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ABSTRACT 

Screening Potato Genotypes for Antioxidant Activity, Identification of the Responsible 

Compounds, and Differentiating Russet Norkotah Strains Using AFLP and 

Microsatellite Marker Analysis. (December 2003) 

Anna Louise Hale, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. J. Creighton Miller, Jr. 

 

Total antioxidant activity and total carotenoid levels were evaluated for more 

than 100 common potato (Solanum tuberosum, L.) cultivars grown in the United States, 

advanced breeding lines from several Western U.S. breeding programs, and 47 related, 

tuber-bearing species.  An initial assessment of variability for antioxidant activity 

provided baseline information to be used for potential potato promotion and for the 

development of new varieties with greater human health benefits.  Wide variability in 

antioxidant levels provided evidence of genetic control of this trait, indicating that it 

could be possible to breed for enhanced levels of antioxidant compounds in potato.  

Accessions, varieties, and advanced breeding lines identified in the broad screen as 

having high antioxidant activity and high total carotenoid levels, were fine screened via 

HPLC to determine specific phenolic and carotenoid compounds present in potato.  The 

objective of the study was to identify parents for use in the Texas breeding program to 

develop potato varieties containing increased levels antioxidant compounds. 

In the broad screen for total antioxidant activity, the 47 related, tuber-bearing 

species showed a wider range of variability than the cultivated varieties and breeding 
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lines.  Based on the DPPH assay, antioxidant activity ranged from 103-648 uM trolox 

equivalents in the cultivated varieties and advanced breeding lines, while that of the wild 

species was 42-892.  HPLC analysis revealed that the phenolic content of the species, 

and their cultivated counterparts, was primarily composed of caffeic and chlorogenic 

acids.  Other phenolics identified were p-coumaric acid, rutin hydrate, vanillic acid, 

epicatechin, t-cinnamic acid, gallic acid, and salicylic acid.  The highest phenolic content 

discovered in the accessions was five-fold higher than the highest of the cultivated 

genotypes.  Carotenoid analysis revealed lutein in the accessions, but the yellow-flesh 

breeding lines were much higher in carotenoids.   

In addition to the work conducted on antioxidants, an attempt was made to 

separate intraclonal variants of the potato cultivar Russet Norkotah.  Eleven 

microsatellite primers and 112 AFLP primer combinations failed to produce any 

reproducible polymorphisms.  The inability to detect differences between the clones 

could be due to the tetraploid nature of the clones or epigenetic differences not detected 

by the procedures utilized in this study. 
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CHAPTER I 

INTRODUCTION 

 
Potato is the leading vegetable crop in the U.S. and the 4th most important food 

crop worldwide.  It is grown in most areas of the world, with the largest production in 

China, followed by the Russian Federation, India, Poland, and the United States.  The 

annual potato crop in the U.S. is valued at an estimated $2,933,853,000, and the industry 

provides for the employment of thousands (National Potato Council 2003).   

Not only is potato an important crop on a worldwide scale, it is also an important 

crop to Texas. Potatoes are grown in most regions of the state, with an annual state farm-

gate  value of over $50 million from about 20,000 acres (National Potato Council 2003).  

With a summer harvest of 3,120,000 cwt and a sales value of over $30 million, Texas 

produces the highest yield/acre in the U.S. summer crop.    Due in great part to the work 

conducted by the Texas Potato Variety Development Program, yields in Texas have 

increased from less than 200cwt/acre in the 1970s when the program began, to 

400cwt/acre in 2002.    

The Texas Potato Variety Development Program has a growing interest in 

developing intraclonal variants, which exceed the parent variety in important agronomic 

traits.  Among the most recent and promising genotypes developed through the program 

are six intraclonal variants of the potato cultivar Russet Norkotah (TXNS102, TXNS112, 

TXNS223, TXNS249, TXNS278, TXNS296).   

_______________        
 
This dissertation follows the style and format of the American Journal of Potato Research.
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On both a state and national scale, the acreage of these intraclonal variants is 

rising.  In 1999, 38% of the Russet Norkotah acreage entered into seed certification was 

to three of these five strains and two from the Colorado program (National Potato 

Council 2000), and by 2002, over half (52%) (National Potato Council 2003).  TXNS 

112, TXNS 223, and TXNS 278 have been granted Plant Variety Protection (PVP), 

while it is pending for TXNS296. 

Potato tubers are rich in high-quality proteins, vitamins, minerals, and trace 

elements (International Potato Center 1984).   Potatoes provide an excellent source of 

lysine (Freidman 1996), making them superior to cereal proteins, which lack this 

important amino acid.   In addition to high quality proteins, potatoes contain substantial 

levels of vitamins and minerals, including vitamins C, and B (Kolasa 1993; International 

Potato Center 1984; Ahmad and Kamal 1980; Niederhauser 1993 ).  Furthermore, there 

is preliminary evidence to suggest that potatoes contain significant levels of important 

antioxidants, including phenolic acids, flavonoids, and carotenoids, among others (Al-

Saikhan et al. 1995; Al-Saikhan 2000; Arai et al. 2000; Gazzani et al.  1998; Lachman et 

al. 2000;  Yamamoto et al. 1997; Dao and Freidman 1992;  Freidman 1997).   Unlike 

crops such as blueberries, potatoes have not been considered among foods important for 

their antioxidant content.  This is unfortunate, considering the average per capita 

consumption of potatoes in the U.S. is about 137 pounds (National Potato Council 

2003), while that of blueberries stands at 13.9 ounces (North American Blueberry 

Council 2003).   
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Statement of the Problem 

 Potatoes have been found to contain significant levels of antioxidant compounds; 

however, previous studies have concentrated on a limited number of genotypes.  The 

potential to increase antioxidants in potato, particularly phenolics, through breeding 

efforts has not been extensively investigated.  Variation in antioxidant activity, as well as 

phenolic and carotenoid content, has not been determined for a wide range of genotypes.  

Furthermore, little is known about the antioxidant components contained in wild 

Solanum species.  Since antioxidants are plant defense compounds, it is likely that, due 

to natural selection, wild species contain higher levels of these compounds than do 

cultivated varieties.   Wild germplasm could serve as a source of important  

heath-benefiting compounds in the widely consumed potato.  Identification of genotypes 

high in antioxidant compounds is necessary to select parents for use in the Texas Potato 

Variety Development program.   The long-range objective of the program in relation to 

this project is to develop potato varieties that can be promoted to the public at large as a 

vector for antioxidant consumption. 

 Russet Norkotah and its intraclonal variants have become an important part of 

the U.S. potato industry.  Granting of PVP to the additional promising subclones is a 

major objective of the Texas Potato Variety Development Program.  Molecular markers 

differentiating the clones from one another could be a persuading factor to the granting 

of PVP.  Microsatellites and AFLPs have been used to fingerprint potato cultivars in the 

past, and could potentially produce markers which indicate genetic differences exist 

among the clones.  
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CHAPTER II 

LITERATURE REVIEW 

 

Introduction 

History of the Potato 

Solanun tuberosum, the cultivated potato, is known to many in the modern world 

as the “Irish Potato”.  This, however, is a misnomer considering the crop is indigenous to 

the central Andean area of South America, and is not an old world crop (Ahmad and 

Kamal 1980).  Evidence confirming this origin is the many wild relatives still growing 

today in this area of the world.  Over 230 tuber-bearing wild relatives of potato have 

been identified (Zuckerman 1998). 

 Potato was established as a crop plant in the highlands of Peru and Bolivia well 

before 200 AD.  Cultivation of the land through terracing and irrigation was developed, 

but it is not known how long it took the potato to be accepted as a staple crop in the area.   

It is known, however, that potatoes alone were capable of sustaining civilization high in 

the Andean mountains because grain did not flourish at these altitudes.    The tubers of 

the frost resistant cultivars were exposed to the cold night temperatures of the region and 

subsequently processed into what the Spaniards termed chuno. This dried potato product 

sustained life even in times of drought, and has been credited as being critical in the 

development of Andean civilization (McNeill, 1999). 

 The crop spread northward to Columbia and Ecuador and southward to 

Argentina.  By the time the Europeans arrived in the new world, cultivated potatoes were 
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established in the Northern half of the Andes and in Southern Chile.  It is generally 

believed that the Spaniards brought the potato from South America to the old world, 

(Corell 1962; Ahmad and Kamal 1980).  The earliest records of potato in the old world 

are those of a hospital buying potatoes for food in Seville, Spain in 1573 (Brown 1993).  

The year of introduction to Spain is thought to be between 1570 and 1580.  The potato 

was brought to England around 1586, and by 1588, it was an established garden 

vegetable in Italy (Estabrook 1988).    

Due to its resemblance to a truffle, herbalists in sixteenth century Europe called it 

by this name for a time.  It took a long time for the potato to be accepted as an important 

part of the diet in Europe, due in part to its similarity to the nightshade, which was 

known to be poisonous.  Others resisted the crop’s acceptance because the phallic shape 

of the tuber caused it to be labeled as an aphrodisiac, casting shame upon anyone who 

showed interest in it.   Furthermore, due to the appearance of the skin, it was suspected 

of causing leprosy (Brown 1993).  The upper-class population at the time deemed potato 

an inferior dish suitable only for those who could not afford something better 

(Niederhauser 1993).    

Folklore indicates that potatoes reached Ireland as a result of a shipwreck off the 

coast of Galway around 1588 (Estabrook, 1988).  It was in Ireland where potato gained 

notoriety due to its great nutritional quality and the lack of other food in the country at 

the time (Ahmad and Kamal 1980).  Ireland of the 18th century was predominantly 

composed of lower class tenants living on land owned by English landlords.   These poor 

farmers were expected to produce agricultural commodities such as meat and grains in 
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return for their rent on the land.  Potato was grown in poor soils not being used by the 

landlords for other crops, yet it yielded enough food to feed the household (Brown 

1993).   According to McNeill (1999), a single acre of potatoes and the milk of a single 

cow was enough to feed an entire family, and this diet, however monotonous, was 

nutritionally adequate to sustain a healthy rural population.  By the end of the 18th 

century, potato was the chief food of the country and consumption grew to greater than 

3kg per capita per day, and has been credited for the population explosion in Ireland at 

the time.   By 1710, this old world crop became known as the “Irish Potato.”  In 1845 

and 1846 the potato crop in Ireland failed due to its narrow genetic base and a virtual 

monoculture of the variety Lumper (Brown 1993).  Lumper was susceptible to late blight 

caused by Phytophthora infestans, and devastation caused by this fungus resulted in a 

great famine and the death of 12.5% of the Irish population and the emigration of 

another 20%. 

