL′ ⊂ V1 ∩ SL′ ≡ W1. Assume p is a continuous L-⊥ selection of

J in W1 with

(1) infv∈W1 d(p(v), L) > α > 0, c = infv∈W1 J(p(v)) > −∞ and Kp
c = p(W1) ∩ K ⊂

Kc

(2) there is d > 0 with

inf{J(p(v))|v ∈ W1, d(v, ∂W1) ≤ d} = a > b = sup{J(p(v))|v ∈ W2},
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(3) given {vk} such that v1 ∈ W2, ‖vk+1 − vk‖ < d, J(uk+1) < J(uk) and {uk} has a

subsequence that converges to a critical point u0, where uk = p(vk). Then

(a) ∀ε > 0, there is k̄ > 0 such that d(Kp
c , uk) < ε, ∀k > k̄;

(b) If in addition, ∇J(p(·)) is Lipschitz continuous in W1, then there is a constant

C such that ‖∇J(uk)‖ ≤ C(J(uk) − c)
1
2 .

2. Subsequence Convergence

Theorem V.3 Let J ∈ C1(B, R) satisfy the PS condition and p be an L-⊥ selection

of J such that (1) p is continuous on SL′, (2) inf1≤k<∞ d(p(vk), L) ≥ α > 0, (3)

inf1≤k<∞ J(p(vk)) > −∞ and (4) wk = −sign(tkn)P(Ψ(uk)) in Step 3 of the algorithm,

where Ψ(·) is a pseudo-gradient flow with the constant θ ∈ (0, 1] and P : B → L′ is

the linear projection operator, then

(a) {vk}∞k=1 has a subsequence {vki
} such that uki

= p(vki
) converges to a critical

point of J;

(b) if a subsequence uki
→ u0 as i → ∞, then u0 = p(v0) is a critical point of J .

Theorem V.4 Let J ∈ C1(B, R) satisfy the PS condition and p be an L-⊥ selection

of J such that (1) p is locally Lipschitz continuous on SL′, (2) inf1≤k<∞ d(p(vk), L) ≥
α > 0, (3) inf1≤k<∞ J(p(vk)) > −∞ and (4) wk = −sign(tkn)P(Ψ(uk)) in Step 3 of

the algorithm, where Ψ(uk) is a pseudo-gradient at uk with constant θ ∈ (0, 1] and

P : B → L′ is the linear projection operator, then

(a) {vk}∞k=1 has a subsequence {vki
} such that uki

= p(vki
) converges to a critical

point of J;

(b) if a subsequence uki
→ u0 as i → ∞, then u0 = p(v0) is a critical point of J .
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When B = W 1,q
0 (Ω) (q > 1), a practical technique mentioned in Chapter III can

be used in the min-orthogonal algorithm. Set wk = −sign(tkn)∇J(uk) and compute

γk =
‖∇J(uk)‖2

2

‖∇J(uk)‖q‖∇J(uk)‖r

in Step 3 of the algorithm where 1
q

+ 1
r

= 1 and modify the stepsize rule in Step 5 as

sk = max{ λ

2m
|m ∈ N, 2m > ‖wk‖, J(p(vk(

λ

2m
))) − J(uk) < −|tkn|

4
(

λ

2m
)‖∇J(uk)‖2

2}.

For 1 < q < 2, L′ is the ‖ · ‖q-norm closure of L⊥ in B where L⊥ = {v ∈
W 1,r

0 (Ω)| ∫
Ω

vudx = 0, ∀u ∈ L} and for q ≥ 2, L′ = L⊥ = {u ∈ B| ∫
Ω

uvdx =

0, ∀v ∈ L}. Then we have the following two subsequence convergence results.

Theorem V.5 Assume that J ∈ C1(B, R) satisfies the PS condition, q ∈ (0, 1] and p

is an L-⊥ selection of J such that (1) p is continuous on SL′, (2) inf1≤k<∞ d(p(vk), L)

≥ α > 0, (3) inf1≤k<∞ J(p(vk)) > −∞ and (4) γk ≥ γmin > 0 where γmin is a

constant, then

(a) {vk}∞k=1 has a subsequence {vki
} such that uki

= p(vki
) converges to a critical

point of J;

(b) if a subsequence uki
→ u0 as i → ∞, then u0 = p(v0) is a critical point of J .

