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ABSTRACT 

 
Estimation and Prediction of Travel Time from Loop Detector Data for Intelligent 

Transportation Systems Applications. (August 2004) 

Lelitha Devi Vanajakshi, B.Tech., University of Kerala, India; 

M.Tech., University of Kerala, India 

Chair of Advisory Committee: Dr. Laurence R. Rilett 

 
 
 

With the advent of Advanced Traveler Information Systems (ATIS), short-term travel time 

prediction is becoming increasingly important. Travel time can be obtained directly from 

instrumented test vehicles, license plate matching, probe vehicles etc., or from indirect methods 

such as loop detectors. Because of their wide spread deployment, travel time estimation from 

loop detector data is one of the most widely used methods. However, the major criticism about 

loop detector data is the high probability of error due to the prevalence of equipment 

malfunctions. This dissertation presents methodologies for estimating and predicting travel time 

from the loop detector data after correcting for errors. The methodology is a multi-stage process, 

and includes the correction of data, estimation of travel time and prediction of travel time, and 

each stage involves the judicious use of suitable techniques. The various techniques selected for 

each of these stages are detailed below. The test sites are from the freeways in San Antonio, 

Texas, which are equipped with dual inductance loop detectors and AVI.  

 

• Constrained non-linear optimization approach by Generalized Reduced Gradient (GRG) 

method for data reduction and quality control, which included a check for the accuracy 

of data from a series of detectors for conservation of vehicles, in addition to the 

commonly adopted checks.  

• A theoretical model based on traffic flow theory for travel time estimation for both off-

peak and peak traffic conditions using flow, occupancy and speed values obtained from 

detectors.  

• Application of a recently developed technique called Support Vector Machines (SVM) 

for travel time prediction. An Artificial Neural Network (ANN) method is also 

developed for comparison.  



 iv

 

Thus, a complete system for the estimation and prediction of travel time from loop detector data 

is detailed in this dissertation. Simulated data from CORSIM simulation software is used for the 

validation of the results.
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CHAPTER I 

INTRODUCTION1 
 
 

Travel time is a fundamental measure in transportation engineering that can be understood and 

communicated by a wide variety of audience, including engineers, planners, administrators, and 

commuters.  As a performance measure and decision-making variable, travel time is useful in 

many aspects of transportation planning, modeling, and decision-making applications. These 

applications include traffic and performance monitoring, congestion management, travel demand 

modeling and forecasting, traffic simulation, air quality analysis, evaluation of travel demand, 

and traffic operations strategies. Travel time information is becoming increasingly important for 

a variety of real-time transportation applications.  These real-time applications include Advanced 

Traveler Information Systems (ATIS), Route Guidance Systems (RGS), etc., which are part of 

the Intelligent Transportation Systems (ITS).  Thus, providing travelers with accurate and timely 

information to allow them to make decisions regarding route selection is one of the important 

applications that use travel time information in recent times.   

 

The increasing reliance on travel time information indicates a need to measure travel time 

accurately and cost effectively.  The traditional method for measuring travel time has been the 

“test vehicle method,” where travel time is collected manually or automatically using vehicles 

that are specifically dispatched to drive with the traffic stream for the specific purpose of data 

collection.  Several other travel time measurement techniques have emerged in recent times with 

the advent of portable computers and fast communication systems.  Essentially, the available 

travel time measurement techniques can be divided into two broad categories, namely, direct 

methods and indirect methods.  In the case of direct methods, travel time is collected directly 

from the field.   These methods include test vehicles, license plate matching, electronic Distance 

Measuring Instruments (DMI), video imaging, and probe vehicle techniques like Automatic 

Vehicle Identification (AVI) and Automatic Vehicle Location (AVL).  In the indirect methods, 

travel time is estimated or calculated from other directly measured parameters like speed.   Some 

examples of indirect sources of travel time are Inductance Loop Detectors (ILD), weigh-in-

                                                 
This dissertation follows the style and format of the ASCE Journal of Transportation Engineering. 



 2

motion (WIM) stations, and aerial video (Travel Time Data Collection Handbook 1998; Turner 

1996; Liu 2000).   

 

While probe vehicle techniques like AVI and AVL have less error, they are more expensive and 

often require new types of sensors as well as public participation, and hence, they are not widely 

deployed (Turner 1996).   Video imaging techniques lead to public disapproval because of 

privacy issues.  Test vehicle techniques like DMI, even though cost effective, are limited to a 

few measurements per day per personnel and are only as accurate as the driver’s judgment of 

traffic conditions.  Moreover, the test vehicle method and license plate matching are time 

consuming, labor intensive, and expensive for collecting large amounts of data.  Weigh-in-

motion stations can collect data from only a selected group of vehicles, whereas aerial 

photography is not very popular due to the prohibitive cost involved in using it. 

 

On the other hand, freeways in most metropolitan areas in North America are instrumented with 

loop detectors, which make them the best source of traffic data over a wide area.  Hence, even 

though there are different techniques available for direct measurement of travel time, none of 

them are as popular and as inexpensive as loop detectors.  Also, loop detectors provide an 

advantage when travel time data collection is required on a continuous basis over a long period 

of time.  However, one of the major criticisms about loop detector data is the high probability of 

error due to the prevalence of equipment malfunctions.  Thus, there is a need to check the 

accuracy of the data collected by the loop detectors before the data can be used for subsequent 

applications such as travel time estimation. 

 

1.1 STATEMENT OF THE PROBLEM 

 

Given the extensive use of travel time for numerous transportation applications, and the 

popularity of ILD data, there is a need to investigate methods to estimate travel time from this 

data.  Also, drivers are interested in knowing how long it will take them to reach their 

destination, especially in urban freeway conditions, which makes prediction of travel time into 

future time steps important.  However, loop detector data have inherent problems, such as 

detectors not responding at certain times, undercounting or overcounting the vehicles etc.   
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This leads to the first step of the present study, namely, checking the loop detector data for 

accuracy and finding a reliable method to correct any discrepancies.  Even though there are 

many methods suggested in the literature for checking the loop detector data for accuracy at 

individual locations at a fixed time, there are not many tests available to check these data 

systematically over space and time.  Thus, there is limited knowledge about the accuracy of loop 

detector data when observed as a series of detectors over a long interval of time, and how this 

data accuracy affects the accuracy of the final result.  When loop detectors are investigated in 

series, a check for conservation of vehicles becomes necessary.  Here, conservation of vehicles 

implies that the inflow of vehicles into any road section should equal the sum of the outflow of 

vehicles from that section and the number of vehicles within that section of road.   Thus, the 

cumulative vehicle flow at the downstream location cannot exceed the cumulative flow at the 

upstream location for the same time period.  In addition, the maximum difference between the 

upstream and downstream location cumulative flows cannot exceed the maximum number of 

vehicles that can be accommodated on the length of road between these two detector locations.   

In reality, even after correction at individual locations using standard error correction 

procedures, vehicle volumes obtained from adjacent loop detector locations may not comply 

with the conservation principle when the detectors are investigated as a series over a long 

interval of time.  Thus, there is a need for a systematic method to check for the conservation of 

vehicles and to correct whenever the detector data violate the principle.  The method selected 

should be able to preserve the integrity of the observed data as much as possible while correcting 

the data to follow the conservation of vehicles principle.  Also, this method should be able to 

handle large amount of data in a systematic manner in a short computation time. 

 

The challenge of providing travelers with accurate and timely travel time information for 

departure time decision, route selection decision etc., requires faster and more accurate methods 

of estimating and predicting travel time.  There are different methods available to calculate travel 

time from loop detector data, the most popular among them being extrapolation of the point 

speed values.  However, it is known that the accuracy of these speed-based methods reduces as 

the vehicle flow becomes larger.  Other widely reported methods include statistical models and 

models based on the traffic flow theory, the majority of which are developed for either free-flow 

or congested-flow condition only.  Thus, there is a need for an economically viable and accurate 

method of estimating travel time from loop detector data based on the theory of traffic flow that 
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can be used under varying traffic flow conditions.  Also, there is a need for a faster and more 

accurate method of predicting the estimated travel time into future time steps to inform drivers in 

real-time about expected traffic conditions.  This is important since the success of the ITS 

applications depends on the accuracy of this predicted travel time. 

 
1.2 RESEARCH OBJECTIVES 

 

This dissertation presents the development of a complete system for the estimation and 

prediction of travel time from dual-loop detector data.  As discussed in earlier sections, there are 

errors in ILD data, which are unidentified when checked at individual locations.  These errors 

become very significant when considering a series of loop detectors for a long period of time.  

The first objective of this dissertation work is to monitor a series of loop detectors for a long 

interval of time to determine whether the conservation of vehicles is satisfied.  If there is a 

violation of the conservation of vehicles, a nonlinear, constrained optimization procedure will be 

used to correct the discrepancies.  This dissertation work is one of the first attempts to monitor a 

series of detectors for conservation of vehicles and, when violated correct them systematically 

using an optimization technique.  The validity of this technique is verified using simulated data 

generated using CORSIM simulation software.  The detector network and the traffic volumes 

will be simulated based on the field data in order to mimic the actual field conditions. 

 

The optimized data will be used as input for a theoretical model developed for the estimation of 

travel time.  Travel time will also be estimated using the nonoptimized original data, to illustrate 

the improvement in the result due to optimization.  The estimated travel time is compared with 

ground-truth data from AVI.  Simulated data from CORSIM was also used to check the accuracy 

of the developed techniques.  The estimated travel time will then be forecast to the future time 

step using Artificial Neural Network (ANN) and Support Vector Machine (SVM) techniques. 

This dissertation is one of the first studies to explore the use of SVM for the prediction of traffic 

variables. The accuracy of the predicted results will be verified using the test data used in the 

ANN and SVM techniques.  Based on the details given above, the proposed research objectives 

can be summarized as follows: 
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• Development of a nonlinear, constrained optimization method to analyze and correct a 

series of loop detector data such that the principle of conservation of vehicles is satisfied 

at all times. 

• Simulation of data from CORSIM simulation software to validate the optimization 

results. 

• Development of an analytical model based on traffic flow theory to estimate travel time 

from loop detector data, taking into account varying traffic flow conditions. 

• Validation of the results with field data collected using AVI and simulated data from 

CORSIM. 

• Comparison of the estimated travel time results with results generated using some of the 

existing methods for travel time estimation. 

• Development of a support vector machine model for the forecasting of travel time into 

future time steps. 

• Development of an ANN model for the forecasting of travel time into future time steps. 

• Comparison of the SVM and ANN model results to evaluate their performance in the 

travel time prediction application, with respect to real-time and historic methods. 

 

1.3 RESEARCH METHODOLOGY 

 

1.3.1 Literature Review 

 
A comprehensive review of the literature was conducted covering many aspects of loop detector 

data collection and the procedures for travel time estimation and prediction.  Literature specific 

to data collection using loop detectors, accuracy of loop detector data, methods for correcting the 

loop detector data, conservation of vehicles, and methods for travel time estimation and 

prediction from loop detector data were researched.  Also, literature on optimization, ANN, and 

SVM applications were reviewed. 

1.3.2 Study Design and Data Collection 

 

Study design included the selection of the study corridors for data collection.  The data were 

collected from the TransGuide Project area in San Antonio (TransGuide Technical Paper 2002).  
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Loop detector and AVI data were needed for the present study and, hence, corridors equipped 

with both loops and AVI were selected.  Even though previous studies (Turner et al. 2000; Gold 

et al. 2001; Eisele 2001) have shown the occurrence of errors in the ILD data, it was reported 

that the frequency and the amount of missing data are lower  at the TransGuide project area in 

San Antonio, when compared with other freeways in North America that are equipped with loop 

detectors.  The study design task included selection of corridors equipped with both AVI and 

loop detectors to match the requirements of the present study.  The test beds for this dissertation 

were selected from the I-35 freeway on the northeast side of San Antonio, since that was the only 

section equipped with both loop detectors and AVI.  The selected section is approximately 2 

miles in length and included five consecutive detectors in series.  The main lane loops were 

placed approximately 0.5 miles apart.  Because the study involves input-output analysis, data 

from the on-ramp and off-ramp detectors placed between the main lane detectors were also 

collected.  The data were analyzed for continuous 24-hour periods for 5 consecutive days 

starting from February10, 2003, Monday to February 14, 2003, Friday.  AVI data were also 

collected from the same section.   

 

Simulated data were generated using the simulation software CORSIM for testing the accuracy 

of the techniques employed in the work.  A traffic network similar to the field test bed was coded 

in CORSIM, and detectors were placed approximately 0.5 miles apart.  Traffic volumes similar 

to the field volume were generated in CORSIM. The output obtained from CORSIM was used to 

check the validity of the optimization technique and travel time estimation procedure. 

1.3.3 Preliminary Analysis of the Data 

 

After the collection of the field data, extensive data reduction and quality control were required 

to identify and correct any discrepancies.  Quality control and analysis included checking for 

missing data and threshold checking of the speed, volume, and occupancy observations, 

individually as well as in combination at individual locations.  The polling cycle of the 

TransGuide detector system during the data collection was 20 seconds, but the cycle 

occasionally skipped to 60 or 90 seconds, leading to missing data.  The threshold value test 

compared speed, volume, and occupancy in each individual record of the data set with 

predefined threshold values.   
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1.3.4 Optimization  

 

After the preliminary checks and corrections, the data were checked as a series for conservation 

of vehicles.  In the present study data from a series of five detectors collected over 24-hour 

periods were analyzed in order to check whether the data obeyed the vehicle conservation 

principle.  A methodology based on the Generalized Reduced Gradient (GRG) optimization was 

developed to automatically remove discrepancies from the data when the conservation principle 

was violated.  GRG is a nonlinear optimization technique that can take into account nonlinear 

constraints.  In addition to data correction, this method was useful in identifying the 

malfunctioning detector locations among all the detector stations analyzed and ranking them 

based on their performance.  This was carried out by checking the data from the individual 

detector stations and determining which ones get changed the most after optimization.  The 

optimization technique developed can also be used for imputing missing data if a detector 

location stops recording data for a short time due to malfunctioning.  The imputed values will be 

based on the data from the upstream and downstream detector stations.  The usefulness of the 

developed procedure was first checked using simulated data obtained from the CORSIM 

simulation software by introducing synthetic errors in the simulated data and then optimizing the 

data to check for the robustness of the procedure. 

1.3.5 Estimation of Travel Time  

 

A travel time estimation procedure was developed which can be used for both peak, off-peak, 

and transition period traffic flow conditions.  The methodology proposed is based on a 

theoretical model suggested by Nam and Drew (1999) for the estimation of travel time from flow 

data obtained from loop detectors.  The model by Nam and Drew is a dynamic traffic flow model 

based on the characteristics of the stochastic vehicle counting process and the principle of 

conservation of vehicles.  The model estimates speed and travel time as a function of time 

directly from flow measurements.  This dissertation incorporated several modifications to this 

theoretical model such that the model can be used for long analysis intervals and for varying 

traffic flow conditions.  The proposed model is based on the traffic flow theory and uses flow, 

occupancy, and speed data from the detectors as input.  An average travel time for all the 

vehicles that travel during a particular time interval between two selected locations was 
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calculated as output.   The validity of the model was first checked using simulated data obtained 

from the CORSIM simulation software.  Validation of the results while using field data was 

carried out using AVI travel time data. The performance of the proposed method was also 

compared with the performance of the extrapolation method, which is the most popular travel 

time estimation method currently used in the field. 

1.3.6 Prediction of Travel Time  

 

There are different techniques that are used for the prediction of traffic parameters including 

travel time.  ANN is one of the most popular methods.  ANN is a nonlinear dynamic model that 

can recognize patterns and can be used for representing complex nonlinear relationships.  ANN 

is mainly used in short-term forecasting because of its ability to take into account spatial and 

temporal travel time information simultaneously.  In the present study, application of a recently 

developed pattern classification and regression model called support vector regression (SVR) is 

studied.  In SVR the basic idea is to map the nonlinear data into a high-dimensional feature space 

via a nonlinear mapping and perform linear regression in this space.  Thus, linear regression in a 

high-dimensional (feature) space corresponds to nonlinear regression in the low-dimensional 

input space.  In this dissertation the performance of SVR is compared with the performance of 

the ANN model suggested in previous studies for the travel time prediction.  Also, the results are 

compared with real-time and historic method results. 

1.3.7 Statistical Analysis and Comparison of Results 

 

Statistical analysis was carried out to check the validity of the results.  A performance measure 

of Mean Absolute Percentage Error (MAPE) was used to check the validity of the results.  The 

validity checks were carried out independently at each stage of this dissertation.  At the end of 

the first stage, the validity of the optimization technique was checked using CORSIM data.  

Detector data were generated in CORSIM, and errors were artificially introduced.  The 

optimization procedure was carried out on this modified simulated data set and was compared to 

the actual simulated data.  In the second stage in which travel time was estimated, validation of 

the results were carried out with both field data and simulated data.  In the case of field data, the 

results obtained from the model were compared with AVI data and performance measures were 

calculated.   In the case of simulated data, the estimated travel time was compared with the real 
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travel time calculated from simulation.  The estimated travel time was then forecasted into future 

time steps in the final stage.  The accuracy of the prediction methods was checked using the 

testing data in both ANN and SVM methods. 

 

1.4 CONTRIBUTION OF THE RESEARCH 

 

In North America, loop detectors have become the single largest source of real-time traffic data.   

However, the reliability of ILD data is questionable for nontraditional uses due to the large 

amount of discrepancies it contain.  For traditional uses such as incident detection, these errors 

may not pose a big problem. However, for other applications such as travel time estimation or 

origin-destination estimation from ILD data, these errors may become more important. For such 

applications, the need for the development of methods to check the loop detector data for 

discrepancies and diagnosing them in a quick and efficient way cannot be overemphasized.  The 

present study is a step in this direction in which a nonlinear, constrained optimization procedure 

for removing discrepancies in the detector data is suggested.  This optimization method will also 

be useful to identify detector stations that are malfunctioning, as well as to impute the missing 

data when one of the detectors is not working for a short period of time.  Also, the benefits of the 

loop detector data cannot be fully utilized without the ability to anticipate traffic conditions, 

which demand the development of a more accurate method for estimating and predicting traffic 

conditions.  One such important parameter is travel time.  The present study proposes a model 

based on traffic flow theory for the estimation of travel time.  The significant feature of this 

model is its ability to account for the varying traffic flow conditions.  An artificial neural 

network model and support vector regression model are developed for forecasting the parameters 

into future time steps.  Finally, the accuracy of the predicted results is checked with respect to 

the field data as well as with the results from the existing field methods.   

 

In summary, the contributions of this dissertation can be listed as follows: 

 

• A system level method for the analysis of ILD data for data quality control.  

• An efficient and automated optimization method to correct discrepancies in loop 

detector data, spatially and temporally, when the conservation of vehicles principle is 

violated. 
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• A new method to impute the missing data when a full detector location data are missing 

for a short interval of time, such as 15-30 minutes, and to pinpoint the detectors with the 

highest rate of malfunctioning. 

• A method to prioritize the detector locations for maintenance. 

• An analytical model for estimating travel time from loop detector data, which can be 

used under varying traffic flow conditions. 

• An artificial neural network model and support vector regression model for predicting 

travel time into the future time steps. 

• A study on the increase in the accuracy of the estimated travel time with the 

modifications carried out in this dissertation. 

• A study on the applicability of the SVM technique in the prediction of traffic 

parameters. 

• A comprehensive model for the prediction of travel time using ILD data. 

 

1.5 ORGANIZATION OF THE DISSERTATION 

 

This dissertation is organized into seven chapters.  Chapter I is an introduction to the research 

and discusses the background of the problem, statement of the problem, research objectives, 

research methodology, contributions of the research, and the organization of the dissertation.  

Chapter II presents a literature review on loop detector, detector data, associated errors, methods 

for estimation of travel time from loop detector data, and prediction of travel time.  Chapter III 

presents the details of the study corridor and the data collection procedures along with standard 

data reduction techniques adopted in this dissertation.  Chapter IV describes the development of 

the proposed optimization model for the data analysis.  Field data before and after optimization 

are graphically depicted and a check for the usefulness of the optimization procedure is carried 

out using simulated data.  Chapter V details the existing methods for the estimation of travel 

time.   A detailed description of the model suggested by Nam and Drew (1999), which is the 

basis for the model developed in this work, is also included in Chapter V.  Then the development 

of the proposed travel time estimation model is described with results and validation.  Chapter 

VI discusses the prediction methodologies adopted in this dissertation.  The basics of the ANN 

and SVM techniques are briefly introduced, and the development of the ANN and SVM 

prediction procedures are explained next.  The results obtained from ANN and SVM are 
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compared, and performance measures are calculated for each method.  Chapter VII provides 

conclusions and recommendations based on the research.  Suggestions for further research are 

also included in this chapter.  The references are followed by a glossary of frequently used terms 

and acronyms used.  The appendices also include MATLAB and C programs developed for the 

optimization procedure, estimation model, SVM and ANN techniques, and the C-programs 

developed for the extraction of travel time from CORSIM output.   
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CHAPTER II 
 

LITERATURE REVIEW 
 
 
2.1 INTRODUCTION 

 

This chapter reviews the literature related to the various aspects of ILD data collection and its 

application in travel time estimation and prediction.  The chapter starts with a summary of the 

literature on loop detector data accuracy and the different methods available for screening the 

data.  It is followed by a review of some of the important investigations on data diagnostics.  The 

methods available in the literature for the estimation of travel time from detector data are 

reviewed next.  The final section of this chapter discusses the different methods reported for 

predicting travel time. 

 

2.2 ILD DATA AND DATA ERRORS  

 

National Electrical Manufacturers Association (NEMA) standards define a vehicle detector 

system as “…. a system for indicating the presence or passage of vehicles.”  These systems 

provide input for traffic-actuated control, traffic responsive control, freeway surveillance, and 

data collection systems (NEMA 1983).  Detectors have been used for highway traffic counts, 

surveillance, and control for the last 50 years (Labell et al. 1989).  The three main types of 

vehicle detectors used in current practice are inductance loop detectors, magnetic detectors, and 

magnetometers.  Of these, the most widely used is the inductance loop detector system (Raj and 

Rathi 1994; Traffic Detector Handbook 1991).  Singleton and Ward (1977) reported a survey of 

available vehicle detectors and a comparison of their detection characteristics, physical 

installation parameters, operational characteristics, and relative costs.   

 

The data supplied by conventional inductance loop detectors include vehicle presence, vehicle 

count, and occupancy.  Although loops cannot directly measure speed, speed can be estimated by 

using a two-loop speed trap (dual-loop detectors) or a single-loop detector and an algorithm 

whose inputs are effective loop length, average vehicle length, time over the detector, and the 

number of vehicles counted (Klein 2001).  Loop data are typically relayed to a centralized 
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Traffic Management Center (TMC) for analysis.  Although the loops are read many times per 

second, the data are usually accumulated and amplified at the pull box and then reported to the 

TMC at intervals of 20 to 30 seconds.  

 

Some of the limitations of ILD are well documented in the literature. For instance, Middleton et 

al. (1999) evaluated ILD performance and emphasized the need for proper saw cutting and 

careful installation to ensure proper use, the need for extensive maintenance and calibration, and 

the need for traffic control when repairs are needed.  The quality of the data recorded by the ILD 

is affected by any malfunctions arising from problems like improper installation, wire failure, 

inadequate loop sealants, etc.  Quality control procedures become difficult for loop detector data 

because (1) the large volume of data makes it difficult to detect errors using traditional manual 

techniques and (2) the data collection is continuous, which makes equipment errors and 

malfunctions more likely than that experienced in data collection techniques that are performed 

occasionally. Table 2.1 (Klein 2001) below shows a summary of the common failure reasons 

reported. 

 

 

Table 2.1. Summary of Inductance Loop Detector Failure Mechanisms  

State Major failure 

Alaska No loop failures reported 

California Improper sealing and foreign material in saw slot 

Idaho Improper sealing 

Montana Improper sealing 

Nevada Improper sealing and pavement deterioration 

Oregon Improper sealing 

Utah Improper sealing and pavement deterioration 

Washington Improper sealing and foreign material in saw slot 

    

 

Since the introduction of electronic surveillance in the roadways in the 1960s, procedures that 

examine the detector output as well as the collected data for errors have continued to evolve.  

Some of the earlier studies conducted on loop detector data errors, its causes and effects include 
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Dudek et al. (1974), Courage et al. (1976), Pinnell-Anderson-Wilshire and Associates (1976), 

Bikowitz and Ross (1985), Chen and May (1987), Gibson et al. (1998).  Bender and Nihan 

(1988) performed a literature review on state-of-the-art inductance loop detector failure 

identification and on the methods to identify inaccurate data resulting from loop detector 

malfunctions.  Berka and Lall (1998), while discussing video-based surveillance, reported that 

the reliability of loop detectors is low.  These studies confirmed the common concerns associated 

with the accuracy of loop detector data and illustrated the importance and need for understanding 

the amount of error in the data and diagnosing these errors before using the data for specific 

applications.   

 

Jacobson et al. (1990) divided loop detector data errors and screening tests into two main 

categories: microscopic and macroscopic.  Microscopic level screening tests occur at the 

microprocessor level, where detector pulses are scanned and checked for errors.  For example, 

pulses or gaps in actuation less than some predefined interval may be ignored.  These checks are 

performed in the field.  Macroscopic screening tests typically occur at the central computer 

center after the data have been aggregated over time.   

 

Studies on loop detector data errors at the microscopic level usually require reprogramming 

and/or modification of the detector device and depend on the type of loop detector.  One 

approach is to check the on-time of the detectors, against either an average value or a predefined 

constant (Chen and May 1987; Coifman 1999; Nihan et al. 1990).  May et al. (2003) reported the 

use of three microscopic tests: detection of vehicle presence for less than 1/15 second, an 

absence of vehicle lasting less than 1/15 second, and more than two valid pulses in a second.  

Nihan and Wong (1995) developed an error-screening algorithm based on the density to 

occupancy ratio and the volume to capacity ratio.  Ametha (2001) developed an algorithm to 

detect errors at the microscopic level, based on an average vehicle length, and comparing this 

value with a calibrated threshold range.   Zhang et al. (2003) proposed a detector event data 

collection system that can sample loop actuations with a sampling rate of 60 Hz or higher, thus 

enabling real-time data collection at the microscopic level.  However, macroscopic approaches 

are more commonly adopted since they are independent of the sensor type and are carried out at 

the data processing level (Peeta and Anastassopoulos, 2002). 
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Common macroscopic studies compare volumes, occupancies, or speeds with specific threshold 

values.  Usually, a single parameter, such as speed, volume, or occupancy, is compared to 

predefined upper and lower system threshold values.  For example, typical maximum threshold 

values are 3000 vehicles/hour for volume, 80 mph for speed, and 90% for occupancy (Jacobson 

et al. 1990; Park et al. 2003; Turochy and Smith 2000; Eisele 2001).  Payne et al. (1976) 

extended the malfunction detection algorithms from individual locations to comparison checks 

between the neighboring sensors.  They reported a comparison of occupancy values at adjacent 

locations to check for intermittent malfunctions, which often remain unidentified if considered as 

individual locations.  Bellamy (1979) reported a study on the undercounting of vehicles with 

single-loop detector data and suggested a theoretical method for calculating the probability of a 

vehicle not being detected. Table 2.2 (Klein 2001) gives the details of typical parameters and 

threshold values used to verify reasonable sensor operation. 

 

 

Table 2.2. Typical Parameters and Threshold Values to Verify Reasonable Sensor Operation  

Parameter Typical threshold value 

Maximum flow rate 2400 vehicles/hour 

Minimum flow rate 0 vehicles/hour 

Maximum occupancy 50% 

Minimum occupancy 10% 

Maximum speed 80 miles/hour 

Minimum flow rate to conduct high-speed check 10 vehicles/hour 

Maximum number of actuation periods 5 cycles 

Maximum number of constant call periods 5 cycles 

Maximum number of presence periods 5 cycles 

 

 

The main disadvantage of single-parameter threshold tests, which take into account only one 

parameter at a time, is that they assume that the acceptable range for a parameter is independent 

of the values of the other parameters.  Because combinations of parameters are not tested, single-

parameter threshold tests cannot identify unreasonable combinations.  Typically, the 

combinations of parameter tests take advantage of the relationships among the three parameters, 
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namely, mean speed, volume, and occupancy (Jacobson et al. 1990; Cleghorn et al. 1991; Payne 

and Thompson 1997; Turochy and Smith 2000; Turner et al. 2000; Coifman and Dhoorjaty 

2002).  All of these approaches involve either setting limits for acceptable values of one 

parameter within a given range of another parameter or a combination test such as zero 

occupancy with nonzero volume or zero volume with nonzero speed, etc.  Other approaches 

include the application of a Fourier-based fault-tolerant framework for detecting and correcting 

data errors, multivariate screening methods based on the variants of the Mahalanobis distance, 

etc. (Gupta 1999; Peeta and Anastassopoulos 2002; Park et al.  2003).   

 

The detector malfunctions discussed above deal with discrepant data from ILD.  Another 

malfunction could be related to the nonresponse of the detectors for a short period of time due to 

various reasons, which results in a loss of data for that time period.  Turner et al.  (1999, 2000), 

in their study on the quality of the archived ITS data, indicated that missing data values 

(nonresponsive) are a common occurrence. They reported that on average, more than 20% of the 

volume and the speed data from the TransGuide traffic monitoring system were not available for 

numerous reasons, ranging from equipment failure to communication disruption to software 

failure.  Gold et al.  (2001) described various methods for imputing nonresponse in traffic 

volumes occurring in intervals of less than 5 minutes using factor-up and straight-line 

interpolation methods as well as polynomial and kernel regression.  Bellemans et al.   (2000) 

constructed a function that approximated the available data points and used that for calculating 

the missing values.   Smith and Conklin (2002) used time-of-day historical average lane 

distribution patterns at a particular location coupled with current available detector data, to 

estimate missing detector data.  Other reported techniques for the imputation of data include time 

series models, artificial neural network techniques, and regression analysis (Sharma et al. 2003; 

Chen et al. 2003).  Van Lint et al.  (2003) reported the use of an exponential smoothing and 

spatial interpolation method for the imputation of missing data.  Smith et al.  (2003) reported a 

comparison of several heuristic and statistical imputation techniques.   

 

All the above correction procedures are applied for a single location and therefore cannot 

account for systematic problems over a series of detectors.  For instance, if the total number of 

vehicles counted by two consecutive detector locations is observed over a period of time, the 

difference in the cumulative counts should not exceed the number of vehicles that can be 



 17

accommodated in that length of the road under the jam density condition.  This follows directly 

from the application of the principle of conservation of vehicles.  However, it can be shown that 

this constraint can be violated if some of the detectors are under- or over-counting vehicles.  For 

many traffic applications, such as incident detection, this might not be an issue.  However, for 

other applications that rely on accurate system counts, such as origin-destination (OD) 

estimation, travel time estimation, etc. this can be problematic.   While most of the existing error 

detection and diagnostic tests do take into account possible malfunctions of the loop detector by 

observing the data at a specific point, the problems related to balancing consecutive detector data 

for vehicles being under- or over-counted has not been well addressed.  The lack of interest in 

this area may be due to the requirements of most of the currently practiced traffic flow models 

that rely on data generated at a particular station point rather than from a series of station points 

at the same time.   

 

Given the considerable reach of ILD data in ITS applications, very few investigations have been 

carried out to analyze the detector data as a series and check whether the conservation of 

vehicles is followed (Zuylen and Brantson 1982; Pettty 1995; Cassidy 1998; Windover and 

Cassidy 2001; Zhao et al. 1998; Nam and Drew 1996, 1999; Kikuchi et al. 1999, 2000; Kikuchi 

2000; and Wall and Dailey 2003).  While all the above studies acknowledged the fact that 

conservation is violated, few of them (Zuylen and Brantson 1982; Petty 1995; Nam and Drew 

1996, 1999; Kikuchi et al. 1999, 2000; Wall and Dailey 2003) discuss methods for correcting the 

data in such situations.  Zuylen and Brantson (1982) developed a methodology that relied on an 

assumption about the statistical distribution of the data to eliminate the discrepancy in the data.  

Petty (1995), Nam and Drew (1996, 1999), and Wall and Dailey (2003) used a simple 

adjustment factor for correcting the discrepancy.  Kikuchi et al, (1999) and Kikuchi (2000) 

studied an arterial signalized network and proposed methodologies to adjust the observed values 

using the concept of fuzzy optimization.  Kikuchi et al. (2000) discussed different methods to 

correct the discrepancy, including a fuzzy optimization technique, and they demonstrated this 

approach on single hourly flow from an arterial network with 13 intersections.  The investigation 

by Wall and Dailey (2003) required one properly calibrated reference detector that can be 

assumed to be correct in order to calculate the correction factor.  However, it is almost 

impossible to detect the malfunctioning detector or properly working detector from the loop 
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detector data.   The only way to determine this is to go to the field and measure the data, which is 

cost prohibitive.   

 

From the above detailed review of literature, it is clear that there are only very few investigations 

related to checking loop detectors at a system level for errors due to violation of conservation of 

vehicles. As the aim of this dissertation is to develop methodologies for estimating and 

forecasting travel time from ILD data, there is a need to consider series of detectors. Thus, the 

accuracy of the data with respect to neighboring detectors needs to be considered. Hence, a 

procedure will be developed to investigate a series of detectors and a systematic method will be 

developed and implemented if the data violate the conservation of vehicles. The methodology 

developed will be applied in such a manner that the integrity of the original data will be least 

changed. Once the data are checked for violation of the conservation of vehicles principle and 

corrected, they will be used for estimation of travel time. In the following section, literature 

related to the existing methodologies for the estimation of travel time from ILD data is reviewed. 

 

2.3 TRAVEL TIME ESTIMATION FROM ILD DATA FOR FREEWAYS 

 

The different methods reported for the estimation of travel time from ILD can be broadly divided 

into three main categories, namely, extrapolation methods, statistical methods, and methods 

based on traffic flow theory.   

 

2.3.1 Extrapolation Methods 

 

Travel Time Data Collection Handbook (1998) reports the extrapolation technique as the 

simplest and most widely accepted method for the estimation of travel time from inductance loop 

detector data.  The extrapolation method is based on the assumption that speed can be assumed 

to be constant for the small distance between the measurement points, usually the distance 

between the two detector stations (approximately 0.5 miles). Since the distance between the two 

detectors is known a priori, the travel time is calculated as the distance divided by the speed 

(Sisiopiku et al. 1994; Ferrier 1999; Quiroga 2000; Lindveld and Thijs 1999; Dhulipala 2002; 

Cortes et al. 2002; Van Lint and van der Zijpp 2003; Lindveld et al. 2000; Dailey 1997).  Thus, 
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the extrapolation methods assume that the point estimate of speed is representative of the 

average speed between the adjacent loop detectors.   

 

The three different extrapolation approaches normally adopted at present are explained below 

with the help of Figure 2.1. 

 

 

 

 

 

 

 

Fig. 2.1 Schematic diagram for illustrating extrapolation methods 

 

 

2.3.1.1 Half-Distance Approach  

 

The half distance method assumes that the speed measured by a specific set of dual-loop 

detectors is applicable to half the distance on both sides.  Thus, the travel time between detectors 

1 and 2 is defined as 
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where,  

v1 and v2  = average speed measured at loops 1 and 2, respectively, for the time interval, 

and T1-2   = travel time from detector 1 to detector 2. 
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2.3.1.2 Average Speed Approach 

 

In this method the average speed of the vehicles traveling in segment 1 to 2 is assumed to be the 

average of the speeds measured by detector stations 1 and 2.  Hence, the travel time between 

loop 1 and loop 2 is given as 

 

T1-2 = 1

1 2( ) / 2
D

v v+
,         (2.2) 

where, 

v1 and v2 = average speeds at loop 1 and loop 2 respectively. 

 

2.3.1.3 Minimum Speed Approach 

 

In this method, the minimum of the speeds reported by the two detectors is assumed to be the 

speed of the vehicles traveling in the segment from detector 1 to 2.  Thus, the travel time 

between loop 1 and loop 2 is 

 

T1-2 =
1

min

D
v

,          (2.3) 

where, 

vmin  = minimum speed among v1 and v2. 

 

The main disadvantage of the extrapolation methods is reported as the decreasing performance 

with increasing flow conditions (Ferrier 1999; Lindveld and Thijs 1999; Lindveld et al. 2000).  

Quiroga (2000) indicated a significant discrepancy between travel time displayed on the dynamic 

message signs calculated based on the extrapolation method and the actual travel time during 

peak periods.  While the discrepancy was very small during off-peak periods, it was significant 

during the peak periods, suggesting the need for a more accurate algorithm during the peak 

periods.  This is due to the fact that the extrapolation method is applicable only when the 

variation in the traffic condition is lower such as in off-peak hours.  Also, the assumption of 

constant speed between the detection points holds true only at low to moderate volume 
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conditions, where the variability in the flow is lower (Coifman 2002; Oh et al.  2003; Eisele 

2001).  At high volume conditions the variation of speed can be such that the assumption of a 

constant speed no longer holds true even for a small section of road.  Thus, the error in the travel 

time results calculated using extrapolation methods tends to increase during congested periods 

due to their failure to capture the congestion occurring between the detector stations. 

 

2.3.2 Statistical Methods 

 
Statistical methods apply different statistical methods such as time series analysis, the Kalman 

filtering method, etc., for estimation of travel time from ILD data. Dailey (1993) demonstrated 

the viability of using cross-correlation techniques with inductance loop data to measure the 

propagation time of traffic.  Van Arem et al.  (1997) proposed a linear input-output auto 

regressive moving average (ARMA) model to estimate travel time from loop detector data.  

Other major methods include the use of signature matching techniques (Coifman 1998; Coifman 

and Cassidy 2002; Kuhne et al. 1997; Sun et al. 1998, 1999, 2003; Abdulhai and Tabib 2003; 

Pfannerstill 1989; Takahashi et al. 1995; May et al.  2003), ANN (Blue et al. 1994), and fuzzy 

logic and neural networks (Palacharla and Nelson 1999) for the estimation of travel time from 

loop detector data.   

 

2.3.3 Theoretical Models 

 
Theoretical models are developed for the estimation of travel time from loop detector data based 

on traffic flow theory. The advantage of these models is that since they are based on the traffic 

flow theory, they can capture the dynamic characteristics of traffic. Most of these models apply 

the conservation of vehicles principle and compare the inflow of a section during previous time 

period with its outflow during the current time period (Bovy and Thijs 2000).   Nam and Drew 

(1996, 1998, 1999) presented a macroscopic model for estimating freeway travel time in real-

time directly from flow measurements based on the area between the cumulative volume curves 

from loop detectors at either end of the link.  Petty et al.  (1998) suggested a model for 

estimating travel time directly from flow and occupancy data, based on the assumption that the 

vehicles that arrive at an upstream point during a given interval of time have a common 
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probability distribution of travel times to a downstream point.  Hoogendoorn (2000) reported a 

model that filtered the data into different classes like cars, trucks, etc., and class-specific travel 

times were calculated using the extended Kalman filtering technique.  The study reported fairly 

reasonable results during free-flow and near free-flow conditions; however, the accuracy 

decreased as congestion started.  Coifman (2002) utilized the linear approximation of the flow-

density relationship to estimate travel time from dual-loop detector data.  The results were 

reported as satisfactory except at the transition periods from congested to uncongested and vice 

versa.  Oh et al.  (2003) discussed the estimation of travel time based on fluid model relations 

using the true density in a section calculated from the cumulative counts at two detector points. 

 

Most of the theoretical studies used for travel time estimation from loop detector data give 

satisfactory results for specific conditions only.  For instance, some of the models perform well 

for normal-flow conditions only (Nam and Drew 1996, Hoogendoorn 2000, Oh et al.  2003), 

while some other models are applicable for congested traffic flow conditions only (Nam and 

Drew 1998).  Thus, there is a need for a comprehensive model that can be used for estimating 

travel time under varying traffic flow conditions.  The proposed study suggests such a model, 

which can be used for both normal and congested traffic flow conditions.  The basis for this 

work is the dynamic traffic flow model developed by Nam and Drew (1999).  A detailed 

discussion of this model will be given in Chapter V.   

 

2.4 PREDICTION OF TRAVEL TIME ON FREEWAYS 

 

The effectiveness of the ATIS and the degree to which drivers are willing to follow the 

suggested routes depends on the accuracy and timeliness of travel time information provided.  

Real-time information on current traffic conditions can be useful to drivers in making their route 

decisions, but traffic conditions can fluctuate over short time periods.  There may be a 

substantial difference between the current link travel time and the travel time on the link when 

traversed after a short time.  Hence, accurate predictions are more beneficial than current travel 

time information since conditions may change significantly before travelers complete their 

journey. There are several methods available for the prediction of travel time, and they can be 

broadly classified into historic profile approaches, regression analysis, time series analysis, and 
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ANN models.  An overview of literature in these commonly used methods for predicting travel 

time is discussed below.   

 

2.4.1 Historic and Real-Time Approaches 

 

The historic profile approach is based on the assumption that a historic profile can be developed 

for travel time that can represent the average traffic characteristics over days that have a similar 

profile.  Thus, a historical average is used for predicting the future values. An important 

component of the historic approach is the classification of days into day types with similar 

profiles.  The travel time is defined by: 

 

( , ) ( )T t T t∆ = ,          (2.4) 

where,  

( )T t   = average of past travel time at time t, and 

T (t, ∆ )   = travel time at time step ∆ . 

 

This approach is relatively easy to implement and it is fast in terms of computation speed. Also, 

this method can be valuable in the development of prediction models since they explain a 

substantial amount of the variation in traffic over time periods and days (Shbaklo et al. 1992). 

However, for the same reason, the value of static prediction is limited because of its implicit 

assumption that the projection ratio remains constant.  Commuters in general have an idea about 

the average travel time under usual traffic conditions and will be interested in conditions under 

not-so-common conditions, that is, when average values are not representative of the current or 

future traffic conditions.  Thus, the historic method performs reasonably well under normal 

conditions; however, it can misrepresent the conditions when the traffic is abnormal.  

 

In the real- time approach, it is assumed that the travel time from the data available at the instant 

when prediction is performed represents the future condition.  Thus, travel time at one time step 

ahead is given by 

 

)(),( tTtT =∆ ,          (2.5) 
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and travel time at two time steps ahead is given by 

 

)()2,( tTtT =∆ ,          (2.6) 

where, 

∆   = the time step. 