 Potatoes were not only an important crop for Ireland in the late 18th century.  By 

this time, France had identified potato as a famine food that produced modest yields 

even when other crops failed (Brown 1993).  It was promoted a great deal by Antoine-

Augustin Parmentier’s essay, “Research on Nourishing Vegetables to Substitute for the 

Usual Foods During Famines,” in which he promoted the adoption of potato as a 

necessary staple food in France.  One reason potato was finally able to find a niche in 

Europe was because of its ability to produce at least a small crop in the face of adversity.  

Since tuber seed is relatively large and the initial growing phase of the plant is vigorous, 

even under severely adverse conditions, the crop was able to re-emerge from new 
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sprouts.  Furthermore, production on marginal soils was greater than that for either 

wheat or barley.  In a time of constant warfare, the subterranean location of the crop was 

important because it was out of sight to enemy armies.  As a result, they were not burned 

or stolen by the opposing troops.    Perhaps just as important was it’s ease of preparation 

and it’s ability to “form flour without a mill and bread without an oven, and at all 

seasons of the year an agreeable and wholesome dish, unaided by expensive and 

injurious condiments” (Brown 1993). 

 There is some confusion as to when and from where the potato reached Colonial 

North America.  It is said to have arrived in Bermuda as early as 1613, and then reached 

the mainland, probably Canada, by 1621.  It is also said to have reached Canada by way 

of Britain in 1621 (Estabrook 1988).  This, however, is disputed because the first hard 

evidence of American colonial potato growing is 1685.  These potatoes presumably 

arrived from Northern Ireland (Zuckerman 1998). 

 In 1851, the Reverend Chauncey Goodrich began breeding late blight resistant 

cultivars by crossing common varieties with potato clones from South America.  After 

many years of work, he discarded all but a few clones believing his breeding efforts had 

been a failure.  In fact, his work has had tremendous bearing on the creation of modern 

cultivars due to his development of ‘Early Rose,’ an ancestor to more than 400 North 

American and European varieties, including Russet Burbank (Brown 1993). 

 In 1925, the Soviet scientist, N. Vavilov began collecting wild species and 

cultivars of potato (Brown 1993).  His work and that of others led to the establishment of 
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germplasm banks in Europe and the U.S. where germplasm is made available to breeders 

as a source of resistance to various pests, pathogens, and abiotic stresses. 

 Today potato is the leading vegetable crop in the U.S. and the 4th most important 

food crop worldwide.  Potato is grown in most areas of the world, with the largest 

production in China, followed by the Russian Federation, India, Poland, and the United 

States.  The annual potato crop in the U.S. is valued at an estimated $2,933,853,000, and 

the industry provides for the employment of thousands (National Potato Council 2003).   

 

Potato Production in Texas  

 Potatoes are grown in most regions of Texas with a state value of over $50 

million from about 20,000 acres (National Potato Council 2003).  Texas has potatoes in 

the ground 11 months out of the year, but the summer crop is the most economically 

important.  Planting of the summer crop begins on the Rolling Plains in mid February, 

and continues into April on the High Plains.  The crop is harvested beginning in the 

Rolling Plains in early June, and is completed with the harvest of the Dalhart crop in late 

September through early October.  With a summer harvest of 3,120,000 cwt and a sales 

value of over $30 million, Texas produces the most pounds of potatoes in a U.S. summer 

crop.   Due in great part to the work conducted by the Texas Potato Variety 

Development Program, yields in Texas have increased from less than 200cwt/acre in the 

1970s when the program began, to 400cwt/acre in 2002.  These are the highest summer 

crop yields in the nation, with an average price of  $10.30/cwt for the year.  States with 

the largest production of potatoes harvest their crops in September. By August, when 
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Texas potatoes are harvested, stores are running low, particularly on fresh market 

potatoes.  Thus the high value of the summer crop is greatly due to the marketing 

window created by the ability of Texas growers to plant and harvest earlier than the rest 

of the country.   

Although the summer crop is economically the most important, the spring crop 

should not be discounted.    Planting of the spring crop begins in the Rio Grande Valley 

in early December, followed by the Winter Garden in mid January.  These crops are 

harvested in April and May, and account for about 36% of Texas potato production.  

While the value of the spring crop, at $9.15/cwt, does not command as high a market 

price as does the summer crop, it is still considerably higher than the U.S. yearly average 

price of $6.60/cwt.  The total production of the spring crop is 2,070,000cwt, and it has a 

production value of approximately $16 million (National Potato Council 2002).   

Types of potatoes grown in Texas include russet, white and red skinned varieties 

as well as an increasing number of colored flesh specialty varieties.  Virtually the entire 

russet acreage in Texas is planted to strains of the potato cultivar Russet Norkotah  

selected by the Texas Potato Variety Development program.  These include TXNS112, 

TXNS296, TXNS278, and TXNS223.  It has been said that, without these strains, russet 

potato production on the Texas High Plains would be a thing of the past.  Atlantic is the 

most popular white skinned variety grown in the state, along with a number of 

proprietary Frito Lay varieties, and Red LaSoda and Viking are the primary red skinned 

varieties.  Yukon Gold is a yellow flesh variety that grows well in Texas, and in the past 

few years its acreage has increased dramatically.  This is due, in part, to the growing 
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health consciousness of the American public, and the high levels of carotenoids (yellow 

pigmented cancer fighting compounds) in this variety.   Another “healthy” variety, All 

Blue, was grown as a novelty variety on the High Plains last year at “Springlake Potato 

Sales, Inc.”  All Blue has dark purple skin and flesh, and is high in anthocyanins (red 

and blue pigmented antioxidants).  While this variety, to date, has only been grown on a 

small scale, as the public becomes more aware of the health benefits associated with 

anthocyanins and more used to the idea of eating purple potatoes, acreage and 

consumption of this variety are expected to increase.  

While most commercial potato companies are in the northern U.S. and Canada, 

there are a number of major potato producers with interests in Texas.  Perhaps most 

notable among these companies is Plano based Frito-Lay.  Frito-Lay is the nation’s 

leading snack food company and processes over 5 billion pounds of potatoes per year.  

Many of these are provided by contract growers in Texas.  One of the largest growers in 

Texas, CSS Farms, is the country’s largest supplier of raw product to Frito-Lay.  McCain 

Foods, the largest exporter of frozen potato products in the world, has an increased 

interest in Texas as well.  They recently teamed with Texas A&M to conduct proprietary 

trials in South Texas, and contributed financially to the state’s potato breeding program.  

Though there is increasing interest from processors in the state, only 30 percent of the 

state’s crop is used in processing.  The Texas crop is used primarily for fresh market 

sales, and Farming Technology is the major distributor of these fresh-market potatoes.   

Farming Technology, a Houston based company, distributes the popular “Mountain 

King” potatoes.  Mountain King has grown due in part to imaginative marketing 
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strategies.  Potatoes that were previously culled due to size have been re-packaged to 

form attractive new products.  These include “Petite Cooking Potatoes” as well as 

“Jumbo” potatoes.   

 

Nutritional Value of the Potato 

 The worldwide acceptance of potato has depended in very small part on its 

nutritional quality, which is frequently overlooked by an uninformed public.  Potato is 

rich in high-quality proteins, vitamins, minerals, and trace elements and has a high food 

value on a dry matter basis (International Potato Center 1984).  Furthermore, potato 

produces a high proportion of edible biomass, with the tubers 100% edible and the 

foliage and roots excellent as fodder or silage for livestock (Neiderhauser 1993).  In 

addition, the potato produces a greater amount of food per acre than either wheat or rice, 

and produces more yield per unit time (Ahmad and Kamal 1980; Niederhauser 1993).  

One acre of potato provides the annual energy and protein needs for over 10 people 

(Zuckerman 1998).   

 Protein -  On a dry matter basis, potato contains less protein than wheat or rice, 

but on a cooked basis, it is comparable to these cereal crops and twice that of the sweet 

potato and cassava (International Potato Center 1984).  Furthermore, the ratio of protein 

to carbohydrate is higher in potatoes than in cereals and other roots and tubers 

(Niederhauser 1993).  Only about 50% of the total nitrogen of potatoes is contained in 

proteins, with the remaining 50% as free amino acids (15%) and other compounds 

(35%).  On the basis of amino acid composition, the calculated protein quality is about 
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70% that of whole egg protein.  Potatoes provide an excellent source of lysine, and 

human feeding trials indicate that potato proteins are of a very high quality (Friedman, 

1996).  Furthermore, potato protein is superior to cereal protein because it contains 

substantially more of the essential amino acids, with the exception of histadine.  In other 

words, the amino acid content is better balanced than those of the cereals and the protein 

more comparable to that of animals.  On a per hectare basis, potato can produce more 

energy and utilizable protein than any other food crop (Ahmad and Kamal 1980; 

Niederhauser 1993). 

 Vitamins -  In addition to protein, potato is a good source of vitamins, minerals, 

and trace elements important to human health.  Perhaps best known of these is the high 

content of vitamin C, especially when compared to the complete lack of this vitamin in 

rice and wheat.  The vitamin C content of potato is comparable to mango and 

pomegranate, and more than half as high as that of tomato, orange and grapefruit 

(Ahmad and Kamal 1980).  According to Ahmad and Kamal, (1980), 60% of an adult’s 

daily requirement of about 25mg of vitamin C can be met by the ingestion of 100g of 

freshly harvested and cooked potato.  Based on the new nutritional labeling using values 

provided by the FDA in 1992, a medium potato (1/3 lb) provides 50% of the RDA of 

vitamin C for adults (Kolasa 1993).   Although there is considerable loss of vitamin C 

during storage, potatoes contribute an appreciable amount of this important vitamin in 

the human diet.  

