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ABSTRACT 

 

New Measures and Effects of Stochastic 

Resonance. (August 2004) 

Swaminathan Sethuraman, B. E., Anna University, India 

Chair of Advisory Committee: Dr. Laszlo B. Kish 

 

     In the case of wideband (aperiodic) signals, the classical signal and noise measures 

used to characterize stochastic resonance do not work because their way of 

distinguishing signal from noise fails. In a study published earlier (L. B. Kish, 1996), a 

new way of measuring and identifying noise and aperiodic (wideband) signals during 

strongly nonlinear transfer was introduced. The method was based on using cross-

spectra between the input and the output. According to the study, in the case of linear 

transfer and sinusoidal signals, the method gives the same results as the classical method 

and in the case of aperiodic signals it gives a sensible measure. In this paper we refine 

the theory and present detailed simulations which validate and refine the conclusions 

reached in that study. As neural and ion channel signal transfer are nonlinear and 

aperiodic, the new method has direct applicability in membrane biology and neural 

science (S.M. Bezrukov and I. Vodyanoy, 1997). 



iv 

 

 

ACKNOWLEDGMENTS 

 I would like to thank my advisor Dr. L. B. Kish for all the help and support during the    

past two years Without his help and support this research would have been impossible. I 

also thank my committee members Dr. Halverson, Dr. Su and Dr. Rojas for discussions 

and comments at the right time.  I would like to thank Tammy, Windy and Linda for 

their generous help regarding all administrative matters. I would like to express my 

gratitude to Dr. Kish, Dr. Rojas and Dr. Cohen for their enthusiastic encouragement and 

for being interested in my welfare apart from academic activities. They also helped me 

when I needeed it the most. 

 My biggest thanks goes to my parents and sister and grandma for solid emotional 

support over all these years. Also my sincere thanks for my friends Vijay Anand, 

Muthumanikandan, Vijayaraghavan, Chaitaya, Anuj, Samir, Srinivasan and many other 

friends for the wonderful times during school and college years. 



v 

 

 

TABLE OF CONTENTS 

              Page 

ABSTRACT ..................................................................................................................... iii 

ACKNOWLEDGMENTS................................................................................................ iv 

TABLE OF CONTENTS ...................................................................................................v 

LIST OF FIGURES.......................................................................................................... vi 

LIST OF TABLES .......................................................................................................... vii 

1. INTRODUCTION..........................................................................................................1 

1.1 What Is Stochastic Resonance ?...........................................................................1 
1.2 Literature Review.................................................................................................2 
1.3 Aim of the Thesis .................................................................................................5 

2. THE CROSS SPECTRAL MEASURE OF SNR ..........................................................7 

2.1 Some Definitions..................................................................................................7 
2.2 Classical Methods of Determining the SNR ........................................................9 
2.3 The Cross Spectral Method ................................................................................11 
2.4 The Analysis of the Cross Spectral Method.......................................................12 

3. SIMULATION RESULTS...........................................................................................14 

3.1 Description of the LCD System .........................................................................14 
3.2 Comparison of the Classical and the New Method ............................................15 

4. BLUE SHOT NOISE ...................................................................................................22 

4.1 Motivation ..........................................................................................................22 
4.2 Simulations.........................................................................................................23 
4.3 Explanation.........................................................................................................25 

5. CONCLUSION AND RECOMMENDATIONS.........................................................27 

REFERENCES.................................................................................................................28 

VITA ................................................................................................................................30 

 



vi 

 

 

  LIST OF FIGURES 

FIGURE             Page 

 1.1 Illustration of stochastic resonance in a simple double well potential  

  system ...................................................................................................................2 

 1.2 Demonstration of the stochastic resonance effect in the asymmetric LCD  

system ...................................................................................................................4 

 2.1   Schematic diagram to illustrate some terminology used ......................................7 

 2.2  Illustration of computation of SNR using continuity arguments........................10 

 3.1  Illustration of the asymmetric LCD setup...........................................................15 

 3.2  Linear response limit .........................................................................................16 

 3.3  Plot of the output background noise by the new method ...................................19 

 3.4  Cross spectrum measure in the case of unknown phase of the input signal .......20 

 3.5 Comparison of the SNR determined by the classical and new methods as  

  the amplitude of the input sinusoidal signal varies ............................................21 