Theorem V.6 Assume that q > 2, J ∈ C1(B, R) satisfies the PS condition and p

is an L-⊥ selection of J such that (1) p is locally Lipschitz continuous on SL′,(2)

inf1≤k<∞ d(p(vk), L) ≥ α > 0, (3) inf1≤k<∞ J(p(vk)) > −∞ and (4) ‖∇J(uk)‖q ≤ M ,

∀k, where M > 0 is a constant or (4)’ γk ≥ γmin > 0, ∀k, where γmin is a constant,

then

(a) {vk}∞k=1 has a subsequence {vki
} such that uki

= p(vki
) converges to a critical

point of J;
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(b) if a subsequence uki
→ u0 as i → ∞, then u0 = p(v0) is a critical point of J .

C. On the Smoothness of L-⊥ Selection

Since the continuity or smoothness of an L-⊥ selection is important for our algorithm

design and convergence analysis, the following method can be used to check whether

or not p is continuously differentiable. According to the definition of an L-⊥ selection,

when L = [u1, u2, ..., un−1], p(v) = t1u1 + · · ·+ tn−1un−1 + tnv, where
∑n

i=1 t2i = 1 and

v ∈ SL′ , is solved from

〈∇J(t1u1 + · · · + tn−1un−1 + tnv), ui〉 = 0, i = 1, ..., n and
n∑

i=1

t2i = 1. (5.1)

To apply the implicit function theorem to (5.1), we need to resolve the problem caused

by the normalization condition
∑n

i=1 t2i = 1 which prevents us from taking derivative

w.r.t. ti. Since the right hand side of (5.1) contains all zeros, by the homogeneous

condition, the normalized condition
∑n

i=1 t2i = 1 can always be satisfied afterward

through dividing each ti by (
∑n

i=1 t2i )
1
2 . Thus this condition can be released. Then

for given v ∈ SL′ , the system (5.1) contains n unknown t1, ..., tn but n− 1 equations.

To obtain a square Hessian matrix of (5.1) and keep in mind of the nondegeneracy

condition d(p(v), L) > 0 in our local minimax characterization, Theorem IV.1, let us

consider solving

〈∇J(t1u1 + · · · + tn−1un−1 + v), ui〉 = 0, i = 1, ..., n − 1. (5.2)
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That is, we force tn = 1 in (5.1). The implicit function theorem states that if u =

p(v) = t1u1 + · · ·+ tn−1un−1 + v satisfies (5.2) and at u, the (n− 1)× (n− 1) matrix

Q =

⎡
⎢⎢⎢⎢⎣

〈J ′′(u)u1, u1〉 · · · 〈J ′′(u)un−1, un−1〉
· · · · · ·

〈J ′′(u)u1, un−1〉 · · · 〈J ′′(u)un−1, un−1〉

⎤
⎥⎥⎥⎥⎦

is invertible, i.e., |Q| �= 0, then (t1(w), ..., tn−1(w)) can be solved from (5.2) around v

and (t1(w), ..., tn−1(w)) is continuously differentiable around v, i.e.,

p(w) =
n−1∑
i=1

ti(w)ui + w

satisfies (5.2). Thus the L-⊥ selection p is well-defined and continuously differentiable

near v ∈ SL′ . Then we can normalize p(w) through a differentiable operation, i.e.,

multiplying each ti(w) and 1 by the number tn(w) = 1/(
∑n−1

i=1 ti(w)2 + 1)
1
2 to get

p(w) = (
∑n−1

i=1 ti(w)ui + w)/tn(w), w ∈ [L,w]S for all w near v in SL′ . Such p(w)

satisfies (5.1). The condition |Q| �= 0 can be easily checked in numerical computation.
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CHAPTER VI

A NONSMOOTH MINMAX CHARACTERIZATION

Let B be a Banach space, B∗ its dual space, 〈, 〉 the dual relation and ‖ · ‖ its norm.

Let J : B → R be a locally Lipschitz continuous functional. Then according to Chang

[3], a point u∗ ∈ B is a critical point of J iff

0 ∈ ∂J(u∗), (6.1)

where ∂J(u∗) is the generalized gradient of J at u∗ in the sense of Clark [7]. If J is

C1, (6.1) reduces to ∇J(u∗) = 0 where ∇J(u∗) is the gradient of J at u∗, i.e., (6.1)

becomes the wellknown Euler-Lagrange equation.

Let us recall some basic lemmas for the generalized gradient of locally Lipschitz

continuous functionals which will be used later for convenience.