 Potato is also rich in B vitamins, including thiamin (B1), riboflavin (B2), 

pyridoxine (B5), and nicotinic acid (B6).  Since the B vitamins are water soluble, some of 
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them may be leached out during boiling (Ahmad and Kamal 1980).  It was found that a 

fourth of thiamin, but no nicotinic acid was lost during the boiling process.  Potato is the 

richest source of nicotinic acid among all principal food crops and is much higher than 

rice in thiamin (Ahmad and Kamal 1980).  The production per hectare of total vitamins, 

including as vitamin C, is higher in the potato than in any other staple food crop 

(Niederhauser 1993).  Furthermore, 60-90% of the B vitamins along with other nutrients 

found in wheat are lost during milling of white flour, making it necessary to fortify flour 

after processing (Willett 1994).  While the B vitamins are replaced by fortifications, 

other lost nutrients may be nutritionally critical for persons with otherwise marginal 

intakes.  Since much of the intake of wheat is in the form of milled flour, the importance 

of potato as a source of B vitamins is magnified.  According to the National Potato 

Board, 1 medium potato provides 8% of the RDA for thiamin, 20% of the RDA for 

niacin, and 15% of the RDA for B6.  Potatoes, excluding French fries, are the third largest 

source of Vitamin B6 for adults ages 19-74, and fried potato products rank 10th.  

Together, they provide 9.2% of the vitamin B6 consumed by adults (Kolasa 1993).   

 Although it is not considered a significant source of vitamin A in the diet, potato 

contains small quantities of this vitamin (Ahmad and Kamal 1980).  This vitamin is 

found to be completely lacking in both wheat and rice, however.  Pro-vitamin A includes 

carotenes such as alpha, beta, and gamma carotene and cryptoxanthin.  Other carotenoids 

are found in potato in the form of pigments.   
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Pigments - Other pigments include anthocyanins, flavines, chlorophyll, 

porphyrin, and flavones.  Levels of these pigments, as well as vitamin A, vary among 

varieties (Ahmad and Kamal 1980). 

 Minerals - Minerals found in potato include potassium, phosphorus, magnesium, 

sulfur, chlorine, calcium, iron, silicon, zinc, boron, bromine, aluminum, sodium 

manganese, iodine, fluorine, copper, cobalt, arsenic, lithium, molybdenum and nickel.  

Although some of these minerals are essential, some are found due to chance presence in 

the soil in which the tubers were grown.  Found in large quantities are potassium, 

phosphorus, magnesium, sulfur, chlorine, calcium, silicon, iron and zinc.  Of these, only 

calcium, phosphorus, and iron are considered important from a dietary viewpoint 

(Ahmad and Kamal 1980).  Potatoes provide, per one-third pound serving, the following 

U.S. RDA: 8% of phosphorus, magnesium, copper and iron, 2% of zinc, 15% of iodine, 

10% of calcium, and 750mg of potassium (Kolasa 1993). 

 

Part #1.  Screening Potato Genotypes for Antioxidant Activity and Identification of 

the Responsible Compounds  

 

Micronutrients and Their Importance to Human Health 

 Much research has been conducted on the benefits of various phytochemicals in 

many fruits and vegetables and their significant impact on human health.  The 

importance of phytochemicals, including antioxidants, in tying up free radicals and thus 

fighting deadly diseases including cancer, stroke, and heart related health problems is 
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now recognized.  A number of classes of chemicals including polyphenols (flavonoids, 

flavanols, flavones, and isoflavones), carotenoids (carotenes, chlorophylls, 

expoxycarotenes, xanthophylls, etc.) and vitamins and minerals have been linked to the 

reduction and prevention of various diseases.   

 

Antioxidants   

Antioxidant behavior has been well documented for flavonoids, and other related 

polyphenols.  The activity of these compounds is dependent on whether or not a 

transition metal is available and the number and position of hydroxide substitutions on 

the heterocyclic rings (Cao et al. 1997).  Depending on the structure, they are able to act 

as antioxidants in a wide range of chemical oxidation systems.  This activity is due to the 

ease with which a hydrogen atom from an aromatic hydroxyl group can be donated to a 

free radical and the ability of an aromatic compound to support an unpaired electron due 

to delocalization around the π - electron system (Duthie et al. 2000).    From a biological 

standpoint, this is important because antioxidant compounds can protect cellular systems 

from the potentially harmful effects of processes that cause excessive oxidation.  They 

can interrupt free radical chain reactions and scavenge free radicals (Moline et al. 2000).  

These properties are important in preventing cancer, heart, vascular, and 

neurodegenerative diseases (Prior et al. 1998).  In addition, antioxidants aid the immune 

system of elderly individuals, and are the most promising preventative strategy against 

the formation of cataracts (Ames et al. 1993; Willett 1994). 
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 Carcinogenesis is a multistage process of genetic change affecting proto-

oncogenes or tumor suppressor genes that can be initiated by increased and persistent 

damage to DNA.  This damage becomes apparent when the cell replicates and divides.  

Reactive O and N species are potential carcinogens since they can induce structural 

changes in DNA by oxidation, methylation, depurination, and deamination reactions. 

Polyphenols, such as luteolin, kaempferol, quercetin and myricetin have been shown to 

inhibit this oxidative damage and significantly reduce DNA damage (Duthie et al. 2000).  

This is accomplished by various mechanisms.   Basic research has identified three steps 

in chemical carcinogenesis, and 4 corresponding potential mechanisms by which 

components in fruits and vegetables can act to prevent cancer.   

The earliest stage of cancer induction, termed initiation, refers to immediate 

events surrounding the interactions between carcinogens and DNA that result in 

irreversible alterations of DNA. This allows the transformation of the cell to a 

nonmalignant state (Thompson 1994).  The next stage, referred to as promotion, consists 

of the selection and proliferation of the initiated cells.   The last stage of this process is 

the progression, also known as metastasis, where the benign lesion will become a highly 

malignant rapidly growing neoplasm.   The prevention of cancer is determined by the 

interception of DNA-reactive elements, the activation and detoxification of potential 

carcinogens, and the interference with the proliferation of mutated cells.  Repeatedly, 

studies on fruits and vegetables have shown their ability to interfere with each step in 

chemical carcinogenesis.   
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Many plants are high in antioxidants, and these antioxidant compounds are 

efficient interceptors of DNA-reactive elements.  Presumably, since most mutagenic 

agents are deficient in electrons, they are attracted to electron-rich sources in the cell.   

DNA, RNA, and proteins have a high nucleophilic potential to react with these unstable 

mutagenic radicals, and when stable bonds form between the two reactants, damage 

occurs (Figure 2-1).  When consumed, the antioxidants in fruits and vegetables can 

reduce damage to the DNA, presumably by presenting alternate targets for attack by the 

carcinogenic radicals (Wargovich 2000).  For example, the hydrogen atom of the OH 

group of vitamins and other phenolics is very easy to remove, thus free radicals 

preferentially combine with these antioxidants instead of lipids, DNA, RNA, and 

proteins.  The radicals produced in the reaction are relatively unreactive, and in the case 

of vitamin E,  is able to convert back to its original state by accepting a hydrogen from 

another antioxidant such as vitamin C (Thompson 1994). 

 

 

 

 

 

   

 The protection against cancer by antioxidants is supported by a wealth of 

information on the association of fruits and vegetables in the diet and a decreased risk of 

cancer formation.  As evidenced by more than 200 case-control or cohort studies, people 

R. 
DNA 
RNA 

Lipids 
Protein 

Tissue Damage 

Cancer 
Heart Disease 

Cataract 
Aging 

FIGURE 2-1.  
Role of free radicals in disease.  Antioxidants, like those contained in fruits and 
vegetables form alternate targets for attack by the reactive radicals (R.). 
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consuming higher amounts of fruits and vegetables or those containing high levels of 

blood carotenoids were less prone to develop various cancers.  In addition, there is 

strong evidence for an inverse relationship between vegetable and fruit intake and lung, 

stomach, colon, oral, esophagus, larynx, pancreas, bladder, breast, and cervical cancers 

(Willett 1994;  Wargovich 2000).  According to the American Institute for Cancer 

Research, fruit and vegetable intake plays a strong protective role in four tumor sites:  

oral-pharynx/esophagus, lung, stomach, and colon.  Furthermore, there is strong 

supporting data that consumption of fruits and vegetables results in a reduced risk for 

pancreas, breast, and bladder cancers.  Of equal importance was the finding that no 

increase in cancer risk at any tumor site has been reported for habitual consumers of 

fruits and vegetables (Wargovich 2000).   Smith et al. (1999) gave a controlled elderly 

population fruit and vegetable supplements and reported that it resulted in a decrease in 

DNA damage.    The decrease in DNA damage is one probable explanation for the 

increased health benefits associated with consuming fruits and vegetables (Smith et al. 

1999). 

 Antioxidant inadequacy is associated with oxidative damage to DNA of the germ 

line as well as somatic cells. Oxidative lesions in sperm are increased 250% when the 

ascorbate levels are below normal in seminal fluid.  These reduced ascorbate levels have 

been correlated with smoking and childhood cancer in the offspring (Ames et al. 1993). 

 In addition to the reduction in cancer rates, high consumption of antioxidants is 

related to reduced risk of cardiovascular disease including heart attack and stroke.  There 

is valid data showing that vitamin E combines with LDL (low density lipoprotein) 
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cholesterol and prevents its oxidation (Weisburger 2000).  In a cross-cultural study of 

middle-aged European men, an inverse correlation was observed between levels of 

antioxidants, particularly vitamin E, in the plasma and ischemic heart disease mortality.  

In a prospective study, a similar correlation was seen in females between coronary heart 

disease and the intake of vitamin E or β-carotene (Thompson 1994). 

 Based on current knowledge of the genetic variation in various plant 

antioxidants, conventional plant breeding holds significant promise for developing 

genotypes of fruits and vegetables with improved antioxidant content and composition.   

In addition, direct genetic manipulation is a potential tool to improve the antioxidant and 

nutrient levels in various fruits and vegetables (Kalt and Kushad 2000).   

