
 
 
 
 
 
 

 

 
 

ESSAYS ON PRICE DYNAMICS, DISCOVERY, AND DYNAMIC 

THRESHOLD EFFECTS AMONG ENERGY SPOT MARKETS IN 

NORTH AMERICA 

 

A Dissertation  

by 

HAESUN PARK 

 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 
 
 
 

 
 

August 2005 
 

 

 
Major Subject: Agricultural Economics 



 
 
 
 
 
 

 

 
 

ESSAYS ON PRICE DYNAMICS, DISCOVERY, AND DYNAMIC 

THRESHOLD EFFECTS AMONG ENERGY SPOT MARKETS IN 

NORTH AMERICA 

 
A Dissertation 

by 

HAESUN PARK 

 
Submitted to the Office of Graduate Studies of 

Texas A&M University 
in partial fulfillment of the requirements for the degree of 

 
DOCTOR OF PHILOSOPHY 

 
 

 
 
Approved by: 
 
Co-Chairs of Committee,            James W. Mjelde 
                                                    David A. Bessler 
Committee Members,                 H. Alan Love 
                                                    Diana M. Burton 
Interim Head of Department,      John P. Nichols 
 
 
 

 
August 2005 

 
 

Major Subject: Agricultural Economics 



 

 

iii 
 

 
 

 
 

 
 

ABSTRACT 

Essays on Price Dynamics, Discovery, and Dynamic Threshold Effects Among Energy 

Spot Markets in North America. (August 2005) 

Haesun Park, B.A., Seoul National University, Korea 

Co-Chairs of Advisory Committee: Dr. James W. Mjelde 
                                                         Dr. David A. Bessler 

 
 

Given the role electricity and natural gas sectors play in the North American economy, 

an understanding of how markets for these commodities interact is important.  This 

dissertation independently characterizes the price dynamics of major electricity and 

natural gas spot markets in North America by combining directed acyclic graphs with 

time series analyses.  Furthermore, the dissertation explores a generalization of price 

difference bands associated with the law of one price.   

Interdependencies among 11 major electricity spot markets are examined in 

Chapter II using a vector autoregression model.  Results suggest that the relationships 

between the markets vary by time.  Western markets are separated from the eastern 

markets and the Electricity Reliability Council of Texas.  At longer time horizons these 

separations disappear.  Palo Verde is the important spot market in the west for price 

discovery.  Southwest Power Pool is the dominant market in Eastern Interconnected 

System for price discovery.   

Interdependencies among eight major natural gas spot markets are investigated 

using a vector error correction model and the Greedy Equivalence Search Algorithm in 

Chapter III.  Findings suggest that the eight price series are tied together through six 
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long-run cointegration relationships, supporting the argument that the natural gas market 

has developed into a single integrated market in North America since deregulation.  

Results indicate that price discovery tends to occur in the excess consuming regions and 

move to the excess producing regions.  Across North America, the U.S. Midwest region, 

represented by the Chicago spot market, is the most important for price discovery.  The 

Ellisburg-Leidy Hub in Pennsylvania and Malin Hub in Oregon are important for eastern 

and western markets.   

In Chapter IV, a threshold vector error correction model is applied to the natural 

gas markets to examine nonlinearities in adjustments to the law of one price.  Results 

show that there are nonlinear adjustments to the law of one price in seven pair-wise 

markets.  Four alternative cases for the law of one price are presented as a theoretical 

background.  A methodology is developed for finding a threshold cointegration model 

that accounts for seasonality in the threshold levels.  Results indicate that dynamic 

threshold effects vary depending on geographical location and whether the markets are 

excess producing or excess consuming markets.    
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CHAPTER I 

INTRODUCTION 

 

Electricity and natural gas are important energy sources, accounting for over a third of 

the energy consumed in the United States.  These industries have been some of the most 

highly regulated sectors of the economy because they have characteristics of a natural 

monopoly.  Both electricity and natural gas markets, however, have been experiencing 

deregulation and restructuring to increase efficiency (Bailey, 1998; DeVany and Walls, 

1994).   

Electricity power grids and natural gas pipeline networks connect spot markets in 

each industry, making it possible to trade electricity and natural gas.  As a result of 

deregulation and restructuring, a more competitive market environment is developing in 

both industries; the role of the spot markets has increased.  Deregulation has also led to 

increasing interdependence in spot markets (Lucia and Schwartz, 2002).    These market 

changes imply that price determination is more likely to be in the hands of the market 

than the regulators.  Moreover, market participants are more likely to be exposed to the 

price risk that accompanies competitive markets.       

Understanding the dynamics of spot market prices in electricity and natural gas is 

important for decision and policy makers in terms of price risk management.  Further,  
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knowledge of the dynamics of price discovery and the transmission pattern of price 

shocks between markets may provide regulatory implications in addressing market 

efficiency and integration. 

The overall objective is to characterize the price dynamics of major electricity 

and natural gas spot markets in North America.  The dissertation is presented as three 

essays, Chapters II through IV.  Specific objectives of these essays are:  

•  to characterize the dynamic interdependencies among 11 major electricity spot 

markets in North America and to examine each market’s role in price 

discovery,  

•   to characterize the dynamic interdependencies among eight major natural gas 

spot markets in North America and to investigate each market’s role in price 

discovery, and 

•   to examine the existence of threshold cointegration between natural gas spot 

markets and to develop a threshold cointegration model that accounts for 

seasonality in the threshold levels.   

Chapters II through IV are self-contained, each with its own introduction, empirical 

methods, data, empirical results, and discussion.    

Interdependencies in 11 major electricity spot markets in North America are 

examined in Chapter II.  This chapter investigates each individual market’s role in price 

discovery combining recent advances in causal flows with time series analysis.  Directed 

acyclical graphs developed using PC (named after its authors, Peter and Clark) 
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Algorithm are used to find the contemporaneous causal flows among electricity spot 

markets in North America.  Forecast error variance decompositions and impulse 

response functions with confidence intervals based on a vector autoregression model are 

utilized to find the dynamic interdependencies among markets.  Daily peak firm price for 

the electricity of 11 spot markets from February 26, 1998 through December 20, 2002 

are used in the empirical analysis.  Because the demand for electricity is subject to 

weather effects, lagged U.S. aggregate cooling degree-days (CDD) and heating degree-

days (HDD) are used to capture daily weather effects in electricity prices.  No study has 

examined electricity price interdependencies over such an expansive geographical area, 

which includes three main power grids, ten different electricity reliability councils, and 

numerous smaller entities involved in generation, transmission, and distribution.  

Empirical results suggest that the western markets are separated from the eastern 

markets and the Electricity Reliability Council of Texas in contemporaneous time, but 

these separations disappear at longer time horizons.    

Price dynamics among major natural gas spot markets in North America are 

investigated in Chapter III.  To find the contemporaneous causal flows among markets, 

directed acyclical graphs are again used.  I explore a new method, the Greedy 

Equivalence Search (GES) Algorithm, to find causal flows.  This is one of the first 

applications of the GES Algorithm in economics.  Empirical findings on the short-run 

interdependencies using a vector error correction model and associated forecast error 

variance decomposition and impulse response functions are presented.  For empirical 
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analysis, daily price for the natural gas of eight spot markets from January 12, 1998 

through December 20, 2002 are used.  As in Chapter II, lagged U.S. aggregate cooling 

degree-days (CDD) and heating degree-days (HDD) are used to capture daily weather 

effects in natural gas prices.  No previous study has considered such a geographical 

dispersion and weather effects to analyze natural gas spot prices.  Empirical findings 

suggest the natural gas market has developed into a single integrated market in North 

America since deregulation.  Across North America, the U.S. Midwest region 

represented by the Chicago spot market is the most important market for price discovery.  

This result differs from previous studies that suggest the Henry Hub market in Louisiana 

is the important market.       

The nonlinearity of price adjustment to the long-run equilibrium between natural 

gas spot market pairs is investigated in Chapter IV.  In the presence of transaction costs, 

the threshold cointegration model may better explain nonlinear price adjustment 

behavior between spatially separated markets than nonthreshold models.  Based on the 

empirical finding that the Chicago market is the important market for price discovery in 

North America, seven market pairs using Chicago as the benchmark, are considered in 

the analysis.  The same data set used in Chapter III is used in this analysis.  The 

nonlinearity of price adjustment between natural gas spot markets is tested and a 

bivariate three-regime threshold vector error correction model is estimated.  Estimated 

transaction costs between Chicago and the other market show geographical differences 

along with differences between excess producing and excess consuming market regions.  
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Further, an important contribution of Chapter IV is the development of a threshold 

cointegration model that accounts for seasonality in the threshold levels.  No previous 

study has developed such a model.  A methodology is developed to estimate time-

varying thresholds.  Previous studies considered transaction costs in light of the law of 

one price are limited to the fixed thresholds under the assumption of time-invariant 

transaction costs and market conditions.   

An overall summary is presented, a comparison of findings of Chapter II and III 

is provided, and areas for further study are proposed in Chapter V.   
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CHAPTER II 

PRICE DYNAMICS AMONG ELECTRICITY SPOT MARKETS  

 

Spot markets within the wholesale electricity industry are characterized by both price 

volatility and interdependencies among neighboring markets partially because of limited 

storability and transportability (Lucia and Schwartz, 2002).  The limited storability may 

make the interdependencies of the electricity spot markets a factor in electricity price 

formulation and price volatility.  Transmission constraints may make electricity 

contracts and prices highly local, because such constraints make it uneconomical to 

transmit electricity between certain regions (Lucia and Schwartz, 2002).  Volatility and 

interdependency of wholesale electricity spot markets also results from highly 

interconnected transmission system, temporal demand-supply imbalance, and 

transmission congestion.  Accordingly, the electricity prices may behave unlike other 

commodity markets (Weron and Przybylowicz, 2000).   

With utility retail sales amounting to more than three percent of the U.S. gross 

domestic product (White, 1996), the electric power industry is vital to the economy.  

Historically one of the most highly regulated sectors of the U. S. economy, the electric 

power industry has undergone many structural changes, such as restructuring and 

deregulation over the past decade.  As a result, a more competitive market environment 

is developing.  These market changes imply that price determination is more likely to be 

placed in the hands of the market than regulators.  Analyzing spot market price 
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discovery is important for decision and policy makers because of the structural change 

the industry is undergoing and the importance of the industry.  The objective of this 

study is to characterize the dynamic relationships among 11 major electricity spot 

markets in North America and to examine each individual market’s role in price 

discovery.  This study, therefore, focuses on spot prices rather than the factors affecting 

the prices.   Providing information on the dynamics of electricity prices allows for a 

better understanding of how price innovations in one spot market affect the other 

markets and their interaction.  In addition, this study addresses the following questions.  

Do certain markets have more influence on price than others?  What markets play the 

role of price leadership?  This study is the first attempt to describe the dynamic 

relationships at the national level among North America electricity spot markets.  To this 

end, this study presents empirical findings on the contemporaneous and short-run 

interdependencies using a vector autoregressive model, causal flows based on directed 

acyclic graphs, and innovation accounting analysis.  

To my knowledge, no study to date has examined electricity price 

interdependencies at the U.S. national level.  Further, no study has examined electricity 

price interdependencies over such an expansive geographical area.  The U.S. includes 

three main power grids, ten different electric reliability councils, and hundreds, if not 

thousands, of entities involved in generation, transmission, and distribution. 
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Brief Literature Review 

Numerous studies on electricity pricing have been conducted.  Most studies of electricity 

pricing behavior have focused on an industrial economics (market structure and market 

power), engineering (cost based pricing), or institutional aspects (impact of deregulation 

on price) (Joskow, 1997; Kleit, 2001; Angelus, 2001; Mansur, 2001; Puller, 2002).  Few 

studies have investigated the dynamic behavior of empirical price using time series 

analysis.  Studies examining electricity price dynamics have usually indicated the 

following stylized facts concerning electricity prices: high volatility, mean-reversion, 

seasonality, and frequent extreme jumps in prices (Huisman and Mahieu, 2003).  See 

Bunn (2004) for more studies concerning modeling electricity prices. 

De Vany and Walls (1999a) using daily peak and off-peak data from 1994 to 

1996 investigated electricity spot price behavior and tested for market integration in 

western U.S. markets.  They estimated vector error correction models using price data 

from eleven markets.  They found all electricity spot price series except for one off-peak 

price series are non-stationary.  Further, all of off-peak price series and most of peak 

price series are pair-wise cointegrated.  De Vany and Walls (1999b) conducted impulse 

response function and variance decomposition analyses using an unrestricted vector 

autoregressive model for five western U.S. spot markets using daily peak and off-peak 

spot prices from 1994 to 1996.  They found that electricity prices show relatively rapid 

(four or five trading days) convergence with respect to external shocks.  Jerko, Mjelde, 

and Bessler (2004) using directed graphs to examine the contemporaneous causal flows 
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among spot markets suggested electricity price information flows from north to south in 

the winter and from south to north in the summer differ between seasons in the western 

U.S.    

Another avenue in empirical time series analysis of electricity prices is attempts 

to capture the volatility, seasonality, and mean reversion characteristics of electricity 

spot prices (Weron and Przybylowicz, 2000; Deng and Jiang, 2002; Huisman and 

Mahieu, 2003).  Huisman and Mahieu (2003), Goto and Karolyi (2003), and Deng 

(1999) developed empirical models assuming the stationarity or mean reversion 

characteristic of electricity price.  Huisman and Mahieu (2003) introduced a regime-

switching model to address price spikes or volatility of prices.  Using electricity price 

data from Dutch, German, and United Kingdom markets, they found a regime jump 

model is a better specification for both mean-reversion and spikes.  Goto and Karolyi 

(2003) showed the conditionally autoregressive heteroskedasticity (ARCH) and time-

dependent jumps are important features in modeling price volatility using four U.S. spot 

market prices, Nordic pool market prices, and Australia market price.  Weron and 

Przybylowicz (2000) conducted Hurst rescaled range analysis for distinguishing random 

time series from correlated time series to capture the price volatility using the electricity 

prices from California and Central Europe.  They found mean-reverting processes in 

both markets.  De Vany and Walls (1999a), De Vany and Walls (1999b), and Jerko, 

Mjelde, and Bessler (2004) model the interactive behavior among the electricity spot 

markets; their studies, however, are limited to the western region of the U.S. 
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Empirical Methods  

Vector Autoregression Model 

A vector autoregression (VAR) model provides the basis for this analysis.  A VAR 

model has the advantage that it allows regularities in the data to be studied without 

imposing as many prior restrictions as structural models impose.  VAR models are often 

criticized because they are not economic theory based (Greene, 2000).  However, a VAR 

model is appropriate for analyzing electricity price interdependences because economic 

theory does not suggest a prior structure for electricity price interdependences.   

A VAR model is: 

(1)                                           Pt =  α + 
i

k

=
∑

1

βi Pt-i   + γZt + et  

where α is a (m x 1) vector of intercept terms, Pt is a (m x 1) vector of electricity prices, 

et is a (m x 1) vector of the residual terms (innovations), m is the number of price series, 

Zt  is a (q x 1) vector of  strictly exogenous variables, βi and γ are appropriately 

dimensioned matrices of coefficients, k represents the number of lags, and t is a specific 

observation from a sample of T observations.  The innovation term et is assumed to be 

white noise, with E (et ) = 0, and Σe = E(et et
′) is a (m x m) positive definite matrix.  

Further, the innovations et and es are assumed to be independent for s ≠ t.  Although 

serially uncorrelated, contemporaneous correlations among the elements of et are 

possible, implying the contemporaneous correlation matrix may not an orthogonal 

matrix.   
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If no contemporaneous correlation among the elements of et exists, then 

innovation accounting procedures such as impulse response and forecast error variance 

decompositions are conducted using the moving average representation obtained from 

the estimated VAR.  The moving average representation of a VAR expresses each series 

as a function of innovations (see Hamilton, 1994, p. 291).  These procedures allow the 

dynamic properties of the VAR to be investigated.  Impulse response functions describe 

the movement of each series in a VAR in response to a one-time shock in each series.  

Forecast error variance decompositions indicate whether the forecast error (the error 

between the VAR model prediction and actually observed) variance for each series at 

any horizon is due to its own innovations or other variables’ innovations (Doan, 2000).   

However, contemporaneous correlation among price series is the norm when 

using economic data.  If innovations are contemporaneously correlated, it is misleading 

to examine a shock to a single variable in isolation (Doan, 2000).  To address the 

contemporaneous correlation issue, the VAR model must be transformed such that the 

innovations are orthogonal.  An ordering procedure suggested by Bernanke (1986) is 

used to obtain the transformed VAR.   

Following Bernanke (1986), the innovations are written as a function of more 

fundamental driving sources of variation, Єt , which are independent of other sources of 

variation: 

(2)                                        et = A-1Єt, 
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where A is a matrix representing how each non-orthogonal innovation is caused by the 

orthogonal variation in each equation.  Usual innovation accounting procedures are 

carried-out on the moving average representation of the transformed VAR: 

(3)                                           APt =  Aα + 
i

k

=
∑

1

Aβi Pt-i   + AγZt + Aet . 

Because the VAR model has the same right hand side variables in each equation, the 

model is estimated using ordinary least squares equation by equation.  There  is no gain 

in efficiency using seemingly unrelated regression (Baltagi, 2002).  Directed acyclic 

graphs are used to provide identifying restrictions on the matrix A.  Hoover (2005) 

provides a discussion concerning the issue of contemporaneous causal order in VAR 

model including the application of directed graphs in dynamic models. 

Directed Acyclic Graphs  

A directed graph is an illustration using arrows and vertices to represent the causal flow 

among a set of vertices (or variables) (Pearl, 2000).  Three elements, variables, marks 

representing the symbols attached to the end of edges, and edges between variables 

comprise a directed graph.  A directed acyclic graph is a directed graph that contains no 

directed cyclic paths (Spirtes, Glymour, and Scheines, 2000).  Only directed acyclic 

graphs are considered. 

Directed acyclic graphs represent conditional independent relationships as 

implied by the recursive product decomposition: 

(4)                  ),(Pr),,,,(Pr
1321 ii

n

in apxxxxx
=
Π=L  
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where Pr is the joint probability of variables x1, x2, x3, ... , xn and  pai is a set of variables 

representing the minimal set of predecessors (the variables that come before in causal 

sense) of xi that renders xi  independent of all its other predecessors (Pearl, 2000, p.14).  

It has been shown that there is a one-to-one correspondence between the set of 

conditional independencies among variables implied by equation (4) and the graphical 

expression of variables in directed graph (for details see Pearl, 2000).  For example, 

consider four variables, x1, x2, x3, and x4.  If there is causal relationship such as x1 and 

x2, cause x3, and x3 causes x4, then the directed graph that represents this causal 

relationship is:  

       x1                    
           ↘        
    x2 → x3 → x4. 
 

This directed graph is expressed as the following probability distribution product:     

(5)             ).|(Pr),|(Pr)(Pr)(Pr),,,(Pr 34213214321 xxxxxxxxxxx =  

PC Algorithm, which finds causal flows from correlation relationships among the 

variables, is used in this study (Spirtes, Glymour, and Scheines, 2000).  PC Algorithm 

begins with a general unrestricted set of relationships among the variables and proceeds 

step-wise to remove edges between the variables depending on correlation relationships.  

Finally, PC Algorithm directs causal flow using conditional independent relationships.   

PC Algorithm makes three assumptions.  First, causally sufficient sets of 

variables are included in the observational data set.  This implies there are no omitted 

variables that cause any two of the included variables.  Second, the casual Markov 
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condition is assumed to be satisfied.  This implies that if x1 causes x2 and x2 causes x3, 

then the underlying probability distribution on x1, x2 and x3, Pr(x1, x2, x3), can be 

expressed as Pr(x1)Pr(x2| x1)Pr(x3| x2).  In other words, this assumption means that one 

need only to condition on variables of direct cause to capture the probability distribution 

generating any variable.  Finally, the faithfulness condition is assumed.  The 

probabilities, Pr(·), are said to be faithful to the corresponding directed graph in the case 

that x1 and x2 are dependent if and only if there is an edge between x1 and x2 (Bessler 

and Lee, 2002).  The first assumption, causal sufficiency may be too strong to be 

satisfied in applied studies, because such studies can only use a limited number of 

variables.  Accordingly, it should be noted that PC Algorithm has some limitations 

because of this strong assumption.  

Data 

Eleven North America electricity spot markets are used to investigate markets’ 

interdependency.  Daily firm-peak spot market electricity prices for day-ahead trades 

covering the period of February 26, 1998 to December 20, 2002 are used.  The data are 

Platts power indices provided by McGraw-Hill Companies, Inc., New York.  Firm peak 

price is the price for next day guaranteed delivery for the hours between 6 a.m. and 10 

p.m.  Prices are for Monday through Friday.  Each price series has 1257 observations.  

The total number of missing values in the 11 price series is 614.  The missing values 

including holidays account for 4.4 percent of total observations.  The prior day’s price is 

used to represent any missing values for a particular day and market.   
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Regional dispersion and data availability are factors in determining which 

markets are included.  The markets are mid-Columbia (MIDC), Palo Verde (PV), Four 

Corners (FC), Pennsylvania-New Jersey-Maryland (PJM), Northeast Power Pool 

(NEPL), Mid-Continent Area Power Pool (MAPP), Mid-America Interconnected 

Network (MAIN), East Central Area Reliability Coordination Agreement (ECAR), 

Southwest Power Pool (SPP), Entergy (ENT), and Electric Reliability Council of Texas 

(ERCOT).  Approximate locations of the spot markets are shown in Figure 2.1.  Plots of 

the price series for each market are provided in Figure 2.2.  

One day lagged U.S. aggregate cooling degree-days (CDD) and heating degree-

days (HDD) are used to capture daily weather effects in the electricity prices.  Daily 

HDD are calculated as the difference between a reference temperature and the day’s 

mean temperature (reference temperature – (maximum temperature + minimum 

temperature)/2), whereas CDD are computed as the difference mean temperature and a 

reference temperature ((maximum temperature + minimum temperature)/2 - reference 

temperature).  The reference temperature used is 65 degrees Fahrenheit, the temperature 

used by U.S. National Oceanic and Atmospheric Administration (NOAA).  HDD and 

CDD are set equal to be zero if the degree-day is negative.  Daily degree-days for 23 

cities are obtained (U.S. Department of Commerce, NOAA, 2003).  The 23 cities are: 

Bismarck, Minneapolis, Kansas City, Chicago, Louisville, Pittsburg, New York, 

Billings, Seattle, San Francisco, Salt Lake, Denver, Boise, Dallas, Oklahoma City, 

Houston, New Orleans, Atlanta, Memphis, Los Angeles, Las Vegas, Phoenix, and 
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Albuquerque (Figure 2.1).  Daily degree-days for each city are aggregated into a U.S. 

daily cooling and heating degree-days by computing a weighted average using each 

city’s population as weights.  Population data for each city in 2001 are obtained from the 

U.S Census Bureau. 1  

Empirical Results 

Stationarity 

Three tests are used to examine the stationarity of the 11 price series, Dickey-Fuller 

(DF), Augmented Dickey-Fuller (ADF), and trace tests.  As shown in Figure 2.2, each 

price series is highly volatility and potentially heteroscedastic.  To help account for these 

two issues, all estimations are conducted using logarithmic transformed data using a 

robust estimator.  The robust estimator computes a heteroscedasticity consistent estimate 

of the asymptotic covariance matrix of the estimated parameters (Greene, 2000).   

DF and ADF test results are given in Table 2.1.  The null hypothesis of both the 

DF and ADF tests is that the electricity price series is non-stationary.  This null 

hypothesis is rejected if the DF or ADF statistic is less than –2.89 (-2.58) at a 5% (10%) 

level of significance (Fuller, 1976).  The DF test statistics indicate NEPL, PJM, and 

ECAR spot markets are stationary at the 5% level.  All markets except MIDC, MAPP 

and ERCOT are stationary at the 10% level.  Using the ADF test, PJM, ECAR, and 

MAIN are stationary at the 5% level, while at the 10% level all series, but MIDC, PV, 

FC, MAPP, and ERCOT are stationary.  Although these tests are not conclusive, the 

tests indicate at least three price series among eleven price series are stationary using 
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both the DF and ADF tests at the 5% level.2  At the 10% level, up to eight of the 11 

series are stationary.  Also presented in Table 2.1 are Q-statistics, which test if the 

residuals from the DF and ADF regressions are white noise.  The null hypothesis of 

white noise residuals is rejected when the Q value is large or the p-value is small.  Based 

on the Q-statistics and associated p-values, the residuals from DF and ADF tests 

regressions are not white noise for any of the series. 

Results of the trace test (Table 2.2) indicate there are 11 cointegrating vectors 

among 11 price series, implying all series are stationary. This conclusion is similar to the 

conclusion from the DF test at the 10% level.  With stationary data, it is appropriate to 

estimate a VAR in levels.  Based on the three stationary tests, it appears most, if not all 

of the eleven series are stationary or close to stationary.  Further, Engle and Granger 

(1987) suggest a VAR in levels is equivalent to estimating an error correction model 

when the number of observations is large.  Accordingly, a VAR in logarithmic levels is 

estimated.  When estimating the levels VAR, one lag of CDD and HDD are included as 

exogenous variables.3   

Optimal Lag Length of Levels VAR 

Schwarz loss, Akaike loss, Hannan and Quinn’s phi measures are used to determine the 

optimal number of lags for the VAR model.  Results of the three metrics for one to 12 

lags are given in Table 2.3.  The Schwarz loss and Hannan and Quinn loss metric are 

minimized at one lag and two lags.  In contrast, the Akaike loss metric is minimized at 

ten lags. 
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Considering that the electricity spot market prices are the price for day-ahead 

trades it is reasonable to assume prices are affected by market conditions from the recent 

past and employing the parsimony principle, a smaller number of lags is more 

reasonable rather than the ten lags suggested by the Akaike loss metric.  Further, the 

Schwarz loss metric may have a tendency to over-penalize additional regressors 

compared to the other metrics (Geweke and Meese, 1981).  Given these considerations, a 

two lags VAR model suggested by Hannan and Quinn’s phi measure is used. 

Estimation Results of Two Lags VAR  

The p-values of F-test associated with the null hypothesis “the coefficients for both one 

and two lagged prices are jointly equal to zero” are given in Table 2.4.  In the following 

discussion, a 10% level of statistical significance is assumed.  Coefficients associated 

with each market are significant in at least one market other than their own market 

equation. Only for MAPP are all of the coefficients associated with the other markets 

insignificant.  The largest number of significant markets occurs in the NEPL equation, 

where seven markets have significant coefficients.  In the majority of the equations, four 

or five markets have significant coefficients.  The markets which are significant the most 

are PJM, NEPL, MAPP, ENT, and ERCOT.  The western markets are only significant in 

the western markets and NEPL equations.  Besides the western markets, only NEPL and 

PJM are significant in the western markets’ equations.  MAPP, ENT, and ERCOT tend 

to be significant in most of the non-western markets.  It is surprising that the coefficients 

of NEPL and PJM are significant in three western markets.  In contrast, the coefficients 
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of western markets are not significant in most of the non-western market.  One exception 

is that FC is significant in the NEPL market. 

HDD variables are not statistically significant at the 10% level except in ECAR, 

MAIN, and MAPP markets (Table 2.5).  CDD variables are statistically significant at the 

10% level in seven of the 11 markets (Table 2.5).  The four markets CDD are not 

significant are MIDC, PV, FC, and ERCOT.  These results are consistent with the fact 

that electricity is not the main energy source for heating in most of the U.S., but 

electricity is the major energy source for cooling during the summer. 

Identifying Contemporaneous Structure  

Innovation accounting analysis is conducted to identify the contemporaneous structure 

among the eleven electricity markets.  Using the innovations from the VAR model, the 

lower triangular of the contemporaneous innovation correlation matrix, C is : 

 

   MIDC PV FC NEPL PJM ECAR MAIN MAPP ENT SPP ERCOT  
MIDC   1.00            

PV   0.78 1.00           
(6) C = FC   0.75 0.95 1.00          

NEPL   0.03 0.01 0.02 1.00         
 PJM   0.06 0.07 0.07 0.65 1.00        

 ECAR   0.03 0.03 0.03 0.41 0.80 1.00      . 
MAIN   0.04 0.01 0.01 0.36 0.71 0.90 1.00      
MAPP   0.03 0.02 0.02 0.38 0.59 0.69 0.71 1.00     

ENT   0.04 0.03 0.03 0.36 0.71 0.89 0.85 0.69 1.00    
SPP   0.02 0.02 0.02 0.37 0.67 0.86 0.83 0.75 0.88 1.00   

ERCOT   0.05 0.03 0.04 0.20 0.32 0.37 0.33 0.28 0.46 0.38 1.00  
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Innovations from the three western markets, MIDC, PV and FC, show strong 

correlations with each other and weak correlations with the markets from the rest of the 

U.S.  Innovations from the markets in the central U.S., ECAR, MAIN, MAPP, ENT, and 

SPP, and the eastern market, PJM, generally have stronger correlations with each other.  

NEPL innovations correlations tend to be weaker than the correlation between the 

markets in the central U.S.  Innovations from ERCOT have almost no correlations with 

the western markets and weaker correlations with the rest of the U.S. compared to 

correlation relationship among the other markets.  These results are generally consistent 

with the three main power grids, Eastern Interconnected System, Western Interconnected 

System, and the Texas Interconnected System, in the U.S. (Figure 2.3). 

Correlations from equation (6) are used in the directed graph analysis to identify 

the Bernanke ordering structure.  Based on the correlation patterns derived from the 

correlation matrix, causal flows between contemporaneous innovations from each of 11 

markets are assigned as in Figure 2.4 using TETRAD II, a computer software for PC 

Algorithm (Scheines et al., 1994).  Similar results are obtained for significance levels of 

1% and 0.1% (Figure 2.4).  The direction between MAIN and ENT, the direction 

between MAPP and MAIN, and the edge between MIDC and FC are the only 

differences at the two significant levels.  In the directed acyclic graph at the 1% 

significance level, there are bi-directed edges between MAPP and MAIN and between 

ECAR and ENT.  There are bi-directed edges between MAIN and ENT and between 

ECAR and ENT in the directed acyclic graph at 0.1% significance level.  These bi-
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directed edges indicate there are potentially omitted variables between these markets.  

The edges among three spot markets, MIDC, FC, and PV are not determined at either 

significance level.  Further, there is no edge between MIDC and FC at the 0.1% 

significance level.  

There are ten alternative directed acyclic graphs that are consistent with the three 

undirected edges in the western U.S.: 

   (D.1)            (D.2)           (D.3)           (D.4)          (D.5)             (D.6) 
     MIDC            MIDC           MIDC           MIDC          MIDC             MIDC            

                     ↘                  ↘                  ↖                  ↖         ↙    ↖           ↗     ↖         
           FC ← PV       FC → PV       FC → PV     FC ← PV    FC ← PV       FC ← PV        
 
                (D.7)             (D.8)               (D.9)                (D.10) 

     MIDC            MIDC            MIDC              MIDC        
    ↗    ↖            ↗   ↘           ↙   ↘              ↙  ↘     

           FC → PV       FC → PV       FC ← PV        FC → PV. 
 
Cycle paths such as following are not considered: 

     MIDC  
     ↙    ↖  

            FC → PV. 

For each of these ten alternative directed acyclic graphs, there are five alternative 

possibilities for the edges between MAIN-MAPP, MAIN-ENT, and ECAR-ENT 

markets: 

             (D.11)                   (D.12)                (D.13)                  (D.14)                  (D.15) 
      MAIN← ECAR     MAIN← ECAR    MAIN← ECAR    MAIN← ECAR     MAIN← ECAR  
        ↓        ↘    ↓           ↓        ↖   ↓               ↓    ↖    ↑              ↑    ↖    ↑             ↑      ↖     ↓       
      MAPP    ENT        MAPP    ENT        MAPP    ENT          MAPP    ENT         MAPP    ENT.  