 4.1  Illustration of the blue noise effect ....................................................................23 

 4.2  Background noise spectrum at different values of the input noise level  

   where the sampling frequency = 65 Hz with the width of the output spike  

   kept constant at 5Ts ............................................................................................24 

 4.3 The output noise spectrum at LCD threshold 1 V for different values of  

  the signal strength with fixed width of output spike = 5Ts and sampling 

frequency Fs = 50 Hz ..........................................................................................25 

 4.4  Illustration of the time derivative charcteristics of the saturated system ...........26 

 



vii 

 

 

 LIST OF TABLES 

TABLE             Page 

 3.1 Comparison of SNR obtained by classical, new and continuity methods  

  at linear limit ......................................................................................................17 

3.2 Comparison of SNR obtained by classical, new and continuity methods  

  at  nonlinear limit ...............................................................................................19 

 



 

 

 

1

1.  INTRODUCTION 

1.1  What Is Stochastic Resonance? 

     Stochastic resonance has become an interesting field of study recently. It is common 

intuition that noise always plays the role of a spoiler and hinders the signal in being 

received and interpreted effectively. But surprisingly it was found that this need not 

always be true. There exist* systems where noise actually aids or abets the passage of 

signal through the system. Such an effect is called as stochastic resonance and the 

systems which exhibit such a behavior are called stochastic resonators. 

 Stochastic resonance was first proposed to explain the periodic changes in long term 

climate of the earth and the onset of ice ages [1]. But later on it was found that the 

stochastic resonance effect had an ubiquitous nature being observed experimentally in 

such diverse systems as schmitt triggers, ring lasers, ionic channels, and 

mechanosensory pathways in arthropods and the complicated human sensory perception 

systems. 

 A simple system which illustrates this general phenomenon is as follows: Consider a 

bistable potential well as shown in Fig 1.1. The well has two stable states, Position 1 and 

Position 2, and a particle oscillating in the potential well. Consider a particle oscillating 

in this potential well at a frequency Fs and a small external forcing of amplitude A 

(which plays the role of the input signal) which is smaller than the potential required to 

cross the potential barrier of the well. Let the output signal be the frequency Fs at which 

the particle oscillates between the two equilibrium states Position 1 and Position 2. 

 If there is no noise, the output signal is zero as there is insufficient potential to cross 

the barrier. As the input noise strength increases, the output signal starts increasing as 

the particle moves between the two states. But if the noise strength is too high, it will 

swamp the signal as there will be no correlation between the forcing input and the output 

signal. Hence we can conclude that there is an optimal value of noise that is non zero at 

                                                 
The journal model is Physics Letters A. 
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which the output signal is maximum. This phenomenon of noise induced signal 

transduction is called stochastic resonance (SR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.1. Illustration of the phenomenon of stochastic resonance in a simple double well 

potential system 

 

1.2  Literature Review  

 Due to its relevance for biological information processing, in the recent times, the 

stochastic resonance (SR) effect has become one of the most promising phenomena 

taking place in non-linear systems driven by noisy periodic inputs [2-16].  It was shown 

by Bezrukov and Vodyanoy [17] that a reasonable model for neural signal transmission 
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is the variable rate poisson model, where the neural system can be thought as a system 

which fires an output spike, if the input to the neuron exceeds a particular threshold in 

the positive direction. A similar model was found to be applicable for ion channels. This 

study of Bezrukov and Vodyanoy also showed that this particular neuron model exhibits 

the phenomenon of stochastic resonance.   

 Initially when SR effect was discovered, there was a widely held belief that it 

required a nonlinear dynamical system driven by a periodic input to observe this effect. 

But Kish, Moss and Zingl [15], showed that even non dynamical systems with a 

threshold like nonlinearity driven by aperiodic inputs can result in SR behavior. Further 

the non-dynamical system exhibited by them is a level crossing detector (LCD) which 

aptly captures the essential features of the neuron system described by Bezrukov and 

Vodyanoy.  