Lemma VI.1 ([7]) Assume that J is Lipschitz continuous in a neighborhood N (u0)

of u0 with Lipschitz constant K, i.e., |J(u)−J(v)| ≤ K‖u−v‖, ∀u, v ∈ N (u0). Then

(1) For all u ∈ N (u0), ∂J(u) is a nonempty, convex, weak∗-compact subset of B∗

and ‖w‖ ≤ K, ∀w ∈ ∂J(u).

(2) Let B be a Hilbert space. For each u ∈ N (u0), if z ∈ ∂J(u) such that ‖z‖ =

min{‖ζ‖ : ζ ∈ ∂J(u)}, then we have

〈z, ζ〉 ≥ ‖z‖2, ∀ζ ∈ ∂J(u).

Lemma VI.2 (Lebourg, [7]) Let u, v ∈ B. Assume that J is Lipschitz continuous in

an open set which contains the line segment {λu + (1 − λ)v : λ ∈ [0, 1]}. Then there

is λ0 ∈ (0, 1) such that

J(u) − J(v) ∈ 〈∂J(λ0u + (1 − λ0)v), u − v〉.
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To locally Lipschitz continuous functional, we can define peak mapping, peak

selection and local peak selection in the same way as Definition II.1.

Definition VI.1 A set-valued mapping G : B → 2B∗
is said to be weakly upper

semicontinuous at u ∈ B, if for all uk → u and vk ∈ G(uk), there is wk ∈ G(u) such

that wk − vk → 0 weakly. G is said to be weakly upper semicontinuous if it is weakly

upper semicontinuous at each point in B.

A. A Local Minmax Characterization for NSCPs

1. A Characterization in Hilbert Spaces

First let us consider the case in a Hilbert space H. By using the generalized gradient,

we are able to establish a local minmax characterization for multiple nonsmooth

critical points in H which generalizes the corresponding results in [17, 18] for multiple

smooth critical points in H. The following lemma plays an important role in the local

minimax method.

Lemma VI.3 Let H be a Hilbert space with H = L⊕L⊥ for a closed subspace L ⊂ H

and J : H → R. Assume that p is a local peak selection of J w.r.t. L at v ∈ SL⊥ and

J is locally Lipschitz continuous in a neighborhood of p(v) such that

(1) p is continuous at v and dis(p(v), L) > 0,

(2) z ∈ ∂J(p(v)) such that ‖z‖ = min{‖w‖ : w ∈ ∂J(p(v))} > 0, and

(3) the set-valued mapping G : u → ∂J(u), ∀u ∈ N (p(v)) is weakly upper semicon-

tinuous at p(v), where N (p(v)) is a neighborhood of p(v).

Then as s > 0 is sufficient small,

J(p(v(s))) − J(p(v)) < −1

4
|tv|‖z‖2, (6.2)
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where v(s) =
v − sign(tv)szL⊥

‖v − sign(tv)szL⊥‖ , p(v) = tvv +wv, wv ∈ L and z = zL + zL⊥, zL ∈ L,

zL⊥ ∈ L⊥.

Proof. By Lemma VI.2, for t close to tv, w ∈ L close to wv and s > 0 sufficient small,

J
(
α(s, t, w) − sign(tv)stz

‖v − sign(tv)szL⊥‖
)
− J(α(s, t, w)) = − sign(tv)st

‖v − sign(tv)szL⊥‖〈zv,w, z〉

where α(s, t, w) = tv
‖v−sign(tv)sz

L⊥‖ + w and zv,w ∈ ∂J
(
α(s, t, w) − λv,w

sign(tv)stz
‖v−sign(tv)sz

L⊥‖

)

for some λv,w ∈ (0, 1). Since p is a peak selection, for t close to tv, w close to wv and

s sufficiently small, we have

J(p(v)) ≥ J(α(s, t, w)).

Hence

J
(
α(s, t, w) − sign(tv)stz

‖v − sign(tv)szL⊥‖
)
− J(p(v)) ≤ − sign(tv)st

‖v − sign(tv)szL⊥‖〈zv,w, z〉.

On the other hand, by assumption (3), there is ζv,w ∈ ∂J(p(v)) such that

|〈ζv,w − zv,w, z〉| ≤ 1

2
‖z‖2

for t close to tv, w close to wv and s > 0 sufficiently small. Thus, by Lemma VI.1,

J
(
α(s, t, w) − sign(tv)stz

‖v − sign(tv)szL⊥‖
)
− J(p(v))

≤ − sign(tv)st

‖v − sign(tv)szL⊥‖(−|〈zv,w − ζv,w, z〉| + 〈ζv,w, z〉) ≤ −1

4
s|tv|‖z‖2.

