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ABSTRACT 

 

Quality Analysis of the Aggregate Imaging System (AIMS) Measurements. (May 2005) 

Manjula Bathina, B.Tech, Jawaharlal Nehru Technological University, INDIA 

Chair of Advisory Committee: Dr. Eyad Masad 

 

Coarse and fine aggregates form the skeleton of any type of pavement and influence the 

performance of the pavement structure. Characterization of the physical characteristics 

(shape, angularity, and texture) of coarse and fine aggregates is the first step towards the 

development of valid specifications for these characteristics. Current test methods used 

in practice have several limitations in quantifying the shape and texture properties. An 

imaging based test method “Aggregate Imaging System (AIMS)” has been recently 

developed and shown to be capable of directly measuring the characteristics of coarse 

and fine aggregates. 

 

In this thesis, the quality of AIMS measurements is evaluated through the analysis of 

repeatability, reproducibility, and sensitivity. The analysis results are also compared to 

the results from other available test methods. AIMS provides the distribution of shape 

characteristics in an aggregate sample. Statistical analysis is conducted in order to 

determine the distribution function that best describes the distribution of shape 

characteristics.  The parameters of the distribution function can be related to the 

performance of pavement layers.  A new method based on the “Categorical Units” is 
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developed to test differences between aggregate samples in terms of shape 

characteristics.  It is demonstrated that this method is capable of quantifying the 

differences between aggregates and can be used to capture the influence of change in 

aggregate source or production techniques on aggregate characteristics. 
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CHAPTER I  

 

INTRODUCTION 
 

The physical characteristics (shape, angularity, and texture) of coarse and fine 

aggregates are related to the engineering properties of pavement materials such as shear 

resistance, fatigue response, workability, and durability, and consequently they play a 

vital role in the performance of pavements. Characterization of the physical 

characteristics of aggregates is crucial in improving the performance of various types of 

pavements. Current test methods in use by SuperpaveTM, a product of Strategic Highway 

Research Program (SHRP), are limited in their ability to directly and objectively 

quantify aggregate physical characteristics. However, there are many test methods that 

have been developed recently at various research institutions with the objective of 

measuring these characteristics. Evaluation of such test methods for their applicability 

helps in determining their advantages over current test methods and incorporating such 

test methods into aggregate specifications. 

 

One of the test methods that has been shown to be successful in accurately measuring 

aggregate characteristics is the Aggregate Imaging System (AIMS). AIMS is an imaging  

 

This thesis follows the style and format of Journal of Materials in Civil Engineering. 
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based test method capable of measuring the physical characteristics of coarse and fine 

aggregates. This sophisticated test method was designed to be versatile enough to 

measure the distribution of shape, angularity, and texture of various sizes of aggregates.  

This thesis includes a comprehensive evaluation of the quality of the AIMS 

measurements.  The quality is evaluated through measuring the repeatability, 

reproducibility and sensitivity of the AIMS measurements.  Repeatability is defined as 

the variation within the measurements conducted by the same operator, reproducibility is 

defined as the variation among multiple operators, and sensitivity is captured by the 

distribution of aggregate physical properties within the measured sample. 

 

The results are compared to other methods for measuring aggregate shape 

characteristics.  In addition, a new method is proposed to test the statistical differences 

among aggregate samples that are measured using AIMS.  The evaluation presented in 

this thesis is important in the future implementation of AIMS in routine analysis of 

aggregate physical characteristics. 

 

OBJECTIVES OF THE STUDY 

 

The primary objective of this thesis is to evaluate the quality of the “Aggregate Imaging 

System (AIMS)” measurements.  This objective is achieved through the following tasks: 

• Conducting statistical measurements of AIMS such as repeatability, 

reproducibility and sensitivity.    
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• Comparing the statistical parameters such as repeatability, reproducibility and 

sensitivity of AIMS with other test methods. 

•  Determining the probability distribution function that best describes the shape 

characteristics in an aggregate sample.  

• Developing a statistical method for testing the differences among aggregates in 

terms of the physical characteristics measured by AIMS. 

 

THESIS ORGANIZATION 

 

This thesis is organized into six chapters as follows: 

• Chapter I introduces the motives of this study and the test method “Aggregate 

Imaging system (AIMS)” evaluated in this thesis, followed by the objectives and 

outline of the thesis. 

• Chapter II consists of a literature review describing the aggregate characteristics 

related to pavement performance, and various test methods used for measuring 

the aggregate characteristics. The literature review focused on the AIMS 

describing its hardware and software components and the working principles of 

the test method.  

• Chapter III deals with the evaluation of statistical properties of AIMS such as 

repeatability, reproducibility, and sensitivity. These properties are assessed on a 

wide range of coarse and fine aggregate samples following the ASTM standards 

for evaluating repeatability and reproducibility of the test method. 
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• Chapter IV describes the comparison of statistical properties of AIMS with other 

test methods that are currently in practice by the pavement industry for 

measurement of aggregate shape properties.  

• Chapter V describes the distribution functions that were evaluated for describing 

the aggregate shape distributions measured by AIMS. The parameters of these 

functions were assessed to find differences among aggregate samples. Also, a 

new method based on the “categorical units” is proposed in this thesis to detect  

statistically significant differences among aggregate samples measured by AIMS.  

• Chapter VI includes the conclusions and recommendations of this thesis. 

 

 

 

 

 



CHAPTER II  

 

LITERATURE REVIEW 

 

INTRODUCTION 

 

This literature review focuses on the significance of aggregate characteristics in 

influencing the performance of pavements. A brief review of the various test methods 

available for measuring shape characteristics with emphasis on the Aggregate Imaging 

System (AIMS) is presented.  

 

AGGREGATE PROPERTIES AFFECTING PAVEMENT PERFORMANCE  

 

The performance of any pavement depends primarily on the materials it constitutes. 

Aggregates form the skeleton of any pavement and are crucial for its performance. The 

performance of hot mix asphalt (HMA) mixtures in terms of mix stiffness and fatigue 

cracking was described by Monismith (1970).  Aggregate characteristics such as size, 

shape, and surface texture were considered crucial factors in determining the HMA 

performance. Use of rough textured aggregates with dense gradation was recommended 

to improve mix stiffness and increase fatigue life of thick pavements. For thin pavements 

smooth textured aggregates were recommended since they produce less stiff mixtures 

and increase the fatigue life of thin pavements (Monismith 1970).   
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The influence of aggregate properties on PCC pavements was described by Meininger 

(1998). The properties of the concrete mix is affected by the fine aggregate content and 

its shape.  Very high texture reduces the concrete mixture workability and handling. The 

percentage of flat and elongated particles also affects the concrete mix as a higher 

percentage of flat and elongated particles might result in voids and incomplete 

consolidation of the mix and hence cause spalling. Also the performance of PCC mix in 

terms of transverse cracking, faulting of joints and cracks, punch outs, and spalling at 

joints and cracks are related to coarse aggregate particle shape and angularity (Meininger 

1998).  The bond strength between cement paste and aggregates is remarkably affected 

by the coarse aggregate shape, angularity, and surface texture (Mindness and Young 

1981). Kosmatka et al. (2002) stated that the bond strength in concrete increases as the 

coarse aggregates changes from smooth and rounded to rough and angular. Weak 

bonding in the concrete pavement promotes distresses such as longitudinal and 

transverse cracking, joint cracks, spalling, and punch outs (Fowler et al. 1996; Meininger 

1998; Folliard 1999). Higher bond strength is desired in concrete mix because it 

increases the flexural strength and hence is preferred when high compressive strength is 

needed. The relationship between aggregate shape properties and the resilient modulus, 

and the shear strength properties of unbound aggregates used in base layers was studied 

by Barksdale and Itani (1994), and significant positive correlation was observed between 

them. It was indicated by Saeed et al. (2001) that the aggregate particle angularity and 

surface texture mostly affect the shear strength and stiffness of unbound layer 
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performance. Shear strength is the most important property and influences the unbound 

pavement layer performance. 

 

TEST METHODS FOR MEASURING AGGREGATE CHARACTERISTICS 

 

The current SuperpaveTM system specifies three tests to determine the shape properties 

of coarse and fine aggregates.  The coarse aggregate angularity is determined by “ASTM 

D5821Standard Test Method for determining the percentage of particles in coarse 

aggregate” (ASTM D5821-95).  The fine aggregate angularity is determined by the voids 

in an uncompacted fine aggregate sample “AASHTO T304 Uncompacted void content 

method A” (AASHTO Standard T304).  The percentage of flat and elongated particles in 

coarse aggregate is determined by “ASTM D4791 Standard test for flat particles, 

elongated particles, or flat and elongated particles in coarse aggregates” (ASTM D4791). 

These test methods for coarse aggregate angularity have several limitations in measuring 

aggregate shape properties.  The flat and elongated test measures the percentage of 

particles above a specified dimension ratio, rather than distribution of relative sizes 

(Fletcher et al. 2003). Though surface texture is considered an important characteristic 

for pavement performance Superpave tests do not emphasize surface texture 

measurement (Fletcher et al. 2002). Superpave tests could not discern in some cases 

between poor and high quality fine aggregates (Huber et al. 1998; Chowdhury et al. 

2001). These limitations indicate that there is a pressing need to develop test methods 



 8

that are capable of measuring aggregates characteristics comprehensively and relate their 

results to pavement performance (Fletcher et al. 2003). 

 

Presently there are several test methods that rely on imaging technology to capture the 

shape properties of aggregates and relate them to mix performance. A review of these 

test methods can be found in reference (Masad 2001).  These test methods were 

developed at various research organizations, and some of these use various imaging 

techniques. The test methods studied are classified into direct or indirect methods based 

on the analysis concept they employ in measuring aggregates. Indirect test methods 

classify aggregate shape characteristics by bulk measurements of the aggregate sample 

whereas direct methods rely on measurements made directly on the surface of particles 

(Alrousan 2004). The test methods studied in this thesis are shown in Table 2.1 

(Alrousan 2004). 
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Table 2.1. Test Methods For Measuring Aggregate Shape (Alrousan 2004) 
 

Test Method 
Direct (D) or indirect (I) 
method 

Uncompacted Void Content of Fine Aggregates AASHTO T304 I 
Uncompacted Void Content of Coarse Aggregates AASHTO TP56 I 
Compacted Aggregate Resistance (CAR) I 
Percentage of Fractured Particles in Coarse Aggregate ASTM D5821 D 
Flat and Elongated Coarse Aggregates ASTM D4791 D 
Multiple Ratio Shape Analysis D 
VDG-40 Video grader D 
Buffalo Wire Works PSSDA D 
Camsizer D 
Wipshape D 
University of Illinois Aggregate Image Analyzer (UIAIA) D 
Laser-Based Aggregate Analysis System D 

 

 

Alrousan (2004) evaluated the test methods in Table 2.1 and concluded that AIMS is the 

most comprehensive system capable of measuring the shape characteristics of both 

coarse and fine aggregates. The evaluation was based on the repeatability of the 

measurements, accuracy, applicability to the various types of aggregates, readiness for 

implementation, and ease of use.  

 

THE AGGREGATE IMAGING SYSTEM (AIMS) 

 

AIMS was developed by Dr. Eyad Masad. It utilizes image processing and analysis 

techniques in determining the shape characteristics of aggregates. AIMS is capable of 

capturing the aggregate characteristics in terms of shape, angularity, and surface texture 

for aggregates from 37.5 mm to 150 mm (Masad 2004). The performance of pavements 
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can be better predicted when all the aggregate physical characteristics such as angularity 

and surface texture are measured accurately with such a sophisticated test equipment and 

hence pavement quality and life is better designed (Masad 2003). The physical 

description of AIMS is done with the help of Fig 2.1. 

 

 

 
 
Fig.2. 1. Aggregate Imaging System (AIMS) (Alrousan 2004) 
 

 

The test equipment consists of a computer automated unit that comprises of aggregate 

measurement tray with marked grid points at specified distances along x and y axes. The 

test sample is placed on specified grid points for coarse aggregates (56 particles) and the 

fine aggregate sample is spread uniformly on the entire tray for measurement. The 
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camera unit consists of an optem zoom 160 video microscope, equipped with bottom and 

top lightning to capture images in black and white format as well as gray format. The 

camera moves along specified grid locations in x, y, and z directions. The travel distance 

in the x and y directions is 37.5 cm and 10 cm in the z direction. The x, y and z axes 

movement is controlled by a closed loop direct current (DC) servo and highly repeatable 

focus is achieved by GTS-1500.  The entire test equipment is computer automated and 

controlled by LabViewTM (version 6.1) and IMAQ Vision (version 2.5) software for 

image acquisition and motion control of the test equipment. The first step in 

measurement is the calibration of the instrument for the type of analysis to be performed. 

The user has a real-time image window for selecting the type of analysis and size of 

aggregates to be analyzed. The measurements for the fine and coarse aggregates are 

conducted using two separate modules as discussed in the following sections (Alrousan 

2004). 

 

Fine Aggregate Module 

 

For fine aggregates, the angularity and texture properties have been found to have 

reasonable correlation (Masad et al. 2001). Therefore, AIMS measures only the 

angularity of fine aggregates on black and while images.  The fine aggregate analysis 

starts by spreading aggregates on the tray. The back lightning is used to capture the 

images of all the particles as the camera moves at specified locations in the x and y axes. 

The images are captured in black and white format. The camera with a 0.5X objective 
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lens with a 1X dove tail tube and 2/3 inch camera format at a working distance of 181 

mm is used to provide a field of view of 26.4 mm by 35.2 mm.  The images are captured 

so that the resolutions listed in Table 2.2 are met for all the images.  Images are captured 

with a pixel size less than 1 percent of average aggregate diameter. The aggregate 

images that are not within the specified size are removed. The images acquired are 

displayed in a real-time image window during the entire measurement process in black 

and white format (Alrousan 2004). 