  The input of the stochastic resonators [14] has usually been excited by an additive 

Gaussian noise and a periodic signal with fundamental frequency f0. As mentioned 

above, the SR effect is that, the output power spectral density shows a non-monotonic 

variation with respect to increasing the input noise power. That is, there exists an 

optimal strength of the input noise, where the system’s output power density spectrum at 

the signal frequency f0 has a maximal value. (See Fig 1.2) 

 The most important quantity of interest in SR systems is the “signal to noise ratio” 

(SNR), at the input (SNRinp) and at the output (SNRout) of the SR system. The SNR is 

defined as: 

 

            (1.1) 

 

 

 In the above equation Ps is the mean squared value of the (background corrected) 

Fourier component of the input voltage at frequency f0 and S(f0) is the spectrum of 

background noise at f0. Of particular interest to everyone in the field is whether there 

)( 0fS
PSNR s=



 

 

 

4

exist stochastic resonance systems that can significantly increase the SNR at the output. 

It was shown [18] that the “old dream” of achieving  

 

 

            (1.2) 

 

can be achieved, in the strongly nonlinear response limit, if we use high bandwidth noise 

with strong subthreshold signal which has a spiky nature (small duty cycle). 

 

 
 

Fig 1.2. Demonstration of the stochastic resonance effect in the asymmetric LCD system 

 

inpout SNRSNR >>
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1.3  Aim of the Thesis  

 It is an interesting and a practical problem to determine the accuracy of these claims. 

But, to truly evaluate the accuracy of this claim, we need a proper measure of the SNR, 

which works under all circumstances, not merely in the linear response case. This is 

because high SNR gains are achieved at a strongly nonlinear limit where the spectrum of 

the background noise is shaped by the input signal. In other words there is an interaction 

between signal and noise at the output and hence the signal and noise components are no 

longer independent. This means that we cannot measure the noise power when there is 

no input signal and take that as the noise component at the output. This clearly 

necessitates a need for a general measure for SNR valid in all cases. The total failure of 

classical suggestions for SNR measures becomes most obvious in the case of wideband 

aperiodic signals, which have been shown in [18] to include the case when significant 

SNR gain is achieved. It is important to emphasize that all neural and ion channel 

signals belong to this class. The aim of this thesis is the following: 

 1. To present and discuss a measure of Signal to Noise ratio which is applicable 

under different scenarios 

  a) Nonlinear signal transfer through a system 

  b)When the input is stochastic rather than deterministic 

  c)When there are no strong periodic components in the input compared to the 

duration of observation. e call the new measure as the Cross Spectral measure of SNR. 

 2. To present detailed simulations to substantiate the claim that the cross spectrum 

method used to determine the SNR is indeed a valid and the most general method which 

works under all circumstances i.e. nonlinear limit and wideband input signals. 

 3. Discuss the applications of the new measure under different circumstances and 

present examples and simulations, mostly related to models applied to the study of 

neurons. 
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 Section 2 describes the new cross spectrum method for determining the output SNR 

and presents some theoretical analysis. In Section 3 we give a description of the SR 

system used in the simulations and then present the simulation results. Section 4 gives an 

account of a new and interesting phenomenon observed in asymmetric LCD systems 

with large output spike width and Section 5 ends with conclusions and suggestions for 

future work. 
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2.  THE CROSS SPECTRAL MEASURE OF SNR* 

     The signal to noise (SNR) is a quantity which tells how much of the total power is 

contributed by the signal and how much the noise component is. In general we have a 

system with an input signal say x(t) and an output signal say y(t) as in Figure 2.1. 

 

 

 

 

 

 

 

 

Fig 2.1. Schematic diagram to illustrate some terminology used 

 

 We can decompose the output y(t) into its spectral components and ask how much of 

the power in each spectral component comes from the signal Sy(f)  and how much from 

noise Sn(f). Sy(f) is called as the output signal spectral component and Sn(f) is called as 

the output noise spectral component. The ratio Sy(f)/Sn(f) is called the Signal to Noise 

ratio.  

 

2.1  Some Definitions 

 The cross correlation function of two signals x(t) and y(t) which are real , stationary, 

ergodic and of finite power ( that is ∞<∫ dttxE ])([ 2 ) is defined as follows: 

                                                 
* Part of the data in this section is reprinted with permission from “Cross spectra measure of neural signals 
and noise ” by S.Sethuraman, L. B. Kish, 2003, Proceedings of the SPIE conference on Fluctuations and 
Noise in Biological, Biophysical and Biomedical systems, Vol 5110, pp 244-251. Copyright 2003 by 
SPIE. 
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y(t) Output signal 

System (in general 
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            (2.1) 

  

 From this taking y(t)=x(t) we get the autocorrelation function of a signal x(t) namely 

Rxx(τ). The cross power spectral density (CSD) of two such signals, x(t) and y(t) is given 

by the Fourier transform of the cross correlation of x and y, Rxy(t), as : 

 

   τπττ djRfS xyxy )2exp()()( −= ∫
+∞
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   (2.2) 

 

 Similarly the power spectral density of a signal (PSD) x(t) is given as the Fourier 

transform of its autocorrelation function, Rxx(τ). 
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 The following highly useful approximations for Sxx(f) and Sxy(f) can be applied when 

x(t) and y(t) are ergodic and stationary.  