Then

J(p(v(s))) − J(p(v)) < −1

4
s|tv|‖z‖2,

as s > 0 sufficiently small by letting t = t(s), w = w(s) +
sign(tv)st(s)zL

‖v − sign(tv)szL⊥‖ , where

p(v(s)) = t(s)v(s) + w(s), w(s) ∈ L.
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Remark VI.1 Several points on this lemma need to be remarked.

(a) zL⊥ �= 0, since z �= 0 and p is a peak selection, see Lemma VI.6.

(b) The inequality (6.2) is an important result which can be used to not only derive

a local minmax characterization of nonsmooth saddle points as presented in Theo-

rem VI.1 but also design a stepsize rule for the local minimax algorithm, see Step 5

in the flow chart of the algorithm in Section 3.

(c) If H = R
n, to a locally Lipschitz function J , the set-valued mapping G : u →

∂J(u), ∀u ∈ H, is upper semicontinuous [7]. If J is C1, then ∂J(u) = {∇J(u)}, i.e,

G is upper semicontinuous.

By Lemma VI.3, a minmax characterization for nonsmooth critical points in a

Hilbert space can be immediately derived as follow.

Theorem VI.1 Let H be a Hilbert space with H = L ⊕ L⊥ for a closed subspace

L ⊂ H and J : H → R. Assume that p is a local peak selection of J w.r.t. L at

v ∈ SL⊥ and J is locally Lipschitz continuous in a neighborhood of p(v) such that

(1) p is continuous at v and dis(p(v), L) > 0,

(2) the set-valued mapping G : u → ∂J(u), ∀u ∈ N (p(v)) is weakly upper semicon-

tinuous at p(v), where N (p(v)) is a neighborhood of p(v), and

(3) J(p(v)) = local-minu∈S
L⊥J(p(u)).

Then p(v) is a critical point of J .

Proof. If p(v) is not a critical point of J , let z ∈ ∂J(p(v)) satisfying ‖z‖ = min{‖w‖ :

w ∈ ∂J(p(v))} > 0, then by Lemma VI.3, as s > 0 sufficiently small,

J(p(v(s))) − J(p(v)) < −1

4
s|tv|‖z‖2,
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where v(s) =
v − sign(tv)szL⊥

‖v − sign(tv)szL⊥‖ , p(v) = tvv + wv, wv ∈ L and z = zL + zL⊥ , zL ∈ L,

zL⊥ ∈ L⊥. It is a contradiction to assumption (3).

2. A Characterization in Reflexive Banach Spaces

Now we start to establish a local minmax characterization for nonsmooth saddle

points in Banach spaces. Since in this case, the generalized gradient ∂J(u) is in B∗

not B, a point in ∂J(u) cannot be used to update an iteration point u ∈ B. Thus

as long as numerical algorithms are concerned, a new notion has to be developed.

Motivated by the notion of a pseudo-gradient for C1 functional in Banach spaces, we

introduce the following definition which is crucial for later development.

Definition VI.2 Let B be a reflexive Banach space and J : B → R be Lipschitz

continuous near a point u0 ∈ B. Let µ = min{‖z‖B∗ : z ∈ ∂J(u0)} > 0. Then the

pseudo-generalized-gradient (PGG) ΨJ(u0) of J at u0 is defined by ΨJ(u0)

= {z∗ ∈ B : ‖z∗‖ = µ, 〈w, z∗〉 ≥ 〈z, z∗〉 = µ2, z ∈ ∂J(u0), ‖z‖B∗ = µ,∀w ∈ ∂J(u0)}.

Lemma VI.4 Assume that B is a reflexive Banach space, J : B → R is Lipschitz

continuous near a point u0 ∈ B and u0 is not a critical point. Then the PGG ΨJ(u0)

of J at u0 is a nonempty, convex. If in addition, B∗ is locally uniformly convex and

‖ · ‖B∗ is Fréchet differentiable on B∗ \ {0}, then ΨJ(u0) = {‖z‖B∗‖z‖′B∗} where z

is the unique point of minimum norm in ∂J(u0).

Proof. Let µ = min{‖z‖B∗ : z ∈ ∂J(u0)} and S(µ) = {u ∈ B∗ : ‖u‖B∗ ≤ µ}. If

0 ∈ ∂J(u0), i.e., µ = 0 and z = 0, then ΨJ(u0) = {0}. If 0 �∈ ∂J(u0), then µ > 0 and

there is z ∈ ∂J(u0) such that ‖z‖B∗ = µ > 0 since ∂J(u0) is nonempty, convex and

weak∗-compact. Note that intS(µ) ∩ ∂J(u0) = ∅ and z ∈ S(µ) ∩ ∂J(u0), by Lemma

VI.1 and the separation theorem [28], there is a z∗ ∈ B∗∗ = B such that



97

(1) ‖z∗‖ = ‖z‖B∗ = µ, and

(2) infw∈∂J(u0)〈w, z∗〉 = 〈z, z∗〉 = supu∈S(µ)〈u, z∗〉.