 
 

Table 2.2. Resolutions and Field of View Used in Fine Analysis for Fine Sieve Sizes 0.5X lens 

(1) 
Particle 

Size (mm) 

(2) 
Averag

e 
Particle 
diamete
r (mm) 

(3) 
Magnificati

on 

Field 
of 

View (mm) 

Resolution=
640/70.4 or 

480/52.8 
(pixel/mm) 

Average 
Particle 
diameter 

in 
pixels 

(2)*(5) 

Size 
Range 

Upper-Lo 
wer 

(Pixels) 
(1)*(5) 

4.725-2.36 3.56 2.00X 13.2X17.6 36.36 129.45 172-86 

2.36-1.18 1.77 4.125X 6.4X8.5 75.29 133.26 178-88 

1.18-0.6 0.89 8.25X 3.2X4.3 148.84 132.46 176-89 

0.6-0.3 0.45 16X 1.65X2.2 290.91 130.9 175-73 

0.3-0.15 0.225 16X 1.65X2.2 290.91 65.45 72-44 

Gradation  2.75X 9.6X12.8 50.0   

 
 

 
 
 
 



 13

Coarse Aggregate Module  

 

The coarse aggregates are analyzed for shape, angularity, and texture in two separate 

scans. The test procedure consists of capturing images of all aggregates in a test sample 

(56 particles) placed on specified grid locations, with the movement of the camera in the 

x-axis first and then along the y-axis. Each image is captured for the individual particle 

at each location separately in black and white format for angularity and a gray format for 

texture analysis. The camera lens used in capturing images has 0.25X objective with a 

1X dove tail tube and a 2/3 inch camera format at a working distance of 370 mm. It 

provides a maximum field of view of 52.8 mm X 70.4 mm. For angularity analysis the 

black and white images are captured with the help of backlighting and the images 

acquired are displayed in a real-time image window during the entire measurement 

process. The particles are placed at a center to center distance of 50 mm in the x 

direction and 40mm in the y direction and the captured images are analyzed for 

angularity analysis to meet the resolution criteria mentioned in Table 2.3. 
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   Table 2.3. Resolutions and Field of View Used in Coarse Analysis for Coarse Sieve Sizes 0.25X lens 
 

(1) 
Particle 

Size (mm) 

(2) 
Average 
Particle 

diameter 
(mm) 

(3) 
Magnific

ation 

Field of 
View (mm) 

Resolut
ion=640
/70.4 or 
480/52.

8 
(pixel/
mm) 

Average 
Particle 

diameter in 
pixels (2)*(5) 

Size Range 
Upper-Lo 

wer (Pixels) 
(1)*(5) 

9.5-4.725 7.1125 1 52.8 X 70.4 9.12 64.87 86-43 

12.7-9.5 11.1 1 52.8 X 70.4 9.12 101.23 116-87 

19.0-12.7 15.85 1 52.8 X 70.4 9.12 144.55 173-117 

25.4-19.0 22.2 1 52.8 X 70.4 9.12 202.46 231-174 

> 25.4 25.4 1 52.8 X 70.4 9.12 231.65 >232 

 

 

Top lighting is used in capturing images for texture analysis. In the texture scan, the 

microscope is first focused on  the reference point (axis is set to zero) with the help of 

back lightning, then an aggregate particle is placed on the calibrated point, and the depth 

of the aggregate particle is measured as the camera focuses on the top surface of the 

aggregate particles.  The depths of all the particles are used for analysis of shape. The 

resolution criteria listed in Table 2.4 are met for texture analysis. 
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Table 2.4. Resolutions and Field of View Used in Texture Analysis for Coarse Sieve Sizes 0.25X lens 
 

Particle 
Size (mm) 

Pass-
Retain 

Average 
Particle 

diameter
(mm) 

Particle 
Min. 

Expecte
d 

Area(m
m) 

%25of 
particle 

Min 
Expect

ed 
Area(m

m2) 

Sugg
ested 
Magn
ificati

on 
 

Fieldof view
 

Covered 
Area(mm2) 

 

Resolution=
640/70.4or 

480/52.8(pix
els/mm) 

 

9.5 – 4.725 7.1125 22.32 5.58 16X 3.3X4.4 14.52 145.45 

12.7 – 9.5 11.1 90.25 22.56 12X 4.4X5.9 25.96 108.00 

19.0 – 12.7 15.85 161.29 40.32 9X 5.9X7.8 43.68 82.10 

25.4 – 19.0 22.2 361 90.25 6X 8.8X11.7 102.96 54.70 

> 25.4 25.4 645.16 161.29 5X 10.6X14.1 149.46 45.40 

 
 
 
 
AIMS Analysis Software 

 

The analysis software was developed as a stand alone application for AIMS. The 

software analyzes the aggregate shape properties in terms of five parameters (radius 

angularity, gradient angularity, form index, sphericity, and texture) for coarse aggregates 

and stores them in a Microsoft Excel file in separate sheets. The results are presented in 

terms of all measurements of the aggregate sample and a summary of some statistical 

parameters such as mean, standard deviation, and graphical presentation of the 

distribution of measured aggregate property in an aggregate sample are given.  More 

details on the analysis software are presented by Alrousan (2004). 
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APPLICATION OF AIMS IN PAVEMENT ENGINEERING 

 

AIMS has been identified as a sophisticated test method to classify the shape, angularity 

and texture properties of coarse and fine aggregates.  As such, Masad et al. (2005) have 

presented several applications for AIMS in pavement engineering. The first application 

is for the quality control and quality assurance of aggregates during their production.  

Also, the measured characteristics can be related to the performance of various pavement 

layers.  Skid resistance of pavements is influenced by aggregate shape properties.  AIMS 

can be used to measure the change in shape properties after being subjected to polishing 

and relate the reduction in texture and angularity to skid resistance. Crushing techniques 

vary in their operations and consequently have great influence on aggregate shape 

properties. It has been suggested that AIMS can be used to assess the shape properties of 

aggregates produced by different crushing techniques and assist in the development of 

desirable aggregate characteristics. Various crushing methods can be evaluated as 

aggregates can be measured after crushing by various procedures and the crushing 

methods that produce aggregates with desired shape properties can thus be identified. 

(Alrousan 2004). 

 

ANALYSIS PRINCIPLES 

 

AIMS evaluates the shape and texture characteristics of coarse and fine aggregates by 

analysis of images of the aggregate particles captured during measurement (black and 
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white format, and gray format). The black and white images are analyzed for form and 

angularity, and gray images are analyzed for texture respectively. The principles 

involved in analyzing all the parameters are comprehensively discussed by Alrousan 

(2004).  

 

Radius Method (Angularity) 

 

The analysis of angularity by the radius method was developed by Masad et al. (2001) 

using black and white images. In the radius method the angularity index is measured as 

the difference between the particle radius in a certain direction to that of an equivalent 

ellipse. 

 

355

0

| |  (Radius Method) EE

EE

R RAngularity Index
R

θ θ

θ θ=

−
= ∑

 (2.1) 

 

where Rθ is the radius of the particle at an angle of θ ; and REEθ is the radius of the 

equivalent ellipse at an angle of θ (Masad et al. 2001). 

 

Gradient Method (Angularity) 

 

The gradient method is based on the principle that at sharp corners of the image the 

direction of the gradient vector changes rapidly whereas it changes slowly along the 
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outline of rounded particles. The angularity is calculated based on the values of angle of 

orientation of the edge points ( )θ  and the magnitude of difference of these values ( )θ∆ . 

The sum of angularity values for all the boundary points are accumulated around the 

edge to get the angularity index. The angularity index is calculated by the sum of 

angularity values for all the boundary points accumulated around the edge of the 

aggregate particle. The angularity is mathematically represented as. 

 

3

3
1

  (Gradient Method)
N

i i
i

Angularity Index θ θ
−

+
=

= −∑
 (2.2) 

 
 
where N  is the total number of points on the edge of the particle with the subscript i  

denoting the thi point on the edge of the particle. (Masad 2003) 

 

Sphericity (Form Analysis) 

 

Using sphericity the form is quantified in three dimensions. The three dimensions of the 

particle the longest dimension (dL), the intermediate dimension (dI), and the shortest 

dimension (ds) are used in the following equations for sphericity and shape factor. 

 

 Sphericity 3
2

.

L

ls

d
dd

=  (2.3) 
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 Shape factor
IL

s

dd
d

.
=  (2.4) 

 

The two major and minor axes are analyzed from the black and white images (eigen 

vector analysis) while the depth of the particle is measured by auto focusing of the 

microscope (Fletcher et al 2003). 

 

Form Index (Form Analysis) 

 

Form analysis using the form index was proposed by Masad et al. (2001), and is used to 

quantify the form in two dimensions. The form index uses incremental change in the 

particle radius and is expressed by the following equation: 

 

 Form Index = ∑
∆−=

=

∆+ −θθ

θ θ

θθθ
360

0 R
RR

 (2.5) 

 
 
where Rθ is the radius of the particle at an angle of θ; and ∆θ is the incremental 

difference in the angle. 

 

Texture Analysis 

 

Wavelet analysis is employed by AIMS for analyzing texture. The wavelet analysis uses 

short high-frequency basis functions and long low-frequency basis functions to isolate 
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fine and coarse variations in texture. The wavelet analysis can be explained with the help 

of Fig 2.2. The coefficients LH, HL, and HH hold the directional texture information. 

The LH coefficients picks up the high frequency content in the vertical direction, the HL 

coefficients picks up the high frequency content in the horizontal direction, and the HH 

coefficients picks up the high frequency content in the diagonal direction. The texture 

contents in all directions are given equal weight and the texture index is computed as the 

simple sum of squares of the detail coefficients at that particular resolution. The texture 

index is given by the equation. 

 

( )( )
23

,
1 1

1 (Wavelet Method) ,
3

N

n i j
i j

Texture Index D x y
N = =

= ∑∑
 (2.6) 

 

Where n is the decomposition level; N is the total number of coefficients in a detailed 

image of texture; i takes values 1, 2, or 3 for the three detailed images of texture; j is the 

wavelet coefficient index; and (x, y) is the location of the coefficients in the transformed 

domain (Masad  2004). 
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Fig.2. 2. Two-level wavelet transformation 
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CHAPTER III 

 

STATISTICAL EVALUATION OF AIMS MEASUREMENTS 

  

INTRODUCTION 

 

AIMS measures the shape, angularity, and texture of coarse and fine aggregates. 

Comprehensive statistical analysis of AIMS measurements in terms of repeatability, 

reproducibility, and sensitivity have not been conducted before. Repeatability refers to 

the level of variation of measuring the characteristics of aggregates by the same 

operator.  Reproducibility refers to the variation in measurements conducted by different 

operators. Sensitivity analysis quantifies the ability of AIMS to capture the differences in 

distribution of shape characteristics between different aggregates. The measurements 

were conducted on aggregates that cover a very wide spectrum of geological origin and 

shape characteristics. Three operators participated in conducting the measurements. 

 

REPEATABILITY OF AIMS 

 

In evaluation of repeatability only single test equipment was used. Three operators were 

trained on using the test equipment with the same set of instructional guidelines. 

Random aggregate samples were obtained from all sources.  A sample size of 1 kilogram 

of coarse aggregates and 0.5 kilogram of fine aggregates was used in this study. All the 
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tests for repeatability and reproducibility of AIMS were conducted at the Texas 

Transportation Institute (TTI). Repeatability of a test method is the variation observed in 

multiple measures by the same operator on the same material. Repeatability is a desired 

feature of a test method. Any test method should have high repeatability (low variation). 

Two different approaches were followed in evaluating AIMS repeatability.  In the first 

one (Repeatability Study- I), the operator was asked to return the measured aggregates 

back to the sample bag, and obtain a new set of particles for the following 

measurements.  In the second repeatability analysis (Repeatability- II), all measurements 

were conducted on the same exact particles. 

 

Repeatability Study- I 

 

The materials included 13 types of coarse aggregates and 5 types of fine aggregates. 

(shown in Table 3.1).  The coarse aggregate size of 12.5-9.5 mm and fine aggregate size 

of 2.36-1.18 mm  were used in the evaluation of repeatability study- I. For each test run 

the operator randomly picked 56 particles from the sample bag of an aggregate, and after 

the test run the operator placed the 56 particles back in the sample bag.  The operator 

randomly picked another 56 particles for the following test. The above procedure was 

followed by all the operators for all the materials. This analysis helps in assessing the 

repeatability of AIMS for the same aggregate source but not necessarily the same 

particles. 
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Table 3.1. Aggregates Sources and Sizes for Repeatability Study- I and Reproducibility 
 

 
Aggregate Sizes Label 

 
Source 

 
Aggregate Description 

 12.5-9.5 mm 2.36-1.18 mm 

1 Montgomery, AL Uncrushed River Gravel X X 

2 Montgomery, AL Crushed River Gravel X X 

3 Childersburg, AL Limestone X  

4 Auburn, AL Dolomite X  

5 Birmingham, AL Slag X X 

6 Brownwood, TX Limestone X X 
7 Fairfield, OH Crushed Glacial Gravel X  
8 Fairfield, OH Uncrushed Glacial Gravel X  

9 Forsyth, GA Granite X  

10 Ruby, GA Granite X X 

11 Knippa, TX Traprock X  

12 San Antonio, TX Limestone X  

13 Augusta, GA Granite X  

 
 
 
 
Repeatability Study- II 

 

In this analysis of repeatability, only a single operator performed the measurements. For 

the first test run the operator randomly picked 56 particles from a sample of aggregates 

and for the following test run the same particles were randomly mixed within 

themselves. Thus the same particles were measured in each test with the only variable 

being their locations on the aggregate tray. This procedure helped in assessing the 

repeatability of AIMS without the effect of natural variation among particles from the 

same source. 
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REPRODUCIBILITY 

 

The variation observed in multiple measurements made by the test equipment by 

different operators on the same material is referred to as reproducibility. The 

reproducibility of AIMS was evaluated using three operators. The same aggregates 

described in Table 3.1 were used in the evaluation of reproducibility. Random aggregate 

samples were used as in Repeatability study. 