There are 50 (10 x 5) possible alternative directed acyclic graphs that are 

consistent with the edges in Figure 2.4.  A procedure is necessary to determine the 



 

 

22 
 

 
 

 
 

 
 

direction of the MAPP-MAIN, MAIN-ENT, and ECAR-ENT edges and the undirected 

edges, MIDC-FC, MIDC-PV and FC-PV.  A scoring method based on a modified 

version of the Schwarz loss metric is applied following Bessler and Yang (2003).  Their 

procedure involves using the innovations from the VAR model.  Each of the 50 

alternative graphs is expressed as a set of 11 market regression equations, one for each 

market.  To illustrate the procedure, 11 equations associated with each of the 11 

markets’ innovations are estimated using seemingly unrelated regression.  For a given 

equation, the dependent variable is the innovations from the estimated VAR model 

associated with that market’s equation.  Independent variables are an intercept and 

innovations from the market(s) that causes the market in question.  For example, 

consider the PJM and NEPL markets.  The equation representing PJM has as 

independent variables the innovations from the NEPL and ECAR equations, whereas the 

equation representing NEPL has only an intercept term.  These two equations do not 

change in the scoring method.  Markets that have an undirected edge change in the 

scoring procedure. 

For markets with undirected edges, the independent variables change according 

to the hypothesis as to which markets cause which markets.  As an example, consider the 

first possible graph associated with the western market.  The first possible alternative 

(D.1) is MIDC causes FC and PV and FC causes PV.  In this case, the equation 

representing MIDC has only an intercept term, whereas the equation representing FC has 

as independent variables the innovations from the MIDC equation.  The equation 
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representing PV has the innovations from both MIDC and FC.  For the second 

alternative (D.2) only changes in independent variables are necessary for the equations 

representing FC and PV, the other equations remain the same.  In this way, 50 sets of 

regression equations are obtained.  The 50 sets of seemingly unrelated regressions are 

scored using a modified Schwarz loss metric, SL = log(Trace(Σ)) + klog(T)/T.  Here, Σ 

represents the variance covariance matrix from each seemingly unrelated regression, and 

k represents the number of coefficients fit, and T is the number of observations.  The 

Schwarz loss metrics associated with 50 alternatives are graphed in Figure 2.5.  The set 

of equations that minimizes this Schwarz loss metric is considered the “best” directed 

acyclic graph.  Only three Schwarz loss values are within 25% of the smallest value.  

The “best” directed acyclic graph is shown in Figure 2.6. 

The directed acyclic graph shows clear market separation between the western 

markets and the rest of the U.S.  Markets in the central part of the U.S., ECAR, MAPP, 

MAIN, SPP and ENT are strongly connected with each other.  The information flow is 

ECAR causes MAIN, SPP and PJM.  ENT causes SPP, MAIN, and ECAR.  SPP and 

MAIN both cause MAPP.  MAPP and PJM appear to be information sinks; they do not 

cause any other market.  ERCOT causes ENT.  Finally, in the northeastern markets 

NEPL causes PJM and ECAR.  NEPL and ERCOT appear to be exogenous; there are no 

markets that cause these markets in contemporaneous time.  For the western markets, PV 

causes both FC and MIDC.    
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Forecast Error Variance Decomposition 

Based on the best directed acyclic graph, the forecast error variance decompositions are 

given in Table 2.6.  Decompositions give the percentage of price variation in each 

market at time t+k that is due to innovations in each market (including itself) at time t.  

Listed are the results at horizons of zero (contemporaneous time), one day (short 

horizon), and 30 days ahead. 

In contemporaneous time, the variation in MIDC is explained by innovations 

from MIDC (40.2%) and PV (59.8%).  The variation in MIDC is explained by the 

innovations from MIDC (39.8%), PV (58.8%) at the short run, and MIDC (26.3%), PV 

(37.2%), PJM (11.7%), and SPP (10.2%) at 30-day horizon.  PV appears to be 

exogenous at the shorter horizons, but is less exogenous at the longer horizon.  At the 

30-day horizon, PJM (16.3%), SPP (9.8%), and PV (48.9%) account for most of the 

variation in the PV.  FC is nearly exogenous in contemporaneous time.  The variation in 

FC is explained by innovations from PV (52.1%) and FC (45.3%) at the short run.  At 

30-day horizon, however, the variation in the FC is explained by PJM (17.3%), NEPL 

(8.6%), SPP (9.9%), FC (7.6%), and MIDC (6.1%).  NEPL is exogenous in 

contemporaneous time and at the short run.  At 30-day horizon, the variations in the 

NEPL are explained by NEPL (58.1%), PJM (12.4%), and nearly equal percentages 

from the other markets.  PJM is exogenous in contemporaneous time and nearly so in the 

short run.  At 30-day horizon, PJM (36.7%) and SPP (29.5%) account for the most of 
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variation in PJM with contribution from MAIN (7.2%), MAPP (8.0%), and NEPL 

(6.3%).  

ECAR is highly dominated by ENT (50.5%) in contemporaneous time.  

However, SPP accounts for over 50% variation of ECAR at the 30-day horizon.  ENT 

(48.2%) dominates MAIN in contemporaneous time.  At the 30-day horizon, SPP 

(34.9%), ENT (27.7%), and MAIN (16.5%) explain most of the variation in MAIN.  

MAPP is dominated by SPP at all horizons.  The variation in the ENT is explained by 

itself (79.2%) and by ERCOT (20.8%) in contemporaneous time.  In the short run, ENT 

(53.5%), SPP (25.7%) and ERCOT (13.8%) accounts for the variation in the ENT.  SPP 

has considerable influence on ENT both in the short run and 30-day horizon.  SPP is 

nearly exogenous in all time frames.  ERCOT is highly exogenous at the shorter 

horizons.  At 30-day horizon, however, SPP (29.5%) and PV (8.4%) account for some of 

variation in the ERCOT.   

The importance of the SPP market on all markets except NEPL and itself 

increases over time.  At the 30-day horizon, 30% or more of the decomposition in 

forecast error in seven of the 11 markets (PJM, ECAR, MAIN, MAPP, ENT, SPP, and 

ERCOT) is explained by innovations in SPP.   

Impulse Response Functions 

Impulse response functions are presented as a matrix of graphs with each element of the 

matrix corresponding to the response of one series to an one time only shock in another 

series (Figure 2.7).  Horizontal axes on the sub-graphs represent the horizon or number 



 

 

26 
 

 
 

 
 

 
 

of days after shock, here 30 days.  Vertical axes indicate the standardized response to the 

one time shock in the each market labeled at the top of each column of graphs.  Point 

estimates of impulse response alone, however, may give a misleading impression (Doan, 

2000).  In this study, confidence bands for impulse responses using Monte Carlo 

methods are provided based on the program given in Doan (2000).  The point estimates 

plus or minus two times their standard errors estimated through 5,000 simulations are 

provided as the upper bound and lower bound of the confidence bands. 

Shocks in western markets, MIDC, PV, and FC, are transferred as a positive 

impulse to the three western markets, but have a much smaller influence on the non-

western markets than on the western markets.  Specifically, the responses of three 

western markets to an innovation in the PV market are immediate and strong and 

dampen to zero thereafter.  The responses of PV and FC to a shock in the MIDC market 

and the responses of MIDC and PV to a shock in the FC market show relatively small 

but long lasting positive impulses.   

Considering almost no electricity transmission between NEPL and PJM and the 

western markets, it is surprising that the shocks in NEPL have relatively strong positive 

influences on the MIDC, PV, and FC market.  However, the responses of non-western 

markets to an innovation in NEPL are generally small except PJM.  In contrast, a shock 

in the PJM is transferred as a relatively strong and negative impulse to the three western 

markets and the NEPL market, whereas the shock is transferred as small negative 

impulse to the other markets except for its own market.  These responses suggest PJM is 
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maybe making-up for very short-run imbalances in the other markets.  However, the 

responses of the western markets show the relatively larger and long lasting negative 

responses even though there is little to no electricity transmitted between the areas. 

The responses of the western markets and non-western market such as ENT, SPP, 

and ERCOT to a shock in ECAR are small and negative.  A shock in ECAR is 

transferred as an immediate and positive impulse to NEPL, and as relatively strong 

impulse to ECAR, PJM, and MAIN, dampening to zero quickly.  Shocks in the ECAR 

market have a negative response in the ENT and ERCOT market, implying ECAR is 

making-up short-run imbalances in ENT and ERCOT.  Imbalances in these three 

markets are quickly made-up.  A shock in ECAR is transferred as an immediate and 

positive impulse to SPP. 

A shock in MAIN has very little influence on the western markets.  The response 

of MAIN to a shock in MAIN is strong and immediate, dampening to zero thereafter.  A 

shock in MAIN is transferred as relatively small positive impulses to NEPL, PJM, 

ECAR, MAPP, and SPP, but small negative impulses to ENT and ERCOT.  All markets 

dampen to zero quickly.  The responses of the western markets to a shock in MAPP are 

long lasting and positive.  A shock in MAPP is transferred as a quick and positive 

impulse to the non-western markets. 

Shocks in ENT, SPP, and ERCOT are transferred as long lasting positive 

impulses to western markets.  The response of NEPL to a shock in ENT is a mixture of 

positive and negative impulses.  The responses of PJM, ECAR, MAIN, MAPP, ENT, 
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and SPP to a shock in ENT are also a mixture of positive and negative impulses but are 

relatively strong and immediate.  The response of ERCOT is small and positive.  This 

mixed impulse behavior suggests the market price adjustment process associated with an 

innovation in ENT involves more active interaction among the markets than that 

associated with the other markets.   

Similar to forecast error decomposition, innovations in the SPP market have 

relatively strong positive effects, at very short time lags in the non-western markets 

except for NEPL.  Innovations in ERCOT are transferred as relatively little positive long 

lasting impulses to NEPL, whereas the responses of PJM, ECAR, MAIN, MAPP, ENT, 

and SPP are short and dampening to zero.   

Discussion 

The stationarity of electricity price series is addressed in previous papers analyzing 

electricity prices using time series methods.  This study adds additional evidence that 

electricity prices have a mean reversion characteristic, indicating the price series of 

electricity are stationary.  As suggested by other studies, electricity market may behave 

differently than other commodity markets. 

In contemporaneous time, causal flow in the electricity markets as given by 

directed acyclic graphs reflects the three major power grids of U.S., Eastern 

Interconnected System, Western Interconnected System, and the Texas Interconnected 

System.  Directed acyclic graphs suggest the Western Interconnect is separated from the 
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other two grids.  ERCOT in the Texas Interconnected System connects with the Eastern 

Interconnected System only through ENT.   

In the Western Interconnected System, PV appears to be driving force for the 

other western markets for electricity price.  ERCOT in the Texas Interconnected System 

and NEPL in the Eastern Interconnected System appear to be exogenous driving forces 

for electricity price through ENT and ECAR.  The information flows from the directed 

graph analysis indicates that most of information flows occur between physically 

adjacent spot markets.  This result is similar to findings by De Vany and Walls (1999b).   

It should be noted that the instantaneous price transmission pattern of western area in 

this study is not identical to the pattern given in Jerko, Mjelde, and Bessler (2004, Figure 

3).  In contrast to final directed acyclic graph (Figure 2.6), Jerko, Mjelde, and Bessler 

(2004) suggest that the FC influences PV and they show no edge between MIDC and PV 

in summer.  In addition, there is undirected edge between MIDC and FC and between 

PV and FC in winter in their analysis.  The dissimilarity is caused by including only 

three markets in this area in the current study instead of six markets used in their study, a 

different time frame, and they present both summer and winter models. 

In contrast to the directed graph analysis, forecast error variance decomposition 

and impulse response functions allow for analysis of dynamic information flows over 

time.  For the western markets, PV explains the price uncertainty in MIDC and FC.  

Further, PV appears to be exogenous at short run.  Unlike De Vany and Walls (1999b) 

and Jerko, Mjelde and Bessler (2004), PV appears to be an important market in the 
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western U.S.  According to their studies, California-Oregon border (De Vany and Walls, 

1999b) and South and North Path spot markets in California (Jerko, Mjelde, and Bessler, 

2004) are the driving forces for the electricity prices in western U.S.  This dissimilarity 

is partially caused by differences in the dates and markets included in the studies.  COB 

and South and North Path spot markets in California are not included in this study 

because of data limitations.  However, noting that PV is the spot market closest to the 

California; the importance of PV in western region is not inconsistent with previous 

studies.   

SPP accounts for the large amount of forecast error variance at the longer periods 

in PJM, ECAR, MAIN, MAPP, ENT, and ERCOT; SPP is a dominant market in Eastern 

Interconnected System.  Support for this result also comes from the impulse response 

functions.  Innovations in SPP cause relatively large responses in non-western markets.  

Why SPP appears to be a dominant market is not entirely clear.  One possible 

explanation is that the region within SPP relies more on natural gas as an energy source 

than the other markets.  In states associated with SPP,4 the percentage of natural gas as 

the primary energy source for generating electricity averages more than 28%.  In 

contrast, the percentage for the entire U.S is less than 18% (U.S. Department of Energy, 

2001).  Natural gas is usually the energy source on the margin for peak power generation.  

Variation in natural gas prices may influence SPP first.  The effects of gas price 

variations are then spread to the other markets.   
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The smaller influence of SPP in NEPL and the western markets may be because 

of the importance of hydroelectric generation in these regions.  The above explanation 

cannot be the only answer. Although ERCOT and ENT are highly dependent on natural 

gas to generate electricity, they are not behaving as dominant markets.  Reasons why 

ERCOT and ENT do not behave as dominant markets are as follows.  First, most 

outgoing transmission lines from ERCOT are through ENT, therefore ERCOT may have 

limited influence on the other markets when compared to SPP.  Second, ERCOT and 

ENT do not rely as heavily as SPP on coal as energy source.  MAPP, MAIN, ECAR, and 

PJM markets may be influenced by SPP because they depend more on coal than the 

other markets.  Accordingly, similarities between the higher dependency on coal in the 

SPP, MAPP, MAIN, ECAR, and PJM markets may provide another possible answer for 

the dominance of SPP.   

Although there appears to be little contemporaneous time information flows 

between the western markets and non-western markets, PJM, SPP, NEPL, and ERCOT 

help explain the price uncertainty in the three western markets at longer horizons. 

Impulse response functions suggest that shocks in PJM and NEPL cause relatively large 

and long lasting responses in the western markets.  Supporting these findings are the 

results that the coefficients of NEPL and PJM are statistically significant at 10% level in 

MIDC, PV, and FC markets implying NEPL and PJM “Granger cause” MIDC, PV, and 

FC.  Such dynamic behavior cannot be explained by physical transmission connections 

because of the considerable distance between the two regions.  There must be other 
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factors that cause this dynamic relationship between the two regions.  Although beyond 

the VAR analysis, several aspects of the regions may explain the dynamic behavior.  

First, PJM is the largest and oldest well-organized spot market in the U.S. (Deng and 

Jiang, 2002).  PJM may be providing price discovery information through real-time price 

data.  The western markets can obtain price information from the PJM market because of 

the time zone difference between the two regions (U.S. Department of Energy, 2002).  

Second, NEPL, PJM, and western markets are considerably more deregulated markets 

than the other markets (U.S. Department of Energy, 2003b).  Further, PJM and 

California spot markets have a common three-tiered trading structure consisting of day-

ahead, hour-ahead, and a real time markets.  Finally for MIDC, PV, and PJM, there were 

future’s markets during the study period (U.S. Department of Energy, 2002).  

Considering these aspects, the relationship between PJM, NEPL, and the western 

markets may be explained not by physical assets, such as the transmission network, but 

by institutional arrangements such as the degree of deregulation, trading structure, and 

existence of futures markets. 

Impulse response functions also show the innovations in SPP and ERCOT have 

relatively long lasting positive influence on western markets.  Non-western markets 

generally have larger and quicker response to innovations, but they dampen toward zero.  

The different responses between western and non-western markets to the innovations in 

SPP and ERCOT also appear to be due to different institutional arrangements between 

the western and non-western markets.   
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As expected, the innovations in MIDC, PV, and FC have very little influence on 

almost every non-western markets, while they have long lasting influence on the western 

markets.  This result is somewhat different than the results presented in De Vany and 

Walls (1999b) and Jerko, Mjelde, and Bessler (2004).  According to their studies, the 

responses of western markets with respect to the shock of western markets are not as 

long lasting as found here.  This dissimilarity also seems to be caused by the studies 

covering different time period.  In contrast, the innovations in NEPL, PJM, ECAR, 

MAIN, MAPP, and ENT have relatively short influence on non-western markets.  The 

different responses between western markets and non-western markets to its own 

innovations also indicate there may be certain different institutional aspects between two 

regions such as the degree of deregulation, the existence of futures markets, and market 

structure.   

There are some practical questions suggested by the results that are not addressed 

explicitly but are important issues in the electricity industry.  How is the price affected 

by the different market rules?  What is the impact of continuing deregulation on prices?  

These questions should be topics of further study.  In addition, temperature was only 

exogenous factor considered in the VAR model.  Different factors such as variations in 

demand, congestion on the transmission system, and outages should be considered as 

factors affecting price in future studies. 

End Notes 

1.  Regional HDD and CDD were investigated to determine how regional weather differences affect 
electricity prices.  The U.S. was divided into four regions according to weather characteristics based on 
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Koeppen climate classification (Idaho State Climate Service, 2003).  The degree-day indices for four 
regions were computed as a weighted average using population for the cities in each region as weights.  
There were serious multicollinearity problems between the eight regional degree-day indices.  
Accordingly, aggregate HDD and CDD are used in the analysis. 

 
2.  For completeness, the test results for the DF and ADF test for non-logarithmic and logarithmic 

transformed data both with and without using the robust estimation are given in Appendix C. 
 
3.  The VAR was estimated using eleven monthly dummies to capture the potential monthly effects in the 

electricity spot market price series.  However, all the coefficients associated with the dummy variables 
were not statistically significant.  Accordingly, the VAR model is estimated without the monthly 
dummies. 

 
4.  SPP currently covers all or part of the states of Arkansas, Kansas, Louisiana, Mississippi, Missouri, 

New Mexico, Oklahoma, and Texas.   In these states, the percentage of natural gas as the primary 
energy source for generating electricity averages more than 28%.  In contrast, the portion is less than 
18% for the entire U.S (U.S. Department of Energy, 2001).  
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CHAPTER III 

PRICE DYNAMICS AMONG NATURAL GAS SPOT MARKETS 

 

Natural gas, an important energy source, accounted for more than 23% of total energy 

consumption of the U.S. in 2001.  It is considered as one of the cleanest, safest, and most 

useful of all energy sources (Natural Gas Supply Association, 2004).  Historically, the 

natural gas industry has been one of the most highly regulated sectors of the U.S. 

economy.  However, starting in the late 1970s, the process of deregulating (elimination 

of price controls, deregulation of the production sector, and creating open access to 

pipelines) the industry began (De Vany and Walls 1994).  By the early 1990s, the 

process of deregulation was completed (Cuddington and Wang 2004).   

Natural gas is traded as a commodity, like corn, copper, and oil, because after 

processing natural gas is a similar product no matter where it is located.  Two distinct 

markets trade natural gas: a spot market and a futures market.  Market centers and hubs 

have resulted from restructuring and the execution of the Federal Energy Regulatory 

Commission’s (FERC) Order 6361 issued in 1992.  These centers and hubs (henceforth 

centers and hubs are referred to jointly as centers) serve as natural gas spot markets.  

Natural gas futures are traded on the New York Mercantile Exchange (NYMEX).  The 

market centers are located at the intersection of major pipeline systems and within major 

producing regions.  There were 37 operational market centers in the U.S. and Canada in 

2003 (U.S. Department of Energy, 2003c).  These centers provide various types of 
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services such as loaning, storage, electronic trading, and title transferring.  The share of 

spot market volume of the total U.S. gas consumption was more than 70% in 1987-88 

though their share has fallen to about 40% in 1995 (Dahl and Matson, 1998).  Like most 

commodities, the price of natural gas is volatile.  For example, natural gas prices are 

subject to variations in demand in response to changes in weather.   Further, surge 

production is limited and expensive (U.S. Department of Energy, 2002). 

The objective of this study is to characterize the dynamic interdependence 

relationships among eight major natural gas spot markets in North America and to 

investigate each individual market’s role in price discovery.  As such, the focus is on 

spot market price behavior and not the factors affecting prices.  Analyzing spot market 

price discovery is important for industry decision makers and traders because price gaps 

across locations, called “price basis” in the natural gas industry, are monitored closely by 

market traders and become the foundation of gas trading by many firms (Cuddington and 

Wang, 2004).  Providing information on the dynamics of natural gas spot market prices 

leads to a better understanding of how price innovations in market affects other markets.  

In obtaining this objective, the following questions are addressed.  Do certain markets 

have more influence on price than others?  Does one market play the role of price leader 

among a set of markets?  Is there a dominant market? 

This study is the first study to describe the dynamic interdependent structure 

among North American natural gas spot markets by combining recent advances in causal 

flows with time series analysis.  A new method, Greedy Equivalence Search (GES) to 
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find causal flows is used.  This is one of the first applications of the GES Algorithm in 

economics.  Empirical findings on the contemporaneous and short-run interdependencies 

using a vector error correction model (VECM), causal flows based on directed acyclic 

graphs, and innovation accounting analysis (forecast error variance decomposition and 

impulse response functions) are presented.  The study provides a dynamic picture of 

daily information flow among eight North American natural gas spot markets for the 

recent past (1998-2002).  The eight markets were chosen to provide geographical 

diversity, while accounting for data availability.  Previous studies have not considered 

the geographical dispersion and weather effects in their analysis.   

Brief Literature Review 

Numerous studies on natural gas industry have been conducted because of the 

importance of this sector.  Relatively few studies have investigated the dynamic behavior 

of empirical natural gas prices using time series analysis.  Among those studies 

concerned with the dynamic behavior of natural gas prices using time series analysis, 

most studies focused on spot markets, however, a few studies (e.g. Lien and Root, 1999; 

Buchananan, Hodges, and Theis, 2001) focus on the natural gas futures market.   

Serletis and Rangel-Ruiz (2004) investigated the strength of shared trends and 

cycles between North American natural gas and crude oil markets using cointegration 

tests.  They showed there has been a decoupling of these two energy sources as a result 

of oil and gas deregulation in the U.S.  They also examined the interconnectedness of 

North American natural gas markets using only two spot markets prices, U.S. Henry 
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Hub and AECO Alberta.  From a high degree of similarity in the impulse responses of 

U.S. Henry Hub and AECO natural gas prices, they conclude that since deregulation 

North American natural gas prices are largely defined by Henry Hub price trends.   

Serletis and Herbert (1999) explored the degree of shared trends among North 

American natural gas (Henry Hub natural gas price, Transco Zone 6 natural gas price), 

fuel oil (New York Harbor), and electricity prices (PJM electricity price).  They found 

natural gas and fuel oil prices are nonstationary, but electricity price is stationary.  

Cointegration between the two natural gas spot markets prices and fuel oil price was 

found.  The electricity spot market is not cointegrated with the other markets.  Ewing, 

Malik, and Ozfidan (2002) examined changes in volatility in the oil and natural gas 

sectors over time and across markets using the multivariate generalized autoregressive 

conditional heteroscedasticity model.  They note volatility is often interpreted as a proxy 

for information flow.  Ewing, Malik, and Ozfidan (2002) found significant transmission 

of volatility from the natural gas sector to the oil sector.  The previously mentioned 

studies dealt with the interrelationship among natural gas markets and other energy 

sector markets (oil and electricity).  Interdependencies among natural gas markets are 

not addressed in these studies.   

De Vany and Walls (1993) using daily price data from 1987 to 1991 investigated 

and tested for pair-wise market integration.  Using Engle and Granger (1987) two-series 

cointegration, they found that most markets were not cointegrated in 1987 but more than 

65% of the markets had become cointegrated in 1991.  Based on their findings, De Vany 
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and Walls (1993) argue the increased cointegration of prices is evidence that open access 

policy enacted by FERC in 1985 has made gas markets more competitive.  De Vany and 

Walls (1994) also examined the policy impact of open access to the pipeline system 

which was enacted by FERC in 1985.  They use Pearson correlation coefficients and 

price spreads between separate markets using monthly data from 1984 to 1989 for major 

five markets in U.S.  They concluded that spot gas prices converged and became highly 

correlated after the enactment of the open access policy in 1985.  Walls (1994) 

investigated cointegration between natural gas spot prices at various production fields, 

pipeline hubs, and city markets using daily data from 1990 to 1991 for 26 spot markets 

in the U.S.  He showed the prices at certain locations, Chicago and to a lesser extent 

some California prices are cointegrated with field market prices.   

King and Cuc (1996) investigated the degree of price convergence in North 

American natural gas spot markets using time-varying parameter (Kalman Filter) 

analysis and monthly price data from January 1986 to September 1995 for 17 markets 

across the U.S. and Canada.  King and Cuc (1996) reported that price convergence in 

natural gas spot markets has increased significantly since the price deregulation of the 

mid-1980s.  Further, they found an east-west split in North American natural gas 

markets.   

Serletis (1997) examined North American natural gas spot markets using 

monthly data of eight price series for the U.S. and Canada from June 1990 to December 

1995.  To examine the robustness of King and Cuc’s (1996) findings, Serletis (1997) 
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adopted the Engle and Granger (1987) two-step procedure to model bivariate natural gas 

price relationships and tested for cointegration using Johansen’s (1995) maximum 

likelihood approach.  Serletis (1997) found the east-west split described by King and 

Cuc (1996) did not exist.  Both of these studies focused on the price convergence and the 

dynamic interrelationship among spot market prices, but they did not explored dynamic 

interdependencies among natural gas markets in detail.   

Cuddington and Wang (2004) investigated the degree and extent of market 

integration of natural gas spot markets in the U.S. using daily data for 76 geographically 

diverse pricing points over the period 1993 to 1997.  They adopted the autoregressive 

(AR) model of price differentials across locations to estimate the speeds of adjustment 

toward equilibrium.  Cuddington and Wang (2004) found that the half-lives of shocks to 

most price differentials range from a day to about two weeks.   

Empirical Methods  

Vector Error Correction Model 

A vector error correction model (VECM) is used as the basic tool for this dynamic 

analysis.  Economic theory does not suggest a prior structure for natural gas price 

interdependencies so VECM is an appropriate tool for analyzing natural gas price 

interdependencies. 

Assuming first differencing makes the data stationary, the data generating 

process of Pt can be expressed in a VECM with k-1 lags as:  
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where Pt denotes a vector that includes m non-stationary prices (m = 8 in the current 

study) at time t, ∆Pt is the first differences (Pt  - Pt-1), Π is a matrix of coefficients 

relating lagged levels of prices to current changes in prices, Γi is a matrix of short-run 

dynamics coefficients relating lagged period i price changes to current changes in prices, 

µ is a constant term, Zt represents a vector of exogenous variables (lagged heating and 

cooling “weather” variables), Ψ is a coefficient matrix associated with contemporaneous 

exogenous variables, Zt, and te  is a vector of innovations (Hansen and Juselius, 1995).  

As discussed later, Π may have reduced rank such that it can be re-expressed as αβ’ 

where α and β are m x r matrices of full rank and r is the number of cointegrating 

vectors (Hansen and Juselius, 1995).  The parameters on the VECM provide information 

on the long-run, short-run, and contemporaneous structure.  The long-run structure of 

market interdependencies can be identified by the cointegration space spanned by β and 

testing of hypotheses on β.  Short-run structure can be identified through α and Γi 

(Johansen, 1995).  The contemporaneous structure can be identified through the 

correlation matrix of observed innovations tê  using the directed acyclic graphs analysis 

(Spirtes, Glymour, and Scheines, 2000).   
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To examine the long-run structure of natural gas markets, determining the rank of 

Π, the number of cointegrating vectors, is necessary.  In this study, two procedures are 

used to determine the lag order and cointegarting rank.  The first procedure is the usual 

two-step procedure of determining the appropriate lag length first and then the 

cointegrating rank (Bessler and Yang, 2003).  Here, loss metrics are used to determine 

the optimal lag length.  Then a trace test is used to determine the number of 

cointegrating vectors.   

The rank of Π is tested using the following hypothesis:   

(8)                H(r): Π = αβ’ . 

Trace tests on the eigenvalues of Π developed by Johansen (1991) are conducted to test 

the above hypothesis and to determine the rank of Π, the number of cointegrating 

vectors.  In other words, trace tests confront the null hypothesis of r or less cointegrating 

vectors using test statistics from estimated eigenvalues.  Accordingly, rejecting the null 

hypothesis indicates the number of cointegrating vectors is greater than r.  The Π matrix 

can be factored as products of two matrices, α and β  once the number of cointegrating 

vectors, r is determined: Π = αβ’ .  Before conducting trace tests, the lag order of 

VECM must be determined.  Loss functions are used to determine the lag length.   

In the second procedure, lag length and cointegrating rank are determined 

simultaneously using information criteria (Schwarz loss and Hannan and Quinn’s Phi 

metrics) following the work of Phillips (1996) and Wang and Bessler (2005a).  Both 

results are provided in this study for comparison purposes. 
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Testing hypotheses on β to identify the long-run structure include exclusivity 

tests.  Exclusivity tests are conducted to determine whether some markets are excluded 

in all of the identified long-run relations.  This exclusivity test uses the following 

hypothesis: 

(9)                H: R’β = 0. 

Here R’ is a design matrix of zeros and ones placed to exclude variables from the 

cointegration space (Hansen and Juselius, 1995).  The null hypothesis is that a particular 

market is not in the cointegrating space.  Under the null, the likelihood ratio test is 

distributed Chi-squared with degrees of freedom equal to the number of cointegrating 

vectors (Hansen and Juselius 1995).  Rejecting the null hypothesis indicates those 

variables (markets) are in the long-run relationships.   

The short-run dynamic pattern of price interdependencies is related to two parts, 

α and Γi.  The parameter α provides information about the short-run adjustment to 

perturbations in the long-run relations.  Weak exogeneity tests on α are used to 

determine whether a market is unresponsive to deviation from the long-run relations in 

the short run (Johansen, 1991).  To this end, the following hypothesis is used: 

(10)                H: B’α  = 0, 

where B is a design matrix of zeros and ones placed to express the particular hypothesis.  

The null hypothesis is that each market does not respond to perturbations in the 

cointegrating space.  As with the exclusivity tests, under the null hypothesis, the 

likelihood ratio test is distributed Chi-squared with degrees of freedom equal to the 
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number of cointegrating vectors.  Another way to examine the short-run dynamics is 

through the parameters, Γi that define the short-run adjustment to the changes in the 

process (Johansen, 1995).  However, the individual coefficients of the VECM, 

particularly Γi, are difficult to interpret individually as is the case with the standard 

vector autoregression (VAR) model.  Accordingly, similar to VAR analysis, innovation 

accounting, impulse response functions and forecast error variance decomposition are 

used to describe the dynamic structure among price series (Swanson and Granger, 1997; 

Bessler and Davis, 2004).   

The VECM in equation (7) is estimated using the maximum likelihood procedure 

suggested by Johansen (1995).  The estimated VECM is re-expressed as a level VAR of 

equation (11) by algebraic manipulation of the parameters (Johansen and Juselius, 1990).   
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Innovation accounting based on the equivalent levels VAR summarizes the short-run 

dynamic interactions among natural gas prices.  Directed graph analysis, using the 

correlation matrix associated with the innovations, tê , from equation (7), is used to 

identify the contemporaneous structure.   

Greedy Equivalence Search Algorithm  

The GES Algorithm suggested by Meek (1997) and discussed by Chickering (2003) is 

used to identify the contemporaneous structure.   In this study, GES Algorithm, as well 
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as, PC (after its authors, Peter and Clark) Algorithm provided by TETRAD IV 

(TETRAD IV Manual, 2004) is used to identify the contemporaneous structure.  Results 

are compared.  GES Algorithm has several advantages over PC Algorithm.  PC 

Algorithm requires three strong assumptions, causal sufficiency, Markov and 

faithfulness conditions.  PC Algorithm may not work well when these conditions are not 

satisfied.  Moreover, researchers have to select an appropriate significance level because 

it is based on standard Neyman-Pearson hypothesis testing.  GES Algorithm does not 

require as strong assumptions as PC Algorithm (Wang and Bessler, 2005b).  GES is also 

exempt from having to select an appropriate significance level; GES does not face the 

usual question of choice of significance level.  However, the results from GES 

Algorithm are sensitive to Bayesian score values such that even small difference 

between two Bayesian scores may produce quite different results.   