On the other hand,

sup
u∈S(µ)

〈u, z∗〉 = sup
{u∈B∗:‖u‖=‖z‖}

〈u, z∗〉 = ‖z∗‖‖z‖B∗ = ‖z‖2
B∗ = µ2.

Hence

〈w, z∗〉 ≥ 〈z, z∗〉 = ‖z‖2
B∗ = µ2, ∀w ∈ ∂J(u0).

Thus ΨJ(u0) is nonempty. To show that ΨJ(u0) is convex, let z∗1 , z
∗
2 ∈ ΨJ(u0) and

0 < α < 1. There exist z1, z2 ∈ ∂J(u0) such that ‖z1‖B∗ = ‖z2‖B∗ = µ > 0 and

〈w, z∗i 〉 ≥ 〈zi, z
∗
i 〉 = µ2, ∀w ∈ ∂J(u0), i = 1, 2.

Since ‖z∗1‖ = ‖z∗2‖ = µ, we have

‖αz∗1 + (1 − α)z∗2‖ ≤ µ and ‖αz1 + (1 − α)z2‖ ≤ µ,

and for all w ∈ ∂J(u0),

〈w,αz∗1 + (1 − α)z∗2〉 = α〈w, z∗1〉 + (1 − α)〈w, z∗2〉

≥ α〈z1, z
∗
1〉 + (1 − α)〈z2, z

∗
2〉 = αµ2 + (1 − α)µ2 = µ2.

In particular for w = αz1 + (1 − α)z2 ∈ ∂J(u0), we have

µ2 ≤ 〈αz1 +(1−α)z2, αz∗1 +(1−α)z∗2〉 ≤ ‖αz1 +(1−α)z2‖B∗‖αz∗1 +(1−α)z∗2‖ ≤ µ2.

Therefore we must have

〈αz1 + (1 − α)z2, αz∗1 + (1 − α)z∗2〉 = µ2,

‖αz∗1 + (1 − α)z∗2‖ = ‖αz1 + (1 − α)z2‖B∗ = µ
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and for all w ∈ ∂J(u0),

〈w,αz∗1 + (1 − α)z∗2〉 ≥ 〈αz1 + (1 − α)z2, αz∗1 + (1 − α)z∗2〉 = µ2,

i.e., αz∗1 + (1 − α)z∗2 ∈ ΨJ(u0) and thus ΨJ(u0) is a convex set.

If in addition, B∗ is locally uniformly convex and ‖·‖B∗ is Frechet differentiable on

B∗ \{0}, then there is only one z ∈ ∂J(u0) with ‖z‖B∗ = µ and S(µ)∩∂J(u0) = {z}.
The set {u ∈ B∗ : 〈‖z‖′B∗ , u − z〉 = 0} is the tangent plane of the sphere S(µ) at z.

On the other hand, B is reflexive and ‖ ·‖′B∗ exists on B∗ \{0} imply that B is locally

uniformly convex. Since ΨJ(u0) is a convex set in B such that for any z∗ ∈ ΨJ(u0),

we have ‖z∗‖ = ‖z‖B∗ = µ, the set ΨJ(u0) can contain at most one point z∗. The

hyperplane corresponding to z∗ separates ∂J(u0) from S(µ) at z. Such a separating

hyperplane must be a tangent plane of S(µ) at z. Since g(v) = ‖v‖B∗ is Frechet

differentiable at z, such a tangent plane is unique. We have

〈‖z‖′B∗ , w − z〉 ≥ 0 ≥ 〈‖z‖′B∗ , u − z〉,∀w ∈ ∂J(u0), u ∈ S(µ).

Since 〈‖z‖′B∗ , z〉 = ‖z‖B∗ = µ, we have

〈‖z‖B∗‖z‖′B∗ , w〉 ≥ 〈‖z‖B∗‖z‖′B∗ , z〉 = µ2 = ‖z‖2
B∗ ≥ 〈‖z‖B∗‖z‖′B∗ , u〉,

∀w ∈ ∂J(u0), u ∈ S(µ), which implies ‖‖z‖B∗‖z‖′B∗‖ = ‖z‖B∗ = µ and then ΨJ(u0) =

{z∗} = {‖z‖B∗‖z‖′B∗}.