 

Phenolics and Polyphenols 

Phenolics, ubiquitous to the plant kingdom, are composed of several classes of 

compounds including flavonoids (flavones, isoflavones, flavanones), anthocyanins and 

catechins.  The phenylpropanoid pathway synthesizes the majority of phenolic 

compounds, and they are characterized by cyclic rings with hydroxyl substitutions at 

various positions (Figure 2-2) (Duthie et al. 2000).  These hydroxyl substitutions are 

quite electrophylic and react readily with the damage-causing free radicals that 

frequently attack cells.   
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Polyphenols have been shown to exert anticarcinogenic effects by modulating 

enzyme systems that metabolize carcinogens or pro-carcinogens to genotoxins by 

converting them to less reactive compounds before they react with DNA.  The 

Cytochrome 450 superfamily of enzymes metabolizes many pro-carcinogens to reactive 

intermediates that bind DNA and induce malignant transformation.  Polyphenols have 

been shown to inhibit this family of enzymes thus reducing the formation of reactive 

intermediates (Stoner and Mukhtar 1995).  Glutathione reductase activity in rats has also 

been shown to be induced by certain polyphenols (quercetin, flavones, flavanones, and 

tangeretin), yet inhibited by others.   An induction of this enzyme is generally considered 

to reflect an increase in cellular protection, ensuring that potential toxins are conjugated 

and excreted more rapidly from the body.   

 Polyphenols have been implicated in the reduction of many kinds of cancer.  

Isoflavones have been shown to protect against estrogen related cancers such as breast, 

endometrial, ovarian, prostatic and colon (Arai et al. 2000), while others have been 

implicated in antiproliferative effects of human and rodent ovarian, leukaemic, intestinal, 
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FIGURE 2-2.  
Basic structure of the flavonoids, flovones, flavanones and isoflavones.   
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lung and bladder cancer cells.  For example, caffeic and ferulic acids prevent lung 

cancers in mice (Wattenberg 1992), and ellagic acid was shown to inhibit esophageal 

cancer when tested in rats (Mandal and Stoner 1990).   Among polyphenolic compounds, 

the catechins are among the most potent anticarcinogenetic antioxidants tested to date.  

While many antioxidants are only effective against carcinogenesis in the initiation stage, 

green tea extracts, containing catechins are active in all phases of carcinogenesis 

(Dreosti et al. 1997).    

Polyphenols can alter gene expression by interacting directly with DNA or by 

blocking signal transduction pathways.    They have been shown to increase gap 

junctional intercellular communication between rat liver epithelial cells, which can 

reduce the early development of cancer. Much of the reduction in cancer appears to be 

associated with the up-regulation of the tumor suppressor gene p53, which regulates cell 

cycle arrest and apotosis and the down-regulation of the proto-oncogene Ki-ras, which, 

when down-regulated, is associated with the inhibition of proliferation, an increase in 

apotosis, and the induction of cellular differentiation (Duthie et al. 2000).   

In addition to contributing to a reduction in cancer, polyphenols have been 

implicated in several studies as being inversely associated with coronary heart disease 

and stroke (Moline et al. 2000).  Oxidation reactions have been reported to play a 

central role in atherogenesis, and epidemiological studies have shown an association 

between cardiovascular disease and low plasma concentrations of ascorbate, 

tocopherol, and β-carotene (Ames et al. 1993).  Furthermore, there is an inverse 

correlation between quercetin intake and plasma LDL cholesterol concentration (Arai 
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et al. 2000). Polyphenols have been shown to block LDL oxidation, decrease the 

formation of atherosclerotic plaques and reduce arterial stiffness, leaving arteries more 

responsive to endogenous stimuli of vasodilatation  (Moline et al. 2000; Arai et al. 

2000; Duthie et al., 2000).    In addition, they have been shown to inhibit lipoxygenase 

and cyclogenase activity leading to lower aggregation of platelets and a reduction in 

thrombotic tendency (Moline et al. 2000).     

Extracts high in flavonoids have been shown to prevent the onset of the 

deleterious effects of aging on both neuronal and cognitive behavioral functions 

(Joseph et al. 1999).  In early studies, Joseph et al. (1998) were able to demonstrate 

that feeding rats diets supplemented with strawberry and spinach extracts led to 

increased performance on a battery of neurological tests.  They indicate that there is a 

synergistic effect among antioxidants in the prevention of age-related diseases, and 

that the observed potency of the antioxidant protection is ultimately due to “the myriad 

of interactions among various classes of phytochemicals present in food” that is high 

in antioxidant activity.  There is evidence that the protective effect of these plant 

extracts is not due to Vitamins C or E, but to other phytochemicals.  Furthermore, 

protection against oxidative stress may not be the only mechanism at work. Alterations 

in membrane rigidity caused by the presence of flavonoids may contribute to the 

observed increase in neuronal and cognitive behavioral functions (Joseph et al. 1998). 

While polyphenols are quite abundant in the plant kingdom and human diet, their 

concentrations in food can vary by many orders of magnitude, and are influenced by 

several factors including species, variety, light, degree of ripeness, processing and 
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storage (Kuhnau 1976; Hermann 1988; Robards and Antolovich 1997; Peterson and 

Dwyer 1998, Duthie, 2000).  In a review on tea leaves, Stagg and Millin (1975) stated 

that the types and proportion of catechins in tea leaves varies with season, leaf age, 

climate, processing, and horticultural practices.  Furthermore, Crozier et al. (1997) 

demonstrated varietal differences in tomatoes and lettuce for flavanoid content.  

Varietal differences suggest a genetic base for flavonoid content; thus there is great 

potential to alter the levels of these compounds through breeding.   

 

Carotenoids 

  Carotenoids are another important class of phytochemicals found in fruits and 

vegetables.  They are also distributed in human serum, milk and tissues.  Carotenoids, 

like flavonoids, exhibit biological activity of chemopreventive agents by inhibiting 

genetic damage, protecting against oxidative damage, increasing metabolic 

detoxification, restoring tumor suppressor function and/or inhibiting oncogene 

expression, enhancing the activity of gap junction communication, and stimulating 

immune response (Khachik et al. 1999).  Examples of carotenoids include alpha, beta, 

and zeta carotene, lycopene, phytofluene, phytoene, lutein, zeaxanthin, neoxanthin, 

viloxanthin, antheraxanthin, and alpha and beta cryptoxanthin.  Their polyene structure 

allows them to absorb light and to quench singlet oxygen free radicals (Hughes et al. 

2000).   This polyene chain, through addition mechanisms, allows the incorporation of 

free radicals or reactive species, thus slowing their propagation.  When this radical 

propagation chain is broken, the pigment is destroyed.  The antioxidant effectiveness 
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of a carotenoid is determined by the stability of the intermediate formed when a radical 

is added to the pigment structure.  The more stable the intermediate, the more stable 

the color and the higher the antioxidant activity.  One of the difficulties of working 

with carotenoids is that they are both light and oxygen sensitive, making them quite 

unstable.  Perez-Galvez and Minguez-Mosquera (2002) reported the following stability 

order of carotenoids when the pigments were exposed to a free radical indicator: β-

carotene < zeaxanthin < capsanthin < capsorubin.  These results are similar to those 

published by Terao (1989) who reported the order of stability as: β-carotene < 

zeaxanthin < canthaxanthin < astaxanthin.  In contrast, Miller et al. (1996), determined 

the relative ability of dietary carotenoids to scavenge the ABTS.  radical cation and 

found very different results.  The sequence for radical scavenging abilities is 

canthaxanthin < astaxanthin < echienone < lutein < Zeaxanthin < β-cryptoxanthin < α-

carotene < β-carotene < lycopene.   Results published by Bohm et al. (2002) using the 

Trolox equivalent antioxidant capacity (TEAC) assay are consistant with those of 

Miller, placing lycopene and it’s isomers above alpha and beta carotene and 

zeaxanthin.     

According to Ames (1983), β-carotene is a plant’s main defense against singlet 

oxygen generated as byproducts from the interaction of light and chlorophyll.  Like 

polyphenols, carotenoids have been implicated in the prevention of numerous kinds of 

cancer including prostate (Giovannucci et al. 1995) and lung cancers (Willett 1994).  

Furthermore, carotenoids, particularly lutein, lycopene and α-carotene have shown 

significant promise in the prevention of colon cancer.   This was demonstrated by their 
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ability to effectively protect against formation of colonic aberrant crypt foci, which are 

precursor lesions of colon cancer.    In addition to their preventative properties in colon 

cancer, lutein, lycopene, β-carotene, and α-carotene have also been shown to inhibit 

proliferation of human endometrial, breast, and lung cancer cells in a dose-dependent 

manner (Narisawa et al. 1996).  In another study conducted in Japan, the authors 

demonstrated significant inhibition of aberrant crypt foci when mice were treated 

during the post-initiation stage with lutein, fucoxanthin, or THC (Kim et al. 1998b). 

This indicates that not only can carotenoids provide protection against initiation, but 

also may provide an inhibitory activity against tumor promotion and proliferation of 

already initiated cells.  

Perhaps most significant is the effect that lutein, lycopene and zeaxanthin have 

on eye health.  Lutein and zeaxanthin are present in the macula (the center of the 

retina) and have been shown to prevent age-related macular degeneration (AMD), 

which results from long-term deterioration of the center of the macula (Seddon et al. 

1994). Their role in prevention is due to their contribution in the reduction of oxidized 

and denatured proteins in the lens (Willett 1994).  Carotenoids have also been shown 

to have a significant impact on the prevention of cataracts.  Fourteen carotenoids have 

been identified in the human retina, and others have been found in lung, breast, liver, 

and cervical tissue.     

 Also linked to carotenoid levels are anti-inflamatory properties.  It is believed 

that this is achieved by inhibiting the transcription factor NF-kB, which is required for 

maximal transcription of many inflammatory cytokines and adhesion molecules.  
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Reactive oxygen species activate the transcription factor by a variety of stimuli, and the 

antioxidant properties of carotenoids reduce the concentration of these oxygen species 

(Hughes et al. 2000).  Studies conducted on the blood monocytes of healthy male non-

smokers show that β-carotene can enhance immune response by increasing cell surface 

expression of major histocompatibility complex (MHC) class II monocytes.   Studies 

involving lycopene and lutein were not conclusive (Hughes et al. 2000); however, they 

did suggest an interactive or additive effect of different carotenoids on immune function.  

 Consumption of fruits and vegetables has been linked to a lower risk of 

degenerative diseases (Aimes et al. 1993), heart disease mortality, reduced incidence and 

mortality rates for cancer (Joseph et al. 1999), and reduction in cardiovascular disease 

(Ames et al. 1993). 

 By 1995, many studies had been conducted on β-carotene, but there had been 

very few conducted on non-vitamin A active carotenoids such as lutein and zeaxanthin.  