 

This method can perform reasonably well for the prediction of travel time for the next few time 

steps under traffic flow conditions without much variation. Hoffman and Janko (1990) and Kaysi 

et al. (1993) discussed the use of historical data profiles as part of the development of a 

prediction algorithm for the Leit und Information system Berlin  (LISB) system in West Berlin.  

Their approach involved the creation of a historical data profile to develop a prediction 

algorithm.  The Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE) 

project in the Chicago metropolitan area used the historic and real-time data for their travel time 

prediction model (Thakuriah et al.  1992; Tarko and Rouphail 1993; Boyce et al.  1993).  Seki 

(1995) used historical data after correcting them by type of day for prediction of travel time.  

Manfredi et al.  (1998) developed a prediction system as part of the Development and 

Application of Coordinated Control of Corridors (DACCORD) project, where the prediction was 

based on historical and current data. The Urban Traffic Control System (UTCS) (Kreer 1975; 

Stephanedes et al. 1981), as well as in several traveler information systems in Europe including 

AUTOGUIDE (Jeffrey et al. 1987) also used historic and real-time methods.  

 

2.4.2 Regression Analysis Method 

 
Most of the conventional forecasting techniques may be classified as regression based.  This 

method necessitates the identification of relevant variables that are strongly correlated to travel 

time, such as flow, occupancy, travel time in the neighboring links, etc.  Kwon et al.  (2000) 

presented an approach to predict travel time using linear regression with a stepwise variable 

selection method using flow and occupancy data from loop detectors and historical travel time 

information.  Application of a linear regression model for short-term travel time prediction was 

also discussed by Rice and van Zwet (2002) and Zhang and Rice (2003).  They proposed a 
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method to predict freeway travel time using a linear model in which the coefficients vary as 

smooth function of the departure time. 

 

2.4.3 Time Series Models 

 

The existing link travel time forecasting models also include time series and Kalman filtering 

models.  The time series method of travel time forecasting involves the examination of historical 

data, extracting essential data characteristics, and effectively projecting these characteristics into 

the future.  This technique predicts the travel time in a future time step from the travel time at a 

current time step and previous time steps.  The Box and Jenkins technique is a widely used 

approach, and the most widely employed method under this category is the AutoRegressive 

Integrated Moving Average Model (ARIMA) method (Sen et al. 1991; Anderson et al.  1994). 

Oda (1990) adopted an auto regressive model for the prediction of travel time.  Iwasaki and 

Shirao (1996) discussed a short-term prediction scheme of travel time on a long section of a 

motorway using an auto regressive method.  The parameters of the prediction model were 

identified adapting an extended Kalman filtering method.  Angelo et al. (1998), Al-Deek (1998), 

and Ishak and Al-Deek (2002) implemented models using nonlinear time series with multifractal 

analysis for the prediction of travel time.  Saito and Watanabe (1995) developed a system for 

predicting the travel time for 60 minutes ahead using an auto regression model based on the 

change in traffic conditions for the previous 30 minutes.  Another important technique widely 

used is the Kalman filtering technique (Yasui et al. 1995; Chen and Chien 2001; Chien and 

Kuchipudi 2002, 2003; Chien et al. 2003; Nanthawichit et al.  2003).   

 

2.4.4 Neural Network Models  

 

The ANN model, with its learning capabilities, is reported to be suitable for solving complex 

problems like travel time prediction.  Different traffic variables are used as input to the ANN 

model in the travel time prediction problems.  Some of the reported researches about the 

application of ANN for the prediction of freeway travel time are discussed below. 
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Cherrett et al.  (1996) reported the use of a feed-forward ANN model for the prediction of link 

journey time.   Ohba et al. (1997) proposed a travel time prediction model using a mixed 

structure type neural network system.  Park and Rilett (1998, 1999), Park et al. (1999), Rilett and 

Park (2001), and Kisgyorgy and Rilett (2002), suggested different modifications to the basic 

ANN model to take into account the nonlinear nature of travel time data for travel time 

prediction.  The modifications included feed-forward neural network, clustering techniques 

combined with ANN, or modular neural network (MNN), and ANN that incorporated expanded 

input nodes, or spectral basis neural network (SNN).  Matsui and Fujita (1998) used a neural 

network-driven fuzzy reasoning for the prediction of travel time.  You and Kim (2000) 

developed a hybrid travel time forecasting model based on nonparametric regression and 

Geographic Information System (GIS) technology.  Zhu (2000) tested the use of feed-forward 

neural network for the prediction of travel time.   Innamma (2001) studied the predictability of 

travel time based on online travel time measurements with video using neural networks.  

Huisken and van Berkum (2002) discussed a method to predict travel time within a short-term 

range with ANN models using flow and speed values.  Van Lint et al. (2002) investigated travel 

time prediction using state space neural networks.  Dharia and Adeli (2003) reported the use of 

counter-propagation neural networks for the forecasting of freeway link travel time. 

 

2.5 CONCLUDING REMARKS 

Some of the significant investigations on ILD data, the errors associated with them, the 

available methodologies for correcting these errors, travel time estimation, and 

prediction using ILD data were reviewed in this chapter.  From the discussion in this 

chapter, it was clear that the available diagnostics for the ILD data mainly aim at errors 

at individual detector locations.  There is a lack of systematic analysis of detectors in a 

series and the errors associated with them.  The few studies that analyzed the detectors 

as a series and checked for conservation of vehicles did not suggest a systematic 

procedure to correct the data when the conservation of vehicles is violated.   

The chapter also reviewed the literature on the estimation and prediction of travel time from ILD 

data. One observation that can be made from these studies was that different techniques perform 

well for varying traffic flow conditions.  One of the important objectives in this dissertation is to 
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develop a procedure that will estimate travel time for varying traffic flow conditions. Also, for 

the prediction of travel time to future time steps, ANN is the most popular technique suggested 

in literature.  In this dissertation, a new technique called support vector regression will also be 

investigated and its performance will be compared with the predictions of ANN. Details of this 

will be elaborated in Chapter VI. The following chapter will describe the study corridors, data 

collection, and data quality control.  The details of the analysis will be discussed in the following 

chapters. 
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CHAPTER III 
 

DATA COLLECTION AND PRELIMINARY DATA ANALYSIS 
 
 
 
3.1 INTRODUCTION 

 

The main objective of this dissertation is to develop techniques/methodologies for the estimation 

and prediction of travel time from ILD data.  Thus, the main data of interest in this dissertation 

are ILD data collected from the field.  As discussed in Chapter II, one of the main concerns 

about the use of ILD data is the low quality. This chapter will discuss the details of the ILD, ILD 

data, different preliminary quality control and error correction procedures employed, etc.  For the 

validation of the results, ‘ground-truth’ data collected using AVI are used.  Details related to 

AVI data collection and their quality controls are also detailed in this chapter.   

 

One disadvantage of using the AVI data for validation purposes in the present study is the 

difference in the sample sizes of ILD and AVI. ILD data include all the vehicles that cross the 

two points of interest. Hence, the average travel time calculated will be based on the complete 

population of vehicles. In the case of AVI, only few participating vehicles will be identified, and 

hence, the sample size is smaller. Also, the AVI data and ILD data may not match exactly, 

spatially or temporally.  Thus, the comparison between the AVI travel time and the travel time 

calculated from ILD data cannot shed much light on the accuracy of travel time calculated from 

ILD data. Hence, this dissertation used simulated data using the CORSIM simulation software, 

in addition to the use of filed data, for the validation of the models.  The details of the simulation 

software used, the actual process of simulation, and the details of the simulated data were also 

explained in this chapter.  Thus, this chapter will describe the different data sources, and the test 

corridors, the characteristics of the data, as well as the preliminary data reduction and quality 

control. 
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3.2 FIELD DATA SOURCES 

 

3.2.1 Inductance Loop Detector  
 

Detectors have been used for highway traffic counts, surveillance, and control for the last 50 

years (Labell et al. 1989).  The initial developments in the detection technology were based on 

sound, pressure on the road surface, weight of vehicles, etc.   Over the years different types of 

detectors such as acoustic detectors (based on sound), optical detectors (based on opacity), 

magnetic detectors (based on geomagnetism), infrared, ultrasonic, radar, and microwave 

detectors (based on reflection of radiation), inductance loop detectors (based on electromagnetic 

induction), seismic, and inertia-switch detectors (based on vibration), etc., have been developed.  

The three main types of vehicle detectors used in current practice are inductance loop detectors, 

magnetic detectors, and magnetometers.  Out of these, the most popular is the inductance loop 

detector system (Traffic Detector Handbook 1991). 

 

The principal components of an inductance loop detector system include one or more turns of 

insulated loop wire wound in a shallow slot sawed in the pavement, a lead-in cable that runs 

from the curbside pull box to the intersection controller cabinet, and a detector electronics unit 

housed in the intersection controller cabinet.  The wire loop is an inductive element in an 

oscillatory circuit and is energized by the electronics unit at frequencies that range from 10 to 

200 kHz.  When a vehicle passes over the loop or stops within the loop, it decreases the 

inductance of the loop.   This decrease in inductance then actuates the detector electronics output 

relay, sending a pulse to the controller unit, signifying that it has detected the passage or 

presence of a vehicle (Traffic Detector Handbook 1991).  When a vehicle enters the detection 

zone, the sensor is activated and remains so until the vehicle leaves the detection zone.  The ‘on’ 

time, referred to as the vehicle occupancy time, requires the vehicle to travel a distance 

equivalent to its length plus the length of the detection zone.  The vehicle occupancy time is a 

function of vehicle speed, vehicle length, and detection zone length.  Controllers measure the 

time of the transition from ‘off’ to ‘on’ and back to ‘off’ of the pulses.  Traffic flow parameters 

such as flow and occupancy are then calculated from these data (May 1990).   
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The two main types of inductance loop detectors in use are single-loop detectors and dual-loop 

detectors.  In the case of single-loop detectors, a single-loop of wire is used at each detector 

location, whereas in the case of dual-loop detectors, two such loops are placed a small distance 

apart at each detector location.  Figure 3.1 shows a picture of a single-loop detector placed in 

field.  Figures 3.2 and 3.3 show schematic representations of single-loop and dual-loop detectors.    

 

 

 

 

 Fig. 3.1 Actual loop in the field  

(Source: http://transops.tamu.edu/content/sensors.cfm) 
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Fig. 3.2 Schematic diagram of a single-loop detector in one lane of a roadway 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Schematic diagram of a dual-loop detector 
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The data supplied by the conventional single inductance loop detectors are vehicle passage, 

presence, count, and occupancy.  The single-loops cannot measure speed directly, but is 

estimated based on an algorithm whose inputs are effective loop length, average vehicle length, 

time over the detector, and the number of vehicles counted (May 1990).  The following 

equations are used to calculate the parameters such as flow, density, and speed from the single-

loop detector data. 

 

( ) ( )1
1

1

1

,q
N t ton onn n

n N

=
−+∑

= −

        (3.1) 

( ) ( ) ( ) ,t t tocc onn noff n
= −          (3.2) 

( )
,

L Ln dvn tocc n

+
=            (3.3) 

 

where, 

q   = flow (vehicles per second), 

N  = total number of vehicles, 

( )nocct  = individual occupancy time (seconds), 

( )nont   = instant of time the vehicle n is detected (seconds), 

nofft 





   = instant of time the vehicle is exited (seconds), 

nv   = vehicle speed (feet per second), 

Ln   = vehicle length (feet), and 

dL    = detection zone length (feet). 

 

In the case of dual-loop detectors, flow and occupancy are reported when the vehicle crosses the 

first loop of the dual trap.  Speed calculations are made when the vehicle passes the second loop, 

based on the known distance between the two loops and the time taken to travel from the first 

loop to the second loop (Texas Department of  Transportation (TxDOT) 2000; Sreedevi and 

Black 2001).   
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Thus, flow and occupancy are calculated in an identical manner to the single-loop detector, as 

given in equation 3.1 and 3.2.  The speed is calculated as follows: 

 

( ) ( )
,Dvn t ton onn nB A

=
   −   

        (3.4) 

where, 

A = first loop in the dual-loop detector, 

B = second loop in the dual-loop detector, and  

D = distance from the upstream edge of detection zone A to the upstream edge of  

detection zone B (feet). 

 

A local control unit (LCU) accumulates speed, occupancy, and volume from the detector 

channels, keeps a moving average of these measurements, and sends the data to traffic 

management center (TMC) at intervals of 20 to 30 seconds for analysis with a computer-based 

algorithm (TransGuide Technical Brochure 2000).  From this, the flow rate, percent occupancy 

and average speed for that particular time interval are calculated.  Percent occupancy is a 

surrogate for density and is obtained by determining the percent of time a detector is occupied 

and is calculated as follows (May 1990): 

 

( )
1 100,

N
tocc nnO

t

∑
== ×

∆
          (3.5) 

where, 

O   = percent occupancy time, 

( )nocct  = individual occupancy time (seconds), 

N  = number of vehicles detected, and  

t∆   = selected time period (seconds). 

 

Density is calculated from the percent occupancy as 
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52.8
,k O

L Lv d
=

+
          (3.6) 

where, 

k = density (vehicles per lane-mile), and  

vL  = average vehicle length (feet). 

 

The San Antonio corridors are equipped with dual inductance loop detectors at approximately 

0.5-mile spacing.  The loop detectors used at the I-35 site are 6 feet by 6 feet (1.83 m by 1.83 m) 

buried 1 inch (2.54 cm) below the road surface, and are centered in each lane.  The two loops in 

the dual-loop detectors are installed 12 feet (3.66 m) apart longitudinally and are made up of 

differing number of turns to minimize cross talk.  The loop detector signals are sent to LCUs, 

where the data are analyzed to determine volume, occupancy, and speed for that 20-second 

interval.  The LCU also continually checks the loops for “long” periods of continuous presence 

or complete lack of presence, which may indicate loop detector problems.  Speed values are 

reported when vehicles pass the second loop, and volume and occupancy data are reported from 

the first loop detector (TransGuide Technical Brochure 2000).   

 

The format of the raw data collected from the field is shown in Figure 3.4.   The first and second 

columns pertain to the date and time, respectively.  The third column shows the detector number, 

which includes details such as to whether the detector is on an exit ramp (EX), entry ramp (EN), 

or on the main lane (L).  The lanes are numbered in increasing order from the median to the curb 

as L1, L2, L3, etc.  The interstate name and mile marker are also provided in the detector 

number.  The speed, volume, and occupancy values are indicated in the fourth, fifth, and sixth 

columns, respectively, for every 20-second period.   
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02/10/2003 00:00:28 EX1-0035N-166.829   Speed=-1 Vol=000 Occ=000 
02/10/2003 00:00:28 EX2-0035N-166.836   Speed=60 Vol=000 Occ=000 
02/10/2003 00:00:28 L2-0035S-166.833    Speed=87 Vol=000 Occ=000 
02/10/2003 00:00:28 L3-0035N-166.833    Speed=61 Vol=002 Occ=005 
02/10/2003 00:00:28 L3-0035S-166.833    Speed=70 Vol=002 Occ=002 
02/10/2003 00:00:29 EX1-0035N-168.108   Speed=-1 Vol=000 Occ=000 
02/10/2003 00:00:29 EX1-0035S-167.857   Speed=-1 Vol=000 Occ=000 
02/10/2003 00:00:29 L1-0035N-167.942    Speed=71 Vol=001 Occ=001 
02/10/2003 00:00:29 L2-0035N-167.942    Speed=76 Vol=001 Occ=001 
02/10/2003 00:00:29 L3-0035N-167.942    Speed=77 Vol=001 Occ=001 
02/10/2003 00:00:29 L4-0035N-167.942    Speed=64 Vol=001 Occ=001 
02/10/2003 00:00:30 EN1-0035N-169.306   Speed=-1 Vol=000 Occ=000 
02/10/2003 00:00:30 EX1-0035S-169.286   Speed=-1 Vol=000 Occ=000 
02/10/2003 00:00:31 EN1-0035N-170.580   Speed=-1 Vol=000 Occ=000 
02/10/2003 00:00:31 EX1-0035N-170.148   Speed=-1 Vol=002 Occ=002 
02/10/2003 00:00:31 EX1-0035N-170.578   Speed=-1 Vol=000 Occ=000 
02/10/2003 00:00:31 EX1-0035S-170.378   Speed=-1 Vol=000 Occ=000 
02/10/2003 00:00:31 L2-0035N-170.425    Speed=59 Vol=000 Occ=000 
02/10/2003 00:00:31 L2-0035S-170.425    Speed=62 Vol=003 Occ=003 
02/10/2003 00:00:31 L3-0035N-170.425    Speed=63 Vol=002 Occ=002 
02/10/2003 00:00:31 L4-0035N-170.425    Speed=62 Vol=002 Occ=002 
02/10/2003 00:00:32 EN1-0035S-170.917   Speed=-1 Vol=000 Occ=000 
02/10/2003 00:00:32 EN1-0035S-170.929   Speed=-1 Vol=000 Occ=000 
 

Fig. 3.4 Raw ILD data 

 
 
The ILD data from TransGuide area used in this dissertation were archived based on the server 

which processed the data. There were 5 servers reporting the data for the selected days and each 

of them were reporting data from approximately 100 detector locations. This came to around 

30MB files from each of the servers for each of the days. For a selected location, the size of the 

data files was approximately 600 KB per day. 

  

3.2.2 Automatic Vehicle Identification (AVI) 
 

Automatic Vehicle Identification refers to technology used to identify a particular vehicle when 

it passes a particular point.  Automatic vehicle monitoring or AVM involves the tracking of 

vehicles at all times.  Early development of AVI occurred in the United States (Hauslen 1977; 

Roth 1977; Fenton 1980) beginning with an optical scanning system in the 1960s in the railroad 

industry to automatically identify the rolling stock.  Since then there have been enormous 
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advances in this area for different applications varying from toll collection systems to advanced 

traveler information system (Scott 1992).    

 

The AVI system needs AVI readers, vehicles that have AVI tags (probe vehicles), and a central 

computer system, as shown in Figure 3.5.  Tags, also known as transponders, are electronically 

encoded with unique identification (ID) numbers.  Roadside antennas are located on roadside or 

overhead structures or as a part of an electronic toll collection booth.  The antennas emit radio 

frequency signals within a capture range across one or more freeway lanes.  When a probe 

vehicle enters the antenna’s capture range, the radio signal is reflected off the electronic 

transponders.  The reflected signal is slightly modified by the tag’s unique ID number.  The 

captured ID number is sent to a roadside reader unit via coaxial cable and is assigned a time and 

date stamp and antenna ID stamp.  These bundled data are then transmitted to a central computer 

facility via telephone line, where they are processed and stored.  Unique probe vehicle ID 

numbers are tracked along the freeway system, and the travel time of the probe vehicles is 

calculated as the difference between the time stamps at sequential antenna locations (Traffic 

Detector Handbook 1991). 

 

AVI systems have the ability to continuously collect large amounts of data with minimal human 

resource requirements.  The data collection process is mainly constrained by sample size (Traffic 

Detector Handbook 1991).  Figure 3.6 shows a sample set of raw AVI data that are collected by 

the reader.  The first column is the AVI reader number.   The second column is the anonymous 

tag ID of the vehicles.  The third column gives the time followed by the date.    
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Fig. 3.5 AVI conceptual view  

(Source: http://www.TransGuide.dot.state.tx.us/) 
 

 
142 HCTR0092677553...!H$             &00:58:21.63 02/11/03%16-0-06-0 
142 OTA.00095021C0...^D$             &00:58:29.44 02/11/03%16-0-12-0 
145 ARFWP10647..........               &00:57:30.68 02/11/03%1B-0-03-0 
145 ARFWD3018..........                &00:57:30.88 02/11/03%1B-0-03-0 
145 ARFWP14316..........               &00:57:30.94 02/11/03%1B-0-01-0 
145 DDS0112                          &00:58:08.38 02/11/03%1D-1-04-1 
145 DDS0223                          &00:58:08.73 02/11/03%1D-1-01-1 
144 ARFWP14872..........               &00:59:08.08 02/11/03%19-1-01-1 
145 DNT.004672118B...^?$             &00:59:06.92 02/11/03%1D-1-08-1 
144 ARFWP9898..........                &00:59:08.41 02/11/03%19-1-01-1 
144 ARFWP11606..........               &00:59:34.27 02/11/03%19-0-01-0 
144 ARFWD248..........                 &00:59:34.59 02/11/03%19-0-02-0 
144 ARFWP2143..........                &00:59:34.68 02/11/03%19-0-01-0 
145 OTA.00074756F8...^D$             &00:59:47.38 02/11/03%1B-0-04-0 
144 OTA.00794375F2...^D$             &00:59:44.61 02/11/03%19-1-01-1 
137 OTA.00625142E0...^D$             &01:00:05.42 02/11/03%2D-0-04-0 
141 OTA.005238872C...^D$             &01:00:09.00 02/11/03%32-0-0B-0 
142 ARFWD3624..........                &01:00:18.19 02/11/03%16-0-07-0 
 

Fig. 3.6 Raw AVI data format 
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The AVI data from the TRANSGUIDE site are archived in three different categories every day.  

These are tag archive, link archive, and site archive. Each of these files was of the size 

1.5MB/day. Tag archive is the one that contains all the vehicle information as shown in Figure 

3.6. One day’s tag archive file will have data from all the 15 AVI stations for 24 hours. There 

will be around 20,000 data points for each day from the 15 AVI stations. Figure 3.7 shows the 

picture of an AVI antenna in the field. 

 

 

 

Fig. 3.7 AVI antennas  

(Source: http://www.houstontranstar.org/about_transtar/docs/2003_fact_sheet_2.pdf) 
 

 

3.3 FIELD DATA COLLECTION 

 

Data for the present study were collected from the TransGuide web site, where the data were 

archived for research purposes.  TransGuide, Transportation Guidance System, is San Antonio’s 

advanced traffic management system (ATMS).  TransGuide was designed to provide information 

to motorists about traffic conditions such as accidents, congestion, and construction.  With the 
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use of inductance loop detectors, color video cameras, AVI, variable message signs (VMS), lane 

control signals (LCS), traffic signals, etc., TransGuide can detect travel time and respond rapidly 

to accidents and emergencies (Texas Department of  Transportation (TxDOT) 2003).  The 

specifically stated system goals are to detect incidents within 2 minutes, change all affected 

traffic control devices within 15 seconds from alarm verification, allow San Antonio police to 

dispatch appropriate response, assure system reliability and expandability, and support future 

Advanced Traffic Management System (ATMS) and ITS activities (TransGuide Technical 

Brochure 2003).  Figure 3.8 shows two examples of the information provided to travelers 

through the TransGuide system. 

 

 

       
 

Fig. 3.8 Examples of TransGuide information systems 

(Source: http://www.TransGuide.dot.state.tx.us/docs/atms_info.html) 

 

 

The first phase of the San Antonio TransGuide system became operational on July 26, 1995 and 

included 26 miles of downtown freeway.  This phase of the TransGuide system includes variable 

message signs, lane control signals, loop detectors, video surveillance cameras, and a 

communication network covering the 26-instrumented miles.  Now operational on 77 miles, the 

system will eventually cover about 200 miles of freeway.  The section on I-35 between New 

Braunfels Avenue and Walzem Road went online in March 2000, which is the selected test bed 
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for the present study (TexHwyMan 2003).  Figure 3.9a shows the San Antonio freeway system 

indicating the location of the test bed selected for the present study.  Figure 3.9b shows the 

enlarged map of the selected test bed, and is detailed in the following section. 

 

 

 
 

 

 
 

Fig. 3.9 a) Map of the freeway system of San Antonio and b) map of the test bed 

 (Source: http://www.TransGuide.dot.state.tx.us) 

(a) 

(b) 
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3.4 TEST BED 

 

The I-35 section was selected based on the availability of the loops and AVI in the same 

location.  The selected test bed is a three-lane road with on ramps and off ramps in between the 

detectors as shown in Figure 3.10a.  The data were analyzed for continuous 24-hour periods for 5 

consecutive days starting from February 10, 2003, Monday to February 14, 2003, Friday.  For 

the study period the data were reported in 20-second intervals.  Thus for a 24-hour period, 

around 4000 records were available for each of the detectors.  A series of five detectors from 

stations 159.500 to 161.405 including all the ramps in between was analyzed.   AVI data were 

also collected from the same section.   

 

The present problem of estimation and prediction of travel time from ILD data using the 

suggested model necessitated aggregating the data from all three lanes and analyzing them as a 

single lane. The data were aggregated because the travel time estimation model suggested in the 

present study is mainly based on the conservation of vehicles principle (see Chapter V for more 

details). Although lane-by-lane data were available from the loop detectors, no lane changing 

data were available. The constraint related to conservation of vehicles cannot be imposed on 

individual lanes due to the lack of lane changing data. The vehicles entering the section of road 

under consideration can change lanes before exiting the section. Hence, in addition to lane-by-

lane data, one also needs details related to the number of vehicles that changed lane from and/or 

to the lane under consideration. The data used in this dissertation are from ILD, and it is 

impossible to get the lane changing details using this technology. Hence, lane changing is not 

taken into account while developing the model for the estimation of travel time.   

 

In case the lane changing data are available from a different data source, such as video data, the 

models used for the estimation of travel time need to be modified accordingly to incorporate lane 

changing into account.  In the present form, the models do not consider the inflow and outflow 

from adjacent lanes by lane changing. Hence, the data from the detectors in different lanes at 

each of the detector stations were aggregated together and assumed as a single lane in this 

dissertation.   
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Since this dissertation investigated a series of detectors and analyzed the total inflow and outflow 

at each entry-exit pair, data from the ramps in between the entry-exit pair were also needed. The 

entrance and exit ramp data were added to the appropriate main lane data. This is required 

because the present study uses an input-output analysis, and the ramp data are also part of the 

input or output. Also, the volume coming from ramps becomes part of the vehicles in the road 

section under consideration and the travel time is affected due to this incoming volume from 

ramps. Figure 3.10b shows the accumulation process and the resulting five consecutive detector 

locations in the present study. 

 

3.5 PRELIMINARY DATA REDUCTION 

 

The traffic data obtained from loop detectors are used for different applications such as graphical 

displays, traffic forecasting programs, and incident detection algorithms.   Ensuring the accuracy 

of traffic data prior to their use is of utmost importance for the proper functioning of incident 

detection algorithms and other condition monitoring applications.   Techniques to screen such 

data and to remove suspect data have evolved during the last few years and are detailed in 

Chapter II. 

 

In the present study, the initial data screening and quality control of detector data were carried 

out based on suggestions in previous literature.  The methods selected for the preliminary data 

screening in the present study are discussed in the sections below.   

 

 



 

 

 
43

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure not to scale. 
 
 

Fig. 3.10 Schematic diagram of the test bed from I-35 N, San Antonio, Texas 
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3.5.1 Detector Data 
 

There are five servers in the TransGuide center that are dedicated to data storage and data 

processing.  The data from the sites are sent to any one of the five servers available.  To extract 

data from a particular detector, the first step is to find out which server processed the selected 

detector number.  Once that is known, the entire data set is searched and the data corresponding 

to the specific detector number and for a specific lane are extracted to a new file.  Thus, for a 

three-lane roadway, there will be three files corresponding to each of the lanes for one detector 

number.  MATLAB programs were developed to extract these data and are shown in Appendix 

D.  

 

As a first step, extensive quality control and data reduction were performed.  The data were 

cleaned of unreasonable values of speed, volume, and occupancy, both individually and in 

combination.  Also, the polling cycle of the data during the data collection period was 20 

seconds, but the cycle occasionally skipped to larger intervals.  Preliminary data reduction and 

quality control were performed when the data had any of the above errors, and they are discussed 

in the following sections.    

 

3.5.1.1 Test for Individual Threshold Values 

 

The threshold value test examined speed, volume, and occupancy in each individual record of 

the data set.  If the observed value was outside the feasible region, that particular value was 

discarded and was assumed to be equal to the average of the previous time step and next time 

step values.  A maximum threshold value of 3000 vehicles per hour per lane was used as the 

volume threshold. This value was based on previous studies (Jacobson et al.  1990; Turochy 

2000; Turner et al.  2000; Park et al. 2003; Eisele 2001).  For speed, a threshold value of 100 

mph (160 kmph) was used, and occupancy values exceeding 90% were discarded.  Table 3.1 

shows the screening rules incorporated in the MATLAB code to identify erroneous data.   These 

rules were established in previous works (Turner et al. 2000; Park et al.   2003; Eisele 2001; 

Brydia et al.   1998).  Rules one, two, and three are the thresholds set for individual parameters. 
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3.5.1.2 Test for Combinations of Parameters 

 

All combinations of one of the three parameters, speed, volume, or occupancy, being zero, with 

the other two being non-zero were examined.  Similarly, combinations with one being non-zero, 

with other two being zero were also checked.  When such unreasonable combinations were 

found, the zero values were replaced with the average of the previous time step and next time 

step values. 

 

Rule four in Table 3.1 represents the condition of all traffic parameters being zero.  This occurs 

when vehicles are either stopped over the loop detectors or when there are no vehicles present in 

that time step.  This happens mostly due to vehicles not being present during off-peak traffic 

conditions in early mornings.  These data are removed from the data set so that they will not 

affect the average speeds when taking the average of the 2-minute intervals.  Rule five identifies 

observations when the speed, volume, and occupancy are in the acceptable and expected ranges 

for a 20-second period.  The remaining rules are used to identify suspicious combinations of 

speed, volume, and occupancy and their cause is unknown.  The unreasonable observations in 

this category were replaced with an average of the previous and next values.    

 
 
Table 3.1 Screening Rules 

 
SCREENING RULES 

Individual tests 
1) q > 17  Error 
2) v > 100  Error 
3) o > 90 Error 

Combination tests 
4) v = 0, q = 0, o = 0 Discard 
5) v = 0 - 100, q = 0 - 17, o = 0 - 90 Accept 
6) v = 0, q = 0, o > 0 Error 
7) v = 0, q > 0, o > 0 Error 
8) v = 0, q > 0, o = 0 Error 
9) v > 0, q = 0, o = 0 Error 
10) v > 0, q > 0, o = 0 Error 
11) v > 0, q = 0, o > 0 Error 

q = volume per 20 second, v = speed in mph, and o = percent occupancy. 
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3.5.1.3 Missing Data  

 

Gold et al. (2001) reported that when the polling cycle is less than 2 minutes, the current 

observation contains the sum of the traffic characteristics between the previous and current 

observations.  This means the volume indicated in the current observation is the sum of the 

volume since the previous observation and the speed is the average speed since the previous 

observation.  Therefore, the current speed can be used for the speed of the previous observation 

and half of the volume of the current observation can be used for the volume in the previous 

step.   

 

The polling cycle of the San Antonio data for the selected locations during the data collection 

dates was 20 seconds, but it was observed that the cycle occasionally skipped to 60 or 120 

seconds.  When this happened one of the following two things have occurred. Either the first 

interval was skipped and all the data were recorded in the next interval, or the first interval data 

were missed altogether.  The decision to use specific values was made based on the magnitude of 

the values reported in the interval after the missing interval in comparison to the neighboring 

values.  In the case of aggregated interval, the data were split into 20-second intervals, whereas 

in the case of missing intervals, the data were imputed with the average of the previous and next 

interval data. 

 

Programs were developed in MATLAB to carry out the threshold checking, combination checks, 

and imputation.  After these corrections, the data were aggregated into 2-minute intervals.  Thus, 

an original file with data for a 24-hour time period having around 4300 records will be reduced 

to 720 records after aggregation.  The 2-minute data from different lanes of the same detector 

station were added together and assumed as a single detector location as explained earlier.  

Subsequently, the entry ramp and exit ramp volume data were added to the appropriate main lane 

detectors.  Sample distribution of occupancy, speed, and volume as a function of time, after all 

the quality control and data reduction are carried out, are shown in Figures 3.11, 3.12, and 3.13 

for February 11, 2003 for location 2. 
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Fig. 3.11 Occupancy distribution from I-35 site, location 2, on February 11, 2003 
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Fig. 3.12 Sample speed distribution from I-35 site, location 2, on February 11, 2003 
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Fig. 3.13 Sample volume distribution from I-35 site, location 2, on February 11, 2003 

 

 

3.5.2 AVI Data 
 

The AVI data collected from the field for a selected day were first sorted based on the vehicle 

identification number.  These data were then sorted based on the AVI reader number and the 

time stamp.  Thus, the time a selected vehicle crosses different AVI antennas are grouped 

together.  MATLAB programs were developed to carry out this sorting and are shown in 

Appendix D.  After sorting the data, the data quality was checked before carrying out the travel 

time calculation.  For the AVI data, the quality control mainly included the removal of outliers.  

The primary source of these outliers is motorists that are read at the starting station of the 

corridor, exit the freeway, and then reenter the freeway later.   This provides large outlier 

readings of travel time.  In the present case, threshold values were determined based on the 

length of the section and the minimum and maximum reasonable travel time for that distance.  

Also observations with magnitude more than four times the mean of the previous 10 

observations were considered as outliers. However, none of the data considered in this 

dissertation showed the presence of outliers. Once the outliers were removed, the link travel time 

was calculated by matching unique tag reads recorded by the AVI readers at the start and the end 

of the defined AVI links.  The travel time was averaged for all the vehicles during the selected 
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study interval, 2 minutes.  Figure 3.14 shows the travel time obtained from AVI on February 11, 

2003. 
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Fig. 3.14 Sample AVI travel time from I-35 site, on February 11, 2003 

 

 

3.6 SIMULATED DATA USING CORSIM 

 

Simulated data were generated using the simulation software CORSIM (CORridor SIMulation), 

for testing the accuracy of the methods developed and techniques employed in the work.  

CORSIM is one of the most widely used microscopic traffic simulation models in the United 

States.  CORSIM was developed by the Federal Highways Administration (FHWA) and includes 

two separate simulation models, NETSIM (NETwork SIMulation) and FRESIM (FREeway 

SIMulation).  NETSIM is a traffic simulation model that describes in detail the operational 

performance of vehicles traveling in an urban traffic network.  FRESIM represents the 

simulation of freeway traffic.  The stochastic and dynamic nature of the model allows accurate 

representation of actual traffic conditions (CORSIM User’s Guide 2001).  CORSIM simulates 

traffic utilizing the car-following model. The basic idea of car-following models is that the 
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response of the following vehicle’s driver is dependent on the movement of the vehicle 

immediately preceding it (May 1990).  Car-following models are composed of equations that 

give the acceleration of the following vehicle with respect to the behavior of the lead vehicle. 

Thus, CORSIM simulates vehicles by maintaining space headway between simulated vehicles.  

CORSIM can be used to model an existing field network and collect the flow, speed, occupancy, 

or travel time data similar to that collected from the field.  This simulated data can be used for 

validating traffic models when there is a lack of field data.   

 

CORSIM is designed primarily to represent the spatial interactions of drivers on a continuous, 

rather than a discrete basis for analysis of freeway and arterial networks (Rilett et  al.   2000). 

CORSIM is a stochastic model, applying a time step simulation to describe traffic operations, 

randomly assigning drivers and vehicles to the decision-making process.  It applies time step 

simulation, where one time step represents one second.  Each vehicle is modeled as a distinct 

object that is moved every second, while each variable control device in the network is also 

updated every second for drivers to react.  The input requirement includes network details and 

traffic details.  The network is made up of links and nodes, and the traffic demand is input as 

volume in vehicles per hour.  The output provides details such as travel time, delay, queues, and 

environmental measures.  Surveillance statistics like vehicle counts, percentage occupancy, and 

average speed values can be obtained by choosing the detector option (CORSIM User’s Guide 

2001).    

 

The traffic simulation for the present work used the FRESIM subcomponent.  A traffic network 

similar to the field test bed was created in CORSIM, and detectors were placed 0.5 miles apart.  

Traffic volumes from the field were given as input to CORSIM at 30-minute intervals.  A 

corridor with seven links was generated for the present analysis.   Detectors were placed in each 

link to collect the flow, speed, and occupancy rate.  The default parameters in CORSIM were 

used since they gave acceptable results without much error, as shown below. Varying flow rates 

were input to the simulation, based on field data in order to have simulated flow variations 

comparable to the field data variations.  A 15-minute initialization time was given for the system 

to reach equilibrium.  The inputs are given by modifying the corresponding record types.  The 

direct output from CORSIM will not contain travel time details. Hence, the binary time step file 

(.tsd) that describes the state of each individual vehicle within the simulation model at each 1-
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second time step in the simulation is used for the estimation of travel time. These data are stored 

for each link and time step within the model and are specially designed to provide quick access 

to data within each individual time step data (.tsd) file. A conversion program written in C++ 

was used to convert the binary time step data file to an ASCII file that could be utilized to 

analyze the output results. The conversion program extracts vehicle-specific data at 1-second 

time increments between specific nodes of the corridor, including node number, time step (in 1-

second increments), global vehicle identification number, vehicle fleet, vehicle type, vehicle 

length, vehicle acceleration, and vehicle speed. Because the data included 1-second time 

increments, the majority of vehicles on the link were included in multiple time steps as they 

traversed the network. Hence, each vehicle’s entry and exit time were determined and the travel 

time was then calculated as the difference between the entry and exit time. Programs were 

developed in C programming language to carry out these operations. The obtained travel time 

value for each of the individual vehicles was then averaged for 2-minute intervals and was used 

for the validation. 

 

The detector output is given in the .OUT file.  Every 20 seconds data were extracted to be 

comparable to the field scenario.  Programs were developed in PERL to extract the speed, flow, 

and occupancy values from the output file.  The output obtained from CORSIM was used for 

checking the validity of the optimization technique and travel time estimation procedure as 

described in Chapters IV and V.  The developed CORSIM network is given in Appendix C, and 

the programs developed for extracting the data are given in Appendix D.   

 

The simulated volumes were compared with the corresponding actual values to check how the 

integrity of the original data is maintained.  Simulated data and the corresponding field data for 

February 11, 2003, are shown in Figure 3.15 for illustration. Mean absolute percentage error 

(MAPE), as defined below, is calculated for each set of data to determine the change in the data 

from the actual values.   

 

MAPE  = 100

actual estimated
actual

Number of observations

−
∑

× , 

 

(3.7) 
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The MAPE value came to be 14%, showing that the simulated data represent the actual data 

reasonably well. 
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   Fig. 3.15 Simulated data and the corresponding field data for February 11, 2003, for location 1 

 

 

3.7 CONCLUDING REMARKS 

 

This chapter described the details of the study corridors used, the data used in the analysis, and 

the preliminary data reduction.  The data were collected from the archived collection of the 

TransGuide system in San Antonio.  The study sites were selected from the I-35 N freeway in 

San Antonio, since it was equipped with both loop detectors and AVI.  Details about the working 

of AVI and loops were described briefly before presenting the details of the data used.  The 

details of the test bed and the collected data were given next.  The preliminary data quality 

checks and the corrections carried out were detailed subsequently.  These data quality control 

procedures were based on previous investigations.   Data were also simulated using CORSIM 

simulation software, and the details were given in the last section.   A network similar to the field 

network was generated in CORSIM, and the data were used for checking the validity of the 
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models developed.   

 

All of the preliminary data quality control techniques discussed in this chapter are useful to 

correct data collected at a single location, and therefore cannot account for systematic problems 

over a series of detectors.  For an application such as travel time estimation, there is a need to 

consider a series of detectors.  In such cases when detectors are analyzed as a series, more 

discrepancies are identified in the data, even after applying the screening methods at individual 

locations.  For instance, if the total number of vehicles counted by two consecutive detector 

locations is observed over a period of time, the difference in the cumulative counts should not 

exceed the number of vehicles that can be accommodated in that length of the road under the jam 

density condition.  However, this constraint will be violated if some of the detectors are under- 

or overcounting vehicles.  For many traffic applications such as incident detection, this might not 

be an issue.  However, for other applications that rely on accurate system counts, such as origin-

destination (OD) estimation and certain travel time estimation techniques, this can be a problem.  

While most of the existing error detection and diagnostic tests do take into account possible 

malfunctions of the loop detector by looking at the data at a specific point, the problems related 

to balancing consecutive detector data for vehicles being under- or overcounted has not been 

well addressed.  This lack of interest in this area may be due to current applications being based 

on data generated at a particular station point rather than series of station points at the same time.  

In other words, since the error does not adversely affect the result of the applications, they are 

typically ignored.  However, if the loop detector data are to be successfully used for new 

applications, these issues of system data quality will need to be addressed.   

 

Thus, most of the existing error detection and diagnostic tests do take into account possible 

malfunctions of the loop detector by looking at the data at a specific point.  However, the 

problems related to balancing consecutive detector data for vehicles being under- or overcounted 

have not been well addressed.  This analysis of the detector data as a series, the problems related 

to balancing consecutive detector data, and the correcting methodology suggested forms the crux 

of the next chapter.    
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CHAPTER IV 
 

OPTIMIZATION FOR DATA DIAGNOSTICS† 
 

 
4.1 INTRODUCTION 

 
Chapter III discussed the preliminary data quality control carried out on detector data at 

individual locations. It was concluded that while substantial failures in loop detector data are 

easily identified using the current technologies, more subtle failures such as biases in volume 

counts may go unidentified and, hence, there is a need to analyze the data at a system level. For 

example, in an application such as estimating travel time between two detector stations, where 

the data from the neighboring detectors need to be compared, there is a need to check the 

conservation of vehicles principle. Conservation of flow is one of the basic traffic principles that 

any volume data as a series must meet. In this dissertation the conservation of vehicles is 

checked by comparing the cumulative flow curves from consecutive detector stations. As 

discussed in Chapter II, very few studies have been reported that systematically analyzed a series 

of detector locations over a long interval of time to check whether the collected data follow the 

conservation of vehicles. Most of those studies, when faced with a violation of conservation of 

vehicles, suggested applying simple adjustment factors to rectify the problem, rather than 

applying any systematic methodology.  

 

In this dissertation a correction procedure based on nonlinear optimization is used for identifying 

and correcting the data when the conservation of vehicles principle is violated. The generalized 

reduced gradient method is chosen, where the objective function and constraints are selected 

such that the conservation of vehicles principle is followed with least change to the original data. 

Figure 4.1 shows the general flow chart for the overall data reduction process. Note that the 

proposed optimization technique can also be readily adapted for other applications. Two such 

applications, namely, to impute missing data, and to locate the worst performing detector station 

among a series of detectors are also illustrated in this chapter. 