 

  

 

            (2.4) 

 

 

 

 

 The above approximate formulae are accurate only when the limits of integrations 
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large for all practical purposes. Note the we have dodged numerous issues while 
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defining X(f) and Y(f). A proper rigorous treatment needs measure theoretic framework 

which is beyond the scope of this thesis. Hence the above definitions should be taken 

with a grain of salt and the engineer’s dictum that what works in practice could be used 

with caution! The reason for the above approximations is that X(f) and Y(f) could be 

computed efficiently using FFT and prove convenient in simulations. Further in 

simulations one always works with sampled discrete data and hence many of the tricky 

convergence issues requiring measure theory can be avoided. 

 

2.2  Classical Methods of Determining the SNR 

 The simplest method which is still widely adopted [9-14, 19, 20], is the following: 

The output noise spectrum is computed when there is no input. That is the input is 

switched off so to speak (x(t) = 0) and the output power spectral density Syy(f) is 

computed. And this Syy(f)|x(t)=0 is taken as the output noise spectral component even 

when x(t) is non zero. Summarizing in terms of equations, 

 

 

            (2.5) 

 

 

 

 The disadvantage of this method is that although it works well in the linear response 

limit, it fails badly when the signal transfer is non linear. This is because, the presence of 

signal influence the output noise spectrum when the transfer is nonlinear. This is 

illustrated through a simulation result in Section 3.  

 We now describe a correlation coefficient based method. In general, at nonlinear 

signal transfer, the output background noise cannot be determined by measuring the 

output noise spectral component when there is no input signal. In the case of nonlinear 

transfer, there are extra cross modulation product terms between the input signal and 

noise. Therefore this leads to an output noise which has a strong dependence on the input 

)(/)()(
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signal. Collins and coworkers [21] proposed a method that takes the correlation between 

input and output into account which is called as the correlation coefficient method. Here 

the SNR measure is given by the cross correlation coefficient between the input x(t) and 

output y(t), that is  SNR = E[x(t)y(t)].  

 But this quantity becomes zero when the input and the output are sinusoids shifted in 

phase by 900. This is illustrated in Section 3. Hence the right idea would be to use the 

entire cross correlation function when defining the SNR. An intelligent choice would be 

to use the Fourier transform of the cross correlation function that is, the CSD. 

 The next classical method is the method based on continuity argument (see [15]). 

This method is applicable only for input signals containing periodic components. In such 

cases the total output power spectrum Syy(f) has sharp spikes at multiples of the 

fundamental frequency of the input periodic signal. We know that the background output 

noise spectrum (the output noise spectral component) is a continuous function of 

frequency. Hence its value at the multiples of the fundamental frequency can be obtained 

by interpolation at the nearby frequencies. Thus one obtains the output noise spectral 

component Sn(f). The output signal spectral component Sy(f) is then obtained as Syy(f)-

Sn(f). The ratio Sy(f)/Sn(f) gives the desired SNR. This is illustrated in Fig 2.2. 

  

 

 

 

 

 

 

 

 

 

 

Fig 2.2. Illustration of computation of SNR using continuity arguments
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     The major drawback of this method is that it works only with periodic input signals. 

Further it is rather cumbersome and prone to errors. 

 

2.3  The Cross Spectral Method 

 It is clear that Sxx(f) and Syy(f) measure the total power in each frequency component 

at the input and the output respectively. Intuitively, the signal spectral component at the 

output is that part of the output signal which is correlated with the input. Also reasoning 

similarly, we can conclude that the output noise spectral component is that part which is 

statistically independent of the input signal.  The cross spectral density (CSD) Sxy(f) 

however measures the correlation between the spectral components at the input and 

output. The squared modulus of the CSD is hence a suitable candidate for the signal 

spectral component at the output. The only refinement is that this quantity must be 

normalized by Sxx(f). Also the CSD is in general complex and hence retains the phase 

information and is robust phase errors between the input and the output. This intuition 

leads to the following equations. First we define the generalized amplification factor, 

 

            (2.6) 

 

 

 Note that in nonlinear systems, K(f) can depend not only on the frequency, but also 

on the input signal and on the input noise. Now the output signal spectral component, 

Sy(f) is obtained as follows, 
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Sn(f) as the difference between the total output power spectrum Syy(f) and the output 

signal spectral component Sy(f). 