 

Statistical Analysis of Repeatability and Reproducibility 

 

Each parameter measured by AIMS was evaluated independently for its repeatability and 

reproducibility. Standard deviation and coefficient of variation were used as measures 

for expressing the repeatability and reproducibility of AIMS. The analysis of 

repeatability and reproducibility were conducted under the guidelines of the ASTM E 

177, C 802, C 670. (ASTM E 177 Standard Practice for Use of terms Precision and Bias 

in ASTM Test Methods, ASTM C802 Standard Practice for Conducting an Inter 

laboratory Test Program to Determine the Precision of Test Methods for Construction 

Materials, ASTM C 670 Standard Practice for Preparing Precision and Bias Statements 

for Test Methods for Construction Materials). The repeatability and reproducibility were 

evaluated for “m” materials by “p” operators and each operator made “n” measurements 

on each material. The arrangement of all the data by all the operators is shown in  

Table 3.2 
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Table 3.2. Arrangement of Variation in Measurements Within Operators 
 
Material Operator Data (measurements) (xij ) Average (xi) 

Within Operator  
Variance(Si

2) 

 1 1 2 3 x1 S1
2 

1 2 1 2 3 x2 S2
2 

 3 1 2 3 x3 S3
2 

 1 1 2 3 x1 S1
2 

2 2 1 2 3 x2 S2
2 

 3 1 2 3 x3 S3
2 

 

 

The average measurement for each operator and each material (xi) is calculated as 

follows: 

 ∑=
n
x

x ij
i  (3.1) 

 

Then, the variation observed for each operator and each material is 

 

 (3.2) 

 

 

The repeatability variation is pooled for the three operators for each material  

 

  (3.3) 

 

( )
( )1

22
2

−

−
= ∑

n
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S iij
i

∑=
p

SS i
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Reproducibility is evaluated by first calculating the average measurement for the three 

operators for each material as follows  

 

 ∑=
p
x

x i
m  (3.4) 

 

Reproducibility is calculated for each material as follows 

 

 ( )
22

2 pooledmLL SSS
M

+=  (3.5) 

 

Where 

 

 (3.6) 

 

 

 (3.7) 

 

 

The results should meet two conditions in order to pool the repeatability and 

reproducibility variations for all “m” materials. The first test is called the homogeneity 

of variance in which, the variations observed in different operators for the same material 

should not vary significantly and we can examine the effect of a high or low variation of 

( )[ ] ( )1/22
2 −−= ∑ pxpxs mixm

[ ]nsss pooledmxL mm
/2

22 )(−=
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an operator compared to others with a plot of individual variances versus operators. The 

average variation with respect to the individual variation in each operator is considered 

high variance if the ratio of largest variance/sum of variances < 0.8 (ASTM C802). The 

variation is considered low if the ratio of highest variance/lowest variance < 87.5 

(ASTM C802). The second test is referred to as the lack of interactions between 

materials and operators. Different operators perform measurements on different 

materials (and we can observe hierarchical ranking of all materials with respect to their 

measurements).  However, when measurements differ significantly between operators, 

there tends to be an interaction among the materials and operators (the hierarchical 

ranking may differ from operator to operator).  In order to find if these interactions were 

statistically significant or not we used an ANOVA test (analysis of variance) and the p-

value is observed with a significance level of 95 percent. In the ANOVA test if the P- 

value > 0.05, we can conclude that with 95 percent confidence interactions between 

materials and operators are insignificant. The plot of material versus average measure for 

all materials (all operators) was observed for all the operators to check if any of the 

operators were varying in measurements significantly from the others. It was observed 

that the operators did not vary from each other significantly. Also this plot helps in 

identifying if all the operators rank the materials in same order. In some cases we found 

significant interactions between operators and materials. 
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Pooled Repeatability and Reproducibility of the Test Method 
 
 
Standard deviations and coefficients of variations were pooled over all materials 

according to the guidelines of the ASTM C802 standards. In most cases the variations 

(standard deviations and coefficient of variations) were observed to be constant over all  

materials and hence the standard deviations were pooled over all materials and average 

coefficient of variation was calculated for all the materials. 

 

REPEATABILITY AND REPRODUCIBILITY RESULTS 

 

The results of repeatability and reproducibility of AIMS is shown in Table 3.3. The 

repeatability is expressed separately for multiple operators (three) and a single operator 

in both repeatability study- I and repeatability study- II. Standard deviation (SD) and 

coefficient of variation (CV) were used in all cases to express the repeatability and 

reproducibility of AIMS. 
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Table 3.3. Repeatability and Reproducibility Results for AIMS 

 

 

 
The test method has good repeatability with the highest coefficient of variation (C.V.) 

equal to 13.9 percent.  The test method is highly reproducible with the highest C.V equal 

to 16.3 percent for random aggregate samples.  In case of using the same aggregate 

particles, the test method is highly repeatable with maximum C.V of 4.9 percent. For 

coarse aggregates, all the parameters measured resulted in less repeatability for the 

Repeatability study- I (three operators) compared with Repeatability study- II.  In the 

Repeatability –I 
Study 

 
Repeatability -I 

Study 

Repeatability -II 
Study 

 

Reproducibility 

3 Operators 1 Operator  
1 Operator 3 Operators 

 Property 
Measured 

SD CV SD CV SD CV SD CV 

Texture 36.037 0.139 29.869 0.102 1.576 0.049 37.395  
0.163 

Radius 
Angularity 

 
0.309 0.031 0.247 0.027 0.032 0.027 0.470 0.048 

Gradient 
Angularity 321.968 0.084 187.236 0.078 74.063 0.061 357.771 0.106 

Form-2D 0.229 0.031 0.176 0.029 0.017 0.015 0.303  
0.041 

Coarse 
Aggreg

ates 
 
 
 
 
 

Sphericity 0.014 0.020 0.009 0.014 0.001 0.007 0.018  
0.026 

Radius 
Angularity 

 
0.319 0.029 0.245 0.028 0.093 0.036 0.387 0.041 

Gradient 
Angularity 

 
190.779 0.046 178.113 0.040 52.515 0.037 0.331 0.032 

Fine 
Aggreg

ates 
 
 

Form 0.306 0.032 0.289 0.030 0.268 0.046 314.718 
 
 

0.071 
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case of fine aggregates, the repeatability is observed to be slightly higher in measuring 

radius angularity and form- 2D.  

 

The difference between the two types of repeatability studies is attributed to the fact that 

three operators participated in the repeatability study- I.  More importantly, the 

repeatability study- I analysis included using different particles from the same sample in 

each test. Therefore, part of the variation in repeatability study- I is due to the natural 

variation among particles from the same sample.  In order to explore this point, the 

repeatability C.V. is also calculated for the same operator who conducted the 

repeatability study- II. The results of repeatability for the same operator in both 

repeatability study-I (one operator) and repeatability study- II is shown in Table 3.3. It is 

observed that the C.V. is less when the same particles are measured. Therefore, the 

difference in repeatability can be attributed to the natural variation of particles from the 

same aggregate. AIMS measures each particle individually and hence the test method is 

capable of capturing slight variations in different aggregates from the same sample.  

 

SENSITIVITY OF AIMS 

 

The sensitivity of any test method is identified as the variation in test results due to 

distribution of aggregate properties within a given aggregate sample. Sensitivity of any 

test method is desired to determine the ability of the test equipment to observe the 

distribution of aggregate characteristics within a given aggregate sample. Sensitivity of 
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AIMS was assessed on aggregate samples that are mixtures of two different aggregates 

with properties different on two extremes of the measurement scale. From the previous 

test results using various test methods it was observed that aggregate 1 exhibited low 

values for the aggregate shape, angularity and texture characteristics and aggregate 10 

exhibited high values for these characteristics (Table 3.4). 

 

 
Table 3.4. Description of Aggregates Used in Sensitivity Analysis. 
 
Aggregate Label Source Description 

1 
Shorter Montgomery, AL Martin 
Marietta River Gravel, Uncrushed 

10 Ruby Quarry, GA Martin Marietta 
 
Crushed Granite 

 

 

Aggregates 1 and 10 were combined in two different proportions for the sensitivity 

evaluation and four aggregate samples 1, 2, 3 and 4 (100 percent of aggregate 1, 50 

percent of aggregate 1 and 50 percent of aggregate 10, 30 percent of aggregate 1 and 70 

percent of aggregate 10, 100 percent of aggregate 10 respectively) were used in 

evaluation of sensitivity. The mean values of the aggregate measurement were used for 

evaluation of sensitivity, and each parameter measured by the test method was evaluated 

independently for sensitivity. The test method is identified as sensitive if it is monotonic 

in its measurements when aggregates samples are compared to each other. It is expected 

that if the test method is sensitive enough to capture the aggregate distribution it shows a 

monotonic pattern of change in its measurements in the order of sample 1, sample 2, 

sample 3, and sample 4 respectively (represented by percentage of aggregate 10 on x-
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axis in the Figs. 3.1-3.6 as 0 percent of aggregate 10 in sample1, 50 percent of aggregate 

10 in sample 2, 70 percent of aggregate 10 in sample 3,100 percent of aggregate 10 in 

sample 4). Also after the test method is evaluated for its monotonic pattern, the 

sensitivity is defined in terms of R2 value for the straight line fit between the samples 1, 

2, 3 and 4 in a monotonic pattern. The sensitivity results of AIMS are shown in Table 

3.5. 

 

 

Table 3.5. Sensitivity Results of AIMS 
 

Test Method Measured Parameter Monotonic Pattern R2 
 AIMS Form 2D Yes 0.9434 
  Radius Angularity Yes 0.8632 
  Gradient Angularity Yes 0.9136 
  Texture Yes 0.9957 
 Sphericity Yes 0.8431 
  3:1-5:1 Yes 0.8801 

 

 

It is observed that AIMS follows a monotonic pattern in all the measurement parameters. 

Also the R2 value can be used to assess the specific sensitivity of the test parameters. 

The following Figs 3.1-3.6 depict the sensitivity of AIMS for each parameter measured. 
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Fig.3.1. Sensitivity of AIMS for gradient angularity. 
 
 
 
 
 
 

R2 = 0.8632

8.2

8.4
8.6

8.8
9

9.2
9.4

9.6
9.8

10

0 20 40 60 80 100 120

Aggre gate  Sam ple

R
ad

iu
s A

ng
ul

ar
ity

Radius Angularity Linear (Radius Angularity)
 

 
 Fig.3.2. Sensitivity of AIMS for radius angularity 
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R2 = 0.9957

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120
Aggre gate  Sam ple

Te
xt

ur
e

T exture Linear (T exture)
 

Fig.3.3. Sensitivity of AIMS for texture. 
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Fig.3.4. Sensitivity of AIMS for form 2D 
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R2 = 0.8431
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Fig.3.5. Sensitivity of AIMS for sphericity 
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Fig.3. 6. Sensitivity of AIMS for 3:1-5:1 
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SUMMARY 

 

In this chapter AIMS was evaluated for its repeatability, reproducibility, and sensitivity. 

The test equipment was found to be highly repeatable with low variation on the order of 

about 10.9 percent (C.V percent) when random samples were measured. However for the 

same operator the repeatability was observed to be 4.9 percent when same sample was 

measured. Thus this variation observed in repeatability study- I can be attributed to 

natural variation in aggregates in random samples. The reproducibility variation was 

observed to be 16.3 percent (C.V percent), this variation is also expected to decrease 

significantly if the same samples are measured by different operators. The test method is 

also found to be sensitive to the distributions of shape properties between different 

aggregate samples. The sensitivity for all the parameters measured by the test method 

was relatively high. Overall, the test method exhibited relatively good repeatability, 

reproducibility, and sensitivity. 
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CHAPTER IV 

 

COMPARISON OF STATISTICAL PROPERTIES OF AIMS WITH  

OTHER TEST METHODS 

 

INTRODUCTION 

 

The repeatability and reproducibility of Aggregate Imaging System (AIMS) was 

established with multiple operators in the previous chapter. Presently there are many test 

methods in practice which measure aggregate shape and texture properties. Some of 

these methods have been in practice for decades and reflect aggregate shape properties 

using an average index while some are recently developed imaging based systems that 

capture the aggregate shape distribution for the entire sample. It was of interest to 

compare the statistical properties of these test methods with AIMS and develop a sub 

classification within the test methods based on their statistical properties such as 

repeatability, reproducibility, and sensitivity. The test methods compared with AIMS are 

shown below for their statistical properties measured in Table 4.1.  
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   Table 4.1. Test Methods Compared with AIMS for Statistical Properties 
 

Test method Repeatability Reproducibility Sensitivity 

Uncompacted Void Content of  Fine 
Aggregates AASHTO T304 X X  

Uncompacted Void Content of 
Coarse Aggregates  AASHTO TP56 X X  

Percentage of Fractured Particles in 
Coarse Aggregate ASTM D5821 X X  

Flat and Elongated Coarse 
Aggregates ASTM D4791 X X  

Multiple Ratio Shape Analysis X X  
X 

VDG-40 Video grader X X  
X 

Camsizer X X  
 

WipShape X X  
X 

University of Illinois Aggregate 
Image Analyzer (UIAIA) X X X 

Buffalo Wire Works PDSSA X X  
X 

 
CAR X X  

 
 

 

The tests for repeatability, reproducibility and sensitivity for all the tests methods shown 

in Table 4.1 were conducted at several locations. Table 4.2 shows the location where 

each test method was conducted. Three operators were involved in conducting the tests, 

repeating each of the tests three times on each sample. The operators for conducting all 

the tests were the same at each of the test locations. The operators were uniformly 

trained for using all the test methods with same set of instructional guidelines. The 

operators were trained for data collection aiming at accuracy rather than “good numbers” 

or “favorable results”. The aggregate samples used for conducting the tests were sieved 

washed and split into smaller samples according to ASTM and AASHTO procedures 
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and distributed to several places for conducting the tests. The aggregate samples were 

the same set of 13 coarse and 5 fine aggregate types. (Shown in Table 3.1) 

 
 
 
Table 4.2. Locations Where the Tests were Conducted 
 

Test method 
Location at which the tests are 
conducted 

Uncompacted Void Content of  Fine Aggregates AASHTO T304 TTI 
Uncompacted Void Content of Coarse Aggregates  AASHTO TP56 TTI 
Percentage of Fractured Particles in Coarse Aggregate ASTM D5821 TTI 
Flat and Elongated Coarse Aggregates ASTM D4791 TTI 
Multiple Ratio Shape Analysis TTI 
VDG-40 Video grader TTI 
Camsizer TTI 
CAR  TTI 
WipShape University of Missouri-Rolla 
University of Illinois Aggregate Image Analyzer (UIAIA) University of Illinois 

Buffalo Wire Works PDSSA 
University of Tennessee-
Knoxville 

 
 
 
 
REPEATABILITY AND REPRODUCIBILITY RESULTS 

 

The test results were evaluated for repeatability and reproducibility as described in 

chapter III under the guidelines of the following standards ASTM E177, C802, C670. 

The repeatability and reproducibility of each of the test methods was evaluated for each 

parameter measured by the test equipment. Since each of the test methods measures the 

aggregate characteristics using different parameters and different scales, it was decided 

to define the characteristics of an aggregate in terms of the parameters texture, 

angularity, form, and form/dimensional and express the repeatability and reproducibility 
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of all the test methods for the above parameters. The repeatability and reproducibility of 

all the test methods are expressed in terms of standard deviation and coefficient of 

variation, shown in Table 4.3 for coarse aggregates and in Table 4.4 for fine aggregates. 

 

REPEATABILITY AND REPRODUCIBILITY COMPARISON OF ALL TEST 
METHODS 
 

It was observed in all the tests methods that the standard deviation and coefficient of 

variation is used to express repeatability and reproducibility. In order to establish the 

comparison of test methods based on repeatability and reproducibility several factors 

needed due consideration. All the test methods have their own parameters and scales. 

Also the parameters of different test equipment vary in their range, for example the 

maximum and minimum range for the parameters of camsizer differ by 20 percent, 

however AIMS has a wider range. Some of the test equipment measures an average 

index, while the imaging based systems measure the shape distributions of the entire 

sample, however the average index is used for evaluating the repeatability and 

reproducibility. The advantage of imaging based systems is not revealed since average 

index is used for all the test methods. All tests on aggregates were performed by trained 

operators and it is expected that the repeatability and reproducibility will be different for 

all the operators using various test equipment in different laboratories. All the tests were 

conducted using single test equipment and the effect of various devices of the same test 

method cannot be observed. Hence all the test methods were classified into three 

categories based on their repeatability and reproducibility coefficient of variation as low, 
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medium and high variable. Low (A) CV<=10 percent, Medium (B) 10 percent < 

CV<=20 percent, High (C) CV>20 percent .This will help in comparison of test methods 

for their repeatability and reproducibility. The comparison of all test methods for their 

repeatability and reproducibility is shown in Table 4.5 for coarse aggregates and in 

Table 4.6 for fine aggregates. 