Because detailed discussions concerning directed graphs and PC Algorithm are 

provided in Chapter II, these topics are not discussed here.  However, the GES 

Algorithm is described in detail because it is used to determine the contemporaneous 

structure, as an alternative to PC Algorithm used in Chapter II.   

A directed graph is an illustration composed of arrows and vertices to represent 

the causal flow among a set of vertices (or variables) (Pearl, 2000).  Only directed 

acyclic graphs, graphs contains no directed cyclic paths, are considered in this study.  

GES Algorithm provides a way to find causal flows from correlation relationships 

among the variables. 
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GES Algorithm is a two-phase greedy search algorithm that looks over 

equivalence classes (defined in Appendix D) of graphs starting from a graphical 

representation with no edges.  A graph with no edges implies that all variables are 

independent of all the other variables.  PC Algorithm, on the other hand, begins with a 

complete undirected graph that contains undirected edges to connect all variables, 

implying all variables are dependent on all the other variables.  GES Algorithm proceeds 

stepwise searching over more complicated representations, scoring each using the 

Bayesian scoring criterion given in Appendix E.  Through the addition and deletion of 

single edges and reversals of edges direction, GES scores each equivalence class of 

DAGs for every state (Chickering, 2003).   

Consider the following case to illustrate equivalence classes and neighbors of 

states.  DAG (D.16), (D.17), and (D.18) are in the same equivalence classes by the 

definition in Chickering’s (2003) lemma 2, and they are in the same state, Ε: 

 (D.16)       (D.17)     (D.18)          
       A                A               A            

              ↗              ↗               ↙             
           B → C        B ← C       B → C.       
 

From this state, the equivalence classes of neighboring states are obtained through the 

addition (or deletion) of a single edge, avoiding the cases that create a cycle when the 

single edge is added (or deleted).  GES Algorithm only searches for acyclic graphs by 

definition.  The neighbors of state Ε through adding single edges are:    



 

 

47 
 

 
 

 
 

 
 

(D.19)      (D.20)      (D.21)      (D.22)       
      A                A               A               A         

             ↗ ↘          ↗↖          ↗↖          ↙↘      
            B → C       B → C       B ← C       B → C.   

 

DAG (D.19), (D.20), (D.21), and (D.22) are neighbors of the equivalence class defined 

by (D.16), (D.17), and (D.18) (for details see Chickering, 2003, pages 511-523).   

Using this example, the two phases of GES procedure can be illustrated.  In the 

first phase, GES Algorithm begins with DAG (D.23) with no edges:   

(D.23)       
      A         

                     
            B      C. 
 
Neighbors of this state are found by considering all possible single edge additions.  The 

following DAGs show all possible neighbors of DAG (D.23):   

 (D.24)     (D.25)      (D.26)      (D.27)       (D.28)     (D.29)       
      A               A                A               A                A               A        

              ↗              ↙                                                     ↖              ↘     
            B      C       B      C       B → C      B ← C         B      C      B       C ,  

where DAG (D.24) and (D.25) are in an equivalence class, DAG (D.26) and (D.27) are 

in another equivalence class, and DAG (D.28) and (D.29) are in a third equivalence class.  

Accordingly, there are three different groups of equivalence classes as neighbors of 

DAG (D.23).  All possible equivalence classes including DAG (D.23) are scored by 

Bayesian scoring criterion.   

After score comparison, among all possible equivalence classes the one 

equivalence class that increases the score the most is chosen for the next step.  Greedy 
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search means that the algorithm always moves in the direction that increases the score 

the most.  This procedure is repeatedly conducted until no such replacement increases 

the score.  The causal pattern that generates the maximum Bayesian score is searched 

over equivalence classes through adding dependencies in the first phase.     

Common scoring criteria (for example, Akaike Information Criterion and 

Bayesian Information Criterion) provide the same score to causal patterns in the same 

equivalence class (Chickering, 2002).  TETRAD IV has adopted Bayesian Information 

Criterion as scoring criterion for continuous data.  This criterion provides the same 

scores for causal patterns in the same equivalence class.  For example, DAG (D.24) and 

(D.25) have the same score from GES Algorithm of TETRAD IV.  At this point the edge 

between A and B is undirected.  GES Algorithm can suggest either directed edges or 

undirected edges (TETRAD IV manual, 2004).   

Once a local maximum is reached in the first phase, the second phase begins by 

deleting a single edge and comparing the scores of DAG in equivalence classes 

repeatedly until a local maximum is again reached.  When the algorithm reaches a local 

maximum, it obtains the optimal solution (Chickering, 2003).  Chickering (2003) 

provides a proof that GES Algorithm can identify the optimal solution in the limit of 

large sample size using these two phases.   

Data 

Considering regional dispersion and data availability, eight price series of natural gas 

trading hubs or spot market in the United States and Canada are included (Figure 3.1).  
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The trading hubs are Waha Hub, Texas (WAH), Henry Hub, Louisiana (HEN), 

Oklahoma (ONG), Opal Hub, Wyoming (OPA), Chicago Hub, Illinois (CHI), Ellisburg-

Leidy Hub, Pennsylvania (ELL), Malin Hub, Oregon (MAL), and AECO Hub, Alberta, 

Canada (AEC).  Although there are some important market centers that are not included 

in this study, the above eight trading hubs are considered in this study because of data 

availability.  Daily prices of the trading hubs (from surveys of traders) provided by 

Bloomberg Energy Service from January 12, 1998 to December 20, 2002 are used.  Spot 

prices are calculated as a volume-weighted average price for that location in dollars per 

MMBtu (a unit of heat equal to one million British thermal units) for gas delivered the 

next day.  The prices are for Monday through Friday.  Each price series has 1290 

observations.  The total number of missing values in the eight price series is 400.  The 

missing values including holidays account for 3.8 percent of total observations.  The 

prior day’s price is used to represent any missing values for a particular day and market.  

Plots of the price series for each market are provided in Figure 3.2.  

As in Chapter II, lagged U.S. aggregate cooling degree-days (CDD) and heating 

degree-days (HDD) are used to capture daily weather effects in natural gas prices.  CDD 

and HDD are considered exogenous variables in the VECM.   

Empirical Results 

Stationarity 

The stationarity of the eight price series is examined using Dickey-Fuller (DF) and 

augmented Dickey-Fuller (ADF) tests.  All estimations use logarithmic transformed data 
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(except HDD and CDD) and a robust estimator because each price series of natural gas 

is highly volatile and potentially heteroscedastic (Figure 3.2).  The robust estimator 

computes a heteroscedasticity consistent estimate of the asymptotic covariance matrix of 

the estimated parameters (Greene, 2000).  DF and ADF test results are provided in Table 

3.12.  The null hypothesis of both the DF and ADF tests is that the natural gas price 

series is non-stationary.  This null hypothesis is rejected if the DF or ADF statistic is less 

than –2.89 (-2.58) at a 5% (10%) level of significance (Fuller, 1976).  

The DF test statistics indicate all natural gas spot prices except OPA are non-

stationary at both the 5% and 10% levels.  However, the ADF test statistics indicate all 

spot prices are non-stationary at the 5% level, while at the 10% level all markets except 

OPA are non-stationary.  Q-statistics testing if the residuals from the DF and ADF 

regressions are white noise are also presented in Table 3.1.  The null hypothesis of white 

noise residuals is rejected when the Q value is large or the p-value is small.  Based on 

the Q-statistics and associated p-values, the residuals from DF tests regressions are not 

white noise for any of the series while the residuals from ADF are white noise in some 

cases, AEC and MAL (5% level), and AEC, MAL, HEN, and ELL (1% level).   

In addition, the stationarity of the first difference of eight price series is 

examined using DF and ADF tests.  DF tests show all the first differences of price series 

are stationary while ADF tests indicate that all the first differences are stationary except 

for CHI (Table 3.2).  These results are consistent with previous studies, e.g. Serletis and 

Herbert (1999) and De Vany and Walls (1993).  
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Model Specification 

As noted earlier, two procedures are used to determine the lag order and cointegarting 

rank using the logarithmic transformed data and considering one-day lags of CDD and 

HDD as exogenous variables.  In the first procedure, Schwarz loss, Akaike loss, Hannan 

and Quinn’s phi measures are used to determine the optimal length of lags for 

unrestricted VAR model.  Results of the three metrics for one to 15 lags are presented in 

Table 3.3.  Schwarz and Hannan and Quinn phi are minimized at one lag and three lags.  

In contrast, the Akaike loss metric is minimized at nine lags.  One lag is selected as the 

lag order in a level VAR on the eight price series of natural gas spot market based on 

Schwarz loss metrics and the rule of parsimony.  Trace tests are conducted using one lag 

VAR model as the second part of the first procedure (Table 3.4).  Trace test results 

suggest seven long-run relations (cointegration) with constants in the cointegrating 

vectors.   

The results of optimal lag order and cointegrating rank using the second 

procedure are given in Table 3.5.  The second procedure suggests the appropriate model 

is one lag with a cointegrating rank of six as this model minimizes the Schwarz loss 

metric.  In terms of a lag length, both procedures give the same length using Schwarz 

loss.  Both procedures provide similar cointegrating ranks, but not exactly the same, 

which is consistent with the findings of Wang and Bessler (2005a).   

Wang and Bessler (2005a) conducted Monte Carlo simulations to evaluate the 

possibility of using information criteria (Schwarz loss and Akaike loss) as an alternative 
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for determining cointegrating rank in multivariate analysis.  They provide comparison of 

the performances of two procedures through Monte Carlo simulations in determining the 

lag order and cointegrating rank.  Wang and Bessler (2005a) found that when the sample 

is larger than 100, Schwarz loss metrics performs better than the trace test in determining 

cointegrating rank for all model specifications.  Accordingly, an error correction model 

with a lag length of one and a cointegrating rank of six is used here.   

Tests of Exclusion and Weak Exogeneity: Long-run Structure  

After imposing six cointegrating vectors, the VECM of equation (7) is estimated.  The 

estimated parameter matrices are provided in Appendix G.  While six cointegrating 

vectors are found, there is the possibility that one and more price series are not part of 

any of the six long-run relationships.  Using the exclusivity test described earlier, the 

null hypotheses that a particular series is not in the cointegration space are tested.  The 

test results indicate the null hypotheses are rejected for all eight price series, implying all 

of the eight price series are in the cointegration space (Table 3.6).  Further, the 

exogenous variables, HDD and CDD, are not also excluded from the long-run 

relationships.   

The possibility that some markets do not respond to perturbations in the long-run 

equilibrium is investigated by weak exogeneity tests (Table 3.6).  The null hypothesis is 

that the associated market does not make adjustments toward the estimated long-run 

equilibrium.  All null hypotheses for each market are rejected at 1% level.  Accordingly, 

all markets respond to perturbations in any of the six long-run equilibrium vectors.   
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Identifying Contemporaneous Structure  

The lower triangular elements of the contemporaneous innovation correlation matrix, Σ, 

from the estimated VECM is: 

    AEC MAL OPA WAH HEN ONG CHI ELL  
   AEC  1.00          
  MAL  0.32 1.00        
  OPA  0.30 0.40 1.00       
  WAH  0.46 0.53 0.47 1.00      
(12)        Σ =  HEN  0.48 0.46 0.41 0.89 1.00     
  ONG  0.46 0.49 0.42 0.92 0.90 1.00    
  CHI  0.45 0.45 0.41 0.89 0.90 0.89 1.00   
  ELL  0.02 0.03 0.02 0.05 0.07 0.04 0.03 1.00  
 

Innovations from the three southern markets, WAH, HEN and ONG, show strong 

correlations between each other and CHI, with relatively weaker correlations with the 

remaining markets in North America.  Innovations from eastern market, ELL, have 

almost no correlation with the other seven markets.  Innovations from AEC, MAL and 

OPA in the west have moderate correlations between each other and the other markets 

except ELL.   

Correlations from equation (12) are used in the directed graph analysis to identify 

the Bernanke ordering structure.  Based on the correlation patterns derived from the 

correlation matrix, causal flows between contemporaneous innovations from each of the 

eight markets are assigned as in Figures 3.3, 3.4 and 3.5 using TETRAD IV, a computer 

software that implements PC Algorithm (Scheines et al., 1994) and GES Algorithm 

(Chickering, 2003).   
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Somewhat similar results are obtained for significance levels of 1% and 0.1% 

(Figures 3.3 and 3.4) using PC Algorithm.  No direction of causal flows among seven 

spot markets is determined at the 0.1% significance level.  The edges between AEC and 

MAL, AEC and OPA, CHI and ONG, and CHI and HEN are different at the two 

significant levels (Figures 3.3 and 3.4).  In the causal pattern at the 1% significance 

level, there is a bi-directed edge between AEC and OPA.  Further, at the 1% level causal 

patterns are from MAL to AEC, from WAH to OPA, and from HEN to AEC.  The bi-

directed edge indicates there are potentially omitted variables between these markets.  

ELL has no edges (no causal flows) to connect with the other markets at either 

significance level.   

GES Algorithm suggests a similar causal pattern for the eight natural gas spot 

markets, but it does not leave as many edges undetermined as PC Algorithm does and 

GES does not give bi-directed edges.  The causal pattern from GES Algorithm includes 

the edges between AEC and MAL, AEC and OPA, and CHI and HEN that the causal 

pattern from PC Algorithm at 1% level includes, but the causal pattern from PC 

Algorithm at 0.1% level does not.  In addition, the edge between CHI and ONG is 

included in the causal pattern from GES Algorithm while it is not included in the causal 

pattern from PC Algorithm at 1% level but is included in the causal pattern from PC 

Algorithm at 0.1% level.  Moreover, the causal pattern from GES Algorithm includes the 

directed edge from ELL into HEN that is not presented in the causal pattern from PC 

Algorithm at either level.  In the causal pattern from GES Algorithm, the directions of 
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the edges that are not determined in the causal pattern from PC Algorithm at either level 

are suggested.   

Wang and Bessler (2005b) assessed the overall appropriateness of the models 

generated by PC and GES Algorithm using a usual chi-squared test and found that the 

causal patterns suggested by the GES Algorithm fit data better than those from the PC 

Algorithm.  Considering their arguments and the similar results from the two procedures, 

the causal pattern suggested by GES Algorithm is used as contemporaneous causal flows 

structure.  This structure is imposed on the innovation accounting methods.   

The information flows from the causal pattern suggested by GES Algorithm are 

as follows.  WAH causes MAL and OPA.  Both MAL and OPA cause AEC.  AEC 

appears to be an information sink; it does not cause any other market.  CHI causes WAH 

and HEN.  ELL also causes HEN.  ONG causes WAH and HEN.  HEN causes WAH, as 

well as, AEC.  Either CHI or ONG can be exogenous depending on the direction of 

undetermined edge between CHI and ONG.  ELL is exogenous; there are no markets 

that cause ELL.  These information flows appear plausible in light of natural gas 

delivery flows presented in Figure 3.6.  Price information is likely to flow from potential 

excess consuming areas into excess producing areas.   

Figure 3.7 more clearly shows gas transportation flows from major producing 

regions into major market regions (U.S. Department of Energy, 2004).  The edge 

between HEN and WAH is not determined in the causal patterns suggested by PC 

Algorithm at both significance levels.  GES Algorithm suggests the direction of the edge 
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is HEN → WAH.  This causal flow appears to be plausible in light of actual gas 

transportation flows between the two markets (Figure 3.8).  With eight markets there are 

a possible 28 causal flows.  The GES Algorithm directs 13 of the 28 flows to be nonzero 

(lines in Figure 3.5).  A likelihood ratio test of the 15 zero restrictions gives a Chi-

squared value of 13.105 (p-value = 0.59).  At reasonable significance levels, the data 

does not reject the 15 zero restrictions. 

However, GES Algorithm does not suggest the directions of edge between MAL 

and OPA and CHI and ONG.  With respect to the undetermined edges, there are four 

possible cases, case I (OPA ← MAL, CHI ← ONG), case II (OPA ← MAL, CHI → 

ONG), case III (OPA → MAL, CHI ← ONG), and case IV (OPA → MAL, CHI → 

ONG).  Because the number of possible cases is small, all four alternative DAGs are 

used in the innovation accounting analysis.   

Forecast Error Variance Decompositions 

Based on four cases, the forecast error variance decompositions are given in Tables 3.7, 

3.8, 3.9, and 10.  Decompositions give the percentage of price variation in each market 

at time t+k that is due to innovations in each market (including itself) at time t.  Listed 

here are the results at horizons of zero (contemporaneous time), one day (short horizon), 

and 30 days ahead (longer horizon). 

In case I (OPA ← MAL, CHI ← ONG), the uncertainty associated with 

contemporaneous price in AEC is explained by contemporaneous period shocks in its 

own price, AEC (75.0%), and shocks in ONG (19.6%).  The variation in AEC is 
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explained by the innovations from its own price, AEC (73.2%), and ONG (18.5%) at the 

short run, and AEC (33.9%), MAL (21.1%), WAH (6.4%), ONG (19.4%), and ELL 

(10.1%) at the 30-day horizon.  MAL (72.2%) and ONG (23.4%) account for most of the 

variation in MAL in contemporaneous time.  At short run, the variation in MAL is also 

explained by MAL (71.2%) and ONG (22.7%).  However, at the 30-day horizon, the 

variation in MAL is explained by more markets, AEC (8.2%), MAL (50.6%), WAH 

(9.0%), ONG (20.6%), and ELL (5.3%), but MAL and ONG remain the most important 

markets.   

In contemporaneous time, the variation in OPA is explained by OPA (75.0%) 

and ONG (18.3%).  At the short run, the pattern is similar to that of contemporaneous 

time.  However, AEC (11.3%), MAL (29.0%), OPA (40.0%), WAH (6.9%), and ONG 

(11.6%) account for the variation in OPA in the long run.  The variation in WAH is 

explained mainly by ONG (84.0%) and WAH (12.7%) in contemporaneous time and 

ONG (84.8%) and WAH (11.0%) in the short run.  At the 30-day horizon, however, 

HEN (7.0%), ONG (53.3%), and ELL (22.0%) account for the variation in WAH.  The 

variation in HEN is explained by ONG (80.8%) and HEN (14.2%) in contemporaneous 

time and by ONG (80.0%) and HEN (13.9%) in the short run.  OPA (5.1%), HEN 

(9.7%), ONG (50.8%), CHI (5.1%), and ELL (24.3%) explain the variation in HEN at 

the 30-day horizon.   

ONG is exogenous at the shorter horizons, but is less exogenous at the longer 

horizon.  At the 30-day horizon, HEN (7.1%), ONG (55.5%), and ELL (22.0%) account 
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for most of the variation in the ONG.  CHI is dominated by ONG (80.0%, 81.5%) at the 

shorter horizons as in WAH and HEN.  At 30-day horizon, however, the variation in 

CHI is explained by HEN (6.8%), ONG (52.8%), CHI (6.7%), and ELL (22.9%).  ELL 

is exogenous in contemporaneous time and nearly exogenous in the short run.  The 

variation in ELL is explained by innovations from HEN (5.4%), ONG (30.4%), and ELL 

(49.7%) at the 30-day horizon.   

ONG plays an important role as shown by ONG explaining 75% or more of the 

decomposition in forecast error in WAH, HEN, CHI, and ONG at the shorter horizons.  

ONG also account for 15% or more of the decomposition in forecast error in AEC, 

MAL, and OPA.  The importance of the ONG market on WAH, HEN, CHI, and ONG 

decreases over time.  At the 30-day horizon, however, ONG still accounts for 50% or 

more of the decomposition in forecast error in four markets (WAH, HEN, CHI, and 

ONG) and explains about 20% or more in three other markets (AEC, MAL, and ELL).  

Only in OPA does ONG explain less than 20%. 

In case II (OPA ← MAL, CHI → ONG), the direction in the edge between CHI 

and ONG is switched from case I.  As shown in Table 3.8, differences between Tables 

3.7 and 3.8 appear in ONG and CHI columns.  CHI now plays an important role in 

explaining the variation in the other markets.  CHI is playing the role of ONG from in 

case I.  Forecast error variance decompositions in case III (OPA → MAL, CHI ← ONG) 

are presented in Table 3.9.  Case III is different from case I only in the direction of the 

edge between OPA and MAL.  Accordingly, MAL and OPA columns are different than 
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those columns in case I.  The differences between forecast error variance decompositions 

of case I and of case III are very small.  As in the case I, ONG is important market in 

case III, and the importance of ONG on all the other markets over time shows almost the 

same pattern as in case I.  Forecast error variance decompositions for case IV (OPA → 

MAL, CHI →ONG) are presented in Table 3.10.  These decompositions suggest the 

same pattern as in case III except ONG and CHI change roles.  Switching the direction 

of edge between ONG and CHI changes the most important market between ONG or 

CHI, depending on direction of the edge.  Reversal of the edge direction between MAL 

and OPA has little affect on the pattern of forecast error variance decompositions. 

There are several patterns emerge from the forecast error variance 

decompositions in natural gas spot markets.  First, either ONG or CHI is the most 

important market.  One of these two markets account for approximately 20% of the 

variation in AEC, MAL, and OPA in west and this percentage remains constant over 

time for AEC and MAL.  In OPA these markets are less important in the long run.  On 

the other hand, ONG or CHI dominates WAH, HEN, and ONG or CHI in the shorter run 

(greater than 79%).  At the 30-day horizon, the importance of ONG or CHI decreases, 

but they are still very important markets (more than 50%).  Second, ELL is exogenous in 

the shorter horizons, but its variation is explained by ONG or CHI (more than 30%) at 

the 30-day horizon.  Moreover, ELL does not account for the variations in all the other 

markets at the shorter runs.  ELL, however, accounts for some of the variation in all 

markets at the 30-day horizon.  ELL accounts for less than 10% of the variations of 
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western markets while it accounts for more than 20% of the variations of non-western 

markets.  Lastly, at the 30-day horizon, WAH accounts for more than 6% of the 

variations in the western markets, whereas it accounts for less than 5% of the variation in 

non-western markets.  At the 30-day horizon of all four cases, HEN accounts for more 

than 5% of the variations of non-western markets while it accounts for less than 5% of 

variations of western markets.  These results imply that WAH has more influence on 

western markets than non-western markets, whereas HEN has more influence on non-

western markets than western markets in the long run.  

Impulse Response Functions 

Impulse response functions are presented as a matrix of graphs with each element of the 

matrix corresponding to the response of one series to a one time only shock in another 

series (Figures 3.9, 3.10, 3.11, and 3.12).  Horizontal axes on the sub-graphs represent 

the horizon or number of days after the shock, here 1 to 30 days.  Vertical axes indicate 

the standardized response to the one time shock in the each market labeled at the top of 

each column of graphs.  Point estimates of impulse response alone, however, may give a 

misleading impression (Doan, 2000).  In this study, confidence bands for impulse 

responses using Monte Carlo methods are provided based on the program given in Doan 

(2000).  The point estimates plus or minus two times their standard errors estimated 

through 5,000 simulations are provided as upper bound and lower bound in confidence 

bands in Figures 3.9, 3.10, 3.11, and 3.12. 
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First, consider case I (Figure 3.9).  Shocks in AEC western Canadian market are 

transferred as strong and lasting positive impulses to the two western markets (MAL and 

OPA).  AEC shocks have less of an influence on the non-western markets than on the 

western markets.  The responses of AEC and OPA to a shock in the MAL show 

immediate and long lasting positive impulses.  Shocks in MAL are transferred as 

relatively weaker but lasting positive impulses to the non-western markets.  The shocks 

in OPA have a very small influence on all the other markets.   

The responses of all other markets to shocks in WAH and HEN show long 

lasting but generally weak positive impulses.  Specifically, the responses of OPA to 

shocks in the HEN show very little negative impulses in the short run but are close to 

zero thereafter.  These responses suggest OPA is maybe making-up for very short-run 

imbalances in the HEN markets.  A shock in ONG has considerable influence on all the 

markets.  The responses of all markets except ELL to a shock in ONG are strong, 

immediate, and long lasting.  The response of ELL to a shock in ONG has also strong 

and long lasting, but is not immediate.  A shock in CHI has relatively weak and long 

lasting influence on all markets.  A shock in ELL has no immediate influence, but has 

long lasting positive influence on the other markets.   

In case II, CHI plays an important role in explaining the price in each market 

instead of ONG (Figure 3.10).  The responses of all eight markets to shocks in ONG and 

CHI are the main differences between cases I and II.  Impulse response functions of case 

III show very similar results to those of case I.  Further, impulse response functions of 
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case IV are very similar to those of case II (Figure 3.12).  If the DAG is modeled as CHI 

← ONG, then ONG market is important in explaining the price in the other markets 

(cases I and II).  On the other hand, if the DAG is modeled as CHI → ONG then CHI 

replaces the role of ONG as the dominant market (cases II and IV).  The direction of the 

edge between MAL and OPA has little affect on the impulse response functions.  As 

expected, the results of impulse response functions are consistent with the forecast error 

variance decompositions results.  

Discussion 

The stationarity of natural gas price series has been addressed in previous studies 

analyzing the natural gas prices using time series methods.  Almost every study indicates 

the price series of natural gas after deregulation in the industry are non-stationary; 

however, a few studies (Serletis and Rangel-Ruiz, 2004; Cuddington and Wang, 2004) 

indicate some natural gas price series show stationary.  This study adds additional 

evidence that natural gas prices have a unit root, indicating the price series of natural gas 

are non-stationary.   

This study found eight price series in natural gas spot markets in North America 

are tied together with six long-run cointegration relationships.  Exclusion and exogeneity 

tests show all eight markets are in the long-run relationship and respond to perturbation 

in any of the six long-run cointegration relationships.  There appears to be seasonal 

differences in the long-run relationships because the exogenous variables, CDD and 

HDD, are also included in the cointegrating vectors.  Besides industrial use, natural gas 
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is used for heating and electricity generation in the winter and primarily for electricity 

generation in the summer, therefore, seasonality is plausible. 

Based on results from contemporaneous causal patterns, two exogenous markets, 

CHI or ONG and ELL (depending on the case), appear to be driving forces for the other 

natural gas markets.  Considering the result that ELL only causes HEN, CHI and/or 

ONG are more likely to be exogenous driving forces for natural gas prices.  In case I 

(OPA ← MAL, CHI ← ONG) and case III (OPA → MAL, CHI ← ONG), ONG appears 

to be the exogenous driving force, while CHI is the driving force in case II (OPA ← 

MAL, CHI → ONG) and case IV (OPA → MAL, CHI → ONG).   

Contemporaneous time causal flows reflect major natural gas transportation 

corridors in North America (Figure 3.7).  Causal flows tend to originate from excess 

consuming regions to producing or supplying regions.  In cases of edges such as 

MAL→AEC, OPA→AEC, CHI→WAH, CHI→HEN, and ELL→HEN, the causal or 

information flows match up to the reverse direction of major gas flows.  Some edges do 

not exactly match up to this reverse price flow / gas flow direction.  Price information is 

likely to flow from potential excess consuming areas into excess producing areas.  This 

relationship provides evidence that the undirected edge between CHI and ONG is most 

likely directed CHI → ONG.   

Another plausible reason to direct the edge CHI → ONG is as follows.  The U.S. 

gas market is divided into six market areas: the Central (Montana, Wyoming, North 

Dakota, South Dakota, Nebraska, Colorado, Iowa, Missouri, Kansas, Utah), Midwest 
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(Minnesota, Wisconsin, Michigan, Illinois, Indiana, and Ohio), Northeast (Maine, New 

Hampshire, Vermont, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, 

Delaware, Maryland, West Virginia, Virginia), Southeast (Tennessee, North Carolina, 

South Carolina, Georgia, Alabama, Florida, Mississippi), Southwest (Arkansas, 

Louisiana, Oklahoma, Texas, New Mexico), and Western (Washington, Oregon, Idaho, 

Nevada, California, Arizona) (U.S. Department of Energy, 1998a).  The Midwest area, 

which includes the CHI spot market, is the second largest market in U.S. next to 

Southwest and the second coldest region next to the Central.  Further, the Midwest has 

the lowest ratio of natural gas production to consumption among the six market areas.  

This ratio implies the Midwest is dependent on the import of gas from the other areas to 

meet its demand (U.S. Department of Energy, 1998a).  One possible explanation as to 

why CHI is the most important market in cases II and IV is the Midwest is the biggest 

importing market region.  Further, natural gas supplies from southern Oklahoma along 

with western Texas tend to be the marginal supplies of both eastern and western markets 

because natural gas from these areas can easily be transported either east or west.  Gas is 

sold in the market with the highest price (Serletis, 1997).  This finding may support the 

argument that CHI rather than ONG is an important market in North America.   

Forecast error variance decompositions and impulse response functions provide 

the analysis of dynamic information flows over time.  Results vary depending on the 

contemporaneous casual structure assumed.  In cases I and III, ONG accounts for a large 

amount of the forecast error variance at all time horizons in all eight markets except 
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ELL.  The influence of ONG in ELL appears only in the long run.  In cases II and IV, 

CHI, instead of ONG, accounts for the large amount of forecast error variance at all time 

horizons in all eight markets except ELL.  The influence of ONG in ELL appears only in 

the long run.  In all four cases it should be noted that the influence of a dominant market 

(ONG or CHI) in ELL appears only in the long run.  Similarly, impulse response 

functions also show the innovation in either CHI or ONG have considerable positive 

influences on all eight markets.  The response of ELL with respect to the innovations in 

either CHI or ONG is not immediate, but it increases over a short time period.   

A possible explanation the influence on ELL occurring only in the longer run is 

that the ELL market area along with the Midwest region has relatively larger 

underground storage capacities than the other regions (Figure 3.13).  Gas withdrawals 

from storage facility can help mitigate the price shocks in the other markets at the shorter 

time periods.  This statement is supported by the observation that natural gas storage 

withdrawals account for a significant proportion of the supply necessary to meet total 

demand during the heating season, particularly in the East Consuming Region3 (Herbert, 

Thompson, and Todaro, 1997).  

Contemporaneous causal flows, forecast error variance decompositions, and 

impulse response functions indicate there is not an east-west split among North 

American natural gas spot markets unlike the findings of King and Cuc (1996).  

According to King and Cuc (1996), three gas producing regions, the Rocky Mountain 

basin (Wyoming, Utah, and Colorado), the San Juan basin (southwestern Colorado and 
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northwestern New Mexico), and Western Canadian Sedimentary basin (Alberta and 

British Columbia) comprise western portion of east-west split.  The Permian (western 

Texas) and Anadarko basin (southern Oklahoma) along with the South-Texas and 

Louisiana basins (the Gulf Coast) comprise the eastern portion of the east-west split.   

As discussed earlier, the markets are tied together by six long-run cointegration 

relationships, implying that new price information in one market is transmitted to other 

markets through arbitrage activities in the long run.  These results further suggest that 

there is no east-west split.  Serletis (1997) also argues that an east-west split does not 

exist.  A plausible explanation for the differences in the studies is the time frame of 

analyses.  King and Cuc (1996) analyzed the period soon after the start of the major 

deregulation of the natural gas industry.  Serletis (1997) and our analysis uses data 

farther removed from the start of deregulation.  Taking these studies results into account, 

may indicate the natural gas market has developed into a single integrated market in 

North America since deregulation. 

Henry Hub has attracted considerable attention in the literature.  It is the most 

active and publicized market center in North America and has an extensive receipt and 

delivery capability (U.S. Department of Energy, 2003c).  More than 180 customers 

regularly conduct business at Henry Hub through 14 pipeline systems and storage 

facilities.  Henry Hub is also the delivery point for NYMEX futures (U.S. Department of 

Energy, 2003c).  Further, Henry Hub accounts for large portion of gas transportation 

toward the East Consuming Region.  In spite of the important position of Henry Hub in 
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North American natural gas industry, this study suggests Henry Hub does not play an 

important role in price discovery.  Rather results suggest either ONG or CHI is the 

dominant market in North American natural gas spot markets in terms of price 

discovery.  Southwest region, including Henry Hub, not only consumes the most natural 

gas but also produces the most (U.S. Department of Energy, 1998a).  As such for gas to 

move from this region, the price must be bid up elsewhere.  This observation may 

explain why Henry Hub does not play an important role in price discovery.  Another 

reason for the importance of Henry Hub in previous studies is most studies only included 

one or two gas markets in which one was Henry Hub.  As such, Henry Hub was 

representing the natural gas market.   