 

            (2.8) 

 

 Note that the above definitions restore the validity of the old definitions in the limit 

of small sinusoidal input signal (linear transfer and sinusoidal excitation, see Fig 3.2). 

Moreover the new definitions work at arbitrary conditions and the only pre requirement 

is the stationarity of the input noise, input signal and the stochastic resonator. 

 

2.4  The Analysis of the Cross Spectral Method 

 We now describe, how under simplifying assumptions the cross spectral method 

leads to intuitively satisfying results and reduces to classical definitions. In the case of 

deterministic signals, the above definition simplifies as follows: The signal power 

becomes 2|])([| fYE | and the noise power is nothing but the variance of )( fY . This 

leads to an intuitively satisfying view of the output signal power and noise power. This 

in the linear limit reduces to the classical definition. This is shown in the equations 

below, 
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 This simplification was possible because x(t) being deterministic implied that 
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            (2.10) 

   

 This leads to the pleasing interpretation of the signal power as the mean squared 

value of Y(f) and the noise power as the variance of Y(f).  

 Now we take the case of linear systems. In linear systems the output 

y(t)=H[x(t)+n(t)], where x(t) is the input signal and n(t) is the noise which is 

uncorrelated to the signal and H is a linear transformation. In this case the output signal 

spectral density reduces to Sxx(f)|H(f)|2  and the output noise spectral density becomes 

Snn(f)|H(f)|2 where H(f) is the system transfer function. Hence the SNR becomes, 

 

            (2.11) 

 

 Hence the input signal does not change the output background noise. So we could 

use the classical definition of switching off the signal and measuring the output power 

spectrum to determine the background noise spectrum. 
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3.  SIMULATION RESULTS* 

 Before describing the simulation results we describe the level crossing detector 

(LCD) system which was used in simulations where nonlinear transfer was required. The 

reason for choosing the LCD system is that the LCD is a simple non dynamical system 

with threshold nonlinearity. It is one of the simplest examples of a nonlinear system 

which occurs in a wide variety of situations including neuron models and ion channel 

models. 

 

3.1 Description of the LCD system 

 The suitability of the cross-spectra measure for SNR is demonstrated using a Level 

Crossing Detector (LCD) setup. The LCD is a suitable candidate for study as it has a 

threshold like non-linearity, which is ubiquitous in most SR systems. Further extensive 

experimental study show that the level crossing dynamics of the Gaussian noise 

inherently contains the SR effect (see Fig 1.2). In this paper we use the LCD systems as 

described in [18] (see [23] for a fuller account). 

  First we describe the asymmetric LCD system. The asymmetric system consists of 

an LCD of the following kind: whenever the input amplitude of the input excitation 

(noise and signal) crosses the positive threshold level Ut in increasing direction, the LCD 

produces a positive, short pulse with amplitude A and duration τ0 at its output. The 

resulting output response of the system is a random time-sequence u(t) of uniform, 

positive pulses. 

 The symmetric system consists of an LCD of the following kind: whenever the input 

amplitude crosses the positive threshold level Ut in increasing direction, the LCD 

produces a positive, short pulse with amplitude A and duration τ0 at its output. On the 

other hand, whenever the input amplitude crosses the negative threshold level -Ut in 

                                                 
* Part of the data in this section is reprinted with permission from “Cross spectra measure of neural signals 
and noise” by S.Sethuraman, L. B. Kish, 2003, Proceedings of the SPIE conference on Fluctuations and 
Noise in Biological, Biophysical and Biomedical systems, Vol 5110, pp 244-251.Copyright 2003 by SPIE. 
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decreasing direction, the LCD produces a negative, short pulse with amplitude -A and 

duration τ0 at its output. The resulting output response of the system is a random time-

sequence u(t) of uniform, positive and negative pulses with zero time average.(See Fig 

3.1).  