 

                                                 
† Part of this chapter is reprinted with permission from “Loop detector data diagnostics based on 
conservation of vehicle principle” by Vanajakshi, L. and Rilett, L. R., Accepted for publication in Transp. 
Res. Rec., TRB, National Research Council, Washington, D. C. 
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Fig. 4.1 Algorithm for the overall proposed method 
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The following section details the conservation principle in vehicular traffic and the related 

literature. The GRG method is detailed next, followed by the actual implementation of the 

procedure for an example problem. Next, the validation of the optimization procedure is 

illustrated using simulated data. The applicability of the method for different conditions and 

other applications is detailed in the last section.   

 

4.2 CONSERVATION OF VEHICLES 

 

The concept of conservation of vehicles (Lighthill and Whitham 1955; Richards 1956) states that 

the difference between the number of vehicles entering and leaving a link during a specific time 

interval corresponds to the change in the number of vehicles traveling on the link. The simplest 

and the most general way in which this can be stated is that vehicles cannot be created or lost 

along the road (Daganzo 1997).  

 

This concept is further explained using a one-lane road with two detectors located at each end, as 

shown in Figure 4.2.  The number of vehicle arrivals and departures are measured continuously 

and aggregated regularly at the upstream location x1 and downstream location x2, respectively. 

 
 
                                                    n(t), k(t)                                       

 
                                       q(x1, t)                                                                         q(x2, t) 

   
 
 

Fig. 4.2 Illustration of the conservation of vehicles  

 
 

Referring to Figure 4.2, let q(x1, t) denote the flow measured at location x1 at time t, and let  

q(x2, t) denotes the flow measured at location x2  at the same time t. Let n(t) be the number of 

vehicles traveling over the link distance dx between the detector stations x1 and x2 at time t and  

k(t) the corresponding density of vehicles.  

 

Under the principle of conservation of vehicles, the number of vehicles on the length of road dx 

x1 x2

dx
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between upstream location x1 and downstream location x2, in an interval of time dt must equal the 

difference between the number of vehicles entering the section at x1 and the number of vehicles 

leaving the section at x2, which is equal to x1+dx, in that time interval. If the number of vehicles 

on the length dx at time t is k dx and the number of vehicles entering in time dt at x is expressed 

as q dt, then the conservation equation is as shown below (Drew 1968). 

 

,
k q

k dx k dt dx q dt q dx dt
t x

∂ ∂
− − = − +

∂ ∂
   
   
   

 
 

(4.1) 

where, 

q  

k  

dx 

dt 

= flow (vehicles per hour), 

= density (vehicles per mile), 

= length of road (miles), and 

= time interval (hours). 

 

Based on the fact that q = ku, where u is the space mean speed in vehicles per unit time, the 

following simplified form for the above equation may be derived (Drew 1968; Kuhne and 

Michalopoulos 1968). 

 

0.k q
t x

∂ ∂
+ =

∂ ∂
 

(4.2) 

 

Let Q(x1,tn) and Q(x2,tn) be the cumulative number of vehicles entering and exiting the link, 

respectively, from time t1 to tn, which can be expressed as 

 

1 11
( , ) ( , )n i

n
Q x t t q x t

i
= ∆ ∑

=
and         (4.3) 

2 2( , ) ( , )
1

n
Q x t t q x tn ii

= ∆ ∑
=

.        (4.4) 

 

Under ideal conditions, the cumulative volume at an upstream location should be more than or 

equal to the cumulative volume at the downstream location at any instant of time. Based on 

Figure 4.2 this can be expressed as:   
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1 2( , ) ( , )Q x t Q x tn n≥ .          (4.5) 

 

The equality condition in equation 4.5 holds for the case when all the vehicles that entered the 

section had exited by the end of the time interval. 

 
Also, the maximum difference between the upstream and downstream location cumulative flows 

cannot exceed the maximum number of vehicles that can be accommodated between these two 

locations at jam density as expressed in Equation 4.6.  

 
1 2( , ) ( , )Q x t Q x t nn n jam− ≤ ,         (4.6) 

where, 

jamn  = maximum number of vehicles that can be accommodated between locations x1 and x2 
at jam density. 

 

Thus, if there are no systematic errors present in the data, the difference in the total number of 

vehicles counted by the two consecutive detectors should equal the number of vehicles between 

the two detector locations as shown in equation 4.7. 

 
1 2( , ) ( , ) ( ) .Q x t Q x t n tn n n− =         (4.7) 

 
Based on the cumulative flows recorded at x1 and x2, there can be two scenarios in which the 

conservation of vehicles principle can be violated. In the first case when Q(x2,tn) becomes more 

than Q(x1,tn), ‘extra’ vehicles are said to be ‘created.’ In the second case when Q(x1,tn) is more 

than Q(x2,tn) and the difference is larger than the maximum number of vehicles that can be 

accommodated in the road length under consideration, vehicles are said to be ‘lost.’ Both of 

these conditions violate the conservation of vehicles principle. These differences can be due to 

errors of the detectors at the upstream location, the downstream location, or both.  

 

Reported studies that checked the conservation of vehicles are limited and include Zuylen and 

Brantson (1982), Petty (1995), Zhao et al. (1998), Cassidy (1998), Nam and Drew (1996, 1999), 

Kikuchi et al.  (1999, 2000), Kikuchi (2000), Windover and Cassidy (2001), and Wall and 

Dailey (2003). While all of the above studies acknowledged the fact that conservation is 
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violated, few of them (Zuylen and Brantson 1982; Petty 1995; Nam and Drew 1996, 1999; 

Kikuchi et al. 1999, 2000; Wall and Dailey 2003) discussed methods of correcting this problem. 

Zuylen and Brantson (1982) developed a methodology that relied on an assumption about the 

statistical distribution of the data to eliminate the discrepancy in the data. The algorithm is 

developed assuming a Poisson distribution or a normal distribution. Pettty (1995), in a report on 

the development of a program for freeway service patrol, discussed how to correct the loop 

detector count data, based on the conservation of vehicles principle.  The correction procedure 

suggested was to use compensation factors, which are computed as a fraction of the flow from 

the detector under consideration to the neighboring main lane flow. Nam and Drew (1996, 1999) 

and Wall and Dailey (2003) used a simple adjustment factor for correcting the discrepancy. Nam 

and Drew calculated adjustment factors as the ratio of inflow to outflow for every 30-minute  

and adjusted the flow at the downstream point accordingly to balance the flow. The investigation 

by Wall and Dailey (2003) required one properly calibrated reference detector that can be 

assumed to be correct in order to calculate the correction factor. Kikuchi et al. (1999) studied an 

arterial signalized network and proposed methodologies to adjust the observed values using the 

concept of fuzzy optimization.  Kikuchi et al. (2000) reported six different methods that can be 

used to adjust traffic volume data so that they will follow vehicle conservation and thus be useful 

for the subsequent analysis steps. They concluded that there is no single unique method that can 

be used under different situations. The data they used for analysis were from a small arterial 

network, and a single hourly inflow and outflow at each signal was compared.  

 

From the above discussion, it can be seen that there is no systematic studies reported for 

correcting continuous data collected from freeways when the data violate the conservation of 

vehicles. In the case of freeway data, the suggested methods are limited to the use of simple 

correction factors. This may work in situations where the analysis is for a small section of 

roadway or for a short duration of time where the resulting discrepancy is small in magnitude. 

For example, in the study reported by Nam and Drew (1999), the analysis was for a 4-hour 

period and the magnitude of the error was 200 vehicles over the total period. However, for most 

real-life traffic applications, the number of locations as well as the duration of study will be 

large. Hence, the amount of discrepancy may become large as well. In such cases, a systematic 

method is needed for diagnosing the data. The nature of this problem can be summarized as 

follows: 
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Given: a set of vehicle volumes from consecutive locations. 

Objective: adjust the volumes such that the values are consistent with respect to conservation of 

vehicles. 

 

Ideally, a method to solve the problem that finds a consistent set of adjusted values for a given 

set of observed values meeting the following requirements is needed: 

 

1. To ensure conservation of flow at any point at any time, 

2. To handle situations in which some data are missing or questionable, 

3. To preserve the integrity of the observed data as much as possible, and 

4. To handle a large amount of data (for example, continuous 24-hour data per day) in a 

systematic manner in a short computation time. 

 

In this dissertation, an optimization approach that can meet the above requirements is selected to 

balance the loop detector data.  The details of the selected method and its implementation are 

discussed in the following section. This dissertation represents the first application of this kind of 

an optimization technique for quality control of ILD data collected from freeways. 

 

4.3 GENERALIZED REDUCED GRADIENT OPTIMIZATION PROCEDURE  

 

Of the different methods currently used in engineering optimization fields, the most popular are 

the methods based on linearization of the problem because they are easy to solve (Gabriele and 

Beltracchi 1987). Such methods include successive linear programming, methods of feasible 

directions, and the generalized reduced gradient method (Gabriele and Beltracchi 1987). Each of 

these methods is based on linearizing the objective function and constraints at some stage of 

problem solving to determine a direction of search. This direction is then searched for the local 

improvement in the objective function, while at the same time avoiding severe violation of the 

constraints (Gabriele and Beltracchi 1987).  

 

GRG is one of the most popular techniques among the above and has a reputation for its 

robustness and efficiency (Venkataraman 2001; Eiselt et al. 1987). The GRG method is an 
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extension of the Wolfe reduced gradient method (Wolfe 1963, 1967), which solves problems 

with linear constraints and a nonlinear objective function (Abadie and Carpenter 1969; 

Himmelblau 1972). The extension in the GRG algorithm from the Wolfe algorithm is to take into 

account nonlinear constraints also. The general steps involved in a GRG optimization are as 

follows (Abadie 1970; Gabriele and Ragsdell 1977): 

 
1. Partition the variables into dependent and independent categories, based on the 

number of equality constraints involved, 

2. Compute the reduced gradient, 

3. Determine the direction of progression of the independent variables and modify 

them, and  

4. Modify the dependent variables in order to verify the constraints. 

 

The GRG algorithm solves the original problem by solving a sequence of reduced problems. The 

reduced problems are solved by a gradient method (Lasdon et al. 1978). The general form of a 

GRG problem will be as follows:  

 

Minimize    F (X), (4.8) 

Subject to   gj(X)  < 0, which will be converted to gj(X) + Xj+n = 0,  

               or gj(X)  > 0, which will be converted to gj(X)− Xj+n = 0, 

                   hk(X) = 0, 

(4.9) 

(4.10) 

(4.11) 

where, 

X       = column vector of design variables, 

F(X)  = objective function, 

g        = inequality constraints, 

h        = equality constraints, 

Xj+n     = slack/surplus variables, 

j          = number of inequality constraints (1, m), 

k         = number of equality constraints (1, l), and  

n         = number of original variables. 
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To start with, the slack/surplus variables (Xj+n) are included in the original set of design 

variables, thus having n+m total variables. The X vector now includes the original variables as 

well as the slack/surplus variables. The variables are then partitioned in to (n− l) 

independent/decision/basic variables (Z) and (m+l) dependent/state/nonbasic variables (Y). 

Now, with these variables and with all equality constraints, the original optimization task can be 

stated as: 

 

Minimize    F(X) = F(Z, Y)T, (4.12)

Subject to   hj(X) = 0,              j = 1, m+l (4.13)

 

Now, differentiating the above objective and constraint functions yields, 

 

( ) )T TdF Z Y=∇ ⋅ +∇ ⋅X F(X) dZ F(X dY ,       (4.14) 

( ) ( ) ( )dh j j jZ Y=∇ ⋅ +∇ ⋅X h X dZ h X dY ,  j = 1, m+l    (4.15) 

where, subscripts Z and Y correspond to the gradient with respect to the dependent and 

independent variables, respectively.  

 

Now, equation 4.15 can be rewritten as follows: 
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
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dY ,       (4.16) 

or 

dh (X) = A dZ + B dY,          (4.17) 

 

where, A is an (m+l) × (n− l) matrix and B is an (m+l) × (m+l) matrix, since there are (n− l) Z 

variables and (m+l) Y variables. One restriction here is that the B matrix should not be singular 
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(i.e. the inverse of the matrix should exist). If it becomes singular, the selection of the dependent 

and independent variable need to be changed such that B will not be singular.  

 

For any change in the decision variables, the equality constraints must remain satisfied for 

feasibility. It follows that ( )jdh X  = 0, for j = 1, m+l in equation 4.15 for any change in the 

independent variable dZ. Since dh(X) = 0, equation 4.17 can be solved for the corresponding 

change dY in the dependent variables in order to maintain feasibility. 

 

dY =  1 .−−B A dZ             (4.18) 

 

Substituting Equation 4.18 into Equation 4.14 and rearranging, one gets the following 

expression, 

 

dF =  { }1T T
Z Y

−∇ −∇ ⋅ 
 F(X) F(X) B A dZ .      (4.19) 

 

The generalized reduced gradient GR is defined by 
( )dF

dZ
X

 and can be represented as: 

 

( )dF
R dZ
= =

X
G  1 T

YZ
−∇ − ∇ 

 F(X) B A F(X) .      (4.20) 

 

The generalized reduced gradient can now be used to determine the search direction S in the 

decision variables as: 

 

S = − GR .          (4.21)  
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Then a one-dimensional search is performed with respect to the independent variable. For a 

selected step size, searching in the search direction, the dependent vector is updated using 

Newton’s method for solving simultaneous nonlinear equations for dY. Having found the 

minimum in the search direction, the process is repeated until convergence is achieved 

(Vanderplaats 1984). In this case the convergence criterion was when all the constraints reach a 

value of 1×10-4. The search direction is found such that any active constraints remain precisely 

active for some small move in that direction. If a move results in an active constraint being 

violated, Newton’s method is used to return to the constraint boundary. More details of the GRG 

method as well as the available software for this method can be found in Gabriele and Ragsdell 

(1980), Lasden and Warren (1978), and Abadie (1978). Figure 4.3 shows the steps of the GRG 

algorithm discussed in this section for a one-dimensional search as a flowchart (Vanderplaats, 

1984). 

 

For the present problem of adjusting the detector data for violation of the conservation of 

vehicles principle, the optimization problem can be formulated for a series of I detectors in 

sequence as:  
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Fig. 4.3 Algorithm for the GRG method  
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( )2
11 ( ) ( )min

1

I i iQ Qt ti

− +−∑
=

,  
(4.22)

Where,  

t       = time, 

i       = detector number, 

Q(i)   = cumulative number of vehicles at detector i,and 

I       = total number of locations, 

 

 

subject to the constraints,  

( )( ) ( 1) 0i iQ Qt t
+− ≥ ,                                      ∀ i =1,m-1 

( )( ) ( 1)i iQ Q zt t
+− ≤ ,                                       ∀ i =1,m-1and 

( )( ) ( ) 0,1
i iQ Qt t− ≥−                                            ∀ i =1,m 

where z is the maximum number of vehicles that can be accommodated between the 

two locations. 

 

(4.23) 

 

(4.24) 

 

(4.25) 

The constraints in this case are selected based on the restrictions discussed earlier. The first 

constraint, shown in equation 4.23, is based on the condition that the cumulative flow at the first 

detector location should be greater than or equal to the cumulative flow at location 2, which in 

turn should be greater than or equal to the cumulative flow at location 3, at all times. The second 

constraint, shown in equation 4.24, stipulates that the maximum difference cannot exceed the 

maximum number of vehicles that can be accommodated in that road length at jam density 

conditions. The constraint shown in equation 4.25 is that the value at a particular time step 

cannot be less than the value for the previous time step, since the variables used are cumulative 

values. 

 

4.4 IMPLEMENTATION 

 
To illustrate the procedure, a corridor consisting of three detectors is considered for analysis. The 

detector locations on San Antonio I-35 freeways were spaced approximately 0.5 miles apart, 

making the corridor length approximately 1.5 miles. The three consecutive detector locations 



  

 

67

selected were detector numbers 159.500, 159.998, and 160.504 as shown in Figure 3.10. The 

analysis was carried out for a period of 24 hours for all 5-days under consideration.  

 

As said earlier, the objective function was to adjust the observed volumes to meet the 

conservation of vehicles constraint. The objective function and associated constraints given in 

equations 4.22 – 4.25 are modified to suit the three detector series as given below:  

 

( ) ( )2 2(1) (2) (2) (3)min Q Q Q Qt t t t− + −
 
 
 

, 
(4.26) 

where,  

t       = current time, and 

Q     = cumulative number of vehicles at each detector, 

 

subject to the constraints,  

(1) (2)( ) 0Q Qt t− ≥ , and  (2) (3)( ) 0Q Qt t− ≥ , 

(1) (2)( )t tQ Q z− ≤ , and (2) (3)( ) ; 500t tQ Q z z− ≤ = , and 

(1) (1)
1 0t tQ Q −− ≥ , (2) (2)

1 0t tQ Q −− ≥ , and (3) (3)
1 0.t tQ Q −− ≥  

(4.27) 

(4.28) 

(4.29) 

 

The z value is calculated based on the known distance between the two consecutive detectors and 

an assumed average vehicle length. Given that the length of road is 0.5 miles (805 m), the 

maximum number of vehicles at jam density, assuming 25 feet (7.7 m) as the average vehicle 

length, is 105 vehicles per lane between the two detector locations. Hence, the maximum 

difference in the cumulative volumes between each pair cannot theoretically exceed 315 for the 

three lanes, cumulatively. A z value of 500 was used in this dissertation as the maximum number 

of vehicles that can be accommodated in the study length.  

 

The cumulative volumes for the selected three consecutive detector locations for all 5 days were 

studied first. One sample plot for a 24-hour period on February 11, 2003, is shown in Figure 4.4.  

 
As discussed earlier, if conservation of vehicles is followed, the cumulative volume at location 1 

should always be greater than or equal to that at location 2, which in turn should be greater than 

or equal to location 3 values at all time intervals. Also, the maximum difference should be less 
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than the maximum number of vehicles that can be accommodated. Contrary to this, in the I-35 

cumulative volume plot in Figure 4.4, it may be seen that the location 2 volume is consistently 

lower than that of location 3. This is shown enlarged in Figure 4.5 for a 1-hour period from 

8:00:00 to 9:00:00.  Also, the cumulative flow at location 3 became larger than both locations 1 

and 2 at certain points, as shown enlarged in Figure 4.6 from 18:00:00 to 19:00:00. These are 

clearly violations of the conservation of vehicles principle, and show the necessity to check for 

the systematic errors even after standard error checking has been carried out.  

 

It is clear from the results that some or all of the detectors under consideration are 

malfunctioning. There are two different ways of approaching this problem further. The first case 

is where the specific detectors that are malfunctioning are determined by collecting the 

corresponding ground truth data for each of the detectors involved. In this case one can find out 

the exact detectors that are malfunctioning by comparing with the ground truth data and the 

corrections can be applied to these detectors alone. In the second case, the ground truth data may 

not be available and the corrections have to be applied based on some assumptions as to which 

are the detectors that need to be corrected. For example, the error in the data from the three 

locations shown in Figure 4.4 can be from any of the 11 detectors involved. The only way to 

pinpoint the malfunctioning detector(s) is by a manual data collection to be carried out at each of 

the 11 detector points and compare with the corresponding detector data. However, most of the 

studies that use detector data do not collect the ground truth data. One reason for this may be that 

the manual data collection can be very expensive, especially if the analysis is for a long period of 

time over a long stretch of roadway.  Moreover, most of the research studies using detector data 

use archived loop detector data for model development, calibration, and validation. The 

availability of ground-truth data for the archived data is very low as in the present dissertation.  
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Fig. 4.4 Cumulative actual volumes for 24 hours at I-35 site on February 11, 2003 
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Fig. 4.5 Enlarged cumulative volumes for 1 hour at I-35 site on February 11, 2003 
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Fig. 4.6 Enlarged cumulative volumes for 1 hour at I-35 site on February 11, 2003 
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In this dissertation, an assumption was made that any of the detectors could be malfunctioning 

and hence the optimization is done equally to all the detectors under study. However, as 

discussed already, if the data for cross-checking are available and the malfunctioning detector(s) 

is(are) exactly known, the present method can still be applied specifying the particular location 

data to be optimized, instead of optimizing the data from all the locations. 

 

To summarize, it was found that the field data, even after the preliminary data quality control, 

violated the conservation of vehicles principle. An assumption of equal error from all the 

detectors involved is made due to lack of specific data on which detector(s) are malfunctioning. 

Hence, the algorithm developed for removing the type of discrepancies in the data set should (1) 

make the cumulative flow at successive detector points smaller than the previous point and (2) 

keep the difference between the cumulative flows in the successive points not more than the 

maximum number of vehicles that can be accommodated within that length of road. The GRG 

algorithm with the objective function and constraints as given in equations 4.26-4.29 was 

implemented using MATLAB.   

 

As discussed in the GRG theory, the first step in the implementation was to convert the 

inequality constraints to equality constraints. Thus, equations 4.27 – 4.29 need be converted to 

equality constraints by adding suitable variables as shown below: 

 

(1) (2)( ) 01Q Q vt t− − = , and  (2) (3)
2( ) 0t tQ Q v− − = ,      (4.30) 

(1) (2)
3( )t tQ Q v z− + = , and (2) (3)

4( )t tQ Q v z− + = ,     (4.31) 

(1) (1)
1 5 0t tQ Q v−− − = , (2) (2)

1 6 0t tQ Q v−− − = , and (3) (3)
1 7 0.t tQ Q v−− − =    (4.32) 

  

As can be seen from equation 4.30-4.32 there are six original variables (n = 6) and are (1)
tQ , 

(2) ,tQ  (3) ,tQ  (1)
1,tQ −  (2)

1 ,tQ − and (3)
1tQ − . Also, there are seven slack/surplus variables (m = 7), which 

are denoted as v1 through v7 inclusive. Thus, the total number of variables is 13, and they need to 

be partitioned into independent and dependent variables. As discussed earlier, this partition 

should be based on the condition of obtaining a nonsingular B matrix in equation 4.17. In this 

example, the cumulative volume values (Qi) were selected as the independent variables (Z) and 
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the slack/surplus variables (vi) are selected as the dependent variables (Y). The original number 

of equality constraints is zero (l = 0). This makes the size of the A and B matrix (7×6) and 

(7×7), respectively. The reduced gradient and search direction were calculated as per equation 

4.20 and 4.21. Then, the linear search is carried out until convergence is reached. In this 

dissertation, the convergence criterion was when all the constraints reach a value of 1×10-4. For 

24-hour data, the computational time varied from 12 to 24 hours on a Windows XP machine (P-4 

processor, 2.4 GHz processing speed, 1-GB RAM) running MATLAB release 13.   

 
4.5 RESULTS 

 

The cumulative volumes after the optimization for the same site as shown in Figure 4.4 is given 

in Figure 4.7. From this figure it can be seen that now the flow values follow the conservation of 

vehicles for the entire 24-hour period without violating any constraints. Figures 4.8 and 4.9 show 

enlarged cumulative flow values corresponding to Figures 4.5 and 4.6. The condition shown in 

Figure 4.6 is one of the worst-case scenarios, where the cumulative flow at location 3 is greater 

than the cumulative flows at locations 1 and 2. Under this situation, the optimization brings the 

cumulative flows at all the three locations to equal values, meeting the minimum requirement, as 

shown in Figure 4.9.
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Fig. 4.7 Cumulative volumes after the optimization at I-35 site on February 11, 2003 
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Fig. 4.8 Enlarged cumulative volumes after optimization  

 
 

47,500

48,500

49,500

50,500

51,500

18
:0

0:
00

18
:0

6:
00

18
:1

2:
00

18
:1

8:
00

18
:2

4:
00

18
:3

0:
00

18
:3

6:
00

18
:4

2:
00

18
:4

8:
00

18
:5

4:
00

19
:0

0:
00

Time (hh:mm:ss)

C
um

ul
at

iv
e 

vo
lu

m
e 

(v
eh

ic
le

s)

Location 1
Location 2
Location 3

 

Fig. 4.9 Enlarged cumulative volumes after optimization 
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Similar results were obtained for other dates also. Sample graphs from February 10 to February 

14, 2003, for locations 1, 2, and 3 (detector numbers 159.500 to 160.504 as shown in Figure 

3.10) for different 1-hour durations are shown below to illustrate the performance of the 

optimization procedure under varying traffic flow conditions. Also, these figures compare the 

performance of the optimization under different problem scenarios.  

 

Figure 4.10 shows the cumulative flows from locations 1, 2, and 3 from 09:00:00 to 10:00:00 on 

February 10, 2003. Here, the location 2 cumulative flow is more than the cumulative flow from 

location 1 throughout the 1-hour period. The same cumulative flows after optimization is shown 

in Figure 4.11. The cumulative flows after optimization follow all the constraints, thus following 

the conservation of vehicles principle.  
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Fig. 4.10 Cumulative actual volumes during 09:00:00-10:00:00 on February 10, 2003 
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 Fig. 4.11 Cumulative optimized volumes during 09:00:00-10:00:00 on February 10, 2003 

 

 

Figure 4.12 shows the cumulative flows obtained on the same date from 05:00:00 to 06:00:00. In 

this case the location 3 cumulative flow is found to be more than the location 2 cumulative flow. 

Figure 4.13 shows the same cumulative flow curves after optimization and it can be seen that the 

optimization was able to correct the data in this scenario also. 
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Fig. 4.12 Cumulative actual volumes during 05:00:00-06:00:00 on February 10, 2003 
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Fig. 4.13 Cumulative optimized volumes during 05:00:00-06:00:00 on February 10, 2003 
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Figure 4.14 shows the cumulative flows obtained February 10, 2003, from 03:00:00 to 04:00:00. 

In this case the location 3 cumulative flow is found to be more than location 1 and location 2 

cumulative flows. However, cumulative flows at 1 and 2 were in the correct order, with location 

1 cumulative flow more than location 2. 
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Fig. 4.14 Cumulative actual volumes during 03:00:00-04:00:00 on February 10, 2003 

 
 
These cumulative flows after the optimization are shown in Figure 4.15.  This is one of the 

worst-case scenarios, where the cumulative flow at location 3 being greater than the cumulative 

flows at locations 1 and 2. Under this situation, the optimization brings the cumulative flows at 

all the three locations to equal values, meeting the minimum requirement. 
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Fig. 4.15 Cumulative optimized volumes during 03:00:00-04:00:00 on February 10, 2003 

 

 

Figure 4.16 shows the cumulative flows from February 11, 2003, from 05:00:00 to 06:00:00. In 

this case also, the location 3 cumulative flow is more than location 1 and location 2 cumulative 

flows. However, in this case, cumulative flow at location 1 and 2 were also violating the 

constraints, with location 1 cumulative flow less than that at location 2. 
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Fig. 4.16 Cumulative actual volumes during 05:00:00 to 06:00:00 on February 11, 2003 

 

This data after the optimization is shown in Figure 4.17.  It can be seen that in this scenario also, 

the optimization corrected the cumulative flows to meet the minimum requirements. 
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Fig. 4.17 Cumulative optimized volumes during 05:00:00 to 06:00:00 on February 11, 2003 
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Figure 4.18 shows the cumulative flows from February 12, 2003 from 11:30:00 to 12:30:00. 

Here the cumulative flow at location 3 was shown to be more that location 1 but less than that at 

location 2 and the corresponding values after optimization are shown in Figure 4.19.  
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Fig. 4.18 Cumulative actual volumes during 11:30:00 – 12:30:00 on February 12, 2003 
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Fig. 4.19 Cumulative optimized volumes during 11:30:00 – 12:30:00 on February 12, 2003 
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On February 12, 2003, 10:00:00 to 11:00:00 cumulative volumes were plotted and are shown in 

Figure 4.20. This scenario showed cumulative flow at location 2 exceeding cumulative flow at 

location 1.  
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Fig. 4.20 Cumulative actual volumes during 10:00:00-11:00:00 on February 12, 2003 

 

 

The values after optimization are shown in Figure 4.21. Again, the optimization was able to 

bring the cumulative volumes to satisfy the constraints.  
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Fig. 4.21 Cumulative optimized volumes during 10:00:00-11:00:00 on February 12, 2003 

 
 
On February 13, 2003, cumulative volumes from 17:00:00 to 18:00:00 were plotted and are 

shown in Figure 4.22. This scenario showed cumulative flow at location 2 exceeding cumulative 

flow at location 1, with the differences between each of the cumulative flows being very high. 

The corresponding flows after optimization is shown in Figure 4.23. 
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Fig. 4.22 Cumulative actual volumes during 17:00:00 – 18:00:00 on February 13, 2003 
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Fig. 4.23 Cumulative optimized volumes during 17:00:00 – 18:00:00 on February 13, 2003 

 



  

 

85
 

Analysis of February 14, 2003, data from 08:30:00 to 09:30:00 is shown in Figure 4.24. In this 

case the cumulative volumes were in the correct order. However, the difference exceeded the 

maximum allowed difference.  
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Fig. 4.24 Cumulative actual volumes during 08:30:00 – 09:30:00 on February 14, 2003 

 

 

The corresponding volumes after optimization are shown in figure 4.25. 
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Fig. 4.25 Cumulative optimized volumes during 08:30:00 – 09:30:00 on February 14, 2003 

 

 

Figure 4.26 shows 13:00:00 to 14:00:00 data from the same day and it showed the 

cumulative flow at location 2 exceeding that at location 1. The corresponding cumulative 

curve after optimization is shown in Figure 4.27 with all the values following the 

constraints. 
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Fig. 4.26 Cumulative actual volumes during 13:00:00 to 14:00:00 on February 14, 2003 
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Fig. 4.27 Cumulative optimized volumes during 13:00:00 to 14:00:00 on February 14, 2003 
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Overall, it was found that the data from all the 5 days under consideration was violating the 

conservation of vehicles principles at different time periods and that the developed optimization 

technique was able to correct the values under all the different problem scenarios. Thus, the 

optimization proves to be a good technique for correcting the flow data when it violates the 

conservation of vehicles principle under different scenarios that can happen in the field data. 

 

As is obvious from the objective function and the constraints, the algorithm can be extended to 

any number of detector series.  In this dissertation, the analysis is extended to a five-detector 

series for illustration. The objective function and the constraints in the case of a five-detector 

series are as given below: 

 

( ) ( ) ( ) ( )2 2 2 2(1) (2) (2) (3) (3) (4) (4) (5)min Q Q Q Q Q Q Q Qt t t t t t t t− + − + − + −
 
 
 

, 
(4.33)

Where,  

t   = current time, and 

Q  = cumulative number of vehicles at each detector, 

 

subject to the constraints,  

(1) (2)( ) 0Q Qt t− ≥ , (2) (3)( ) 0Q Qt t− ≥ , (3) (4)( ) 0Q Qt t− ≥ , and  (4) (5)( ) 0Q Qt t− ≥ , 

(1) (2)( )Q Q zt t− ≤ , (2) (3)( )Q Q zt t− ≤ , (3) (4)( )Q Q zt t− ≤ , and (4) (5)( )Q Q zt t− ≤ , 

(1) (1) 01Q Qt t− ≥− , (2) (2) 01Q Qt t− ≥− , (3) (3) 01Q Qt t− ≥− , (4) (4) 01Q Qt t− ≥− , and 

(5) (5) 01Q Qt t− ≥− . 

(4.34) 

(4.35) 

(4.36)

 

Here, the number of original variables is 10, and the number of slack/surplus variables is 13, 

making a total of 23 variables. The size of the resulting A and B matrix will be (13×10) and 

(13×13), respectively.  

 

It was found that the complexity of the problem as well as the computational time increases with 

increase in the number of variables. This can be seen from the increase in the size of A matrix 

from (7×6) to (13×10) and B matrix from (7×7) to (13×13), when the analysis was changed 
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from 3-detector series to 5-detector series.  This increase in size of the matrices will lead to more 

computational time for the matrix operations involved such as matrix inversion, multiplication, 

etc. For example, the optimization of a one-day data (24-hours data having 720 data records) 

iterates the matrix manipulations approximately 1600 times for each record (i.e. a total of 720 × 

1600 = 1152000 times). For a 3-detector data series, the matrix sizes were (7×6) and (7×7) and 

for a five day data, these matrix operations have to be performed on (13×10) and (13×13) 

matrices. This lead to high computation times and, hence, in this dissertation only one sample 

run was conducted for a five-detector series, just to illustrate the performance of the optimization 

method for longer sections.  

 

Sample results from February 10, 2003, for a series of five detectors are shown in Figures 4.28 

and 4.29. This included all the five detector locations shown in Figure 3.10. Figure 4.28 shows 

the cumulative flows before optimization for a 1-hour period from 06:30:00 to 07:30:00. It can 

be seen that the conservation of vehicles is violated, with location 4 cumulative volume greater 

than the cumulative values at locations 1, 2, or 3. Figure 4.29 shows the cumulative volumes 

after optimization for the same time period. Similar figures for another 1-hour period from 

08:00:00 – 09:00:00 on February 10, 2003, are shown in Figures 4.30 and 4.31. In Figure 4.30 it 

can be seen that the cumulative flow at location 2 is more than that at location 1. Figure 4.31 

shows the corresponding cumulative volumes after optimization. Thus, the optimization 

procedure proves to be useful for optimizing longer sections with more detectors.   

 

Tables 4.1 and 4.2 show the minimum and maximum values in the original and optimized 24-

hour data for all 5 days. From the results it can be seen that the optimization method was able to 

correct data under varying traffic flow conditions for longer sections also. 



  

 

 
90

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

15,000

6:
30

:0
0

6:
32

:0
0

6:
34

:0
0

6:
36

:0
0

6:
38

:0
0

6:
40

:0
0

6:
42

:0
0

6:
44

:0
0

6:
46

:0
0

6:
48

:0
0

6:
50

:0
0

6:
52

:0
0

6:
54

:0
0

6:
56

:0
0

6:
58

:0
0

7:
00

:0
0

7:
02

:0
0

7:
04

:0
0

7:
06

:0
0

7:
08

:0
0

7:
10

:0
0

7:
12

:0
0

7:
14

:0
0

7:
16

:0
0

7:
18

:0
0

7:
20

:0
0

7:
22

:0
0

7:
24

:0
0

7:
26

:0
0

7:
28

:0
0

7:
30

:0
0

Time (hh:mm:ss)

C
um

ul
at

iv
e 

vo
lu

m
e 

(v
eh

ic
le

s)

Location 1
Location 2
Location 3
Location 4
Location 5

2

1 3

5

4

 
 

Fig. 4.28 Cumulative actual volumes for 1 hour on February 10, 2003, for five consecutive detector stations from 159.500 to 161.405 
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Fig. 4.29 Cumulative optimized volumes for 1 hour on February 10, 2003, for five consecutive detector stations from 159.500 to 161.405 
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Fig. 4.30 Cumulative actual volumes for 1 hour on February 10, 2003, for five consecutive detector stations from 159.500 to 161.405 
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Fig. 4.31 Cumulative optimized volumes for 1 hour on February 10, 2003, for five consecutive detector stations from 159.500 to 161.405 
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Table 4.1 Data Details at the Study Sites Before Optimization 

Number of vehicles in 
link 1 before optimization 

Number of vehicles in 
link 2 before optimization

Number of vehicles in 
link 3 before 
optimization 

Number of vehicles in link 
4 before optimization 

Date 

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum 

February 10, 2003 -4922 195 -136 1747 -2934 40 7 11167 

February 11, 2003 -5090 126 -128 2340 -3232 -3 2 12273 

February 12, 2003 -4387 9 -53 1868 -3038 -1 -4249 1421 

February 13, 2003 -5015 79 -149 2001 -3757 -15 1 12833 

February 14, 2003 -3564 303 -4 2201 -3287 2 12 12744 

 

Table 4.2 Data Details at the Study Sites After Optimization 

Number of vehicles in 
link 1 after optimization 

Number of vehicles in link 
2 after optimization 

Number of vehicles in 
link 3 after optimization 

Number of vehicles in 
link 4 after optimization 

Date 

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum
February 10, 2003 0 216 0 110 0 89 0 54 

February 11, 2003 0 109 0 69 0 105 0 59 

February 12, 2003 0 183 0 136 0 70 0 66 

February 13, 2003 0 186 0 124 0 86 0 49 

February 14, 2003 0 498 0 220 0 71 0 39 
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4.6 VALIDATION 

 

Validation of the optimization procedure can be carried out either using field ground truth data 

or using simulated data. However, as discussed earlier, the present study was using archived data 

and the corresponding ground truth flow data were not available. Hence, simulated data 

generated using CORSIM simulation software was used for validation purposes. The use of 

simulated data also has the advantage that there can be more control over the data, and it will be 

easier to carry out sensitivity analysis for varying amounts of errors.  

 

A traffic network similar to the field test bed was created in CORSIM, and detectors were placed 

at 0.5-mile distances as discussed in Chapter III.  Data were generated for 5 hours from 06:00:00 

to 10:00:00. Traffic volumes from the field were used as input to CORSIM at 30-minute 

intervals. Ten different flow rates were input for the 5-hour study, in order to have simulated 

flow variations comparable to the field data variations. Detectors were placed in each link to 

collect the flow, speed, and occupancy rate.  The output data were extracted from the simulation 

at 1-minute intervals as detailed in Chapter III.  

 

In the field, different types of malfunctions occur to loop detectors, most of which may be 

identified by analyzing the detector data at individual locations. However, analyzing the data at 

individual locations may not identify systematic errors, such as detectors continuously 

undercounting or overcounting the vehicles. This kind of constant bias in the data is one of the 

main reasons for the violation of conservation of vehicles in the data. These are the errors that 

are to be identified and corrected by the present optimization procedure. Hence, such errors were 

introduced in the simulation data and the performance of optimization was studied. A sensitivity 

analysis was carried out to find out the performance of optimization under varying types and 

magnitudes of errors.  The purpose of this sensitivity analysis was to find out the range up to 

which the optimization procedure can be applied as an acceptable procedure for diagnosing the 

data.  

 

Three consecutive detectors were selected from the simulation and a four-hour data were 

used for the sensitivity analysis. First the effect of constant undercounting or over 

counting of the detectors was studied. The detector data without any error, if given as 
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input to the optimization will not be optimized as it satisfies all of the minimum 

requirements, thus giving an MAPE of zero. The error was first introduced in the data as 

a constant 10% over counting at detector location 2 by adding 10% of actual data to the 

observations as given below:  

 

(1 ),t tq qnew old β= +           (4.37) 

where, 
tqnew  = data after introducing error, 

tqold  = actual data, and 

β  = bias introduced. 

 

The optimization procedure was carried out on the data with the introduced error. The simulated 

data, the data with errors, and the data after optimization were compared. Figure 4.32 shows the 

plot of the actual data, the data after introducing the error, and the data after optimization, for the 

detector for which the error was introduced. It can be seen that the optimization was able to 

correct the error in the data in this case with a minimal change to the original data. Figure 4.33 

shows the effect of this optimization on the corresponding cumulative flow data of the same 

detector. 

 

The optimized volumes are compared with the corresponding actual values obtained from the 

simulation to check whether the integrity of the original data is maintained after optimization. 

MAPE, as defined in Chapter III, is used as a performance measure. MAPE for the data with 

errors and for the optimized data were calculated with respect to the true simulated values. The 

magnitude of the MAPE values reduced from 10% to 4.57% after optimization.  
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Fig. 4.32 Validation of optimization performance using simulated data 
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Fig. 4.33 Validation of optimization performance using simulated cumulative data 

 

 
This analysis was repeated with varying error values. The error was varied from 1% to 150% and 

the results are shown in Table 4.3 and are plotted in figure 4. 34. It can be seen that as the error 

in the input data is increasing, the MAPE between the optimized value and the actual value also 

increasing.  

 

 

Table 4.3 MAPE with Varying Amount of Over Counting Error in the Input Data 

Error% MAPE 
0 0 
1 1.563299 

10 4.579592 
20 7.947224 
30 11.25403 
40 14.61498 
50 17.97029 
70 24.67011 

100 34.70231 
150 50.94552 
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Fig. 4.34 Performance of the optimization with varying amount of over counting of the detector  

 

 
In a similar way, the effect of undercounting on the optimization performance was carried out. 

The results obtained are shown in Figure 4.35. 
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Fig. 4.35 Performance of the optimization with varying amount of under counting of the detector 
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The effect of having random error at a detector location is also studied. A normal distribution 

was assumed for the error distribution with the following density function. 

 
21

21( ; , )
2

x

f x e
µ

σµ σ
σ π

− −  
 = ,        (4.38) 

where, 
x = value for which normal distribution is needed, 
µ  = mean of the distribution, and 
σ  = standard deviation of the distribution. 
 

 
The standard deviation was varied from 0 to 50 in this dissertation. The MAPE in each of the 

cases was calculated and is plotted in Figure 4.36.   
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Fig. 4.36 Performance of the optimization with varying amount of random error  

 
 
It can be seen that the optimization was able to give acceptable results, assuming a 40% MAPE 

as the maximum acceptable error, up to 100% over counting or under counting. In the case of 

random errors, the optimization gave acceptable results up to a standard deviation of 40. Thus, it 

can be seen that the optimization procedure was able to perform well with constant errors as well 
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as random errors. 

 
Also, the performance of the optimization was checked under situations where 2 out of the 3 

detectors are malfunctioning.  This was carried out under two different scenarios. The first 

scenario considered two detectors having constant bias in the data and the second scenario 

considered one detector having a random error and the other having a constant bias.  

 

One sample run was carried out for each of the two scenarios discussed above. The results of the 

first scenario with β1 = -10% and β2 = 20% at location 1 and 2 are shown in Figures 4.37 and 

4.38 respectively. Figure 4.37 shows the actual volume, volume with introduced error and the 

volumes after the optimization for location 1. Similar figure for location 2 is shown in Figure 

4.38. It can be seen that even with two out of the three detectors having error, the optimization 

was able to reduce the error in the data. The MAPE value reduced from 10% to 5% at location 1 

and from 20% to 6% at location 2. 

 

In the second scenario, optimization was carried out with a constant error of 10% at the first 

location and a random error following normal distributions with a standard deviation of 10 at the 

second location. The results obtained are given in Figures 4.39 and 4.40 
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Fig. 4.37 Comparison of the performance of optimization at Location 1 
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Fig. 4.38 Comparison of the performance of optimization at Location 2 
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Fig. 4.39 Comparison of the performance of optimization at Location 1 
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Fig. 4.40 Comparison of the performance of optimization at Location 2 
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It can be seen that with this combination of errors, the optimized values at location 1 have more 

variation than it had before the optimization. This was due to the fact that it has to take into 

account the wide variation at location 2 also into account as shown in Figure 4.40. The MAPE at 

the first location increased slightly from 10% to 12%, while the second location MAPE was 

reduced from 29% to 12%. 