Remark VI.2 Several points on this lemma need to be remarked.

(a) When B is a Hilbert space, z∗ = z.

(b) When J is a C1 functional, z∗ is a pseudo-gradient of J at u0 with

‖z∗‖ = ‖∇J(u0)‖ and 〈z∗,∇J(u0)〉 ≥ ‖∇J(u0)‖2.
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(c) By the Kadec-Troyanski theorem (pp. 603-605, [28]), in every reflexive Banach

space B, an equivalent norm ‖ · ‖B can be introduced so that B and B∗ are locally

uniformly convex and therefore ‖ · ‖B and ‖ · ‖B∗ are Frechet differentiable on B \ {0}
and B∗ \ {0}. Thus in this case, we may use the norm ‖ · ‖B as the default norm ‖ · ‖
on B.

Then replacing the generalized gradient by the PGG and with some modification,

the following lemma can be verified in a similar way as in Lemma VI.3.

Lemma VI.5 Assume that J is locally Lipschitz continuous in B and p is a local

peak selection of J w.r.t L at v ∈ SL⊥ such that

(1) p is continuous at v and dis(p(v), L) > 0,

(2) z∗ ∈ B is the PGG of J at p(v) with ‖z∗‖ > 0, and

(3) the set-valued mapping G : u → ∂J(u), ∀u ∈ N (p(v)) is weakly upper semicon-

tinuous at p(v), where N (p(v)) is a neighborhood of p(v).

Then

J(p(v(s))) − J(p(v)) < −1

4
s|tv|‖z‖2

B∗ ,

where v(s) =
v − sign(tv)sz

∗
L′

‖v − sign(tv)sz∗L′‖ , p(v) = tvv + wv, wv ∈ L, z∗ = z∗L + z∗L′, z∗L ∈ L,

z∗L′ ∈ L′ and z is a point of minimum norm in ∂J(p(v)).

By Lemma VI.5, the minmax characterization for nonsmooth critical points in

Banach spaces can be written as follow.

Theorem VI.2 Assume that J is locally Lipschitz continuous in B and p is a local

peak selection of J w.r.t L at v ∈ SL′ such that

(1) p is continuous at v and dis(p(v), L) > 0,
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(2) the set-valued mapping G : u → ∂J(u), ∀u ∈ N (p(v)) is weakly upper semicon-

tinuous at p(v), where N (p(v)) is a neighborhood of p(v), and

(3) J(p(v)) = local-minu∈SL′J(p(u)).

Then p(v) is a critical point of J , i.e., 0 ∈ ∂J(p(v)).

B. A Local Minimax Algorithm

Before we present the algorithm, we need the following lemma to show that Step 3

in the algorithm can be carried out once a nonsmooth saddle critical point has not

been reached.

Lemma VI.6 Let B be a reflexive Banach space with B = L ⊕ L′ for some closed

subspaces L,L′ in B and J : B → R. Assume p is a local peak selection of J w.r.t

L at v0 ∈ SL′, J is locally Lipschitz continuous near u0 = p(v0) and the set-valued

mapping G : u → ∂J(u) is weakly upper semicontinuous at u0. If u0 is not a critical

point, then P(z∗) �= 0,∀z∗ ∈ ΨJ(u0) where P : B → L′ is the projection operator.

Proof. Since u0 is not a critical point of J , we have µ = min{‖z‖ : z ∈ ∂J(u0)} > 0.

If P(z∗) = 0, then z∗ ∈ L, u0 + tz∗ ∈ [L, v0]. When t > 0 is sufficiently small, by

Lemma VI.2, there exist λ ∈ (0, 1), ζt ∈ ∂J(u0 + λtz∗) and ζ0 ∈ ∂J(u0) such that

J(u0 + tz∗) − J(u0) = t〈ζt, z
∗〉 = t(〈ζt − ζ0, z

∗〉 + 〈ζ0, z
∗〉)

≥ t(−1

2
µ2 + µ2) =

t

2
µ2 > 0,

where the first inequality is due to the conditions that G : u → ∂J(u) is weakly upper

semicontinuous and z∗ ∈ ΨJ(u0). It leads to a contradiction to the assumption that

u0 = p(v0) is a local maximum point of J in [L, v0]. Now we are ready to present

the algorithm.
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Assume that u1,...,un−1 are n − 1 previously found nonsmooth critical points

of a locally Lipschitz continuous functional J in a reflexive Banach space B. Let

L = {u1, ..., un−1}, B = L⊕L′ and P be the corresponding projection operator from

B to L′. Given ε, λ > 0.