There are many additional issues that are not addressed in this study but are 

important issues to the natural gas industry.  The only exogenous factor consider in the 

VECM was temperature.  Different factors such as variations in demand, storage 

capacity, future markets, and types of end use of natural gas should be considered in 

future studies.  For example, Herbert, Thompson, and Todaro (1997) note the 

importance of storage on natural gas pricing.  How is the price affected by storage 

capacity and amount of natural gas in storage?  Another important issue is the role the 

futures market plays in price discovery.  The futures market is very active in the natural 

gas industry.  Inclusion of this market in future price discovery studies is an important 

extension.  Considering electricity power plants accounted for about 27% of the U.S. 

natural gas consumption in 2002 (U.S. Department of Energy, 2004), spot markets from 
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both electricity and natural gas industries should be included in future studies to examine 

the interdependencies of these two energy markets.  Finally, contractual arrangements 

influence on spot market transactions and prices (applying the work of Love and Burton, 

1999) may be a fruitful avenue of future research.  

End Notes 

1.  Federal Energy Regulatory Commission’s Order 636 (1992) mandated that pipelines must separate gas 
sales from transportation.  Thus, this allows open access to pipeline transportation for gas producers 
and customers.  This order completes a series of significant FERC actions starting in the 1980s that 
have resulted in a major reorganization of U.S. natural gas markets (see Doane and Spulber, 1994, p. 
477 for details).   

 
2.  For completeness, the test results for the DF and ADF test for non-logarithmic and logarithmic 

transformed data both with and without using the robust estimation are given in Appendix F. 
 
3.  The East consuming region is all states east of the Mississippi River less Mississippi, plus Iowa, 

Nebraska, and Missouri (Herbert, Thompson, and Todaro, 1997).  
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CHAPTER IV 
 

TIME-VARYING THRESHOLD COINTEGRATION AND  

THE LAW OF ONE PRICE 

 

Production deregulation and open access to the pipelines in natural gas industry has 

caused market centers and hubs to develop which provide various services such as 

loaning, storage, electronic trading, and title transferring (U.S. Department of Energy, 

2003c).  Most major market centers and hubs (henceforth centers and hubs are referred 

to jointly as centers) in the U.S. serve as natural gas spot markets.  These centers are 

located at the intersection of major pipeline systems and within major producing regions.  

Thirty-seven market centers in the U.S. and Canada were operating in 2003 (U.S. 

Department of Energy, 2003c).   

At these market centers, natural gas is traded as a single commodity because after 

processing natural gas is a homogeneous product regardless of its location.  Like most 

commodities, the price of natural gas is volatile.  Natural gas prices are subject to price 

variations because of demand fluctuations caused, for example, by weather changes.  

Further, surge production is limited and expensive (U.S. Department of Energy, 2002).  

To meet the high demand of major consuming regions, natural gas is transported by 

pipelines from producing regions to consuming regions.  Arbitrage behavior among 

natural gas spot markets in U.S may occur.   
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In Chapter III, it is shown that price series of major natural gas spot markets in 

North America are cointegrated; the price series move together in the long run.  This 

result implies the law of one price holds in the long run between natural gas spot markets 

that are spatially separated in North America.  Transactions costs, however, may lead to 

a neutral price differences band within which prices are not linked.  This neutral band 

arises because transaction costs discourage trading when the possible profits are smaller 

than these costs.  Arbitrage opportunities occur only when the deviation in prices is 

larger than the transaction costs.  This neutral band feature associated with transactions 

costs has led to a new empirical approach, threshold cointegration, which explicitly 

recognizes the effect of transactions costs on spatial market linkages (Goodwin and 

Piggott, 2001).  In the presence of transaction costs, the threshold cointegration model 

may explain the behavior of price adjustments in the long run better than the 

cointegration model.  Cointegration assumes no band, but assumes prices always adjust 

in the long run.  Previous studies (Lo and Zivot, 2001; Sephton, 2003; Goodwin and 

Piggott, 2001) use the threshold cointegration model to explain nonlinear price 

adjustment behavior in spatially separated markets in the presence of transaction costs.  

The objective of this study is to examine the existence of threshold cointegration 

between natural gas spot markets.  This study is the first attempt to apply the threshold 

cointegration model to natural gas spot markets in North America to investigate the 

nonlinear adjustment to the law of one price.  Threshold cointegration models have been 
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used in the analysis of financial and agricultural commodities (Tsay, 1998; Lo and Zivot, 

2001; Goodwin and Piggott, 2001; Hansen and Seo, 2002).    

The law of one price provides a theoretical background for the extent of market 

integration.  This study develops a threshold cointegration model that accounts for 

seasonality in the threshold levels.  No previous study has developed such a model.  The 

extent of market integration has regulatory implications.  Further, analyzing spot market 

price gaps provides information to industry traders.  Price gaps across locations, called 

“price basis” in the natural gas industry, are monitored closely by market traders and are 

the foundation of gas trading by many firms (Cuddington and Wang, 2004).   

The Law of One Price and Threshold Cointegration 

The Law of One Price 

For a given commodity, arbitrage ensures the commodity has a representative price 

adjusted for transaction costs across markets.  This statement is referred to as the law of 

one price (Yang, Bessler, and Leatham, 2000; Ardeni, 1989).  The law of one price 

provides a theoretical basis for international trade, exchange rate determination, and 

market integration studies for spatially separated markets.   

Consider a simple two market example to illustrate the law of one price.  The law 

of one price states the commodity will have the same price at the same time in both 

markets when transaction costs (all costs including trading and transportation costs) are 

small enough that profitable trade is not prohibited.  Otherwise, there is an arbitrage 

opportunity.  Traders would be able to profit by buying the commodity in one market 
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and selling in the other market because of the price difference in the two markets.  Such 

trading drives the prices in the two markets toward each other.  Small deviation in prices 

of the commodity, however, may exist because of transaction costs.  Transaction costs 

discourage traders from trading when the possible profits are smaller than these costs.  

Arbitrage opportunities occur only when the spread in prices between the two markets is 

larger than the transaction costs that link the markets (Goodwin and Piggott, 2001).  The 

deviations from the law of one price have been defined in two different ways; absolute 

(price difference, P1t - P2t) difference or fixed transportation costs (O’Connell and Wei, 

1997) and relative (log price difference, lnP1t  - lnP2t) deviations or proportional 

transportation costs (O’Connell and Wei, 1997; Lo and Zivot, 2001).  In this essay, the 

two types of deviations are considered, but the discussion in the text is limited to 

absolute deviations.  Empirical results for relative deviations are provided in Appendix 

H.  

In previous threshold cointegration literature, the upper and lower thresholds of 

price differences that determine if trading will occur are assumed to be constant over 

time.  The assumption of constant threshold values, however, may not be appropriate in 

the real world.  Four alternative cases for a neutral band associated with the law of one 

price can be developed.  To develop the four alternatives, consider the two components 

that make up the price difference band.  First is the difference between the upper and 

lower thresholds.  This difference is the interval of the price difference band.  Second is 

the mean (simple average) between the upper and lower thresholds.  This average is 
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referred to as the mean price differences.  The four cases are illustrated in Figure 4.1.  

Previous cointegration studies are a special case of case I, in which the interval is 

assumed to be equal to zero.  Whereas, previous threshold cointegration studies estimate 

the upper and lower thresholds for the interval but are limited to case I.  In the first case, 

the interval of price difference band and the mean price differences are fixed over time.  

The interval of price difference band is fixed, but the mean price differences vary over 

time in case II.  The third case consists of a variable interval, but a fixed mean price 

difference.  In case IV, both the interval and the mean price differences vary over time.   

The first case may be found in the financial markets in which local markets are 

well connected with low transaction costs and no significant seasonal effects, for 

example, exchange rate markets.  The second case occurs when seasonal effects 

influence the supply and demand conditions in each local market but do not affect 

transaction costs significantly.  Electricity with its seasonality in demand may be an 

example of case II.  When the transaction costs between two markets varies over time, 

but the supply and demand conditions surrounding two markets do not vary, the third 

case is appropriate.  Case III may occur because of differences in transportation rates 

caused by seasons.  For example, because of winter weather conditions in the northern 

regions of U.S., transportation rates may be higher in the winter than in the summer.  

Case IV occurs when the transaction costs between two markets and the supply and 

demand conditions of the two markets vary over time.  An agricultural product such as 

corn in two markets, one located in a major producing region and other being an excess 
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consuming region may be an example of case IV.  There are seasonal differences in the 

demand and supply conditions in the two markets.  In addition, there are seasonal 

differences in transportation costs that are included in the transaction costs.  In this study, 

the second case is examined.  The other two cases are left for the future studies.  

Threshold Cointegration 

The law of one price has been tested in the context of long-run relationships rather than 

short-run relationships (Yang, Bessler, and Leatham, 2000).  Ardeni (1989) first 

proposed cointegration as a method to test for the law of one price when considering 

nonstationarity of price data.  Further, to address the nonlinear adjustment behavior in 

the presence of the transactions costs, the threshold autoregression (TAR) models or 

threshold vector error correction model (TVECM) has been used to test the law of one 

price (O’Connell and Wei, 1997; Tsay, 1998; Goodwin and Piggott, 2001; Lo and Zivot, 

2001; Hansen and Seo, 2002; Sephton, 2003).   

The TAR model has been applied in many fields including ecology, solar 

physics, finance, and hydrology (Tong, 1990).  O’Connell and Wei (1997) test for 

transportation costs induced nonlinear price behavior for 48 final goods and services 

from 24 cities in the United States using a relative price panel data set.  They tested three 

model specifications, autoregressive model of order one, equilibrium-TAR model, and 

band-TAR model, using likelihood ratio tests.  O’Connell and Wei (1997) found that 

small deviations from price parity tend to be persistent, whereas large deviations revert 

towards an equilibrium.  In addition, their findings imply that when adjustments in 
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relative prices take place, they tend to eliminate, rather than reduce, price discrepancies.  

Whether there is any relationship between the estimated threshold values and 

explanatory variables such as distance remains an unanswered question.   

Special attention has recently focused on bivariate threshold regime-switching 

models that extend the long-run linear equilibrium models of Granger (1981) to allow 

for different equilibrium adjustments mechanisms in different regimes.  Combining 

threshold-nonlinearity and cointegration, Balke and Fomby (1997) first introduced the 

bivariate threshold cointegration model.  They developed a methodology to test for the 

presence of the nonlinear effects for three types of threshold error correction models, 

eqilibrium-TAR, band-TAR, and random-TAR.  Balke-Fomby type bivariate threshold 

cointegration model has attracted considerable attention from both applied and 

theoretical points of view (see Lo and Zivot, 2001 for a more detailed literature review).  

Lo and Zivot (2001) used a bivariate TVECM with a known cointegrating vector 

using log price differences.  They applied their methodology to 1,148 price series 

representing 41 goods and services in 28 cities.  Following O’Connell and Wei (1997), 

they use New Orleans as the benchmark city to investigate the existence of pairwise 

threshold cointegration.  They found threshold-type nonlinearity occurs mostly in goods 

that are tradable and relatively homogeneous.  Further, they found prices adjust at 

different speeds for different cities.   

Hansen and Seo (2002) propose a methodology to examine the case when the 

cointegrating vector is unknown.  Their methodology uses maximum likelihood 
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estimation of the threshold model to jointly search over the threshold values and the 

cointegrating vectors.  A test called sup-LM is developed to test for the presence of a 

threshold effect.  Goodwin and Piggott (2001) reported the existence of pair-wise 

threshold cointegration in daily corn and soybean prices in spatially separated markets in 

North Carolina.  Sephton (2003) extends the work of Goodwin and Piggott (2001) in 

searching for thresholds by adopting the work of Hansen and Seo (2002) and Hansen 

(1999).  He found the presence of one threshold in most of the bivariate commodity 

pairings using the same data as Goodwin and Piggott (2001).  

Empirical Methods  

Threshold Vector Error Correction Model 

A bivariate three-regime TVECM is the basic tool used in this analysis.  The general 

form of bivariate three-regime TVECM representation for price series, Pt (defined as Pt 

= (P1t, P2t)′ where Pnt is the price of a good in location n, n =1, 2 at time t) with lag 

length k, threshold variable Zt, and delay d is: 

(13)          ∆Pt =  )( jµ  + )( jα β’Pt-1 + 
i

k

=

−

∑
1

1
)( j

iΓ ∆ Pt-i   + )( j
te ,          if )1( −jC ≤  Zt-d ≤  

)( jC ,  

where t = 1,…, T, j = 1, 2, 3, ∞− = )0(C  < )1(C  < )2(C  < )3(C  = ∞ , )1(C  is the lower 

threshold value, )2(C  is the upper threshold value, ∆Pt is the first differences (Pt  - Pt-1), 

)( jµ  is a regime-specific constant term, Π = )( jα β’ is a regime-specific matrix of 

coefficients relating lagged levels of prices to current changes in prices, )( j
iΓ  is a regime-
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specific matrix of coefficients, and )( j
te  is a serially uncorrelated regime-specific error 

term with mean zero and covariance matrix )( j∑ .  In the analysis presented here, the 

threshold variable Zt, is assumed to be the price difference between two markets, 

whereas the delay variable d, lag length k, and threshold values )1(C  and )2(C  are 

unknown.  The delay parameter d is assumed to be less than or equal to the lag length k.  

Most empirical studies investigating nonlinear adjustment to the law of one price based 

on the transaction cost theory used symmetric three regimes threshold cointegration 

model.  Accordingly, only the three-regime model is considered.   

The VECM with k-1 lags can be expressed as (see Chapter III): 

(14)                ttit

k

i
itt ePPP +∆Γ++=∆ −

−

=
− ∑

1

1
1'αβµ               (t = 1,…, T), 

                te ∼ N iid (0,Σ),  

where Pt denotes a vector that includes m non-stationary prices at time t, ∆Pt is the first 

differences (Pt  - Pt-1), Π =αβ’ is a matrix of coefficients relating lagged levels of prices 

to current changes in prices, Γi is a matrix of short-run dynamics coefficients relating 

lagged period i price changes to current changes in prices, µ is a constant term, Ψ is a 

coefficient matrix, and te  is a vector of innovations (Hansen and Juselius, 1995).  

Comparing VECM with TVECM, the parameters on the TVECM may have different 

values depending on the regime.  The VECM is a restricted version of the TVECM 

model; restrictions are )( jµ =µ , )( jα =α , )( j
iΓ = iΓ , and )( jΨ =Ψ for all regimes, j.  In 
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the TVECM the adjustment toward the long-run equilibrium relationship β’Pt-1 is 

regime-specific and nonlinear.  The short-run structure identified through α and Γi can 

also differ between the TVECM and VECM.  It is assumed in equation (13) that there is 

one common cointegrating vector β in all regimes.  This assumption is often 

unnecessarily restrictive.  Accordingly, it is more reasonable to allow the equilibrium 

error process to be different in each regime as in the regime-sensitive cointegration 

introduced by Siklos and Granger (1997).  However, one common cointegrating vector, 

β = (-1,1)’ is assumed as it is appropriate for examining the law of one price between 

natural gas markets.    

Multivariate threshold cointegration models beyond the bivariate cointegration 

model have been set up theoretically (Tsay, 1998).  However, estimation of multivariate 

threshold cointegration models beyond the bivariate cointegration model leads to a 

dimensionality related to the computational burden.  As such, to avoid these issues, the 

three-regime bivariate TVECM is used as the tool for empirical analysis.   

Test of Nonlinearity  

Balke and Fomby (1997) discuss problems related to testing for threshold cointegration.  

They indicate that one would like to test the no cointegration / linearity null hypothesis 

directly against the threshold cointegration alternative.  However, several difficulties 

arise, including the presence of nuisance parameters (the thresholds) under the 

alternative hypothesis that are not present under the null (see Hansen, 1996 for a more 

detailed discussion).  As a result, Balke and Fomby (1997) suggest a two-step procedure.  
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First, test for no cointegration versus cointegration using Johansen’s trace test.  Second, 

test for linear cointegration versus nonlinear or threshold cointegration.  A similar two-

step strategy for the threshold cointegration test is used here.  For the first step, lag 

length and cointegrating rank are determined simultaneously using Schwarz loss 

measure following Wang and Bessler (2005a) and as used in Chapter III.  If two series 

are cointegrated, the next step is to determine if the dynamics of the cointegrating 

relationship are linear or threshold nonlinear.  

The basic idea of Balke and Fomby (1997) for testing linear versus nonlinear 

model is to make the existence of thresholds in the time-ordered data a structural change 

issue in a autoregression model.  The model groups the data according to the value of the 

threshold variable instead of time.  Balke and Fomby (1997) test for structural breaks in 

the reordered autoregression to test the linearity.  Hansen (1996, 1999) suggests another 

method for testing the null hypothesis of linearity against the alternative of a TAR model 

based on nested hypothesis tests.  Hansen tested the null hypothesis of TAR model with 

one regime versus the alternative of a TAR with m regime where some m > 1 using sup-

F type tests.  Hansen’s method was extended to test linearity in multivariate TVECM by 

Lo and Zivot (2001).  The test statistic in multivariate case is the sup-LR (likelihood 

ratio) statistic, 

(15)                     sup-LR = T (ln(det( Σ̂ )) − ln(det( mΣ̂ ( )(ˆ jC , d̂ )))), 
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where Σ̂ , mΣ̂ ( )(ˆ jC , d̂ ) denote the estimated residual covariance matrices from the linear 

VECM, and m-regime TVECM, )(ˆ jC  are the estimated threshold values, d̂ is the 

estimated delay parameter, and det is the matrix determinant operator (Lo and Zivot, 

2001).  The test statistics are computed based on sequential conditional least square 

estimation as discussed later.  Because the threshold values, )( jC , are not known and are 

not identified under the null hypothesis of linear cointegration, a bootstrap procedure 

suggested by Hansen (1999) is used to compute p-values for the test.  Tsay (1998) also 

extended his univariate test for threshold nonlinearity into a multivariate test.  His work 

suggests another method to test threshold nonlinearity using predictive residuals for test 

statistics.  In this study, the bootstrap procedure suggested by Hansen (1999) and 

generalized into multivariate model by Lo and Zivot (2001) is utilized to compute p-

values for the linearity tests.   

Estimation of Three-Regime TVECM 

Lo and Zivot (2001) and Enders (2004) provide detailed descriptions concerning 

estimation of multivariate TVECM based on Hansen (1999) and estimation of threshold 

autoregressive model.  Hansen type sup-LR in case of multivariate model uses the 

estimated residual covariance matrices from estimation of a linear TVECM and TVECM 

(m) for m > 1.  As such, the nonlinearity test is closely related with the estimation of the 

threshold model.  The estimation technique for multivariate TVECM is called sequential 

conditional least squares.  
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To describe the procedure of sequential conditional least squares estimation, 

consider general form of an unrestricted bivariate three-regime TVECM.  An 

unrestricted bivariate three-regime TVECM of equation (13) can be expressed as:   

                                                    '
1θ  Xt-1    + )1(

te ,               if   ∞−  = )0(C  ≤   Zt-d  <  
)1(C ,   

(16)                            ∆Pt  =       '
2θ  Xt-1   + )2(

te ,                if  )1(C  ≤   Zt-d  ≤   
)2(C ,   

                                                    '
3θ  Xt-1   + )3(

te ,                if  )2(C  <  Zt-d  ≤  
)3(C  = ∞ ,   

where Xt-1 = (1, Zt-d, ∆Pt-1, …, ∆Pt-k+1 ), Zt-1 = β’Pt-1, '
jθ is a coefficient matrix (Lo and 

Zivot, 2001).  Zt-d is the threshold variable used to split the sample into three groups 

called regimes.  Typically, it is assumed that the variances of the three error terms from 

each regime are equal, that is, Var( )1(
te ) = Var( )2(

te ) = Var( )3(
te ) (Enders, 2004).   

Defining indicator function, )( j
tI (C, d) = )( j

tI ( )1( −jC  ≤   Zt-d ≤  
)( jC ) to take on the 

value of 1 if )1( −jC  ≤   Zt-d ≤  
)( jC  is true and 0 otherwise allows equation (16) to be 

rewritten as a multivariate regression model:   

(17)           ∆Pt  =   '
1θ  Xt-1

)1(
tI (C, d)  + '

2θ  Xt-1
)2(

tI (C, d) + '
3θ  Xt-1

)3(
tI (C, d)  +  te .     

Here, j = 1, 2, 3, representing the three regimes (Lo and Zivot, 2001).  If the threshold 

values are known, then equation (17) becomes a multivariate regression model with 

dummy variables.  The estimation of this model is not complicated.  However, in most 

cases, the threshold values are unknown.  As such, the threshold values must be 

estimated along with the other parameters (Enders, 2004).  The case of unknown 

threshold values is considered later in this discussion.  For the threshold values to be 
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meaningful, the data series must cross the thresholds.  Accordingly, the threshold values, 

)1(C and 
)2(C , should lie between the maximum and minimum values of the series 

(Enders, 2004).  Hansen (1999) suggests using ten percent as a minimal percentage of 

data contained in each regime to constrain the threshold values.  Adopting Hansen’s 

suggestion, the threshold values should lie within the band containing no more than the 

middle 80 percent of the observations in case of three-regime model.  Each observation 

within this initial 80 percent band is a candidate for a threshold value.  In this study, the 

ten percent constraint Hansen (1999) suggested is adopted.  In addition, the timing of the 

adjustment process may take more than one period, indicating d can take on values 

greater than one.  The delay parameter must also be estimated.   

The sequential conditional least squares estimation can be divided into two steps 

(Lo and Zivot, 2001).  In the first step, conditional on potential candidates for the 

thresholds and delay parameter ( )1(C , )2(C , d), the parameters ( '
1θ , '

2θ , '
3θ ) are estimated 

by multivariate least squares.  From this estimation, the residual sum of squares of the 

three-regime model, S3 ( )1(C , )2(C , d), is obtained.  For example, suppose observation, c1, 

is chosen as a candidate for the lower threshold value and observation, c2, is chosen as a 

candidate for the upper threshold value, and one as the assumed value of the delay 

parameter in three-regime model.  Using these values, equation (17) is estimated.  The 

residual sum of squares, S3 (c1, c2, 1) is obtained from the estimation.  The residual sum 

of squares from all possible combinations of ( )1(C , )2(C , d), are obtained from the 

estimation.  In the second step, the threshold values and delay parameter that minimize 
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the residual sum of squares, S3 ( )1(C , )2(C , d) are found through a three dimensional grid 

search.  Using the threshold values and delay parameter that minimize the residual sum 

of squares, the parameters ( '
1θ , '

2θ , '
3θ ) in TVECM are re-estimated.  The delay parameter 

is assumed to be one in this study for simplicity.  

Hansen (1999) notes the three dimensional grid search method is 

computationally burdensome.  He suggests a shortcut to reduce computational burden 

utilizing sequential estimation of multiple breakpoints proposed by Bai (1997).  This 

method suggests a sequential procedure to estimate the three-regime TVEM through 

estimating a two-regime TVECM first (see Bai, 1997 or Hansen, 1999 for more detailed 

discussions).  In this study, the sequential estimation suggested by Hansen (1999) is 

utilized.  To my knowledge, because of the dimensionality issue related to the 

computational burden, the estimation of the multivariate three-regime TVECM has been 

limited to bivariate three-regime TVECM.   

Obtaining Time-Varying Threshold Values 

Because of the importance of weather effects in the linear VECM presented in Chapter 

III, HDD and CDD are included in the bivariate three-regime TVECM.  The Frisch 

Waugh Theorem is applied to filter the daily effect of weather from the price data.  The 

Frisch Waugh Theorem allows one to obtain the partial regression coefficients by just 

using simple regression (see Baltagi, 2002 for more detailed discussion and proof of the 

Theorem).  Using the Frisch Waugh Theorem, the filtered data are used in this study.  To 
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filter the data, each price series is regressed individually on lagged aggregate HDD and 

CDD using ordinary least squares: 

(18)                ittitiiit eCDDHDDP +Ψ+Φ+= −− 11γ        (t = 1,…, T), 

where γi is constant term, Φi and Ψi are coefficients associated with lagged HDD and 

CDD, and subscript i represents the eight markets.  The filtered price series for the ith 

market used in this study are the residuals, itê  from filtering regression for market i.  

Results from the estimation procedure using the filtered data provide thresholds that 

have a fixed interval and a fixed mean price difference.  This is case I presented earlier.  

Time-varying thresholds (case II) based on CDD and HDD are obtained as follows.  The 

fixed upper and lower threshold values, )1(C  and )2(C  for markets 1 and 2 are obtained 

from the estimation of the three-regime TVECM using filtered data, te1ˆ  and .ˆ2te   This 

result implies the following relationship for the middle regime: 

(19)                  )1(C ≤  te1ˆ  te2ˆ− ≤  
)2(C , 

where te1ˆ  = 111111
ˆˆˆ −− Ψ−Φ−− ttt CDDHDDP γ  and in the same fashion, te2ˆ  can be 

expressed as te2ˆ  = 121222
ˆˆˆ −− Ψ−Φ−− ttt CDDHDDP γ .  Through algebraic manipulation 

of equation (19), dynamic threshold values based on CDD and HDD are:  

(20)             )1(
tC  = )1(C + ( 11111

ˆˆˆ −− Ψ+Φ+ tt CDDHDDγ 12122
ˆˆˆ −− Ψ−Φ−− tt CDDHDDγ ), 

(21)             )2(
tC  = )2(C + ( 11111

ˆˆˆ −− Ψ+Φ+ tt CDDHDDγ 12122
ˆˆˆ −− Ψ−Φ−− tt CDDHDDγ ).   
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Using daily values of HDD and CDD in equation (20) and (21) provides time-varying 

thresholds.  

Data 

The data set used in Chapter III is used here.  Considering regional dispersion and data 

availability, eight price series of natural gas market centers in the United States and 

Canada are included (Figure 3.1).  The markets are Waha Hub, Texas (WAH), Henry 

Hub, Louisiana (HEN), Oklahoma (ONG), Opal Hub, Wyoming (OPA), Chicago Hub, 

Illinois (CHI), Ellisburg-Leidy Hub, Pennsylvania (ELL), Malin Hub, Oregon (MAL), 

and AECO Hub, Alberta, Canada (AEC).  Although there are some important market 

centers that are not included, only the above eight market centers are considered because 

of data availability.  Daily prices of the market centers (from surveys of traders) 

provided by Bloomberg Energy Service from January 12, 1998 to December 20, 2002 

are used.  Spot prices are calculated as a volume-weighted average price for that location 

in dollars per MMBtu (a unit of heat equal to one million British thermal units) for gas 

delivered the next day.  The prices are for Monday through Friday.  Each price series has 

1290 observations.  The total number of missing values in the eight price series is 400.  

The missing values, including holidays, account for 3.8 percent of the total observations.  

The prior day’s price is used to represent any missing values for a particular day and 

market.  Plots of the price series for each market are provided in Figure 4.2.  

As in Chapter III, lagged U.S. aggregate cooling degree-days (CDD) and heating 

degree-days (HDD) are used to capture daily weather effects in natural gas prices.  Daily 
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HDD are calculated as the difference between a reference temperature and the day’s 

mean temperature (reference temperature – (maximum temperature + minimum 

temperature)/2), whereas CDD are computed as the difference mean temperature and a 

reference temperature ((maximum temperature + minimum temperature)/2 - reference 

temperature).  The reference temperature used is 65 degrees Fahrenheit, the temperature 

used by U.S. National Oceanic and Atmospheric Administration (NOAA).  HDD and 

CDD are set equal to be zero if the degree-day is negative.  Daily degree-days for 23 

cities are obtained (U.S. Department of Commerce, NOAA, 2003).  The 23 cities are: 

Bismarck, Minneapolis, Kansas City, Chicago, Louisville, Pittsburg, New York, 

Billings, Seattle, San Francisco, Salt Lake, Denver, Boise, Dallas, Oklahoma City, 

Houston, New Orleans, Atlanta, Memphis, Los Angeles, Las Vegas, Phoenix, and 

Albuquerque (Figure 3.1).  Daily degree-days for each city are aggregated into a U.S. 

daily cooling and heating degree-days by computing a weighted average using each 

city’s population as weights.  Population data for each city in 2001 are obtained from the 

U.S Census Bureau (2003).  

Empirical Results 

The stationarity of the eight price series is examined using Dickey-Fuller (DF) and 

Augmented Dickey-Fuller (ADF) tests in Chapter III.  The DF test statistics indicate all 

natural gas spot prices except OPA are non-stationary at both the 5% and 10% levels.  

However, the ADF test statistics indicate all spot prices are non-stationary at the 5% 

level, whereas all markets except OPA are non-stationary at the 10% level.  DF tests 
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show the first differences of all price series are stationary.  ADF tests indicate the first 

differences of six of the eight series are stationary. 

Given the result from Chapter III that CHI is the dominant market for price 

discovery in North American natural gas spot markets, CHI is used as the benchmark 

spot market for the bivariate linear VECM and bivariate three-regime TVECM.  Seven 

bivariate models (AEC-CHI, MAL-CHI, OPA-CHI, WAH-CHI, HEN-CHI, ONG-CHI, 

ELL-CHI) are estimated.  Nonlinearity tests that examine the existence of threshold 

effect using the null hypothesis of linear VECM versus the alternative of three-regime 

TVECM are conducted.   

Before estimation, all data series were filtered using HDD and CDD.  In the 

filtering regressions, all estimated coefficients associated with HDD and CDD except the 

coefficient associated with CDD in AEC are statistically significant at the 5% level 

(Table 4.1).  All coefficients are positive, indicating an increase in either HDD or CDD 

tends to increase natural gas prices.  Because aggregate U.S. HDD and CDD change 

slowly from day to day, the filtering regressions indicate seasonality in natural gas prices.  

The filtered price series, the residuals from filtering regressions, are graphed in Figure 

4.2.  As expected, the filtered data have the same general pattern as the original price 

series in each market, but the levels of the filtered price series are lower than the original 

price series.   

In this analysis, the discussions about the empirical results are made based on 

non-logarithmic data to examine the price differences rather than price ratios between 
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the two markets.  However, the empirical results using filtered / unfiltered and 

logarithmic price data under the assumption that the loss of value from transportation is 

proportional are provided in the Appendix H1.   

Cointegration and Lag length  

The first step for testing for the threshold cointegration is to conduct the cointegration 

tests for each pair of two markets using the filtered data.  Lag length and cointegrating 

rank are determined simultaneously (Table 4.2).  Results suggest each of the seven 

market pairs have a cointegrating rank of one because the Schwarz loss metric is 

minimized at one cointegrating rank.  A rank of one indicates the markets are pairwise 

cointegrated.  Cointegrating rank of one is consistent with the findings in Chapter III that 

the eight markets are cointegrated with six cointegrating vectors.   

Regarding the lag length, however, the results do not suggest one appropriate 

model.  For the pairs of AEC-CHI and MAL-CHI, the Schwarz loss metric is minimized 

at five lags.  In the OPA-CHI, WAH-CHI, HEN-CHI, ONG-CHI, and ELL-CHI models, 

however, the Schwarz loss metric is minimized at four lags.  Because the Schwarz loss 

metric suggests four lags as the appropriate model in five out of seven market pairs, four 

lags are assumed when estimating the VECM and TVECM.  Four lags imply that there 

might be a day of week effect in natural gas markets, because a VECM with four lags is 

equivalent to a levels VAR with five lags.  Day of week effects are detected in other 

financial markets (Aggarwal and Rivoli, 1989).  
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Tests of Nonlinearity and Estimation Results 

Based on the results that the seven market pairs are cointegrated, nonlinearity tests are 

conducted using the sup-LR (likelihood ratio) test.  The bootstrap p-values presented in 

Table 4.3 are defined as the percentage of bootstrapped LR statistics, which exceed the 

observed LR statistics (Hansen, 1999).  The bootstrap p-values indicate that three-regime 

TVECM is significantly better than VECM in all seven pairs at the 5% level.  Test 

results of using the unfiltered and logarithmic data and the filtered and logarithmic data 

are provided in Appendix H.  In all seven pairs, the three-regime TVECM is 

significantly better than a VECM at the 10% level (see Appendix H).  The estimated 

coefficients of parameters in seven pairs of bivariate three-regime TVECM are provided 

in Appendix I. 