 

For the optimization of the field data, a comparison was carried out between the optimized 

volumes and the corresponding field values. Even though it is known that the field data have 

discrepancies, this was carried out to check how much the integrity of the original data is 

maintained after the optimization.  

 

The results are tabulated in Table 4.4 for all the selected locations and all the selected days for 

the whole 24-hour period. The small magnitude of the MAPE values around 10% as shown in 

Table 4.4 (a value of 40% or more is considered to be large in practical applications 

(ezforecaster 2003)) show that the GRG method is able to perform the optimization without 

changing the original data’s integrity. Thus, it can be observed that the optimization procedure 

follows all the requirements, namely, the data follow conservation of vehicles at all points at all 

time, handle a large amount of data, and preserve the integrity of the observed data as much as 

possible. 

 

 

Table 4.4 Performance Measure at Each Site 

Date Location 1 

MAPE (%) 

Location 2 

MAPE (%) 

Location 3 

MAPE (%) 

Location 4 

MAPE (%) 

Location 5 

MAPE (%) 

February 10, 2003 7.56 6.19 5.88 8.17 14.86 

February 11, 2003 8.43 6.63 7.06 8.71 15.76 

February 12, 2003 7.67 6.32 6.73 8.06 10.19 

February 13, 2003 8.32 6.64 6.43 8.65 11.30 

February 14, 2003 5.99 5.56 5.85 8.01 14.56 
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4.7 OTHER APPLICATIONS  

 

In addition to removing the discrepancy in the available data, the proposed optimization 

technique can also be used for imputing missing data if any of the detector locations under 

consideration miss recording data for some period of time. As discussed in Chapter II, missing 

data values (nonresponse) is a common occurrence with ITS data, and different imputation 

methods were reported. The detectors in general report data at 20- or 30-second intervals. 

However, sometimes the intervals get skipped and the data are reported at a larger interval, 

which can range from 1-minute to 10-minutes. Some of the reasons for this can be detector 

malfunctions, communication disruption, or software failure.  

 

In this dissertation, the efficacy of the proposed optimization approach for imputation is 

illustrated in the following manner. Separate sample data sets with missing values were 

generated for locations 1, 2, 3, 4, and 5 of I-35 for February 10, 2003, by replacing the data with 

zeros for an interval of 15 minutes. The optimization program was run for these data with 

missing numbers. Based on the objective function and the constraints specified for the 

optimization, the missing numbers will be imputed depending on the values at the other locations 

for that time step, as well as the optimized number for the same location in the previous time 

step. Table 4.5 shows a sample set of data to illustrate the imputation for a 12-minute interval at 

location 2 on February 10, 2003. The values given are the time interval in the first column, 

followed by the field values obtained for each of the time intervals. The third column shows the 

optimized values corresponding to the field values. The fourth column shows the data introduced 

as zero to represent the missing numbers, and the fifth column gives the corresponding 

imputation results. The MAPE between the actual and the imputed values is calculated and is 

shown in the last column. It can be seen that the optimization procedure was able to impute the 

missing data reasonably well. 
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Table 4.5 Imputation of Missing Data Using GRG 

Time Actual Optimized Missing Imputed MAPE % 

0:30 29 29.93 0 20.26 30 

0:32 28 29.18 0 19.98 28 

0:34 23 23.93 0 16.19 29 

0:36 21 22.74 0 15.59 25 

0:38 26 24.99 0 16.46 36 

0:40 21 26.93 0 20.09 4.4 

0:42 22 23.73 0 16.33 25 

 

 

Figures 4.41 to 4.45 show the results obtained for missing data at locations 1, 2, 3, 4, and 5 

respectively, after optimization for the five-detector series. For comparison, the result from 

optimization for the corresponding data without any missing values also is plotted in the 

corresponding figures. The original field data and the data with the missing numbers are also 

plotted in each of the graphs. It can be seen that with the missing values, the optimization 

retained the trend in the data and the numbers are able to follow the original optimized results. 

The MAPE values were calculated by comparing the optimization results with missing values 

with the corresponding actual values for the missing period of 12 minutes with 8 observations. 

The MAPE values obtained are also shown in the corresponding figures.  
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Fig. 4.41 Imputation results with missing data in location 1 on February 10, 2003 
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Fig. 4.42 Imputation results with missing data in location 2 on February 10, 2003 

 
 

MAPE12 minutes = 29.36% 

MAPE 12 minutes = 28.20% 
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Fig. 4.43 Imputation results with missing data in location 3 on February 10, 2003 

 
 

0
5

10
15
20
25
30
35
40
45
50

0:
02

:0
0

0:
08

:0
0

0:
14

:0
0

0:
20

:0
0

0:
26

:0
0

0:
32

:0
0

0:
38

:0
0

0:
44

:0
0

0:
50

:0
0

0:
56

:0
0

Time (hh:mm:ss)

V
ol

um
e 

(v
eh

ic
le

s/
2 

m
in

ut
es

)

Actual data
Optimized data
Imputed data
Missing data

 
Fig. 4.44 Imputation results with missing data in location 4 on February 10, 2003 

 

MAPE12 minutes = 32.82% 

MAPE12 minutes = 44% 
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Fig. 4.45 Imputation results with missing data in location 5 on February 10, 2003 

 

 

Also, this method can be used for finding the worst-performing detector stations based on the 

amount of error at each location.  This information can be used for prioritizing the detectors for 

maintenance. This can be accomplished by comparing the MAPE values. For example, it can be 

seen in Table 4.4 that the MAPE for location 5 is higher than all the other locations, which is an 

indication that the detectors at location 5 is performing poorer than those at all the other 

locations. This will be useful to decide that the detectors at location 5 need priority in 

maintenance. However, with the present method of analysis, where all the detectors at a location 

are added together and assumed as a single detector, it will not be possible to identify which 

specific detector in that location is malfunctioning. To identify the specific malfunctioning 

detector within the identified location, the analysis should be carried out at a lane-by-lane level. 

The issues related to this kind of analysis of the detectors for each lane separately is discussed in 

detail in Chapter III.  

 

 

MAPE 12 minutes = 47.7% 
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4.8 ALTERNATIVE OBJECTIVE FUNCTIONS AND CONSTRAINTS 

 
As discussed already, the constraints in the present optimization are selected based on 

restrictions, such as the cumulative flow at each detector location should be greater than or equal 

to the cumulative flow at the succeeding detector at all times. Another constraint is that the 

maximum difference between the cumulative flows should not exceed the maximum number of 

vehicles that can be accommodated in that road length at jam density conditions. These 

constraints are based on the worst and best scenarios. However, one could also choose different 

constraints which will change the computation time and the accuracy of the results.  

 

The objective function used in the present strategy can also be modified to make the 

optimization procedure to incorporate more features of traffic flow. For example, the use of a 

weighted objective function can be one of the possibilities. One way to carry out this will be to 

assign weight to the variables in the objective function based on the standard deviation or 

variance at each of the locations (Taylor et al. 1969). However, to take variance into account in 

the present study, one of the following assumptions must be made: 

 

a) Variance is the same for a small interval of time, say 10 minutes (constant 

temporal flow), and/or 

b) Variance is the same for the consecutive locations (constant spatial flow). 

 

The first assumption will assume a constant variation in traffic flow over time, while the 

second one makes an assumption that the flow is uniform in nature. Also, there is a need 

to know the relationship between the variance in the data and the error due to 

malfunctioning of the ILD. However, no literature was found on the relationship 

between the variance of traffic flow and the accuracy of the data recorded by the 

detectors. Thus, another assumption about how much variance is due to error and how 

much is due to natural variation in the traffic flow needs to be made.  
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In case the assumption is made that more variance at one location means more error at 

that point, one can assign more weight to the cumulative flow at that point based on the 

weight calculation given below (Miller and Miller 1993). 

 

n
s

s
w

i

i
i ∑ −

−

= 2

2

,           (4.39) 

where,  
2
is  = variance, and 

n  = number of observations. 

 

Then, this weight can be assigned to the variables in the original objective function of 

the optimization given in equation 4.26 based on the assumptions made. For example, if 

the assumption is that variance should be same for the interval of time under 

consideration, the objective function can be: 

 

(1) (1) (2) (2) (2) (2) (3) (3)2 2min ( ) ( ) ,Q w Q w Q w Q wt t t t− + − 
  

     (4.40) 

where,  

w(1)  = weight based on the variance at location 1 as given in Equation 4.39. 

 

If the assumption is that the variance is same for the consecutive locations, the objective function 

can be: 

 

(1) (2) (2) (3)2 1 2 2 2 3min ( ) ( ) ,Q Q w Q Q wt t t t
− −− + − 

  
     (4.41) 

where,  

w1-2  = weight based on the difference in variance between locations 1 and 2. 

 

However, the accuracy of the above assumptions are not clear. As discussed already, there is a 

need to find out the relation between error in the detector data and variance of the data. This will 
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give an idea of how much of variance is due to error and how much is due to natural variation in 

the traffic flow. For example, Smith et al. (2003) argued that reducing the natural variance in the 

traffic data is an undesirable approach.  Thus, the only reasonable inference one can make based 

on the variance at consecutive locations is that if there is a large change in variance at one 

location compared to the neighboring locations that may indicate a malfunction of the detector at 

that location. In the present study, the variance in the data at the consecutive locations was 

compared. Figure 4. 46 show the plot of the variance in the data obtained from the consecutive 

locations. It can be seen that the variances did not have much variation between the locations.  

Hence, minimization of variance is not taken in the objective function or constraints in the 

present study. However, if it is known that the variation at a location is due to error in data 

collection, incorporating the variance in the objective function may lead to better result. 
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Fig. 4.46 Variance from three consecutive locations on February 11, 2003 

 
 
4.9 CONCLUDING REMARKS 

 

In this chapter, the loop detector data initially screened and corrected for common discrepancies 

were considered for further analysis. The data were analyzed as a series, rather than as individual 
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locations, and it was found that the conservation of vehicles principle was violated in one of the 

two following ways: in the first case there were a larger number of vehicles exiting than entering 

the test section, while in the second, the cumulative volume entering became unreasonably 

higher than the cumulative volume exiting. The cumulative volume curves of the data after the 

usual error corrections clearly showed that this approach of observing the detectors as a series 

could identify discrepancies that were unidentified with the commonly adopted error-checking 

procedures at individual locations. An optimization algorithm to adjust the volume data so that 

they will satisfy the conservation of vehicles was proposed. The objective of the method was to 

minimize the difference between the entry-exit observations using a GRG optimization. The data 

obtained after the optimization were consistent with the conservation of vehicles without 

violating any constraints. This method of correcting the loop detector data is more useful and 

convenient than the application of volume adjustment factors when dealing with large amounts 

of data for a longer duration and having large discrepancies. Also, the optimization technique 

proved to be very useful for imputing missing data as well as for prioritizing the detector stations 

for maintenance. This dissertation represents the first application of this kind of an optimization 

technique for quality control of the ILD data. The optimized data will be used in the estimation 

of travel time and will be discussed in the next chapter. The influence of this optimization on the 

final estimated travel time will also be discussed in that chapter.   
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CHAPTER V 
 

ESTIMATION OF TRAVEL TIME 
 
 

5.1 INTRODUCTION 

 
Travel time, or the time required to traverse a roadway between any two points of interest, is a 

fundamental measure in transportation. Engineers and planners have used travel time and delay 

studies since 1920s to evaluate transportation facilities and plan improvements (Travel time data 

collection handbook 1998). In recent times with the increasing interest in Advanced Traveler 

Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS), providing 

travelers with accurate and timely travel time information has gained paramount importance.  

 

Travel time can be measured directly using probe vehicles/test vehicles, license plate matching, 

electronic distance measuring instruments, Automatic Vehicle Identification (AVI), Automatic 

Vehicle Location (AVL), and video imaging, or it can be estimated from indirect sources like 

Inductance Loop Detectors (ILD), weigh-in-motion stations, or aerial video. While techniques 

like AVI and probe vehicles have less error, they are more expensive and often require new 

types of sensors as well as public participation; hence they are not widely deployed in urban 

areas (Turner 1996). Other methods, such as the test vehicle method, are time consuming, labor 

intensive, and expensive for collecting large amounts of data. On the other hand, most of the 

metropolitan areas in North America have their freeway network instrumented with ILD, which 

makes them the best source of traffic data over a wide area for a long period of time. Hence, at 

present ILDs are the most cost effective and popular way of obtaining travel time information for 

ATIS applications.  

 

As discussed in earlier chapters, ILDs can be either single-loop or dual-loop. The data supplied 

by single-loop detectors include volume and occupancy. An algorithm is then used for estimating 

the speed using inputs such as effective loop length, average vehicle length, time over the 

detector, and the number of vehicles counted (Klein 2001). In the case of dual-loop detectors, the 

speed value will be automatically calculated based on the known distance between the two loops 

and the time a vehicle takes to cross the two loops. However, neither of these ILDs can collect 

travel time data directly, and so travel time has to be estimated from the available ILD data such 
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as flow, speed, or occupancy. Also, the data obtained from the ILDs are not for individual 

vehicles, but an aggregated value for all the vehicles traveling in the interval in which the data is 

reported. Thus, the travel time estimation should be based on the aggregate/average values 

reported by the ILDs for the small aggregation intervals, usually 20 or 30 seconds.  

 

Accurate estimation of travel time from loop detector data is a difficult task due to the fact that 

the detector data is a point measurement, whereas travel time is a dynamic parameter averaged 

over distance. Thus, the travel time estimated based on spot speeds tends to underestimate 

section travel times due to the failure to capture traffic congestion occurring between the detector 

stations. For example, the most popular method adopted in the field today for the estimation of 

travel time from ILD data is based on the extrapolation of the point speed values. However, it is 

known that the accuracy of speed-based methods declines as the flow becomes larger because 

this method cannot take into account the variation in flow between the two measurement points. 

Oh et al. (2003) reported that the travel time estimated from single or dual-loop detector speed 

values would be correct only under the assumption that the traffic condition in the section is 

either homogenous or a linear combination of the two points. However, this assumption is not 

valid under congested traffic conditions. Thus, the travel time estimated tends to be biased under 

congested traffic conditions. Other estimation methods include statistical and traffic flow theory 

based models, the majority of which are developed for either the free-flow condition or the 

congested-flow condition (Nam and Drew 1996, 1998; Hoogendoorn  2000; Oh et al.  2003). 

Thus, most of these models were not developed taking into account the varying traffic flow 

conditions during the transition period from peak to off-peak or off-peak to peak conditions. 

Some attempts have been made in the past to estimate travel time using re-identification of 

vehicles at the second location (Coifman 1998; Coifman and Cassidy 2002; Sun et al. 1998, 

1999). However, these methods require the use of sophisticated equipments and/or programs, 

which are not typically available to most traffic management centers. 

 

The present study proposes a travel time estimation procedure using ILD data. The methodology 

proposed is based on a theoretical model suggested by Nam and Drew (1999) for the estimation 

of travel time from ILD flow data. Several modifications to this theoretical model are proposed 

in this dissertation. The details of the model by Nam and Drew (1999) are discussed in the next 

section followed by the proposed changes in the model. In the results section, a comparison is 
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carried out between the results obtained from the Nam and Drew model and the proposed model. 

Also the travel time estimated using the proposed method is compared with the results from the 

extrapolation method as well as with the direct travel time measured using AVI. In order to 

perform a more comprehensive analysis, the modifications are validated using simulated data 

from CORSIM simulation software. 

 
5.2 TRAFFIC DYNAMICS MODEL  

 
The traffic dynamics model (which will be called the ‘N-D model’ henceforth) for estimating 

freeway travel time from ILD flow measurements suggested by Nam and Drew (1995, 1996, 

1998, 1999) is based on the characteristics of the stochastic vehicle counting process and the 

principle of conservation of vehicles. An inductive modeling approach was adopted in their 

study along with geometric interpretations of cumulative arrival-departure diagrams. The link 

travel time was calculated as the area between the cumulative volume curves from loop detectors 

at either end of the link. Instead of the usual approach of generalizing point measurements over a 

link, this work showed a judicious application of traffic flow theory to yield better travel time 

estimates from point data. Exponential averaging was used to increase the stability of the time 

series estimation of travel time.  

 

The method can be explained using a one-lane road with two detectors located at each end, as 

shown in Figure 5.1. The number of vehicle arrivals and departures are measured continuously at 

the upstream location x1 and downstream location x2. 

 

 
   

 
 
 
 
 

 
Fig. 5.1 Illustration of the conservation of vehicles  

 
  

x1 x2 

∆x
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Referring to Figure 5.1, let q (x1, t) denote the flow per unit time measured at location x1 at time 

t, and let q(x2, t) denote the flow measured at location x2  at the same time t. The flows are 

regularly aggregated at ∆t  intervals for each detector. Thus the total number of vehicles entering 

and exiting the link during ∆t respectively are  

 

1 2( , ) , ( , )q x t t t q x t t t+ ∆ ∆ + ∆ ∆ .   (5.1) 

 

Under the principle of conservation of vehicles, the difference between the above two quantities 

equals the change in the density, k (t), over the link distance ∆x.  The equation of conservation of 

vehicles then becomes 

 

[ ]
1 2

( , ) ( , ) ( ) ( )q x t t q x t t t k t t k t x + ∆ − + ∆ ∆ = + ∆ − ∆  .    (5.2) 

 

Rearranging the terms in the above equation, the conservation equation was written by Nam and 

Drew in the following form: 

 

1 2 1 1 2 2
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( ) ( )q x t q x t q x t t q x t q x t t q x t k t t k t

x x x t

− + ∆ − + ∆ − + ∆ −
+ − =

∆ ∆ ∆ ∆
. (5.3) 

 

Let Q (x1, tn) and Q (x2, tn) be the cumulative number of vehicles entering and exiting the link 

respectively, which can be expressed as  

 

1 1( , ) ( , )
1

n
Q x t t q x tn ii

= ∆ ∑
=

, and         (5.4) 

2 2( , ) ( , )
1

n
Q x t t q x tn ii

= ∆ ∑
=

.        (5.5) 

 

The initial conditions were 

 

1 0 2 0 0( , ) 0, ( , ) ( ) 0Q x t Q x t n t= =− ≤ ,       (5.6) 
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where, 

0( )n t  = number of vehicles traveling on the link at time 0t .  

 

The relationship between the link distance ∆x and the data aggregation interval ∆t is maintained 

as  

 

5 min
x

t
v f

∆
<∆ ≤ ,         (5.7) 

where, vf  = the free-flow speed on the link. 

 

According to the characteristics of the stochastic vehicle counting process, the variables Q (x1, tn) 

and Q (x2, tn) are nonnegative and nondecreasing, and this leads to equation 5.8 and 5.9. 

 

1 1 1 1( , ) ( , ) ( ) 0,,nQ x t Q x t q x t tn n−− = ∆ ≥        (5.8) 

2 2 1 2,( , ) ( , ) ( ) 0.Q x t Q x t q x t tn nn− = ∆ ≥−        (5.9) 

 

Also, the cumulative number of vehicles leaving downstream cannot exceed those arriving at 

upstream (based on the conservation of vehicles principle). Therefore, 

 

1 2( , ) ( , )Q x t Q x tn n≥ .         (5.10) 

 

The equality condition in equation 5.10 holds when there are no arrivals and subsequently the 

link is empty for the time interval ∆t. 

 

Let n(t) be the number of vehicles traveling over the link distance ∆x between the detector 

stations x1 and x2 at time tn and is given as 

 

1 2( ) ( , ) ( , )n t Q x t Q x tn n n= − .         (5.11) 
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Then, the density at time tn, k (tn) is calculated as follows: 

 

k (tn) = 
( )n tn

x∆
 = 1 2Q (x , t ) - Q (x , t )n n

∆x
.       (5.12) 

 

The N-D study developed two separate models: one for normal-flow conditions and the other for 

congested-flow conditions. The distinction between normal and congested-flow was made based 

on the number of vehicles entering and exiting during the specific time interval. This variable 

m(tn) was defined as the number of vehicles that enter the link during the interval tn-1 to tn and 

that exit the link during the same interval. Under the first-in first-out condition m(tn) is given as  

 

2 1 1( ) ( , ) ( , )m t Q x t Q x tn n n= − − .                 (5.13) 

 

The variable m(tn) was considered as a dynamic link performance measure, and different 

equations for estimating the travel time were suggested depending on whether m(tn) is positive 

(normal-flow) or equal to or less than zero (congested-flow). 

5.2.1 Case 1. Normal-flow Condition 

 
Nam and Drew assumed that the traffic characteristics of vehicles traveling under normal-flow 

conditions are represented by the vehicles that enter the link during the interval tn-1 to tn  and that 

exit the link during the same interval. The total travel time of these vehicles is schematically 

shown in Figure 5.2 as the hatched area.   
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Fig. 5.2 Schematic representation of the total travel time during the interval (tn-1, tn) under 

normal-flows  

(Source: Nam and Drew 1999) 
 
 
Thus, analytically the total travel time of all the vehicles that entered and exited the link in that 

time period is equal to the shaded area and can be calculated as 

 

( ) ( )1
1

( ) ( )
2

T t t t t t m tn n nn′′ ′= − + −−   ,                (5.14) 

 
where,   

t′  =  time of entry into the link of the last vehicle that exits the link during the interval and  

t′′  = time of departure from the link of the first vehicle that enters the link during the 

interval. 

 

After interpolating the values of t′ and t′′ , and substituting them in Equation 5.14, the travel 

time T(tn) was calculated for the vehicles that enter and exit during the same interval (m (tn)) and 

is given in Equation 5.15: 

 



 

 

123
 

( ) ( )
( ) ( )

1 1

1

, ( ) , ( )
( )

2 , ,

q x t k t q x t k tn n nnx i iT tn
q x t q x tn ni i

+−∆ +=
+

  
  

,     (5.15) 

where, 
∆x  = distance between the detector locations (meters), 

q(xi,tn) = flow at location i from tn-1 to tn (vehicles per second), and 

k(tn)  = density in the link between location i and i+1 at time tn (vehicles per meter). 
 

5.2.2 Case 2. Congested-flow Condition 

 

 
 

Fig. 5.3 Schematic representation of the total travel time during the interval (tn-1, tn) under 

congested-flows 

(Source: Nam and Drew 1999) 
 

 

Nam and Drew stipulated the traffic condition as congested when the value of the variable m(tn) 

is either zero or negative. Under such conditions, none of the vehicles that enter the link during 

the interval tn-1 to tn exit the link during the same interval. Then, the travel time is calculated 

based on all the vehicles that enter during the interval under consideration, and the value 

corresponding to m (tn) for congested condition is calculated as 

 

1 1 1
'' ( ) ( , ) ( , )m t Q x t Q x tn n n= − − .        (5.16) 
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Thus, under the congested-flow conditions, the travel time is calculated as the shaded area in 

Figure 5.3, and this is equal to 

 

( )1
1 '' ' ''( ) ( )
2

t t t t m tn nn−− + − 
  

,       (5.17) 

where, 

t′  = expected time of departure from the link of the last vehicle that enters the link during 

the interval (tn-1 , tn), and 

t′′  = expected time of departure from the link of the first vehicle that enters the link during 

the same time interval. 

 

After interpolating the values of t′ and t′′ , and substituting them in Equation 5.17, the travel 

time T(tn) and is calculated as shown in Equation 5.18: 

 

( ) ( )
( )

1

1

( )
2

.
k t   k t∆x nn-T tn q x ,tni

+
=

+

            (5.18) 

 

After the calculation of travel time, exponential averaging was applied to smooth the dynamic 

travel time estimates. This numerical technique favored the most recent estimate by assigning 

weight factors. Thus, the instantaneous travel time estimate at the next time interval (tn-1 , tn) was 

calculated as 

 

1 1( ) ( ) ( ) ( )T t T t T t T t Tn nn n fα= + − ≤− −   ,       (5.19) 

where, 

α  = exponential weighing factor 
t

T
∆

, ∆t is the aggregation interval, and T is the 

smoothing time interval, 

T(tn) = instantaneous travel time estimates by time tn, 

T (tn-1) = exponentially smoothed travel time estimates by time tn-1, and 

Tf  = free-flow link travel time. 
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Nam and Drew (1999) validated the model using loop detector data during the morning peak 

hours (6:00 to 10:00 AM) on March 14, 1994, on a section of the Queen Elizabeth Way in 

Toronto, Canada. The ILD data were reported every 30 seconds and was accumulated to 2-

minute intervals before analysis. Data from all the lanes for a given ILD were aggregated and 

were treated as single lane data. At the end of the 4-hour study period, the data showed a 3 

percent difference in traffic counts, which indicated a violation of the conservation of vehicles 

principle. A volume adjustment factor was determined for each 30-minute period, and the 

measurements were adjusted to correct this discrepancy in the data. The models were then 

validated using the corrected data.  

 

The main criticisms of the above model were the necessity to know the number of vehicles in the 

link at the start of data collection and the high sensitivity of the travel time estimates with respect 

to the errors in the measurements from the detectors (Son 1996; Petty et al. 1998; Dhulipala 

2002; Oh et al. 2003). Another drawback of this method was related to the calculation of 

densities from cumulative flow measurements. Here, the accuracy of the estimation solely 

depends on the accuracy of the flow values. This would be an efficient method to find out the 

true density in a section, if the ILDs were working perfectly and an automatic initialization 

process could be employed frequently, on the order of every few minutes (May 1990). However, 

in reality the detectors may not be working perfectly. Many researchers, such as May (1990), 

have raised this concern pointing out that the calculated density from input-output counts getting 

frequently affected even with a low level of detector errors. Petty et al. (1998) expressed their 

concern in the following manner: “Loop detectors are notorious for over- and under-counting 

vehicles. Hence the cumulative flow lines that Drew and Nam were relying upon can 

systematically drift over time (indeed they might even cross).”  Issues related to the use of 

cumulative flow curves for the calculation of density was raised by Oh et al. (2003): “A simple 

subtraction of cumulative arrivals at the two detectors would yield the number of vehicles in 

between the detectors and thus the density of the section between them. If such a density is 

known at any point in time, we can make a very good estimate of the true section travel time 

using simple fluid model relations for traffic. The reality however is different, in that the 

detectors in the field are not perfect and each detector has its own tendency to undercount 

vehicles and thus the cumulative arrival counts at two detectors (with their own “cumulative 

count drift”) cannot be used to find the density at any time.” Son (1996) pointed out another 
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drawback of this model as the calculation of travel time under normal-flow considering only the 

vehicles that entered and exited in the same time interval. To address all these concerns, a 

number of modifications are proposed in this dissertation and are detailed in the following 

section. 

 
5.3 PROPOSED MODEL FOR TRAVEL TIME ESTIMATION  

 

As discussed in the previous section, many previous studies have pointed out certain drawbacks 

in the N-D model, which will be addressed in this dissertation. Concerns related to the quality of 

the ILD flow data values and its effect on the calculated travel time is one important factor that 

has been raised by several researchers. For instance, there can be no violation of the conservation 

of vehicles principle as far as the N-D model is concerned. However, loop detectors are 

mechanical devices, and errors in their measurements are inevitable. Nam and Drew chose to use 

volume adjustment factors to correct the field data when there was a violation of the 

conservation of vehicles principle. This may be sufficient when the analysis is for small intervals 

of time over small stretches of roadway. However, when the analysis is for longer intervals of 

time, for instance, one full day, a systematic methodology to check and correct the data is 

required. In this dissertation, this concern was addressed by the use of an optimization 

procedure, the details of which were discussed in Chapter IV.  

 

The necessity of knowing the number of vehicles in the link at the start of observation is another 

limitation pointed out in earlier criticisms of the N-D model. In this dissertation, 24-hour data 

starting at midnight 12 were analyzed.  It was assumed that at midnight, zero vehicles are inside 

the link since the traffic flow is very low at that time. This assumption was made after analyzing 

the ILD data for different days.  

 

As discussed previously, the N-D model consists of two separate models, one for normal-flow 

and the other for congested-flow. The classification of normal and congested-flow is based on 

whether any vehicle that entered at a specific time step was able to exit the link in the same time 

step. This classification does not consider the transition period between normal and congested-

flow. For example, during the transition from normal to congested-flow, at some time steps the 

majority of the vehicles which enter the section may not exit in the same period due to the start 
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of congestion. However, because few vehicles out of the total vehicles that entered are able to 

exit in the same time step, the N-D model will consider the flow as normal-flow. Thus, the N-D 

model will calculate the travel time based on those few vehicles that entered and exited in the 

same period. It can be seen that the majority of vehicles that did not exit in the same time 

interval will be left out of the calculation of travel time. This will affect the calculated travel time 

value during the transition period. The fact that a portion of vehicles is not considered for 

calculating travel time under normal-flow conditions is another drawback of the N-D model (Son 

1996). This is addressed in this dissertation by taking a weighted average of the travel time of 

vehicles based on normal-flow and congested-flow conditions at each time step during the 

transition period.  

 

As detailed in the previous section, calculation of density from the cumulative flow was another 

criticism of the N-D model. In this dissertation, this drawback was taken into account by 

calculating density from the occupancy values reported by ILD. Also, previous literature showed 

that the travel time is almost independent of flow during very low flow conditions. This led to 

the final modification of calculating travel time from speed during very low traffic flow 

conditions. Each of the above mentioned modifications are explained in detail in the following 

sections.   

5.3.1 Modification I. Optimization to Enforce Conservation of Vehicles Principle 

 

The development of the N-D model was based on the equation of conservation of vehicles and 

the flow-density-speed relation. If the traffic flow follows the conservation of vehicles principle, 

the cumulative flow at the upstream point at any time should be greater than or equal to the 

cumulative flow at the downstream point. Also, the difference between the cumulative flow at 

the upstream and downstream locations cannot exceed the maximum number of vehicles that can 

be accommodated in the section between the two detectors. In the N-D model, the analysis was 

carried out for a 4-hour period, and the data showed a 3 percent error at the end of the study 

period. The authors suggested a volume adjustment factor to correct the error. This type of 

adjustment factor will be reasonable and practical for problems with a small number of 

observations. When applied to large amount of data over long periods of time, however, the 

difference between the observed and the adjusted values propagate and are very difficult to 
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control. For example, in the present study, the analysis was carried out for 24-hour time periods, 

and the magnitude of error was of the order of thousands of vehicles as shown in Table 4.1. In 

such cases, the use of an adjustment factor will not be sufficient to correct the systematic errors. 

Thus, when the analysis is for a long interval of time and/or for a long stretch of detectors, one 

needs a more systematic method of analysis and correction of data. In the present study a 

nonlinear optimization method, namely the Generalized Reduced Gradient method (GRG), is 

adopted to enforce the conservation of vehicles principle and has been discussed in detail in 

Chapter IV.  

5.3.2 Modification II.  Normal-flow Model   

 

As discussed earlier, the study by Nam and Drew consisted of two separate models: one for 

normal-flow conditions and the other for congested-flow conditions. The distinction between 

normal and congested-flow was made based on the number of vehicles entering and exiting 

during a specific time interval, designated as m(tn) as in Equation 5.13.  However, it can be seen 

that for calculating the travel time under normal-flow conditions, the N-D model considered only 

those vehicles that entered and exited the section in the same time period. However, in the case 

of congested-flow, travel time is averaged for all vehicles that entered in that time step. This is 

further explained using Figure 5.4. Under normal-flow conditions, such as between time step tn-1 

and tn in Figure 5.4, the N-D model considers only the area ACDE for the calculation of travel 

time. Thus, it can be seen that under normal-flow conditions, a portion of the vehicles will not be 

considered while calculating travel times (areas ABC and DEF). This becomes more serious as 

flow increases or decreases in the transition between off-peak to peak flow or peak to off-peak 

flow. At these times, a small percent of the total vehicles that entered may be exiting the section 

in the same interval whereas majority may be exiting in the next interval. For example, in Figure 

5.4, during the time interval from tn to tn+1 only the area FGHI will be considered, and the 

vehicles represented by areas EFG and HIJ will be ignored. Because a portion of the vehicles is 

able to exit in the same interval, m(tn) will be positive, and hence the chosen model would be the 

normal-flow model. Thus, the travel time is calculated based on the few vehicles that managed to 

exit in the same interval, ignoring the majority that did not exit in the same time interval.  

The above concept can be illustrated using the field data shown in Table 5.1.  This specific data 

set pertains to link 1 of the I-35 section on February 11, 2003. In time interval 6, there were 71 
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vehicles inside the link, and only 13 of these were able to exit in the same time period. Because 

13 of them were able to exit, the N-D model will consider it as a normal-flow condition and the 

travel time will be calculated based on those 13 vehicles. The information on the remaining 57 

vehicles would be ignored. 
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Fig. 5.4 Schematic diagram to illustrate the travel time calculation 
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Table 5.1 Data Set to Illustrate the Travel Time Calculation on February 11, 2003 

Time 

interval 

q1 q2 Q1 Q2 Number of 

vehicles in 

the link 

m 

1 135 131 53840 53767 73 61 
2 121 124 53961 53891 70 51 
3 104 110 54065 54001 64 40 
4 125 123 54190 54124 66 59 
5 104 104 54294 54228 66 38 
6 84 79 54378 54307 71 13 
7 100 101 54478 54408 70 30 
8 99 97 54577 54505 72 27 
9 112 120 54689 54625 64 48 

 
 
The present study overcomes this disadvantage by modifying the normal-flow model. The 

modification is carried out by applying the normal-flow model to the vehicles that are able to 

enter and exit in the same interval, and the congested-flow model is applied to those vehicles that 

are not able to exit in the same interval. Thus, a weighted average of the travel time is calculated 

of the normal-flow vehicles and congested-flow vehicles traveling in the same time interval. This 

weighted average is based on the proportion of normal-flow vehicles and congested-flow 

vehicles within the same time step.  

 

Let ( )p nm t  be the ratio of normal-flow vehicles to the total inflow for that time period tn-1 to tn 

which can be represented as:  

 

( )
( )

( ),

m tnm tp n q x tni
= .         (5.20) 

 

Thus, the new equation for estimating travel time under normal-flow condition will be as shown 

in Equation 5.21.  
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( ) ( ) ( ) ( ) ( )
( ) ( )

( )( ) ( ) ( )
( )

1 1 2

1 2

1
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, ,n n nn-
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nn-1 p n 2 n
.

q x t k t q x t k tx
T m t

q x t q x t

k t   k t  ∆x
m t

q x ,t

+∆
= +

+
−

 
 
  

 
 
  

    (5.21) 

 

All the variables in Equation 5.21 are the same as in Equations 5.15 and 5.18. It can be seen that 

this modification helps to model the transition flow in a more accurate way. For instance, when 

the flow condition is completely normal, the value of ( )p nm t  will be 1, and hence the second 

term in the above equation will vanish. In the transition stage the second term will take into 

account the travel time of those vehicles that fall in the congested condition that were ignored in 

the N-D model.   

 

This freeway travel time function given in equation 5.21 has two independent measures, q (x1, tn) 

and q (x2, tn). The relationship between the travel time and the flow rates can be found by 

differentiating this function with respect to the two flow variables. Re-writing equation 5.21 

using Equation 5.3 the following equation is obtained: 

 

[ ]

[ ]

1 1 2 1 2 2
1 2

1 1 2
2

( )
( ) ( ) ( )

2

1 ( )
2 ( ) ( ) .

2

m tp nT k t x q q t q q qni q q

m tp n k t x q q tnq

= ∆ + + ∆ − +−

−
∆ + − ∆−

     (5.22) 

 

The final differential with respect to q (x1, tn) is obtained as follows: 

 

12
2

1 1 2

( ) ( ( ) ) (1 ( ))

2 2

m t q t k t x m t tT p n n p n
q q q

∆ − − ∆ − ∆∂
= +

∂
,     (5.23) 

where, 

q1  = q (x1, tn), and  

q2   = q (x2, tn). 
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Due to the precondition of the normal-flow (Equation 5.13) that 2 1 1( , ) ( , )n nQ x t Q x t −> , the 

quantity 2q t∆  will always be greater than ( 1)nk t x− ∆ . Also, both the numerator and 

denominator in the second term in Equation 5.23 are always positive, making Equation 5.23 

always positive. This means that as the traffic demand given by q (x1, tn) increases, the travel 

time also increases.  

  

The final differential with respect to q (x2, tn) is calculated and is shown in Equation 5.24. 

 

[ ]2
2 1 1 1 1

2 2
2 1 2 2

( ) ( ) (1 ( )) 2 ( )

2 2

m t q t k t q x m t k t x q tT p n n p n n
q q q q

∆ + ∆ − ∆ + ∆∂ − −= − −
∂

        
     

.  (5.24) 

 

It can be seen that both the numerator and the denominator for the first and second terms are 

positive, making Equation 5.24 always negative. This means that as the outflow quantity q(x2,tn) 

increases, the travel time decreases.  Thus, it can be seen that the new travel time function has a 

desirable relationship with both the flow variables under normal and congested conditions by 

increasing with increasing inflow and decreasing with increasing outflow.  

 

As in the original model, exponential averaging was applied to smooth the dynamic travel time 

estimates. This smoothing gives stable estimates over time. An α value of 0.2 was adopted, thus 

smoothing the exponentially averaged estimates over the time interval 5 ∆t. 

5.3.3 Modification III. Calculation of Density 

 

The N-D model calculates the density from the cumulative flow values. Thus, the accuracy of 

the estimated travel time depends solely on the accuracy of the measured flow values. If the 

point detectors are working perfectly, this method is appropriate to calculate the true density in a 

section. However, in reality the detectors may not be working perfectly (Vanajakshi and Rilett 

2004b; Turner et al. 2000; Chen and May 1987). Moreover, if there is a malfunction in the 

detectors, the flow data get more affected. This is because of the nature in which the detectors 

collect traffic data. The flow data from the detectors are reported as a cumulative number, 

whereas speed and occupancy are averaged data for the accumulation time interval (every 20- to 
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30-second interval). Hence the effect of a detector malfunction, like missing vehicles, will have 

less impact on speed and occupancy in comparison to flow data. In such cases, the calculation of 

density from the flow values may not yield the best results.  

 

Even though in the present study the flow data are corrected for the discrepancy based on the 

conservation of vehicles constraint, there can still be more “unaccounted” errors in the data. 

Hence, in the present study the use of occupancy values for the calculation of density is 

suggested instead of using the flow values. The present study calculated the density from the 

ILD occupancy values using the following equation (May 1990). 

 

  52.8 
( )

O
k

Lv Ld
= ×

+
,         (5.25) 

where, 

k = density (vehicles per mile), 

Lv   = average vehicle length (feet), 

Ld   = detection zone length (feet), and 

O = percent occupancy. 

 

Even though this method has the disadvantage of requiring an estimate of the average vehicle 

length, it was found that compared to the use of cumulative flow curves, this method gave more 

reasonable results. This particular fact will be illustrated in the subsequent results sections. 

 

5.3.4 Modification IV. Use of Extrapolation Method for Low Volume Conditions 

 

Many of the previous studies have reported that speed, and in turn travel time, is not dependent 

on the flow under low traffic flow conditions (Van Aerde and Yagar 1983; Persaud and Hurdle 

1988; Sisiopiku et al 1994a; Faouzi and Lesort 1995; HCM 2000; Bovy and Thijs 2000; 

Coifman 2001). The Highway Capacity Manual (2000) remarks on this issue as follows: “All 

recent studies indicate that speed on freeways is insensitive to flow in the low to moderate 

range” and the low to moderate volume includes up to 1300 passenger cars per hour per lane 

(pcphpl) for a 70 mph freeway system. Sisiopiku et al. (1994a), in their study on the correlation 



 

 

134
 

between travel time and detector data concluded that travel time is independent of both flow and 

occupancy under low traffic conditions.  

 

Thus, the accuracy of the estimated travel time during low traffic conditions is questionable in 

the N-D model because the estimated travel time in that model is a function of the measured 

flow. This issue was not addressed in the original work because the data analyzed in their study 

was restricted to only the morning peak traffic flow. In this dissertation the analysis was carried 

out for continuous 24 hours, which included very low traffic flow conditions also.  

 

On the other hand, as discussed earlier, methods based on speed values tend to have more bias in 

the resulting travel time during congested periods due to the failure to capture the variations 

occurring between the detector stations. However, under low traffic flow conditions they are 

more suitable than the methods based on flow. Hence, in the present study, the use of the 

extrapolation method is suggested for low flow conditions so that accuracy can be maintained 

consistently under all varying flow conditions. A cut-off value of 50 vehicles per 2-minute 

interval over all the three lanes added together is set for this data based on the HCM 

recommendation. Thus, when the flow is less than 50 vehicles per 2 minutes over the three lanes, 

the method based on speed values will be used, and the developed model based on flow values 

will be used otherwise. This can be algorithmically represented as follows: 

 

if flow < 50 vehicles/2 minute/3 lane, 

 then use extrapolation method (Equation 2.1, 2.2, or 2.3); 

else  

use developed method (Equation 5.18 or 5.21).      (5.26) 

 

In summary, the major modifications to the N-D model in the application of travel time 

estimation can be summarized as follows:  

 

1. The original N-D model is based on the premise that the loop detector data follow the 

conservation of vehicle principle at all times. However, in reality, the loop detector data 

collected from the field show serious violation of this constraint. The N-D model was 

illustrated using data for a short period of time (4 hours), and hence used adjustment 
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factors for correcting this discrepancy. In this dissertation, a more systematic method 

based on a nonlinear optimization by GRG method is used for correcting this 

discrepancy. 

 

2. The relation for travel time estimation during normal-flow conditions is modified such 

that the travel time will be estimated based on all the vehicles entering in that time 

period, instead of considering only those vehicles which enter and exit in the same 

period, as in the N-D model. 

 

3. The N-D model calculated density from the cumulative flow values. This was found to 

be a good method to calculate density, only if the quality of the flow data is assured. In 

cases where the ILD data have errors, the calculation of density from occupancy is a 

better choice and hence this method is adopted in this dissertation.  

 

4. The use of an extrapolation method is suggested for very low traffic flow conditions so 

that accuracy can be maintained under varying traffic flow conditions. 