 

Table 4.3. Repeatability and Reproducibility of Test Methods Measuring Coarse Aggregate Shape  
Properties 
 

Standard 
Deviation (SD) 

Coefficient of 
Variation (CV) 

Shape 
Prope

rty 

Test 
Method 

Param
eter 

Abbre
viation 
Used 

in This 
Study 

Measure 
Parameter as 

Reported by Test 
Method 

Repeat
ability 

Reprod
ucibility 

Repeat
ability 

Reproduc
ibility 

Uncompacte
d Void 

Content of 
Coarse 

Aggregates 

UCVC
C 

% Uncompacted 
Void content 0.010 0.013 0.009 

 
 
 

0.018 

0 Fractured Faces 0.075 0.260 0.227 0.766 

1 Fractured Face 0.059 0.156 0.165 0.502 
% Fractured 

Faces PFF 

≥2 Fractured 
Faces 0.050 0.361 0.123 1.150 

Camsizer 
 

CAMC
ONV Conv3 0.00034 0.00032 0.00032 0.00031 

WipShape 
 

WSMA
CR 

Min Avg. Curve 
Radius 0.001 0.004 0.010 0.037 

University 
of Illinois 
Aggregate 

Image 
Analyzer 
UIAIA 

UIAI Angularity Index 9.555 15.384 0.018 0.031 

AIMS
GRAD 

Gradient 
Angularity 321.968 357.771 0.084 0.106 

Angula
rity 

Aggregate 
Imaging 
System 
AIMS 

AIMS
RAD Radius Angularity 0.309 0.470 0.031 0.048 
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Table 4.3.  (Continued) 
 

Average 
Roundness 

 
0.046 0.080 0.027  

0.049 

Angular
ity  

Buffalo 
Wire 

Works 
PSSDA-

Large 
 
 

PSSDA-
Large 

ROUND 
 3:1 - 5:1 4.753 6.917 0.309 0.398 

University 
of 

Illinois 
Aggregate 

Image 
Analyzer 
UIAIA 

 

UISTI Mean Surface 
Texture Index 0.065 0.093 0.028 0.0556 

 

Aggregate 
Imaging 
System 
AIMS 

 

AIMSTXT
R Texture Index 36.037 37.395 0.139 0.163 

Camsizer 
 

CAMCON
V Conv3 0.00034 0.00032 0.00032 0.00031 

Un 
compacted 

Void 
Content of 

Coarse 
Aggregates 

UCVC 
 

UCVCC % Uncompacted 
Void content 0.010 0.013 0.009 0.018 

WipShape 
 
 

WSMACR Min Avg. Curve 
Radius 0.001 0.004 0.010 0.037 

Texture 

 UIAI 
 

Angularity 
Index 9.555 15.384 0.018 0.031 

CAMSPH
T SPHT3 0.004 0.004 0.003 0.003 

Camsizer CAMSYM
M Symm3 0.001 0.001 0.002 0.001 

AIMSFOR
M Form 2-D 0.229 0.303 0.031 0.041 Aggregate 

Imaging 
System 
AIMS AIMSPH Sphericity 0.014 0.018 0.020 0.026 

Form/ 
Paramet

er 
Buffalo 

Wire 
Works 

PSSDA-
Large 

PSSDA-
Large 

ROUND 

Average 
Roundness 0.046 0.080 0.027 0.049 
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 Table 4.3.  (Continued) 
 

Flat and 
Elongated 

Ratio 
FER 

%  of Flat and 
Elongated 
Particles 

1.000 4.570 0.064 0.317 

<Wt. 2:1 0.015 0.025 0.033 0.053 

Wt 2:1- 3:1 0.016 0.025 0.039 0.060 

Wt 3:1-4:1 0.010 0.012 0.374 0.478 

Multiple 
Ratio 

Analysis 
MRA 

MRA 

Wt 4:1-5:1 0.005 0.007 0.132 0.312 
VDG-40 
SLEND 

Slenderness 
Ratio 0.021 0.023 0.013 0.014 VDG-40 

Video 
grader VDG-40 

FLAT Flatness Factor 0.023 0.042 0.016 0.027 

Camsizer CAML/B l/b3 0.016 0.016 0.008 0.008 
<2:1 3.502 8.323 0.052 0.114 
<3:1 2.396 4.506 0.159 0.275 Wip 

Shape WSFER 
<4:1 1.334 2.196 0.302 0.405 
< 3:1 2.370 3.650 0.024 0.036 

Form/ 
Dimensi

onal 
Ratio 

University 
of Illinois 
Aggregate 

Image 
Analyzer 
UIAIA 

UIFER 
3:1 - 5:1 2.136 3.180 0.204 0.268 

<3 :1 5.061 7.383 0.063 0.091 Form/ 
Dimensi

onal 
Ratio 

Aggregate 
Imaging 
System 
AIMS 

AIMSFER 
3:1 - 5:1 4.753 6.917 0.309 0.398 
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Table 4.4. Repeatability and Reproducibility of Test Methods Measuring Fine Aggregate Shape Properties 

 

Standard Deviation 
(S) 

Coefficient of 
Variation (CV) 

Shape 
Property 

Test 
Method 

Paramete
r 

Abbrevia
tion Used 

in This 
Study 

Measure 
Parameter 

as Reported 
by Test 
Method 

Repeatab
ility 

Reproduc
ibility 

Repeat
ability 

Reproduc
ibility 

Uncom
pacted  
Void 

Content 
of Fine 
Aggreg

ates 

UCVCF 

% 
Uncompacte

d Void 
Content 

0.002 0.0053 0.004 0.010 

Camsiz
er 
 

CAMCO
NV Conv3 0.0002 0.0002 0.0002 0.0002 

AIMSGR
AD 

Gradient 
Angularity 190.779 314.718 0.046 0.071 Aggreg

ate 
Imaging 
System  
AIMS 

AIMSRA
D 

Radius 
Angularity 0.319 0.331 0.029 0.032 

Buffalo 
Wire 

Works 
PSSDA
-Small 

PSSDA-
Small 

ROUND 

Average 
Roundness 0.111 0.101 0.113 0.111 

Angularity 

Compac
ted 

Aggreg
ate 

Resistan
ce 

CAR  

CAR  Aggregate 
Resistance 3241.977 4237.560 0.072 0.073 

CAMSPH
T SPHT3 0.0017 0.0018 0.0019 0.002 

CAMSY
MM Symm3 0.00032 0.00065 0.00035 0.0007 

Camsiz
er 

CAML/B l/b3 0.0015 0.0052 0.0011 0.003 
Aggreg

ate 
Imaging 
System  
AIMS 

AIMSFO
RM Form 2-D 0.305 0.387 0.032 0.041 Form 

Buffalo 
Wire 

Works 
PSSDA
-Small 

PSSDA-
Small 

ROUND 

Average 
Roundness 0.111 0.101 0.113 0.111 
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Table 4.5. Classification of Coarse Aggregate Test Methods Based on Repeatability and Reproducibility 

 
 
 

Classification Based on 
Coefficient of Variation (CV) Shape 

Property Test Method 

Parameter 
Abbreviation 
Used in This 

Study 

Measure 
Parameter as 
Reported by 
Test Method 

Repeatability Reproducibility 
Uncompacted 

Void Content of 
Coarse 

Aggregate 
 

UCVCC 
% 

Uncompacted 
Void Content 

A A 

0 Fractured 
Faces C C 

1 Fractured 
Face B C % Fractured 

Faces  PFF 

≥2 Fractured 
Faces B C 

Camsizer CANCONV Conv3 A A 

WipShape WSMACR Min Avg. 
Curve Radius A A 

University of 
Illinois 

Aggregate 
Imaging System 

UIAIA 

UIAI Angularity 
Index A A 

AIMSGRAD Gradient 
Angularity A A Aggregate 

Imaging System 
AIMS AIMSRAD Radius 

Angularity A A 

Angularity 

Buffalo Wire 
Works 

PSSDA-Large 

PSSDA-Large 
ROUND 

Average 
Roundness A A 

University of 
Illinois 

Aggregate 
Imaging System 

UIAIA 

UISTI Mean Surface 
Texture Index A A 

Aggregate 
Imaging System 

AIMS 
 

AIMSTXTR Texture Index B B 

Camsizer CAMCONV Conv3 A A 

Texture 

Un compacted Void 
Content of Coarse 

Aggregate  
 

UCVCC % Uncompacted 
Void content A A 
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Table 4.5. Continued 

 
Low (A) CV<=10%, Medium (B) 10% < CV<=20%, High (C) CV>20% 
 
 
 
 

Wip Shape WSMACR Min Avg. 
Curve Radius A A 

Texture 
University of 

Illinois 
Aggregate 

Imaging System  
UIAIA 

UIAI Angularity 
Index  A A 

CAMSPHT SPHT3 A A 
Camsizer 

CAMSYMM Symm3 A A 
AIMSFORM Form 2-D A A Aggregate 

Imaging System 
AIMS AIMSSPH Sphericity A A 

Buffalo Wire 
Works 

PSSDA-Large 

PSSDA-Small 
ROUND 

Average 
Roundness A A 

<Wt 2:1 A A 
Wt 2:1- 3:1 A A 

Wt 3:1-4:1 C C 

Multiple Ratio 
Analysis 

MRA 
MRA 

Wt 4:1-5:1 B C 
VDG-40 
SLEND 

Slenderness 
Ratio A A VDG-40 Video 

grader VDG-40 
FLAT Flatness Factor A A 

Camsizer CAML/B l/b3 A A 
<2:1 A B 
<3:1 B C WipShape WSFER 
<4:1 C C 
< 3:1 A A University of 

Illinois 
Aggregate 

Imaging System  
UIAIA 

UIFER 
3:1 - 5:1 C C 

<3 :1 A A 

Form/  
Parameter 

Aggregate 
Imaging System 

AIMS 
AIMSFER 

3 :1 - 5:1 C C 
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Table 4.6. Classification of Fine Aggregate Test Methods Based on Repeatability and Reproducibility 
 

 
Low (A) CV<=10%, Medium (B) 10 %< CV<=20%, High (C) CV>20% 
 
 
 
 

 
 
 
 
 
 

Classification Based on 
Coefficient of Variation (CV) 

Shape 
Property Test Method 

Parameter 
Abbreviation 
Used in This 
Study 

Measured 
Parameter as 
Reported by 
Test Method Repeatability Reproducibility 

Uncompacted 
void content of 
Fine 
Aggregates UCVCF 

% 
Uncompacted 
Void Content A A 

Camsizer CAMCONV Conv3 A A 

AIMSGRAD 
Gradient 
Angularity A A 

Aggregate 
Imaging 
System 
AIMS AIMSRAD 

Radius 
Angularity A A 

Buffalo Wire 
Works 
PSSDA-Small 

PSSDA-Small 
ROUND 

Average 
Roundness B B 

Angularity 

Compacted 
Aggregate 
Resistance 
CAR  CAR  

Aggregate 
Resistance A A 

CAMSPHT SPHT3 A A 

CAMSYMM Symm3 A A 

Camsizer CAML/B l/b3 A A 
Aggregate 
Imaging 
System 
AIMS AIMSFORM Form 2-D A A 

Form 

Buffalo Wire 
Works 
PSSDA-Small 

PSSDA-Small 
ROUND 

Average 
Roundness B B 
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SENSITIVITY COMPARISON OF ALL THE TEST METHODS 

 

The sensitivity of any test method is its ability to capture differences in aggregate shape 

distribution within a sample. The sensitivity of AIMS was evaluated in the previous 

chapter. The sensitivity of other imaging based test methods shown in Table 4.1 has 

been evaluated for comparison with the sensitivity of AIMS following the same 

procedures involved in the evaluation of sensitivity of AIMS (described in chapter III). 

Also for the evaluation of sensitivity of these tests methods the same aggregate samples 

were used as described in Table 3.1. 

 

RESULTS AND CONCLUSIONS 

 

The results observed on various test methods are summarized for each of the parameter 

measured by all the test methods in Table 4.7. A test method is identified as sensitive to 

aggregate distribution within a sample if it follows a monotonic pattern in the test results 

for sample 1, sample 2, sample 3 and sample 4 (represented by percent of aggregate 10 

on x-axis in the Figs. 4.1-4.15 as 0 percent of aggregate 10 in sample1, 50 percent of 

aggregate 10 in sample 2, 70 percent of aggregate 10 in sample 3,100 percent of 

aggregate 10 in sample 4). It is observed in case of imaging systems AIMS, Video 

grader, and UIAIA followed a monotonic pattern in all the measurement parameters with 

each of the test methods. However MRI and PSSDA did not follow a monotonic pattern 

in their measurements and Wipshape also did not follow a monotonic pattern in some of 
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the parameters measured by it. The R2 value can be used to assess the specific sensitivity 

of each of the parameter measured by all test methods. 