Schwarz loss metric can also be used as a model selection criterion to select the 

appropriate model from three-regime TVECM and VECM (Pena and Rodriguez, 2005).  

Using Monte Carlo experiments, Pena and Rodriguez (2005) suggest Schwarz loss 

metric can be a criterion for detecting non-linearity in large sample sizes.  The Schwarz 

loss metrics of three-regime TVECM and VECM in each of seven pairs are obtained 

from the estimation procedure.  Unlike the bootstrap p-value results, however, the 

Schwarz loss metrics are minimized using a linear model in all seven pairs (Table 4.4).  

Using the Schwarz loss metric as a criterion for detecting non-linearity remains a topic 

for the future study. 
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Time-varying patterns for the upper and lower threshold values in seven pairs are 

provided in Figure 4.3.  These threshold values are the recovered values using equations 

(20) and (21).  The recovered upper and lower threshold values show that threshold 

values based on daily HDD and CDD show seasonality.  In MAL-CHI, OPA-CHI, and 

ELL-CHI, the means of price differences are lower in summer than in winter.  The 

means of price differences of WAH-CHI, HEN-CHI, and ONG-CHI are higher in 

summer than in winter.  In the winter when the demand of natural gas in the Chicago 

market is high, the level of mean of price differences between these three markets and 

CHI tend to be higher than in summer.  The widths of the price differences bands 

defined as )2(C - )1(C , in the four pairs, AEC-CHI ($0.2153 per MMBtu), WAH-CHI 

($0.1007 per MMBtu), HEN-CHI ($0.1912 per MMBtu), and ONG-CHI ($0.1547 per 

MMBtu) are narrower than those of the other markets (Table 4.5).  The width of the 

price difference is largest in MAL-CHI ($1.4915 per MMBtu).   

Discussion 

Results indicate that there are non-linear adjustments to the law of one price in seven 

pair-wise natural gas markets.  This result is similar to previous studies in that 

homogeneous and tradable goods between geographically separated markets may exhibit 

threshold cointegration relationships (Lo and Zivot, 2001; Goodwin and Piggott, 2001).   

A methodology is developed that allows for seasonality in the mean price 

differences in threshold cointegration models.  Markets (WAH, HEN, and ONG) that 

can be characterized as excess producing markets tend to have a higher mean price 
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differences relative to Chicago in summer.  AEC, another excess producing market, 

shows more complicated seasonal cycles.  Excess consuming markets tend to have an 

opposite seasonal pattern; mean price differences are higher in winter.  These results 

may be because the prices in excess producing markets are less sensitive to demand 

shifting conditions such as weather than excess consuming markets.  Major excess 

consuming markets, MAL, OPA, and ELL, respond more to changes in weather.   

The half of the widths of the price difference bands, )2(C - )1(C  can be considered 

as transaction costs including transportation costs between two markets.  Estimated 

transaction costs between natural gas spot markets against CHI range from $0.05 per 

MMBtu (WAH-CHI) to $0.75 per MMBtu (MAL-CHI).  Estimated transaction costs are 

approximately $0.10 per MMBtu in the three pairs, AEC-CHI, HEN-CHI, and ONG-

CHI.  Between WAH-CHI the estimated transaction cost is $0.05 per MMBtu. These 

four pairs represent the major supply regions with large pipeline capacity going into the 

Chicago market (Figures 4.4 and 3.7).  Estimated transaction costs between OPA and 

CHI are nearly three times higher than between the previous four excess producing 

markets and CHI.  This is indicative of the smaller capacity leaving OPA (Figure 3.7).  

Smaller capacity indicates less released capacity (see discussion below on the 

importance of release capacity).  Estimated transaction costs are $0.35 between the two 

excess consuming markets ELL-CHI.  Between two excess consuming markets it is 

expected price differences must be larger than between excess producing and excess 

consuming markets before trade occurs.  Finally, transaction costs between MAL and 
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CHI are the largest because of geographical separation, pipeline capacity, and pipeline 

routes (Figure 3.7). 

Kleit (1998) estimated the transaction costs following an estimation procedure 

suggested by Spiller and Huang (1986) to examine the effect of deregulation of natural 

gas pipeline contracts on the transaction costs.  Kleit (1998) used price data in five gas 

producing regions, the Rocky Mountains, Oklahoma, Texas, Louisiana, and the 

Appalachians from 1984 to 1993.  Among the statistically significant results, estimated 

transaction costs between Texas and the Appalachians were about $0.62 per MMBtu in 

1984 and $0.34 per MMBtu in 1993.  Direct comparison of the results in the present 

study with those of Kleit (1998) is not appropriate because the data sets are different in 

terms of time period and location.  Nevertheless, estimated transaction costs in this study 

are generally less than those in Kleit (1998).   

Further, the estimated transaction costs in both Kleit (1998) and in this analysis 

are less than the long-term transportation costs.  Transaction costs being less than the 

long-term transportation costs may be explained as follows.  First, in the pipeline 

transportation market where the long-term contracts were dominant, shippers tended not 

to renew long-term contracts after pipeline deregulation which provides the open access 

to pipelines (U.S. Department of Energy, 1998b).  Turned back capacity has been 

remarketed to the other shippers at lower rates (U.S. Department of Energy, 1998b).  

This causes transaction costs to decrease.  Second, a considerable amount of natural gas 

is still transported from the producing regions to consuming regions based upon long-
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term contracts, in spite of growing turned back capacity.  In general, excess supplies and 

demands for natural gas are cleared at the spot markets.  Thus, the transaction costs 

associated with spot markets may not reflect the long-term transportation costs.  Third, 

the existence of released capacity also causes transaction costs to decrease.  Shippers 

with excess capacity release their unused capacity, which is called released capacity, to 

the other shippers to recover some of their fixed costs (U.S. Department of Energy, 

1998b).  The released capacity market has grown steadily.  This implies more shippers 

are using the release market as source for transportation of natural gas.  The amount of 

released capacity has accounted for about 20 percent of total reserved firm transportation 

capacity (U.S. Department of Energy, 1998b).  The transportation rate of natural gas is 

broken into two parts, demand and commodity charges (ICF Inc., 1997).  “ The monthly 

demand charge recovers the cost of the capacity.  This is a fixed monthly cost regardless 

of the amount of gas that is shipped.  The commodity charge covers the variable costs of 

transportation, usually a few cents per MMBtu plus the fuel charge ” (ICF Inc., 1997, p. 

20).  “ The cost of released capacity is expressed as a one part rate that recovers for the 

primary shipper some portion of his demand charges and all of the variable costs ” (ICF 

Inc., 1997, p. 22).  The variable costs of pipeline transportation, the commodity charge, 

range from $0.01 per MMBtu to $0.25 per MMBtu (GLJ Energy Publication Inc., 2003).  

These estimates indicate that the costs of released capacity are lower than the long-term 

transportation costs.  Estimated transactions costs here are similar to previous estimates 

of the variable cost of pipeline transportation.     
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Although the assumption of constant threshold values may not be appropriate for 

real world, previous threshold cointegration literature assumed both the interval and 

mean price differences remain constant over time.  Mean price differences allow for 

seasonal supply and demand differences to impact the linkages between spatially 

separated markets as related to the law of one price.  This study explores time-varying 

mean price differences using data filtered for weather effects.  The time-varying mean 

price differences imply there are different arbitrage behaviors depending on the season.  

For example, if the price difference between OPA and CHI is $-1.50 per MMBtu in the 

winter indicating the price difference is outside of the band, then the arbitrage trading 

occurs.  However, if the price difference between OPA and CHI is $-1.50 per MMBtu in 

summer, the price difference is inside of the band, arbitrage trading between two markets 

does not appear to be present.  The next step is to develop a methodology that allows the 

interval to vary over time and ultimately the most general case of both interval and mean 

differences to vary.  In the natural gas sector, different rates for released pipeline 

capacity may be charged during the summer and winter (ICF Inc., 1997).  Thus, more 

the generalized case of time-varying interval with time-varying mean may be more 

relevant.   

End Notes 

1.  When using non-logarithmic and unfiltered price data, the estimation procedure did not converge.  
Thus, the case of using non-logarithmic and unfiltered price data is not presented in Appendix H.  
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CHAPTER V 

CONCLUSIONS 

 

Given the important role of electricity and natural gas in the North American economy, 

understanding of how markets for these commodities interact is important.  As such, this 

dissertation independently characterizes the price dynamics of major electricity and 

natural gas spot markets in North America.  Advances in causal flows are combined with 

time series analysis to study these two sectors.  Vector autoregression (VAR) model is 

applied to the electricity sector because of stationarity in electricity prices.  Natural gas 

prices are nonstationary, as such a vector error correction model (VECM) is applied to 

the natural gas sector.  Directed acyclic graphs (DAGs) are used to analyze the 

contemporaneous time causal flows in both the electricity and natural gas sectors.  

Finally, threshold vector error correction model (TVECM) is applied to the natural gas 

sector to examine if there are nonlinearities in adjustments to price differentials in these 

markets.  A generalization of price difference band associated with the law of one price 

is explored in this study.    

Electricity Markets  

Interdependencies among 11 major electricity spot markets in North America are 

examined in Chapter II.  Dickey-Fuller (DF), augmented Dickey-Fuller (ADF), and trace 

tests indicate the electricity price series are generally stationary, adding additional 

evidence to the previous literature that electricity prices have a mean reversion 
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characteristic.  Estimation results of the VAR model indicate that U.S. aggregate heating 

degree-days variable (HDD) are not statistically significant in most of the markets at the 

10% significance level, but U.S. aggregate cooling degree-days (CDD) are statistically 

significant in seven of the 11 markets at the 10% significance level.  These results 

indicate the electricity prices are characterized by seasonality, particularly during the 

summer months where electricity is the major energy source used for cooling.   

DAG results suggest that contemporaneous causal flows in electricity markets 

reflect the three major power grids of U.S., Eastern Interconnected System, Western 

Interconnected System, and the Texas Interconnected System.  Western markets are 

separated from the eastern markets and the Electricity Reliability Council of Texas.  In 

western markets, Palo Verde (PV) appears to be the driving force for the other western 

markets.  The Electric Reliability Council of Texas (ERCOT) and the Northeast Power 

Pool (NEPL) are exogenous driving forces for electricity price through Entergy (ENT) 

and East Central Area Reliability Coordination Agreement (ECAR) in the eastern 

markets.  The information flows from DAG indicate that most of information flows 

occur between physically adjacent spot markets.   

The relationships between the markets, however, vary by time frame.  In contrast 

to the contemporaneous time, at longer time frames separations between the western and 

non-western markets disappear, even though electricity transmission between the regions 

is limited.  An interesting finding is that shocks in Pennsylvania-New Jersey-Maryland 

(PJM) and NEPL cause relatively large responses in the western markets in spite of 
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considerable distance between the two regions.  The relationships between markets are 

not only a function of physical assets such as transmissions lines between the markets, 

but are also a function of similar and dissimilar institutional arrangements including the 

degree of deregulation, market trading structure, and existence of futures markets 

between the markets.  At longer time horizons, PV is still the important spot market in 

the west.  The importance of PV is most likely because PV is the closest market to 

California included in the analysis.  Southwest Power Pool (SPP) is the dominant market 

in Eastern Interconnected System.  A likely reason for the importance of the SPP is 

because of the higher dependency on natural gas and coal as energy source for power 

generation in SPP.   

Natural Gas Markets    

Price dynamics among eight major natural gas spot markets in North America are 

investigated in Chapter III.  DF and ADF tests indicate eight natural gas prices are 

nonstationary, which is consistent with most previous studies.  Empirical findings 

suggest that the eight price series in natural gas spot markets in North America are tied 

together through six long-run cointegration relationships.  All eight markets are in the 

long-run relationships and respond to perturbation in any of the six long-run 

cointegration relationships.  Seasonal differences in the long-run relationships exist 

because HDD and CDD cannot be excluded from the cointegration space.  Seasonality in 

prices may be because natural gas is used for heating and electricity generation in winter 

and mainly for electricity generation in the summer besides industrial uses.   



 

 

98 
 

 
 

 
 

 
 

Greedy Equivalence Search (GES) Algorithm and PC (after its authors, Peter and 

Clark) Algorithm were both used to provide contemporaneous causal flows in the eight 

natural gas spot markets.  GES Algorithm did not leave as many edges undetermined as 

PC Algorithm did.  Further, GES did not provide bi-directed edges.  Therefore, the GES 

Algorithm appears to perform better than PC Algorithm, at least in terms of providing 

causal information.  In contemporaneous time, causal flows tend to originate from 

excess consuming regions and point toward excess producing regions.  Causal flows 

directions tend to be the reverse of the directions of the flows of natural gas.  This 

indicates that price discovery tends to occur in the excess consuming regions and move 

to the excess producing regions.  Across North America, the U.S. Midwest region 

represented by the Chicago spot market is the most important market for price discovery.  

This result differs from previous studies that suggest the Henry Hub market in Louisiana 

is important.  The Ellisburg-Leidy Hub in Pennsylvania is also an important market for 

price discovery, especially for markets in the eastern two-thirds of the U.S.  Malin Hub 

in Oregon is important for the western markets which include the AECO Hub in Alberta, 

Canada.  The importance of Malin Hub may be because it is the closest market to 

California included in the analysis. 

Contemporaneous causal flows, forecast error variance decompositions, and 

impulse response functions all indicate there is not an east-west split among natural gas 

spot markets in North America unlike an earlier study (King and Cuc, 1996).  Results 

support Serletis (1997) argument that an east-west split does not exist.  King and Cuc 
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(1996) study used data that was from a period soon after deregulation.  Both Serletis 

(1997) and the present study include prices removed from the start of deregulation.  

These findings together suggest the natural gas market has developed into a single 

integrated market in North America since deregulation.  

Natural Gas and Threshold Cointegration   

Previous threshold cointegration literature assumes the law of one price includes a band 

of price differences between two markets in which trading does not occur because 

transaction costs are larger than the price difference.  These previous studies assumed 

the price difference band between the markets is constant over time.  In Chapter IV, a 

generalization of price difference band associated with the law of one price is explored.  

Four alternative cases for the neutral band associated with the law of one price are 

presented as a theoretical background to develop a threshold cointegration model that 

accounts for seasonality in threshold levels.  As such, this is the first study to relax the 

assumption of a constant price difference band.   

The nonlinearity of price adjustment to the long-run equilibrium between natural 

gas spot market pairs and dynamic threshold effects are investigated using bivariate 

three-regime TVECMs.  Given the results from Chapter III, the estimations of seven 

bivariate three-regime TVECMs are conducted using price data filtered by CDD and 

HDD.  Chicago is used as the benchmark market in seven market pairs.  The filtering 

regressions indicate the existence of seasonality in natural gas prices because all 

estimated coefficients except one associated with CDD and HDD are statistically 
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significant at the 5% level.  Results show that there are nonlinear adjustments to the law 

of one price in seven pair-wise natural gas markets.  

The recovered upper and lower threshold values from the estimation results of 

filtered data indicate that the threshold values vary based on daily CDD and HDD; 

seasonality in the thresholds exists.  Dynamic threshold effects vary depending on 

geographical location and whether the market is a excess producing or excess consuming 

markets.  Mean price differences between Chicago (CHI) and excess producing markets 

such as Waha (WAH), Henry (HEN), and Oklahoma (ONG) tend to be higher in the 

summer than the winter, whereas, mean price differences between Chicago and excess 

consuming markets are higher in the winter than the summer.  These differences in 

thresholds are likely because the prices in excess producing markets are less sensitive to 

demand shifters, such as weather, than the prices in excess consuming markets.  Major 

excess consuming markets respond more to changes in weather.     

The estimated upper and lower threshold values provide information about 

transaction costs between Chicago and the other markets.   Estimated transaction costs 

are smaller in the four pairs, AECO (AEC)-CHI, HEN-CHI, ONG-CHI, and WAH-CHI, 

than for the other market pairs.  These four pairs represent the major excess producing 

regions with large pipeline capacity going into the Chicago market.  The estimated 

transaction costs in this study are lower than long-term transportation costs presented in 

previous studies.  However, the estimated transaction costs from this study are close to 
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estimated variable costs of pipeline estimated in previous studies.  It appears spot market 

transactions only consider the variable costs of transportation.    

Comparisons of Electricity and Natural Gas Markets 

The average value of the elements of contemporaneous innovation correlation matrix 

from the electricity spot markets is 0.36 while corresponding average value from the 

natural gas spot markets is 0.47.  DAG results from Chapters II and III indicate that there 

is not a strong east-west split among natural gas spot markets in North America in 

contemporaneous time but such a split is present in the electricity spot markets.  Any 

separation among the electricity markets, however, disappears at longer time horizons.  

These results imply that natural gas spot markets are more highly integrated than 

electricity spot markets in North America.  Postulated reasons for more highly integrated 

markets in natural gas include 1) the fact that the deregulation of the natural gas industry 

is several years ahead of the electricity industry in North America, and 2) the natural gas 

markets have less physical infrastructure separation than electricity spot markets have. 

Differences in the regions of price discovery exist between electricity and natural 

gas sectors.  In electricity spot markets, SPP, which has a high marginal cost for 

generating electricity, is a dominant market for price discovery.  However, CHI, which is 

a major excess consuming region, is the dominant market for price discovery in natural 

gas spot markets.  These differences may be caused by differences in storability of the 

commodity, natural gas being an input for generation of electricity, and different 

transportation structures between the two sectors.  
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Limitations and Future Research 

Anomalies in the price data attributed to the extended California energy shortage in 2000 

and natural gas price spike in 2000 winter are not explicitly accounted for in this 

analysis.  Further, accounting for anomalies that appear in the electricity spot markets, 

ECAR, Mid-Area Interconnected Network (MAIN), Mid-Continent Area Power Pool 

(MAPP), ENT, and SPP in 1998 summer and 1999 summer are not considered.  Not 

accounting for these and other anomalies may bias the findings that the western 

electricity markets are separated from the rest of U.S. markets because of the 

characteristic of limited deliverability of electricity.  Future studies may want to examine 

how these anomalies impact the price discovery process.  Causes of the anomalies are 

starting to be published.  Price anomalies in natural gas prices are also not explicitly 

accounted for in the analysis. 

In this study, only eight markets in electricity and 11 markets in natural gas are 

included for the analysis.  Particularly, in light of the importance of California market in 

two industries, markets from California should be included.  Data limitations precluded 

inclusion of California markets in this study.  Palo Verde in electricity and Malin Hub in 

natural gas that are physically close to California, however, are included in this study.  

Analysis including more markets with more recent data should be conducted in future 

studies.  Another limitation of this study is that discussion concerning price discovery 

assumes Chicago (CHI) causes Oklahoma (ONG) even though the GES Algorithm did 

not suggest a clear causal direction between CHI and ONG markets.  In Chapter IV, the 
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cointegrating vector is assumed to be known and delay parameter is assumed to be equal 

to one in the TVECM.  Future studies should relax these assumptions. 

Results suggest other important issues need addressing.  How is the electricity 

price affected by different market institutions?  What are the impacts of continuing 

deregulation and piecemeal deregulation in the electricity industry on prices?  These 

questions are topics of further study.  In Chapters II and III, temperature is only 

exogenous variable considered in the models.  Different factors such as variations in 

demand, congestion on the transmission system, and outages in electricity markets 

should be considered in electricity spot market analysis.  Factors such as variations in 

demand, storage capacity, futures markets, and types of end use of natural gas should be 

considered in future studies of natural gas spot market analysis.  In contrast to the 

electricity industry, the futures market is very active in the natural gas industry.  Spot 

market prices from both electricity and natural gas industries should be investigated 

together to examine the interdependencies of these two energy markets because 

electricity power plants are important consumers of natural gas.  Further, the influence of 

captive supply of electricity and natural gas based on contractual arrangements in spot 

market transactions and prices may be a fruitful avenue of future research.  A 

methodology to estimate time-varying thresholds with fixed mean price difference and 

varying interval is developed.  Methodologies to address more general cases await 

development.  Examining threshold effects between spot market price and futures 

market price in the two sectors would contribute to the understanding of market 
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behavior.  Future research on these two energy markets will continue to provide 

interesting results on market behavior and price discovery. 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
 
 
Figure 2.1. Approximate Locations of 11 Electricity Spot Markets in North 
America and 23 Cities Included in the Analysis 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
 
Figure 2.2.  Daily Peak Electricity Prices for 11 North American Spot Markets in 
Dollars per Megawatt Hour (Feb. 26, 1998 – Dec. 20, 2002) 
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         Source: U.S. Department of Energy, 2003a  

 

Figure 2.3.  North American Electric Power Grids 

 

 

 

 

 

 

 



 

 

116 
 

 
 

 
 

 
 

Causal Pattern at the 1% Significance Level 

 
Causal Pattern on 0.1% Significance Level 

 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
Figure 2.4.  Casual Patterns at the 1% and 0.1% Significance Level Obtained Using 
TETRAD II 
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Note:  The axis labeled “Western Markets” indicates ten alternative sets of directed acyclic graph from 
(D.1) to (D.10).  The axis labeled “Eastern Markets” indicates the five possible alternative sets of directed 
acyclic graph from (D.11) to (D.15).  The above three-dimensional graph shows the Schwarz loss value is 
minimized at the pair of (D.7) and (D.13).  
 
 
Figure 2.5.  Three-Dimensional Graph for the Schwarz Loss Metrics  
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Note: See list of acronyms in Appendix J for definitions of spot markets. 

 

Figure 2.6.  Final Directed Acyclic Graph 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
 
Figure 2.7.  Impulse Response Functions from Innovation of Two-Lag VAR 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
 
  
Figure 3.1. Approximate Locations of Eight Natural Gas Spot Markets in North 
America and 23 Cities Included in the Analysis 
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 Note: See list of acronyms in Appendix J for definitions of spot markets. 
 

Figure 3.2.  Daily Natural Gas Prices ($/MMBtu) for the Eight North American 
Spot Markets (Jan. 12, 1998 – Dec. 20, 2002) 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
 
 
Figure 3.3.  Causal Pattern at the 1% Significance Level Obtained Using TETRAD 
IV with PC Algorithm 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
 
 
Figure 3.4.  Causal Pattern at the 0.1% Significance Level Obtained Using 
TETRAD IV with PC Algorithm 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
 
 
Figure 3.5.  Causal Pattern Obtained Using TETRAD IV with GES Algorithm 
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Source: U.S. Department of Energy.  Energy Information Agency. 2003c.  
 
 
 
Figure 3.6.  Major Natural Gas Producing Basins, Pipeline Transportation Routes, 
and Interstate Flow Levels at Selected Key Locations as of 2003 
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Source: U.S. Department of Energy.  Energy Information Agency. 2004  
 
 
 
Figure 3.7.  Major Natural Gas Pipeline Transportation Routes and 2002 Flow 
Levels at Selected Key Locations  
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Note: DEFS = Duke Energy Field Services Co; EPGT Texas Pipeline Co. 
Source: U.S. Department of Energy.  Energy Information Agency. 2003c.  
 
 
 
 
Figure 3.8.  Natural Gas Pipeline Transportation Routes and Flow Levels Around 
Texas and Louisiana  
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
 
 
Figure 3.9.  Impulse Response Functions from Innovation of VECM of Case I     
(OPA ← MAL, CHI ←ONG) 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
 
 
Figure 3.10.  Impulse Response Functions from Innovation of VECM of Case II          
(OPA ← MAL, CHI →ONG) 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 

 
 
Figure 3.11.  Impulse Response Functions from Innovation of VECM of Case III  
(OPA → MAL, CHI ←ONG) 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
 
 
Figure 3.12.  Impulse Response Functions from Innovation of VECM of Case IV  
(OPA → MAL, CHI →ONG) 
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Source: U.S. Department of Energy. Energy Information Agency. 2004  
 
 
 
Figure 3.13.  Underground Natural Gas Storage Facilities in the U.S.  
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Case I: Fixed Mean Difference / Fixed Interval

Case III: Fixed Mean Difference / Varying Interval

Case II: Varying Mean Difference / Fixed Interval

Case IV: Varying Mean Difference / Varying Interval

 
 
Figure 4.1.  Four Alternative Cases of the Deviations in the Neutral Band 
Associated with the Law of One Price 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
 
Figure 4.2.  Daily Natural Gas Prices (solid lines) and Filtered Natural Gas Prices 
(dotted lines) for the Eight North American Spot Markets (Jan. 12, 1998 – Dec. 20, 
2002) 
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Note: The vertical scales for each graph are different. See list of acronyms in Appendix J for definitions of 
spot markets. 
 
 
Figure 4.3.  Time-Varying Upper and Lower Threshold Values (solid lines) and 
Daily Price Differences (dotted lines) Between the Seven Markets and CHI 
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Note: See list of acronyms in Appendix J for definitions of spot markets. 
   
Figure 4.4. Estimated Transaction Costs Between the Seven Market Pairs 
($/MMBtu) 
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APPENDIX B 

TABLES 
 
Table 2.1.  Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF), and Associated 
Residual Tests of Non-Stationarity of 11 North American Electricity Spot Markets 
Using Logarithmic Transformed Data and Robust Estimator 
  Dickey-Fuller Augmented Dickey-Fuller 
Market Test1 Q(15)2 Q(30)3 Test4 K5 Q(15)6 Q(30)7 

MIDC -2.11 228.14(0.00) 335.47(0.00) -1.49 7 42.64(0.00) 105.17(0.00) 
PV -2.70 220.18(0.00) 388.26(0.00) -1.92 10 25.29(0.05) 81.83(0.00) 
FC -2.72 176.84(0.00) 276.28(0.00) -1.69 7 41.82(0.00) 92.33(0.00) 
NEPL -3.41 124.90(0.00) 176.47(0.00) -2.76 7 18.79(0.22) 50.48(0.01) 
PJM -5.46 175.27(0.00) 218.98(0.00) -4.42 3 44.20(0.00) 95.16(0.00) 
ECAR -3.33 176.12(0.00) 230.91(0.00) -3.19 3 29.07(0.02) 94.49(0.00) 
MAIN -2.78 97.27(0.00) 177.33(0.00) -3.02 2 25.26(0.05) 111.47(0.00) 
MAPP -2.27 68.21(0.00) 119.84(0.00) -2.27 2 16.37(0.36) 60.68(0.00) 
ENT -2.68 139.69(0.00) 227.05(0.00) -2.78 2 31.09(0.01) 119.15(0.00) 
SPP -2.66 105.15(0.00) 200.72(0.00) -2.96 2 33.94(0.00) 125.81(0.00) 
ERCOT -2.29 110.75(0.00) 141.61(0.00) -1.98 6 29.95(0.01) 55.03(0.00) 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  This column gives DF test statistics for the null hypothesis that price data for each spot market is non-

stationary in levels.  The DF test is based on an ordinary least squares regression of the first differences 
of prices from each market on a constant and one lag of the levels of prices from each market (Greene, 
2000).  The DF test statistics are the t-statistics of the estimated coefficient on the lagged levels 
variable from the test regression.  This t-statistic is not distributed as a standard t-distribution under the 
null hypothesis.  However, the 5% and 10% critical values (-2.89, -2.58) are given in Fuller (1976).  
The null hypothesis is rejected when the observed t-statistics are less than this critical value.  

 
2. 3.  These columns indicate associated Q-statistics with 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom. This Q-statistics is the Lung-Box statistics on the estimated 
residuals from the test regression. The p-value associated with this Q-statistic is given in parenthesis. 
The Q statistic is distributed chi-squared with maximum 36 degrees of freedom under the null in this 
case. The null hypothesis of white noise residuals is rejected when the Q value is large or the p-value is 
small.  

 
4. 5. ADF column refers to Augmented Dickey-Fuller test. In this test, the null hypothesis is same as DF 

test, but the regression form is modified from the DF test.  K lags of the dependent variable are 
included in the ADF regression.  ADF test statistics are the t-statistics of the estimated coefficient on 
the lagged level variable.  The critical value of the t-statistic is same as in DF test.  After the ADF 
regression is run using different K values ranging from 1 to 10, the lag number of K is determined by 
minimizing the Schwarz loss metric on values of K.  The ADF test statistics are reported using the 
value at K where Schwarz loss metric is minimized.  