While β-carotene was assumed to be an important chemopreventive agent due to 

epidemiological investigations on green and yellow vegetables, this is not necessarily the 

case.  It was reported in 1994 that β-carotene actually promoted lung cancer in smokers 

and led to the idea that β-carotene might be a mere marker for other chemopreventive 

agents that co-exist with it in green and yellow vegetables.  Nishino (1995) researched 

the effects of a topical application of α-carotene, β-carotene, and fucoxanthin on mouse 

skin and found that α-carotene reduced the incidence of skin cancer, while fucoxanthin 

completely suppressed it, and β-carotene had no significant effect.    Furthermore, 

fucoxanthin, added to the drinking water, was able to reduce the percentage of duodenal 
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tumor-bearing mice, and α-carotene administered in the same manner significantly 

reduced the number of lung tumors per mouse (Nishino 1995).   Khachik et al. (1995) 

were the first to show evidence of in vivo oxidation of lutein and zeaxanthin, leading 

them to believe that these compounds possess strong antioxidant potential.   In 1998, 

Paetau et al. were able to expand on this and show that when diets were supplemented 

with lycopene, blood serum levels also increased, thus indicating that lycopene was 

bioavailable, especially when processed and in the presence of fat (Paetau et al. 1998).  

Although there are over 40 dietary carotenoids, only 21 have been identified in human 

plasma.  These include lutein and zeaxanthin which are abundant in dark green 

vegetables such as broccoli, spinach, and green beans, and which are also present in 

potato (Al-Saikhan et al. 1995; Al-Saikhan 2000).   

 Much research has been conducted on various vegetables to determine their 

carotenoid profiles.  Peppers, one of the most notorious vegetables for containing 

carotenoids, has been reported to contain neoxanthin, capsorubin, violaxanthin, 

capsanthin, antheraxanthin, capsolutein, zeaxanthin, lutein, β-cryptoxanthin, and β-

carotene (Minguez-Mosquera and Hornero-Mendez 1993).  There are differering reports 

on the relative amounts of carotenoids in pepper, depending on the method used for 

analysis.   Minguez-Mosquera and Hornero-Mendez (1993) reported, based on reverse-

phase HPLC analysis, that lutein and zeaxanthin are absent in ripe fruit (red peppers) but 

present in green.  Furthermore, they were able to demonstrate major difference between 

varieties, indicating the probability that carotenoid content is under genetic control in 

paper.  Mejia et al. (1988) reported vitamin A activities of several varieties of Mexican 
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peppers to range from 20-109.9 ug/100gfw for α-carotene, 5.5-599.4 ug/100gfw for β-

carotene, and 1.6-7.0 ug/100gfw for β-cryptoxanthin.   

In a comprehensive study on carotenoid levels in different fruits and vegetables, 

Hart and Scott (1995) analyzed both cooked and raw Brussels sprouts, beans, broccoli, 

cabbage, carrots, cauliflower, leeks, lettuce, parsley, peas, pepper, sweet-corn, spinach, 

onions, tomato, watercress and cabbage for levels of lutein, zeaxanthin, β-cryptoxanthin, 

lycopene, α-carotene, and β-carotene.  While lutein was found in all of the vegetables 

sampled, good sources (>1000 ug/100g) were reported to be broccoli, butterhead lettuce, 

parsley, peas, peppers, spinach, and watercress.  Good sources of β-carotene were 

broccoli, carrots, greens, butterhead lettuce, parsley, spinach, and watercress.  

Zeaxanthin was found only in beans (34ug/100g), orange peppers (1608ug/100g), and 

sweetcorn (437ug/100g), and β-Cryptoxanthin was found only in orange peppers 

(90ug/100g).  The authors reported that the content of particular items could have been 

affected by variety, maturity, growing conditions, season of the year, and the part of the 

vegetable that was consumed.  They also pointed out that the outer layers (skin, leaves, 

etc.) were much higher in carotenoid content than the inner layers.  Cooking seemed to 

cause little or no loss in carotenoid content, and in fact, frequently increased the levels 

available for extraction.  Despite stability during cooking, the authors stress the 

importance of degradation caused by light, heat, air, and active surfaces, and recommend 

working under yellow light and using solvent modifiers during HPLC analysis to 

increase the stability of the compounds (Hart and Scott 1995).  Kimura and Rodriguez-



29 

 

 

Amaya (2002) suggested storing standards under nitrogen with BHT at the lowest 

temperature possible to increase their shelf life. 

In a similar study to that conducted by Hart and Scott, Granado et al. (1992) 

analyzed the carotenoid content in raw and cooked Spanish vegetables.  They separated 

the vegetables according to color (green, red-orange, and yellowish white).  Lutein 

and/or zeaxanthin were observed in all of the vegetables analyzed with a range in raw 

vegetables from 1503 µg/100g in beet to 8µg/100g in red cabbage.  The cruciferous 

vegetables, frequently reported to be high in chemopreventive agents, had low lutein and 

β-carotene contents.  Zeaxanthin was detected in spinach (377µg/100g), sweet red 

peppers (148µg/100g), potatoes (4µg/100g), and cabbage (4µg/100g) with trace amounts 

in red cabbage, cauliflower and onions.  Sweet red peppers and squash contained 

199µg/100g and 6µg/100g of β-cryptoxanthin, respectively, while trace amounts were 

detected in cabbage and potatoes.  Alpha-carotene was detected in green beans, carrots, 

and potatoes, and lycopene was found in tomato.  β-carotene was found in all of the 

vegetables analyzed.  In results similar to those published by Hart and Scott, the authors 

reported that cooking increased the levels of carotenoids detected.  These elevated levels 

are explained by increases in the chemical extractability of carotenoids after cooking 

(Granado et al. 1992). 

Another survey study, based on HPLC analysis of 69 items, reported the 

carotenoids present in foods in the Finnish diet, including vegetables, fruits, berries, 

mushrooms, and their respective products.  Seasonal differences were reported for some 

of these items.  Lutein (mixed with zeaxanthin) and β-carotene were the predominant 
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carotenoids found in vegetables.  The highest lutein values (> 4400µg/100g) were 

obtained in green vegetables such as parsley, celery, dill and spinach.  The amount of 

lutein was moderately high (1800µg/100g) in broccoli, Bruessel sprouts, leaf lettuce, 

leek, yellow pepper, and green pepper.  Thirteen µg/100g lutein were reported in the 

summer cop of potato while 60µg/100g were reported in the spring.  β-carotene was 

found to be rich (1000-7600µg/100g) in carrot, parsley, dill, spinach, broccoli, leek, 

sweet red pepper, tomato ketchup and chanterelle, while the level in potato was reported 

to range from 3-8µg/100g based on the season.  β-cryptoxanthin was found to be high in 

fresh peaches (51µg/100g), but higher in those which had been processed.  It was not 

detected in potato.  The β-carotene and lutein levels were reported to be the lowest in the 

summer (June and August). While the levels of carotenoid in potato appear to be low, 

the authors point out the per-capita consumption of potato in Finland (187g/day) far 

surpasses that of any other fruit or vegetable.  In fact, the “other fresh vegetables” 

combined account for only 101 g/day (Heinonen et al. 1989).  

While many laboratories stress the importance of the instability of carotenoids, 

Scott et al. (1996) indicate that this is not as big a factor as previously perceived.  In 

long and short term study experiments, the authors found that there were no significant 

losses in carotenoids in solution for a period of up to 28 days at 37 C.  Furthermore, the 

reference material (mixed vegetables) from which the extractions were performed 

showed no losses in carotenoids over a 3-year period.    In an interlaboratory study, the 

authors compared variation between laboratories for HPLC analysis for lutein, 

zeaxanthin, lycopene, α-carotene, and β-carotene in a vegetable mix.  Their results 
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indicate that the differences between laboratories are not outside the accepted limits of 

variation (Scott et al. 1996).   

 

Antioxidants in Potatoes   

It has been established that fruits and vegetables in general contain antioxidants 

that are important to human health.   Potatoes, being the fourth most important food crop 

worldwide, make up a significant proportion of the diet, and are of particular interest to 

this study.   While few antioxidant studies have been conducted specifically on potato, it 

has been included in many survey studies of various fruits and vegetables.  Arai et al. 

(2000) in a study on dietary intake of 4 different antioxidant compounds by Japanese 

women found that 23% of the kampherol in their diets was acquired through 

consumption of potato.   In a study conducted on water extracts of 12 vegetables 

commonly consumed in the Mediterranean diet, potato was ranked among the highest in 

protective activity (PA) against rat liver microsome lipid peroxidation.  Cluster analysis 

placed potato in a cluster with mushroom, garlic, and cauliflower and above white 

cabbage, eggplant, zucchini, onion, yellow bell pepper, tomato, celery and carrot.  

Furthermore, it was found processing through freezing, boiling, and freeze drying had 

little effect on protective activity of most vegetables (Gazzani et al. 1998).  

 Lachman et al. (2000) have published several review articles on the level of 

antioxidants in potatoes and the importance of these to the human diet.  The authors state 

that potato tubers present a very significant source of antioxidants in human nutrition, 

contributing about 64mg polyphenols per capita in the U.S.  In terms of a food source, 
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they are second only to tomatoes as a source of polyphenols.   Potatoes are rich in 

antioxidants such as polyphenols (1226 to 4405 mg/kg), ascorbic acid (170-990mg/kg), 

carotenoids (as high as 4mg/kg), and alpha-tocopherol (0.5-2.8mg/kg) (Lachman et al. 

2000). 

 

Phenolics in Potatoes 

Potatoes have been reported to be a rich source of polyphenols in the diet.  It is 

now recognized that the major polyphenolic constituents in potato are L-tyrosine, 

chlorogenic acid, caffeic acid, scopolin, and cryptochlorogenic acid.    Yamamoto et 

al.(1997) reported the caffeic acid level in potato tubers as high as 0.2 to 3.2 mg/kg, with 

the skin containing double these amounts (Yamamoto et al. 1997 as cited in Lachman et 

al. 2000).  Other identified polyphenols in potato include neochlorogenic acid (7mg/kg), 

p-coumaric acid (4mg/kg), sinapic acid (3mg/kg), 3,4-dicaffeoyl-quinic acid, ferulic acid 

amides, and glycosides of delphinidin, quercetin, and petunidin (Lachman et al. 2000).  