 

 
Table 4.7. Sensitivity of Test Methods  
 

Test Method Measured Parameter Monotonic Pattern R2 
Form 2D Yes 0.9434 

Radius Angularity Yes 0.8632 
Gradient Angularity Yes 0.9136 

Texture Yes 0.9957 
Sphericity Yes 0.8431 

AIMS 

3:1-5:1 Yes 0.8801 
Slenderness Ratio Yes 0.8989 Video Grader 

Flatness Factor Yes 0.9705 
<Wt. 2:1 No 0.0764 

Wt 2:1- 3:1 No 0.0018 
Wt 3:1-4:1 No 0.1076 

MRI 

Wt 4:1-5:1 No 0.1580 
PSSDA Total Roundness No 0.4414 

Mean Angularity Yes 0.9991 
Mean Surface Texture Yes 0.9984 

< 3 : 1 Yes 0.9488 
UIAIA 

3:1 - 5:1 Yes 0.9189 
Min Avg Curve Radius No 0.7919 

2:01 Yes 0.9923 
3:01 No 0.4984 

WipShape 

4:01 Yes 0.6049 
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R2 = 0.8989
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 Fig.4.1. Sensitivity of Video grader for slenderness ratio 
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Fig.4.2. Sensitivity of Video grader for flatness factor 
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R2 = 0.0764
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Fig.4.3. Sensitivity of MRI for < Wt 2:1 
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Fig.4.4. Sensitivity of MRI for Wt 2:1-3:1 
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R2 = 0.1076
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Fig.4.5. Sensitivity of MRI for Wt 3:1-4:1 
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Fig.4.6. Sensitivity of MRI for Wt 4:1- 5:1 
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R2 = 0.4414
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Fig.4.7. Sensitivity of PSSDA for total roundness 
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Fig.4.8. Sensitivity of UIAIA for mean angularity 



 55

R2 = 0.9984
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Fig.4.9. Sensitivity of UIAIA for surface texture 
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Fig.4.10. Sensitivity of UIAIA for <3:1 
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R2 = 0.9189
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Fig.4.11. Sensitivity of UIAIA for 3:1-5:1 
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Fig.4.12. Sensitivity of WipShape for Min Avg Curve Radius 
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R2 = 0.9923

0

100

0 20 40 60 80 100 120
Aggre gate  Sam ple

2:
01

2:01 Linear (2:01)

 
 
Fig.4.13. Sensitivity of WipShape for 2:01 
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Fig.4.14. Sensitivity of WipShape for 3:01 
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R2 = 0.6049
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Fig.4.15. Sensitivity of WipShape for 4:01 
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SUMMARY  

 

This chapter includes the comparison of statistical properties of AIMS (repeatability, 

reproducibility, and sensitivity) with other tests methods. The test methods were divided 

into three classes as having low, medium and high repeatability and reproducibility 

based on the coefficient of variation. It was observed that all the imaging based test 

methods were highly repeatable and reproducible (low coefficient of variation). AIMS, 

when compared with other test methods, was found to be highly repeatable and 

reproducible in measurement of both coarse and fine aggregates. It was also observed 

that many of the test methods had low repeatability and reproducibility (high coefficient 

of variation) in measurement of the property form/dimensional ratio (flat and elongated 

particles). The sensitivity of all these test methods was also evaluated and it was 

observed that AIMS, video grader, and UIAIA were sensitive to changes in aggregate 

distributions in all the parameters measured by them. 
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CHAPTER V  

 

STATISTICAL METHODS FOR DESCRIBING THE DISTRIBUTION OF 

SHAPE CHARACTERISTICS AND TESTING DIFFERENCES AMONG 

AGGREGATES 

 

INTRODUCTION 

 

AIMS provides measurements on all particles in an aggregate sample.  The results are 

presented by cumulative distribution functions.  This chapter discusses the determination 

of functions that can describe the distribution of shape characteristics.  The parameters 

of these functions can be related to the performance of pavement layers, and 

consequently the whole distribution of shape characteristics is accounted for in 

understanding pavement performance. This is followed by the development of a 

statistical method that can be used to determine the variation among aggregate samples 

based on the distribution of shape characteristics rather than average values only.  Such a 

statistical method can be used to test the changes in aggregates due to changes in 

aggregate source or production methods. 
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EQUATION –I  

 

Kim et al. (2004) used Eq. 5.1 to describe the aggregate shape and gradation cumulative 

distribution curves. The parameters of the equation ga, gn, and gm were related to the 

resilient properties of unbound aggregate systems. The Figs. 5.1-5.3 show the effect of 

each of the parameters on the cumulative distribution curves. 

 

 gmgn

x
ga

Y

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+

=

)1exp(ln

100
 (5.1) 

 
 
where  
 
 Y= percent passing a particular class, x 

 x = particle measured value (shape, angularity, texture) 

ga= fitting parameter corresponding to initial break in the distribution curve. 

gn= fitting parameter corresponding to maximum slope of the distribution curve. 

gm= fitting parameter corresponding to the curvature of the distribution curve. 

 

This distribution function was applied to the cumulative distributions of AIMS test 

results on shape and texture distributions. For modeling this distribution function 13 

coarse aggregate samples that vary in a wide variety of shape properties were selected 

shown in Table 3.1. The measured distributions for various aggregates were fitted to 

Equation- I and the parameters were found for each aggregate and each property 

measured. The parameters are shown for each property in Tables 5.1 - 5.5. 
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         Fig.5. 1. Sample plot with gn =1.544 and gm = 0.9644, and ga varies (Kim et al. 2004) 
 
 
 
 
 

       
 

        Fig.5. 2. Sample plot with ga =11.997 and gm = 0.9764, and gn varies (Kim et al. 2004) 
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Fig.5. 3. Sample plot with gn = 1.544 and ga = 11.997, and gm varies (Kim et al. 2004) 
 
 
 
 
 
Table 5.1. Parameters of Equation- I for Radius Angularity 
 

 
Aggregate 

 
ga 

 
gm 

 
gn 

1 7.346 2.584 3.913 
2 8.527 1.817 5.818 
3 11.107 1.858 4.871 
4 11.603 2.088 5.014 
5 9.706 2.554 4.885 
6 9.980 1.940 5.474 
7 11.487 1.550 5.802 
8 7.917 2.064 4.241 
9 11.067 1.568 5.948 

10 7.095 4.368 3.367 
11 11.318 1.974 6.662 
12 10.387 2.214 5.455 
13 10.304 2.089 5.957 
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Table 5.2. Parameters of Equation- I for Gradient Angularity 
 
 
 

 
 
 
 

 
                                      
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 Table 5.3. Parameters of Equation- I for Form- 2D 
 

 
Aggregate 

 
ga 

 
gm 

 
gn 

1 5.992 2.219 5.648 
2 6.328 2.640 7.257 
3 6.433 5.831 5.933 
4 7.238 3.982 6.030 
5 7.733 2.439 9.032 
6 7.482 2.052 7.801 
7 7.238 3.186 6.214 
8 5.378 2.719 4.427 
9 7.631 2.194 6.540 

10 7.467 1.997 7.316 
11 8.134 1.859 9.253 
12 4.939 11.831 4.836 
13 6.721 4.220 6.070 

 
 

 
 
 

 
 

 
Aggregate 

 
ga 

 
gm 

 
gn 

1 3098.936 1.304 3.855 
2 3250.317 1.624 3.746 
3 3261.117 1.313 4.605 
4 3254.526 1.195 5.152 
5 4138.848 1.075 6.415 
6 2644.119 1.612 3.854 
7 3402.386 1.607 3.727 
8 2592.482 1.553 3.437 
9 4279.870 0.981 5.626 

10 3366.467 1.571 3.842 
11 2882.511 1.879 2.993 
12 3518.215 1.258 3.951 
13 3396.672 2.029 4.103 
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Table 5.4. Parameters of Equation-I for Sphericity 
 
 
 
 

 
      
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Table 5.5. Parameters of Equation-I for Texture 
  

                            
 

 

 

 

 

 

 

 

 

 

 
Aggregate 

 
ga 

 
gm 

 
gn 

1 0.716 1.910 15.786 
2 0.765 1.931 16.856 
3 0.619 4.209 12.346 
4 0.613 2.303 9.161 
5 0.760 1.052 19.443 
6 0.699 2.315 14.072 
7 0.686 1.554 13.111 
8 0.760 1.453 15.559 
9 0.675 1.707 12.016 

10 0.727 1.188 15.645 
11 0.681 2.022 16.366 
12 0.690 1.928 10.277 
13 0.576 4.242 9.377 

 
Aggregate 

 
ga 

 
gm 

 
gn 

1 70.4518 1.2537 3.1190 
2 84.3497 1.9397 2.9502 
3 311.8152 3.8945 4.1998 
4 150.9904 3.0865 2.6993 
5 387.5927 1.4210 8.8276 
6 230.7379 2.2327 3.5851 
7 130.8074 2.5230 2.5904 
8 85.2174 3.1624 2.3227 
9 556.9411 1.8097 7.7035 

10 416.7835 1.6567 5.7845 
11 292.8944 1.5297 8.8148 
12 97.1651 2.0821 4.0456 
13 252.7719 3.1148 4.0793 
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The parameters ga, gm, and gn are observed for their variation for different aggregates. 

Each property measured has been evaluated individually. In order to observe the effect 

of each of the parameters ga, gm, and gn on the measured distribution curves the values of 

ga, gm, and gn for all aggregates should be independent and significantly different from 

each other. Hence the confidence interval has been calculated for the mean difference of 

each of the parameters for all the combinations of aggregates. The mean difference has 

been found at a confidence level of 95 percent. The confidence interval calculated below 

is for the mean difference between any two aggregates for each parameter ga, gm, and gn 

and for the values to be independent the confidence interval should not contain zero.  

 

The confidence interval is calculated as shown 

 

 ( ) ( )2296.1 jiji XX σσ +±−    (5.2) 

 

where  

Xi = estimated value of the parameter for aggregate, i 

Xj = estimated value of the parameter for aggregate, j 

σi = standard error in the estimation of the parameter, Xi   and                         

σj = standard error in the estimation of the parameter, Xj 

 

The confidence intervals have been found for all the aggregate combinations for all the 

three parameters ga, gm, and gn for each property measured individually. The parameters 
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are found to be different for all the aggregates in measurement of texture except for one 

aggregate combination of aggregate 6 and aggregate 13 (Table 3.1). In measurement of 

form, radius angularity, gradient angularity, and sphericity, in some cases aggregate 

combinations were not different at 95 percent confidence level for the parameters. 

Tables 5.6-5.10 show all aggregate combinations and it can be determined whether or 

not the combination has parameters ga, gm, and gn that are significantly different or not.  

The shaded cells indicate that the aggregates do not have different parameters.  For 

example, in case of texture aggregates 6 and 13 do not have different parameters.  

 

 

Table 5.6. Aggregate Combinations for Texture (Equation- I) 
 
Texture 1 2 3 4 5 6 7 8 9 10 11 12 13 

1                           
2 X                         
3 X X                       
4 X X X                     
5 X X X X                   
6 X X X X X                 
7 X X X X X X               
8 X X X X X X X             
9 X X X X X X X X           

10 X X X X X X X X X         
11 X X X X X X X X X X       
12 X X X X X X X X X X X     
13 X X X X X X X X X X X X   
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Table 5.7. Aggregate Combinations for Radius Angularity (Equation- I) 
 

Radius 
Angularity 1 2 3 4 5 6 7 8 9 10 11 12 13 

1                           
2 X                         
3 X X                       
4 X X X                     
5 X X X X                   
6 X X X X X                 
7 X X X X X X               
8 X X X X X X X             
9 X X X X X X X X           

10 X X X X X X X X X         
11 X X X X X X X X X X       
12 X X X X X X X X X X X     
13 X X X X X X X X X X X X   

 

 

 

Table 5.8. Aggregate Combinations for Gradient Angularity (Equation- I) 
 

Gradient 
Angularity 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1                           
2 X                         
3 X X                       
4 X X X                     
5 X X X X                   
6 X X X X X                 
7 X X X X X X               
8 X X X X X X X             
9 X X X X X X X X           

10 X X X X X X X X X         
11 X X X X X X X X X X       
12 X X X X X X X X X X X     
13 X X X X X X X X X X X X   
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Table 5. 9. Aggregate Combinations for Form (Equation- I) 
 

Form 1 2 3 4 5 6 7 8 9 10 11 12 13 
1                           
2 X                         
3 X X                       
4 X X X                     
5 X X X X                   
6 X X X X X                 
7 X X X X X X               
8 X X X X X X X             
9 X X X X X X X X           

10 X X X X X X X X X         
11 X X X X X X X X X X       
12 X X X X X X X X X X X     
13 X X X X X X X X X X X X   

 

 

 

Table 5.10. Aggregate Combinations for Sphericity (Equation- I) 
 
Sphericity 1 2 3 4 5 6 7 8 9 10 11 12 13 

1                           
2 X                         
3 X X                       
4 X X X                     
5 X X X X                   
6 X X X X X                 
7 X X X X X X               
8 X X X X X X X             
9 X X X X X X X X           

10 X X X X X X X X X         
11 X X X X X X X X X X       
12 X X X X X X X X X X X     
13 X X X X X X X X X X X X   
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GAMMA DISTRIBUTION 

 

It is desirable to use a standard distribution function to describe the shape characteristics 

of an aggregate sample.  Such a standard function has well defined parameters with 

known relationships to changes in the distributions.  For this purpose, the BestFit 4.5 

software was used and several standard distribution functions were fitted to the 

distributions of shape, angularity and texture. Each of the standard distribution function 

fitted for an aggregate sample was ranked according to the root mean squared error 

(RMS) value. There were 13 aggregate samples and 5 properties measured (texture, 

radius angularity, gradient angularity, form, and sphericity), hence each of the standard 

distribution function was fitted to 65 distribution curves. All the standard distribution 

functions were fitted to the aggregate distribution curves to check if they could model all 

the 65 aggregate distribution curves. Many of the distribution functions, such as the 

lognormal and beta general, fitted the data well but only the gamma distribution fitted all 

the 65 aggregate distribution curves with good RMS values. The RMS values for all 

aggregates fitted to the gamma distribution are attached in the appendix. Hence the 

aggregate distribution curves for AIMS follow the gamma distribution. The parameters 

are shown in Table 5.11 for all the aggregates. 
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The CDF of the gamma distribution is given by  

 

 (5.3) 
 
 
 
Where  Scale parameter, β   
 
Shape parameter, α>0  and  Г(α) is the gamma function 
 
 
 
 
 
  Table 5.11. Shape and Scale Parameters of the Gamma Distribution for all Aggregates 

 
 

Form Texture Sphericity 
Radius 
Angularity 

Gradient 
Angularity 

Ag
gre
gat
e Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale 

1 11.000 1.837 1.906 0.033 75.382 107.788 6.204 0.788 2.967 0.001 

2 20.657 3.181 2.939 0.035 82.940 110.683 9.446 1.166 3.803 0.001 

3 20.260 2.584 8.684 0.023 77.889 118.622 7.165 0.677 3.989 0.001 

4 17.851 2.184 3.297 0.017 30.187 49.395 8.292 0.724 4.086 0.002 

5 29.217 3.755 17.013 0.048 48.008 68.616 9.467 0.936 5.635 0.002 

6 19.371 2.646 4.781 0.020 69.281 99.472 9.004 0.933 3.996 0.002 

7 16.681 2.142 2.810 0.019 41.233 63.345 8.101 0.776 3.690 0.001 

8 8.218 1.428 2.727 0.024 52.417 72.796 6.000 0.766 2.981 0.001 

9 14.464 1.910 17.166 0.032 38.668 59.908 8.638 0.856 3.329 0.001 

10 16.705 2.302 8.823 0.023 38.473 57.397 5.849 0.622 3.754 0.001 

11 25.843 3.304 17.988 0.066 84.403 126.079 14.357 1.309 2.861 0.001 

12 14.470 1.947 5.574 0.058 32.854 49.119 10.531 1.015 2.782 0.001 

13 19.428 2.537 7.251 0.025 44.284 70.866 11.718 1.157 5.571 0.002 

( )dyeyxF
x Y

∫ Γ
=

−−

0

1

)(
αβ α

α β
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It was of interest to evaluate the variations in the parameters of the gamma distribution 

with various aggregate types. The confidence interval for each parameter was calculated 

to determine if the mean difference between any two aggregates is zero at 95 percent 

confidence level. The confidence interval calculated in Eq. (10) below is for the mean 

difference between any two aggregates. For the shape and scale parameters to be  

different for all combinations of aggregates the confidence interval should not contain 

zero.  