 
6. 7. These columns indicate associated Q-statistics of 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom.  
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Table 2.2.  Trace Tests on Number of Cointegrating Vectors in 11 North American 
Electricity Spot Markets1 

With constant Without constant 
r T* C(5%)* Decision T C(5%) Decision 

= 0 1579.172 289.71 R 1653.087 276.37 R 
≤ 1 1253.638 244.56 R 1327.525 232.6 R 
≤ 2 1001.966 203.34 R 1072.926 192.3 R 
≤ 3 769.368 165.73 R 824.698 155.75 R 
≤ 4 571.560 132 R 616.754 123.04 R 
≤ 5 437.896 101.84 R 478.710 93.92 R 
≤ 6 317.521 75.74 R 356.715 68.68 R 
≤ 7 210.694 53.42 R 237.558 47.21 R 
≤ 8 134.962 34.8 R 152.069 29.38 R 
≤ 9 67.265 19.99 R 77.259 15.34 R 
≤ 10 10.196 9.13 R 10.721 3.841 R 

 1.  The trace test with and without constant indicates the number of cointegrating vectors (r).  The critical 
values (c) at α = 5% are given in Hansen and Juselius (1995). The decision column indicates whether 
the null hypothesis is rejected (R) or failed to reject (F).  The null hypothesis is the number of 
cointegrating vectors, given in the r column.  As explained in Johansen and Juselius (1992), to find the 
number of cointegrating vectors, we start at left-top decision column in the column of “with constant”, 
and go to right-top decision column in the column of “without constant,” and move to next row 
sequentially until we find the F (fail to reject).  In this table, however, there is no F (fail to reject).  This 
means there are 11 cointgrating vectors from 11 series, implying 11 stationary series. 
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Table 2.3.  Schwarz Loss, Akaike Loss, and Hannan and Quinn’s Phi Measures on 
One to Twelve Lags for the VAR on Daily Peak Electricity Prices from 11 North 
American Electricity Spot Markets1         

Number of lag Schwarz Akaike HQ 
1 -45.9441* -46.8185 -46.3345 
2 -45.7893 -47.3506 -46.4864* 
3 -45.4028 -47.6511 -46.4066 
4 -44.9488 -47.8840 -46.2593 
5 -44.5054 -47.1276 -46.1227 
6 -44.0595 -47.3687 -45.9835 
7 -43.6095 -47.6056 -45.8402 
8 -43.1151 -47.7981 -45.6525 
9 -42.5933 -47.9633 -45.4375 

10 -42.1030 -48.1600* -45.2539 
11 -41.6590 -47.4030 -45.1167 
12 -41.1648 -47.5958 -44.9292 

1. Schwarz loss, Akaike loss and Hannan and Quinn’s phi metric are 
   
        SL = ln(det(∑)) + ((k)*11)*ln(T)/T, 
          Akaike = ln(det(∑)) + 2*((k)*11)/T, and 
          HQ = ln(det(∑)) + ((k)*11)*(2.01)*ln(ln(T))/T, 
 
   where ∑ is the residual covariance matrix estimated with k regressors in each equation, T is the total 

number of observations in each series, det(∑) is the determinant of residual covariance matrix, and ln 
is natural logarithm.  * denotes minimum value for the particular loss function. 
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Table 2.4.  p-values Associated with F-tests for the Null Hypothesis the Coefficients 
on One and Two Lagged Prices on Each of 11 North American Electricity Spot 
Markets Are Equal to Zero in the Two-Lag VAR1 

 One-lag and Two-lag Market Price 
Market MIDC PV FC NEPL PJM ECAR MAIN MAPP ENT SPP ERCOT
MIDC 0.00 0.81 0.58 0.00 0.03 0.45 0.98 0.92 0.69 0.52 0.77 
PV 0.02 0.00 0.63 0.00 0.00 0.38 0.75 0.81 0.71 0.60 0.42 
FC 0.02 0.00 0.00 0.00 0.01 0.63 0.91 0.36 0.39 0.92 0.55 
NEPL 0.46 0.09 0.03 0.00 0.00 0.39 0.92 0.00 0.03 0.56 0.00 
PJM 0.41 0.62 0.37 0.06 0.00 0.00 0.89 0.00 0.00 0.75 0.04 
ECAR 0.83 0.84 0.73 0.83 0.09 0.00 0.99 0.00 0.00 0.11 0.01 
MAIN 0.43 0.96 0.96 0.80 0.49 0.21 0.01 0.00 0.00 0.10 0.01 
MAPP 0.57 0.46 0.42 0.58 0.80 0.10 0.15 0.00 0.47 0.32 0.47 
ENT 0.89 0.62 0.52 0.77 0.35 0.83 0.22 0.00 0.00 0.07 0.00 
SPP 0.91 0.84 0.63 0.52 0.34 0.73 0.25 0.00 0.00 0.00 0.00 
ERCOT 0.67 0.34 0.39 0.09 0.10 0.98 0.31 0.00 0.80 0.63 0.00 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
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Table 2.5.  Estimated Coefficients and Associated p-Values on Lagged Cooling 
Degree-Days (CDD) and Heating Degree-Days (HDD) and in the Two-Lag VAR 
Equations 
  Estimated coefficients and p-value of Lagged HDD and CDD  
Market HDDt-1 p-value CDDt-1 p-value 
MIDC 0.000 0.992 -0.002 0.332 
PV 0.001  0.515  0.002  0.199  
FC 0.001  0.188  0.002  0.219  
NEPL 0.000  0.754  0.004  0.079  
PJM 0.001  0.220  0.010  0.000  
ECAR 0.002  0.079  0.012  0.000  
MAIN 0.002  0.067  0.007  0.018  
MAPP 0.003  0.002  0.009  0.000  
ENT 0.001  0.192  0.009  0.001  
SPP 0.001  0.109  0.010  0.000  
ERCOT 0.000  0.702  0.002  0.211  

Note: See list of acronyms in Appendix J for definitions of spot markets. 
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Table 2.6.  Forecast Error Variance Decompositions from Two-Lag VAR  
Step MIDC PV FC NEPL PJM ECAR MAIN MAPP   ENT SPP ERCOT 

MIDC 
0 40.24 59.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1 39.80 58.79 0.03 0.01 0.01 0.25 0.01 0.00 0.12 0.89 0.09 

30 26.26 37.21 1.70 5.27 11.70 0.42 0.08 1.50 1.12 10.24 4.50 
PV 

0 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1 0.42 96.94 0.11 0.19 0.14 0.42 0.01 0.02 0.18 1.24 0.34 

30 5.93 48.85 2.59 7.78 16.31 0.42 0.22 1.45 1.85 9.77 4.83 
FC 

0 0.00 15.40 84.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1 0.77 52.10 45.32 0.36 0.24 0.25 0.02 0.17 0.00 0.65 0.12 

30 6.12 40.95 7.58 8.63 17.25 0.46 0.20 1.68 2.12 9.95 5.07 
NEPL 

0 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1 0.07 0.28 1.00 89.88 0.01 0.82 1.54 2.31 0.02 4.06 0.03 

30 0.89 3.26 4.90 58.10 12.39 2.78 2.92 4.26 2.91 2.63 4.98 
PJM 

0 0.00 0.00 0.00 3.81 95.61 0.21 0.00 0.00 0.29 0.00 0.08 
1 0.06 0.14 0.26 5.81 73.78 3.83 2.97 3.97 1.37 7.57 0.23 

30 0.59 2.78 1.33 6.33 36.65 3.09 7.24 8.02 1.49 29.54 2.95 
ECAR 

0 0.00 0.00 0.00 0.23 0.00 35.94 0.00 0.00 50.54 0.00 13.28 
1 0.02 0.10 0.11 0.12 1.96 22.10 2.41 4.73 38.93 21.48 8.03 

30 0.54 2.32 0.21 0.35 2.90 9.71 2.95 4.98 17.03 53.44 5.58 
MAIN 

0 0.00 0.00 0.00 0.07 0.00 10.91 28.19 0.00 48.19 0.00 12.66 
1 0.03 0.01 0.01 0.07 0.27 9.39 23.71 2.73 44.07 9.33 10.39 

30 0.32 1.38 0.12 0.49 0.99 6.20 16.51 3.79 27.73 34.86 7.61 
MAPP 

0 0.00 0.00 0.00 0.00 0.00 0.68 11.45 25.96 5.59 54.84 1.47 
1 0.01 0.02 0.00 0.13 0.09 0.58 8.05 27.13 4.31 58.76 0.93 

30 0.70 2.66 0.33 0.50 0.84 0.35 7.54 19.06 2.22 64.81 1.00 
ENT 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 79.19 0.00 20.81 
1 0.01 0.24 0.24 0.26 0.90 0.41 0.04 4.91 53.48 25.67 13.84 

30 0.91 4.51 0.28 1.01 2.27 2.06 0.25 4.27 19.87 54.58 10.00 
SPP 

0 0.00 0.00 0.00 0.02 0.00 2.65 0.00 0.00 6.85 88.68 1.80 
1 0.00 0.02 0.05 0.19 0.37 1.74 0.47 2.98 5.45 87.50 1.23 

30 0.51 2.40 0.12 0.79 1.04 0.99 1.34 3.81 3.93 82.63 2.45 
ERCOT 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 
1 0.02 0.29 0.04 0.19 1.18 0.13 0.06 1.92 0.68 8.73 86.78 

30 1.65 8.40 0.45 2.09 3.02 3.17 0.23 3.22 3.51 29.52 44.73 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
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Table 3.1.  Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF), and Associated 
Residual Tests of Non-Stationarity of Eight North American Natural Gas Spot 
Markets Using Logarithmic Transformed Data and Robust Estimator 
  Dickey-Fuller Augmented Dickey-Fuller 
Market Test1 Q(15)2 Q(30)3 Test4 K5 Q(15)6 Q(30)7 

AEC --2.09 139.14(0.00) 160.47(0.00) -2.19 2 15.46(0.21) 31.72(0.38) 
MAL -1.37 122.02(0.00) 192.72(0.00) -2.26 10 7.07(0.95) 38.00(0.14) 
OPA --2.90 324.42(0.00) 370.05(0.00) -2.59 5 20.49(0.15) 58.69(0.00) 
WAH -1.73 100.50(0.00) 162.49(0.00) -1.80 2 39.04(0.00) 87.86(0.00) 
HEN -1.30 53.49(0.00) 80.55(0.00) -1.69 2 16.79(0.33) 44.79(0.04) 
ONG -1.49 58.46(0.00) 106.22(0.00) -1.85 2 33.38(0.00) 78.21(0.00) 
CHI -1.26 48.24(0.00) 80.90(0.00) -1.87 2 26.68(0.03) 59.25(0.00) 
ELL -1.45 47.85(0.00) 63.51(0.00) -2.71 1 31.35(0.01) 49.61(0.01) 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  This column gives DF test statistics for the null hypothesis that price data for each spot market is non-

stationary in levels.  The DF test is based on an ordinary least squares regression of the first differences 
of prices from each market on a constant and one lag of the levels of prices from each market (Greene, 
2000).  The DF test statistics are the t-statistics of the estimated coefficient on the lagged levels 
variable from the test regression.  This t-statistic is not distributed as a standard t-distribution under the 
null hypothesis.  However, the 5% and 10% critical values (-2.89, -2.58) are given in Fuller (1976).  
The null hypothesis is rejected when the observed t-statistics are less than this critical value.  

 
2. 3.  These columns indicate associated Q-statistics with 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom. This Q-statistics is the Lung-Box statistics on the estimated 
residuals from the test regression. The p-value associated with this Q-statistic is given in parenthesis. 
The Q statistic is distributed chi-squared with maximum 36 degrees of freedom under the null in this 
case. The null hypothesis of white noise residuals is rejected when the Q value is large or the p-value is 
small.  

 
4. 5. ADF column refers to Augmented Dickey-Fuller test. In this test, the null hypothesis is same as DF 

test, but the regression form is modified from the DF test.  K lags of the dependent variable are 
included in the ADF regression.  ADF test statistics are the t-statistics of the estimated coefficient on 
the lagged level variable.  The critical value of the t-statistic is same as in DF test.  After the ADF 
regression is run using different K values ranging from 1 to 10, the lag number of K is determined by 
minimizing the Schwarz loss metric on values of K.  The ADF test statistics are reported using the 
value at K where Schwarz loss metric is minimized.  

 
6. 7. These columns indicate associated Q-statistics of 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom 
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Table 3.2.  Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) of Non-
Stationarity of the First Difference of Eight North American Natural Gas Spot 
Prices Using Non-Logarithmic Transformed Data and Robust Estimator 
  Dickey-Fuller Augmented Dickey-Fuller 

Market Test1 Decision2 Test3 K4 Decision5 

AEC -6.1038 R -5.7797 1 R 
MAL -3.1118 R -2.5761 5 F 
OPA -14.9862 R -6.5351 5 R 
WAH -10.6298 R -10.3608 1 R 
HEN -11.1039 R -3.3094 9 R 
ONG -9.1133 R -4.1920 5 R 
CHI -6.4245 R -2.2950 10 F 
ELL -7.0447 R -6.1085 1 R 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  This column gives DF test statistics for the null hypothesis that the first difference of price data for 

each spot market is non-stationary.  The DF test statistics are the t-statistics of the estimated coefficient 
on the lagged levels variable from the test regression.  This t-statistic is not distributed as a standard t-
distribution under the null hypothesis.  However, the 5% and 10% critical values  (-2.89, -2.58) are 
given in Fuller (1976).  The null hypothesis is rejected when the observed t-statistics are less than this 
critical value.  

 
2. 5. The decision column indicates whether the null hypothesis is rejected (R) or failed to reject (F) at 5% 

significance level.   
 
3. 4. ADF column refers to Augmented Dickey-Fuller test. In this test, the null hypothesis is same as DF 

test, but the regression form is modified from the DF test.  K lags of the dependent variable are 
included in the ADF regression.  ADF test statistics are the t-statistics of the estimated coefficient on 
the lagged level variable.  The critical value of the t-statistic is same as in DF test.  After the ADF 
regression is run using different K values ranging from 1 to 10, the lag number of K is determined by 
minimizing the Schwarz loss metric on values of K.  The ADF test statistics are reported using the 
value at K where Schwarz loss metric is minimized.  

 

 

 



 

 

145 
 

 
 

 
 

 
 

Table 3.3.  Schwarz Loss, Akaike Loss, and Hannan and Quinn’s Phi Measures on 
One to Fifteen Lags on Logarithmic Levels VAR on Daily Natural Gas Prices from 
Eight North American Spot Markets1         

Number of lags Schwarz Akaike HQ 
  1 -51.0268* -51.5264 -51.2499 
  2 -51.0050 -51.8679 -51.3903 
  3 -50.9215 -52.1478 -51.4690* 
  4 -50.7247 -52.3144 -51.4345 
  5 -50.5574 -52.5104 -51.4294 
  6 -50.3498 -52.6662 -51.3840 
  7 -50.1472 -52.8269 -51.3437 
  8 -49.9588 -53.0019 -51.3175 
  9 -49.7294 -53.1358* -51.2503 
10 -49.4535 -52.2233 -51.1367 
11 -49.2240 -52.3571 -51.0694 
12 -48.9670 -52.4635 -50.9747 
13 -48.7264 -52.5863 -50.8963 
14 -48.4602 -52.6834 -50.7923 
15 -48.1814 -52.7680 -50.6758 

1. Schwarz loss, Akaike loss and Hannan and Quinn’s phi metric are 
   
        SL = ln(det(∑)) + ((k)*8)*ln(T)/T, 
          Akaike = ln(det(∑)) + 2*((k)*8)/T, and 
          HQ = ln(det(∑)) + ((k)*8)*(2.01)*ln(ln(T))/T, 
 

where ∑ is the residual covariance matrix estimated with k regressors in each equation, T is the total 
number of observations in each series, det(∑) is the determinant of residual covariance matrix, and ln is 
natural logarithm.  The asterisk “*” indicates the minimum values of each information criterion. 
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Table 3.4. Trace Tests on Number of Cointegrating Vectors in Eight North  
American Natural Gas Spot Markets1  

With constant Without constant 
r T* C(1%)* Decision T C(1%) Decision 
≤ 0 1379.32 177.42 R 1273.50 166.95 R 
≤ 1 954.04 142.34 R 865.00 133.04 R 
≤ 2 668.31 111.38 R 607.53 102.95 R 
≤ 3 438.40 83.93 R 379.07 76.37 R 
≤ 4 259.03 60.42 R 204.44 53.91 R 
≤ 5 124.81 40.84 R 117.43 34.87 R 
≤ 6 47.55 24.74 R 40.46 19.69 R 
≤ 7 6.87 12.73 F 5.15 6.64 F 

With constant Without constant 
r T* C(5%)* Decision T C(5%) Decision 
≤ 0 1379.32 165.73 R 1273.50 155.75 R 
≤ 1 954.04 132 R 865.00 123.04 R 
≤ 2 668.31 101.84 R 607.53 93.92 R 
≤ 3 438.40 75.74 R 379.07 68.68 R 
≤ 4 259.03 53.42 R 204.44 47.21 R 
≤ 5 124.81 34.8 R 117.43 29.38 R 
≤ 6 47.55 19.99 R 40.46 15.34 R 
≤ 7 6.87 9.13 F 5.15 3.841 F 

With constant Without constant 
r T* C(10%)* Decision T C(10%) Decision 
≤ 0 1379.32 159.74 R 1273.50 149.99 R 
≤ 1 954.04 126.71 R 865.00 117.73 R 
≤ 2 668.31 97.17 R 607.53 89.37 R 
≤ 3 438.40 71.66 R 379.07 64.72 R 
≤ 4 259.03 49.92 R 204.44 43.84 R 
≤ 5 124.81 31.88 R 117.43 26.70 R 
≤ 6 47.55 17.79 R 40.46 13.31 R 
≤ 7 6.87 7.50 F 5.15 2.76 F 

1. The trace test with and without constant indicates the number of cointegrating vectors (r).  The critical 
values (c) at α = 1%,5%, and 10% are given in Hansen and Juselius (1995). The decision column 
indicates whether the null hypothesis is rejected (R) or failed to reject (F).  The null hypothesis is the 
number of cointegrating vectors, given in the r column.  As explained in Johansen and Juselius (1992), 
to find the number of cointegrating vectors, we start at left-top decision column in the column of “with 
constant”, and go to right-top decision column in the column of “without constant,” and move to next 
row sequentially until we find the F (fail to reject). 
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Table 3.5.  Schwarz Loss and Hannan and Quinn’s Phi Metrics on One to Ten Lags 
and One to Eight Ranks on Logarithmic VECM on Daily Natural Gas Prices from 
Eight North American Spot Markets1  

  1-Rank 2-Rank 3-Rank 4-Rank 5-Rank 6-Rank 7-Rank 8-Rank 

1-Lag SL -50.8174 -50.9283 -51.0279 -51.0968 -51.1087 -51.1240* -51.1181 -51.1002 
 HQ -50.9025 -51.0535 -51.1881 -51.2870 -51.3240 -51.3593 -51.3684 -51.3605 

2-Lags SL -50.9306 -50.9718 -51.0066 -51.0462 -51.0448 -51.0396 -51.0281 -51.0106 
 HQ -51.2161 -51.2973 51.36728 -51.4368 -51.4605 -51.4754 -51.4788 -51.4714 

3-Lags SL -50.8556 -50.8783 -50.9001 -50.9254 -50.9176 -50.8992 -50.8780 -50.8602 
 HQ -51.3417 -51.4045 -51.4614 -51.5168 -51.5340 -51.5357* -51.5295 -51.5217 

4-Lags SL -50.5958 -50.6317 -50.6518 -50.6571 -50.6459 -50.6230 -50.5983 -50.5802 
 HQ -51.2828 -51.3588 -51.4140 -51.4494 -51.4633 -51.4604 -51.4508 -51.4427 

5-Lags SL -50.3851 -50.4143 -50.4275 -50.4212 -50.4016 -50.3796 -50.3539 -50.3355 
 HQ -51.2732 -51.3426 -51.3909 -51.4147 -51.4202 -51.4183 -51.4076 -51.3992 

6-Lags SL -50.1437 -50.1504 -50.1511 -50.1467 -50.1323 -50.1070 -50.0845 -50.0662 
 HQ -51.2332 -51.2801 -51.3159 -51.3416 -51.3524 -51.3472 -51.3396 -51.3314 

7-Lags SL -49.8847 -49.8833 -49.8839 -49.8744 -49.8535 -49.8263 -49.8026 -49.7836 
 HQ -51.1759 -51.2146 -51.2503 -51.2710 -51.2752 -51.2681 -51.2595 -51.2505 

8-Lags SL -49.6520 -49.6364 -49.6284 -49.6167 -49.5977 -49.5690 -49.5434 -49.5243 
 HQ -51.1449 -51.1696 -51.1968 -51.2152 -51.2214 -51.2128 -51.2022 -51.1935 

9-Lags SL -49.3470 -49.3417 -49.3205 -49.3047 -49.2835 -49.2541 -49.2292 -49.2099 
 HQ -51.0420 -51.0770 -51.0910 -51.1054 -51.1094 -51.1001 -51.0903 -51.0810 

10-Lags SL -49.0151 -49.0006 -48.9811 -48.9558 -48.9321 -48.9016 -48.8769 -48.8577 
 HQ -50.9125 -50.9382 -50.9540 -50.9589 -50.9604 -50.9500 -50.9404 -50.9312 

1.  The asterisk “*” indicates minimum values of Schwartz loss and Hannan and Quinn’s Phi metrics.  
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Table 3.6.  Tests of Exclusion of Each of Eight Natural Gas Spot Market in North 
America, HDD, and CDD from the Cointegration Space1 and Tests on Weak 
Exogeneity on Eight Natural Gas Spot Market in North America2 

Tests of Exclusion Tests on Weak Exogeneity Market Chi-Squared Test p-value Chi-Squared Test p-value 
AEC 68.43 .00 67.47 .00 
MAL 58.61 .00 26.24 .00 
OPA 76.25 .00 35.68 .00 
WAH 318.76 .00 79.86 .00 
HEN 212.06 .00 65.25 .00 
ONG 343.41 .00 100.02 .00 
CHI 193.90 .00 101.39 .00 
ELL 169.45 .00 131.47 .00 
HDD 24.00 .00 - - 
CDD 44.00 .00 - - 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  The null hypothesis of this test is that a market is not in the cointegration space.  Under the null 

hypothesis, the test statistic is distributed Chi-squared with six degrees of freedom.   
 
2.  The null hypothesis of this test is that a market is weakly exogenous with respect to perturbations in the 

cointegrating vectors.  Under the null hypothesis, the test statistic is distributed Chi-squared with six 
degrees of freedom.   
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Table 3.7.  Forecast Error Variance Decompositions from the VECM for Case I         
(OPA ← MAL, CHI ←ONG) 

Step AEC MAL OPA WAH HEN ONG CHI ELL 
AEC 

0 74.97 1.11 0.67 0.13 2.42 19.63 1.05 0.02 
1 73.12 1.93 0.90 0.48 3.43 18.53 1.10 0.52 

30 33.90 21.07 2.83 6.35 4.41 19.37 1.96 10.11 
MAL 

0 0.00 72.17 0.00 3.53 0.18 23.37 0.73 0.00 
1 0.05 71.24 0.02 4.68 0.37 22.70 0.84 0.08 

30 8.22 50.64 3.04 9.04 1.78 20.55 1.49 5.25 
OPA 

0 0.00 3.17 75.01 2.77 0.15 18.33 0.57 0.00 
1 0.13 3.95 74.03 2.74 0.08 18.63 0.38 0.06 

30 11.30 28.98 39.96 6.92 0.08 11.58 0.14 1.04 
WAH 

0 0.00 0.00 0.00 12.71 0.67 83.99 2.62 0.01 
1 0.02 0.07 0.00 10.69 1.29 84.77 2.43 0.73 

30 2.37 4.01 2.08 4.86 6.99 53.32 4.37 22.01 
HEN 

0 0.00 0.00 0.00 0.00 14.16 80.83 4.87 0.14 
1 0.01 0.01 0.05 0.07 13.92 79.97 4.60 1.37 

30 1.23 1.35 5.14 2.31 9.69 50.82 5.13 24.33 
ONG 

0 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 
1 0.00 0.07 0.00 0.33 0.53 98.39 0.14 0.54 

30 1.97 3.48 2.52 3.43 7.07 55.48 4.09 21.96 
CHI 

0 0.00 0.00 0.00 0.00 0.00 79.98 20.02 0.00 
1 0.00 0.08 0.01 0.01 0.27 81.49 17.32 0.83 

30 1.72 3.26 3.02 2.89 6.79 52.77 6.67 22.89 
ELL 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 
1 0.01 0.00 0.05 0.31 0.03 0.59 0.38 98.64 

30 1.19 1.44 4.40 2.45 5.41 30.37 4.77 49.68 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
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Table 3.8.  Forecast Error Variance Decompositions from the VECM for Case II     
(OPA ← MAL, CHI →ONG) 

Step AEC MAL OPA WAH HEN ONG CHI ELL 
AEC 

0 74.97 1.11 0.67 0.13 2.42 1.14 19.54 0.02 
1 73.12 1.93 0.90 0.48 3.43 0.98 18.65 0.52 

30 33.90 21.07 2.83 6.35 4.41 0.54 20.89 10.11 
MAL 

0 0.00 72.17 0.00 3.54 0.19 1.96 22.14 0.00 
1 0.05 71.24 0.02 4.68 0.37 1.73 21.82 0.08 

30 8.22 50.64 3.04 9.04 1.78 0.91 21.14 5.25 
OPA 

0 0.00 3.17 75.01 2.77 0.15 1.54 17.36 0.00 
1 0.13 3.95 74.03 2.74 0.08 1.99 17.02 0.06 

30 11.30 28.98 39.96 6.92 0.09 1.57 10.14 1.04 
WAH 

0 0.00 0.00 0.00 12.71 0.67 7.04 79.57 0.01 
1 0.02 0.07 0.00 10.69 1.29 7.43 79.77 0.73 

30 2.37 4.01 2.08 4.86 6.99 2.37 55.32 22.01 
HEN 

0 0.00 0.00 0.00 0.00 14.16 4.20 81.50 0.14 
1 0.01 0.01 0.05 0.07 13.92 4.34 80.23 1.37 

30 1.23 1.35 5.14 2.31 9.69 1.52 54.43 24.33 
ONG 

0 0.00 0.00 0.00 0.00 0.00 20.02 79.98 0.00 
1 0.00 0.07 0.00 0.33 0.53 17.87 80.66 0.54 

30 1.97 3.48 2.52 3.43 7.07 3.60 55.97 21.96 
CHI 

0 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 
1 0.00 0.08 0.01 0.01 0.27 0.25 98.56 0.83 

30 1.72 3.26 3.02 2.89 6.79 1.04 58.40 22.89 
ELL 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 
1 0.01 0.00 0.05 0.31 0.03 0.05 0.93 98.64 

30 1.19 1.44 4.40 2.45 5.41 0.38 35.05 49.68 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
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Table 3.9.  Forecast Error Variance Decompositions from the VECM for Case III    
(OPA → MAL, CHI ←ONG) 

Step AEC MAL OPA WAH HEN ONG CHI ELL   
AEC 

0 74.97 0.75 1.03 0.13 2.42 19.63 1.05 0.02 
1 73.12 1.37 1.46 0.48 3.43 18.53 1.10 0.52 

30 33.90 17.32 6.58 6.35 4.41 19.37 1.96 10.11 
MAL 

0 0.00 69.25 2.93 3.53 0.18 23.37 0.73 0.00 
1 0.05 67.99 3.28 4.68 0.37 22.70 0.84 0.08 

30 8.22 44.50 9.17 9.04 1.78 20.55 1.49 5.25 
OPA 

0 0.00 0.00 78.18 2.77 0.15 18.33 0.57 0.00 
1 0.13 0.09 77.89 2.74 0.08 18.63 0.38 0.06 

30 11.30 17.73 51.21 6.92 0.08 11.58 0.14 1.04 
WAH 

0 0.00 0.00 0.00 12.71 0.67 83.99 2.62 0.01 
1 0.02 0.07 0.00 10.69 1.29 84.77 2.43 0.73 

30 2.37 5.05 1.04 4.86 6.99 53.32 4.37 22.01 
HEN 

0 0.00 0.00 0.00 0.00 14.16 80.83 4.87 0.14 
1 0.01 0.02 0.04 0.07 13.92 79.97 4.60 1.37 

30 1.23 2.55 3.95 2.31 9.69 50.82 5.13 24.33 
ONG 

0 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 
1 0.00 0.07 0.00 0.33 0.53 98.39 0.14 0.54 

30 1.97 4.60 1.40 3.43 7.07 55.48 4.09 21.96 
CHI 

0 0.00 0.00 0.00 0.00 0.00 79.98 20.02 0.00 
1 0.00 0.08 0.00 0.01 0.27 81.49 17.32 0.83 

30 1.72 4.47 1.80 2.89 6.79 52.77 6.67 22.89 
ELL 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 
1 0.01 0.00 0.04 0.31 0.03 0.59 0.38 98.64 

30 1.19 2.55 3.30 2.45 5.41 30.37 4.77 49.68 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
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Table 3.10.  Forecast Error Variance Decompositions from the VECM for Case IV    
(OPA → MAL, CHI →ONG) 

Step AEC MAL OPA WAH HEN ONG CHI ELL 
AEC 

0 74.97 0.75 1.03 0.13 2.42 1.14 19.54 0.02 
1 73.12 1.37 1.46 0.48 3.43 0.98 18.65 0.52 

30 33.90 17.32 6.58 6.35 4.41 0.54 20.89 10.11 
MAL 

0 0.00 69.25 2.93 3.54 0.19 1.96 22.14 0.00 
1 0.05 67.99 3.28 4.68 0.37 1.73 21.82 0.08 

30 8.22 44.50 9.17 9.04 1.78 0.91 21.14 5.25 
OPA 

0 0.00 0.00 78.18 2.77 0.15 1.54 17.36 0.00 
1 0.13 0.09 77.89 2.74 0.08 1.99 17.02 0.06 

30 11.30 17.73 51.21 6.92 0.09 1.57 10.14 1.04 
WAH 

0 0.00 0.00 0.00 12.71 0.67 7.04 79.57 0.01 
1 0.02 0.07 0.00 10.69 1.29 7.43 79.77 0.73 

30 2.37 5.05 1.04 4.86 6.99 2.37 55.32 22.01 
HEN 

0 0.00 0.00 0.00 0.00 14.16 4.20 81.50 0.14 
1 0.01 0.02 0.04 0.07 13.92 4.34 80.23 1.37 

30 1.23 2.55 3.95 2.31 9.69 1.52 54.43 24.33 
ONG 

0 0.00 0.00 0.00 0.00 0.00 20.02 79.98 0.00 
1 0.00 0.07 0.00 0.33 0.53 17.87 80.66 0.54 

30 1.97 4.60 1.40 3.43 7.07 3.60 55.97 21.96 
CHI 

0 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 
1 0.00 0.08 0.00 0.01 0.27 0.25 98.56 0.83 

30 1.72 4.47 1.80 2.89 6.79 1.04 58.40 22.89 
ELL 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 
1 0.01 0.00 0.04 0.31 0.03 0.05 0.93 98.64 

30 1.19 2.55 3.30 2.45 5.41 0.38 35.05 49.68 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
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Table 4.1.  Estimated Coefficients and Associated p-values (in parentheses) for the 
Filtering Regressions  
 Market Constant HDDt-1 CDD t-1 

AEC 2.0931  0.0479  0.0158  
 (0.000)  (0.000)  (0.145)  

MAL 1.8918  0.1273  0.0723  
 (0.000)  (0.000)  (0.003)  

OPA 1.7839  0.0660  0.0307  
 (0.000)  (0.000)  (0.004)  

WAH 2.2335  0.0575  0.0570  
 (0.000)  (0.000)  (0.000)  

HEN 2.3713  0.0562  0.0529  
 (0.000)  (0.000)  (0.000)  

ONG 2.2460  0.0563  0.0528  
 (0.000)  (0.000)  (0.000)  

CHI 2.3829  0.0608  0.0538  
 (0.000)  (0.000)  (0.000)  

ELL 2.3499  0.0870  0.0764  
 (0.000)  (0.000)  (0.000)  

Note: See list of acronyms in Appendix J for definitions of spot markets. 
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Table 4.2.  Schwarz Loss Metrics on One to Five Lags and One and Two 
Cointegrating Rank on VECM for Daily Natural Gas Prices from Seven Pairs of 
North American Spot Markets Using Filtered Data1  
Market Pairs   1-Lag 2-Lags 3-Lags 4-Lags 5-Lags 

AEC-CHI 1 Rank -6.071 -6.081 -6.122 -6.174 -6.218* 
 2 Rank -6.006 -6.076 -6.115 -6.167 -6.211 

MAL-CHI 1 Rank -2.420 -2.448 -2.430 -2.492 -2.495* 
 2 Rank -2.416 -2.443 -2.425 -2.486 -2.490 

OPA-CHI 1 Rank -5.627 -5.677 -5.700 -5.735* -5.724 
 2 Rank -5.624 -5.672 -5.694 -5.729 -5.718 

WAH-CHI 1 Rank -6.880 -6.922 -7.028 -7.071* -7.056 
 2 Rank -6.875 -6.915 -7.020 -7.063 -7.048 

HEN-CHI 1 Rank -7.004 -7.031 -7.158 -7.162* -7.151 
 2 Rank -6.999 -7.023 -7.150 -7.154 -7.144 

ONG-CHI 1 Rank -6.611 -6.630 -6.791 -6.809* -6.799 
 2 Rank -6.606 -6.623 -6.783 -6.801 -6.791 

ELL-CHI 1 Rank -3.815 -3.827 -3.857 -3.889* -3.869 
 2 Rank -3.811 -3.822 -3.844 -3.882 -3.863 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  The asterisk “*” indicates minimum values of Schwartz loss metrics.  
  Schwarz loss is 
        SL = ln(det(∑)) + ((k)*8)*ln(T)/T,  
     where ∑ is the residual covariance matrix estimated with k regressors in each equation, T is the total 

number of observations in each series, det(∑) is the determinant of residual covariance matrix, and ln is 
natural logarithm.   
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Table 4.3.  Bootstrap p-values for Testing VECM Versus Three-Regime TVECM 
and Numbers of Observations in Each Regime Using Filtered Data1  

Market 
Pairs 

Bootstrap 
P-values 

No. of Obs in 
Regime 1 

No. of Obs in 
Regime 2 

No. of Obs in 
Regime 3 

AEC-CHI 0.00 289 263 731 
MAL-CHI 0.03 226 929 128 
OPA-CHI 0.00 135 145 1,003 
WAH-CHI 0.00 135 459 689 
HEN-CHI 0.00 163 993 127 
ONG-CHI 0.00 135 751 397 
ELL-CHI 0.00 137 1,019 127 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  The bootstrap p-values indicate the percentage of bootstrapped LR statistics, which exceed the 

observed LR statistics (Hansen, 1999).  Values smaller than the critical value (5% or 10%) imply that 
three-regime TVECM is significantly better than VECM (at 5% level or 10% level).  The VECM and 
three-regime TVECM are estimated with one known cointegrating vector (-1,1) at four lags.  Regime 1 
indicates the regime below the lower threshold value.  Regime 2 indicates the middle regime defined 
by the lower and upper threshold values.  Regime 3 represents the regime above the upper threshold 
value. 
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Table 4.4.  Schwarz Loss Metrics on VECM and Three-Regime TVECM at Four 
Lags Using Filtered Data1  

Models 
Market Pairs VECM2 TVECM 

AEC-CHI -5.391 -3.991 
MAL-CHI -1.695 -0.114 
OPA-CHI -4.956 -3.509 
WAH-CHI -6.260 -4.816 
HEN-CHI -6.360 -4.897 
ONG-CHI -5.391 -3.991 
ELL-CHI -1.695 -0.114 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  Schwarz loss is 
        SL = ln(det(∑)) + ((k)*8)*ln(T)/T,  

where ∑ is the residual covariance matrix estimated with k regressors in each equation, T is the total 
number of observations in each series, det(∑) is the determinant of residual covariance matrix, and ln 
is natural logarithm.   