 
5.4 RESULTS AND DISCUSSION 

 

The results are illustrated using the data collected from link 1 and link 2 of the I-35 test bed 

shown in Figures 3.10. The ILD data from all the 5 days from February 10 to February 14, 2003 

are used. The effects of each of the suggested modifications will be illustrated first using the ILD 

data. Next, the validation of the modified model will be carried out using AVI data collected 

from the same location as the ILD data. Validation will also be carried out using simulated data 

generated using CORSIM. Finally, results obtained from a comparative study of the performance 

of the proposed model with the extrapolation method using both field data and simulated data are 

shown.  

5.4.1 Influence of the Modifications on Travel Time Estimation 

 

Figures 5.5 and 5.6 show sample plots of travel time estimated for link 1 and 2 by N-D model 

using unmodified ILD data before the optimization is carried out.  
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Fig. 5.5 Travel time estimated by the N-D model using actual data for link 1 on                

February 11, 2003, for 24 hours 

 

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

0:
02

:0
0

2:
02

:0
0

4:
02

:0
0

6:
02

:0
0

8:
02

:0
0

10
:0

2:
00

12
:0

2:
00

14
:0

2:
00

16
:0

2:
00

18
:0

2:
00

20
:0

2:
00

22
:0

2:
00

Time (hh:mm:ss)

T
ra

ve
l T

im
e 

(s
ec

)

 
Fig. 5.6 Travel time estimated by the N-D model using actual data for link 2 on               

February 11, 2003, for 24 hours 
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It can be seen that the estimated travel time for link 1 varies from 0 to 15,000 seconds 

and that the travel time for link 2 came out to be negative for the whole 24 hours. 

 

Figures 5.7 and 5.8 depict the same estimated travel time calculated using the data after the 

optimization using the GRG technique described in Chapter IV. It can be seen that the range of 

travel time has improved, even though the values are still unreasonably high. In the field data, 

the speed variation was from 5 mph to 80 mph, and the corresponding travel time can only vary 

from 22.5 seconds to 360 seconds for a 0.5-mile section. In Figures 5.7 and 5.8, it can be seen 

that the travel time estimated varies from 0 to 600 seconds, showing the need for further 

improvement.  
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Fig. 5.7 Travel time estimated by the N-D model using optimized data for link 1 on         

February 11, 2003, for 24 hours 
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Fig. 5.8 Travel time estimated by the N-D model using optimized data for link 2 on         

February 11, 2003, for 24 hours 

 

 

Modifications II and III were carried out next by replacing the normal-flow model of Nam and 

Drew by Equation 5.21 and by calculating the density from occupancy. The resulting graphs are 

shown in Figures 5.9 and 5.10. It can be seen that the results have improved and the estimated 

travel times are within reasonable limits of 22.5 and 360 seconds calculated earlier. However, it 

can be seen that there is a large fluctuation in the estimated travel time under very low flow 

conditions. The corresponding flow values from locations 1, 2 and 3 are shown in Figures 5.11, 

5.12, and 5.13. It can be seen that the fluctuations in travel time happen when the volume is less 

than 50 vehicles per 2-minute interval. 
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Fig. 5.9 Estimated travel time on link 1 with density calculated from occupancy values on 

February 11, 2003, for 24 hours 
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Fig. 5.10 Estimated travel time on link 2 with density calculated from occupancy values on 

February 11, 2003, for 24 hours 
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Fig. 5.11 Volume distribution on February 11, 2003, for 24 hours at location 1 
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Fig. 5.12 Volume distribution on February 11, 2003, for 24 hours at location 2 
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Fig. 5.13 Volume distribution on February 11, 2003, for 24 hours at location 3 

 
 

To take into account this fluctuation in the estimated travel time, the modification of combining 

the extrapolation method at low traffic flow conditions (modification IV) was carried out. The 

resulting travel time values are shown in Figures 5.14 and 5.15.  
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Fig. 5.14 Effect of combining extrapolation method on estimated travel time for low flow 

conditions on link 1 on February 11, 2003 
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Fig. 5.15 Effect of combining extrapolation method on estimated travel time for low flow 

conditions on the link 2 on February 11, 2003 

 
 

An overall comparison of the performance of the N-D model and the proposed model using field 

data after optimization for a 24-hour period is shown in Figure 5.16 for February 11, 2003. It is 

clear from the graph that the performance has improved by adopting the suggested 

modifications. Corresponding AVI data are also plotted in Figure 5.16 to illustrate the 

improvement in the quality of the estimated travel time. A comparison with the corresponding 

AVI data shows that the travel time estimated by the proposed model captures similar trends 

during the whole 24-hour period. MAPE was calculated for the estimated travel time using the 

N-D model and the proposed model with respect to AVI data and it was found that the error 

reduced from 98.82% to 3.91%.  
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Fig. 5.16 Comparison of N-D model and proposed model using optimized field data for   

February 11, 2003 

 
  

A comparison of results was carried out using simulated data also. Some of the specific results 

related to the effect of the selected modifications on the travel time estimation will be shown in 

the following section using simulated data. As explained in modification II, the N-D model 

ignores a portion of the vehicles from the estimation of travel time at the transition period from 

off-peak to peak. This leads to more error in the estimated travel time at the transition period. 

m(tn), which is defined as the number of vehicles which enter and exit the link under 

consideration in the same time period (Equation 5.13), is the measure used by Nam and Drew to 

classify normal and congested-flow. Thus, as the transition period start, the value of   m(tn) 

should start decreasing. Once the value of   m(tn)  is less than zero, the flow is considered as 

congested-flow. The transition period, hence, is considered as normal-flow in the N-D model, 

and the travel time is calculated based on those vehicles that were able to enter and exit in the 

same time period. Thus, the portion of vehicles that were not able to exit in the same period gets 

ignored, leading to more error in the estimated travel time. This was taken into account in the 

proposed model by using the modified Equation 5.21. The variation in the value of m(tn) and the 

corresponding error in the estimated travel time are plotted in Figure 5.17 for both the N-D 

N-D model Proposed 
d l

AV
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model and the developed model using simulated data from CORSIM. The error in estimated 

travel time is calculated as the absolute difference between the estimated travel time and the 

travel time calculated directly from simulation. The travel time was estimated using the N-D 

model and the developed model, and the errors were calculated. It can be seen that the error 

values increase with decrease in m(tn) in the case of N-D model, whereas the error of the 

proposed model remains approximately constant over time.   
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Fig. 5.17 Variation in the performance of the N-D model and the developed model with varying 

values of m(tn)  during transition from off-peak to peak condition 

 

 

Similarly, the effect of modification I is tested using simulated data, and the results are shown in 

Figure 5.18. This figure illustrates the effect of optimization on the accuracy of the estimated 

travel time using simulated data. The travel time calculated before and after the optimization 

along with the actual travel time obtained from simulation is shown. This illustration is for an 

introduced error of 10% in the flow values. The optimization was carried out as detailed in 

Chapter IV on the data with introduced error. The improvement in the performance and the 
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increase in the accuracy of the estimated travel time can be observed in the diagram. The MAPE 

value was calculated and was found to be decreasing from 15.94% to 2.91% with the use of 

optimized data. 
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Fig. 5.18 Effect of optimization on the estimated travel time using simulated data 

 

 

An overall comparison of the performance of the N-D model and the proposed model using 

simulated data is shown in Figure 5.19 and it illustrates the performance of the proposed model 

under a transition period using simulated data. The analysis was carried out for a 2-hour period, 

and the flow values were generated based on field values. The true travel time from the 

simulation is plotted along with the values estimated by the models. Estimation was carried out 

using the N-D model and the proposed model. It can be seen that the travel time estimated by the 

proposed model is in close agreement with the simulation travel time, with an MAPE of 6.58%. 

In the case of the N-D model, the MAPE was considerably higher at 48.97%. 
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Fig. 5.19 Overall comparison of the proposed model with N-D model using simulated data 
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5.4.2 Validation of the Developed Model Using Field Data 

 

The model results were validated using field data by comparing them with the corresponding 

direct travel time obtained from AVI. The results obtained for selected dates are shown in 

Figures 5.20 to 5.22. It may be seen that the travel time obtained from AVI and that calculated 

using the developed model are in good agreement for all days. The MAPE between the estimated 

travel time and AVI travel time were 1.54, 2.53, and 2.38 % for February 10th, 13th and 14th 

respectively, which are shown in Figures 5.20 to 5.22. 

 

 

0
10
20
30
40
50
60
70
80
90

0:
02

:0
0

1:
22

:0
0

2:
42

:0
0

4:
02

:0
0

5:
22

:0
0

6:
42

:0
0

8:
02

:0
0

9:
22

:0
0

10
:4

2:
00

12
:0

2:
00

13
:2

2:
00

14
:4

2:
00

16
:0

2:
00

17
:2

2:
00

18
:4

2:
00

20
:0

2:
00

21
:2

2:
00

22
:4

2:
00

Time (hh:mm:ss)

Tr
av

el
 T

im
e 

(s
ec

)

Developed Model
AVI

 
 

Fig. 5.20 Estimated travel time with AVI for 24 hours on  February 10, 2003 in link 1 
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Fig. 5.21 Estimated travel time with AVI for 24 hours on  February 13, 2003 in link 1 
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Fig. 5.22 Estimated travel time with AVI for 24 hours on  February 14, 2003 in link 1 
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The performance of the model during the peak and transition periods is enlarged and shown in 

Figure 5.23 for February 10, 2003. The MAPE was calculated and was found to be 3.87%.  It 

can be seen that the performance of the model is consistently satisfactory under peak and 

transition periods. 
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Fig. 5.23 Estimated travel time with AVI for peak and transition periods (February 10, 2003) in 

link 1 

 

 

The performance of the model during normal-flow condition is shown in Figure 5.24. The 

calculated MAPE was 0.75%, showing a good performance of the model under off-peak period. 

 

MAPE = 3.87 
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Fig. 5.24 Estimated travel time with AVI for an off-peak period (February 10, 2003) in link 1 

 

 

However, it should be noted that some assumptions are needed to compare AVI travel time with 

the travel time estimated from the loop detector data. First of all, the AVI data samples a 

percentage of the vehicle population and gives the travel time of these selected vehicles. In the 

case of loop detectors, the data are collected from all the vehicles that cross it, and an average 

travel time for the interval under consideration is calculated. For example, in the present study 

for the analyzed 5 days data, the ILD data available at 2-minute interval is 720 observations per 

day and the corresponding AVI data available varied from 100 to 200.  

 

Also, the time interval of the reported loop data and the time of the AVI data may not match 

exactly. For example, in the February 10, 2003 data, the loop data are collected from midnight 

12:00:00 at 2-minute intervals. The first AVI data reported on that day entered the link at 

01:38:22 and exited at 01:42:52. The corresponding loop data available are from 01:38:00 to 

01:42:00. Also, the detector location and the AVI location may not match exactly. For example, 

the starting milepost of the ILD in the present study was 159.500, and the nearest AVI station 

MAPE = 0.75 
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was at 158.989. Thus, the data need to be extrapolated to match with each other spatially and 

temporally.  

5.4.3 Validation of the Model Using Simulated Data 

 

Due to the above-mentioned reasons, validation of the models was carried out using simulated 

data also. A traffic network similar to the field test bed was created in CORSIM and “ILDs” 

were placed every 0.5 miles, to be comparable to field condition. The vehicles were also 

generated based on the field values to mimic the field scenario. Traffic volumes from the field 

were given as input to CORSIM at every 30-minute interval. Detectors were placed in each link 

to collect the flow, speed, and occupancy rate.  Data were generated for 2 hours, which included 

both peak and off-peak flows. These data were used for checking the validity of the proposed 

model. The detector output was reported in the OUT file of CORSIM and was used to get the 

flow, occupancy, and speed values. Travel time was estimated based on these flow, occupancy 

and speed values and was compared to the travel time given by the simulation. The binary .TSD 

file from CORSIM, which contains the snap shot data at every time step, was used to calculate 

the real travel time of individual vehicles from simulation as detailed in Chapter III.  

 

Figure 5.25 illustrate the performance of the developed model during the off-peak period using 

simulated data. The data were simulated for 4 hours during evening off-peak flow. It can be seen 

that the travel time estimated by the proposed model follows the travel time calculated directly 

from CORSIM. The MAPE was found to be 1.8% in this case.  
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Fig. 5.25 Validation of the Travel time estimation model using simulation data for the off-peak 

condition  

 
 

Figure 5.26 shows a similar comparison where the data were simulated for 2 hours. The true 

travel time from the simulation is plotted along with the estimated values. Again, the estimated 

travel time by the developed model follows the trends in the actual data. The MAPE came to be 

6.58 % in this case.  

MAPE = 1.8 
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Fig. 5.26 Validation of the travel time estimation model using simulation data for peak condition  

 
 

5.4.4 Comparison with Extrapolation Results 

 

Though the extrapolation methods, which were discussed in Chapter II, have many drawbacks, 

they are the most popular methods adopted in the field, and hence a comparison was carried out 

with the results obtained from the extrapolation as well. The travel time estimated using the 

proposed model is compared with the results from extrapolation methods. The three different 

extrapolation methods as discussed in Chapter II (Equation 2.1, 2.2, or 2.3) were analyzed, and 

the most suitable one was chosen for further comparison. The travel time estimated by the three 

extrapolation methods is shown in Figures 5.27 and 5.28 for links 1 and 2.  Method 1 (Equation 

2.1) assumes the effect of speed from each detector for half the distance, method 2 (Equation 

2.2) considers the average speed, and method 3 (Equation 2.3) take the minimum speed out of 

the two detectors, as explained in Chapter II. 

 

 

 

MAPE = 6.5 
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From the results obtained at different sites it was found that method 3 tended to overestimate the 

travel time compared to methods 1 and 2.  However, there was no significant difference between 

the performance of method 1 and 2, and any one of these can be used for further comparison 

(Eisele 2001). In this dissertation, method 2, which considers the average speed of the two 

detectors, is used. 

 
A comparison of the travel time estimated by the proposed method and the extrapolation method 

with the AVI travel time is shown in Figure 5.29 for February 13, 2003. As discussed previously, 

it may be difficult to reach any solid conclusions by comparing the AVI travel time and the 

travel time calculated from loop data. However, it can be used for checking whether the 

estimated data follow the trend in the actual data. It can be seen that the travel time estimated by 

the developed model is able to capture the variations in the travel time more efficiently than the 

extrapolation methods. Also, it can be seen that at peak flow conditions, the extrapolation 

method overestimated the travel time due to the failure to capture the change in speed within the 

section. 
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Fig. 5.27 Travel time estimated by different extrapolation methods for link 1 on February 11, 2003 
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Fig. 5.28 Travel time estimated by different extrapolation methods for link 2 on February 11, 2003 
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Fig. 5.29 Comparison of estimated travel time from extrapolation method, developed method, and AVI using field data on           

February 13, 2003 

 

 



 

 

158
 

 

Figures 5.30 to 5.33 show graphs comparing the estimated travel time by extrapolation method 

and the developed method separately for the off-peak, peak, and transition periods on February 

11, 2003 on link 2. The plots are continuous from 15:00:00 to 19:00:00, during which time the 

flow varied from off-peak to peak and then to off-peak values. From the plots it can be seen that 

the two values match under off-peak conditions. The mean absolute difference (MAD) between 

the travel time estimated by the extrapolation method and the proposed model is calculated using 

Equation 5.27.  

 

MAD =
modextrapolated el

N
−

∑ .       (5.27) 

 

The MAD was found to be 2.71 from 14:00:00 to 15:00:00 as shown in Figure 5.30. However, 

during the transition period and peak flow conditions, the values differ reasonably, with the 

MAD going up to 14.29. This agrees with the findings from previous studies that the 

extrapolation method fails to capture the changes in flow during congested conditions. The 

availability of AVI data for the corresponding hours was scarce, and so these data were not 

included in the plots. 

 

Figure 5.30 displays the travel time estimated by the selected extrapolation method and the travel 

time estimated by the developed method in the afternoon off-peak hours from 15:00:00 to 

16:00:00 on February 11, 2003. It can be seen that both the travel times are close to each other, 

with an absolute difference of 2.71 between the values. 
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Fig. 5.30 Comparison of extrapolation and developed model results during afternoon  

off-peak hours 
 
 

Figure 5.31 displays the travel time estimated by the selected extrapolation method and the travel 

time estimated by the developed method in the afternoon transition period from off-peak to peak 

on February 11, 2003. The MAD value was 7.01 and it can be seen that both the travel times are 

close to each other until the flow increases. 
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Fig. 5.31 Comparison of extrapolation and developed model results during the start of evening 

peak hours 
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Figure 5.32 displays the travel time estimated by the selected extrapolation method and the travel 

time estimated by the developed method in the afternoon peak period from 16:00:00 to 17:00:00 

on February 11, 2003. The MAD came to be 14.29, showing that both the travel times differ 

considerably from each other. 
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Fig. 5.32 Comparison of extrapolation and developed model results during evening peak hours 

 
 

Figure 5.33 shows the travel time estimated by the extrapolation method and the travel time 

estimated by the developed method in the transition period from peak to off-peak on February 

11, 2003. The MAD in this case was 7.23, and it can be seen that both the travel times agree with 

each other after the peak flow is over. 
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Fig. 5.33 Comparison of extrapolation and developed model results during transition to evening 

off peak hours 

 
 

The data pertaining to February 10, 2003 were analyzed in a similar manner and the AVI data 

were also included. Because the number of AVI data is less compared to ILD data, the analysis 

was carried out for a longer duration and the results are shown in Figures 5.34 and 5.35. The 

results again confirm that the performance of extrapolation is reducing at peak flow conditions, 

whereas the developed model is able to perform uniformly during varying traffic flow 

conditions. This can be seen from the calculated MAPE of 1.21 and 1.84 for the developed 

model and extrapolation method respectively under off-peak condition and the corresponding 

MAPE under congested-flow condition being 4.39 and 6.35. 
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Fig. 5.34 Comparison of extrapolation and developed model results with AVI values during off 

peak hours on February 10, 2003 
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Fig. 5.35 Comparison of extrapolation and developed model results with AVI values during peak 

and transition periods on February 10, 2003 
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Similar comparisons were also carried out using simulated data. Figure 5.36 shows a comparison 

of the extrapolation method and the developed method for the simulated data by CORSIM. The 

MAPE values in this case were 6.5 and 48.97% respectively, for the proposed method and 

extrapolation method. It can be seen that, as expected, the performance of the extrapolation 

reduces as the flow value increases. 
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Fig. 5.36 Comparison of the extrapolation method with the developed method using simulated 

data 

 

 

Finally, a comparison of the estimated travel time with the variables obtained from field was 

carried out to check the trends in the values. A plot of the estimated travel time using the 

developed model is made along with the corresponding occupancy and speed values obtained 

from the field and is shown in Figure 5.37. It can be seen that the developed model was able to 

estimate the travel time under varying traffic flow conditions. 
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Fig. 5.37 Relation between speed, occupancy, and travel time from February 10, 2003 
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5.5 CONCLUDING REMARKS 

 
Travel time estimation from loop detector data has achieved increasing interest with the 

development of ITS applications such as in-vehicle route guidance systems and advanced 

traveler information systems. Accurate and timely information has to be obtained in a quick 

fashion to meet the demands of these real-time applications. At present, travel time estimation is 

carried out in the field based on extrapolation methods, assuming a constant speed for the 

distance between the detector stations. Studies have shown that the accuracy of the extrapolation 

method reduces as the flow increases. This is due to the inability of these methods to capture the 

dynamics of traffic in congested conditions. Thus, there is a need for models that can take into 

account varying traffic flow conditions.  

 

This dissertation presented several modifications to an existing theoretical model for travel time 

estimation on freeways, such that the model can estimate travel time for varying traffic flow 

conditions directly from the loop detector data.  The approach was designed for analyzing ILD 

data for longer intervals of time and was robust enough to suspect or missing data. The system is 

based on detector data obtained from the field and the travel time estimation is based on the 

traffic flow theory. Simulated data using CORSIM simulation software was used for validating 

the results. After the validation, the model was used to estimate travel time from field data. The 

travel time estimated is compared with the AVI data collected from the field. The travel time 

estimated was also compared to the results obtained from different available methods such as the 

extrapolation method. The results indicate the developed model as a promising method to 

estimate travel time from loop detector data under varying traffic flow conditions. 

 



 

 

166

CHAPTER VI 
 

SHORT-TERM TRAVEL TIME PREDICTION  
 
 

6.1 INTRODUCTION 

 
After the estimation of travel time from loop detector data was carried out, as explained in 

Chapter V, the next and final stage in this dissertation was the prediction of travel time. Travel 

time prediction refers to predicting the travel time before a vehicle traverses the link or route of 

interest. The ability to predict travel time based on real-time data and historic data, collected by 

various systems in transportation networks, is vital to many Intelligent Transportation Systems 

(ITS) applications, such as Route Guidance Systems (RGS), Advanced Traveler Information 

Systems (ATIS), and Advanced Traffic Management Systems (ATMS).  

 

One of the applications of the above ITS applications is to provide real-time traffic information 

to traffic management centers, using which traffic information can be provided back to the 

travelers in real-time. The accuracy of this information is important since travelers make 

appropriate decisions to bypass congested segments of the network, to change departure times or 

destinations etc., based on the information. The travel time information provided to travelers 

through ATIS can be classified into three distinct groups: historic, real-time, and predictive. 

Historic, as its name implies, is based on archived data, while real-time is based on the current 

values obtained from the system. Predictive is the predicted future values calculated using the 

real-time or historic information. For pretrip planning and en-route decisions, it is argued that 

predicted information would be more useful than real-time or historic information. If the current 

or historic traffic values are used, the performance of a given application will be constrained 

because by the time the user makes the trip, the situation would have changed.  The travel time 

prediction becomes very important under such situations where traffic conditions are changing, 

such as during transition periods. Then the travel time will be a function of 1) when the driver 

arrives at the link in question and 2) how fast travel times are changing. Thus, the methodology 

should anticipate the values in the next few minutes under dynamic traffic conditions and inform 

travelers accordingly.  
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Previous traffic prediction efforts have used historic and real-time algorithms, time-series and 

Kalman filtering models, and Artificial Neural Network (ANN) models. More details of these 

methods and the literature related to the application of these methods on travel time prediction is 

detailed in Chapter II. However, there is no consensus on the “best” method for travel time 

forecasting because all the above methods have both advantages and disadvantages. Also, most 

of the results reported are data specific and cannot be used for choosing one single method that 

can be applied in all situations. Thus, based on the data characteristics and the specific 

application requirements, different methods are adopted in different studies. 

 

The objective of the study in this chapter is to investigate the potential of a recently developed 

pattern classification and regression technique called Support Vector Machines (SVM) for the 

short-term prediction of travel time. A multilayer perceptron ANN model as well as historic and 

real-time methods are also developed for comparison purposes. The analysis considered 

forecasts ranging from a few minutes ahead up to an hour into the future. Up to 4 day’s data 

were used for training the networks and 1 day’s data were left for cross validation to evaluate the 

prediction errors. The data used were the estimated travel time obtained from the models 

described in the previous chapter.  

 

In the following sections, a brief discussion of the historic method, real-time method, ANN, and 

SVM methods will be given followed by the implementation details for the application of travel 

time prediction.  

 

6.2 MODELS FOR TRAFFIC PREDICTION 

 

6.2.1 Historic and Real-time Methods 

 
The historic approach is based on the assumption that the historic profile can represent the traffic 

characteristics for a given time of the day.  Thus, a historical average value will be used for 

predicting future values. This method can be valuable in the development of prediction models 

since they explain a substantial amount of the variation in traffic over many days.  However, for 

the same reason, the reliability of the prediction is limited because of its implicit assumption that 

the projection ratio remains constant (Hoffman and Janko 1990). Commuters, in general, have an 
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idea about the average traffic conditions and will be more interested in abnormal conditions. 

That is, they are most interested in conditions when average values are not representative of the 

current or future traffic conditions. 

 

In the real-time approach, it is assumed that the travel time from the data available at the instant 

when prediction is performed represents the future condition. This method can perform 

reasonably well for the prediction into the immediate future under traffic flow conditions without 

much variation (Thakuriah et al. 1992).  More details of the historic and real-time methods and 

the literature related to the application of these two methods on travel time prediction are 

detailed in Chapter II.  

 

6.2.2 ANN 

 
ANN in the most general sense is an information processing structure whose design is motivated 

by the design and functioning of human brains and components thereof. Thus, ANNs are 

computing techniques, which can be trained to learn a complex relationship in a data set.  

Basically it is a parallel computing system composed of interconnected simple processing nodes, 

which are non-algorithmic, non- parametric, and intensely parallel (Kecman 2001; Haykin 

1999).  

 

Over the past several years, both in research and in practical applications, neural networks have 

proven to be a very powerful method of mathematical modeling. In particular, neural networks 

are well suited for pattern recognition and classification and to model nonlinear relationships 

effectively. The use of neural networks has been proven successful in a number of applications 

where the input-output mapping is highly non-linear and where the functional form of the 

underlying distributions of the data is difficult to reach. ANNs are applied typically in areas such 

as sensor processing, pattern recognition, and data analysis and control, which may require 

information processing structures for which the algorithms or rules are not known. 

 

One major application area of ANNs is forecasting. Several features of ANNs make them 

valuable and attractive for a forecasting task. First, as opposed to the traditional model-based 

methods, ANNs are data-driven, self-adaptive methods where very few a priori assumptions 
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about the models are needed. Also, because they “learn” from example data, they can capture 

subtle functional relationships among the data even if the underlying relationship is unknown or 

hard to describe. Thus ANNs are suited for problems whose solutions require knowledge that is 

difficult to specify, but for which there are enough data available. This modeling approach with 

the ability to learn from experience is very useful for many practical problems because it is often 

easier to obtain data than to have a good theoretical understanding about the underlying laws 

governing the system from which data are generated. These abilities of ANNs make them a good 

tool for forecasting.  

 

Neural networks have been widely used in transportation studies, and a review of these 

applications can be found in Dougherty (1995), Faghri and Hua (1992), and Nakatsuji and 

Shibuya (1998). The ANN model, with its learning capabilities, is suitable for solving complex 

problems like prediction of traffic parameters. ANN models were chosen for traffic prediction 

mainly because of their ability to take into account spatial and temporal information 

simultaneously (Park and Rilett 1999). Some of the applications of ANN in the prediction of 

speed, flow and occupancy in traffic forecasting can be found in Dougherty and Cobbett (1997), 

Smith and Demetsky (1994), Park et al. (1998), Yun et al. (1998), Dia (2001), Mahalel and 

Hakkert (1985), Mc Fadden et al. (2001), Nair et al. (2001), Xiao et al. (2003), Ishak et al. 

(2003), Huang and Ran (2003), and Lee et al. (1998). The literature related to the use of ANN 

for travel time prediction is reviewed in detail in Chapter II. A brief description of the ANN 

technique and how it works is detailed below. 

 

ANNs are the primary information processing structures of a technological discipline called 

neuro-computing (Simon 1993). Neuro-computing is concerned with parallel, distributed, 

adaptive information processing systems. The difference between neuro-computing and other 

branches of computing is that in neuro-computing the algorithms are “data driven.” Rather than 

the computer working through lists of instructions written by a programmer, it learns the 

strengths of different relationships by being exposed to a set of examples of the behavior 

concerned. By absorbing the pattern in the data, the network “learns” to generalize (Dougherty et 

al. 1994).  
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There are two main groups of ANNs, namely continuous and discrete. As their names imply, the 

former can take continuous valued input and output, whereas the latter’s input and output space 

are discrete in nature. Different types of discrete/binary neural nets include hopfield net, 

hamming net, carpenter/grossberg classifier, etc. The networks that can take continuous input 

include perceptrons, multi-layer perceptrons, Kohonen self-organizing maps etc. (Lippman 

1987). The details of most of these networks can be found in any of the standard textbooks on 

ANN (Haykin 1994; Wasserman 1989; Dayhoff 1990; Beale and Jackson 1990). 

 
Perceptrons are one of the most widely used ANNs, and since it is used in this dissertation also, 

it is briefly discussed here. A simple perceptron consist of an input layer and an output layer. 

Each neuron in the input layer will be connected to each neuron in the output layer, and these 

connections between the input and output layers are adjusted as the network is trained. The 

multi-layer perceptron (MLP) is based on the original simple perceptron model but with 

additional hidden layers of neurons between the input and output layers (Lippman 1987).  

Figure 6.1 shows a schematic diagram of a single perceptron, and Figure 6.2 show a multi-layer 

perceptron. 

 
 

 
 

Fig. 6. 1. Schematic diagram of a perceptron  

(Source: Dougherty 1995) 
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Fig. 6. 2. Multi-layer perceptron 

            (Source: Dougherty 1995) 
 
 
A neural network consists of the following elements (Dougherty et al., 1994): 
 

Nodes: The basic building block of ANNs is the neuron, also known as a node or processing 

element. A node takes in a set of inputs and computes an output according to a transfer function. 

This is carried out by multiplying each input by a corresponding weight and then summing up all 

these weighted inputs to determine the activation level of the neuron.  

 

Connection weights: A neural network is composed of many nodes joined together by 

connections, making the outputs of some nodes as the inputs to others. These connections are of 

varying strength, and each connection has a weight associated with it.  

 

Bias: The bias is a shifting function that is much like a weight, except that it has a constant input 

of 1. The bias has the effect of lowering or increasing the net input of the activation function, 

depending on whether it is negative or positive, respectively. 
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Transfer function/Activation function: Typically the output state of a single neuron can be 

characterized as either “on” or “off.” A change from one state to the other is triggered when the 

sum of the inputs (weighted by the strength of their respective connections) exceeds some 

threshold. This threshold is usually represented by transfer functions such as sigmoid, logistic, 

hyperbolic, linear, etc. 

 

Layers: In theory, any topological arrangement of nodes and connections will be sufficient. 

However, to make the visualization easier, it is usual to arrange the neurons in layers, with all 

nodes in adjacent layers connected to each other. A neural network thus has an input layer, an 

output layer, and one or more hidden layers. 

 
Figure 6.3 below shows the model of a neuron with all the above elements. In the case of 

perceptrons, an input vector p is transformed to an intermediate vector of hidden variables n 

using an activation function f .  

 

 

 
 

Fig. 6. 3. Model of a neuron  

           (Source: MathWorks, Inc. 2003) 
 

 

The output of the jth node in a hidden layer can be mathematically represented as: 
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1 1
,1 1

N
n f w p bj i j i ji

= +∑
=

 
 
 

,        (6.1) 

where,  
 

1
jb  = bias of the jth node in the hidden layer, and  

1
,i jw  =  weight of the connection between the jth node in the hidden layer and the ith input 

node.  

 

The superscript 1 denotes that the connections are between the input layer and the hidden layer. 

The output vector a of the network is obtained from the vector of intermediate variables through 

a similar transformation using the activation function as: 

 
2 2

2
1 ,

M
a f w n bk l k l ki

= +∑
=

 
 
 

,         (6.2) 

 
where, the superscript 2 denotes that the connections are between the hidden layer and the output 

layer. The training of an MLP network involves finding values of the connection weights that 

minimize the error function between the actual network output and the corresponding target 

values in the training set.  

 

Thus, the performance of ANNs mainly depends on the training rules used. There are different 

training rules available to train neural networks. These training rules specify an initial set of 

weights (usually random in the range of [-0.5, 0.5]) and indicate how the weights should be 

adapted during the training to improve the performance. In other words, the purpose of the 

learning algorithm is to adjust the network so that the network produces the “correct” outputs for 

the given set of examples. The learning methods are mainly categorized into supervised and 

unsupervised. Supervised learning consists of training a network with a set of examples for 

which the desired outputs are known. In each step, the calculated output is compared with the 

desired output and a global error function is computed. The weights are then adjusted to reduce 

the error, and this process occurs over and over as the weights are continually tweaked. The set 

of data, which enables the training, is called the “training set.” During the training of a network 

the same set of data is processed many times as the connection weights are refined. In 
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unsupervised learning, the training of the network is entirely input data-driven and no target 

results for the input data vectors are provided.  

 

The learning algorithm used can be non-constructive or constructive in nature. Non-constructive 

means the algorithms for which the topology of the network has to be fixed apriori, while in 

constructive ones the algorithm itself automatically determines the topology of the network. 

Most of the learning algorithms used in ANN are non-constructive and supervised. Some of the 

more popular non-constructive supervised learning algorithms are the perceptron learning 

algorithm (Rosenblatt 1962) and the back propagation algorithm (Rumelhart et al. 1986) 

 

Back propagation is one of the earliest, most widely used, and the most successful learning 

algorithms. The present study also uses this algorithm, and so it will be described in more detail. 

Back propagation is a supervised learning algorithm that provides a method to adjust the weights 

in a multilayer network of connected processing units. The back propagation algorithm is an 

extension of the least mean square (LMS) algorithm, which will minimize the errors between the 

actual and the desired output.  

 

A gradient based approach is used to minimize the error at the outputs in the back propagation 

method. This is done by calculating the error function for each input pattern and then back 

propagating the error from one layer to the previous one. The weights of a node are adjusted in 

direct proportion to the error in the units to which it is connected. Any of the measures of error 

such as the sum of the mean square error can be used for this purpose.  

 
The steps involved in training a back propagation network are as follows: 
 

1. Initialize weights; 

2. Present input and desired output pair to the network; 

3. Compute an output which emerges from the output layer (forward pass) using the 

starting connection weights; 

4. Compare this output with the value of output that was expected for this example by 

computing an error function; 

5. Update the connection weights by a small amount to displace the output towards the 

desired output. This updating starts from the output layer and works backwards to adapt 
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weights. This is achieved by “back propagating” the global error function (backward 

pass). The weights are updated as given in Equation 6.3: 

 

( 1) ( )w t w t xij ij j jηδ ′+ = + ,        (6.3) 

where, 

( )w tij  = weight of the connection between the node i and node j at time t, 

 x′j = either output from node j or the input to the network, 

 η =  gain term, and 

 δ = error term for node j. 

 

If node j is an output node, the error term is calculated as: 

 

(1 )( )y y d yj j j j jδ = − − ,        (6.4) 

where,  

dj  = desired output of node j, and 

yj  = actual output of node j. 

 

If node j is an internal hidden node, then the error term is: 

 

(1 )x x wj j j k jkk
δ δ′ ′= − ∑ ,         (6.5) 

where, 

 k = all nodes in the layers above node j. 

 
6. Present the next input pattern; 

7. Calculate total error by calculating the outputs for all training patterns; and 

8. Adapt weights starting from the output layer. 

 
If the training is successful, the squared difference reduces over time, as the algorithm 

continuously iterates through the example data. The convergence can be checked by checking 

the Root Mean Square (RMS) error values. The rate of convergence varies greatly, and there are 

various methods to increase it, such as the use of variable momentum term and learning rate. The 
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variable momentum helps to update the weights during iteration as a function of the previous 

weight. The learning rate is used to identify the step size to be used for updating the weights. 

Hence, the selection of these two should be carried out judiciously. A large momentum and large 

learning rates may lead to local minima, rather than the global minimum.  

 

If a momentum term is added, Equation 6.3 becomes: 

 

( 1) ( ) ( ( ) ( 1))w t w t x w t w tij ij j j ij ijηδ α′+ = + + − −  ,     (6.6) 

where,  
 
α  = the momentum term. 

 
 

The main disadvantage of the back propagation algorithm is the step size problem to find the 

global minimum in the overall error function. If the step size is too small, a local minimum will 

be reached. If the step size is too large, the network may oscillate around the global minimum 

without reaching it. Also this algorithm assumes that the changes in one weight have no effect on 

the error gradient of other weights, which may not be true. 

 

Several variations of the back propagation algorithm were developed to take into account the 

above-mentioned drawbacks. Some of the examples include the quickprop algorithm, bold driver 

method, Levenberg-Marquardt (LM) algorithm, etc. The LM algorithm appears to be the fastest 

method for training moderate-sized feed forward neural networks (MathWorks, Inc. 2003). It 

also has a very efficient MATLAB implementation because the solution of the matrix equation is 

a built-in function, and hence its positive attributes become even more pronounced in a 

MATLAB programming environment.  

 

A major perceived disadvantage of ANN models is that, unlike other statistical models, they 

provide no information about the relative importance of the various parameters (Dougherty et al. 

1994). In ANNs, as the knowledge acquired during training is stored in an implicit manner, it is 

very difficult to come up with a reasonable interpretation of the overall structure of the network. 

This has led to the term “black box,” which many researchers use while referring to ANNs 

behavior (Speed and Spiegelman 1998; Kecman 2001).  
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6.2.3 SVM 

 
At present ANN is one of the most popular methods in use for the prediction of traffic 

parameters. However, there are numerous practical shortcomings associated with conventional 

ANNs including the difficulty in selecting the optimum number of hidden layers and hidden 

neurons. Another common concern about ANN is the difficulty in providing a reasonable 

interpretation of the overall design of the ANN network, as discussed previously. In response, a 

number of modifications have been proposed to alleviate these shortcomings and some of them 

were applied for the problem of travel time prediction by Park and Rilett (1998), Park et 

al.(1999), Rilett and Park (2001), Kisgyorgy and Rilett (2002).  

 

These shortcomings also led to explore alternative techniques for the prediction of traffic 

parameters. In this dissertation one such alternative technique, namely SVM, is explored for the 

prediction of travel time. The performance of SVM for the prediction of traffic speed is also 

explored in this dissertation to check whether the results are data specific. Several studies 

compared the performance of ANN and SVM in other applications. Gunn (2003) reported that 

the traditional neural network approaches have limitations on generalization, giving rise to 

models that may over-fit the training data. This deficiency is due to the optimization algorithm 

used in ANN for the selection of parameters and the statistical measure used for selecting the 

model (Gunn 2003). Valyon and Horvath (2002) also discussed the issue of poor generalization 

and over fitting of ANN when presented with noisy training data. Samanta (2004) and Jack and 

Nandi (2002) compared the performance of SVM and ANN for the application of gear fault 

detection. Samata (2004) reported almost equal performance from both the methods, with 

slightly better performance from SVM. However, Jack and Nandi (2002) reported that the 

generalization from ANN was better than SVM.  

 

The main difference between SVM and ANN is in the principle of risk minimization (RM). In 

the case of SVM, the structural risk minimization (SRM) principle is used, which minimizes an 

upper bound on the expected risk, whereas in ANN, traditional empirical risk minimization 

(ERM) is used which minimizes the error in the training data. Training in SVM involves the 

optimization of a convex cost function without any local minima to complicate the learning 
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process (Campbell 2002). The comparison between ANN and SVM was addressed by Kecman 

(2001) as: “NNs had a more heuristic origin. This does not mean that NNs are of lesser value for 

not being developed from clear theoretical considerations. It just happens that their progress 

followed an experimental path, with a theory being evolved in the course of time. SVMs had a 

reverse development: from theory to implementation and experiments. It is interesting to note 

that the very strong theoretical underpinnings of SVMs did not make them widely appreciated at 

first.” 

 

SVM has been successfully applied to a number of applications ranging from particle 

identification to database marketing (Campbell 2002).  The approach is systematic and is 

motivated by statistical learning theory. Support vector machines are constructed from a unique 

learning algorithm that extracts training vectors that lie closest to the class boundary, and makes 

use of them to construct a decision boundary that optimally separates the different classes of 

data.  These sets of training patterns which carry all relevant information about the classification 

problem are called support vector (Hearst 1998). Thus, the model constructed has an explicit 

dependence on a subset of the data points (the support vectors). SVMs represent novel learning 

techniques that have been introduced in the framework of structural risk minimization (SRM). 

 

Support vector algorithms can be used in the case of problems which are complex, yet the 

method is simple enough to be analyzed mathematically, because it can be shown to correspond 

to a linear method in a high dimensional feature space non-linearly related to input space. But, it 

does not involve any computations in the high dimensional space. By the use of kernels, all the 

necessary computations are performed directly in the input space.  

 

In the case of a binary classification problem, SVM attempts to place a linear boundary between 

two different classes, and orient it in such a way that the margin is maximized. In essence, the 

learning problem is cast as a constrained nonlinear optimization problem.  In the case of 

classification of linearly separable data, the approach is to find among the hyperplanes the ones 

that minimize the training error as shown in Figure 6.4.  The SVM tries to orient the boundary 

such that the distance between the boundary and the nearest data point in each class is maximal 

as shown in Figure 6.5. The boundary is then placed in the middle of this margin between the 

two points. The maximal margin is used for better classification of new data (generalize). The 
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nearest data points are used to define the margins and are known as support vectors. Once the 

support vectors are selected, the rest of the data can be discarded (Samanta 2004). Thus, SVM 

uses the strategy of keeping the error fixed and minimizing the confidence interval.   

 
 

 
Fig. 6. 4. Separating hyperplanes  

 

 

 

 
Fig. 6. 5. Support vectors with maximum margin boundary 

Support Vectors 
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In the following section, a simple model of SVM for a classification problem of two separate 

classes is illustrated. This model problem gives an overview of how SVM works. For more 

detailed explanations any of the tutorials or standard textbooks can be referred (Vapnik 1998; 

Burges 1998; Smola and Scholkopf 1998; Cristianini and Shawe-Taylor 2000; Kecman 2001). 

 

Let the binary classification data points be  

 

{ }1 1( , ),....( , ) , , { 1,1}l l nD x y x y= ∈ℜ ∈ −x y       (6.7) 

where, 

 y  = a binary value representing the two classes, and  

x  = the input vector.  

 

As explained previously, there are a number of hyperplanes that can separate these two sets of 

data and the problem is to find out the one with the largest margin. The SV classifiers are based 

on the class of hyperplanes called boundary lines, 

 

( . ) 0, ,nb b+ = ∈ℜ ∈ℜw x w ,         (6.8) 

where, 

w = the boundary,  

x  = the input vector, and  

b = the scalar threshold.  

 

To remove redundancy, the hyperplane is considered in canonical form defined by a unique pair 

of values (w,b) at the margins satisfying the condition: 

 

( . ) 1,b+ =w x           (6.9) 

( . ) 1.b+ = −w x           (6.10) 
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The quantities w and b will be scaled for this to be true, and therefore the support vectors 

correspond to the extremities of the data. Thus, the decision function that can be used to classify 

the data is: 

 

(( . ) )sign b= +y w x .          (6.11) 

Thus, a separating hyper plane in canonical form must satisfy the following constraints: 

 

( . ) 1, 1,...y b i li i + ≥ =  w x         (6.12) 

where,  

l  = the number of training sets. 