 

 

 

 

 

 

 

Fig 3.1. Illustration of the Asymmetric LCD setup 

 

3.2 Comparison of the Classical and the New Method 

 First we compare the two systems in the linear response limit. In the case of classical 

definitions, the signal component at the output is defined to be the square of the 

frequency component of the total output power spectrum at the frequency of the input 

signal, so that the output noise power at this frequency is subtracted. The output noise is 

the total output AC voltage in the case of no signal. In the simulations the input was a 

sinusoidal signal of a fixed frequency and the output was the input signal corrupted with 

additive white gaussian noise of a fixed variance. Both the classical and the new 

definition were tested by MATLAB simulations. And in the case of sinusoidal signals 

with linear transfer the two values agreed which is a pleasant confirmation. The results 

are shown in Fig 3.2. The input signal was a pure sinusoidal signal of amplitude 0.5 V 

and frequency 5 Hz and the output signal was the input signal corrupted with additive 

white Gaussian noise of variance 1. The threshold Ut, of the asymmetric LCD was set to 
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1 (see Fig 3.1). The signal to noise ratios were computed by the two methods and the 

theoretical value was also computed. The three values show that they all agree in the 

linear limit. This establishes that the new SNR measure gives the same value as the 

classical measure in the linear limit. (See Table 3.1) 

 

Table 3.1: Comparison of SNR obtained by classical, new and continuity methods at the 

linear limit 

Method Used SNR value 

 

Classical SNR 

New Method 

Theoretical value`

 

3.7167 

3.7065 

3.7500 

 

 
Fig 3.2. Linear response limit (a) sinusoidal signal of amplitude 0.5 V and frequency 5 

Hz (b) corrupted in gaussian noise σ=1V (c) total output power and the signal and noise 

power components 
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Fig 3.2. (cont.) (d) no input signal (e) background noise spectrum when the signal is 

absent. (f) the difference (very negligible) of the background noise between the without 

signal and with signal cases with sampling time = 20 ms 

 

 Next we take the case of nonlinear response limit. In the case of nonlinear response 

and periodic signals, the classical and the new method differ remarkably. Why the 

classical measure fails even for very strong periodic input signals is because then the 

output noise can be suppressed due to saturating the resonator by the signal. In the test 

simulations (Fig 3.3) the input signal was a pure sinus of strong amplitude (i.e. 

comparable to the noise variance), corrupted by an additive white Gaussian noise of 

variance 1. This signal was passed through the asymmetric LCD described in Section 2 

(Ut.=1). The background output spectrum is compared to the background spectrum when 

only the input noise is present. It is clear that the presence of the signal definitely has an 

effect on the shape of the output noise spectrum (see Fig 3.4). The signal to noise ratio is 
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now computed by both the classical and new methods. There is a significant difference 

between the two. The output noise given by the classical method is higher. On the other 

hand, the background noise spectrum must be continuous with frequency. Hence one can 

compute the noise power at the signal frequency by measuring the height of the periodic 

spike in the output spectrum. This value agrees with the value given by the new method 

as shown in Table 3.2, clearly showing that the spike method works well. However, the 

spike reading method can only be used for sinusoidal input signal and so for wideband 

signals only the new method works.  

 

Table 3.2: Comparison of SNR obtained by classical, new and continuity methods at the 

nonlinear limit 

Signal amplitude Classical SNR New Method SNR by continuity argument 

A=0.5 11.1490 12.5911 12.6090 

A=1.0 30.9393 44.7374 44.7333 

A=1.5 31.8721 60.4989 60.5106 

 

 

 These results unambiguously confirm the validity and effectiveness of the new 

method. Moreover, the value given by the continuity argument can be unreliable because 

the height of the noise power is determined manually from the plot, where the area 

below the spectral spike has to be determined for that. The cross spectral method has not 

only a better reliability but also can be employed in a straightforward mathematical 

formulation. 

 As we mentioned above, a measure for the output signal power using the cross 

correlation coefficient between the signal and the output was proposed [21] by Collins 

and coworkers and recently by Stocks and coworkers [22]. Though the Collins method 
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works nicely in systems with sinusoidal signals and no phase shift between the input and 

the output, it fails in the presence of phase shift or frequency dependent transfer and 

wideband signal. For example if the input is a sinusoid whose phase is unknown, then a 

90 degree phase shift between the actual and assumed phase will result in the correlation 

coefficient being zero. Our cross spectral measure does not suffer this drawback as it is 

shown by the simulation results in Fig 3.4. The input is a sinusoidal signal of unknown 

phase and the stochastic resonator shifts the phase by 90o. Still the output signal does not 

change. The imaginary part of the cross spectrum can be used to compute the phase 

difference of the output signal with respect to the original signal.  