 
2.  The VECM and three-regime TVECM are estimated with one known cointegrating vector (-1,1) at four 

lags.   
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Table 4.5. Estimated Threshold Values and Recovered Mean Values of Thresholds 
from Filtered Data and Numbers of Observation in Each Regime in Seven Market 
Pairs1 

)1(C  )2(C  )2(C - )1(C  
Average 

( )1(C , )2(C ) 
No. of Obs  
in Regime 1 

No. of Obs  
in Regime 2 

No. of Obs 
in Regime 3 Market 

Pairs Estimated Values Using Filtered Data 
AEC-CHI -0.1986 0.0167 0.2153 -0.0910 289 263 731 
MAL-CHI -0.8992 0.5923 1.4915 -0.1535 226 929 128 
OPA-CHI -0.7851 -0.2246 0.5605 -0.5049 135 145 1003 
WAH-CHI -0.0931 0.0076 0.1007 -0.0428 135 459 689 
HEN-CHI -0.0787 0.1125 0.1912 0.0169 163 993 127 
ONG-CHI -0.0980 0.0567 0.1547 -0.0207 135 751 397 
ELL-CHI -0.3901 0.3153 0.7054 -0.0374 137 1019 127 

 Recovered Mean Values 
AEC-CHI -0.8075 -0.5922 0.2153 n.a. n.a. n.a. n.a. 
MAL-CHI -0.6290 0.8625 1.4915 n.a. n.a. n.a. n.a. 
OPA-CHI -1.4458 -0.8853 0.5605 n.a. n.a. n.a. n.a. 
WAH-CHI -0.2593 -0.1586 0.1007 n.a. n.a. n.a. n.a. 
HEN-CHI -0.1408 0.0504 0.1912 n.a. n.a. n.a. n.a. 
ONG-CHI -0.2847 -0.1300 0.1547 n.a. n.a. n.a. n.a. 
ELL-CHI -0.0460 0.6594 0.7054 n.a. n.a. n.a. n.a. 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1. )1(C  indicates estimated lower threshold value and )2(C  indicates estimated upper threshold value.  

The last three columns in estimated values using filtered data represent the number of observations in 
each regime.  The threshold values in recovered mean values represent the average values of each time-
varying thresholds.  Regime 1 indicates the regime below the lower threshold value.  Regime 2 indicates 
the middle regime defined by the lower and upper threshold values.  Regime 3 represents the regime 
above the upper threshold value.  “n.a.” indicates not applicable. 
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APPENDIX C 

NON-STATIONARY TESTS OF ELECTRICITY PRICES 
 
Table C1. Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF), and Associated 
Residual Tests of Non-Stationarity of 11 North American Electricity Spot Markets 
Using Non-Logarithmic Transformed Data and Robust Estimator 
  Dickey-Fuller Augmented Dickey-Fuller 
Market Test1 Q(15)2 Q(30)3 Test4 K5 Q(15)6 Q(30)7 
MIDC -1.44 160.84(0.00) 257.46(0.00) -1.55  6 16.91(0.32) 28.40(0.54) 
PV -2.07 294.63(0.00) 366.55(0.00) -2.03  4 87.87(0.00) 142.35(0.00) 
FC -2.13 246.59(0.00) 302.37(0.00) -1.52  7 30.25(0.01) 85.31(0.00) 
NEPL -2.31 69.45(0.00) 118.83(0.00) -2.17  4 34.33(0.00) 67.82(0.00) 
PJM -3.69 194.34(0.00) 246.18(0.00) -2.65  4 46.75(0.00) 126.39(0.00) 
ECAR -1.79 136.78(0.00) 321.81(0.00) -2.20  2 47.19(0.00) 196.12(0.00) 
MAIN -1.75 142.42(0.00) 235.35(0.00) -2.74  1 29.48(0.01) 106.15(0.00) 
MAPP -2.12 99.76(0.00) 102.52(0.00) -3.02  2 11.40(0.72) 14.43(0.99) 
ENT -2.51 91.08(0.00) 174.49(0.00) -2.92  2 16.70(0.34) 105.30(0.00) 
SPP -1.76 78.33(0.00) 129.62(0.00) -1.86  4 15.60(0.41) 70.37(0.00) 
ERCOT -1.81 150.93(0.00) 177.75(0.00) -1.53  6 30.82(0.01) 58.41(0.00) 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  This column gives DF test statistics for the null hypothesis that price data for each spot market is non-

stationary in levels.  The DF test is based on an ordinary least squares regression of the first differences 
of prices from each market on a constant and one lag of the levels of prices from each market (Greene, 
2000).  The DF test statistics are the t-statistics of the estimated coefficient on the lagged levels 
variable from the test regression.  This t-statistic is not distributed as a standard t-distribution under the 
null hypothesis.  However, the 5% and 10% critical values (-2.89, -2.58) are given in Fuller (1976).  
The null hypothesis is rejected when the observed t-statistics are less than this critical value.  

 
2. 3.  These columns indicate associated Q-statistics with 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom. This Q-statistics is the Lung-Box statistics on the estimated 
residuals from the test regression. The p-value associated with this Q-statistic is given in parenthesis. 
The Q statistic is distributed chi-squared with maximum 36 degrees of freedom under the null in this 
case. The null hypothesis of white noise residuals is rejected when the Q value is large or the p-value is 
small.  

 
4. 5. ADF column refers to Augmented Dickey-Fuller test. In this test, the null hypothesis is same as DF 

test, but the regression form is modified from the DF test.  K lags of the dependent variable are 
included in the ADF regression.  ADF test statistics are the t-statistics of the estimated coefficient on 
the lagged level variable.  The critical value of the t-statistic is same as in DF test.  After the ADF 
regression is run using different K values ranging from 1 to 10, the lag number of K is determined by 
minimizing the Schwarz loss metric on values of K.  The ADF test statistics are reported using the 
value at K where Schwarz loss metric is minimized.  

 
6. 7. These columns indicate associated Q-statistics of 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom.  
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Table C2. Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF), and Associated 
Residual Tests of Non-Stationarity of 11 North American Electricity Spot Markets 
Using Logarithmic Transformed Data Without Using Robust Estimator 
  Dickey-Fuller Augmented Dickey-Fuller 
Market Test1 Q(15)2 Q(30)3 ADF4 K5 Q(15)6 Q(30)7 
MIDC -3.74 228.14(0.00) 335.47(0.00) -2.19   7 42.64(0.00) 105.17(0.00) 
PV -3.90 220.18(0.00) 388.26(0.00) -2.44  10 25.29(0.05) 81.83(0.00) 
FC -3.94 176.84(0.00) 276.28(0.00) -2.23   7 41.82(0.00) 92.33(0.00) 
NEPL -7.74 124.90(0.00) 176.47(0.00) -4.00   7 18.79(0.22) 50.48(0.01) 
PJM -9.80 175.27(0.00) 218.98(0.00) -7.78   3 44.20(0.00) 95.16(0.00) 
ECAR -9.77 176.12(0.00) 230.91(0.00) -8.23   3 29.07(0.02) 94.49(0.00) 
MAIN -10.43 97.27(0.00) 177.33(0.00) -9.55   2 25.26(0.05) 111.47(0.00) 
MAPP -8.68 68.21(0.00) 119.84(0.00) -7.95   2 16.37(0.36) 60.68(0.00) 
ENT -8.23 139.69(0.00) 227.05(0.00) -7.52   2 31.09(0.01) 119.15(0.00) 
SPP -8.49 105.15(0.00) 200.72(0.00) -7.97   2 33.94(0.00) 125.81(0.00) 
ERCOT -5.41 110.75(0.00) 141.61(0.00) -2.23   7 29.95(0.01) 55.03(0.00) 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  This column gives DF test statistics for the null hypothesis that price data for each spot market is non-

stationary in levels.  The DF test is based on an ordinary least squares regression of the first differences 
of prices from each market on a constant and one lag of the levels of prices from each market (Greene, 
2000).  The DF test statistics are the t-statistics of the estimated coefficient on the lagged levels 
variable from the test regression.  This t-statistic is not distributed as a standard t-distribution under the 
null hypothesis.  However, the 5% and 10% critical values (-2.89, -2.58) are given in Fuller (1976).  
The null hypothesis is rejected when the observed t-statistics are less than this critical value.  

 
2. 3.  These columns indicate associated Q-statistics with 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom. This Q-statistics is the Lung-Box statistics on the estimated 
residuals from the test regression. The p-value associated with this Q-statistic is given in parenthesis. 
The Q statistic is distributed chi-squared with maximum 36 degrees of freedom under the null in this 
case. The null hypothesis of white noise residuals is rejected when the Q value is large or the p-value is 
small.  

 
4. 5. ADF column refers to Augmented Dickey-Fuller test. In this test, the null hypothesis is same as DF 

test, but the regression form is modified from the DF test.  K lags of the dependent variable are 
included in the ADF regression.  ADF test statistics are the t-statistics of the estimated coefficient on 
the lagged level variable.  The critical value of the t-statistic is same as in DF test.  After the ADF 
regression is run using different K values ranging from 1 to 10, the lag number of K is determined by 
minimizing the Schwarz loss metric on values of K.  The ADF test statistics are reported using the 
value at K where Schwarz loss metric is minimized.  

 
6. 7. These columns indicate associated Q-statistics of 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom.  
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Table C3. Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF), and Associated 
Residual Tests of Non-Stationarity of 11 North American Electricity Spot Markets 
Using Non-Logarithmic Transformed Data Without Using Robust Estimator 
  Dickey-Fuller Augmented Dickey-Fuller 
Market Test1 Q(15)2 Q(30)3 ADF4 K5 Q(15)6 Q(30)7 
MIDC -15.35 160.84(0.00) 257.46(0.00) -5.98   6 16.91(0.32) 28.41(0.55) 
PV -6.38 294.63(0.00) 366.55(0.00) -3.41   7 45.62(0.00) 100.77(0.00) 
FC -6.47 246.59(0.00) 302.37(0.00) -3.36   7 30.25(0.01) 85.31(0.00) 
NEPL -12.39 69.45(0.00) 118.83(0.00) -8.41   4 34.33(0.00) 67.83(0.00) 
PJM -13.07 194.34(0.00) 246.18(0.00) -10.44   4 46.75(0.00) 126.39(0.00) 
ECAR -16.84 136.78(0.00) 321.81(0.00) -13.96   2 47.19(0.00) 196.12(0.00) 
MAIN -18.89 142.42(0.00) 235.35(0.00) -12.74   5 29.48(0.01) 106.15(0.00) 
MAPP -18.84 99.76(0.00) 102.52(0.00) -13.71   3 10.37(0.79) 13.44(0.99) 
ENT -18.17 91.08(0.00) 174.49(0.00) -13.74   2 16.70(0.34) 105.31(0.00) 
SPP -18.63 78.33(0.00) 129.62(0.00) -13.78   2 15.60(0.41) 70.37(0.00) 
ERCOT -8.75 150.93(0.00) 177.75(0.00) -6.02   6 30.82(0.01) 58.42(0.00) 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  This column gives DF test statistics for the null hypothesis that price data for each spot market is non-

stationary in levels.  The DF test is based on an ordinary least squares regression of the first differences 
of prices from each market on a constant and one lag of the levels of prices from each market (Greene, 
2000).  The DF test statistics are the t-statistics of the estimated coefficient on the lagged levels 
variable from the test regression.  This t-statistic is not distributed as a standard t-distribution under the 
null hypothesis.  However, the 5% and 10% critical values (-2.89, -2.58) are given in Fuller (1976).  
The null hypothesis is rejected when the observed t-statistics are less than this critical value.  

 
2. 3.  These columns indicate associated Q-statistics with 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom. This Q-statistics is the Lung-Box statistics on the estimated 
residuals from the test regression. The p-value associated with this Q-statistic is given in parenthesis. 
The Q statistic is distributed chi-squared with maximum 36 degrees of freedom under the null in this 
case. The null hypothesis of white noise residuals is rejected when the Q value is large or the p-value is 
small.  

 
4. 5. ADF column refers to Augmented Dickey-Fuller test. In this test, the null hypothesis is same as DF 

test, but the regression form is modified from the DF test.  K lags of the dependent variable are 
included in the ADF regression.  ADF test statistics are the t-statistics of the estimated coefficient on 
the lagged level variable.  The critical value of the t-statistic is same as in DF test.  After the ADF 
regression is run using different K values ranging from 1 to 10, the lag number of K is determined by 
minimizing the Schwarz loss metric on values of K.  The ADF test statistics are reported using the 
value at K where Schwarz loss metric is minimized.  

 
6. 7. These columns indicate associated Q-statistics of 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom.  
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APPENDIX D 

DEFINITION OF EQUIVALENCE CLASS 

 

Chickering (2003) provides a definition of equivalence class.  When two directed acyclic 

graphs (DAGs), G and G’are equivalent, it is said that these two DAGs are in same 

equivalence class.  To define equivalence classes of DAGs, equivalent DAGs must be 

defined.  To define equivalent DAGs, the concept of distributionally equivalent and 

independence equivalent must be defined first.  Two DAGs are distributionally 

equivalent if two corresponding Bayesian networks (a graphical model for probabilistic 

relationships among a set of variables; Heckerman, 1996) have the same probability 

distribution (Chickering, 2003, p. 510).  Two DAGs are independence equivalent if the 

independence constraints in the two DAGs are identical (Chickering, 2003, p. 510).  

When two DAGs are both distributionally and independence equivalent, it is said that 

those two DAGs are equivalent (Chickering, 2003, p. 510).  Consider the following 

DAGs examples suggested by Verma and Pearl (1991): 

(D.D.1)    (D.D.2)             
      A                A                  

             ↙ ↘          ↗ ↘               
            B      C       B       C             

↘ ↙         ↘ ↙               
      D                D                   

                ↓                ↓                   
                E                 E.                   
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The two DAGs, (D.D.1) and (D.D.2) are in an equivalence class (Verma and Pearl, 

1991).  Following the definition suggested by Chickering (2003), two DAGs have the 

same probability distribution: 

for DAG (D.D.1), Pr(A, B, C, D, E) = Pr(A) Pr(B|A) Pr(C|A) Pr(D|B,C) Pr(E|D), 

for DAG (D.D.2), Pr(A, B, C, D, E) = Pr(B) Pr(A|B) Pr(C|A) Pr(D|B,C) Pr(E|D), 

where Pr denotes probability, Pr(B|A) = Pr(B ∩ A) / Pr(A), and ∩ indicates the set 

operator of intersection.   

Here, for (D.D.1), because Pr(A) Pr(B ∩ A) / Pr(A) = Pr(B ∩ A),  

Pr(A, B, C, D, E) = Pr(B ∩ A) Pr(C|A) Pr(D|B,C) Pr(E|D).  For (D.D.2), Pr(A, B, C, D, 

E) is equal to Pr(A ∩ B) Pr(A|B) Pr(C|A) Pr(D|B,C) Pr(E|D) because Pr(B) Pr(A ∩ B) / 

Pr(B) = Pr(A ∩ B).  As a result, both joint probability distributions are the same. 

In addition, the two DAGs have the same independence constraints.  For two 

DAGs to be equivalent, all independence constraints that hold in DAG (D.D.1) must 

hold in DAG (D.D.2), and vice versa.  For example, the independence constraints such 

as B ⊥ C | A (The symbol “⊥” indicates independence and “|” denotes “conditioning on” 

or “given”.  So, this formula indicates that B and C are conditional independent given A),  

B ⊥ E | D, and C ⊥ E | D hold in two DAGs by the Markov condition assumption.  

Consequently, the DAGs (D.D.1) and (D.D.2) are in an equivalent class.   

Chickering (2003) cites Theorem 1 of Verma and Pearl (1991) to characterize the 

equivalence class:  Theorem 1 (Verma and Pearl, 1991): Two DAGs are equivalent if 

and only if they have the same skeletons and the same v-structure.  
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Here, the skeleton of any DAG is the undirected graph ignoring the directionality of 

every edge.  For example, the v-structure in DAG G is an ordered triple of nodes (A, B, 

C) such that G contains the directed edges A → B and B ← C, and A and C are not 

adjacent in G (Chickering, 2003, p. 511).  Consider the same examples used above.  It is 

straightforward to show the two DAGs (D.D.1) and (D.D.2) have the same skeletons and 

the same v-structure (B → D ← C).   

The v-structure, however, is not defined when a DAG has one edge as in the 

following two DAGs examples: 

 (D.D.4)       (D.D.5)                
      A                A                  

             ↙               ↗                   
            B      C       B       C.          

DAGs (D.D.4) and (D.D.5) are said to be in an equivalence class even though there is no 

v-structure in DAGs (Chickering, 2003).  Accordingly, Theorem 1 of Verma and Pearl 

(1991) should be modified to include the above cases ((D.D.4) and (D.D.5)) as follows: 

Theorem: Two DAGs are equivalent if and only if they have the same skeletons and the 

same v-structure or they have the same skeletons when the v-structure is not found in 

two DAGs. 
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APPENDIX E 

BAYESIAN SCORING CRITERION 

 

TETRAD IV uses the Bayesian scoring criterion in GES Algorithm for continuous data.  

The Bayesian scoring criterion for DAG G measures the relative log posterior 

probability of the hypothesis Gh that the independence constraints in G are the same as 

the independence constraints in the true structure (Chickering, 2003; Heckerman, 1996).   

The Bayesian Information Criterion approximation from Schwarz is expressed as 

follows (Chickering, 2003; Heckerman, 1996): 

(E.1)       S (G, D) = mdGDp h log
2

),|(log −
∧

θ , 

where 
∧

θ  denotes the maximum-likelihood estimate of the unknown parameters (θ : 

uncertain variable in Bayesian statistics and random variable in classical statistics), d 

denotes the number of free parameters (not equal to zero) of graph G, and m is the 

number of observations in data, D.  For continuous variables, the Gaussian distribution is 

assumed for the posterior probability distribution (Chickering, 2003; Heckerman, 1996).  

The S function considers the trade off between fit (the first term of right hand side) and 

parsimony (the second term of right hand side).   
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APPENDIX F 

NON-STATIONARY TESTS OF NATURAL GAS PRICES 
 
Table F1.  Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF), and Associated 
Residual Tests of Non-Stationarity of Eight North American Natural Gas Spot 
Markets Using Non-Logarithmic Transformed Data and Robust Estimator 
  Dickey-Fuller Augmented Dickey-Fuller 
Market Test1 Q(15)2 Q(30)3 Test4 K5 Q(15)6 Q(30)7 

AEC -0.75 136.24(0.00) 186.65(0.00) -0.66 2 53.94(0.00) 108.67(0.00) 
MAL -0.69 69.75(0.00) 80.61(0.00) -0.59 6 13.40(0.57) 26.63(0.64) 
OPA -1.27 185.97(0.00) 267.59(0.00) -0.90 6 35.35(0.00) 89.33(0.00) 
WAH -0.82 145.82(0.00) 242.42(0.00) -0.69 2 103.60(0.00) 190.10(0.00) 
HEN -0.73 134.94(0.00) 244.63(0.00) -0.96 10 24.57(0.06) 81.91(0.00) 
ONG -0.77 233.87(0.00) 383.34(0.00) -0.62 6 63.12(0.00) 123.07(0.00) 
CHI -0.75 288.25(0.00) 356.56(0.00) -0.53 7 107.46(0.00) 149.04(0.00) 
ELL -0.83 336.96(0.00) 362.48(0.00) -0.62 2 37.01(0.00) 55.39(0.00) 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  This column gives DF test statistics for the null hypothesis that price data for each spot market is non-

stationary in levels.  The DF test is based on an ordinary least squares regression of the first differences 
of prices from each market on a constant and one lag of the levels of prices from each market (Greene, 
2000).  The DF test statistics are the t-statistics of the estimated coefficient on the lagged levels 
variable from the test regression.  This t-statistic is not distributed as a standard t-distribution under the 
null hypothesis.  However, the 5% and 10% critical values (-2.89, -2.58) are given in Fuller (1976).  
The null hypothesis is rejected when the observed t-statistics are less than this critical value.  

 
2. 3.  These columns indicate associated Q-statistics with 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom. This Q-statistics is the Lung-Box statistics on the estimated 
residuals from the test regression. The p-value associated with this Q-statistic is given in parenthesis. 
The Q statistic is distributed chi-squared with maximum 36 degrees of freedom under the null in this 
case. The null hypothesis of white noise residuals is rejected when the Q value is large or the p-value is 
small.  

 
4. 5. ADF column refers to Augmented Dickey-Fuller test. In this test, the null hypothesis is same as DF 

test, but the regression form is modified from the DF test.  K lags of the dependent variable are 
included in the ADF regression.  ADF test statistics are the t-statistics of the estimated coefficient on 
the lagged level variable.  The critical value of the t-statistic is same as in DF test.  After the ADF 
regression is run using different K values ranging from 1 to 10, the lag number of K is determined by 
minimizing the Schwarz loss metric on values of K.  The ADF test statistics are reported using the 
value at K where Schwarz loss metric is minimized.  

 
6. 7. These columns indicate associated Q-statistics of 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom.  
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Table F2.  Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF), and Associated 
Residual Tests of Non-Stationarity of Eight North American Natural Gas Spot 
Markets Using Logarithmic Transformed Data Without Using Robust Estimator 
  Dickey-Fuller Augmented Dickey-Fuller 
Market Test1 Q(15)2 Q(30)3 Test4 K5 Q(15)6 Q(30)7 

AEC -3.10 139.14(0.00) 160.47(0.00) -2.19 2 15.46(0.21) 31.72(0.38) 
MAL -2.86 122.02(0.00) 192.72(0.00) -2.26 10 7.07(0.95) 38.00(0.14) 
OPA -4.14 324.42(0.00) 370.05(0.00) -2.59 5 20.49(0.15) 58.69(0.00) 
WAH -2.19 100.50(0.00) 162.49(0.00) -1.80 2 39.04(0.00) 87.86(0.00) 
HEN -2.00 53.49(0.00) 80.55(0.00) -1.69 2 16.79(0.33) 44.79(0.04) 
ONG -2.18 58.46(0.00) 106.22(0.00) -1.85 2 33.38(0.00) 78.21(0.00) 
CHI -2.21 48.24(0.00) 80.90(0.00) -1.87 2 26.68(0.03) 59.25(0.00) 
ELL -3.11 47.85(0.00) 63.51(0.00) -2.71 1 31.35(0.01) 49.61(0.01) 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  This column gives DF test statistics for the null hypothesis that price data for each spot market is non-

stationary in levels.  The DF test is based on an ordinary least squares regression of the first differences 
of prices from each market on a constant and one lag of the levels of prices from each market (Greene, 
2000).  The DF test statistics are the t-statistics of the estimated coefficient on the lagged levels 
variable from the test regression.  This t-statistic is not distributed as a standard t-distribution under the 
null hypothesis.  However, the 5% and 10% critical values (-2.89, -2.58) are given in Fuller (1976).  
The null hypothesis is rejected when the observed t-statistics are less than this critical value.  

 
2. 3.  These columns indicate associated Q-statistics with 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom. This Q-statistics is the Lung-Box statistics on the estimated 
residuals from the test regression. The p-value associated with this Q-statistic is given in parenthesis. 
The Q statistic is distributed chi-squared with maximum 36 degrees of freedom under the null in this 
case. The null hypothesis of white noise residuals is rejected when the Q value is large or the p-value is 
small.  

 
4. 5. ADF column refers to Augmented Dickey-Fuller test. In this test, the null hypothesis is same as DF 

test, but the regression form is modified from the DF test.  K lags of the dependent variable are 
included in the ADF regression.  ADF test statistics are the t-statistics of the estimated coefficient on 
the lagged level variable.  The critical value of the t-statistic is same as in DF test.  After the ADF 
regression is run using different K values ranging from 1 to 10, the lag number of K is determined by 
minimizing the Schwarz loss metric on values of K.  The ADF test statistics are reported using the 
value at K where Schwarz loss metric is minimized.  

 
6. 7. These columns indicate associated Q-statistics of 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom.  
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Table F3.  Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF), and Associated 
Residual Tests of Non-Stationarity of Eight North American Natural Gas Spot 
Markets Using Non-Logarithmic Transformed Data without Using Robust 
Estimator 

 Dickey-Fuller Augmented Dickey-Fuller 
Market Test1 Q(15)2 Q(30)3 Test4 K5 Q(15)6 Q(30)7 

AEC -2.76 136.24(0.00) 186.65(0.00) -1.96 2 53.94(0.00) 108.67(0.00) 
MAL -6.43 69.75(0.00) 80.61(0.00) -3.93 6 13.40(0.57) 26.63(0.64) 
OPA -2.84 185.97(0.00) 267.59(0.00) -1.92 6 35.35(0.00) 89.33(0.00) 
WAH -2.19 145.82(0.00) 242.42(0.00) -1.77 2 103.60(0.00) 190.10(0.00) 
HEN -1.98 134.94(0.00) 244.63(0.00) -2.26 10 24.57(0.06) 81.91(0.00) 
ONG -2.45 233.87(0.00) 383.34(0.00) -1.72 6 63.12(0.00) 123.07(0.00) 
CHI -3.08 288.25(0.00) 356.56(0.00) -1.71 7 107.46(0.00) 149.04(0.00) 
ELL -5.78 336.96(0.00) 362.48(0.00) -2.74 2 37.01(0.00) 55.39(0.00) 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  This column gives DF test statistics for the null hypothesis that price data for each spot market is non-

stationary in levels.  The DF test is based on an ordinary least squares regression of the first differences 
of prices from each market on a constant and one lag of the levels of prices from each market (Greene, 
2000).  The DF test statistics are the t-statistics of the estimated coefficient on the lagged levels 
variable from the test regression.  This t-statistic is not distributed as a standard t-distribution under the 
null hypothesis.  However, the 5% and 10% critical values (-2.89, -2.58) are given in Fuller (1976).  
The null hypothesis is rejected when the observed t-statistics are less than this critical value.  

 
2. 3.  These columns indicate associated Q-statistics with 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom. This Q-statistics is the Lung-Box statistics on the estimated 
residuals from the test regression. The p-value associated with this Q-statistic is given in parenthesis. 
The Q statistic is distributed chi-squared with maximum 36 degrees of freedom under the null in this 
case. The null hypothesis of white noise residuals is rejected when the Q value is large or the p-value is 
small.  

 
4. 5. ADF column refers to Augmented Dickey-Fuller test. In this test, the null hypothesis is same as DF 

test, but the regression form is modified from the DF test.  K lags of the dependent variable are 
included in the ADF regression.  ADF test statistics are the t-statistics of the estimated coefficient on 
the lagged level variable.  The critical value of the t-statistic is same as in DF test.  After the ADF 
regression is run using different K values ranging from 1 to 10, the lag number of K is determined by 
minimizing the Schwarz loss metric on values of K.  The ADF test statistics are reported using the 
value at K where Schwarz loss metric is minimized.  

 
6. 7. These columns indicate associated Q-statistics of 15 degrees of freedom and the associated Q-

statistics of 30 degrees of freedom.  
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APPENDIX G 

ESTIMATION RESULTS OF VECM 
 

Table G1.  Estimated Elements of β Matrix1 

 
  AEC 0.917 2.029 -0.536 -0.584 -6.638 -0.949  
  MAL 0.130 -2.091 -0.120 -0.126 1.045 5.786  
  OPA 0.004 -2.179 -1.139 0.318 2.190 -3.162  
  WAH -42.292 9.546 26.715 -3.343 -1.237 -3.109  
  HEN -4.235 -41.837 -14.348 -10.611 -3.042 -1.238  
    β =  ONG 48.212 11.437 12.635 -10.814 5.635 -2.567  
  CHI -5.124 24.213 -27.726 17.902 2.866 4.306  
  ELL 2.481 -1.408 4.100 7.746 -0.096 -0.718  
  HDD -0.003 0.027 -0.039 -0.034 -0.022 -0.001  
  CDD 0.053 0.015 -0.118 0.004 -0.048 -0.004  
  CONT 0.167 0.486 2.565 -2.045 -1.100 0.689  
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1. The values in parenthesis indicate t-values.  CONT is the constant. 
 