 

There can be many possible hyperplanes that can separate the training data into the two classes. 

However, the optimal separating hyperplane is the unique one that not only separates the data 

without error but also maximizes the margin. This means that it should maximize the distance 

between the closest vectors in both classes to the hyperplane. This margin, ρ is the sum of the 

absolute distance between the hyperplane and the closest training data points in each class. 

 

This distance d (w,b;x) of a point x from the hyperplane (w,b) is: 

 

( . )
( , ; ) .

bid w b x
+

=
w x

w
        (6.13) 

 

Thus, the sum of the absolute distance between the hyperplane and the closest training data 

points in each class i and j, ρ is calculated as given in Equation 6.14. 

  

( . )( . ) 2
min min

bb jiρ
++

= + =
w xw x

w w w
.       (6.14) 

 

The optimal canonical hyperplane is the one that maximizes the above margin. Thus, the optimal 

hyperplane, with the maximal margin of separation between the two classes can be uniquely 
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constructed by solving a constrained quadratic optimization whose solution is in terms of a 

subset of training patterns that lie on the margin.  These training patterns, called support vectors, 

carry all relevant information about the classification problem.   

 
In cases where the given classes cannot be linearly separated in the original input space, the 

SVM first non-linearly transforms the original input space into a higher dimensional feature 

space as shown in Figure 6.6. This transformation is carried out by using various non-linear 

mappings: polynomial, sigmoidal, radial basis, etc. After the non-linear transformation step, 

SVM finds a linear optimal separating hyperplane in this feature space (Kecman 2001; Campbell 

2002).  Thus, a non-linear function is learned by a linear learning machine in a kernel induced 

feature space.  

 

 

 
 

Fig. 6. 6. The kernel method for classification 

 

In Support Vector regression (SVR) the basic idea is to map the data into a high-dimensional 

feature space F via a non-linear mapping φ and to do linear regression in this space.  

 

( ) ( . ( ))f x w bϕ= +x ,          (6.15) 

with : , ,nR F w Fϕ → ∈         (6.16) 

where,  

b = the threshold.  
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Thus, linear regression in a high dimensional (feature) space corresponds to non-linear 

regression in the low dimensional input space nR  (Kecman 2001).  

 
Overall, the construction of an SVM incorporates the idea of structural risk minimization. 

According to this principle, the generalization error rate is upper bounded by a formula. By 

minimizing this formula, an SVM can assure a known upper limit of the generalization error. 

The primary advantage of the SVM method is that it automatically calculates the optimal (with 

respect to generalization error) network structure for a given problem. In practice it means that a 

lot of questions that had to be answered during the design of a traditional NN (e.g., the number 

of neurons, the length and structure of the learning cycle, etc.) are eliminated. However, some 

other questions arise, namely the proper selection of some other parameters that are used in 

SVM. Such parameters are the loss function (ε), which determines the cost of deviation from the 

training sample, the width of the Gaussian radial bases, σ and C, which is a trade off between the 

minimization of the training error and the number of training points falling outside the error 

boundary.  

 

The drawbacks of the SVM method are addressed in some of the previous literature (Talukder 

and Casasent 2001), and they are discussed briefly here.  SVMs for classification involve 

designing classifiers based on only a few so-called support vectors that lie close to the decision 

boundary between the two classes. Linear SVM calculates a linear basis function that maximizes 

the minimum distance between the classes. It is a linear combination of the training vectors. 

Thus, when the training data set is large (>5000), the problem cannot be solved on a PC or 

equivalent computer without data and problem decomposition. Another reported drawback of 

SVM is that when the data classes overlap, a user-defined cost parameter to measure the amount 

of misclassification is needed.  

 

SVMs have been successfully applied to a number of applications ranging from face 

identification to time series prediction. Some of the recent applications for the pattern 

recognition case are: handwritten digit recognition (Cortes and Vapnik 1995; Scholkopf et al. 

1995, 1996; Burges and Scholkopf 1997), object recognition (Blanz et al. 1996), speaker 

identification (Schmidt 1996), face detection (Osuna et al. 1997a) and text recognition (Joachims 
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1997). For the regression estimation case, SVMs have been compared with time series prediction 

sets (Muller et al. 1999; Mukherjee et al. 1997; Osuna et al. 1997b).  

 

Reported applications of SVM in the field of transportation engineering are very few and are 

discussed below. Yuan and Cheu (2003) used SVM for incident detection in an arterial network 

(simulated) and a freeway network (actual). Two different non-linear kernels were trained and 

tested. The method was compared to a multi-layer feed forward (MLF) ANN and a probabilistic 

neural network. Based on their results they reported that SVM had a lower misclassification rate, 

higher correct detection rate and slightly faster detection time than the multi-layer feed forward 

neural network and probabilistic neural network models while using simulated data. While using 

real data from the field, the detection performance was reported as equal to that of the MLF 

network. Ding et al. (2002) proposed a traffic time series prediction based on the SVM theory. 

Another reported application of SVM in the traffic engineering area is for vehicle detection (Sun 

et al. 2002a, 2002b). Vanajakshi and Rilett (2004a) studied the application of SVR in traffic 

speed prediction and compared the results with the performance of a multi-layer feed forward 

neural network, and real-time and historic methods.  

 
6.3 MODEL PARAMETERS 

6.3.1 ANN 

 
In this dissertation a multi-layer perceptron network with back propagation algorithm is used 

because of its excellent predictive capacities as reported in previous studies for similar 

applications (Smith and Demetsky 1994, 1997; Lee et al. 1998). In particular, multi-layer feed 

forward neural networks that utilize a back propagation algorithm have been applied successfully 

for forecasting traffic parameters (Mc Fadden et al. 2001; Huang and Ran 2003; Park and Rilett 

1999).  

 

In this dissertation, programs were developed in MATLAB for the neural network application. 

For an application using ANN, first the network needs to be trained, where the weights and node 

biases are calculated. For this the available data set is divided into a training set and testing set. 

A training set is used to estimate the arc weights and node biases, and the testing data are used 
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for measuring the generalization ability of the network. The parameter selection was carried out 

carefully to get the best results, the details of which are given below. 

 

6.3.1.1 Number of Hidden Layers and Nodes 

 

Because most theoretical works show that a single hidden layer is sufficient for ANNs to 

approximate any complex non-linear function with any desired accuracy (Cybenko 1989; Hornik 

et al. 1989) most of the forecasting applications use only one hidden layer. In this dissertation 

also, a single hidden layer was selected. The issue of determining the optimal number of hidden 

nodes was a more complicated one. Networks with fewer hidden nodes are preferable as they 

usually have better generalization ability and less overfitting problems. But networks with too 

few hidden nodes may not have enough power to model and learn the data. The most common 

way of determining the optimal number of hidden nodes is by a sensitivity analysis. In this 

dissertation, 10 neurons in the hidden layer were found to be the optimum.  

 
6.3.1.2 Number of Input Nodes  

 
The number of input nodes corresponds to the number of variables in the input vector used for 

forecasting the future values. In the case of travel time prediction from loop detector data, either 

the travel time can be estimated from the detector data variables like speed flow or occupancy 

and then can be predicted to future time steps, or the detector data can be first predicted to future 

time steps and then the corresponding travel time can be calculated. The first method was 

adopted in this dissertation, since it gave better results in previous studies compared to the 

indirect method of predicting speed, flow or occupancy and then calculating the corresponding 

travel time (Kisgyorgy and Rilett 2002). A fixed number of lagged observations of the travel 

times from the same link were selected as the input variables as in any time series forecasting 

problems. Travel time information from the previous five time periods was selected as input, 

based on previous studies (Park and Rilett 1998, 1999).  Data normalization was performed to 

standardize the data and to avoid computational problems. If the data are not normalized, inputs 

with higher values will drive the training process, masking the contribution of lower valued 

inputs (Desa 2001).  
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6.3.1.3 The Number of Output Nodes  

 
The number of output nodes is relatively easy to specify as it is directly related to the problem 

under study. For a time series forecasting problem, the number of output nodes often 

corresponds to the forecasting horizon. The forecasting can be one-step-ahead or multi-step-

ahead prediction. In this dissertation multi-step-ahead forecasting was adopted and prediction up 

to 30 time steps ahead were attempted to see how many time steps ahead the prediction 

performance is better than the historic method. There are two ways of performing multi-step-

ahead forecasting. The first method is called the iterative forecasting method where the forecast 

values are used as input for the next forecast. In this case, only one output node is necessary. The 

second method, namely the direct method, is to let the neural network have several output nodes 

to directly forecast each step into the future. Zhang et al. (1998) reported that the direct method 

performed better than the iterative method whereas Weigend et al. (1992) reported that the direct 

method performed worser than the iterative method. An advantage of using the direct method is 

that the neural network can be built directly to forecast multi-step-ahead values. In the case of 

iterative method, only a single function is used to predict one point each time and then iterates 

this function on its own outputs to predict points in the future. As the forecast moves forward, 

past observations are dropped. Instead, forecasts are used to forecast further future points. 

Hence, it is typical that the longer the forecasting horizon, the less accurate the iterative method 

is (Zhang et al. 1998). In this dissertation the direct method was chosen. The normalized output 

values obtained from the ANN were transferred back to the actual values. 

 
6.3.1.4 Interconnection of the Nodes 

 
The network architecture is also characterized by the interconnection of the nodes in different 

layers. For most forecasting applications the networks are fully connected to all the nodes in the 

next higher layer and this approach was adopted in this dissertation. 

 
6.3.1.5 Activation Function   

Different activation functions such as sigmoid, logistic, hyperbolic, linear etc. have been used in 

previous studies. In this dissertation, a logistic sigmoid activation function, which makes the 

input and output spaces continuous, was used. Figure 6.7 shows the sigmoid activation function 
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with its mathematical form in Equation 6.17. This transfer function takes the input, which may 

have any value between plus and minus infinity, and squashes the output into the range 0 to 1. 

 

1
( )

1
f n a ne

= = −+
.         (6.17) 

 

 

 
Fig. 6. 7. Log-sigmoid transfer function 

 

 
6.3.1.6 Training Algorithm 

 
As discussed previously, the ANN training is an unconstrained non-linear minimization problem 

where the weights are iteratively modified to minimize the overall error between desired output 

and actual output. The most popular algorithm for this is the back propagation algorithm, which 

requires the selection of a step size (learning rate). Small rates lead to a slow learning process 

whereas large rates will lead to oscillations around a global minimum. To improve this, a 

momentum parameter can be used, which selects the next weight change in more or less the 

same direction as the previous one and hence reduces the oscillation effect of larger learning 

rates. Standard back propagation with momentum is selected in most studies. The momentum 

parameter and learning rate are usually selected through trial and error. However, there is no 

consistent conclusion with regard to the best learning parameter combination.  

 
Hence, more high performance algorithms that can converge from 10 to 100 times faster than the 

conventional back propagation methods were developed (MathWorks, Inc. 2003). These faster 
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algorithms fall into two main categories. The first category uses heuristic techniques, which were 

developed from an analysis of the performance of the standard steepest descent algorithm. One 

heuristic modification is the momentum technique. The second category of fast algorithms uses 

standard numerical optimization techniques. Conjugate gradient, quasi-Newton, and Levenberg-

Marquardt (LM) are some of the examples that fall in this category. Their faster convergence, 

robustness and ability to find good local minima make them attractive in ANN training. In this 

dissertation the LM method was adopted. However, its use is restricted to small networks (less 

than a few hundred weights) with a single output layer (Statsoft Pacific Pty Ltd. 2004). 

 
6.3.1.7 Training and Testing Data  

 
The training sample is used to train the data and testing data to evaluate the forecasting ability of 

the model. The main point here is to have both the training and testing data representative of the 

population data. Most researchers select them based on the rule of 90% vs. 10%, 80% vs. 20%, 

70% vs. 30% etc. In this dissertation, 80% vs. 20% was used for training and testing.  

 
6.3.1.8 Performance Measures 

 
Commonly adopted measures for checking the accuracy of the predicted data are the mean 

absolute error, sum of squared error, root mean squared error, mean absolute percentage error 

(MAPE) etc. In this dissertation MAPE was used as given in Equation 3.7. 

6.3.2 SVM 

 
The SVM toolbox for Matlab developed by Steve Gunn (2003) was used in the present study. 

The parameters to be chosen are the loss function (ε), cost function C and kernel function (Gunn 

2003).  

 

6.3.2.1 Loss Function, ε  

 

The choice of loss function determines the approximation error achieved, the training time, and 

the complexity of the solutions; the last two depend directly on the number of support vectors. A 

given training example becomes a support vector only if the approximation error on that example 
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is larger than ε. Therefore, the number of support vectors is a decreasing function of ε. In 

practice one should ensure that the value of ε is sufficiently small so that the theoretical risk it 

defines constitutes a reasonable measure of the approximation error. A robust compromise 

suggested is the percentage of support vectors is equal to 50% (Mattera and Haykin 1999). A 

larger value of ε can be utilized to reduce the training time and the network complexity. Thus, 

the loss function determines the measure of accuracy of the result in the regression. Each choice 

of loss function will result in a different overall strategy for performing regression. A loss 

function that ignores errors that are within a certain distance of the true value is referred to as the 

ε-insensitive loss function (Cristianini and Shawe-Taylor 2000). In this dissertation the ε- 

insensitive loss function with an ε of 0.05 was selected. 

 

6.3.2.2 Cost Function C  

 

The choice of cost function involves a tradeoff between the minimization of the training error 

and the number of training points falling outside the error boundary. C defines the range of the 

values assumed by linear coefficients, and its choice affects the range of the possible output. If 

the range of output is [0,B] and if C is very small compared to B, it would be impossible to 

obtain a good approximation. A value of C that is very large compared to B will lead to 

numerical instability. Therefore, a value of C that is approximately equal to B is suggested as a 

robust choice (Mattera and Haykin 1999). Cost function C signifies the tolerance to 

misclassification errors. If the value of C is high, the tolerance will be less (Talukder and 

Casasent 2001). In this dissertation a C of 100 was selected by trial and error.   

 

6.3.2.3 Kernel Function  

 
The kernel function implicitly maps the input vector into the feature space and calculates their 

inner product in the feature space.   Any symmetric function such as linear spline, B-spline, 

sigmoidal, polynomial, radial basis function etc., can be used as a kernel function. In the present 

study, the SVR model used a radial basis kernel function. The parameter σ determines the width 

of the Gaussian radial bases. A σ value of 15 was selected based on a preliminary analysis. 
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6.4 RESULTS 

 
The results are illustrated using the data collected from the I-35 test bed shown in Figures 3.10a 

and 3.10b. The ILD data from all 5 days from February 10 to February 14, 2003, are used. 

Travel time was predicted into future time steps using the historic method, real-time method, 

ANN method, and SVM method, and the results are compared. The analysis considered 

prediction times ranging from 2 minute ahead up to 1 hour ahead. Up to 4 day’s data was used 

for training, and 1 day’s data was left for cross validation and to evaluate the prediction errors.   

First, the 2-minute aggregated data were normalized based on the range of the travel time values. 

The input and output data were selected as the travel time for the five previous time step values 

and the travel time for the next time step value, respectively. Thus, for a 3-day data for training 

will have a training matrix of size 2155 × 5 and a testing matrix of size 2155 × 1. Because the 

data was grouped in 2-minute intervals, five time steps correspond to a 10-minute interval. Thus, 

the prediction was based on the previous 10-minute travel time values. The model then predicts 

the next 2-minute travel time as shown in the following equation: 

 

T(k+∆t) = f (T(k-4 ∆t), T(k-3 ∆t), T(k-2 ∆t), T(k-∆t), T(k)) ,    (6.18) 

where, 

∆t = time interval, 

T = travel time, and  

k = current time interval. 

 

The prediction was subsequently carried out to 4 minutes, 6 minutes, etc., up to 1 hour ahead. 

The training data were varied from 1 day’s data to four day’s data, and testing was done for a 

separate day.  
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6.4.1 All Day Data from Link 1 

 

The travel time from link 1 on all five days was analyzed first. The training was carried out 

based on data from February 10 to 13, 2003, (Monday to Thursday). The data from Friday, 

February 14 was kept for validation. Figure 6.8 shows the travel time distribution on all 5 days 

on link 1. It can be seen that the Tuesday, February 11, 2003, data is showing less magnitude 

throughout the day compared to all the other days. Also, it can be seen that in February 12, 2003 

data the peak in the travel time is small compared to other days. All the other days shows similar 

travel time values. The MAD as given in Equation 5.27 was calculated between each day’s data 

with Friday data. The MAD came to be 3.85, 7.85, 4.87, and 3.99 for Monday, Tuesday, 

Wednesday, and Thursday data, respectively. 

 

First the historic method, which assumes that the historic average represents the future travel 

time, was used. The results obtained using a single day’s data (Monday data alone) for prediction 

is shown in Figure 6.9.  In this case, since only the Monday data were used, the historic value 

equals the Monday travel time. It can be seen that the patterns of travel time from these two days 

are very similar, with an MAD of 3.85, except for the magnitude at the peak period. The MAPE 

between the predicted travel time and the actual travel time was calculated for the 24-hour period 

and was 9.36%. 
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Fig. 6. 8. Travel time distribution on link 1 on all 5 days 
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Fig. 6. 9. Travel time predicted by historic method for link 1 on February 10, 2003 

 

 

Figure 6.10 shows the predicted travel time using the real-time method, which assumes that the 

current travel time is going to continue to the future time step using a single day’s data for 

prediction as detailed in 2.4.1. As expected, the predicted travel time leads the actual travel time 

by the 2-minute prediction interval. The corresponding MAPE for the whole 24-hour period 

came to be 9.66 %.  
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Fig. 6. 10. Travel time predicted by real-time method for link 1 on February 10, 2003 

 

 

Figures 6.11 and 6.12 show the predicted travel time using ANN method and SVM method using 

a single day’s data for training. It can be seen that the travel time predicted by both SVM and 

ANN were able to follow the trends in the actual data, with MAPE values of 8.64% and 7.38% 

respectively. 
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Fig. 6. 11. Travel time predicted by ANN method for link 1 on February 10, 2003 
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Fig. 6. 12. Travel time predicted by SVM method for link 1 on February 10, 2003 
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An enlarged view of the actual travel time values and the corresponding predicted values for a 2-

hour evening peak and off-peak for a 2-minute ahead prediction using all the four methods is 

shown in Figure 6.13. The training data used in this particular example is from Monday data 

alone. This figure clearly illustrates the historic method with Monday data alone for training 

performing very poorly for the prediction of peak period. Also it can be seen that in the case of 

the real-time method the predicted travel time leads the actual travel time by the 2-minutes 

prediction interval. The SVM and ANN followed the trends in the actual travel time. The MAPE 

for this 2 hour prediction was calculated separately and were 26.74%, 15.90%, 12.18%, and 

11.35% for the historic method, real-time method, ANN, and SVM respectively.  

 

To illustrate the technique further, the travel time prediction was extended to 4-minutes ahead, 6- 

minutes ahead etc., up to 1 hour into the future for the Friday data. The prediction was carried 

out for the full 24-hour data. The performance measure used was Mean Absolute Percentage 

Error (MAPE). This was calculated based on the difference between the predicted travel time by 

each of the methods and the actual travel time of Friday for the 24-hour period.  

 

Figure 6.14 shows the error in prediction when 1 day’s data (Monday) was used for training the 

network and Friday travel time was predicted. MAPE values are shown from 2-minutes ahead up 

to 1 hour ahead prediction. The MAPE for the historic method, the real-time method, the ANN, 

and SVM methods are shown in this figure. It can be seen that the historic method outperformed 

the real-time method throughout the prediction. SVM performed better than historic only up to 6 

minutes of prediction and ANN performed better up to 10 minutes of prediction ahead. Thus, it 

can be seen that historic method outperformed the other methods in this case after 10 minutes of 

prediction time ahead, which can be explained based on Figure 6.8. As it can be seen in Figure 

6.8, both the training data (Monday) and testing data (Friday) had similar pattern with an MAD 

of 3.85. It can also be observed that ANN performed better than the SVM in this case. 
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Fig. 6. 13. Comparison of the predicted values with 1 day training data for link 1 on February 10, 2003 
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Fig. 6. 14. MAPE for prediction using 1 day’s data for training 

 

 

Figure 6.15 shows the MAPE values when 2 day’s data were used for training (Monday and 

Tuesday) and when the 24-hour Friday data was predicted.  
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Fig. 6. 15. MAPE for prediction using 2 day’s data for training 
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Comparing Figure 6.14 with Figure 6.15, it is seen that there is an increase in the prediction error 

using the historic method from 9.3% to 14.8% when the training data were changed from 

Monday data alone to Monday and Tuesday data together. This is due to the fact that the 

Tuesday travel time data differed in magnitude when compared to Monday and Friday data and 

this is illustrated in Figure 6.16. Figure 6.16 shows the travel time values on Monday, Tuesday 

and Friday for a 5-hour period from 11:00:00 to 16:00:00. It can be seen that the Monday and 

Friday data have very similar trends throughout. The MAD of 3.85 between Monday and Friday 

data opposed to the MAD of 7.84 between Tuesday and Friday data for the 24-hour period also 

illustrate this fact. 
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Fig. 6. 16. Travel time pattern of Monday, Tuesday, and Friday 

 

 
This difference of Tuesday data makes the training data different from testing data, reducing the 

performance of the historic method. It can be seen that this reduced the performance of ANN 

also. The SVM method out-performed all other methods in this case.  

 

Figure 6.17 shows similar results when 3 day’s data were used for training (Monday, Tuesday, 

and Wednesday) and the Friday data was predicted. It can be seen that with more data being 



 

 

200
 

 

added to the training set, the effect of Tuesday data is declining. As in the previous case, here 

also the SVM performed better than all the other methods. Up to 30 minutes of prediction ahead, 

the other methods performed better than the historic method. 
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Fig. 6. 17.  MAPE for prediction using  3 day’s data for training 

 
 
Figure 6.18 shows similar result when 4 day’s data were used for training (Monday, Tuesday, 

Wednesday, and Thursday) and the Friday data was predicted. Here also for approximately up to 

30 minutes of prediction time, the other methods performed better than the historic method.  
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Fig. 6. 18.  MAPE for prediction using  4 day’s data for training 

 
 

As more and more data are added to the training set, the influence of the Tuesday data declines 

and this is reflected in the reduction in error for the historic and ANN methods. Comparison of 

the performance of ANN with SVM for prediction using 4 day’s data for training shows a slight 

advantage to SVM. This performance of SVM can be explained based on the inherent nature of 

the SVM training process. Once SVM chooses the data points, which can represent the input 

data (support vectors), its performance is more or less independent of the amount of training  
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data. Hence, if the support vectors selected from the training data are not affected, SVM’s 

performance may not get affected by the amount of training data. However, in the case of ANN, 

the network can learn more about the data as the amount of training data increases, and this 

changes the results for the better up to an extent. 

 

Overall, the performance of both SVM and ANN were comparable to each other. The historic 

method is a better choice when the training data and the testing data have the same magnitude as 

well as the same pattern. SVM becomes a better choice for the short-term prediction of travel 

time if the training data have more variations compared to the testing data. Also, it was found 

that the influence of the amount of training data used is greater on the ANN method than on the 

SVM method. To check the validity of these conclusions, travel time prediction was carried out 

for link 2 where all days travel time had similar trends.  

6.4.2 All Day Data from Link 2 

 

Data from February 10 to February 14, 2003 were used for link 2 also. The travel time from all 

five days for link 2 is shown in Figure 6.19, and it is seen that all days have similar trends in the 

data except Wednesday, where the peak was relatively low. The MAD between Friday data and 

Monday, Tuesday, Wednesday and Thursday data were 4.2, 4.2, 5.7, and 4.2, respectively. 
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Fig. 6. 19.  Travel time distribution for link 2 from February 10 to February 14, 2003
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The prediction interval was varied in this case also from 2 minutes ahead up to 1 hour ahead, and 

the MAPE at each time step was calculated as in the case of link 1. Figure 6.20 shows the MAPE 

values for the prediction of 24-hour Friday data when only 1 day’s data were used for training. 

As expected, the error from the historic method is very small, and the performance of ANN and 

SVM are similar, with a slight advantage to ANN. 

 

 

0
2
4
6
8

10
12
14
16
18

0:
02

:0
0

0:
06

:0
0

0:
10

:0
0

0:
14

:0
0

0:
18

:0
0

0:
22

:0
0

0:
26

:0
0

0:
30

:0
0

0:
34

:0
0

0:
38

:0
0

0:
42

:0
0

0:
46

:0
0

0:
50

:0
0

0:
54

:0
0

0:
58

:0
0

Prediction Time Ahead (hh:mm:ss)

M
A

PE

Historic
Real Time
ANN
SVM

 
Fig. 6. 20.  MAPE for prediction using 1 day’s data for training 

 

 

Figure 6.21 shows the MAPE values when 2 day’s data were used for training. As can be seen 

from Figure 6.19, Tuesday data also represent the Friday data (testing data) very well with MAD 

of 4.2. Hence the prediction result remains same as in Figure 6.20, with historic method 

performing better than the other methods after 10 minutes of prediction ahead. Also ANN 

outperforms SVM in this case also. 
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Fig. 6. 21. MAPE for prediction using 2 day’s data for training 

 
 

Figure 6.22 shows the MAPE values when 3 day’s data were used for training. Here it can be 

seen that SVM had a slight advantage over ANN with the MAPE values being smaller than that 

of ANN. This may be due to the small variation in the Wednesday data from other days.  
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Fig. 6. 22. MAPE for prediction using 3 day’s data for training 
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Figure 6.23 shows the MAPE values when 4 day’s data were used for training. As expected, 

when the travel time data do not have much variation, historic and real-time method are able to 

predict the future conditions well. The performance of ANN and SVM are comparable, with 

ANN being slightly better in the case where the data did not have much variation.  
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Fig. 6. 23.  MAPE for prediction using 4 day’s data for training 

 
 
It should also be noted that both ANN and SVM performed better than the real-time and historic 

methods when the testing data had variations from the training data as indicated by a bigger 

magnitude of MAD between the training and testing data.  From the results obtained for the two 

links described above, one can see that SVM has a better predictive capability when the training 

data has lot of variations. As discussed earlier, the accuracy of the SVM prediction does not 

depend on the amount of data used once the support vectors are selected. Hence, in scenarios 

where the training data has variations (as in the example of link 1) and the availability of data is 

limited, SVM will be a better choice than ANN. On the other hand, in cases where large amounts 

of data are available and the training and testing data have similar trends, ANN is a better 

predictive algorithm. Links 3 and 4 had very similar trends in the travel time values for all 5 

days, similar to link 2, and hence the results obtained are not repeated here.  
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6.4.3 Speed Prediction  

 

The conclusions drawn from the results of travel time prediction need to be checked to find out 

whether they are data specific. To ensure that the above conclusions relate as well to other traffic 

parameters, investigation related to the prediction of speed was also carried out. Field data from 

detector number 159.998, as shown in Figure 3.10, are analyzed from August 4 to 8, 2003. The 

speed distribution for the 5 days is shown in Figure 6.24. 

 

From Figure 6.24 it can be seen that the speed data pertaining to all days except Monday have 

similar trends. Monday data do not show an evening peak but show a morning peak. The MAD 

was calculated for each of the days with the Friday data and was 3.5, 2.9, 3.3, and 2.4, 

respectively for the 24-hour period. This one week data was used for predicting speed on Friday. 

The MAPE obtained is plotted in Figure 6.25 when the Monday data alone are used for training 

the network.  
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Fig. 6. 24.  Speed distribution at 159.998 for 1 week from August 4 to 8, 2003 
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Fig. 6. 25. Performance comparison using 1 day’s data for training 

 

 

It can be seen that SVM performs better than all the other methods in this case. As discussed 

previously, the training data used was the one that was having the maximum difference from the 

testing data. Figure 6.26 show the MAPE when 2 day’s data were used for training.  
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Fig. 6. 26. Performance comparison with 2 day’s training data 
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It can be noted that Tuesday data were in agreement with the Friday data, and hence the effect of 

variation declines.  The results obtained with 3 day’s data for prediction are shown in Figure 

6.27. 
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Fig. 6. 27.  Performance comparison with 3 day’s data for training 

 

 

Figure 6.27 shows that ANN started performing better than all the other methods as the quality 

and quantity of the training data are increased. The errors of historic method as well as the ANN 

method declines as more data are included in the training set, which reduces the variation from 

the testing data. Results obtained from 4 day’s of data for training are shown in Figure 6.28.  
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Fig. 6. 28. Performance comparison with 4 day’s data for training 

 

 

From the above figures (Figures 6.25 to 6.28), the conclusions drawn from the travel time 

estimation have been confirmed.  The results obtained confirmed that ANN and SVM are 

powerful tools with performance better than the real-time or historic methods under varying 

traffic conditions. Also, it was found that SVM is a powerful tool for the prediction of traffic 

parameters with the performance comparable to ANN under most of the situations.  When the 

training data were non-representative of test data, SVM outperformed ANN, showing that it can 

be considered as a viable alternative to ANN under situations with a lesser quantity of quality 

training data. 

 
6.5 CONCLUDING REMARKS 

 

This chapter presented a comparison of the performance of two machine-learning techniques, 

namely, ANN and SVM for the short-term prediction of travel time. The ANN model used is a 

multi-layer feed forward neural network and the SVM model used was a support vector 

regression with a radial basis kernel function. The analysis considered forecasts ranging from 2 

minutes ahead up to 1 hour into the future. One day’s data was left for crossvalidation to 
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evaluate the prediction errors. The training data were varied from 1 day’s data to 4 day’s data. 

The results were compared with historic and real-time approach results.  

 

Results of this comparison indicate that the explanatory power of SVR is comparable to ANN. 

Also, SVR performed better than ANN when the training data had more variations. To check 

whether the results were data specific, speed predictions were also carried out using the field 

data. Based on the investigation conducted in this dissertation, it was found that SVR is a viable 

alternative to ANN for short-term prediction, especially when the training data have variations 

and the amount of training data is less. The performance of ANN depends largely on the amount 

of data available for training the network. Thus, in situations where there is less available data, 

there is a need for an alternative method for prediction. Due to the characteristic nature of the 

SVM method, the performance of SVM is almost independent of the number of data available, 

once the network chooses the support vectors.  Hence, SVM can be used for the prediction of 

traffic parameters when the amount of data available for training is less. In cases where the 

training data is more, the performance of SVM is comparable to ANN, thus making it as an 

alternative option for prediction problems.  

 

Comparison of the overall performance showed ANN and SVM outperforming the traditional 

methods, namely real-time and historic methods, especially under varying traffic flow 

conditions. However, for long-range predictions, the use of historic data proved to be more 

useful. The study also showed that current traffic conditions are good predictors while the traffic 

conditions are not having variations. The ANN and SVM methods performed well for some 

range into future. Also, both these methods have good dynamic response and show better 

performance compared to the traditional models. The training of both SVM and ANN may not 

make them attractive for online applications. However, both of them can be trained offline, and 

then used for on-line prediction. Once the networks are trained and the network parameters are 

stored off-line, the system can be used for online-applications, where the travel time 

corresponding to the incoming data needs to be predicted quickly.  

 

As discussed earlier in this chapter, to the knowledge of this author there have been very few 

studies that explored the use of SVM in transportation applications and there have been none that 

used SVM for the prediction of traffic variables. A lot more work is needed to exploit the 
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explanatory power of this powerful tool to the fullest. Also, more work is needed to explore the 

effect of each of the different parameters of SVM, such as kernel function and cost function on 

the prediction performance. 

 

As explained already, the present study used the SVM toolbox developed by Steve Gunn (2003) 

for MATLAB. The running time required by this toolbox was relatively high, taking two hours 

for training 1 day’s data and going up to 4 day’s for training a 4-day data set. The running time 

of the corresponding ANN model was in the order of 5 to 10 minutes. This may be due to the 

fact that the toolbox for SVM may not be using the best optimization technique. The 

performance of this toolbox is yet to be tested by MATLAB, and clearly some optimization 

techniques similar to that used by ANN are needed to increase the computational efficiency in 

the MATLAB environment. On the other hand, the ANN toolbox used in this dissertation is 

developed and distributed as part of the MATLAB package, which is standardized and optimized 

for fast and optimum performance. Being a new technique, SVM is yet to be explored fully to 

get the best performance in terms of training time. Since the aim of this work was to investigate 

the potential of SVM for the prediction of travel time, these issues are clearly out of scope of this 

dissertation and hence not considered.  
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CHAPTER VII 

 
SUMMARY AND CONCLUSIONS  

 
 
7.1 SUMMARY 

 
The problem statement of this dissertation identified three main needs: 1) the need to perform 

data quality control of loop detector data at system level by analyzing the detectors as a series; 2) 

the need to estimate travel time from loop detector data under varying traffic flow conditions; 

and 3) the need to predict travel time to future time steps in an accurate way. A summary of how 

each of these problems is addressed in this dissertation and the conclusions reached with 

recommendations for further researches are provided in the following subsections. 

    

Overall, this dissertation developed a comprehensive automated technique that is comprised of 

different techniques at each individual stage, to predict travel time from the ILD data collected 

from the field. The first step in this multi-step analysis was to carry out quality control of the 

ILD data. Since in this dissertation the detectors were analyzed as a series, in addition to the 

usual tests for checking the data discrepancies, quality control tests using the constraints based 

on conservation of vehicles was also carried out. A non-linear constrained optimization 

technique was adopted for correcting the discrepancy when there was a violation of the 

conservation of vehicles. After correcting the discrepancies, the data were used for the 

estimation of travel time. A methodology based on traffic flow theory was developed for the 

estimation of travel time from ILD data. Finally the travel time was predicted to the future time 

steps using the techniques, support vector machines, and artificial neural networks. Each of these 

steps is briefly detailed below. 

7.1.1 Data Reduction and Quality Control 

 
Traditionally gross errors in loop detector data are identified using threshold checking on the 

speed, volume, or occupancy observations, either individually or in combination. All of these 

tests analyze and correct data at individual locations and therefore cannot account for systematic 

problems over a series of detectors. While substantial failures in loop detector data are easily 

identified using these existing methodologies; some other failures such as biases in volume 
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counts may go unnoticed, which can be identified if the detectors are analyzed as a series.  Also, 

for an application like estimation of travel time in a link, as in this present study, data from 

consecutive ILDs need to be considered.  In such cases when the detectors are analyzed as a 

series, it is necessary to check the accuracy of the data based on the conservation of vehicles, in 

addition to the individual location checks, since it is a basic condition that the data as a series 

must follow.  

 

Even though the violation of conservation of vehicles principle is a common problem with 

detector data, this requirement has received little attention. Common applications of ILD data 

such as incident detection may not get affected by this type of error and that may be a reason for 

ignoring these errors in the earlier studies. However, if the loop detector data are to be 

successfully used for applications such as O-D estimation or travel time estimation, these issues 

of system data quality need to be addressed.  As discussed in the literature review in Chapter II, 

very few studies have been reported which systematically analyzed a series of detector locations 

for a long interval of time to check whether the collected data follow the conservation of 

vehicles. Most of those studies, when faced with a violation of conservation of vehicles, 

suggested applying adjustment factors to rectify it, rather than applying any systematic 

methodology.  

 

In this dissertation the conservation of vehicles is checked, by comparing the cumulative flow 

curves from consecutive detector stations. One week’s loop detector data from February 10 to 

14, 2003, from the I-35 freeways of San Antonio was used. Systematic examination of the data 

revealed that the conservation of vehicles principle was violated on many days. This may be due 

to systematic errors such as some detectors under- or over-counting the vehicles.   

 

This dissertation used a constrained non-linear optimization approach for systematically 

identifying and correcting loop detector data obtained from the field, in situations where the data 

violated the conservation of vehicles principle. The generalized reduced gradient method is 

adopted with the objective function and constraints selected in such a way that the result will 

follow the conservation of vehicles principle with least change of the original data. The objective 

function was chosen to minimize the error from violation of conservation of vehicles principle 

and the constraints were selected to keep the difference between the entry-exit observations 
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within the allowable maximum. Simulated data using CORSIM simulation software were used 

for validating the methodology. This method of correcting the loop detector data is more useful 

and convenient than the application of volume adjustment factors, when dealing with large 

amount of data for a longer duration and having large discrepancies. Also, the optimization 

technique proved to be very useful for imputing missing data as well as to prioritize the detector 

stations for maintenance as illustrated in Chapter IV. This dissertation represents the first 

application of this kind of an optimization technique for quality control of the freeway ILD data. 

7.1.2 Estimation of Travel Time 

 
The ILD data corrected using the optimization procedure can be used as input for the next stage, 

which is the estimation of travel time. There are different methods available for the estimation of 

travel time from loop detector data, the most popular among them being the extrapolation of the 

point speed values. However, the accuracy of the speed-based methods declines as the flow 

becomes larger. Other methods available are statistical and traffic flow theory based models, the 

majority of which are developed for either the free-flow condition or the congested-flow 

condition. 

 

This dissertation presented several modifications to an existing traffic flow theory based model 

for travel time estimation on freeways, such that the model can estimate travel time for varying 

traffic flow conditions directly from the loop detector data.  The approach was designed for 

analyzing ILD data for longer intervals of time under varying traffic flow conditions. The input 

used includes speed, flow, and occupancy obtained from field and the travel time estimation is 

based on the area between the cumulative flow curves at entry and exit. Simulated data using 

CORSIM simulation software were used for validating the results. After the validation, the 

model was used for estimating travel time from field data. The travel time estimated was 

compared with the AVI data collected from the field. The model result was also compared to the 

results obtained from different available methods such as extrapolation method. The results 

showed the developed model performing better under varying traffic flow conditions. 
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7.1.3 Prediction of Travel Time 

 

Real-time information on current travel time can be useful to drivers in making their route 

decisions if the traffic conditions are stable without much fluctuation. However, there are 

fluctuation in traffic resulting in a substantial difference between the current link travel time and 

the travel time on the link when traversed after a short time. Hence, accurate predictions are 

more beneficial than current travel time information.  

 

The present work introduced the application of a recently developed pattern classification and 

regression technique called support vector machines (SVM) for travel time prediction. An 

Artificial Neural Network (ANN) method was also developed in this dissertation for comparison. 

It is also aimed at comparing and contrasting the performance of SVM, ANN, historic, and real-

time methods. Up to 4 days data were used for training the networks and 1 day’s data was left for 

crossvalidation. The data used were the estimated travel time obtained from the model described 

in the previous section.  

 

The ANN model used was a multi-layer feed forward neural network and the SVM model used 

was a support vector regression with radial basis kernel function. The analysis considered 

forecasts ranging from 2 minutes ahead up to 1 hour into the future. The training data were 

varied from 1 day’s data to 4 day’s data. The results were compared with historic and real-time 

approaches.  

 

Results of this comparison indicated that the explanatory power of SVR is comparable to ANN. 

Also, SVR performed better than ANN when the training data is having more variations. To 

check whether the results are data specific, speed predictions were also carried out using the field 

data. Based on the investigation conducted in this dissertation, it was found that SVR is a viable 

alternative to ANN for short-term prediction, especially when the training data are not a good 

representative sample and when the amount of training data is less. In cases where enough 

training data were available, the performance of SVM was comparable to ANN. Overall, it was 

found that SVR is a good alternative option for prediction of traffic variables such as travel time.  
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The study also showed that current traffic conditions are good predictors, while long-range 

predictions need the use of historical data. The ANN and SVM methods performed well for 

some ranges into the future. Also, both these methods have good dynamic response and show 

better performance compared to the traditional models. The training of both SVM and ANN may 

not make them attractive for on-line applications. However, both of them can be trained off-line, 

and then used for on-line prediction. Once the networks are trained and the network parameters 

are stored off-line, the system can be used for online applications, where the travel time 

corresponding to the incoming data needs to be predicted quickly.  

 

As discussed in Chapter VI, to the knowledge of this author there have been very few studies 

that explored the use of SVM in transportation applications and there have been none which used 

SVM for the prediction of traffic variables. Thus, this dissertation is the first attempt to use SVM 

technique for the prediction of vehicle travel time.  

 
7.2 CONCLUSIONS 

 
This dissertation resulted in a number of conclusions and they are listed as follows: 
 

• There are unidentified discrepancies in the ILD data even after the usual error checking 

algorithms are applied. The data quality control can depend on the particular application 

for which the data are used and for an application such as travel time estimation, more 

data quality control is required than the usual error checking methods. 

• Majority of the ILD data collected from field violate the conservation of vehicles 

principle when analyzed as a series for a long time.  Thus, if the ILD data are used at a 

system level, where the data from one detector are compared with that of its neighboring 

detectors, checks should be conducted for conservation of vehicles. 

• The non-linear optimization technique adapted, namely, generalized reduced gradient 

method, is found to be a suitable technique for removing the discrepancies in the ILD 

data when the conservation of vehicles principle is violated.  

•  Systematic correction of ILD data, such as using the optimization method is more useful 

and convenient than the application of volume adjustment factors when dealing with 

large amount of data for a longer duration and having large discrepancies.  
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• The proposed generalized reduced gradient method also proved to be very useful for 

imputing missing data as well as to prioritize the detector stations for maintenance. 

• It was found that the travel time estimation model proposed in this dissertation estimated 

the travel time with considerable accuracy under varying traffic flow conditions. The 

model was first validated using simulated data from CORSIM and it was found that the 

estimated travel time is in good agreement with the actual travel time from simulation, 

under congested and un-congested-flow conditions. The estimated travel time from ILD 

data was compared with AVI data and the performance was found to be very 

satisfactory. Thus, the developed theoretical model is found to be a promising method to 

estimate travel time from loop detector data under varying traffic flow conditions. 

• A comparison of the developed model for the estimation of travel time with the 

extrapolation method, which is the current field method, showed that the accuracy of the 

performance of the developed model results increased with increasing flow values. It 

was also found that the biggest differences in performance were observed during 

transition and congested conditions.  This is not unexpected because these conditions are 

more difficult to model.  In contrast it was found that both methods gave similar results 

for un-congested conditions.    

• Support Vector Regression is a promising tool for the short-term prediction of travel 

time with performance comparable to that of ANN, when the traffic condition is stable. 

SVR performed better than ANN when the training data had more variations and the 

amount of training data is relatively less.  

• Both ANN and SVM methods have good dynamic response and showed better 

performance compared to the traditional models.  