 

 

 

Fig 3.3. Plot of the output background noise by the new method 

 

 Now we present a few more comparisons [23]. For wideband aperiodic signal with 

phase shift or frequency dependent transfer, it is obvious from the above results and 

considerations that, presently, the only method able to provide usable results is the cross 
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spectral method. That means, many biophysical applications have no other choice, so 

far, than to use cross spectra. 

  In Fig 3.5, further comparisons between the SNR determined by the classical and 

the cross spectral methods is shown. Here the input signal was a sinusoid corrupted by 

Gaussian noise. The simulations were carried out for different values of the amplitude of 

the sinusoid. Clearly at the non linear limit (higher signal amplitudes), the classical 

method is inadequate. The results shown above (Figs 3.2, 3.3 and 3.4) clearly indicate 

that the cross spectrum method is a consistent measure at all ranges. The plot in Fig 3.5 

gives us an estimate of the error made by the classical method in the strongly nonlinear 

limits and also high values of input noise. Thus all the simulations presented here 

indicate that the new SNR measure is beyond doubt both a correct and a convenient one 

to use under a wide variety of circumstances of practical importance. 

 The comparisons are presented at different values of the input noise power. In the 

linear limit there is a close agreement and in the nonlinear limit the error made by the 

classical method is quite substantial. The error of the classical method reaches one order 

of magnitude. 

  

 
Fig 3.4. Cross spectrum measure in the case of unknown phase of the input signal 
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Fig 3.5. Comparison of the SNR determined by the classical and the new methods as the 

amplitude of the input sinusoidal signal varies 

 

 This section has shown simulations results to show the efficiency of cross spectra 

measure for signal and noise in the case aperiodic spiky and other wideband signals in 

the strongly nonlinear limit. The results show that the cross-spectral identifications of 

output signal and noise are sensible measures and that they work for arbitrary signals 

and noise, for both the linear and nonlinear cases. As the neural and ion channel signal 

transfers are nonlinear and aperiodic, the new method has direct applicability in 

biophysics and neural science. 
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4.  BLUE SHOT NOISE*

 This section presents an account of an interesting phenomenon [24] which arises 

while investigating the output power spectral density of an asymmetric LCD when the 

input noise is very high and the width of the output spike of the LCD is also increased.  

 

4.1 Motivation

 Threshold crossing problems of gaussian noise are at the core of many stochastic 

phenomena. They play also a determining role in non-dynamical stochastic resonators in 

which were first experimentally studied by Frank Moss [15]. In this paper, we show 

colored noise effects called blue noise in a level crossing detector (LCD) system which 

was proposed by Moss to model simple neural responses. When a noise spectrum is 

constant versus frequency, the noise is called white noise. Following this fashion, a noise 

with 1/f2 spectral shape is called red noise, due to the strong weight of the lower 

frequencies and the 1/f noise is called pink noise. Thus a noise having an increasing 

spectrum versus frequency is bluish or it can simply be called blue noise. In this paper, 

we show that a level-crossing detector with wideband input noise and wide output pulse 

width generates a blue noise which we call the blue shot noise because of the similarity 

of this response to shot noise. This situation is very similar to neural response and it 

follows that under certain conditions neural response can also produce blue noise. 

Although such blue noise effect can be seen in stochastically driven harmonic 

oscillators, such a system is dynamical and is governed by differential equations which 

can simulate differentiation and hence observing blue noise effect in dynamical systems 

is not surprising. However its existence in non-dynamical systems like a LCD is not a 

trivial problem. By observing this effect we suspect that the LCD has “time derivative” 

capability under certain conditions. 

 
* The material in this section is reprinted with permission from “Blue noise effects in a non-dynamical 

neural model system” by S.Sethuraman, L. B. Kish, March 2004, Fluctuation and Noise Letters, Vol 4, No 

1, L179-L183. Copyright 2004 by World Scientific Publishing Company. 
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4.2  Simulations

Computer simulations were carried out simulating an asymmetric level crossing 

detector (LCD) with the following conditions: whenever the input amplitude at the LCD 

crosses a fixed threshold level from below, an output pulse of width w is generated. The 

fixed width w of output pulse corresponds to a fixed time-integral of the pulse and this 

corresponds to the case of a shot noise pulse. The correlation time τ of the band-limited 

white noise driving the input was one computer step. In Fig 4.1, the blue shot noise 

effect can be seen.  