Table G2.  Estimated Elements of α Matrix1 

 
  -0.004 -0.010 0.006 0.008 0.010 0.005  
  (-1.972) (-4.697) (2.714) (4.176) (4.871) (2.656)  
  -0.004 -0.002 0.003 0.004 -0.007 -0.009  
  (-1.956) (-1.024) (1.120) (1.795) (-2.909) (-4.069)  
  0.006 0.004 0.007 0.003 -0.012 0.013  
  (2.047) (1.566) (2.419) (1.065) (-4.472) (4.611)  
  0.005 -0.007 0.000 0.007 -0.005 0.002  
 α = (3.829) (-5.052) (-0.185) (5.412) (-3.505) (1.833)  
  0.000 -0.001 0.005 0.007 -0.003 0.002  
  (0.299) (-0.636) (4.639) (6.130) (-2.617) (1.981)  
  -0.006 -0.007 0.002 0.008 -0.005 0.003  
  (-4.344) (-5.702) (1.656) (5.946) (-3.769) (2.095)  
  0.003 -0.008 0.008 0.004 -0.004 0.002  
  (1.998) (-6.522) (6.170) (3.263) (-3.346) (1.857)  
  -0.009 0.007 -0.007 -0.017 0.001 0.003  
  (-4.957) (4.000) (-4.065) (-9.286) (0.447) (1.883)  
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1. The values in parenthesis indicate t-values.  CONT is the constant. 
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Table G3.  Estimated Elements of Π Matrix1 

 
  AEC MAL OPA WAH HEN ONG CHI ELL HDD CDD CONT  
  -0.102 0.059 0.022 0.168 0.211 -0.283 -0.160 0.087 -0.001 -0.001 -0.016  

  (-7.045) (4.672) (2.346) (1.619) (2.260) (-2.641) (-1.893) (4.631) (-7.639) (-5.202) (-2.166)  
  0.041 -0.058 0.018 0.26 0.069 -0.269 -0.091 0.042 0.000 0.000 -0.003  
  (2.483) (-4.012) (1.751) (2.211) (0.653) (-2.227) (-0.951) (1.978) (-0.973) (-0.606) (-0.344)  
  0.079 0.052 -0.084 -0.054 -0.313 0.275 -0.038 0.051 0.000 0.000 0.037  
  (4.001) (2.975) (-6.598) (-0.379) (-2.452) (1.874) (-0.325) (1.964) (-0.007) (0.334) (3.709)  
  0.015 0.022 -0.001 -0.303 0.192 0.054 -0.054 0.073 0.000 0.000 -0.011  
  (1.649) (2.778) (-0.111) (-4.586) (3.248) (0.788) (-1.012) (6.143) (-3.988) (2.403) (-2.312)  
  0.010 0.010 -0.016 0.096 -0.119 -0.024 -0.041 0.079 0.000 0.000 0.004  
  (1.182) (1.404) (-3.046) (1.600) (-2.200) (-0.387) (-0.837) (7.244) (-5.632) (-2.859) (0.938)  
  0.004 0.024 -0.003 0.194 0.229 -0.441 -0.073 0.063 0.000 0.000 -0.007  
  (0.438) (2.978) (-0.538) (2.968) (3.907) (-6.548) (-1.372) (5.295) (-5.251) (-2.224) (-1.633)  
  0.005 0.025 -0.006 0.007 0.190 0.052 -0.359 0.081 -0.001 -0.001 0.014  
  (0.539) (3.203) (-1.085) (0.108) (3.256) (0.775) (-6.792) (6.890) (-7.437) (-3.966) (3.161)  
  0.012 0.007 -0.022 0.296 0.012 -0.264 0.141 -0.195 0.001 0.000 0.019  
  (0.903) (0.643) (-2.631) (3.204) (0.149) (-2.783) (1.878) (-11.67) (9.366) (1.503) (2.942)  
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1. The values in parenthesis are t-values.  CONT is the constant. 
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APPENDIX H 

LAG SEARCH, p-VALUES, AND ESTIMATION OF THRESHOLD 
VALUES 

 
Table H1.  Schwarz Loss Metrics on One to Five Lags and One to Two Rank on 
VECM on Daily Natural Gas Prices from Seven Pairs of North American Spot 
Markets Using Filtered and Logarithmic Transformed Data1  

Market  
Pairs   1-Lag 2-Lags 3-Lags 4-Lags 5-Lags 

AEC-CHI 1 Rank -11.346 -11.421* -11.413 -11.394 -11.409 
 2 Rank -11.339 -11.414 -11.406 -11.386 -11.401 

MAL-CHI 1 Rank -11.026 -11.044* -11.032 -11.020 -11.004 
 2 Rank -11.019 -11.037 -11.023 -11.012 -10.996 

OPA-CHI 1 Rank -10.580 -10.684 -10.701 -10.701 -10.721* 

 2 Rank -10.574 -10.677 -10.693 -10.692 -10.713 
WAH-CHI 1 Rank -13.540 -13.573 -13.573 -13.576* -13.557 

 2 Rank -13.533 -13.565 -13.565 -13.567 -13.549 
HEN-CHI 1 Rank -13.832 -13.864* -13.847 -13.840 -13.827 

 2 Rank -13.825 -13.856 -13.839 -13.831 -13.819 
ONG-CHI 1 Rank -13.538 -13.551* -13.550 -13.537 -13.518 

 2 Rank -13.531 -13.544 -13.541 -13.528 -13.510 
ELL-CHI 1 Rank -11.241 -11.255* -11.240 -11.221 -11.209 

  2 Rank -11.234 -11.247 -11.232 -11.213 -11.201 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1. The asterisk “*” indicates minimum values of Schwartz loss metrics.  
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Table H2.  Schwarz Loss Metrics on One to Five Lags and One to Two Rank on 
VECM on Daily Natural Gas Prices from Seven Pairs of North American Spot 
Markets Using Unfiltered and Logarithmic Transformed Data1 

Market 
Pairs   1-Lag 2-Lags 3-Lags 4-Lags 5-Lags 

AEC-CHI 1 Rank -11.5980 -11.6589* -11.6399 -11.6191 -11.6257 
 2 Rank -11.5902 -11.6509 -11.6318 -11.6111 -11.6176 

MAL-CHI 1 Rank -11.2872 -11.2897* -11.2694 -11.2558 -11.2413 
 2 Rank -11.2794 -11.2811 -11.2608 -11.2473 -11.2331 

OPA-CHI 1 Rank -10.8379 -10.9322 -10.9463 -10.9446 -10.9709* 
 2 Rank -10.8301 -10.9237 -10.9378 -10.9361 -10.9627 

WAH-CHI 1 Rank -13.7808 -13.7929* -13.7815 -13.7892 -13.7743 
 2 Rank -13.7730 -13.7842 -13.7728 -13.7806 -13.7660 

HEN-CHI 1 Rank -14.0820 -14.0880* -14.0693 -14.0600 -14.0453 
 2 Rank -14.0740 -14.0792 -14.0605 -14.0514 -14.0368 

ONG-CHI 1 Rank -13.7892* -13.7833 -13.7734 -13.7592 -13.7412 
 2 Rank -13.7813 -13.7747 -13.7648 -13.7506 -13.7329 

ELL-CHI 1 Rank -11.6067* -11.6054 -11.5830 -11.5606 -11.5463 
 2 Rank -11.5984 -11.5968 -11.5744 -11.5522 -11.5378 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1. The asterisk “*” indicates minimum values of Schwartz loss metrics.  
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Table H3.  Bootstrap p-values For Testing VECM Versus Three-Regime TVECM 
Using Filtered and Logarithmic Transformed Data and Unfiltered and Logarithmic 
Transformed Data1         

Bootstrap p-value   
Market 
Pairs 

Filtered and Logarithmic 
Transformed data 

Unfiltered and Logarithmic 
Transformed data 

AEC-CHI 0.00 0.00 
MAL-CHI 0.00 0.08 
OPA-CHI 0.00 0.00 
WAH-CHI 0.00 0.00 
HEN-CHI 0.00 0.00 
ONG-CHI 0.00 0.00 
ELL-CHI 0.00 0.00 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  The bootstrap p-values indicate the percentage of bootstrapped LR statistics, which exceed the 

observed LR statistics (Hansen, 1999).  Values smaller than the critical value (5% or 10%) imply that 
three-regime TVECM is significantly better than VECM (at 5% level or 10% level).  The VECM and 
three-regime TVECM are estimated with one known cointegrating vector (-1,1) at four lags.  
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Table H4.  Schwarz Loss Metrics on VECM and Three-regime TVECM with One 
to Five Lags Using Filtered and Non-Logarithmic Transformed Data1         

1-Lag 2-Lags 3-Lags 4-Lags 5-Lags   
Market  
Pairs I2 III I III I III I III I III 

AEC-CHI -5.754 -5.198 -5.611 -4.735 -5.494 -4.398 -5.391 -3.991 -5.193 -3.546 
MAL-CHI -2.100 -1.427 -1.967 -0.984 -1.795 -0.479 -1.695 -0.114 -1.453 0.360 
OPA-CHI -5.312 -4.757 -5.208 -4.322 -5.077 -3.950 -4.956 -3.509 -4.700 -3.030 
WAH-CHI -6.544 -5.878 -6.426 -5.450 -6.359 -5.158 -6.260 -4.816 -6.005 -4.366 
HEN-CHI -6.679 -6.026 -6.549 -5.586 -6.505 -5.335 -6.360 -4.897 -6.106 -4.444 
ONG-CHI -6.265 -5.610 -6.125 -5.167 -6.103 -4.958 -5.983 -4.577 -5.733 -4.051 
ELL-CHI -3.490 -3.153 -3.351 -2.674 -3.213 -2.319 -3.104 -2.063 -2.838 -1.645 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  Schwarz loss is 
        SL = ln(det(∑)) + ((k)*8)*ln(T)/T,  

where ∑ is the residual covariance matrix estimated with k regressors in each equation, T is the total 
number of observations in each series, det(∑) is the determinant of residual covariance matrix, and ln 
is natural logarithm.   

 
2. I indicates the linear VECM and III represents the three-regime TVECM.  
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Table H5.  Schwarz Loss Metrics on VECM and Three-regime TVECM with One 
to Five Lags Using Filtered and Logarithmic Transformed Data1         

1-Lag 2-Lags 3-Lags 4-Lags 5-Lags Market  
Pairs I2 III I III I III I III I III 

AEC-CHI -11.031 -10.494 -10.952 -10.094 -10.790 -9.592 -10.615 -9.094 -10.386 -8.624 
MAL-CHI -10.707 -10.053 -10.569 -9.553 -10.400 -9.047 -10.234 -8.535 -9.972 -8.022 
OPA-CHI -10.268 -9.663 -10.217 -9.240 -10.078 -8.761 -9.923 -8.330 -9.699 -7.818 
WAH-CHI -13.225 -12.572 -13.102 -12.111 -12.945 -11.671 -12.794 -11.193 -12.531 -10.680 
HEN-CHI -13.520 -12.870 -13.397 -12.405 -13.225 -11.890 -13.062 -11.420 -12.805 -10.914 
ONG-CHI -13.225 -12.605 -13.082 -12.094 -12.924 -11.597 -12.757 -11.106 -12.494 -10.597 
ELL-CHI -10.929 -10.279 -10.787 -9.803 -10.617 -9.292 -10.442 -8.787 -10.185 -8.287 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  Schwarz loss is 
        SL = ln(det(∑)) + ((k)*8)*ln(T)/T,  

where ∑ is the residual covariance matrix estimated with k regressors in each equation, T is the total 
number of observations in each series, det(∑) is the determinant of residual covariance matrix, and ln 
is natural logarithm.   

 
2. I indicates the linear VECM and III represents the three-regime TVECM.  
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Table H6.  Schwarz Loss Metrics on VECM and Three-regime TVECM with One 
to Five Lags Using Unfiltered and Logarithmic Transformed Data1         

1-Lag 2-Lags 3-Lags 4-Lags 5-Lags Market  
Pairs I2 III I III I III I III I III 

AEC-CHI -11.285 -10.779 -11.191 -10.368 -11.016 -9.853 -10.840 -9.349 -10.602 -8.868 
MAL-CHI -10.968 -10.289 -10.814 -9.790 -10.638 -9.278 -10.470 -8.776 -10.210 -8.273 
OPA-CHI -10.526 -9.920 -10.465 -9.477 -10.324 -8.990 -10.167 -8.530 -9.948 -8.049 
WAH-CHI -13.467 -12.804 -13.323 -12.345 -13.155 -11.902 -13.008 -11.430 -12.749 -10.930 
HEN-CHI -13.771 -13.103 -13.621 -12.627 -13.447 -12.167 -13.282 -11.663 -13.023 -11.175 
ONG-CHI -13.476 -12.824 -13.314 -12.322 -13.148 -11.834 -12.978 -11.339 -12.716 -10.814 
ELL-CHI -11.295 -10.664 -11.138 -10.212 -10.960 -9.699 -10.783 -9.203 -10.524 -8.711 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  Schwarz loss is 
        SL = ln(det(∑)) + ((k)*8)*ln(T)/T,  

where ∑ is the residual covariance matrix estimated with k regressors in each equation, T is the total 
number of observations in each series, det(∑) is the determinant of residual covariance matrix, and ln 
is natural logarithm.   

 
2. I indicates the linear VECM and III represents the three-regime TVECM.  
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Table H7.  Estimated Threshold Values and Numbers of Observations in Each 
Regime in Seven Market Pairs Using Unfiltered and Logarithmic Transformed 
Data 1 

Market 
Pairs )1(C  )2(C  )2(C - )1(C  

Average 
( )1(C , )2(C ) 

No. of Obs 
in  Regime 1 

No. of Obs 
in Regime 2 

No. of Obs 
in Regime 3 

AEC-CHI 0.6278 0.9051 0.2774 0.7664 151 989 146 
MAL-CHI 0.8428 0.9425 0.0997 0.8927 155 477 654 
OPA-CHI 0.6140 0.7455 0.1315 0.6798 146 144 996 
WAH-CHI 0.9180 0.9692 0.0512 0.9436 157 854 275 
HEN-CHI 0.9685 0.9833 0.0148 0.9759 266 365 655 
ONG-CHI 0.9355 0.9437 0.0083 0.9396 418 180 688 
ELL-CHI 1.0123 1.1923 0.1800 1.1023 172 942 172 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1. )1(C  indicates estimated lower threshold value and )2(C  indicates estimated upper threshold value.  

The last three columns represent the number of observations in each regime.  The logarithmic values of 
thresholds are converted using exponent.  Regime 1 indicates the regime below the lower threshold 
value.  Regime 2 indicates the middle regime defined by the lower and upper threshold values.  
Regime 3 represents the regime above the upper threshold value. 
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Table H8.  Estimated Threshold Values and Numbers of Observations in Each 
Regime in Seven Market Pairs Using Filtered and Logarithmic Transformed Data 1 

Market 
Pairs )1(C  )2(C  )2(C - )1(C  

Average 
( )1(C , )2(C ) 

No. of Obs 
in  Regime 1 

No. of Obs 
in Regime 2 

No. of Obs 
in Regime 3 

AEC-CHI 0.8274 1.0978 0.2704 0.9626 159 790 336 
MAL-CHI 0.8498 1.1159 0.2661 0.9829 152 900 233 
OPA-CHI 0.8479 1.1117 0.2638 0.9798 167 697 421 
WAH-CHI 0.9705 1.0233 0.0527 0.9969 145 915 225 
HEN-CHI 1.0078 1.0160 0.0082 1.0119 846 157 282 
ONG-CHI 1.0005 1.0070 0.0065 1.0038 584 149 552 
ELL-CHI 0.9047 0.9706 0.0660 0.9376 152 345 788 

Note: See list of acronyms in Appendix J for definitions of spot markets. 
1. )1(C  indicates estimated lower threshold value and )2(C  indicates estimated upper threshold value.  

The last three columns represent the number of observations in each regime.  The logarithmic values of 
thresholds are converted using exponent.  Regime 1 indicates the regime below the lower threshold 
value.  Regime 2 indicates the middle regime defined by the lower and upper threshold values.  
Regime 3 represents the regime above the upper threshold value. 

 
 



 

 

178 
 

 
 

 
 

 
 

APPENDIX I 

ESTIMATION RESULTS OF TVECM 
 
Table I1. Estimated Coefficients of Three-Regime TVECM for AEC-CHI1 

  Regime 1 Regime 2 Regime 3 
 Coefficients t-ratio Coefficients t-ratio Coefficients t-ratio 
ContCHI 0.1045 4.0038 -0.0246 -1.3443 0.0444 1.9304 
αCHI 0.3234 6.7941 0.1568 2.2022 0.3924 1.7636 
∆Pt-1,CHI 0.0608 1.1922 -0.3449 -3.9016 -0.7109 -7.5387 
∆Pt-2,CHI -0.3946 -6.1656 0.5097 5.1123 0.5402 4.8667 
∆Pt-3,CHI 0.2550 4.3147 -0.2984 -4.7290 -0.2504 -2.1907 
∆Pt-4,CHI -0.1441 -1.6659 0.1806 2.1917 0.0205 0.1755 
∆Pt-1,AEC 0.3933 7.5635 -0.2650 -3.3001 0.2316 2.2398 
∆Pt-2,AEC -0.4425 -5.3442 0.0659 0.7202 0.1743 1.5209 
∆Pt-3,AEC -0.2141 -4.2312 -0.0845 -1.0917 -0.1967 -1.8013 
∆Pt-4,AEC 0.0259 0.3036 -0.1060 -1.2156 0.4801 4.0447 
ContAEC 0.0288 1.0435 0.0309 1.4174 -0.0027 -0.1765 
αAEC 0.3531 1.3230 0.0687 1.7305 0.0056 0.0944 
∆Pt-1,AEC -1.0647 -9.4138 0.0201 0.4729 -0.0513 -0.6961 
∆Pt-2,AEC 1.0476 7.8708 -0.4270 -8.0113 0.1000 1.2034 
∆Pt-3,AEC -0.3958 -2.8848 0.2189 4.4402 -0.0897 -1.7053 
∆Pt-4,AEC 0.1703 1.2156 -0.3545 -4.9168 0.0130 0.1892 
∆Pt-1,CHI 0.1701 1.3707 0.0484 1.1178 -0.1496 -2.2362 
∆Pt-2,CHI 0.2172 1.5796 -0.2292 -3.3217 0.0015 0.0197 
∆Pt-3,CHI -0.2463 -1.8802 0.0069 0.1635 0.0363 0.5628 
∆Pt-4,CHI 0.6240 4.3789 -0.2779 -3.9086 -0.0078 -0.1073 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  CONT represents the constant.   Regime 1 indicates the regime below the lower threshold value.  

Regime 2 indicates the middle regime defined by the lower and upper threshold values.  Regime 3 
represents the regime above the upper threshold value. 
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Table I2. Estimated Coefficients of Three-Regime TVECM for MAL-CHI1 
  Regime 1 Regime 2 Regime 3 
 Coefficients t-ratio Coefficients t-ratio Coefficients t-ratio 
ContCHI -0.1315 -1.7463 -0.0635 -2.4237 -0.0015 -0.0361 
αCHI -0.1164 -2.0034 0.0243 5.1702 -0.0940 -0.8777 
∆Pt-1,CHI -0.1633 -2.0362 -0.0327 -0.6399 -0.0758 -0.2626 
∆Pt-2,CHI 0.1016 2.0862 0.1092 16.8000 -0.0404 -0.2489 
∆Pt-3,CHI -0.3212 -2.4880 -0.1578 -4.1746 -0.1157 -0.3817 
∆Pt-4,CHI 0.0794 1.2890 -0.0458 -4.9247 -0.1645 -1.0545 
∆Pt-1,MAL -0.1838 -1.4943 0.3982 9.0090 -0.1788 -0.7905 
∆Pt-2,MAL 0.0164 0.2898 0.0031 0.3780 -0.1507 -1.0968 
∆Pt-3,MAL -0.2202 -2.2401 -0.0972 -3.0857 -0.0012 -0.0054 
∆Pt-4,MAL -0.0153 -0.3000 -0.1048 -11.3913 -0.1631 -1.4472 
ContMAL -0.0077 -0.8953 -0.3545 -0.9726 0.5785 4.5587 
αMAL -0.0421 -1.9050 -0.3206 -1.1409 -0.1989 -8.8400 
∆Pt-1,MAL 0.0089 0.1493 0.1777 0.4575 -1.5196 -6.1472 
∆Pt-2,MAL -0.0122 -0.3642 -0.0222 -0.0942 0.0134 0.4295 
∆Pt-3,MAL -0.0500 -0.7987 -0.6378 -1.0208 0.2932 1.6031 
∆Pt-4,MAL -0.0911 -2.8292 0.2134 0.7159 0.3221 7.1419 
∆Pt-1,CHI -0.0199 -0.4261 -0.5245 -0.8811 0.4607 2.1528 
∆Pt-2,CHI -0.0722 -2.5423 0.1673 0.6106 -0.1271 -3.2177 
∆Pt-3,CHI -0.3190 -6.9197 -0.0871 -0.1831 0.5240 3.4338 
∆Pt-4,CHI 0.0725 3.1116 -0.0154 -0.0624 -0.0490 -1.0938 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  CONT represents the constant.   Regime 1 indicates the regime below the lower threshold value.  

Regime 2 indicates the middle regime defined by the lower and upper threshold values.  Regime 3 
represents the regime above the upper threshold value. 
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Table I3. Estimated Coefficients of Three-Regime TVECM for OPA-CHI1 
  Regime 1 Regime 2 Regime 3 
 Coefficients t-ratio Coefficients t-ratio Coefficients t-ratio 
ContCHI 0.5266 6.4534 0.0224 1.6000 -0.0301 -0.4181 
αCHI 0.4099 6.7864 -0.0516 -1.1862 -0.0180 -0.1286 
∆Pt-1,CHI -0.1094 -2.0037 -0.1779 -2.1748 0.2814 3.5219 
∆Pt-2,CHI -0.1555 -2.0116 0.0876 1.1984 -0.2999 -3.4196 
∆Pt-3,CHI 0.2179 3.2866 -0.1727 -2.0246 -0.2618 -4.3779 
∆Pt-4,CHI -0.1335 -1.8263 -0.0452 -0.5855 0.0332 0.4134 
∆Pt-1,OPA 0.3516 5.9796 0.0893 1.0159 -0.3874 -6.3612 
∆Pt-2,OPA 0.1553 2.2249 -0.0851 -1.0442 -0.0530 -0.7020 
∆Pt-3,OPA -0.2048 -3.3740 -0.0546 -0.6312 -0.4494 -7.8842 
∆Pt-4,OPA 0.1085 1.5049 0.0838 1.0744 0.1941 2.5573 
ContOPA -0.0338 -0.4289 0.0654 0.8767 0.0210 1.6535 
αOPA -0.0467 -0.3048 0.0226 0.4102 -0.0726 -1.8241 
∆Pt-1,OPA -0.0052 -0.0595 -0.1286 -2.5772 0.0943 1.2607 
∆Pt-2,OPA 0.0009 0.0094 -0.0808 -1.1445 -0.1535 -2.3013 
∆Pt-3,OPA -0.2887 -4.4076 0.1758 2.9010 0.0173 0.2221 
∆Pt-4,OPA 0.0569 0.6473 -0.4619 -6.9250 -0.2478 -3.5149 
∆Pt-1,CHI -0.4764 -7.1532 0.1327 2.4711 0.0677 0.8431 
∆Pt-2,CHI 0.0942 1.1404 -0.1880 -2.9467 -0.1430 -1.9195 
∆Pt-3,CHI -0.4636 -7.4295 -0.1123 -2.0234 0.0936 1.1848 
∆Pt-4,CHI 0.0801 0.9639 -0.0746 -1.1337 -0.0650 -0.9116 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  CONT represents the constant.   Regime 1 indicates the regime below the lower threshold value.  

Regime 2 indicates the middle regime defined by the lower and upper threshold values.  Regime 3 
represents the regime above the upper threshold value. 
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Table I4. Estimated Coefficients of Three-Regime TVECM for WAH-CHI1 
  Regime 1 Regime 2 Regime 3 
 Coefficients t-ratio Coefficients t-ratio Coefficients t-ratio 
ContCHI 0.1043 3.8918 0.0074 0.4512 0.0016 0.1053 
αCHI 0.3935 5.6295 0.0111 0.0614 0.3365 0.9670 
∆Pt-1,CHI 0.0072 0.0910 -0.5609 -3.5034 0.6397 3.2017 
∆Pt-2,CHI -0.2438 -1.8126 0.5904 3.6831 -0.6186 -3.0353 
∆Pt-3,CHI 0.3716 4.2860 -0.1354 -1.3210 -0.0453 -0.2320 
∆Pt-4,CHI -0.6779 -5.0779 -0.0640 -0.5498 -0.2006 -1.0015 
∆Pt-1,WAH -0.1567 -1.6724 0.1058 1.0475 0.4821 2.7176 
∆Pt-2,WAH 0.5733 4.1394 -0.2801 -2.4810 -0.5562 -3.1212 
∆Pt-3,WAH -0.9208 -12.0052 0.1643 1.5559 0.3017 1.8880 
∆Pt-4,WAH 1.3016 10.4968 -0.1645 -1.3964 -0.3592 -2.2255 
ContWAH 0.0003 0.0156 0.0460 2.1801 0.0236 1.8154 
αWAH 0.4601 1.0447 0.0133 0.2405 -0.3387 -2.3718 
∆Pt-1,WAH 0.4264 1.6860 0.1363 2.1808 -0.3422 -2.7051 
∆Pt-2,WAH -0.3663 -1.4198 -0.4452 -4.1881 0.3756 2.9668 
∆Pt-3,WAH -0.1362 -0.5510 0.1061 1.5489 -0.1587 -1.9593 
∆Pt-4,WAH -0.0735 -0.2899 -0.3904 -3.7005 -0.0899 -0.9772 
∆Pt-1,CHI 0.4418 1.9671 -0.1810 -2.4459 0.0531 0.6654 
∆Pt-2,CHI -0.4704 -2.0851 0.1309 1.1965 -0.1906 -2.1368 
∆Pt-3,CHI 0.2717 1.3437 -0.4842 -7.9901 0.2243 2.6894 
∆Pt-4,CHI -0.2952 -1.4449 0.4821 4.9244 -0.2297 -2.4672 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  CONT represents the constant.   Regime 1 indicates the regime below the lower threshold value.  

Regime 2 indicates the middle regime defined by the lower and upper threshold values.  Regime 3 
represents the regime above the upper threshold value. 
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Table I5. Estimated Coefficients of  Three-Regime TVECM for HEN-CHI1 
  Regime 1 Regime 2 Regime 3 
 Coefficients t-ratio Coefficients t-ratio Coefficients t-ratio 
ContCHI 0.0823 3.4435 -0.0073 -0.1221 -0.0012 -0.1905 
αCHI 0.7570 9.6803 0.4838 1.5754 0.1484 1.1320 
∆Pt-1,CHI -0.0293 -0.3649 -0.0919 -0.2750 -0.1713 -2.0564 
∆Pt-2,CHI -0.0122 -0.0912 0.2512 0.7285 0.1991 1.9910 
∆Pt-3,CHI 0.6703 6.7164 0.0656 0.2042 -0.3819 -5.1678 
∆Pt-4,CHI -0.7078 -4.6444 -0.0723 -0.2152 0.1760 1.9405 
∆Pt-1,HEN 0.4247 4.0104 0.1966 1.3484 -0.4504 -3.1191 
∆Pt-2,HEN 0.0380 0.2545 -0.3142 -1.7761 0.3870 2.4713 
∆Pt-3,HEN 0.0897 0.8726 0.3332 2.3220 -0.4689 -7.0300 
∆Pt-4,HEN 0.1443 1.0745 -0.4888 -2.6696 0.5135 5.9988 
ContHEN -0.0031 -0.3605 0.0050 0.2825 -0.0124 -0.2805 
αHEN 0.2797 1.5767 0.1486 2.5709 0.3843 1.6937 
∆Pt-1,HEN -0.1986 -1.7622 0.0587 0.9899 0.2104 0.8522 
∆Pt-2,HEN 0.2364 1.7459 -0.1907 -1.9302 -0.1282 -0.5031 
∆Pt-3,HEN -0.3023 -3.0230 0.2737 3.7137 0.1530 0.6445 
∆Pt-4,HEN 0.0679 0.5534 -0.4037 -3.5853 -0.2009 -0.8091 
∆Pt-1,CHI -0.5085 -2.6024 -0.0010 -0.0128 0.1107 1.0279 
∆Pt-2,CHI 0.4021 1.8976 0.0701 0.6355 -0.1953 -1.4943 
∆Pt-3,CHI -0.7014 -7.7674 0.0048 0.0632 0.3329 3.1406 
∆Pt-4,CHI 0.7474 6.4542 -0.0380 -0.3831 -0.5020 -3.7103 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  CONT represents the constant.   Regime 1 indicates the regime below the lower threshold value.  

Regime 2 indicates the middle regime defined by the lower and upper threshold values.  Regime 3 
represents the regime above the upper threshold value. 
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Table I6. Estimated Coefficients of Three-Regime TVECM for ONG-CHI1 
  Regime 1 Regime 2 Regime 3 
 Coefficients t-ratio Coefficients t-ratio Coefficients t-ratio 
ContCHI  0.1072 4.0000 -0.0439 -1.1285 -0.0055 -0.6707 
αCHI 0.3054 4.8399 0.5819 1.6970 0.0821 0.4121 
∆Pt-1,CHI -0.0483 -0.7241 -0.4696 -2.0742 0.1481 0.7630 
∆Pt-2,CHI -0.2622 -2.6948 0.6695 2.8870 -0.2422 -1.2074 
∆Pt-3,CHI -0.0349 -0.5073 -0.0803 -0.3115 0.3883 2.2748 
∆Pt-4,CHI -0.2325 -2.4019 -0.0124 -0.0458 -0.6527 -3.5667 
∆Pt-1,ONG 0.0317 0.3875 0.3275 2.8478 -0.0282 -0.1555 
∆Pt-2,ONG 0.3682 3.3656 -0.5493 -4.4478 -0.1257 -0.6623 
∆Pt-3,ONG -0.4330 -6.0559 0.3587 2.8446 -0.0486 -0.3030 
∆Pt-4,ONG 0.3146 3.3186 -0.3779 -2.6575 0.0583 0.3506 
ContONG -0.0065 -0.6436 0.0404 1.8618 -0.0411 -1.3006 
αONG 0.2043 0.8312 -0.0938 -1.8356 0.4724 1.6999 
∆Pt-1,ONG -0.1846 -0.7708 0.0739 1.3660 -0.0577 -0.3144 
∆Pt-2,ONG 0.1227 0.4958 -0.4426 -5.6168 0.2347 1.2484 
∆Pt-3,ONG 0.1826 0.8670 -0.1394 -2.4982 0.0665 0.3182 
∆Pt-4,ONG -0.4310 -1.9096 -0.1407 -1.7924 -0.1535 -0.6990 
∆Pt-1,CHI -0.1976 -0.8829 -0.2403 -3.6244 0.2120 2.2747 
∆Pt-2,CHI 0.0653 0.2788 0.1659 1.8703 -0.4017 -4.0130 
∆Pt-3,CHI -0.1151 -0.5816 -0.3194 -5.5164 0.5800 5.6751 
∆Pt-4,CHI 0.1217 0.5931 0.0225 0.2926 -0.6059 -5.2550 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  CONT represents the constant.   Regime 1 indicates the regime below the lower threshold value.  

Regime 2 indicates the middle regime defined by the lower and upper threshold values.  Regime 3 
represents the regime above the upper threshold value. 
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Table I7. Estimated Coefficients of Three-Regime TVECM for ELL-CHI1 
  Regime 1 Regime 2 Regime 3 
 Coefficients t-ratio Coefficients t-ratio Coefficients t-ratio 
ContCHI 0.3579 6.3011 0.0943 3.2075 -0.0014 -0.1120 
αCHI 0.6900 6.0954 -0.0287 -1.0996 -0.2189 -2.9422 
∆Pt-1,CHI -0.1307 -1.9192 0.1158 1.7545 0.1795 2.0775 
∆Pt-2,CHI 0.2399 2.6076 0.0221 0.8805 -0.0901 -1.3039 
∆Pt-3,CHI -0.3199 -4.8840 -0.2819 -4.7699 -0.0850 -0.9269 
∆Pt-4,CHI -0.0007 -0.0104 0.0360 1.4754 -0.0340 -0.4620 
∆Pt-1,ELL -0.3384 -5.0282 0.6386 10.2504 -0.1849 -2.2467 
∆Pt-2,ELL 0.2956 3.9049 0.0920 3.8819 -0.0560 -0.8023 
∆Pt-3,ELL -0.2899 -3.9767 -0.4140 -8.2635 -0.0048 -0.0700 
∆Pt-4,ELL 0.0968 1.2670 0.0484 2.6304 -0.0573 -1.0956 
ContELL 0.0030 0.3750 -0.2747 -3.0970 0.2600 5.6645 
αELL 0.0135 0.2830 -0.6973 -3.9462 -0.4301 -10.5417 
∆Pt-1,ELL 0.0873 1.5758 -0.6181 -5.8092 0.9397 9.1233 
∆Pt-2,ELL -0.1059 -2.3959 -0.6605 -4.5964 -0.2513 -6.4107 
∆Pt-3,ELL -0.1160 -1.9761 -0.6006 -5.8767 0.0961 1.0412 
∆Pt-4,ELL -0.0606 -1.2866 0.1497 1.4217 0.0233 0.6115 
∆Pt-1,CHI -0.0891 -1.6907 -1.2142 -11.5528 -0.0483 -0.4964 
∆Pt-2,CHI -0.0150 -0.3356 -0.0388 -0.3283 0.0821 2.2189 
∆Pt-3,CHI -0.0609 -1.3841 0.8008 7.0307 -0.1079 -1.3780 
∆Pt-4,CHI -0.0310 -0.9254 0.8639 7.2414 0.0139 0.4860 
Note: See list of acronyms in Appendix J for definitions of spot markets. 
1.  CONT represents the constant.   Regime 1 indicates the regime below the lower threshold value.  

Regime 2 indicates the middle regime defined by the lower and upper threshold values.  Regime 3 
represents the regime above the upper threshold value. 
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APPENDIX J 

LIST OF ACRONYMS 

J1. List of Acronyms of Electricity Spot Markets 
 
MIDC: Mid-Columbia  

PV: Palo Verde 

FC: Four Corners 

PJM: Pennsylvania-New Jersey-Maryland 

NEPL: Northeast Power Pool 

MAPP: Mid-Continent Area Power Pool  

MAIN: Mid-America Interconnected Network 

ECAR: East Central Area Reliability Coordination Agreement 

SPP: Southwest Power Pool 

ENT: Entergy 

ERCOT: Electric Reliability Council of Texas 

 
J2. List of Acronyms of Natural Gas Spot Markets 
 
WAH: Waha Hub, Texas 

HEN: Henry Hub, Louisiana 

ONG: ONG Hub, Oklahoma 

OPA: Opal Hub, Wyoming 

CHI: Chicago Hub, Illinois 

ELL: Ellisburg-Leidy Hub, Pennsylvania 

MAL: Malin Hub, Oregon 

AEC: AECO Hub, Alberta, Canada 
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