A flow chart of the algorithm reads:

Step 1: Let v1 ∈ SL′ be an increasing-decreasing direction at un−1.

Step 2: Set k = 1 and solve for

uk = p(vk) = tk0v
k + tk1u1 + · · · + tkn−1un−1

= arg max{J(t0v
k
n + t1u1 + · · · + tn−1un−1)|ti ∈ R, i = 0, 1, ..., n − 1}.

Step 3: Find a descent direction wk = −sign(tk0)P(zk) at uk, where zk ∈ ΨJ(uk).

Step 4: If ‖uk − uk−1‖ < ε, then output uk, stop. Otherwise, do Step 5.

Step 5: For each s > 0, use the initial point (tk0, t
k
1, ..., t

k
n−1) to solve for

p(vk(s)) = arg max
{

J(t0v
k(s) +

n−1∑
i=1

tiui)|ti ∈ R, i = 0, 1, ..., n − 1
}

,

where vk(s) = vk+swk

‖vk+swk‖ , then set uk+1 = p(vk+1) = p(vk(sk)) where sk satisfies

sk = max{s =
λ

2m
|m ∈ N, 2m > ‖wk‖, J(p(vk(s))) − J(p(vk)) ≤ −1

4
|tk0|s‖zk‖2}.

Step 6: Update k = k + 1 and go to Step 3.

Remark VI.3 Several points on the algorithm need to be remarked.

(a) By Lemmas VI.5 and VI.6, a positive step size in Step 5 of the algorithm can

always be obtained if a critical point has not been reached. Therefore the algorithm is
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a strict descending method, i.e., J(uk+1) < J(uk), ∀k = 1, 2, .....

(b) When B is a Hilbert space, L′ will be chosen as L⊥ and zk is the point of minimum

norm in ∂J(uk).

(c) When J is a C1 functional, this algorithm will reduce to the local minimax algo-

rithm in [17, 18] if B is a Hilbert space and the local minimax algorithm in Chapter II

if B is a reflexive Banach space except Step 3 where for smooth saddle critical points

[17, 18] and Chapter II,

‖∇J(uk)‖ ≤ ε or ‖Gk‖ ≤ ε,

where Gk is a modified pseudo-gradient of J at uk, is naturally used as a criterion to

stop iteration in the algorithm. For nonsmooth saddle critical points, one may think

to use

‖P(zk)‖ ≤ ε (6.3)

as a criterion to stop iteration in the algorithm. But it is easy to construct a Lipschitz

continuous functional J , e.g., J(u) = |u|, u ∈ R such that u0 is a nonsmooth critical

point of J and uk → u0 ∈ B satisfies

‖P(zk)‖ > β > 0,∀zk ∈ ΨJ(uk).

Hence in general (6.3) cannot be used as a criterion to stop iteration in the algorithm.

Instead we may use ‖uk−uk−1‖ < ε or |J(uk)−J(uk−1)| < ε or ‖vk−vk−1‖ < ε which

is equivalent to ‖skP(zk)‖ < ε, as a criterion to stop the iteration of the algorithm.

Those criteria are commonly used in numerical computation.

(d) Other definitions of generalized gradient may also be used to derive local minmax

characterization of nonsmooth saddle critical points. We are conducting further study

and implementation of the algorithm.
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CHAPTER VII

FURTHER TOPICS AND CONCLUSION

A. Further Topics

1. Elliptic Neumann Boundary Value Problem

Consider the following quasilinear elliptic Neumann boundary value problem

⎧⎪⎨
⎪⎩

∆pu − l|u|p−2u + f(x, u) = 0, x ∈ Ω,

∂u
∂n

= 0, x ∈ ∂Ω,

where ∆p is p-Laplacian operator with p > 1, Ω is a bounded domain and l > 0.

In the space W 1,p
n (Ω) = {u ∈ W 1,p(Ω)|∂u

∂n
= 0 on ∂Ω}, we define

‖u‖W 1,p
n (Ω) =

∫
Ω

(|∇u|p + l|u|p)dx, ∀u ∈ W 1,p
r (Ω).