Dao and Freidman (1992) reported chlorogenic acid concentrations in potato to 

range from 9.7 to 18.7 mg/100gfw, with only a 2-fold difference between the 7 varieties 

analyzed.  Concerned with after cooking darkening, the authors were interested in the 

amount of decrease in chlorogenic acid after cooking and processing.  The total 

chlorogenic acid content of one variety was reduced 46% after microwaving, 60% after 

boiling, and 100% after baking in an oven.  Furthermore, commercially obtained French 

fries, mashed potato flakes, and potato skins contained no chlorogenic acids, indicating 

that chlorogenic acid is susceptible to heat.    The authors also noted the possibility that 
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polyphenols may be under the same regulatory control as toxic glycoalkaloids found in 

potatoes.   In another study on after cooking darkening, Mondy et al. (1979) reported 

that phenolic acid content of potatoes increases with higher applications of nitrogen 

fertilizer.   Potato peel extract was shown to possess antimicrobial activity at high 

concentrations, This activity was partially attributed to phenolic compounds found in 

potatoes.  The phenolic acid profile was reported to be chlorogenic acid (50.3%) caffeic 

acid (41.7%), gallic acid (7.8%), and protocatechuic acid (0.21%) (Rodriguez de Sotillo 

et al. 1998).    The stability of potato peel extracts had previously been investigated by 

the same group, with results contrary to those reported by Dao and Freidman (1992).  

Prior to analysis, the authors autoclaved potato peel waste for 10 minutes and 

determined that it had no affect on the phenolic concentration.  Comparing both water 

and methanol extractions, it was determined that the concentration of total phenolics was 

41.65 mg/100g and 32.15mg/100g, respectively.  Increasing the temperature for the 

water extraction resulted in a total phenolic yield of 48mg/100g; however it altered the 

relative composition of the phenolics identified.  The major phenolics identified in the 

potato peel extract were chlorogenic acid, gallic acid, p-coumaaric acid, and caffeic acid.  

Storing the extract for seven days at 4 C and 37 C in the dark had no apparent effect on 

phenolic concentration.  Extracts stored at 25 C in the light lost all of their chlorogenic 

acid by day seven, while the caffeic acid concentration increased.  The increase in 

caffeic acid was presumably a degradation product of chlorogenic acid; however, not all 

of the chlorogenic acid could be accounted for in this fraction.  The loss of chlorogenic 

acid is attributed, at least in part, to exposure to light (Rodriguez et al. 1994).     
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Both environmental conditions and genetics have been reported to have an 

impact on the level of polyphenols contained in potatoes.  Hamouz et al.(1999a) reported 

that over a three year period potatoes cultivated on loam soils in warm dry regions with 

low altitudes contained a lower amount of total phenolics than those cultivated in cooler 

and more humid regions on sandy loam soil.  Furthermore, significant differences in 

total phenolics were found between varieties (Agria and Karin), and these differences 

were not significantly altered by year.  Depending on the variety and location, total 

phenolic contents were reported to range from 36.85 mg/100gfw to 52.89 mg/100gfw.  

In a similar study conducted by the same group, it was determined that organically 

grown potatoes contained higher levels of phenolics than did the same varieties grown in 

a conventional manner.   The authors atributed the differences in values to the harsher 

growing conditions of the organically grown potatoes.   It is hypothesized that the 

chemically untreated plants defend themselves against unfavorable extrinsic factors with 

higher levels of polyphenols.  The levels of polyphenols were reported to range from 

35.54 mg/100gfw to 56.08 mg/100gfw.  In agreement with the aforementioned study, 

significant differences were reported between locations and varieties (Hamouz et al. 

1999b).    

 Lewis et al. (1999) investigated the changes in flavanoid and phenolic acid 

concentrations during development and storage of colored potatoes.   Following a time-

course study, it was reported that flavanoid concentrations increased with increasing 

tuber weight, reaching a maximum of 550µg/gfw in tubers weighing between 250 and 

400 g.  These levels decreased as the tubers grew larger, but this decrease was attributed 
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to a dilution effect.  The phenolic acid concentration peaked at a tuber weight between 

70 and 100g, then decreased in tubers between 150-400g.    Storage of the tubers at 4 C 

resulted in a slight increase (from 2500 to 2800 µg/gfw) from harvest to 120 days after 

storage.  After the initial 120 days of storage, no changes were observed.  In all cases, 

individual compounds within the anthocyanin, flavonoid, or phenolic classes, changes 

were similar.  No changes were observed in the ratios of individual compounds during 

storage. 

 While little is known about the antioxidant content of wild potato species, a 

limited screen was performed on S. acaule, S. berthaultii, S. gourlayi, S. oplocense, S. 

sanctae-rosae, S. sparsipilum, S. speggazzinii, and S. stenotomum (Lewis et al. 1998a).  

While the study analyzed many parts of the plant, including skin, flesh, flowers, and 

leaves, since only the tubers are involved in nutritional value, this discussion will be 

limited to levels of phenolics and flavanoids in the skin and the flesh.  For all species, 

the concentration of phenolics was considerably higher in the skin than in the flesh.  

Phenolic acids in the skin of wild species ranged from 602 to 3035 µg/gfw, while levels 

in the flesh ranged from 84 to 274 µg/gfw.   In skin extracts, chlorogenic acid accounted 

for 40-50% of the total phenolic acid content, while caffeic acid was present at 10-30%.  

A more diverse phenolic profile was observed in the flesh of wild species, which 

contained 30-40% protocatechuic acid, 20-30% chlorogenic acid, and 20-30% p-

coumaric acid.  The level of phenolics in S. tuberosum ranged from 157 µg/gfw in the 

flesh, and 1668-4323 µg/gfw in the skin.  In the wild species, flavonoid concentrations 

ranged between 20 and 170 µg/gfw in the skin, and from 0-25 µg/gfw in the flesh.   The 
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major flavonoids in the skin and flesh were catechin, epicatechin, eriodictyol, and 

naringenin.  The concentration of flavonoids was significantly higher in S. tuberosum 

than in the wild species.  The effects of disease were noted to greatly increase the 

concentrations of total phenolic acids and flavonoids.  It was reported that infection with 

late blight increased the flavonoids (epicatechin, eriodictyol, and naringenin) 100 fold.  

These flavonoids were not observed in healthy tubers.  P-hydroxybenzoic acid was 

found in tubers of some wild species, but was completely absent in the S. tuberosum 

genotypes analyzed (Lewis et al. 1998b).   

In a detailed study on anthocyanins, flavonoids, and phenolic acids, Lewis et al. 

(1998a) determined the major phenolic acids present in the skin of potatoes were 

chlorogenic acid, caffeic acid, protocatechuic acid, vanillic acid, p-coumaric acid, ferulic 

acid, sinapic acid, salicylic acid, and an unidentified phenolic acid.  The flavanones, 

eriodictyol and naringenin were also present in moderate quantities.  Phenolic acids 

present in low concentrations were catechin, syringic acid, and cinnamic acid.  The 

primary phenolic acids present in tubers were chlorogenic acid, caffeic acid, 

protocatechuic acid, p-coumaric acid, ferulic acid, and traces of gallic acid, sinapic acid, 

catechin, epicatechin, and eriodictyol.  Quantification of the phenolic acid components 

of tuber skins revealed that they contained 2000-5000 µg/gfw of phenolic acids, 200-

300µg/gfw flavonoids, and 0-7000 µg/gfw anthocyanins.  Purple and red skinned tubers 

contained almost twice the concentration of phenolics than did white skinned tubers.   

Differences were also noted between seasons.   All tuber skins showed high 

concentrations of chlorogenic acid (1000-4000 µg/gfw), with moderate amounts of 
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protocatechuic acid (100-400 µg/gfw), caffeic acid (40-500 µg/gfw), vanillic acid (20-

200 µg/gfw), and sinapic acid (20-250 µg/gfw), with lower concentrations of gallic acid, 

syringic acid, p-coumaric acid, ferulic acid, salicylic acid, and cinnamic acid (all 0-30 

µg/gfw).   Furthermore they contained catechin, epicatechin, eriodictyol, kaempherol, 

and naringenin (all having 10-150 µg/gfw), and lower concentrations of quercetin, 

myricetin, and rutin.  Tubers contained much lower concentrations of phenolic acids, 

flavonoids, and anthocyanins than did the skin in both the wild and cultivated genotypes.  

The concentration of phenolic acids in the flesh was reported to be 100-600 µg/gfw, 

flavonoids 0-30 µg/gfw, and anthocyanins 0-2000 µg/gfw.  Unlike in the skin, little 

variation was noted between seasons in the tubers.  Tubers with colored flesh had three 

to four times the concentration of phenolic acids than white-fleshed tubers.   Levels of 

phenolic acids reported in potato tubers were as follows:  Chlorogenic acid (30-900 

µg/gfw), protocatechuic acid (50-200 µg/gfw), vanillic acid (5-40 µg/gfw), p-coumaric 

acid (5-40 µg/gfw), and traces of other phenolic acids.   The differences in relative levels 

of these compounds were significant between tissues (Lewis et al. 1998a). 

 In a comprehensive review on potato polyphenols, Freidman (1997) reported that 

chlorogenic acid constitutes up to 90% of the total phenolic content of potato tubers.  It 

is stated in the literature that spectrophotometric analysis of potato chlorogenic acid gave 

higher values than did analysis by HPLC or GLC.  Freidman points out that these values 

may be higher because chlorogenic acid isomers contribute to the total absorbance when 

using spectrophotometry.  HPLC is able to differentiate between these isomers; however, 

this method may not always be satisfactory because of time and light dependent changes 
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undergone by chlorogenic acid.   Depending on the objective of the study (whether or 

not there is interest in degradation products), UV methods may have an advantage over 

HPLC. 

 Reeve et al.(1969) reported that phenolic acids are not evenly distributed 

throughout the tuber tissue.  This has been verified in numerous studies conducted after 

this original report.  Chlorogenic acid is much more concentrated in outer tissue zones 

such as the skin.  It is also highly concentrated in the phloem and phloem parenchyma 

tissues of both the cortex and the perimedullary zone.   Furthermore, tyrosine, though 

more evenly distributed than chlorogenic acid, is more concentrated in the stem end of 

the tuber than in the bud end, and it is probably more concentrated in the central tissue as 

opposed to the outer tissues.  