 

( ) ( )2296.1 jiji XX σσ +±−  (5.4) 

 

where  

Xi = estimated value of the parameter for aggregate, i 

Xj = estimated value of the parameter for aggregate, j 

σi = standard error in the estimation of the parameter, Xi   and 

σj = standard error in the estimation of the parameter, Xj 

 

The confidence intervals for the mean difference of the parameters for all the 

combinations of aggregates were calculated. Tables 5.12-5.16 show all aggregate 

combinations, and these results indicate whether the combination has parameters (shape 

and scale) that are significantly different or not. The shaded cells indicate that the 

aggregates do not have significantly different parameters with 95 percent confidence.  In 
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case of texture, all aggregates were found to have significantly different parameters at 95 

percent confidence level except for one aggregate combination of aggregate 3 and 

aggregate 10 (Table 5.12). In measurement of angularity and form some aggregate 

combinations were found to have parameters that are not significantly different at 95 

percent confidence level (Tables 5.13 – 5.16).  More aggregate combinations were found 

to have significantly different shape and scale parameters for texture compared with 

form and angularity.  This indicates that aggregates exhibit more variation in texture 

than the other characteristics.  This finding emphasizes the important of measuring 

texture, and relating to the performance of pavement layers.   

 

 

Table 5.12. Aggregate Combinations for Texture (Gamma Distribution) 
Texture 1 2 3 4 5 6 7 8 9 10 11 12 13 

1                     
2 X                   
3 X X                 
4 X X X               
5 X X X X             
6 X X X X X           
7 X X X X X X         
8 X X X X X X X       
9 X X X X X X X X           

10 X X X X X X X X X         
11 X X X X X X X X X X       
12 X X X X X X X X X X X     
13 X X X X X X X X X X X X   
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Table 5.13. Aggregate Combinations for Radius Angularity (Gamma Distribution) 
 
Radius Angularity 1 2 3 4 5 6 7 8 9 10 11 12 13 

1                           
2 X                         
3 X X                       
4 X X X                     
5 X X X X                   
6 X X X X X                 
7 X X X X X X               
8 X X X X X X X             
9 X X X X X X X X           

10 X X X X X X X X X         
11 X X X X X X X X X X       
12 X X X X X X X X X X X     
13 X X X X X X X X X X X X   

 
 
 
 
 
Table 5.14. Aggregate Combinations for Gradient Angularity (Gamma Distribution) 
 
Gradient Angularity 1 2 3 4 5 6 7 8 9 10 11 12 13 

1                           
2 X                         
3 X X                       
4 X X X                     
5 X X X X                   
6 X X X X X                 
7 X X X X X X               
8 X X X X X X X             
9 X X X X X X X X           

10 X X X X X X X X X         
11 X X X X X X X X X X       
12 X X X X X X X X X X X     
13 X X X X X X X X X X X X   
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Table 5.15. Aggregate Combinations for Form (Gamma Distribution) 
 

Form 1 2 3 4 5 6 7 8 9 10 11 12 13 
1                           
2 X                         
3 X X                       
4 X X X                     
5 X X X X                   
6 X X X X X                 
7 X X X X X X               
8 X X X X X X X             
9 X X X X X X X X           

10 X X X X X X X X X         
11 X X X X X X X X X X       
12 X X X X X X X X X X X     
13 X X X X X X X X X X X X   

 

 
 
Table 5.16. Aggregate Combinations for Sphericity (Gamma Distribution) 
 
Sphericity 1 2 3 4 5 6 7 8 9 10 11 12 13 

1                           
2 X                         
3 X X                       
4 X X X                     
5 X X X X                   
6 X X X X X                 
7 X X X X X X               
8 X X X X X X X             
9 X X X X X X X X           

10 X X X X X X X X X         
11 X X X X X X X X X X       
12 X X X X X X X X X X X     
13 X X X X X X X X X X X X   
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CATEGORICAL UNITS FOR AIMS 

 

AIMS is capable of measuring the physical characteristics of various sizes of coarse and 

fine aggregates.  The AIMS test results consist of a cumulative distribution function for 

each of the characteristics. Al-Rousan (2004) has developed aggregate shape 

classification system based on the cluster analysis of wide range of aggregates (Al-

Rousan 2004).  In this system, aggregates within a sample are divided into categories as 

shown in Table 5.17.  For example, texture is divided into (percent polished, percent 

smooth, percent low textured, percent medium textured, percent high textured).   

 

Table 5.17. Categorical Units for Aggregate Imaging System (AIMS)  
 

Sub Class Measured 

Property 1 2 3 4 5 

Texture % Polished % Smooth 
% Low 

Roughness 

% Medium 

Roughness 

% High 

Roughness 

Radius 

Angularity 
% Rounded 

% Sub 

Rounded 

% Sub  

Angular 
% Angular  

Gradient 

Angularity 
% Rounded 

% Sub 

Rounded 

% Sub  

Angular 
% Angular 

 

 

Form 2D % Circular 
% Semi 

Circular 

% Semi 

Elongated 
% Elongated 

 

 

Sphericity 
% Flat and 

Elongated 

% Low 

Sphericity 

% Medium 

Sphericity 

% High 

Sphericity 
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In this study, it is proposed to employ the “categorical units” in the evaluation of 

differences between aggregates.   The chi-square goodness of fit test is used to find 

significant differences in the categorical data of aggregates. To check the applicability of 

categorical units to assess differences among aggregates, four different cases were 

evaluated. In each case chi-square goodness of fit test was adopted to test differences 

among the aggregates compared. In the first case two aggregate samples were compared. 

This case helps to demonstrate differences when two aggregate samples are to be 

compared. In the second case, many aggregate samples were evaluated so as to help in 

comparing one aggregate sample to a database of measurements of aggregates. In the 

third case one, one aggregate sample was measured three times. This helps to identify 

the ability of the methods to capture the differences or similarities between samples from 

the same aggregate versus from different aggregates. The fourth case evaluated was for 

samples prepard by mixing different proportions of two aggregates. This helps to 

quantify the sensitivity of categorical units to different distributions of aggregate 

characteristics. Thus the four cases selected help in comprehensively evaluating the 

application of categorical units to find differences among aggregate shape distributions 

measured by AIMS. 

 

Two-Aggregate Samples 

 

This test can be used when comparison is needed between two different aggregate 

samples measured by AIMS. The chi-square goodness of fit test was adopted to test the 
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differences between aggregate 1 and aggregate 10 (Table 3.1), and the p-value of the 

pearson chi-square tests the null hypothesis. 

• Null hypothesis: Two aggregates are not different in at least one subclass. 

• Alternative hypothesis: Two aggregates are different in at least one subclass. 

Table 5.18 shows the chi-square test results for the measurement of texture. The pearson 

chi-square p-value is 0.000 and less than 0.05. Hence we reject the null hypothesis with 

95 percent confidence and aggregates 1 and 10 are different using the categorical units in 

measurement of texture.The standard residual can be observed for the differences 

between aggregates in all the subclasses. If the standard residual is greater than 1.96, 

then we can ascertain that differences exist in the respective subclasses for the two 

aggregates. In the case of texture aggregates 1 and 10 have standard residuals greater 

than 1.96 in subclasses 1, 2, 3, and 4. Hence aggregates 1 and 10 are different in all the 

subclasses.  Also in measurement of all the parameters (texture, radius angularity, 

gradient angularity, form and sphericity) for aggregates 1 and 10, the pearson chi-square 

p-value is found to be less than 0.05. Hence aggregates 1 and 10 are different in all the 

parameters measured by AIMS. Also the differences in each parameter can be observed 

as discussed above. Thus the categorical units can be used to define differences between 

two aggregate samples. Also the graphical representation can be used to define 

differences among aggregates as shown in Fig. 5.4 for texture. 
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Fig.5. 4. Graphical representation of categorical units for texture 
 
 
 
 
 
 
Table 5.18.  Chi Square Test for Aggregates 1 and 10  
 

Standard Residual Aggregate 
Sample  

Descriptions 

Measured 
Property SubClass 

Chi-Square 
P- value 

Two Aggregate Samples 1 2 3 4  
1 6.4 -4.1 -5 -2.1 

10 
Texture 

 -6.4 4.1 5 2.1 
0.000 

 

1 2.1 -0.8 0.8 -1.5 

10 

Gradient 
Angularity 

 -2.1 0.8 -0.8 1.5 
0.008 

 

1 -1 -1.9 1.1 0 
10 

Sphericity 
 1 1.9 -1.1 0 

0.009 
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Several Aggregate Samples 

 

When many aggregate samples are measured using AIMS the chi-square test can also be 

used to test the differences among the aggregates. For this purpose all 13 aggregate 

samples are compared (Table 3.1). 

• Null hypothesis: All the aggregates are not different in at least one subclass. 

• Alternative hypothesis: All the aggregates are different in at least one subclass. 

The test statistic is determined from pearson chi-square test statistic. In all the 

parameters compared (texture, radius angularity, gradient angularity, form and 

sphericity) the p-value is less than 0.05.Hence we reject the null hypothesis and all the 

13 aggregates are different from each other in at least one subclass.  

 

Same Aggregates with Repeated Measurements 

 
The same aggregate sample (aggregate 1) is repeatedly measured three times. The 

repeated measures of aggregate 1 should not be different and the pearson chi-square test 

statistic is used for this purpose.  

• Null hypothesis: All three aggregates are not different in at least one subclass. 

• Alternative hypothesis: All three aggregates are different in at least one subclass. 

In all the parameters compared (texture, radius angularity, gradient angularity, form and 

sphericity) the p-value is greater than 0.05. Hence with 95 percent confidence we do not 

reject the null hypothesis. All the aggregates are not different in at least one subclass. 
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Blends of Aggregates 

 

The sensitivity of AIMS was evaluated in chapter III where the mean values of 

measurements were used to evaluate the sensitivity. The same four aggregate samples 

used in chapter III were observed to see if they are different in categorical units.  

• Null hypothesis: All four aggregates are not different in at least one subclass. 

• Alternative hypothesis: All four aggregates are different in at least one subclass. 

The p-value was observed to be less than 0.05 in all the parameters measured by AIMS. 

Thus we reject the null hypothesis, and all the aggregates are different using categorical 

units. Thus AIMS is sensitive in measuring aggregates using categorical units. The 

summary Table 5.19 describes the chi-square p-value for all the properties measured by 

AIMS for all the four cases discussed above (All the chi-square test results for all the 

cases are attached in the appendix for all cases.) 
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Table 5.19. Chi-Square Test Results for Categorical Units 
 
Aggregate Sample  Descriptions Measured Property Chi-Square P- value 

Texture 0.000 
Radius Angularity 0.009 

Gradient Angularity 0.008 
Form 2D 0.000 

Two Aggregate Samples 
 

Sphericity 0.009 
Texture 0.000 

Radius Angularity 0.000 
Gradient Angularity 0.000 

Form 2D 0.000 
Many Aggregate Samples 

Sphericity 0.000 
Texture 1.000 

Radius Angularity 0.931 
Gradient Angularity 0.489 

Form 2D 0.607 
Same Aggregates (Repeated) 

Sphericity 0.889 
Texture 0.000 

Radius Angularity 0.000 
Gradient Angularity 0.001 

Form 2D 0.004 
Sensitivity 

Sphericity 0.000 
 
 

 
SUMMARY 

 
This chapter presented statistical methods for the analysis of aggregate shape 

characteristics.  The gamma distribution function was found to describe the distribution 

of all shape characteristics of the aggregates used in this study.  The statistical difference 

between the gamma function parameters was most pronounced in the texture 

measurements.  This finding confirms that aggregates differ the most in their texture.  A 

statistical method based on the “Categorical Units” is used in this study to analyze the 

differences among aggregate samples.  This method is able to capture the significant 
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differences between aggregates.  The statistical analysis methods presented in this paper 

can be used in a number of applications:   

• The parameters of the distribution function can be determined for a certain 

aggregate source, and be used to detect changes in aggregate physical 

characteristics as part of the quality assurance (QA) and quality control (QC) 

procedures.  

• The parameters of the distribution function can be related to the performance of 

pavement layers.  It is expected that performance will have better correlation 

with the distribution parameters than with average parameters of aggregate 

characteristics.   

• The analysis methods presented in this paper can be used to compare the results 

from different crushing techniques, and to assist in deciding on the techniques 

that produce the most desirable characteristics.   
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CHAPTER VI 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

CONCLUSIONS 

 

The quality of the AIMS measurements was studied using statistical analysis.  It was 

evaluated for its repeatability, reproducibility, and sensitivity on a wide range of coarse 

and fine aggregate samples. AIMS was found to be highly repeatable with a maximum 

coefficient of variation (C.V) of 13.9 percent in measuring random samples and 4.9 

percent in measuring the same samples. The reproducibility of the test method was 

found to have a maximum C.V equal to 16.3 percent in measuring random samples and 

is expected to decrease significantly in measuring the same samples. AIMS was found to 

be sensitive  to changes in the distributions of shape, angularity and texture.  

 

The statistical parameters of AIMS repeatability and reproducibility were compared with 

other test methods. AIMS has been found to have excellent repeatability and 

reproducibility for all measured parameters when compared with many other test 

methods. 

 

Two distribution functions “Equation -I” and “Gamma distribution” were studied for 

their applicability to represent the AIMS test results. It was found that Equation -I fitted 
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AIMS test results well in all the parameters measured. The equation-I parameters were 

found to be significantly different in describing the texture of the majority of aggregates.  

However, aggregates were found to have less variation in the angularity and shape 

parameters compared with the texture parameters.  It was found that there are no distinct 

relationships between the parameters of Equation-I and the distributions of aggregate 

physical characteristics.  Hence standard distribution functions that have well defined 

parameters were studied for their applicability to describe AIMS test results. The gamma 

distribution was found to fit well all the distribution of shape characteristics for all the 

aggregates used in this study.  The parameters of the gamma distribution were also found 

to be significantly different in describing the texture of the majority of aggregates.  Less 

significant differences were found between the parameters that describe the angularity 

and shape of aggregates.   

 

The gamma distribution function was found to describe the distribution of all shape 

characteristics of the aggregates used in this study.  The statistical difference between 

the gamma function parameters was most pronounced in the texture measurements.  This 

finding confirms that aggregates differ the most in their texture.   

 

A statistical method based on the “Categorical Units” was used in this chapter to analyze 

the differences among aggregate samples.  This method is able to capture the significant 

differences between aggregates.   
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RECOMMENDATIONS 

 

This thesis studied the quality of measurements by AIMS. It was identified that the test 

method had high repeatability, reproducibility and sensitivity. The test method is 

recommended for use in the pavement industry in measuring the shape, angularity and 

texture of aggregates. The statistical analysis methods presented in this chapter can be 

used in a number of applications:   

• The parameters of the distribution function can be determined for a certain 

aggregate source, and can be used to detect changes in aggregate physical 

characteristics as part of the quality assurance (QA) and quality control (QC) 

procedures.  