Then, the energy function to the above quasilinear elliptic Neumann boundary value

problem is

J(u) =
1

p

∫
Ω

(|∇u|p + l|u|p)dx −
∫

Ω

F (x, u)dx,

where F (x, u) =
∫ u

0
f(x, s)ds. Thus, the gradient d = ∇J(u) of J at u can be

calculated by solving the following linear elliptic equation

⎧⎪⎨
⎪⎩

∆d − ld = ∆pu − l|u|p−2u + f(x, u), x ∈ Ω,

∂d
∂n

= 0, x ∈ ∂Ω,

So far, people’s knowledge on the existence of solutions to the problem and their

properties is still quite limited. From the theoretical analysis in this dissertation, our

algorithm should work for this problem. So computational theory and methods de-

veloped in this dissertation can be used to provide some tools for further investigation
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on the problem.

2. Lagrange Multiplier Methods for Eigenpairs

In Chapter IV, we consider the following eigenpair problem, for given α > 0, find

(λ, u) ∈ R × (B \ {0}) such that

⎧⎪⎨
⎪⎩

F ′u = λG′u or 〈F ′u, v〉 = λ〈G′u, v〉, ∀v ∈ B

subject to G(u) = α
(7.1)

where F ′ and G′ are the Fréchet derivatives of two functionals F and G in C1(B, R)

and B is a Banach space with the dual relation 〈, 〉 and the norm ‖ · ‖. Such (λ, u) is

called an eigenpair where λ is an eigenvalue and u is an eigenfunction corresponding

to λ. As a special case, the iso-homogeneous eigenpair problem has been solved in

Chapter IV. Here we consider more general cases.

Define the Lagrange functional

L(λ, u) = F (u) − λ(G(u) − α). (7.2)

Then critical points (u, λ) of L(u, λ) are eigenpairs (λ, u) of (7.1) and vice versa.

By this equivalence, we can define a peak-selection in R × B and get a minmax

characterization for the critical points of (7.2). Then, a minimax algorithm can be

designed for finding multiple saddle critical points of (7.2), i.e., multiple eigenpairs

of (7.1). As a matter of fact, a peak-selection in R × B has already been defined,

a minmax characterization for critical points of (7.2) has been established and a

minimax algorithm for capturing multiple saddle critical points of (7.2) has been

designed. Our numerical experiment on several models in [9] shows us that the

algorithm is successful. This is an ongoing research.
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3. Nonsmooth Saddle Critical Points

In Chapter VI, a minimax algorithm for capturing multiple nonsmooth saddle critical

points has been proposed and needs to be implemented. Techniques for such imple-

mentation may need to be developed. Numerical experiment on some models needs

to be done. It is another ongoing research.

B. Conclusion

Two local minimax methods together with their related theory have been developed

in this dissertation for computing multiple saddle critical points in Banach spaces.

The first is for unconstrained smooth cases and the second is for a class of con-

strained smooth cases, i.e., the iso-homogeneous nonlinear eigenpair problems in Ba-

nach spaces. They are two-level local optimization methods. The first level is a local

maximization and the second is a local minimization. Hence they can be realized nu-

merically. There are two key steps in devising these two minimax methods. The first

is to define a peak-selection and the second is to establish a minmax characterization

for multiple saddle critical points. Such an approach has been generalized to design

a minimax algorithm for unconstrained nonsmooth saddle critical points in Banach

spaces.

Based on the methods, two numerical minimax algorithms have been designed for

finding multiple smooth saddle critical points in Banach spaces. Pseudo-gradient has

been used to find a descent direction for the local minimization at the second level and

projection is used to avoid the degeneracy. To implement the algorithms, techniques

to compute a pseudo-gradient are proposed. In particular, the method to compute

our gradient of J ∈ C1(W 1,p
0 , R) (p > 1) is noteworthy. A unified convergence and

several subsequence convergence results have been established for the algorithms. A
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relation between the convergence rates of the functional value and its derivative has

been derived. To get convergence results, peak-selections have been generalized to

L-⊥ selections. By these L-⊥ selections, L-⊥ characterizations are established and

min-L-⊥ algorithms can be designed. By this generalization, the smoothness of peak-

selections can be numerically checked. Several numerical experiments to solve a class

of quasilinear elliptic PDEs for multiple solutions and to find multiple eigenpairs of

the p-Laplacian operator are carried out. Several interesting phenomena have been

observed. As an application of our theory, we verify the existence of a nontrivial

solution to a class of quasilinear elliptic PDEs.

A minimax algorithm has been designed for finding multiple nonsmooth saddle

critical points. To do so, a pseudo-generalized-gradient has been introduced. Some

interesting properties of a pseudo-generalized-gradient have been found.
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