 
7.3 FUTURE RESEARCH 

 
• The optimization method for the data quality control used in this dissertation analyzed up to 

five detectors in series. Future studies can check the performance with longer sections 

having more detectors in series. Also, the optimization was carried out based on objective 

function and constraints that will make sure that conservation of vehicles principle is not 

violated. It is hypothesized that more rigorous objective function incorporating more 

constraints may give better results and reduce more discrepancies in the data. Also, in this 

dissertation the optimization was validated using simulated data. Future work can be 
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performed along a section where ground truth flow data can be collected for the same 

locations as the detectors. This will provide the added benefit of a direct comparison of the 

performance of the optimization method using field data. 

 

• Travel time estimation from loop detector data is an important component for the successful 

use of ATIS as discussed in this dissertation.  A model based on traffic flow theory was used 

to obtain the travel time from field data corrected in the first step of the research.  The 

validation of the model was checked mainly using simulated data from CORSIM. Validation 

using field data made use of AVI data. However, the sample size of AVI data was very less.   

Future similar work should be performed along a section from where more ground truth 

travel time data can be collected for the same location as the detector points. This would 

provide a direct comparison of the performance of the theoretical model used in this 

dissertation. Also, the data used in the present study added up data from all the lanes of the 

road at a detector location and assumed it as a single lane. Future work is needed where the 

analysis of the data is carried out at lane-by-lane level, and this needs the development of a 

model that can also take into account the lane changing characteristics. 

 

•  More research concerning the use of SVM for travel time prediction is necessary, especially 

when one is interested in getting the best performance in terms of training time. For 

example, exploring the effect of each of the different parameters of SVM such as kernel 

function and cost function on the prediction performance is needed. Also, a more 

computationally efficient and standardized toolbox is needed for fast and optimum 

performance.  
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APPENDIX A 

 
NOTATIONS 

 
 

q  - Flow in vehicles per unit time 

D - Distance 

T - Travel time 

tocc  - Occupancy time of detectors  

ton  - Instant of time the detector detects a vehicle  

toff   - Instant of time the vehicle exits the detector 

v  - Vehicle speed  

nL  - Vehicle length  

dL   - Detection zone length  

O  - Percent occupancy time 

 t∆  - Time period  

k - Density in vehicles per unit distance  

 vL  - Average vehicle length  

 ∆  - Step size 

 Q  - Cumulative flow in vehicles 

 β  - Bias  

w - Weight 

vf   - Free-flow speed  

S2  - Variance 
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APPENDIX B 

 
GLOSSARY OF FREQUENTLY USED TERMS AND ACRONYMS 

 
 
B.1 FREQUENTLY USED TERMS 
  

 

Advanced Traffic Management System (ATMS): The location, usually centralized, where 

intelligent transportation systems data are collected and the transportation system is monitored. 

 

Advanced Traveler Information System (ATIS): The use of intelligent transportation systems 

technologies and communication methods for providing information to motorists. 

 

Artificial Neural Network (ANN): An information-processing structure whose design is 

motivated by the design and functioning of human brains and components thereof. 

 

Automatic Vehicle Identification (AVI):  A system where probe vehicles equipped with 

electronic toll tags communicate with roadside antennas to identify unique vehicles and collect 

travel time data between the antenna locations. 

 

Automatic Vehicle Location (AVL): An automatic vehicle location enables to remotely track 

the location of a vehicle with the use of mobile radio receiver, GPS receiver, GPS modem, GPS 

antenna etc.  

 

Conservation of Vehicles Principle: The concept of conservation of vehicles states that the 

difference between the number of vehicles entering and leaving a link during a specific time 

interval corresponds to the change in the number of vehicles traveling on the link. 

 

CORSIM: CORridor SIMulation software package developed by the Federal Highway  

Administration (FHWA). 

 

Density: A measure of the concentration of vehicles, stated as the number per unit distance per 

lane. 
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Detector Failures: The occurrence of detector malfunctions including nonoperation, chattering, 

or other intermittently erroneous detections. 

 

Detectors: A system for indicating the presence or passage of vehicles. 

 

Deterministic Model: A mathematical model that enables one to compute precisely what will 

happen to one variable if a specified value is chosen for another variable. This model has no 

random variables, and all entity interactions are defined by exact relationships (mathematical, 

statistical, or logical). 

 

Distance Measuring Instrument (DMI): An electronic device connected to the transmission of 

a vehicle that can be used to determine travel time along a corridor based on the speed and 

distance information. 

 

Estimation: Calculation of traffic state variables, for the most recent period for which 

measurements are available. 

 

Extrapolation Method: Method to calculate travel time from detector data by dividing the 

distance between the detectors by the speed obtained from the detectors. 

 

Freeway Surveillance: Process or method of monitoring freeway traffic performance and 

control system operation. 

 

Generalized Reduced Gradient (GRG): A non-linear optimization technique, which can take 

non-linear objective function and non-linear constraints into account. 

 

Imputation: The process of calculating the missing detector data using techniques such as 

interpolation. 

 

Inductance: The property of an electric circuit whereby an electromotive force is generated by a 

change of current. 
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Inductance Loop Detectors (ILD): Traffic monitoring technique, where wire loops buried 

below road surface, detect vehicles as they cross the loop, due to change in inductance. 

 

Intelligent Transportation Systems (ITS):  Application of advanced technologies and 

communication methods to the transportation sector to improve the efficiency or safety of a 

surface transportation system. 

 

Loop Detector Unit: An electronic device which is capable of energizing the sensor loops, of 

monitoring the sensor loops inductance, and of responding to a pre-determined decrease in 

inductance with an output which indicates the passage or presence of vehicles zone of detection.  

 

Machine Learning: Machine learning involves adaptive mechanisms that enable computers to 

learn from experience, learn by example and learn by analogy. 

 

Macroscopic Model: Macroscopic models describe the behavior of the average vehicle driver 

units in the traffic stream, based on the aggregate behavior of drivers.  

 

Mean Absolute Difference (MAD): A statistical measure used to determine the difference 

between two sets of data. 

 

Mean Absolute Percentage Error (MAPE): A statistical measure used to determine the error 

in a set of data in comparison with a correct set of data. 

 

Microscopic Model: Microscopic flow models aim to describe the behavior of individual 

vehicle driver units with respect to other vehicles in the traffic stream. 

 

Occupancy:  The proportion of time period a detector is occupied by vehicles (vehicles are 

above the detectors).  

 

Prediction/Forecasting: Calculation of future traffic state variables. 
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Probe Vehicles: Vehicles used for travel time data collection techniques in which the vehicles 

travels along the corridor for the exclusive purpose of data collection and records travel time 

data between points of interest. 

 

Route Guidance System (RGS): The use of intelligent transportation systems technologies and 

communication methods for guiding the vehicles to select the optimum route. 

 

Stochastic Model: A model that uses a random process subjected to probability to formulate the 

system.   

 

Support Vector Machine (SVM): A recently developed pattern classification and regression 

technique based on statistical learning theory. 

 

Travel Time: Time to traverse a route between any two points of interest. 

 

Validation: The process to determine whether a model provides an accurate representation of 

the real-world system under study. It involves comparing the model output to generated 

analytical solutions or to collected field data. 
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B.2 ACRONYMS 

 
 
TABLE B.1. List of Frequently Used Acronyms 
 

Acronym Title 

ANN Artificial Neural Network 

ATIS Advanced Traveler Information System 

ATMS Advanced Traffic Management System 

AVI Automatic Vehicle Identification 

AVL Automatic Vehicle Location 

CORSIM CORridor SIMulation 

DMI Distance Measuring Instrument 

FHWA Federal HighWays Administration 

FRESIM FREeway SIMulation 

GRG Generalized Reduced Gradient 

HCM Highway Capacity Manual 

ILD Inductance Loop Detector 

ITS Intelligent Transportation System 

MAD Mean Absolute Difference 

MAPE Mean Absolute Percentage Error 

NEMA National Electrical Manufacturers Association 

NETSIM NETwork SIMulation 

RGS Route Guidance System 

SVM Support Vector Machine 

SVR Support Vector Regression 

TRB Transportation Research Board 

TSIS Traffic Software Integration System 

TMC Traffic Management Center 

TransGuide Transportation Guidance System 

WIM Weigh In Motion 
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APPENDIX C 

 
MICROSCOPIC TRAFFIC SIMULATION 

 
 

CORSIM INPUT FILES  
 
.TRF File 

 
 

ITRAF 2.0                                                                    00 
                                                                              1 
       1   1       5     7981      21              80600        7781    7581  2 
72007200                                                                      3 
                  60                                                          4 
                                                                              5 
8001   1   2     0 1                         1                               19 
   1   2   3 25000 1                         1                               19 
   2   3   4 25000 1                         1                               19 
   3   48002 25000 1                         1                               19 
8001   1         11070                                                       20 
   1   2         11070                                                       20 
   2   3         11070                                                       20 
   3   4         11070                                                       20 
8001   1   2 100                                                             25 
   1   2   3 100                                                             25 
   2   3   4 100                                                             25 
   3   48002 100                                                             25 
   2   3   1  10   6  15   2   1                                             28 
   3   4   1  10   6  15   2   2                                             28 
   3   4   12490   6  15   2   3                                             28 
8001   11088                                                100              50 
8001   1   0  001358  101430  301650  601760  90                           1 53 
  10   0  60                                          20   1   0             64 
   1 2 3                                                                     67 
   0                                                                        170 
   1       0    8000                                                        195 
   2    2500    8000                                                        195 
   3    5000    8000                                                        195 
   4    7500    8000                                                        195 
   0   8                                                                    210 
8001   11848 1201918 1501637 1801390 210                                   1 53 
   0                                                                        170 

1 210 
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ITRAF 2.0                                                                    00 
                                                                              1 
       1   1      10     7981      21              80600        7781    7581  2 
1800180018001800                                                              3 
                  60                                                          4 
                                                                              5 
8001   1   2     0 1                         1                               19 
   1   2   3 25000 1                         1                               19 
   2   3   4 25000 1                         1                               19 
8003   5   4     1 1                         1                               19 
   5   4   6  5091 1                         9                               19 
   3   4   6 10300 1                         1                               19 
   4   68002 25000 1 91  100                 1                               19 
8001   1         11070                                                       20 
   1   2         11070                                                       20 
   2   3         11070                                                       20 
8003   5         11070                                                       20 
   5   4         11070                                                       20 
   3   4         11070                                                       20 
   4   6         11070                                                       20 
8001   1   2 100                                                             25 
   1   2   3 100                                                             25 
   2   3   4 100                                                             25 
8003   5   4 100                                                             25 
   5   4   6 100                                                             25 
   3   4   1  10   6  15   2   1                                             28 
   3   4   11020   6  15   2   2                                             28 
   4   6   11000   6  15   2   3                                             28 
   4   6   12490   6  15   2   4                                             28 
   5   4   1 400   6  15   2   5                                             28 
8001   11783                                                100              50 
8003   5  50                                                100              50 
8001   1   0  001783  041953  102198  161976  222085  28                   1 53 
8003   5   0  00 130  04 150  10 170  16 190  22 210  28                   1 53 
  10   0  60                                          20   1   0             64 
   1 2 3 4 5                                                                 67 
   0                                                                         70 
   1       0    8000                                                         95 
   2    2500    8000                                                         95 
   3    5000    8000                                                         95 
   4    6030    8000                                                         95 
   5    5930    7500                                                         95 
   6    8530    8000                                                         95 
   0   8                                                                     10 
8001   11909  342113  402199  461980  521811  58                           1 53 
8003   5 250  34 270  40 300  46 310  52 300  58                           1 53 
   0                                                                         70 
   0   8                                                                     10 
8001   11877  642165  701868  761932  821770  88                           1 53 
8003   5 380  64 300  70 290  76 285  82 220  88                           1 53 
   0                                                                         70 
   0   8                                                                     10 
8001   11876  961836 1021770 1081767 1141836 120                           1 53 
8003   5 200  96 180 102 160 108 150 114 140 120                           1 53 
   0                                                                         70 
   1                                                                         10 
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APPENDIX D 

 
PROGRAMS DEVELOPED 

 
 
MATLAB FILES 

Data Retrieval 
 
% This program read the data file for the selected day and make a new file with the details of the 
%interested detectors alone. The input is the data file with the field data and the output will be the details 
%of the selected detectors specified in the ‘deal’ command. 
 
clear; 
 
 
[date, time, det, speed, vol, occ] = textread('PollServerFLaneData1_jan2002.txt','%s %s %s %s %s %s'); 
 
str1 = strrep(speed,'Speed=',''); %remove the letters  
str2 = strrep(vol,'Vol=',''); 
str3 = strrep(occ,'Occ=',''); 
 
[str{1:10}] = deal('L1-0035S-163.421', 'L2-0035S-163.421', 'L3-0035S-163.421', 'EX1-0035S-
163.328','L1-0035S-162.899', 'L2-0035S-162.899', 'L3-0035S-162.899','L1-0035S-162.482', 'L2-0035S-
162.482', 'L3-0035S-162.482'); 
  
 
for m=(1:10) 
    itn(m,1) = 0; 
end 
 
for m = 1:10 
[str4] = ('jan2002');  
tempstr1 = char(str(m)); 
tempstr2 = char(str4); 
str5 = [tempstr1(end-2:end), '_', tempstr2,'_', tempstr1(1:2),'.txt']; 
      
fid(m) = fopen(char(str5),'w'); 
 
    for n=1:length(date) 
       if (strmatch(str(m), det(n),'exact') ) %checking for match  
         itn(m,1) = itn(m,1)+1 
         str4 = hour(time(n))*3600+minute(time(n))*60+second(time(n)); 
         fprintf(fid(m),'%s\t %f\t %s\t %s\t %s\t %s\n', date{n}, str4, det{n},str1{n},str2{n},str3{n}); 
       end 
   end  
   fclose(fid(m)); 
 end 
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Data Averaging 
 
%  averages 20 sec actual volume for 2 minute intervals.  
 
clear; 
 
 
[str{1:15}] = deal( '500_feb11N_L1.txt','500_feb11N_L2.txt','500_feb11N_L3.txt','998_feb11N_L1.txt',...    
'998_feb11N_L2.txt','998_feb11N_L3.txt','504_feb11N_L1.txt','504_feb11N_L2.txt','504_feb11N_L3.txt',
..    
'892_feb11N_L1.txt','892_feb11N_L2.txt','892_feb11N_L3.txt','405_feb11N_L1.txt','405_feb11N_L2.txt','
405_feb11N_L3.txt'); 
 
 
for zz=1:15 
    [date, time, detector, speed1, vol1, occ1] = textread(char(str(zz)),'%s %s %s %s %s %s'); 
    t = str2num(char(time)); 
    speed =str2num(char(speed1)); 
    length(speed) 
    vol = str2num(char(vol1)); 
    occ = str2num(char(occ1)); 
    if (vol(1) == 0) 
        vol(1) = 1; 
    end 
    if (occ(1) == 0) 
        occ(1) =1; 
    end 
     
% check for unreasonable combinations and threshold values 
 
    for i=1:11 
        itn(i) = 0; 
    end 
 
    for n = 2:length(t)  
         
        if(speed(n) > 0 && speed(n) < 100 && vol(n) > 0 && vol(n) <= 17 && occ(n) >0 && occ(n) < 90) 
            itn(4) = itn(4) +1; 
        end 
     
        if(speed(n) == 0 && vol(n) == 0 && occ(n) == 0) 
            itn(5) = itn(5) +1; 
        end 
                        
       if(vol(n) > 17) 
            itn(1) = itn(1) +1; 
            vol(n)= vol(n-1); 
        end 
        if(speed(n) > 100) 
            itn(2) = itn(2) +1; 
            speed(n) = (speed(n-1)); 
        end 
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        if(occ(n)>90) 
            itn(3) = itn(3) +1; 
            occ(n) = occ(n-1); 
        end 
         
        if(speed(n) == 0 && vol(n) ~= 0 && occ(n) ~= 0) 
            itn(6) = itn(6) +1; 
            speed(n) = speed(n-1); 
        end 
         
         
        if(speed(n) ~= 0&& vol(n) ==0 && occ(n) ~= 0) 
            itn(7) = itn(7) +1; 
            vol(n) = vol(n-1); 
        end 
        if(speed(n) ~= 0 && vol(n) ~= 0 && occ(n) ==0) 
            itn(8) = itn(8) +1; 
            occ(n) = occ(n-1); 
        end 
     
        if(speed(n) == 0 && vol(n) == 0 && occ(n) ~= 0) 
            itn(9) = itn(9) +1; 
            speed(n) = speed(n-1); 
            vol(n) = vol(n-1); 
        end 
        if(speed(n)~=-1) 
        if(speed(n) ~= 0 && vol(n) == 0 && occ(n) == 0) 
            itn(10) = itn(10) +1; 
            vol(n) = vol(n-1); 
            occ(n) = occ(n-1); 
        end 
        end 
        if(speed(n) == 0 && vol(n) ~= 0 && occ(n) ==0) 
            itn(11) = itn(11) +1; 
            occ(n) = occ(n-1); 
            speed(n) = speed(n-1); 
        end 
         
        check(n,:) = itn; 
        if(n>2) 
            if(check(n,:) == check(n-1,:)) 
                fprintf('none of the above at %d\n',n); 
            end 
        end 
    
    end 
    itn 
 
%cumulate to 2 mts 
 
    start_t(1) = 0; %data collection started at time 0 
    i=1; 
    j=1; 
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    for n = 1:length(t)  
        end_t(i) = start_t(i) + 120; 
        if t(n) >= end_t(i) % 1st data after 15 mt interval 
            if (t(n)-end_t(i) <20 ) %within +30  
                time_2mt(i,1) = t(n); 
                vol_2mt(i,1)= mean(vol(j:n))*6;%vol is the sum for all 6 - 20 sec intervals in the 2mt interval 
                if(nnz(speed(j:n)) == 0) 
                    speed_2mt(i,1) = 0; 
                else 
                    speed_2mt(i,1) = sum(speed(j:n))/nnz(speed(j:n));%average of all non zero speeds 
                end 
                occ_2mt(i,1) = sum(occ(j:n))/6;%occupancy calculated for the 2 mt from the 20 sec  
                %occ is percentage value and hence each number to be 
                %multiplied by 20 and divide by 100 to get the actual time 
                %occupied. then sum it up and divide by 120 and make it 
                %percent. the whole calculation comes out as divide by 6. 
                start_t(i+1) = end_t(i); 
                i = i+1; 
                j = n; 
                continue 
            end 
            if(n~=1) 
                if (abs(end_t(i)-t(n-1))<20) % within one time step 
                    time_2mt(i,1) = t(n-1); 
                    vol_2mt(i,1)= mean(vol(j:n))*6;%vol is the sum for all 6 - 20 sec intervals in the 2mt interval 
                if(nnz(speed(j:n)) == 0) 
                    speed_2mt(i,1) = 0; 
                else 
                    speed_2mt(i,1) = sum(speed(j:n))/nnz(speed(j:n));%average of all non zero speeds 
                end 
                occ_2mt(i,1) = sum(occ(j:n))/6;  
                    start_t(i+1) = end_t(i); 
                    n=n-1; 
                    i = i+1; 
                    j = n; 
                    continue 
                end 
            end 
            if t(n) >= end_t(i) + 120 %if the time is more than 4 mt interval 
                 x = (t(n)-end_t(i))/120;                      
                 y = round(x);       
                 if(vol(n-1,1)>0 & vol(n,1) > 2*vol(n-1,1)) 
                        for (z=i:i+y) 
                            time_2mt(z,1) = end_t(z); 
                            vol_2mt(z,1) = vol(n,1)/y; 
                            speed_2mt(z,1) = (speed(n,1)+speed(n-1,1))/2; 
                            occ_2mt(z,1) = (occ(n,1)+occ(n-1,1))/2; 
                            start_t(z+1) = end_t(z); 
                            end_t(z+1) = start_t(z+1) + 120; 
                        end 
                end 
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                for (z=i:(i+y)) 
                    time_2mt(z,1) = end_t(z); 
                    vol_2mt(z,1) = ((vol(n-1,1)+vol(n,1))/2)*6; 
                    speed_2mt(z,1) = (speed(n-1,1)+speed(n,1))/2; 
                    occ_2mt(z,1) = (occ(n-1,1)+occ(n,1))/2; 
                    start_t(z+1) = end_t(z); 
                    end_t(z+1) = start_t(z+1) + 120; 
                end 
                        
                end_t(z+1) = 0; 
                i=z+1; 
                j=n; 
                continue 
            end 
             
            time_2mt(i,1) = t(n); % otherwise 
            vol_2mt(i,1)= mean(vol(j:n))*6;%vol is the sum for all 6 - 20 sec intervals in the 2mt interval 
                if(nnz(speed(j:n)) == 0) 
                    speed_2mt(i,1) = 0; 
                else 
                    speed_2mt(i,1) = sum(speed(j:n))/nnz(speed(j:n));%average of all non zero speeds 
                end 
                occ_2mt(i,1) = sum(occ(j:n))/6; 
            start_t(i+1) = end_t(i); 
            i = i+1; 
            j = n; 
        end 
    end 
  
    tempstr = char(str{zz}); 
    str1 = [tempstr(1:end-4),'_2mt.txt']; 
      
    fid = fopen(char(str1),'w'); 
    for k=1:length(vol_2mt) 
        fprintf(fid,'%f\t %f\t %6.2f\t %12.8f\t %f\t %f\n',start_t(k), end_t(k), time_2mt(k), speed_2mt(k), 
vol_2mt(k), occ_2mt(k)); 
    end 
    fclose(fid); 
end %for zz loop 
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AVI Data 
 
%  File to get travel time from AVI data file between two selected points. Input is the tag data of only AVI 
% stations . In this example AVI number 142 and 144 sorted based on vehicle ID and then on avi station 
% number is given as input and the travel time of vehicles is obtained as output.  
     
clear; 
 
[AVInum, vehid, time1, date] = textread(char('feb11_avi.txt'),'%s %s %s %s ', 'whitespace','\t'); 
            
    AVI1 = (char(AVInum)); 
    AVI = str2num(AVI1); 
        t = strrep(time1,'&',''); %remove the $ from time  
        for n = 1:length(date) 
            n 
           time(n) = hour(t(n))*3600+minute(t(n))*60+second(t(n)); 
       end 
     
    fid = fopen('avi_tt.txt','w'); 
     
     
     for n = 2:length(date)                   
        if ((AVI (n) == 144) && (AVI(n-1) == 142))% for loops 159-164 
            b(n)=1; 
                 
            if (strmatch(vehid(n), vehid(n-1),'exact')) 
                a(n)=1; 
                
                if (a(n)==1 && b(n) == 1) 
                    tt(n) = time(n)-time(n-1); 
             
                    if (tt(n) >0 && tt(n) < 1800) %assuming a 10mph min speed 
                        n 
                        fprintf(fid,'%s\t %s\t %f\t %s\t %f\t %f\n', vehid{n}, t{n-1}, time(n-1), t{n}, time(n), tt(n) 
); 
                    end 
                end 
            end 
     
        end 
    end 
     
    fclose(fid); 
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Optimization 
 
%The program for optimizing three detectors data. Input is the cumulative flow at three consecutive 
%detectors and the out is the corresponding optimized values. 
 
clear 
format compact 
format short e 
 
%**************************************************************** 
%*  define analytical functions 
%*  remember to use vectors for g and h if more than one of them 
%*  and modify code 
%************************************************************** 
syms f g1 g2 g3 g4 g5 g6 g7 cl1i cl2i cl3i cl1j cl2j cl3j x1 x2 x3 x4 x5 x6 x7 
syms gradcl1i gradcl2i gradcl3i gradcl1j gradcl2j gradcl3j 
syms gradx1 gradx2 gradx3 gradx4 gradx5 gradx6 gradx7  
syms h1 h1cl1i h1cl2i h1cl3i h1cl1j h1cl2j h1cl3j h1x1 h1x2 h1x3 h1x4 h1x5 h1x6 h1x7 
syms h2 h2cl1i h2cl2i h2cl3i h2cl1j h2cl2j h2cl3j h2x1 h2x2 h2x3 h2x4 h2x5 h2x6 h2x7 
syms h3 h3cl1i h3cl2i h3cl3i h3cl1j h3cl2j h3cl3j h3x1 h3x2 h3x3 h3x4 h3x5 h3x6 h3x7 
syms h4 h4cl1i h4cl2i h4cl3i h4cl1j h4cl2j h4cl3j h4x1 h4x2 h4x3 h4x4 h4x5 h4x6 h4x7 
syms h5 h5cl1i h5cl2i h5cl3i h5cl1j h5cl2j h5cl3j h5x1 h5x2 h5x3 h5x4 h5x5 h5x6 h5x7 
syms h6 h6cl1i h6cl2i h6cl3i h6cl1j h6cl2j h6cl3j h6x1 h6x2 h6x3 h6x4 h6x5 h6x6 h6x7 
syms h7 h7cl1i h7cl2i h7cl3i h7cl1j h7cl2j h8cl3j h7x1 h7x2 h7x3 h7x4 h7x5 h7x6 h7x7 
 
% the functions 
f = ((cl1j-cl2j)^2 + (cl2j-cl3j)^2); 
g1 = cl1j-cl2j; 
h1 = g1-x1; 
g2 = cl1j-cl2j-500; 
h2 = g2 + x2; 
g3 = cl2j-cl3j; 
h3 = g3-x3; 
g4 = cl2j-cl3j-500; 
h4 = g4 + x4; 
g5 = cl1j - cl1i; 
h5 = g5 - x5;  
 
g6 = cl2j - cl2i; 
h6 = g6 - x6; 
 
g7 = cl3j - cl3i; 
h7 = g7 - x7; 
 
 
%***************************************************************** 
%  input the design vector 
 
load 'data.txt' 
data1 = data(:,1); %4th column is the L1 cum volume 
data2 = data(:,2); % L2 cumu vol 
data3 = data(:,3); %L3 cumu vol 
count = 0; 
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count1 = 0; 
 
for n = 1:length(data) 
    if ( ((data1(n,1)-data2(n,1))>0) && ((data1(n,1)-data2(n,1))<500) && ((data2(n,1)-data3(n,1))>0) && 
((data2(n,1)-data3(n,1))<500)) 
       status(n) = 1;    
   else 
       status(n) = 0; 
     end 
 end 
check = min(status); 
for n = 1:length(data) 
    if(check == 1) 
        fprintf('no need for optimization, the data is good:-)\n'); 
        break 
    end 
     
    for(i=1:13) 
         xn(1,i) = -1; 
    end 
 
    fn(1) = 1; 
    flag = 1; 
    itn = 1; 
    diffF(1) = 1; 
    threshold = -1e-4; 
    threshold1 = 1e-4; 
     
  
    while (itn <40 & fn(itn) > threshold1 & min(xn(itn,:)) <threshold) 
        if (flag == 1 & n==1) 
            xs = [data1(n) data2(n) data3(n) 0 0 0]; 
        elseif (flag == 1 & n>1) 
            xs = [data1(n) data2(n) data3(n) optmddata(n-1,1) optmddata(n-1,2) optmddata(n-1,3)]; 
        elseif (flag~=1 & n>1) 
            xs = [xn(itn,1) xn(itn,2) xn(itn,3) optmddata(n-1,1) optmddata(n-1,2) optmddata(n-1,3)]; 
        else  
            xs = [xn(itn,1) xn(itn,2) xn(itn,3) 0 0 0]; 
        end 
         
        n 
        itn 
           
                       
        if(itn > 1)    
            if (diffF(itn-1) < threshold1 & diffF(itn) < threshold1) 
            break 
            end 
        end 
                   
            
        xs(7) = subs(g1,{cl1j,cl2j},{xs(1),xs(2)}); 
        xs(8) = -subs(g2,{cl1j,cl2j},{xs(1),xs(2)}); 
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        xs(9) = subs(g3,{cl2j,cl3j},{xs(2),xs(3)}); 
        xs(10) = -subs(g4,{cl2j,cl3j},{xs(2),xs(3)}); 
        xs(11) = subs(g5,{cl1j,cl1i},{xs(1),xs(4)}); 
        xs(12) = subs(g6,{cl2j,cl2i},{xs(2),xs(5)}); 
        xs(13) = subs(g7,{cl3j,cl3i},{xs(3),xs(6)}); 
            
                
       %fprintf('\nThe start design vector [%10.4f  %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f  
%10.4f %10.4f %10.4f %10.4f %10.4f ]\n',xs); 
 
% the gradients 
        gradcl1j = diff(f,cl1j); 
        gradcl2j = diff(f,cl2j); 
        gradcl3j = diff(f,cl3j); 
         
        h1cl1j = diff(h1,cl1j); 
        h1cl2j = diff(h1,cl2j); 
        h1x1 = diff(h1,x1); 
         
        h2cl1j = diff(h2,cl1j); 
        h2cl2j = diff(h2,cl2j); 
        h2x2 = diff(h2,x2); 
         
        h3cl2j = diff(h3,cl2j); 
        h3cl3j = diff(h3,cl3j); 
        h3x3 = diff(h3,x3); 
         
        h4cl2j = diff(h4,cl2j); 
        h4cl3j = diff(h4,cl3j); 
        h4x4 = diff(h4,x4); 
         
        h5cl1j = diff(h5,cl1j); 
        h5cl1i = diff(h5,cl1i); 
        h5x5 = diff(h5,x5); 
         
        h6cl2j = diff(h6,cl2j); 
        h6cl2i = diff(h6,cl2i); 
        h6x6 = diff(h6,x6); 
         
        h7cl3j = diff(h7,cl3j); 
        h7cl3i = diff(h7,cl3i); 
        h7x7 = diff(h7,x7); 
 
% evaluate the function, gradients , and hessian at the current design 
        fn(1) = double(subs(f,{cl1j,cl2j,cl3j},{xs(1),xs(2),xs(3)})); 
        g1v = double(subs(g1,{cl1j,cl2j},{xs(1),xs(2)})); 
        h1v = double(subs(h1,{cl1j,cl2j,x1},{xs(1),xs(2),xs(7)})); 
        g2v = double(subs(g2,{cl1j,cl2j},{xs(1),xs(2)})); 
        h2v = double(subs(h2,{cl1j,cl2j,x2},{xs(1),xs(2),xs(8)})); 
        g3v = double(subs(g3,{cl2j,cl3j},{xs(2),xs(3)})); 
        h3v = double(subs(h3,{cl2j,cl3j,x3},{xs(2),xs(3),xs(9)})); 
        g4v = double(subs(g4,{cl2j,cl3j},{xs(2),xs(3)})); 
        h4v = double(subs(h4,{cl2j,cl3j,x4},{xs(2),xs(3),xs(10)})); 
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        g5v = double(subs(g5,{cl1j,cl1i},{xs(1),xs(4)})); 
        h5v = double(subs(h5,{cl1j,cl1i,x5},{xs(1),xs(4),xs(11)})); 
        g6v = double(subs(g6,{cl2j,cl2i},{xs(2),xs(5)})); 
        h6v = double(subs(h6,{cl2j,cl2i,x6},{xs(2),xs(5),xs(12)})); 
        g7v = double(subs(g7,{cl3j,cl3i},{xs(3),xs(6)})); 
        h7v = double(subs(h7,{cl3j,cl3i,x7},{xs(3),xs(6),xs(13)}));  
         
        %fprintf('\n start function and constraints(f h1 h2 h3 h4 h5 h6 h7):\n '),disp([fn(1) h1v h2v h3v h4v 
h5v h6v h7v]) 
 
        dfcl1j = double(subs(gradcl1j,{cl1j,cl2j,cl3j},{xs(1),xs(2),xs(3)})); 
        dfcl2j = double(subs(gradcl2j,{cl1j,cl2j,cl3j},{xs(1),xs(2),xs(3)})); 
        dfcl3j = double(subs(gradcl3j,{cl1j,cl2j,cl3j},{xs(1),xs(2),xs(3)})); 
        dfcl1i =0; 
        dfcl2i =0; 
        dfcl3i =0; 
        dfx1 = 0; 
        dfx2 = 0; 
        dfx3 = 0; 
        dfx4 = 0; 
        dfx5 = 0; 
        dfx6 = 0; 
        dfx7 = 0; 
                 
        dh1cl1j = double(subs(h1cl1j,{cl1j,cl2j,cl3j,x1},{xs(1),xs(2),xs(3),xs(7)})); 
        dh1cl2j = double(subs(h1cl2j,{cl1j,cl2j,cl3j,x1},{xs(1),xs(2),xs(3),xs(7)})); 
        dh1x1 = double(subs(h1x1,{cl1j,cl2j,cl3j,x1},{xs(1),xs(2),xs(3),xs(7)})); 
        dh1cl3j =0;  
        dh1cl1i =0; 
        dh1cl2i =0; 
        dh1cl3i =0; 
        dh1x2 =0; 
        dh1x3 =0; 
        dh1x4 =0; 
        dh1x5 =0; 
        dh1x6 =0; 
        dh1x7 =0; 
         
        dh2cl1j = double(subs(h2cl1j,{cl1j,cl2j,cl3j,x2},{xs(1),xs(2),xs(3),xs(8)})); 
        dh2cl2j = double(subs(h2cl2j,{cl1j,cl2j,cl3j,x2},{xs(1),xs(2),xs(3),xs(8)})); 
        dh2x2 = double(subs(h2x2,{cl1j,cl2j,cl3j,x2},{xs(1),xs(2),xs(3),xs(8)})); 
        dh2cl3j =0; 
        dh2cl1i =0; 
        dh2cl2i =0; 
        dh2cl3i =0; 
        dh2x1 =0; 
        dh2x3 =0; 
        dh2x4 =0; 
        dh2x5 =0; 
        dh2x6 =0; 
        dh2x7 =0; 
         
        dh3cl2j = double(subs(h3cl2j,{cl1j,cl2j,cl3j,x3},{xs(1),xs(2),xs(3),xs(9)})); 
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        dh3cl3j = double(subs(h3cl3j,{cl1j,cl2j,cl3j,x3},{xs(1),xs(2),xs(3),xs(9)})); 
        dh3x3 = double(subs(h3x3,{cl1j,cl2j,cl3j,x3},{xs(1),xs(2),xs(3),xs(9)})); 
        dh3cl1j =0; 
        dh3cl1i =0; 
        dh3cl2i =0; 
        dh3cl3i =0; 
        dh3x2 =0; 
        dh3x1 =0; 
        dh3x4 =0; 
        dh3x5 =0; 
        dh3x6 =0; 
        dh3x7 =0; 
           
        dh4cl2j = double(subs(h4cl2j,{cl1j,cl2j,cl3j,x4},{xs(1),xs(2),xs(3),xs(10)})); 
        dh4cl3j = double(subs(h4cl3j,{cl1j,cl2j,cl3j,x4},{xs(1),xs(2),xs(3),xs(10)})); 
        dh4x4 = double(subs(h4x4,{cl1j,cl2j,cl3j,x4},{xs(1),xs(2),xs(3),xs(10)})); 
        dh4cl1j =0; 
        dh4cl1i =0; 
        dh4cl2i =0; 
        dh4cl3i =0; 
        dh4x2 =0; 
        dh4x3 =0; 
        dh4x1 =0; 
        dh4x5 =0; 
        dh4x6 =0; 
        dh4x7 =0; 
         
        dh5cl1j = double(subs(h5cl1j,{cl1j,cl1i,x5},{xs(1),xs(4),xs(11)})); 
        dh5cl1i = double(subs(h5cl1i,{cl1j,cl1i,x5},{xs(1),xs(4),xs(11)})); 
        dh5x5 = double(subs(h5x5,{cl1j,cl1i,x5},{xs(1),xs(4),xs(11)})); 
        dh5cl2j =0; 
        dh5cl3j =0; 
        dh5cl2i =0; 
        dh5cl3i =0; 
        dh5x2 =0; 
        dh5x3 =0; 
        dh5x4 =0; 
        dh5x1 =0; 
        dh5x6 =0; 
        dh5x7 =0; 
         
        dh6cl2j = double(subs(h6cl2j,{cl2j,cl2i,x6},{xs(2),xs(5),xs(12)})); 
        dh6cl2i = double(subs(h6cl2i,{cl2j,cl2i,x6},{xs(2),xs(5),xs(12)})); 
        dh6x6 = double(subs(h6x6,{cl2j,cl2i,x6},{xs(2),xs(5),xs(12)})); 
        dh6cl1j =0; 
        dh6cl3j =0; 
        dh6cl1i =0; 
        dh6cl3i =0; 
        dh6x2 =0; 
        dh6x3 =0; 
        dh6x4 =0; 
        dh6x5 =0; 
        dh6x1 =0; 
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        dh6x7 =0; 
         
        dh7cl3j = double(subs(h7cl3j,{cl3j,cl3i,x7},{xs(3),xs(6),xs(13)})); 
        dh7cl3i = double(subs(h7cl3i,{cl3j,cl3i,x7},{xs(3),xs(6),xs(13)})); 
        dh7x7 = double(subs(h7x7,{cl3j,cl3i,x7},{xs(3),xs(6),xs(13)})); 
        dh7cl1j =0; 
        dh7cl2j =0; 
        dh7cl1i =0; 
        dh7cl2i =0; 
        dh7x2 =0; 
        dh7x3 =0; 
        dh7x4 =0; 
        dh7x5 =0; 
        dh7x6 =0; 
        dh7x1 =0; 
         
%matrix A and B 
        A = [dh1cl1j dh1cl2j dh1cl3j dh1cl1i dh1cl2i dh1cl3i; dh2cl1j dh2cl2j dh2cl3j dh2cl1i dh2cl2i 
dh2cl3i;  
             dh3cl1j dh3cl2j dh3cl3j dh3cl1i dh3cl2i dh3cl3i; dh4cl1j dh4cl2j dh4cl3j dh4cl1i dh4cl2i dh4cl3i; 
             dh5cl1j dh5cl2j dh5cl3j dh5cl1i dh5cl2i dh5cl3i; dh6cl1j dh6cl2j dh6cl3j dh6cl1i dh6cl2i dh6cl3i; 
             dh7cl1j dh7cl2j dh7cl3j dh7cl1i dh7cl2i dh7cl3i]; 
        B = [dh1x1 dh1x2 dh1x3 dh1x4 dh1x5 dh1x6 dh1x7; dh2x1 dh2x2 dh2x3 dh2x4 dh2x5 dh2x6 
dh2x7;  
             dh3x1 dh3x2 dh3x3 dh3x4 dh3x5 dh3x6 dh3x7; dh4x1 dh4x2 dh4x3 dh4x4 dh4x5 dh4x6 dh4x7; 
             dh5x1 dh5x2 dh5x3 dh5x4 dh5x5 dh5x6 dh5x7; dh6x1 dh6x2 dh6x3 dh6x4 dh6x5 dh6x6 dh6x7; 
             dh7x1 dh7x2 dh7x3 dh7x4 dh7x5 dh7x6 dh7x7]; 
        C = inv(B)*A; 
        Gr1 = ([dfcl1j;dfcl2j;dfcl3j;dfcl1i; dfcl2i;dfcl3i] - C'*[dfx1; dfx2; dfx3; dfx4; dfx5; dfx6; dfx7]); 
        S1 = -Gr1; 
     
        alpha = 0; 
 
        for jj = 1:3 
 
            if (jj < 3) 
      %string1 = ['\nInput the stepsize for evaluation.\n'] ; 
      %alpha = input(string1) 
      alpha = alpha + 0.05; 
            aa(jj+1) = alpha; 
            end  
     
%****************** 
%  for a given stepsize - Y calculation 
%*************** 
  
         dz1 = S1*alpha; 
             
            xn1 = xs(1) + dz1(1); 
            xn2 = xs(2) + dz1(2); 
            xn3 = xs(3) + dz1(3); 
            xn4 = xs(4);%+ dz1(4); 
            xn5 = xs(5);%+ dz1(5); 
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            xn6 = xs(6);%+ dz1(6); 
     
            dy1 = -C*dz1; 
        

yn1 = xs(7); 
            yn2 = xs(8); 
            yn3 = xs(9); 
            yn4 = xs(10); 
            yn5 = xs(11); 
            yn6 = xs(12); 
            yn7 = xs(13); 
                  
         for i = 1: 40 
   yn1 = yn1 + dy1(1); 
                yn2 = yn2 + dy1(2); 
                yn3 = yn3 + dy1(3); 
                yn4 = yn4 + dy1(4); 
                yn5 = yn5 + dy1(5); 
                yn6 = yn6 + dy1(6); 
                yn7 = yn7 + dy1(7); 
         
                xxn=[xn1 xn2 xn3 xn4 xn5 xn6 yn1 yn2 yn3 yn4 yn5 yn6 yn7]; 
            
           h1n = double(subs(h1,{cl1j,cl2j,x1},{xxn(1),xxn(2),xxn(7)})); 
    h2n = double(subs(h2,{cl1j,cl2j,x2},{xxn(1),xxn(2),xxn(8)})); 
                h3n = double(subs(h3,{cl2j,cl3j,x3},{xxn(2),xxn(3),xxn(9)})); 
    h4n = double(subs(h4,{cl2j,cl3j,x4},{xxn(2),xxn(3),xxn(10)})); 
                h5n = double(subs(h5,{cl1j,cl1i,x5},{xxn(1),xxn(4),xxn(11)})); 
                h6n = double(subs(h6,{cl2j,cl2i,x6},{xxn(2),xxn(5),xxn(12)})); 
                h7n = double(subs(h7,{cl3j,cl3i,x7},{xxn(3),xxn(6),xxn(13)}));  
                 
                      
                hsq = h1n*h1n + h2n*h2n + h3n*h3n + h4n*h4n + h5n*h5n + h6n*h6n + h7n*h7n; 
            if hsq <= 1.0e-08 
              break 
                else 
               dy1 = inv(B)*[-h1n -h2n -h3n -h4n -h5n -h6n -h7n]'; 
                end 
         end 