• The parameters of the distribution function can be related to the performance of 

pavement layers.  It is expected that performance will have better correlation 

with the distribution parameters than with average parameters of aggregate 

characteristics.   

• The analysis methods presented in this chapterr can be used to compare the 

results from different crushing techniques, and to assist in deciding on the 

techniques that produce the most desirable characteristics.   
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CASE 1: TWO AGGREGATE SAMPLES AGGREGATE 1 AND 10 

 
TEXTURE 

 
 

                       Subclass  
1 2 3 4 

Total 

Count 100 0 0 0 100 

Expected 
count 53.5 17.0 25 4.5 100.0 

1 

Std 
Residual 6.4 -4.1 -5.0 -2.1  

Count 7 34 50 9 100 

Expected 
count 53.5 17 25 4.5 100 

Aggregate 

10 

Std 
Residual -6.4 4.1 5.0 2.1  

Count 107 34 50 9 200 

Total Expected 
count 107.0 34.0 50.0 9.0 200.0 

 
 
 
 
 

 
 
 
 
 
 
 

Chi-Square Tests

173.832a 3 .000
225.550 3 .000

139.116 1 .000

200

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

2 cells (25.0%) have expected count less than 5. The
minimum expected count is 4.50.

a. 
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CASE 1: TWO AGGREGATE SAMPLES AGGREGATES 1 AND 10. 
 

GRADIENT ANGULARITY 
 
 

                       Subclass  
1 2 3 4 

Total 

Count 25 22 30 23 100 

Expected 
count 16.5 26.0 26.0 31.5 100.0 

1 

Std 
Residual 2.1 -0.8 0.8 -1.5  

Count 8 30 22 40 100 

Expected 
count 16.5 26.0 26.0 31.5 100 

Aggregate 

10 

Std 
Residual -2.1 0.8 -0.8 1.5  

Count 33 52 52 63 200 

Total Expected 
count 33.0 52.0 52.0 63.0 200.0 

 
 
 
 
 
 
 
 

 
 
 
 

Chi-Square Tests

15.806a 3 .001
16.309 3 .001

7.934 1 .005

200

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
No of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 16.50.

a. 
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CASE 1: TWO AGGREGATE SAMPLES AGGREGATE 1 AND 10 
 

RADIUS ANGULARITY 
 
 

                       Subclass  
1 2 3 4 

Total 

Count 20 21 36 23 100 

Expected 
count 13.5 23 32.5 31.0 100.0 

1 

Std 
Residual 1.8 -0.4 0.6 -1.4  

Count 7 25 29 39 100 

Expected 
count 13.5 23.0 32.5 31.0 100 

Aggregate 

10 

Std 
Residual -1.8 0.4 -0.6 1.4  

Count 27 46 65 62 200 

Total Expected 
count 27.0 46.0 65.0 62.0 200.0 

 
 
 
 
 
 

 
 
 
 
 
 

Chi-Square Tests

11.490a 3 .009
11.806 3 .008

6.882 1 .009

200

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
No of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 13.50.

a. 
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CASE 1: TWO AGGREGATE SAMPLES AGGREGATE 1 AND 10 
 

SPHERICITY 
 
 
 

                       Subclass  
1 2 3 4 

Total 

Count 4 5 82 9 100 

Expected 
count 6.5 11.5 73.0 9.0 100.0 

1 

Std 
Residual -1.0 -1.9 1.1 0.0  

Count 9 18 64 9 100 

Expected 
count 6.5 11.5 73.0 9.0 100 

Aggregate 

10 

Std 
Residual 1.0 1.9 -1.1 0.0  

Count 13 23 146 18 200 
Total Expected 

count 13.0 23.0 146.0 18.0 200.0 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Chi-Square Tests

11.490a 3 .009
11.998 3 .007

5.968 1 .015

200

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 6.50.

a. 
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CASE 1: TWO AGGREGATE SAMPLES AGGREGATE 1 AND 10 
 

FORM 2D 
 

 
 

                       Subclass  
1 2 3 4 

Total 

Count 54 30 16 0 100 

Expected 
count 40.0 37.5 20.5 2.0 100.0 

1 

Std 
Residual 2.2 -1.2 -1.0 -1.4  

Count 26 45 25 4 100 

Expected 
count 40.0 37.5 20.5 2.0 100 

Aggregate 

10 

Std 
Residual -2.2 1.2 1.0 1.4  

Count 80 75 41 4 200 
Total Expected 

count 80.0 75.0 41.0 4.0 200.0 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Chi-Square Tests

18.776a 3 .000
20.568 3 .000

15.242 1 .000

200

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

2 cells (25.0%) have expected count less than 5. The
minimum expected count is 2.00.

a. 
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CASE 2: MANY AGGREGATE SAMPLES 
 

RADIUS ANGULARITY 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Chi-Square Tests

188.703a 36 .000
196.788 36 .000

23.636 1 .000

1301

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. 
The minimum expected count is 6.32.

a. 
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Aggregate * Subclass Cross tabulation 
 

Subclass  
  
  1.00 2.00 3.00 4.00 

Total 
  

1.00 
  
  

Count 
Expected Count 
Std. Residual 

20
6.4
5.4

21
15.0
1.6

36
34.4

.3

23 
44.3 
-3.2 

100
100.0

 

2.00 
  
  

Count 
Expected Count 
Std. Residual 

14
6.3
3.1

18
14.8

.8

46
34.0
2.1

21 
43.8 
-3.4 

99
99.0

 

3.00 
  
  

Count 
Expected Count 
Std. Residual 

0
6.4

-2.5

21
15.0
1.6

25
34.4
-1.6

54 
44.3 
1.5 

100
100.0

 

4.00 
  
  

Count 
Expected Count 
Std. Residual 

2
6.4

-1.7

7
15.0
-2.1

25
34.4
-1.6

66 
44.3 
3.3 

100
100.0

 

5.00 
  
  

Count 
Expected Count 
Std. Residual 

0
6.4

-2.5

16
15.0

.3

38
34.4

.6

46 
44.3 

.3 

100
100.0

 

6.00 
  
  

Count 
Expected Count 
Std. Residual 

7
6.4
.2

11
15.1
-1.1

45
34.7
1.7

38 
44.7 
-1.0 

101
101.0

 

7.00 
  
  

Count 
Expected Count 
Std. Residual 

5
6.4
-.5

11
15.0
-1.0

30
34.4

-.7

54 
44.3 
1.5 

100
100.0

 

8.00 
  
  

Count 
Expected Count 
Std. Residual 

18
6.4
4.6

21
15.0
1.6

38
34.4

.6

23 
44.3 
-3.2 

100
100.0

 

9.00 
  
  

Count 
Expected Count 
Std. Residual 

4
6.4

-1.0

16
15.1

.2

29
34.7
-1.0

52 
44.7 
1.1 

101
101.0

 

10.00 
  
  

Count 
Expected Count 
Std. Residual 

7
6.4
.2

25
15.0
2.6

29
34.4

-.9

39 
44.3 

-.8 

100
100.0

 

11.00 
  
  

Count 
Expected Count 
Std. Residual 

2
6.4

-1.7

7
15.0
-2.1

34
34.4

-.1

57 
44.3 
1.9 

100
100.0

 

12.00 
  
  

Count 
Expected Count 
Std. Residual 

4
6.4
-.9

7
15.0
-2.1

36
34.4

.3

53 
44.3 
1.3 

100
100.0

 

Aggrega
te 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

13.00 
  
  

Count 
Expected Count 
Std. Residual 

0
6.4

-2.5

14
15.0

-.3

36
34.4

.3

50 
44.3 

.9 

100
100.0

 

Total 
  

Count 
Expected Count 

83
83.0

195
195.0

447
447.0

576 
576.0 

1301
1301.0



 98

 
 

CASE 2: MANY AGGREGATE SAMPLES 
 

GRADIENT ANGULARITY 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chi-Square Tests

82.399a 36 .000
85.167 36 .000

6.725 1 .010

1299

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. 
The minimum expected count is 13.49.

a. 
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 Aggregate * Subclass Crosstabulation 
 

Subclass  
  
  1.00 2.00 3.00 4.00 

Total 
  

1.00 
  
  

Count 
Expected Count 
Std. Residual 

41
30.8
1.8

21
26.8
-1.1

30 
27.9 

.4 

7
13.5
-1.8

99
99.0

 
2.00 
  
  

Count 
Expected Count 
Std. Residual 

27
31.1

-.7

30
27.1

.6

30 
28.2 

.3 

13
13.6

-.2

100
100.0

 
3.00 
  
  

Count 
Expected Count 
Std. Residual 

29
31.4

-.4

36
27.4
1.6

27 
28.5 

-.3 

9
13.8
-1.3

101
101.0

 
4.00 
  
  

Count 
Expected Count 
Std. Residual 

32
31.1

.2

32
27.1

.9

27 
28.2 

-.2 

9
13.6
-1.3

100
100.0

 

5.00 
  
  

Count 
Expected Count 
Std. Residual 

20
31.1
-2.0

21
27.1
-1.2

41 
28.2 
2.4 

18
13.6
1.2

100
100.0

 

6.00 
  
  

Count 
Expected Count 
Std. Residual 

41
30.8
1.8

32
26.8
1.0

21 
27.9 
-1.3 

5
13.5
-2.3

99
99.0

 

7.00 
  
  

Count 
Expected Count 
Std. Residual 

27
31.1

-.7

25
27.1

-.4

30 
28.2 

.3 

18
13.6
1.2

100
100.0

 

8.00 
  
  

Count 
Expected Count 
Std. Residual 

48
31.1
3.0

23
27.1

-.8

20 
28.2 
-1.5 

9
13.6
-1.3

100
100.0

 

9.00 
  
  

Count 
Expected Count 
Std. Residual 

29
31.1

-.4

20
27.1
-1.4

30 
28.2 

.3 

21
13.6
2.0

100
100.0

 

10.00 
  
  

Count 
Expected Count 
Std. Residual 

29
31.1

-.4

25
27.1

-.4

30 
28.2 

.3 

16
13.6

.6

100
100.0

 

11.00 
  
  

Count 
Expected Count 
Std. Residual 

34
31.1

.5

30
27.1

.6

20 
28.2 
-1.5 

16
13.6

.6

100
100.0

 

12.00 
  
  

Count 
Expected Count 
Std. Residual 

33
31.1

.3

27
27.1

.0

24 
28.2 

-.8 

16
13.6

.6

100
100.0

 

Aggre
gate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13.00 
  
  

Count 
Expected Count 
Std. Residual 

14
31.1
-3.1

30
27.1

.6

36 
28.2 
1.5 

20
13.6
1.7

100
100.0

 

Total Count 
Expected Count 

404
404.0

352
352.0

366 
366.0 

177
177.0

1299
1299.0
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CASE 2: MANY AGGREGATE SAMPLES 
 

FORM-2D 
 
 
 
 
 Chi-Square Tests 
 

 Value df 
Asymp. Sig. 

(2-sided) 
Pearson Chi-Square 205.431(a) 36 .000
Likelihood Ratio 205.357 36 .000
 
Linear-by-Linear 
Association 11.396 1 .001

N of Valid Cases 
1302   

 
a  0 cells (.0%) have expected count less than 5. The minimum expected count is 5.25. 
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Aggregate * Subclass Crosstabulation

54 30 16 0 100
24.3 42.0 28.3 5.3 100.0
6.0 -1.9 -2.3 -2.3
38 46 13 4 101

24.6 42.4 28.6 5.4 101.0
2.7 .5 -2.9 -.6
11 46 36 7 100

24.3 42.0 28.3 5.3 100.0
-2.7 .6 1.4 .7

9 43 39 9 100
24.3 42.0 28.3 5.3 100.0
-3.1 .2 2.0 1.6

11 52 34 4 101
24.6 42.4 28.6 5.4 101.0
-2.7 1.5 1.0 -.6

20 48 27 5 100
24.3 42.0 28.3 5.3 100.0

-.9 .9 -.3 -.1
14 45 32 9 100

24.3 42.0 28.3 5.3 100.0
-2.1 .5 .7 1.6

59 27 9 5 100
24.3 42.0 28.3 5.3 100.0
7.0 -2.3 -3.6 -.1
25 38 32 5 100

24.3 42.0 28.3 5.3 100.0
.1 -.6 .7 -.1
27 45 25 4 101

24.6 42.4 28.6 5.4 101.0
.5 .4 -.7 -.6
7 46 41 5 99

24.1 41.6 28.1 5.2 99.0
-3.5 .7 2.4 -.1

22 42 31 5 100
24.3 42.0 28.3 5.3 100.0

-.5 .0 .5 -.1
20 39 34 7 100

24.3 42.0 28.3 5.3 100.0
-.9 -.5 1.1 .7

317 547 369 69 1302
317.0 547.0 369.0 69.0 1302.0

Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

Aggregate

Total

1.00 2.00 3.00 4.00
Subclass

Total
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CASE 2: MANY AGGREGATE SAMPLES 
 

SPHERICITY 
 

 
 
 
 
Chi-Square Tests 
 

 Value df 
Asymp. Sig. 