 Figure 4.1 shows the output noise spectrum of the LCD when driven by only noise, 

for different values of the width of the output spike, in units of sampling time Ts=1/Fs 

where the sampling frequency Fs = 65 Hz. The threshold of the LCD was 1 V. The input 

was driven by a white gaussian noise of variance 1 V and the input signal was absent. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1. Illustration of the blue noise effect 
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Fig. 4.2. Background noise spectrum at different values of the input noise level where 

the sampling frequency = 65 Hz with the width of the output spike kept constant at 5Ts

 

 In Fig. 4.2, at fixed pulse width w = 5, the dependence of the blue noise effect on the 

strength of the input noise is shown. Apparently, the stronger the noise the more 

emphasized the blue noise effect is. 

 In Fig. 4.3, at fixed pulse width w = 5, the dependence of the blue noise effect on the 

strength of additive sinusoidal input signal is shown. Apparently, the stronger the signal 

the more emphasized the blue noise effect is. 
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Fig. 4.3. The output noise spectrum at LCD threshold 1 V for different values of the 

signal strength with fixed width of output spike = 5Ts and sampling frequency Fs = 50 Hz 

 

4. 3  Explanation 

 When the level crossing frequency fL (which can be evaluated from the Rice formula 

[25]) of the threshold level by the noise is much greater than 1/w, the output time 

function is a roughly periodic spike train with mean repetition frequency 1/(w+1/fL). The 

spike duration is fluctuating and its mean value is 1/f L = <q> and in the limit fL→∞ , the 

spike train would be periodic with period time w, so the first harmonic would be at 

frequency 1/w. As at finite fL  the period time and the pulse width are slightly fluctuating, 

in a random fashion, the harmonic spikes will not be sharp and they will have sidebands. 

The lowest side band is the blue shot noise. 
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Fig. 4.4. Illustration of the time derivative characteristics of the saturated system 

 

 The shattered area, in Fig 4.4, which is similar to the time-derivative of a single 

square pulse, is the difference between the original output pulse and the delayed one. As 

we mentioned above, the blue noise effect suggests a time-derivative characteristics of 

the system. At the first look it is not obvious how a time-derivative characteristics could 

arise in such a non-dynamical rigid system as an LCD. As seen in the above diagram, 

each variable-width pulse (w + q range) can be represented as a fixed-width pulse (w + 

<q> pulse) added to a derivative pulse (shown as shattered). In this way, even a 

nondynamical system can simulate blue noise effect. 
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5. CONCLUSION AND RECOMMENDATIONS 

  This thesis has shown simulations results and some theoretical analysis to show 

the efficiency of cross spectra measure for SNR for a wide variety of signals under mild 

restrictions of stationarity and in particular for neural and biological signals. Further 

work would be to try and come up other interesting measures of SNR using higher order 

statistics which deals with higher order spectra of signals. Also the proposed method of 

SNR could be tested and applied to many other systems of interest [26] which arise in 

practice where stochastic or wideband input signals are encountered in the presence of 

nonlinear transfer where the classical methods are shown to fail. 

 We can also consider another angle. It was shown in [15], using cross spectral 

measure that SNR gain greater than one is indeed possible using wideband aperiodic 

signal and gaussian noise as input to an asymmetric LCD described in Section 3. Using 

detection theory one can obtain theoretically by maximizing aposteriori probability, an 

optimal estimator or detector for any signal corrupted with noise.  Often this involves 

non linear optimization problem which often turns out to be intractable. The optimal 

detector often has SNR gain.  Above discussions indicate that sub optimal detector using 

SR systems can also provide gains and can be used with effectiveness in cases where the 

optimal solution is intractable.  

 It would be interesting to compare the performance of a simple LCD detector 

followed by a matched filter with that of the optimal (but with high computational 

complexity) algorithm obtained using detection theory. We conjecture that the simple 

LCD system can indeed come closer to the optimal algorithm in many cases. It would be 

a profitable future exercise to prove this theoretically. 
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