%fprintf('\nNo. of iterations of dy for same dz, alpha and constraint error: '),disp(i),disp([alpha 
hsq]); 
  %fprintf('\n improved design vector: '),disp(xxn) 
            fn(itn+1) = double(subs(f,{cl1j,cl2j,cl3j},{xxn(1),xxn(2),xxn(3)})); 
            %fprintf('\n improved function and constraints (f h1 h2 h3 h4 h5 h6 h7)\n '),disp([fn(itn+1) h1n 
h2n h3n h4n h5n h6n h7n]) 
       
            flag = 2; 
    
           ff(jj+1)=fn(itn+1);   
   
           if (jj == 2) 
                aa(1) = 0; rhs(1) = fn(1); 
                amat = [1 0 0; 1 aa(2) aa(2)^2; 1 aa(3) aa(3)^2]; 
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                rhs=[fn(1) ff(2) ff(3)]'; 
                xval = inv(amat)*rhs; 
                alpha = -xval(2)/(2*xval(3)); 
                %alpha = .05; %0.25 
            end 
       
        end % jj loop   
        %fprintf('\n improved design vector: '),disp(xxn) 
        %xxn(4) = xs(4); 
        %xxn(5) = xs(5); 
        %xxn(6) = xs(6); 
         
        xn(itn+1,:) = xxn; 
     
        F(1) = fn(1);    
        F(itn+1) = fn(itn+1); 
        diffF(itn+1) =  abs(F(itn+1) - F(itn)); 
         
        itn = itn +1; 
          
                  
              
    end % while loop 
     
     
    if (min(xn(itn,:)) < 0) 
                count1 = count1 + 1; 
                fid1 = fopen('infeasible1.txt','a'); 
                fprintf(fid1,'%d %d\n', count1,n);  
                fclose(fid1); 
    end 
       
        
    %fprintf('\n final design vector: '),disp(xn(itn,:)) 
    %fprintf('\n final function and constraints (f h1 h2 h3 h4 h5 h6)\n '),disp([fn(itn) h1n h2n h3n h4n h5n 
h6n]) 
     newx(n,:) = xn(itn,:); 
     for k = 1:3 
        optmddata(n,k) = newx(n,k); 
    end 
   
     save feb10th_345with50_optmd.txt optmddata -ascii  
           
end % for loop for number of data  
   
     
%optmddata 
%plot(optmddata) 
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N-D Model 
 
% Program to calculate travel time based on Nam and Drew model. The input is the flow values at  
% consecutive points and the output will be the travel time. 
 
clear; 
format compact 
format short e 
 
 
load 'voldataformodel.txt' % read data 
 
vol1 = voldataformodel(:,1); % speed 
vol2 = voldataformodel(:,2); 
vol3 = voldataformodel(:,3); 
 
 
delta_x1 = .522; % given that section is ~~ .5 miles 
delta_x2 = .417; 
delta_t =2; % choose based on delta_x/free_flow_speed relation  
%cumu = 4; % 30 sec data to be cumulated to 2 mt data. hence 4 set has to be added 
no_in_start1 =-2; % not known. trial and error and choose the best number 
no_in_start2 = -4; 
 
for i=1:length(voldataformodel) 
   %act_vol(i,:)=temp((i-1)*2+1:i*2)'; %given data 
   act_vol(i,1) = vol1(i); 
   act_vol(i,2) = vol2(i); 
act_vol(i,3) = vol3(i); 
end 
 
figure 
plot(act_vol) % to check any unreasonable data 
title('actual volume') 
 
for i=1:length(voldataformodel) 
    vol(i,:)= act_vol(i,:); 
end 
figure 
plot(vol) 
title('aggregated actual volume') 
 
for i = 1:length(voldataformodel) 
    q(i,:) = vol(i,:)/delta_t;%number per unit time 
end 
figure 
plot(q) 
title('q') 
 
cum_vol(1,1) = q(1,1); 
cum_vol(1,2)=(no_in_start1/2) + q(1,2);%cumulated q 
cum_vol(1,3) = (no_in_start2/2) + q(1,3); 
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for i=2:length(voldataformodel) 
    cum_vol(i,:)=q(i,:) + cum_vol(i-1,:); 
end 
figure 
plot(cum_vol) 
title('cumulated q') 
 
for i=1:length(voldataformodel) 
    Q(i,:) = cum_vol(i,:)*delta_t;%cumulated volume(not per unit time) 
end 
figure 
plot(Q) 
title('Q') 
 
 
for i= 1:length(voldataformodel) 
    no_in_link1(i,1) = Q(i,1)-Q(i,2); 
    no_in_link2(i,1) = Q(i,2)-Q(i,3); 
    density(i,1) = no_in_link1(i,1)/delta_x1; 
density(i,2)= no_in_link2(i,1)/delta_x2; 
end 
 
figure 
plot(density) 
title('density') 
 
m(1,1) = Q(1,2); 
m(1,2) = Q(1,3); 
m_percent(1,1) = m(1,1)/vol(1,1);  
m_percent(1,2) = m(1,2)/vol(1,2); 
 
for i=2:length(voldataformodel) 
    m(i,1)=Q(i,2)-Q(i-1,1); 
    m(i,2) = Q(i,3) - Q(i-1,2); 
    m_percent(i,1)= m(i,1)/vol(i,1); 
    m_percent(i,2)= m(i,2)/vol(i,2); 
end 
figure 
plot(m(:,1)) 
hold on 
plot(m(:,2),'-r') 
title('m') 
             
for i =2:length(voldataformodel) 
        if (m(i,1)>0) 
            %tt_mts(i,1) = (delta_x1/2)*((q(i,1)*density(i-1,1))+(q(i,2)*density(i,1)))/(q(i,1)*q(i,2)); %drew's 
original 
            tt_mts(i,1) = m_percent(i,1)*((delta_x1/2)*((q(i,1)*density(i-
1,1))+(q(i,2)*density(i,1))))/(q(i,1)*q(i,2)) + (1-m_percent(i,1))*((delta_x1/2)*((density(i-
1,1)+density(i,1))/q(i,2))); 
        else 
            tt_mts(i,1) = ((delta_x1/2)*((density(i-1,1)+density(i,1))/q(i,2))); % same eqn can be written as the 
next line 
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            %tt_mts(i,1) = ((2*(density(i-1,1)*delta_x))+((q(i,1)-q(i,2))*delta_t))/(2*q(i,2)); 
        end 
        if(m(i,2) >0) 
           %tt_mts(i,2) = (delta_x2/2)*((q(i,2)*density(i-1,2))+(q(i,3)*density(i,2)))/(q(i,3)*q(i,2));%drew's 
original 
            
           tt_mts(i,2) = m_percent(i,2)*((delta_x2/2)*((q(i,2)*density(i-
1,2))+(q(i,3)*density(i,2))))/(q(i,2)*q(i,3)) + (1-m_percent(i,2))*((delta_x2/2)*((density(i-
1,2)+density(i,2))/q(i,3))); 
        else 
            tt_mts(i,2) = ((delta_x2/2)*((density(i-1,2)+density(i,2))/q(i,3))); % same eqn can be written as the 
next line 
            %tt_mts(i,2) = ((2*(density(i-1,2)*delta_x))+((q(i,2)-q(i,3))*delta_t))/(2*q(i,3)); 
        end   
end 
 
% smoothing of the data 
alpha1 = 0.3; % can be varied, do trial and error 
alpha2=0.3; 
tt_smoothed(2,1) = tt_mts(2,1);  
tt_smoothed(2,2) = tt_mts(2,2);  
 
for n=3:length(voldataformodel) 
       tt_smoothed(n,1) = alpha1*tt_mts(n,1)+(1-alpha1)*tt_smoothed(n-1,1); 
       tt_smoothed(n,2) = alpha2*tt_mts(n,2)+(1-alpha2)*tt_smoothed(n-1,2); 
end 
    
%for i =2:length(dataformodel)/cumu, 
 %   tt_t(i,1) = ((delta_x/2)*((q(i,1)*density(i-1,1))+(q(i,2)*density(i,1))))/(q(i,1)*q(i,2)); 
 %end 
 
figure 
plot(tt_mts(:,1)*60,'-g') 
hold on 
plot( tt_mts(:,2)*60,'-b') 
 
title('travel time in seconds') 
 
figure 
plot(tt_smoothed(:,1)*60,'-r') 
hold on 
plot(tt_smoothed(:,2)*60, '-y') 
 
title('smoothed travel time') 
 
 
save tt_model.txt tt_mts -ascii 
save tt_model_smoothed.txt tt_smoothed -ascii 
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Travel Time Estimation  
 
% Program to calculate travel time based on the model proposed in this dissertation. Input includes the 
%flow, speed and density at consecutive points and the travel time will be the output. 
 
 
clear; 
format compact 
format short e 
 
load 'voldataformodel.txt' % read data 
load 'densitydataformodel.txt' 
load 'speeddataformodel.txt' % read data 
 
 
speed1 = speeddataformodel(:,1); % speed 
speed2 = speeddataformodel(:,2); 
speed3 = speeddataformodel(:,3); 
speed4 = speeddataformodel(:,4); 
speed5 = speeddataformodel(:,5); 
 
vol1 = voldataformodel(:,1); % speed 
vol2 = voldataformodel(:,2); 
vol3 = voldataformodel(:,3); 
vol4 = voldataformodel(:,4); 
vol5 = voldataformodel(:,5); 
 
density1 = densitydataformodel(:,1);%no_in_link1(i,1)/delta_x; 
density2 = densitydataformodel(:,2);%no_in_link2(i,1)/delta_x; 
density3 = densitydataformodel(:,3);%no_in_link1(i,1)/delta_x; 
density4 = densitydataformodel(:,4);%no_in_link2(i,1)/delta_x; 
 
delta_x1 = .498; % given that section is ~~ .5 miles 
delta_x2 = .506; %.47; 
delta_x3 = .388; 
delta_x4 = .513; 
 
delta_t =2; % choose based on delta_x/free_flow_speed relation  
%cumu = 4; % 30 sec data to be cumulated to 2 mt data. hence 4 set has to be added 
no_in_start1 =0; % not known. trial and error and choose the best number 
no_in_start2 = 0; 
no_in_start3 =0; % not known. trial and error and choose the best number 
no_in_start4 = 0; 
 
for i=1:length(voldataformodel) 
   %act_vol(i,:)=temp((i-1)*2+1:i*2)'; %given data 
   act_vol(i,1) = vol1(i); 
   act_vol(i,2) = vol2(i); 
   act_vol(i,3) = vol3(i); 
   act_vol(i,4) = vol4(i); 
   act_vol(i,5) = vol5(i); 
end 
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figure 
plot(act_vol) % to check any unreasonable data 
title('actual volume') 
 
for i=1:length(voldataformodel) 
    vol(i,:)= act_vol(i,:); 
end 
figure 
plot(vol) 
title('aggregated actual volume') 
 
for i = 1:length(voldataformodel) 
    q(i,:) = vol(i,:)/delta_t;%number per unit time 
end 
figure 
plot(q) 
title('q') 
 
cum_vol(1,1) = q(1,1); 
cum_vol(1,2)=(no_in_start1/2) + q(1,2);%cumulated q 
cum_vol(1,3) = (no_in_start2/2) + q(1,3); 
cum_vol(1,4)=(no_in_start3/2) + q(1,4);%cumulated q 
cum_vol(1,5) = (no_in_start4/2) + q(1,5); 
 
for i=2:length(voldataformodel) 
    cum_vol(i,:)=q(i,:) + cum_vol(i-1,:); 
end 
figure 
plot(cum_vol) 
title('cumulated q') 
 
for i=1:length(voldataformodel) 
    Q(i,:) = cum_vol(i,:)*delta_t;%cumulated volume(not per unit time) 
end 
figure 
plot(Q) 
title('Q') 
 
 
for i= 1:length(voldataformodel) 
    no_in_link1(i,1) = Q(i,1)-Q(i,2); 
    no_in_link2(i,1) = Q(i,2)-Q(i,3); 
    no_in_link3(i,1) = Q(i,3)-Q(i,4); 
    no_in_link4(i,1) = Q(i,4)-Q(i,5); 
end 
 
figure 
plot(density1, '-b') 
hold on 
plot(density2,'-r') 
hold on 
plot(density3, '-g') 
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hold on 
plot(density4, '-y') 
title('density') 
 
m(1,1) = Q(1,2); 
m(1,2) = Q(1,3); 
m(1,3) = Q(1,4); 
m(1,4) = Q(1,5); 
 
m_percent(1,1) = m(1,1)/vol(1,1);  
m_percent(1,2) = m(1,2)/vol(1,2); 
m_percent(1,3) = m(1,3)/vol(1,3);  
m_percent(1,4) = m(1,4)/vol(1,4); 
 
for i=2:length(voldataformodel) 
    m(i,1)=Q(i,2)-Q(i-1,1); 
    m(i,2) = Q(i,3) - Q(i-1,2); 
    m(i,3)=Q(i,4)-Q(i-1,3); 
    m(i,4) = Q(i,5) - Q(i-1,4); 
     
    m_percent(i,1)= m(i,1)/vol(i,1); 
    m_percent(i,2)= m(i,2)/vol(i,2); 
    m_percent(i,3)= m(i,3)/vol(i,3); 
    m_percent(i,4)= m(i,4)/vol(i,4); 
end 
figure 
plot(m(:,1)) 
hold on 
plot(m(:,2),'-r') 
hold on 
plot(m(:,3),'-g') 
hold on 
plot(m(:,4),'-y') 
title('m') 
 
                 
for i =1:length(speeddataformodel) 
    if (act_vol(i,:)<50) 
        %tt1_method1(i) =  ((delta_x/(2*speed1(i)))+(delta_x/(2*speed2(i))))*3600; 
     tt_mts(i,1) = delta_x1/((speed1(i)+speed2(i))/2)*60; 
        %tt1_method3(i) = delta_x/(min(speed1(i),speed2(i)))*3600; 
        %tt2_method1(i) =  ((delta_x/(2*speed2(i)))+(delta_x/(2*speed3(i))))*3600; 
     tt_mts(i,2) = delta_x2/((speed2(i)+speed3(i))/2)*60; 
        %tt2_method3(i) = delta_x/(min(speed2(i),speed3(i)))*3600; 
     tt_mts(i,3) = delta_x3/((speed3(i)+speed4(i))/2)*60; 
     tt_mts(i,4) = delta_x4/((speed4(i)+speed5(i))/2)*60; 
      
else 
           if (m(i,1)>0) 
                      

tt_mts(i,1) = m_percent(i,1)*((delta_x1/2)*((q(i,1)*density1(i-
1,1))+(q(i,2)*density1(i,1))))/(q(i,1)*q(i,2)) + (1-m_percent(i,1))*((delta_x1/2)*((density1(i-
1,1)+density1(i,1))/q(i,2))); 
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            else 

 tt_mts(i,1) = ((delta_x1/2)*((density1(i-1,1)+density1(i,1))/q(i,2))); % same eqn can be written 
as the next line 

            %tt_mts(i,1) = ((2*(density(i-1,1)*delta_x))+((q(i,1)-q(i,2))*delta_t))/(2*q(i,2)); 
        end 
        if(m(i,2) >0) 
                     

tt_mts(i,2) = m_percent(i,2)*((delta_x2/2)*((q(i,2)*density2(i-
1,1))+(q(i,3)*density2(i,1))))/(q(i,2)*q(i,3)) + (1-m_percent(i,2))*((delta_x2/2)*((density2(i-
1,1)+density2(i,1))/q(i,3))); 

            else 
tt_mts(i,2) = ((delta_x2/2)*((density2(i-1,1)+density2(i,1))/q(i,3))); % same eqn can be written as 
the next line 

            %tt_mts(i,2) = ((2*(density(i-1,2)*delta_x))+((q(i,2)-q(i,3))*delta_t))/(2*q(i,3)); 
        end   
         
        if(m(i,3) >0) 
            

tt_mts(i,3) = m_percent(i,3)*((delta_x3/2)*((q(i,3)*density3(i-
1,1))+(q(i,4)*density3(i,1))))/(q(i,3)*q(i,4)) + (1-m_percent(i,3))*((delta_x3/2)*((density3(i-
1,1)+density3(i,1))/q(i,4))); 

            else 
            tt_mts(i,3) = ((delta_x3/2)*((density3(i-1,1)+density3(i,1))/q(i,4))); % same eqn can be written as 
the next line 
        end   
         
        if(m(i,4) >0) 
           

 tt_mts(i,4) = m_percent(i,4)*((delta_x4/2)*((q(i,4)*density4(i-
1,1))+(q(i,5)*density4(i,1))))/(q(i,4)*q(i,5)) + ... 

              (1-m_percent(i,4))*((delta_x4/2)*((density4(i-1,1)+density4(i,1))/q(i,5))); 
            else 
            tt_mts(i,4) = ((delta_x4/2)*((density4(i-1,1)+density4(i,1))/q(i,5))); % same eqn can be written as 
the next line 
        end   
end 
end 
 
% smoothing of the data 
alpha1 = 0.3; % can be varied, do trial and error 
alpha2 = 0.3; 
alpha3 = 0.3; % can be varied, do trial and error 
alpha4 = 0.3; 
tt_smoothed(1,1) = tt_mts(1,1);  
tt_smoothed(1,2) = tt_mts(1,2);  
tt_smoothed(1,3) = tt_mts(1,3);  
tt_smoothed(1,4) = tt_mts(1,4);  
 
for n=2:length(tt_mts) 
    if(act_vol(i,:)<50) 
       tt_smoothed(n,1) = alpha1*tt_mts(n,1)+(1-alpha1)*tt_smoothed(n-1,1); 
       tt_smoothed(n,2) = alpha2*tt_mts(n,2)+(1-alpha2)*tt_smoothed(n-1,2); 
       tt_smoothed(n,3) = alpha3*tt_mts(n,3)+(1-alpha3)*tt_smoothed(n-1,3); 
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       tt_smoothed(n,4) = alpha4*tt_mts(n,4)+(1-alpha4)*tt_smoothed(n-1,4); 
   else 
       tt_smoothed(n,1) = tt_mts(n,1); 
       tt_smoothed(n,2) = tt_mts(n,2); 
       tt_smoothed(n,3) = tt_mts(n,3); 
       tt_smoothed(n,4) = tt_mts(n,4); 
   end 
end 
    
figure 
plot(tt_mts(:,1)*60,'-g') 
hold on 
plot( tt_mts(:,2)*60,'-b') 
hold on 
plot(tt_mts(:,3)*60,'-r') 
hold on 
plot( tt_mts(:,4)*60,'-y') 
title('travel time in seconds') 
 
figure 
plot(tt_smoothed(:,1)*60,'-r') 
hold on 
plot(tt_smoothed(:,2)*60, '-y') 
hold on 
plot(tt_smoothed(:,3)*60,'-b') 
hold on 
plot(tt_smoothed(:,4)*60, '-g') 
title('smoothed travel time') 
 
 
%save tt_model.txt tt_mts -ascii 
%save tt_model_smoothed.txt tt_smoothed -ascii 
 
fid = fopen('tt_frommodel.txt','w'); 
     
    for n=1:length(tt_mts) 
                
         fprintf(fid,'%f\t %f\t %f\t %f\n', tt_smoothed(n,1)*60, tt_smoothed(n,2)*60, tt_smoothed(n,3)*60, 
tt_smoothed(n,4)*60 ); 
     end 
 
 fclose(fid); 
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Extrapolation Method 
 
%different extrapolation methods to calculate travel time. Input the speed values and travel time will be 
%calculated.  
 
clear; 
format compact 
format short e 
 
load 'speeddataformodel.txt' % read data 
 
speed1 = speeddataformodel(:,1); % speed 
speed2 = speeddataformodel(:,2); 
speed3 = speeddataformodel(:,3); 
speed4 = speeddataformodel(:,4); 
speed5 = speeddataformodel(:,5); 
 
delta_x1 = .498; % given that section is ~~ .5 miles 
delta_x2 = .506; 
delta_x3 = .388; % given that section is ~~ .5 miles 
delta_x4 = .513; 
delta_t =2; % choose based on delta_x/free_flow_speed relation  
%cumu = 4; % 30 sec data to be cumulated to 2 mt data. hence 4 set has to be added 
no_in_start = 0; % not known. trial and error and choose the best number 
 
 
% following are the two methods applied in the field 
 
for(n=1:length(speed1)) 
    tt1_method1(n) =  ((delta_x1/(2*speed1(n)))+(delta_x1/(2*speed2(n))))*3600; 
    tt1_method2(n) = delta_x1/((speed1(n)+speed2(n))/2)*3600; 
    tt1_method3(n) = delta_x1/(min(speed1(n),speed2(n)))*3600; 
    tt2_method1(n) =  ((delta_x2/(2*speed2(n)))+(delta_x2/(2*speed3(n))))*3600; 
    tt2_method2(n) = delta_x2/((speed2(n)+speed3(n))/2)*3600; 
    tt2_method3(n) = delta_x2/(min(speed2(n),speed3(n)))*3600; 
    tt3_method2(n) = delta_x3/((speed3(n)+speed4(n))/2)*3600; 
    tt4_method2(n) = delta_x4/((speed4(n)+speed5(n))/2)*3600; 
     
end 
figure 
plot(tt1_method2, '-g') 
title('travel time1 from method2 in seconds') 
figure 
plot(tt2_method2, '-r') 
title('travel time2 from method2 in seconds') 
figure 
plot(tt3_method2, '-r') 
title('travel time3 from method2 in seconds') 
 
figure 
plot(tt4_method2, '-b') 
title('travel time4 from method2 in seconds') 
%figure 
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%plot(tt2_method2, '-y') 
%title('travel time2 from method2 in seconds') 
%figure 
%plot(tt2_method3, '-y') 
%title('travel time2 from method3 in seconds') 
 
fid = fopen('tt_fromspeed.txt','w'); 
     
    for n=1:length(speed1) 
         fprintf(fid,'%f\t %f\t %f\t %f\n',tt1_method2(n), tt2_method2(n), tt3_method2(n), tt4_method2(n)); 
     end 
 
 fclose(fid); 
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Travel Time Prediction 
 
Real-time method 
 
% To predict the travel time using real-time method. Input is the previous 5 time steps travel time and the 
%travel time up to the next 30 time steps will be calculated. 
 
clear; 
real_ 
load tst.mat 
save tst1.mat x y mx mn 
load real_res.mat 
errl(1)=ers; 
errl1(1) = ers1; 
 
for i=2:30, 
    N=length(y); 
    y=y(2:N); 
    x=x(1:N-1,:); 
    save tst.mat x y mx mn 
    real_ 
    load real_res.mat 
    errl(i)=ers; 
    errl1(i) = ers1; 
end 
 
clear x,y; 
load tst1.mat 
save tst.mat x y mx mn 
 
 
save realres.mat errl errl1 
plot(errl) 
figure 
plot(errl1)  
 
********************************************************** 
 
function real_ 
 
load tst.mat 
load norm.mat 
 
N=length(y); 
ye=x(:,5); 
 
ers=sum(abs(ye-y)./y)*100/(N-1); 
 
actual_ye=((ye-mm)*nx1)+ nx2; 
actual_y = ((y-mm)*nx1)+ nx2; 
ers1=sum(abs(actual_y-actual_ye)./actual_y)*100/N; 
 
save real_res.mat actual_y actual_ye ers ers1 
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ANN 
 
% Program to predict travel time using ANN method. Input the previous 5 time steps travel time values 
%and get the travel time up to 30 time steps ahead 
 
 clear; 
nntr_ 
nntst_ 
 
load tst.mat 
save tst1.mat x y mx mn 
 
load nnres.mat 
ernn(1)=ers; 
ernn1(1) = ers1; 
for i=2:30, 
    N=length(y) 
    x=x(1:N-1,:); 
    %x(2:end,4)=ye(1:end-1)'; 
    y=y(2:N); 
    %x=x(2:end,:); 
    save tst.mat x y mx mn 
    nntst_ 
    load nnres.mat 
    ernn(i)=ers; 
    ernn1(i) = ers1; 
end 
 
clear x,y; 
load tst1.mat 
save tst.mat x y mx mn 
% cd .. 
 
save nnres.mat ernn ernn1 
 
figure 
plot(ernn) 
figure 
plot(ernn1)  
 
 
 
******************************************************************** 
function nntr_ 
load tr.mat 
 
size(x); 
fcn_init='rands'; 
mi=round(min(x)*10)/10; 
ma=round(max(x)*10)/10; 
 
net = newff([mi' ma'],[10 1],{'logsig' 'purelin'}); 
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net.initFcn='initlay'; 
net.layers{1}.initFcn='initwb'; 
net.layers{2}.initFcn='initwb'; 
 
for i=1:2, 
    net.inputWeights{i}.initFcn=fcn_init; 
end 
for i=1:2, 
    net.layerWeights{1,i}.initFcn=fcn_init; 
end 
net.layerWeights{2,1}.initFcn=fcn_init; 
net.biases{1}.initFcn=fcn_init; 
net.biases{2}.initFcn=fcn_init; 
net=init(net); 
net.trainFcn='trainlm'; 
net.trainParam.epochs = 1000; 
net.trainParam.mu=1; 
 
%disp(net.trainParam) 
%pause 
%net.lw{2,1} 
 
net = train(net,x',y'); 
 
save nnwt.mat net  
 
 
***************************************************** 
function nntst_ 
load tst.mat 
load norm.mat %data coming from SVMdata 
load nnwt.mat 
 
ye = sim(net,x'); 
aa=ye; 
ye=aa'; 
N=length(y); 
ers=sum(abs(y-ye)./y)*100/N 
 
actual_y=((y-mm)*nx1)+ nx2; %mean(testx1) 
actual_ye=((ye-mm)*nx1)+ nx2; %mean(testx1) 
ers1=sum(abs(actual_y-actual_ye)./actual_y)*100/N 
save nnres.mat actual_y actual_ye ers ers1 
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SVM 
 
% Program to predict travel time using SVM method. Input the previous time steps values and get the 
%future travel time. 
 
clear; 
svmdata 
trainsvm 
testsvm 
 
load tst.mat 
save tst1.mat x y mn mx  
 
load svmres.mat 
ersvm(1)=ers; 
ersvm1(1)=ers1; 
for i=2:30, 
    i 
    N=length(y); 
    x=x(1:N-1,:); 
    %x(2:end,4)=ye(1:end-1)'; 
    y=y(2:N); 
    %x=x(2:end,:); 
    %size(y) 
    save tst.mat x y mn mx 
    testsvm 
    load svmres.mat 
    ersvm1(i)=ers1; 
    ersvm(i)=ers; 
end 
 
clear x,y; 
load tst1.mat x y mn mx  
%load tst1.mat 
save tst.mat x y mn mx 
%cd .. 
 
save svmres.mat ersvm ersvm1 
 
figure 
plot(ersvm) 
figure 
plot(ersvm1)  
 
****************************************** 
 
function svmdata 
 
load 'train_original.txt' 
trainx = cat(1, train_original(:,1));%, train_original(:,2));%, train_original(:,3)); 
load 'test_original.txt' 
testx1 = test_original; 
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St = 1; 
en = length(trainx); 
St1 = 1%500; 
en1 = length(testx1); %600 
 
nx=max(trainx(St:en))-min(trainx(St:en)); 
nx1=max(testx1(St1:en1))-min(testx1(St1:en1)); 
nx2 = mean(testx1(St1:en1)); 
mm=max(mean(trainx(St:en)),mean(testx1(St1:en1))); 
x_norm=((trainx-mean(trainx))/nx)+mm; 
x1_norm=((testx1-mean(testx1))/nx1)+mm; 
x_final=x_norm(St:en); %nomalised input data for training 
x1_final=x1_norm(St1:en1); %nomalised input data for testing 
P=5; % take five numbers as input and the 6th number as the output 
Ntr=719;%;%1438 %2157; 
%x_final=svdatanorm(trainx,'rbf'); 
%x1_final=svdatanorm(testx1,'rbf'); 
%Ntst=length(x)-Ntr-P-1; 
count=1; 
for i=P+1:Ntr, 
    for j=1:P 
        X(count,j)=x_final(i-j); 
    end 
    Y(count,1)=x_final(i); 
    count=count+1; 
end 
x=X; 
y=Y; 
mn=min(x); 
mx=max(x); 
save tr.mat x y mn mx 
save norm.mat mm nx1 nx2 
 
% training data 
count=1; 
Ntst = 719; 
for i=P+1:Ntst, 
    for j=1:P 
          Xtst(count,j)=x1_final(i-j); 
    end 
    Ytst(count,1)=x1_final(i); 
    count=count+1; 
end 
x=Xtst; 
y=Ytst; 
mn=min(x); 
mx=max(x); 
save tst.mat x y mn mx  
 
******************************************** 
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function testsvm 
global C P p1 p2 sep beta nsv bias; 
 
load tr.mat %variable name is x and y 
X=x; 
Y=y; 
load tst.mat %variable name is x and y 
 
load norm.mat %for denormalising the data 
load svmresult.mat 
    
C=Inf;%C=500;% 
P=1; 
e=0.05;%e=0.1;% 
ker='erbf';%'rbf'; 
p1=15; 
p2=0; 
sep=1; 
 
%save tsdata_svm.mat X Y C P e ker p1 p2 sep 
%size(beta) 
err=svrerror(X,x,y,ker,beta,bias,'eInsensitive',e) 
out=svroutput(X,x,ker,beta,bias); 
 
N=length(y); 
ers=sum(abs(y-out)./y)*100/N 
 
actual_out=((out-mm)*nx1)+ nx2; 
actual_y = ((y-mm)*nx1)+ nx2; 
ers1=sum(abs(actual_y-actual_out)./actual_y)*100/N 
save svmres.mat actual_y actual_out ers ers1 
 
**************************************************** 
 
function trainsvm 
global C P p1 p2 sep nsv beta bias 
load tr.mat 
 
C=Inf;%C=500;% 
P=1; 
e=0.05;%e=0.1;% 
ker='erbf'; 
p1=15; 
p2=0; 
sep=1; 
%save tsdata_svm.mat X Y C P e ker p1 p2 sep 
 
[nsv beta bias] = svr(x,y,ker,C,'eInsensitive',e); 
 
save svmresult.mat nsv beta bias 
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 C Programs for Extracting Simulation Data 
 
/*-------program to get the entry exit details from tsd_text file----*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#define size 121856  
/*................swapping function starts----------*/ 
    
void swap(int *x, int *y)  /*function for swapping*/ 
{ 
  int temp; 
  temp = *x; 
  *x=*y; 
  *y=temp; 
} 
 
/*----------main program starts-----------*/ 
 
int main() 
{ 
  FILE *inf = NULL; 
  FILE *outf = NULL; 
  FILE *inf1 = NULL; 
  int time[size],id[size],tempid[size]; /* reading data as 2 one dim arrays*/ 
  int speed[size],tempspeed[size]; 
  int tempcount[size],count[size];   
  int i,j,k,l,m,counter=0,cum_count=-1; 
 
  inf=fopen("datafile","r"); /* datafile name is "datafile" */ 
  outf=fopen("outfile1","w"); /* want the output in the file "outfile"*/ 
  
  /*fscanf(inf1,"%d",&size);*/ /*specify the size of file*/ 
  for(i=0;i<size;i++) 
    { 
      fscanf(inf,"%5d %d %d",&time[i], &id[i], &speed[i]); /*read data*/ 
    } 
     
 
/*----------swapping and sorting----------*/ 
 
  for(i=0;i<size;i++) 
   { 
      if (time[i] == time[i+1]) 
     {  
        tempid[i] = id[i]; /* if time is same save id */  
        counter ++; 
        cum_count++; 
        tempspeed[i] = speed[i]; 
     }  
      else  
       {   
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           tempid[i] = id[i]; 
           tempspeed[i]=speed[i]; 
           cum_count++; 
           for (k=i-counter;k<=i-1;k++) 
           { 
             for(l=k+1;l<i+1;l++) 
             {   
               if(tempid[k] > tempid[l]) 
  { 
                 swap(&tempid[k],&tempid[l]);  /*ascendingly order saved id's*/  
                 swap(&tempspeed[k],&tempspeed[l]); 
  }  
             } tempcount[i]=cum_count;  
          } counter = 0;  
     }             
  } 
 
/*--------getting points where the time changes.....*/ 
  
  count[0]=0;  /*count array start at zero*/ 
  m=1; 
  for(i=0;i<size;i++) 
    { 
     if(tempcount[i]!=0)  /*points where time changes*/ 
       { 
        count[m]=tempcount[i];  /*time counts where time changes*/ 
        m++; 
       } 
     } 
 
/*--getting exit details ---if a vehicle id is missing in the second time group it exited in the previous time 
step------*/ 
 
  i = 0; /*first time group checked separately*/ 
  for(j=count[i];j<=count[i+1];j++) 
  { 
    for(k=count[i+1]+1; k<=count[i+2]; k++) 
    { 
      if(tempid[j] > tempid[k]) continue; /*check the next id in the 2nd group*/ 
        else 
        { 
          if(tempid[j] == tempid[k]) break; /*vehicle continue in next time*/ 
          else 
          { 
            fprintf(outf,"%d\t %d\t %d\t %d\n", time[j],tempid[j],tempspeed[j],0); /*exit is 0*/ 
            break; 
          } 
        } 
    } 
  } 
 
  for(i=1;i<m-2;i++) /*from time 1 to last but one*/ 
  { 
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    for(j=count[i]+1;j<=count[i+1];j++) 
    { 
      for(k=count[i+1]+1;k<=count[i+2];k++) 
      { 
        if(tempid[j]>tempid[k]) continue; 
        else 
        { 
          if(tempid[j] == tempid[k]) break; 
          else  
          { 
            fprintf(outf,"%d\t %d\t %d\t %d\n", time[j], tempid[j],tempspeed[j],0); 
            break; 
          } 
        } 
      } 
    } 
  }        
   
 
/*--finding out entries-check with the previous time group and if a new number is there it is an 
entry...represented as 1..*/ 
 
  i=1; /*from group 1, group 1 done separately*/ 
  for(j=count[i]+1; j<=count[i+1]; j++) 
  { 
    for(k=count[i-1]; k<count[i]; k++) 
    { 
      if(tempid[j] == tempid[k]) break; 
      else if(tempid[j] > tempid[k]) continue; 
    } 
  if(tempid[j]!=tempid[k]) 
    fprintf(outf,"%d\t %d\t %d\t %d\n", time[j],tempid[j],tempspeed[j],1); 
  } 
 
  for(i=2;i<m-1;i++) /*from group 2 to last*/ 
  { 
    for(j=count[i]+1; j<=count[i+1]; j++) 
    { 
       for(k=count[i-1]+1; k<count[i]; k++) 
       { 
         if(tempid[j] == tempid[k]) break; 
         else if (tempid[j] > tempid[k]) continue; 
       } 
    if(tempid[j]!=tempid[k]) 
       fprintf(outf,"%d\t %d\t %d\t %d\n", time[j],tempid[j],tempspeed[j],1); 
    } 
  } 
          
 
/*  for(j=0;j<m;j++) 
    fprintf(outf,"count[%d]=%d\n",j,count[j]);  
       
  for(i=0;i<size;i++)  
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    fprintf(outf,"%d\t %d\t %d\n",time[i],id[i],tempid[i]); */ 
  
  fclose(inf1); 
  fclose(inf); 
  fclose(outf); 
  return 0; 
} 
 
  
***************************************** 
 
/*-------program to calculate entry and exit volume and average entry and exit speeds in every one minute 
interval  obtained from the entryexit.c program---------*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#define size 8421  
int main() 
{ 
  
  FILE *inf = NULL; 
  FILE *outf = NULL; 
  int time[size],id[size], speed[size], traveltime[size],status[size]; 
  int entry[size],exit[size]; 
  float entryspeed[size],exitspeed[size]; 
  int i,j,k,l,m; 
 
  inf=fopen("outfile1","r"); /* datafile name is "datafile" */ 
  outf=fopen("outfile3","w"); /* want the output in the file "outfile"*/ 
 
  
  for(i=0;i<size;i++) 
      fscanf(inf,"%5d %d %d %d",&time[i], &id[i], &speed[i], &status[i] ); /*read data*/ 
  
  for (k =0 ; k <size ; k++)  
  { 
   for(j=0;j<size;j++) 
    { 
      if(time[j]>k*60 && time[j]<=(k+1)*60) 
      { 
        if(status[j] == 0) { exit[k]++; exitspeed[k]+=speed[j]; } 
        else {entry[k]++; entryspeed[k]+=speed[j];}  
      } 
     } 
   } 
  fprintf(outf,"entryvol\t exitvol\t avgentryspeed\t avgexitspeed\n");   
 
 for(k=0;k<size;k++)  
   { 
     if (exit[k]!=0 || entry[k]!=0) 
     fprintf(outf,"%d\t\t %d\t\t %f\t %f\n",entry[k]*60,exit[k]*60, (entryspeed[k]/entry[k])*.682, 
(exitspeed[k]/exit[k])*.682); 
   } 
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  fclose(inf); 
  fclose(outf); 
  return 0; 
} 
   
 
 ****************************************** 
 
/*---program to get exit time and  travel time for each vehicle obtained from the entry exit.c program-----*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#define size 7493  
  
void swap(int *x, int *y)  /*function for swapping*/ 
{ 
  int temp; 
  temp = *x; 
  *x=*y; 
  *y=temp; 
} 
  
int main() 
{ 
  FILE *inf = NULL; 
  FILE *outf = NULL; 
  int time[size],id[size], speed[size],traveltime[size],status[size]; 
  int i,j,k,l,m; 
  
  inf=fopen("outfile1","r"); /* datafile name is "datafile" */ 
  outf=fopen("outfile2","w"); /* want the output in the file "outfile"*/ 
 
 
  for(i=0;i<size;i++)  
      fscanf(inf,"%5d %d %d %d",&time[i], &id[i], &speed[i], &status[i] ); /*read data*/ 
 
    for (k =0 ; k <size-2 ; k++) 
         { 
           for (l = k + 1; l < size; l++) 
           { 
              if(id[k] > id[l]) 
              { 
                swap(&id[k],&id[l]); /*sorting ascending order*/ 
                swap(&time[k],&time[l]); 
                swap(&speed[k],&speed[l]); 
                swap(&status[k],&status[l]); 
              } 
           } 
         } 
/*for(i=0;i<size;i++) 
fprintf(outf,"%d\t %d\t %d\t %d\n",id[i],time[i],speed[i],status[i]); 
*/  
  for(i=0;i<size;i++) 
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    { 
      if (id[i] == id[i+1]) 
       { 
        traveltime[i] = time[i]-time[i+1]; /* if id is same find traveltime */ 
        fprintf(outf,"%d\t %d\t\t %d\n",id[i], time[i],traveltime[i]); 
        i++; 
       } 
    } 
 
  fclose(inf); 
  fclose(outf); 
  return 0; 
} 
  
  *********************************** 
 
/*-------program to get the density values from tsd_text file----*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#define size 146614  
 
/*----------main program starts-----------*/ 
 
int main() 
{ 
  FILE *inf = NULL; 
  FILE *outf = NULL; 
  int time[size],id[size],tempid[size]; /* reading data as 2 one dim arrays*/ 
  int speed[size],temptime[size]; 
  int density[size],d,den1, den2; 
  int i,j,k,l,m,counter=0,cum_count=-1; 
 
  inf=fopen("datafile","r"); /* datafile name is "datafile" */ 
  outf=fopen("outfile","w"); /* want the output in the file "outfile"*/ 
  
  for(i=0;i<size;i++) 
    { 
      fscanf(inf,"%5d %d %d",&time[i], &id[i], &speed[i]); /*read data*/ 
    } 
     
 
  d=0; 
  den1 = 1; 
  den2 =1; 
  for(i=0;i<size;i++) 
   { 
      if (time[i] == time[i+1]) 
      {  
        den1++; 
      }  
       else  
       {   
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          density[d]=den1; 
    temptime[d] = time[i]; 
          d ++; 
          den1=1; 
   den2++; 
       } 
   } 
   for (i=0;i<(den2-1);i++) 
     { 
 fprintf(outf,"%d\t %d\n", temptime[i],density[i]); 
     } 
fclose(inf); 
fclose(outf); 
return 0; 
} 
 
  
******************************* 
 
/*-------program to calculate average density in every one minute interval  obtained from the outfile---------
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#define size 7033  
  
int main() 
{ 
  FILE *inf = NULL; 
  FILE *outf = NULL; 
  int time[size], density[size]; 
  float average[size]; 
  int j,k,counter[size],id[size]; 
 
  inf=fopen("outfile","r"); /* datafile name is "datafile" */ 
  outf=fopen("outfile5","w"); /* want the output in the file "outfile"*/ 
 
 
  for(k=0;k<size;k++)  
   fscanf(inf,"%d %d", &time[k], &density[k] ); /*read data*/ 
   for(k=0;k<size;k++) 
    { 
      counter[k]=0; 
      average[k]=0; 
     }  
 
  for (k =0 ; k <size ; k++)  
  { 
   for(j=0;j<size;j++) 
    { 
      if(time[j]>k*60 && time[j]<=(k+1)*60) 
      { 
        counter[k]++; 
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        average[k] += density[j]; 
      } 
     } 
   } 
  fprintf(outf,"totalden\t count\t averageden\n");   
 
 for(k=0;k<size;k++)  
 { 
   if(counter[k] !=0) 
     fprintf(outf,"%f\t\t %d\t %f\n",average[k],counter[k],average[k]/counter[k]); 
 } 
 
  fclose(inf); 
  fclose(outf); 
  return 0; 
} 
  
  
 
 ********************* 
 
/*-------program to calculate average travel time of the vehicles in every one minute interval  obtained 
from the traveltime.c program---------*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#define size 3742  
  
int main() 
{ 
  FILE *inf = NULL; 
  FILE *outf = NULL; 
  int exittime[size], traveltime[size]; 
  float average[size]; 
  int j,k,counter[size],id[size]; 
 
  inf=fopen("outfile2","r"); /* datafile name is "datafile" */ 
  outf=fopen("outfile4","w"); /* want the output in the file "outfile"*/ 
 
 
  for(k=0;k<size;k++)  
   fscanf(inf,"%d %d %d", &id,&exittime[k], &traveltime[k] ); /*read data*/ 
   for(k=0;k<size;k++) 
    { 
      counter[k]=0; 
      average[k]=0; 
     }  
 
  for (k =0 ; k <size ; k++)  
  { 
   for(j=0;j<size;j++) 
    { 
      if(exittime[j]>k*60 && exittime[j]<=(k+1)*60) 
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      { 
        counter[k]++; 
        average[k] += traveltime[j]; 
      } 
     } 
   } 
  fprintf(outf,"totaltt\t\t count\t averagett\n");   
 
 for(k=0;k<size;k++)  
 { 
   if(counter[k] !=0) 
     fprintf(outf,"%f\t\t %d\t %f\n",average[k],counter[k],average[k]/counter[k]); 
 } 
 
  fclose(inf); 
  fclose(outf); 
  return 0; 
} 
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