(2-sided) 
Pearson Chi-Square 186.743(a) 36 .000
Likelihood Ratio 175.918 36 .000
Linear-by-Linear 
Association 13.505 1 .000

N of Valid Cases 
1302   

 
a  0 cells (.0%) have expected count less than 5. The minimum expected count is 5.17. 
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Aggregate * Subclass Crosstabulation

4 5 82 9 100
5.2 18.4 66.2 10.2 100.0
-.5 -3.1 1.9 -.4

4 18 73 5 100
5.2 18.4 66.2 10.2 100.0
-.5 -.1 .8 -1.6

2 4 68 27 101
5.3 18.5 66.9 10.3 101.0

-1.4 -3.4 .1 5.2
14 32 46 7 99

5.2 18.2 65.5 10.1 99.0
3.9 3.2 -2.4 -1.0

7 11 71 11 100
5.2 18.4 66.2 10.2 100.0

.8 -1.7 .6 .2
2 9 77 13 101

5.3 18.5 66.9 10.3 101.0
-1.4 -2.2 1.2 .8

7 25 63 5 100
5.2 18.4 66.2 10.2 100.0

.8 1.6 -.4 -1.6
4 9 66 21 100

5.2 18.4 66.2 10.2 100.0
-.5 -2.2 .0 3.4

5 27 63 5 100
5.2 18.4 66.2 10.2 100.0
-.1 2.0 -.4 -1.6

9 18 64 9 100
5.2 18.4 66.2 10.2 100.0
1.7 -.1 -.3 -.4

2 13 79 7 101
5.3 18.5 66.9 10.3 101.0

-1.4 -1.3 1.5 -1.0
4 25 62 9 100

5.2 18.4 66.2 10.2 100.0
-.5 1.6 -.5 -.4

4 43 48 5 100
5.2 18.4 66.2 10.2 100.0
-.5 5.8 -2.2 -1.6
68 239 862 133 1302

68.0 239.0 862.0 133.0 1302.0

Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

Aggregate

Total

1.00 2.00 3.00 4.00
Subclass

Total
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CASE 2: MANY AGGREGATE SAMPLES 
 

TEXTURE 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chi-Square Tests

761.686a 48 .000
788.213 48 .000

7.716 1 .005

2599

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

13 cells (20.0%) have expected count less than 5. The
minimum expected count is 
.15. 

a. 
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Aggregate * Subclass Crosstabulation

104 5 82 9 0 200
52.5 46.4 85.5 15.5 .2 200.0
7.1 -6.1 -.4 -1.6 -.4
96 25 73 5 0 199

52.2 46.2 85.1 15.4 .2 199.0
6.1 -3.1 -1.3 -2.6 -.4

5 52 105 38 0 200
52.5 46.4 85.5 15.5 .2 200.0
-6.6 .8 2.1 5.7 -.4

77 61 55 7 0 200
52.5 46.4 85.5 15.5 .2 200.0
3.4 2.1 -3.3 -2.2 -.4
16 50 118 16 0 200

52.5 46.4 85.5 15.5 .2 200.0
-5.0 .5 3.5 .1 -.4

45 52 91 13 0 201
52.7 46.6 85.9 15.5 .2 201.0
-1.1 .8 .5 -.6 -.4

84 45 66 5 0 200
52.5 46.4 85.5 15.5 .2 200.0
4.4 -.2 -2.1 -2.7 -.4
89 20 70 21 0 200

52.5 46.4 85.5 15.5 .2 200.0
5.0 -3.9 -1.7 1.4 -.4

5 32 114 46 2 199
52.2 46.2 85.1 15.4 .2 199.0
-6.5 -2.1 3.1 7.8 4.7

16 52 114 18 0 200
52.5 46.4 85.5 15.5 .2 200.0
-5.0 .8 3.1 .6 -.4

16 91 84 9 0 200
52.5 46.4 85.5 15.5 .2 200.0
-5.0 6.5 -.2 -1.6 -.4
104 25 62 9 0 200
52.5 46.4 85.5 15.5 .2 200.0
7.1 -3.1 -2.5 -1.6 -.4
25 93 77 5 0 200

52.5 46.4 85.5 15.5 .2 200.0
-3.8 6.8 -.9 -2.7 -.4
682 603 1111 201 2 2599

682.0 603.0 1111.0 201.0 2.0 2599.0

Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

Aggregate

Total

1.00 2.00 3.00 4.00 5.00
Subclass

Total
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CASE 3: SAME AGGREGATE (MEASURED REPEATEDLY 3 TIMES) 

 
TEXTURE 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Chi-Square Tests

.000 a 2 1.000

.000 2 1.000

.000 1 1.000

300

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

3 cells (50.0%) have expected count less than 5. The
minimum expected count is 2.00.

a. 

AGGREGATE * SUBCLASS Crosstabulation

98 2 100 
98.0 2.0 100.0 

.0 .0
98 2 100 

98.0 2.0 100.0 
.0 .0
98 2 100 

98.0 2.0 100.0 
.0 .0

294 6 300 
294.0 6.0 300.0 

Count 
Expected Count
Std. Residual
Count 
Expected Count
Std. Residual
Count 
Expected Count
Std. Residual
Count 
Expected Count

1.00 

2.00 

3.00 

AGGREGAT 

Total 

1.00 2.00
SUBCLASS

Total
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CASE 3: SAME AGGREGATE (MEASURED REPEATEDLY 3 TIMES) 
 

RADIUS ANGULARITY 
 
 

                       Subclass  
1 2 3 4 

Total 

Aggregate Count 0.7 25 32 36 100.0 

 Expected 
count 

5.3 24.3 31.7 38.7 100.0 

 

1 

Std 
Residual 

0.7 0.1 0.1 -0.4  

 Count 5 23 34 38 100 
 Expected 

count 
5.3 24.3 31.7 38.7 100.0 

 

2 

Std 
Residual 

-0.1 -0.3 0.4 -0.1  

 Count 4 25 29 42 100 
 Expected 

count 
5.3 24.3 31.7 38.7 100.0 

 

3 

Std 
Residual 

-0.6 0.1 -0.5 0.5  

Total Count 16 73 95 116 300 
 

 
Expected 

count 
16.0 73.0 95.0 116.0 300.0 

 
 

 
 
 
 
 
 
 
 
 

Chi-Square Tests

1.867a 6 .931
1.853 6 .933

.852 1 .356

300

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 5.33.

a. 
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CASE 3: SAME AGGREGATE (MEASURED REPEATEDLY 3 TIMES) 
 

GRADIENT ANGULARITY 
 
 
 
 

                       Subclass  
1 2 3 4 

Total 

Aggregate Count 27 23 34 16 100.0 

 Expected 
count 

26.7 27.3 30.3 15.7 100.0 

 

1 

Std 
Residual 

0.1 -0.8 0.7 0.1  

 Count 30 29 23 18 100 
 Expected 

count 
26.7 27.3 30.3 15.7 100.0 

 

2 

Std 
Residual 

0.6 0.3 -1.3 0.6  

 Count 23 30 34 13 100 
 Expected 

count 
26.7 27.3 30.3 15.7 100.0 

 

3 

Std 
Residual 

-0.7 0.5 0.7 -0.7  

Total Count 80 82 91 47 300 
 

 
Expected 

count 
80.0 82.0 91.0 47.0 300.0 

 
 
 

 
 
 

Chi-Square Tests

5.442a 6 .489
5.621 6 .467

.019 1 .892

300

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 15.67.

a. 
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CASE 3: SAME AGGREGATE (MEASURED REPEATEDLY 3 TIMES) 

 
SPHERICITY 

 
 

                       Subclass  
1 2 3 4 

Total 

Count 0 26 70 4 100.0 

Expected 
count 

0.3 24.3 71.0 4.3 100.0 

1 

Std 
Residual 

-0.6 0.3 -0.1 -0.2  

Count 1 25 70 4 100 
Expected 

count 
0.3 24.3 71.0 4.3 100.0 

2 

Std 
Residual 

1.2 0.1 -0.1 -0.2  

Count 0 22 73 5 100 
Expected 

count 
0.3 24.3 71.0 4.3 100.0 

Aggregate 

3 

Std 
Residual 

-0.6 -0.5 0.2 0.3  

Count 1 73 213 13 300 
 

Total  

Expected 
count 

1.0 73.0 213.0 13.0 300.0 

 
 
 

 
 
 
 
 
 
 
 

Chi-Square Tests

2.595a 6 .858
2.793 6 .834

.484 1 .487

300

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

6 cells (50.0%) have expected count less than 5. The
minimum expected count is .33.

a. 
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CASE 3: SAME AGGREGATE (MEASURED REPEATEDLY 3 TIMES) 
 

FORM 2D 
 
 
 

                       Subclass  
1 2 3 4 

Total 

Count 46 32 20 2 100.0 

Expected 
count 

45.7 32.0 20.3 2.0 100.0 

1 

Std 
Residual 

0.0 0.0 -0.1 0.0  

Count 43 32 21 4 100 
Expected 

count 
45.7 32.0 20.3 2.0 100.0 

2 

Std 
Residual 

-0.4 0.0 0.1 1.4  

Count 48 32 20 0 100 
Expected 

count 
45.7 32.0 20.3 2.0 100.0 

Aggregate 

3 

Std 
Residual 

0.3 0.0 -0.1 -1.4  

Count 137 96 61 6 300 
 

Total  

Expected 
Count 

137.0 96.0 61.0 6.0 300.0 

 
 
 

 
 
 
 
 
 
 
 

Chi-Square Tests

4.310a 6 .635
5.856 6 .439

.258 1 .611

300

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

3 cells (25.0%) have expected count less than 5. The
minimum expected count is 2.00.

a. 
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CASE 4: AGGREGATE BLENDS 
 

TEXTURE 
 
 

                       Subclass    
1 2 3 4 5 

Total 

1 Count 100 0 0 0 0 100 
 Expected 

count 
47.9 12.2 19.2 12.7 8.0 100.0 

 Std 
Residual 

7.5 -3.5 -4.4 -3.6 -2.8  

2 Count 54 8 12 15 12 101 
 Expected 

count 
48.4 12.3 19.4 12.8 8.1 101.0 

 Std 
Residual 

0.8 -1.2 -1.7 0.6 1.4  

3 Count 31 7 15 27 20 100 
 Expected 

count 
47.9 12.2 19.2 12.7 8.0 100.0 

 Std 
Residual 

-2.4 -1.5 -1.0 4.0 4.3  

4 Count 7 34 50 9 0 100 

Aggregate 

 Expected 
count 

47.9 12.2 19.2 12.7 8.0 100.0 

  Std 
Residual 

-5.9 6.2 7.0 -1.0 -2.8  

Total  Count 192 49 77 51 32 401 
  Expected 

count 
192.0 49.0 77.0 51.0 32.0 401.0 

 
 
 
 

 
 
 
 
 

Chi-Square Tests

291.579a 12 .000
322.341 12 .000

83.441 1 .000

401

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. 
The minimum expected count is 7.98.

a. 
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CASE 4: AGGREGATE BLENDS 
 

GRADIENT ANGULARITY 
 

Aggregate * Subclass Crosstabulation

41 21 30 7 99
33.2 31.3 23.1 11.4 99.0

1.3 -1.8 1.4 -1.3
35 44 13 8 100

33.6 31.6 23.3 11.5 100.0
.2 2.2 -2.1 -1.0

29 36 20 15 100
33.6 31.6 23.3 11.5 100.0

-.8 .8 -.7 1.0
29 25 30 16 100

33.6 31.6 23.3 11.5 100.0
-.8 -1.2 1.4 1.3

134 126 93 46 399
134.0 126.0 93.0 46.0 399.0

Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun

1.00

2.00

3.00

4.00

Aggregate

Total

1.00 2.00 3.00 4.00
Subclass

Total

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Chi-Square Tests

27.957a 9 .001
28.562 9 .001

6.721 1 .010

399

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. 
The minimum expected count is 11.41.

a. 
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CASE 4: AGGREGATE BLENDS 
 

RADIUS ANGULARITY 
 

 
 

Aggregate * Subclass Crosstabulation

20 21 36 23 100
23.9 27.9 29.7 18.5 100.0

-.8 -1.3 1.2 1.1
38 31 23 8 100

23.9 27.9 29.7 18.5 100.0
2.9 .6 -1.2 -2.4
31 35 31 4 101

24.2 28.2 30.0 18.6 101.0
1.4 1.3 .2 -3.4

7 25 29 39 100
23.9 27.9 29.7 18.5 100.0
-3.5 -.6 -.1 4.8

96 112 119 74 401
96.0 112.0 119.0 74.0 401.0

Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun

1.00

2.00

3.00

4.00

Aggregate

Total

1.00 2.00 3.00 4.00
Subclass

Total

 
 
 
 
 

 
 
 

Chi-Square Tests

71.130a 9 .000
75.909 9 .000

6.634 1 .010

401

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. 
The minimum expected count is 18.45.

a. 
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CASE 4: AGGREGATE BLENDS 
 

FORM 2D 
 

Aggregate * Subclass Crosstabulation

54 30 16 0 100
41.4 34.7 20.9 3.0 100.0

2.0 -.8 -1.1 -1.7
50 29 17 4 100

41.4 34.7 20.9 3.0 100.0
1.3 -1.0 -.9 .6
35 35 26 4 100

41.4 34.7 20.9 3.0 100.0
-1.0 .1 1.1 .6

27 45 25 4 101
41.8 35.0 21.2 3.0 101.0
-2.3 1.7 .8 .6
166 139 84 12 401

166.0 139.0 84.0 12.0 401.0

Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count
Std. Residual
Count
Expected Count

1.00

2.00

3.00

4.00

Aggregate

Total

1.00 2.00 3.00 4.00
Subclass

Total

 
 
 
 
 
 
 
 
 

 

Chi-Square Tests

24.083a 9 .004
27.221 9 .001

16.824 1 .000

401

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

4 cells (25.0%) have expected count less than 5. The
minimum expected count is 2.99.

a. 
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CASE 4: AGGREGATE BLENDS 
 

SPHERICITY 
 
 

 

Aggregate * Subclass Crosstabulation

4 5 82 9 100
16.0 20.1 51.4 12.5 100.0
-3.0 -3.4 4.3 -1.0

21 25 38 15 99
15.9 19.8 50.9 12.4 99.0

1.3 1.2 -1.8 .7
30 32 21 17 100

16.0 20.1 51.4 12.5 100.0
3.5 2.7 -4.2 1.3

9 18 64 9 100
16.0 20.1 51.4 12.5 100.0
-1.8 -.5 1.8 -1.0

64 80 205 50 399
64.0 80.0 205.0 50.0 399.0

Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun
Std. Residual
Count
Expected Coun

1.00

2.00

3.00

4.00

Aggregate

Total

1.00 2.00 3.00 4.00
Subclass

Total

 
 
 
 
 
 

 
 
 
 
 
 

Chi-Square Tests

92.586a 9 .000
100.675 9 .000

5.166 1 .023

399

Pearson Chi-Square 
Likelihood Ratio 
Linear-by-Linear 
Association 
N of Valid Cases 

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 12.41.

a. 
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APPENDIX B 

 

 

 

 

RMS VALUES FITTING GAMMA DISTRIBUTION 
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Table B.1.RMS values for the fitted Gamma Distribution function 
 

RMS Values: 

Aggregate  Form 2D Form 3D 
Radius 
Angularity 

Gradient 
Angularity Texture 

1 0.000224 0.000428 0.0007419 0.001055 0.000825 
2 0.000422 0.001311 0.0006178 0.000875 0.000665 
3 0.000504 0.000567 0.0009023 0.001154 0.000653 
4 0.000331 0.000395 0.0005734 0.001395 0.001449 
5 0.000797 0.001988 0.0002064 0.001925 0.001449 
6 0.000474 0.000639 0.0006546 0.000735 0.000631 
7 0.001032 0.000608 0.0008403      0.00063 0.000483 
8 0.000251 0.000826 0.0002808 0.000784 0.00057 
9 0.001023 0.000641 0.0007948 0.002394 0.00039 

10 0.000356 0.001689 0.0009196 0.000812 0.000616 
11 0.00164 0.000305 0.0009021 0.000308 0.001026 
12 0.001308 0.000849 0.0002898 0.001051 0.000599 
13 0.000613 0.000981 0.0003446 0.000291 0.000865 
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