 

Carotenoids in Potatoes 

In possibly the most comprehensive review of the literature on potato carotenoids  

Gross (1991) compiled copious amounts of information including levels of various 

carotenoids, localization in the tuber, storage effects, and processing effects.   Gross 

begins by stating that the skin of potato tubers varies from brownish to deep purple, and 

that flesh color is normally white to yellow, and occasionally purple.  He goes on to say 

that potatoes, even white ones, contain carotenoids, but this was not discovered until 

about 1940 when some contradictory data was published by Lampitt and Goldenberg 

(1940).  In 1939, Schmid and Lang offered the first proof that the yellow color of the 

potato flesh was imparted by carotenoids.  This proof was given when the Kipfler potato 
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was analyzed in connection with “yellow fleck” disease.  Many of the articles to which 

Gross referred are referenced later in this review on potato carotenoids.  In his summary 

of these articles, however, Gross concludes that the total carotenoid content found in 

potatoes was between 27 and 243 µg/100gfw.  Intensely yellow cultivars had a 

carotenoid content of about 300 µg/100gfw, whereas the white-fleshed cultivars had 

much lower total carotenoid levels of about 30-70 µg/100gfw.  The carotenoid profile 

was dominated by epoxides with lower levels of xanthophylls and even lower levels of 

carotenes.  In yellow potatoes, up to 80% of the carotenoids were found in the form of 

epoxides, with violaxanthin (40-70%) the major carotenoid, followed by lutein epoxide.  

Lutein was the major pigment found in white potatoes and the second major pigment 

found in those with yellow flesh.  β-carotene and neoxanthin were identified at low 

levels in the potato tuber.  Breaking down total carotenoids into individual components, 

Gross reported the following levels in yellow-flesh potatoes: β-carotene (3-5 

µg/100gfw), lutein and zeaxanthin (40-70 µg/100gfw), lutein epoxide + antheraxanthin 

(15-18 µg/100gfw), violaxanthin (80-110 µg/100gfw), neoxanthin (4-6 µg/100gfw), and 

neoxanthin A (8-10µg/100gfw) (Tevini et al. 1984 as cited by Gross 1991).     

Carotenoid content varies according to variety, method of analysis, and the 

laboratory performing the procedure.  Frequent modifications to extraction protocol, 

such as cooking, saponification, solvents, HPLC column used, etc., can have effects on 

the amount of carotenoids reported.  In 1943, Von Elver reported the total carotenoid 

content of steamed yellow-flesh varieties grown in northern Sweeden as 80-260 

µg/100gfw.  Seven to ten µg/100gfw was reported to be carotenes.  Two years later, 
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Caldwell et al. (1945) analyzed 19 white and three yellow-fleshed potato cultivars and 

reported a total carotenoid content of 14-54 and 110-187 respectively.  As technology 

progressed, scientists were able to discriminate between different carotenoids, and in 

1947, Brunstetter and Weisman analyzed Kathadin potatoes grown in Maine and 

Lousiana.  They reported a total carotenoid content of 60 µg/100gfw, and further broke 

this down into β-carotene (6 µg/100gfw), lutein (10-16 µg/100gfw), and ζ-carotene (2.2 

µg/100gfw).   Twenty years later, Kasim (1967) analyzed nine German varieties and 

reported total carotenoids (199-560 µg/100gfw), β-carotene-5,6,5,6’-diepoxide (33-108 

µg/100gfw), lutein (30-119 µg/100gfw), violaxanthin (8-29 µg/100gfw), and lutein 5,6-

epoxide (81-257 µg/100gfw).  In addition, he tentatively identified neoxanthin (Kasim, 

1967 as cited by Gross 1991).  The following year, Le page (1968), working on 

Canadian white potatoes reported that nearly half of the carotenoid content was 

composed of lutein (48.5%) while the rest was composed of α-carotene (6.4%), β-

carotene (16.3%), an unidentified pigment (14.2%), and lutein 5,6-epoxide (14.8%)(Le 

page, 1968, as cited by Gross, 1991).    Thirteen German potato varieties analyzed by 

Iwanzik et al. (1983) were reported to have the following distribution:  Total carotenoids 

(27.4-328.9 µg/100gfw), lutein (15.5-57.3 µg/100gfw), violaxanthin (20.6-67.8 

µg/100gfw), lutein 5,6-epoxide (5.7-29.9 µg/100gfw), and neoxanthin (3.5-20.8 

µg/100gfw).  

Yellow flesh varieties are assumed to contain higher antioxidant activity than 

white flesh varieties because of the carotenoid pigments lutein and zeaxanthin, which 

contribute to the yellow flesh color and are known to have antioxidant activity.  Six 
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major carotenoids were detected by Lu, et al. (2001) in eleven diploid and two yellow-

flesh tetraploid cultivars.  These were neoxanthin, violaxanthin, lutein-5-6-epoxide, 

lutein, zeaxanthin, and an unknown carotenoid.  The total carotenoid content in the 

diploid yellow-flesh clones was 3-13 fold higher than that of Yukon Gold, suggesting 

that wild germplasm may be a good source for carotenoid genes in potato.  An 

“exponential relationship between total carotenoid content and tuber yellow intensity” 

was reported.    

In a survey study, Granado et al. (1992) reported that potato contained 12 

µg/100g lutein, 4 µg/100g zeaxanthin, 1 µg/100g β-carotene, and trace amounts of β-

cryptoxanthin and α-carotene.  Following boiling, these values went up to 44 µg/100g 

lutein, 21 µg/100g zeaxanthin, and 326% in β-cryptoxanthin (Granado et al. 1992).   

Heinonan et al. (1989) reported similar results; however, while the relative order of the 

ranked vegetables remained the same, the amount of carotenoids detected in most 

species tended to be higher than those reported by Granado.  This was not necessarily 

the case for potato, however.  While the lutein value in the summer crop was near 

identical to that reported by Granado (13µg/100g), and the spring crop was much higher 

(60µg/100g), these values included zeaxanthin since they were unable to separate the 

peaks on the HPLC equipment available at the time.  Bushway and Wilson (1982) 

reported the levels of alpha and β-carotene in raw potatoes to be 1-8 µg/100gfw and 13-

15 µg/100gfw, respectively.  

Pendlington et al. (1965), sparked by the observation that the flesh color of 

potato can vary from “white to pale yellow depending on variety,” were among the first 
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to analyze the carotenoid content of potatoes.  They reported that potato contained eight 

major and four minor pigments.  Though they varied according to variety, the pigments 

which were identified as being common to all varieties were β-carotene, β-carotene-5,6-

monoepoxide, unknown I, cryptoxanthin-5,6-diepoxide, lutein, cis-violaxanthin, cis-

antheraxanthin-5,6-monoepoxide and cis-neoxanthin.  These results were similar to 

those reported by Tevini and Schonecker (1986) who reported that potato tubers contain 

both free carotenoids and carotenoid esters.   Free carotenoids were reported to be 

neoxanthin, violaxanthin, antheraxanthin, lutein-5,6-epoxide,lutein and β-carotene.  

Brown et al. (1993a) conducted an inheritance study on orange flesh potatoes, 

which were discovered in diploid breeding populations. The orange flesh varieties were 

crossed with one another and with a yellow flesh variety, and segregation patterns were 

analyzed.  Consistent with previous results published by Fruwirth (1912), the authors 

determined that a single gene that is dominant over white flesh controls the yellow flesh 

phenotype.  The backcross population supported a single gene hypothesis for the control 

of orange vs. white flesh, and it was concluded that a single gene controls orange, white 

and yellow flesh, with orange flesh dominant to yellow flesh, and yellow flesh dominant 

to white (Brown et al. 1993c). 

Breithaupt and Bamedi (2002) analyzed, via HPLC and MS, the carotenoids and 

carotenoid ester content of four yellow and four white-fleshed potato cultivars 

commonly found in the German market.  The major carotenoids identified were 

violaxanthin, antheraxanthin, lutein, and zeaxanthin, with minor levels of neoxanthin, β-

cryptoxanthin, and β-carotene.   The total concentration of the four main carotenoids 
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reached 175µg/100g, and the sum of the carotenoid esters accounted for 41-131 µg/100g, 

indicating that carotenoid esters should be regarded as quantitatively significant 

compounds in potato. Analysis of the yellow flesh varieties revealed the following 

average results:  Violaxanthin (9-66 µg/100gfw), antheraxanthin (21-48 µg/100gfw), 

lutein (17-41 µg/100g), zeaxanthin (9-78 µg/100gfw), β-cryptoxanthin (3-5 µg/100gfw), 

and all trans β-carotene (1.8-3.4 µg/100gfw).  White varieties showed lower total values 

with the following average results: Violaxanthin (3-13 µg/100gfw), antheraxanthin (8-21 

µg/100gfw), lutein (20-21 µg/100g), zeaxanthin (3-17 µg/100gfw), β-cryptoxanthin (0.8-

2 µg/100gfw), and all trans β-carotene (1-3 µg/100gfw).   The authors state that neither 

white nor yellow fleshed potatoes indicated any particular carotenoid was responsible for 

their inherent color, and that total carotenoid levels seemed to be a good tool to 

differentiate between the two groups (Breithaupt and Bamedi 2002).    

Al-Saikhan et al (1994) analyzed 10 yellow-fleshed Texas grown varieties and 

reported a range of 1.47-20.69 µg/100g lutein, and 3-51 µg/100g zeaxanthin.  The 

orange flesh varieties analyzed in this study were much higher than the yellow, with 

lutein and zeaxanthin levels of 120-148µg/100g and 1242-2055 µg/100g, respectively.  

As in previous studies, the white-fleshed varieties had lower levels of carotenoids, with 

levels of lutein and zeaxanthin reported to be 3-13 µg/100g and 2-4µg/100g, 

respectively.  Differences were noted between location and fresh vs. frozen samples.  In 

continuing studies, Al-Saikhan (2000) reported the levels of lutein, lutein-epoxide, 



44 

 

 

 neoxanthin, violaxanthin, zeaxanthin, and total carotenoids for five yellow-fleshed and 

one white-fleshed variety grown in two locations (Colorado and Texas).  Total 

carotenoid levels as well as levels of lutein, lutein epoxide, viloxanthin and zeaxanthin 

were significantly higher in Texas-grown tubers.  Furthermore, significant differences 

were found between varieties for all carotenoids analyzed.  Ranges in carotenoid content 

among the Texas yellow-fleshed varieties studied were as follows:  Lutein (6.75-12.47 

µg/100gfw), lutein epoxyde (0.65-0.1.46 µg/100gfw), neoxanthin (16.77-38.27 

µg/100gfw), violaxanthin (59.53-198.67 µg/100gfw), zeaxanthin (0.82-2.80 µg/100gfw), 

and total carotenoids (272.3-453.37 µg/100gfw).  As reported in previous studies, the 

white-fleshed variety Russet Norkotah was lower than the average yellow flesh variety 

with the following levels reported:  Lutein (7.99 µg/100gfw), lutein epoxyde (0.08 

µg/100gfw), neoxanthin (4.98 µg/100gfw), violaxanthin (6.36 µg/100gfw), zeaxanthin 

(0.73 µg/100gfw), and total carotenoids (97.44 µg/100gfw).  Table 2-1 is included for 

comparison purposes.  
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Total Lutein Zea-xanthin β-carotene α-carotene β-cryptoxanthin Neoxanthin Violaxanthin Lutein 5,6-
epoxide 

Antheraxanthin 

Grossa 

  Yellow 
   White 

 
300 
30-70 

         

Tevinib 

  Yellow 
 
 

 
40-70 

 
See Lutein 

 
3-5 

 
NA 

 
NA 

 
4-6 

 
80-110 

 
15-18 

Combined with 
lutein epoxide 

Von Elverc 

   Yellow 
 
80-260 

         

Caldwelld 

   Yellow 
   White 

 
110-187 
14-54 

         

Brunstettere 

   Kathadin 
 
60 

 
10-16 

  
6 

      

Kasimf 199-560 30-119     identified 8-29 81-257  
Iwanzikg 27-329 16-57     4-21 21-68 6-30  
Luh 

   Yellow 
   White 

 
1435-136 
64-100 

 
23-548 
16-56 

 
5-44 
4-10 

 
 

   
10-40 
11-16 

 
51-438 
19-23 

 
18-548 
9-21 

 

Granadoi 

  Fresh 
  Boiled 

 
 

 
12 
44 

 
4 
21 

 
1 

 
trace 

 
trace 

    

Heinonanj 

   Summer 
   Spring 

 
 

 
13 
60 

 
See lutein 

       

Brownk 

   Orange 
   Yellow 
   White 

  
120 
140 
65 

 
2055 
NF 
NF 

       

Breithaupl 

   Yellow 
   white 

 
58-175 
38-62 

 
17-41 
20-21 

 
9-78 
3-17 

 
2-3 
1-3 

  
3-5 
0.8-2 

  
9-66 
3-13 

  
21-48 
8-21 

Al-Saikhanm 

   Orange 
   Yellow 
   White 

  
120-148 
1-21 
3-13 

 
1242-2055 
3-51 
2-4 

       

Al-Saikhann 

   Yellow 
   White 

 
272-453 
97.44 

 
7-12 
8 

 
0.82-2.8 
0.73 

    
17-38 
5 

 
60-199 
6 

 
0.65-1.46 
0.08 

 

aGross, 1991., bTevini, 1984 (as cited by Gross, 1991), cVon Elver, 1943. dCaldwell et al., 1945, eBrunstetter and Wiseman, 1947., fKasim, 1967 (as 
cited by Gross, 1991)., gIwanzik et al., 1983., hLu et al., 2001.  iGranado et al., 1992., jHeinonan et al., 1989.  kBrown et al., 1993c., lBreithaup and 
Bamedi, 2002., mAl-Saikhan et al., 1994.  nAl-Saikhan, 2000.

TABLE 2-1 – A comparison of different levels of carotenoids detected by various authors. 
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 The genetics of flesh color has been studied in potato since the early 1900s.  In 

1912, Fruwirth reported that yellow flesh color was controlled by a single gene with 

yellow dominant over white.  This explanation has changed little since then.   Schick 

(1956) suggested that modifying genes, in addition to the single major gene described by 

Fruwirth, might be involved in the inheritance of flesh color (Schick 1956 as cited by 

Brown et al. 1993c).  Bonierbale  et al. (1988) mapped the yellow flesh locus, “Y” to 

chromosome 3.  As mentioned above, Brown et al. (1993c) described a segregation 

pattern consistent with single gene control; however, they described 3 alternate alleles 

(orange>yellow>white).  In an alternative explanation, it is hypothesized that separate, 

but closely linked genes, in the repulsion phase possibly control orange and yellow flesh 

traits (Brown et al. 1993c).  In a study on clone by environment interactions for yellow 

flesh intensity, Haynes et al. (1996) concluded that there was a significant interaction 

between clones and environments, but this interaction accounted for a very small portion 

of the observed total variation.  Broad-sense heritability for yellow-flesh intensity on a 

clonal mean basis was estimated to be 0.93.  While some clones were deemed unstable in 

their yellow flesh intensity, the estimate of broad sense heritability suggests that once an 

intensely yellow-flesh clone is identified, it can be grown in multiple locations and retain 

its flesh color. 

 The source of the yellow flesh color in many popular varieties is from the diploid 

potato species S. phureja.  These varieties include Yukon Gold (Johnston and Rowberry 

1981), Red Gold (Coffin et al. 1988b), and Rose Gold (Coffin et al. 1988a).  The success 

of these varieties demonstrates the potential of wild species to enhance the yellow flesh 

color in the cultivated tetraploid S. tuberosum.   Haynes et al. (1996) used a population of 
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S.phureja x S. stenotomum to estimate narrow sense heritability of yellow flesh color in a 

diploid hybrid population.  In their analysis, the narrow-sense heritabilities based on male 

and female variance were computed as 0.99 and 0.72, respectively.  Such a high estimate 

of narrow sense heritability suggests that the trait is due to a single dominant gene for 

which there is little genotype x environment interaction.  Furthermore, a high estimate of 

narrow-sense heritability suggests that this trait could be easily manipulated through a 

traditional breeding approach. 

 Factors other than genetics have been shown to be of significant importance in 

determining yellow flesh intensity in potatoes.  Haynes et al. (1994) describe an inverse 

relationship between tuber weight and yellow-flesh intensity.  This relationship is 

presumably due to a dilution effect.  The authors recommend sampling the 25th to 75th 

percentile of tubers based on weight to reduce the amount of time required for evaluation.  

In a subsequent study by the same group, it was determined that yellow-flesh intensity 

was significantly affected by environment, with the general trend of decreasing yellow-

flesh intensity from south to north (Haynes et al. 1996). 

 In a comparison of two early-maturing British varieties (Sharpes Experess and 

British Queen), two main-crop varieties (King Edward and Majestic), and two late-

maturing varieties (Korrs Pink and Arran Consul), it was determined that the early-

maturing varieties had significantly higher carotenoid content than their main-crop 

counterparts.  Furthermore, the main-crop varieties were more yellow than the late 

maturing varieties, thus indicating that maturity may play a role in yellow flesh intensity.  

In a more detailed experiment on the King Edward variety, potatoes were analyzed in a 

time-course experiment over a range of 10 maturities.  Total carotenoid content was 
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shown to parallel climactic conditions, favoring rapid growth until 127 days after 

planting.  Following this time, total carotenoid content seemed independent of sunshine 

and rainfall.   During the rapid growth period, the epoxides were more abundant than the 

free carotenoids, but as the potatoes matured, the epoxides and free carotenoids became 

more evenly distributed.  During storage, epoxides dropped in relation to free 

carotenoids, mainly due to the accumulation of lutein at the expense of cis-violaxanthin 

(Pendlington, et al. 1965). 

 In numerous studies on potato carotenoids, storage has been found to have an 

effect.  Tevini et al. (1986) reported that during storage, the amount of carotenoid esters 

remained stable in comparison to the amount of free carotenoids, particularly 

violaxanthin.  The stability of the carotenoid esters was further demonstrated by cooking.  

When cooked, the carotenoid esters were not altered, but the levels of free carotenoids 

were significantly affected.  Commercial dehydration and further storage of the resulting 

potato products quickly translated to high losses of free carotenoids; however, carotenoid 

esters appeared to remain relatively stable.  Similar studies were conducted on the 

influence of post-harvest storage temperature on potato carotenoids, with conflicting 

results. Thomas and Joshi (1977) reported that both irradiated and non-irradiated potato 

tubers increase in carotenoid content during the first three months of storage at both 

ambient temperatures and 2 C.  This increase was followed by a gradual decrease.  When 

analyzed after six months of storage, the carotenoid content of the non-irradiated tubers 

was similar to the initial level, while that of the irradiated tubers was much lower.   

Reconditioning of the tubers at 34-35 C for four to six days was found to result in 

renewed synthesis of carotenoids.  Two years later, in a similar study by the same group, 
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it was reported that both irradiated and non-irradiated tubers showed an initial decrease in 

carotenoids during the first month of storage at ambient temperature, followed by a 

gradual increase thereafter.  At 2-4 C, non-irradiated potatoes showed a 20% decrease in 

carotenoid content during the first month of storage followed by a steady increase, 

reaching the initial levels after 100 days (Janave and Thomas 1979).    In addition to 

length of storage, temperature has been shown to have an effect on carotenoid content as 

well.  Tubers stored at 15 and 20 C showed comparatively lower levels of carotenoids 

than those stored at either four or 25-30 C.  At the latter temperatures, the carotenoid 

concentration increased with advancing storage, whereas at 15 and 20 C the carotenoid 

levels showed a decreasing trend during the first 3 months, remaining constant thereafter.  

As in previous studies, irradiated tubers always recorded lower carotenoid content than 

non-irradiated tubers (Bhushan and Thomas 1990). 

 

Part #2 - Differentiating 7 Russet Norkotah Strains Using AFLP Marker Analysis 

 Molecular markers have been successfully used in the past to distinguish cultivars 

of plants, strains of microorganisms, and lines of animals from one another, thus 

indicating this approach could lead to readily distinguishable markers between Russet 

Norkotah and its strains.  

 Among markers that have been developed and readily used are isozymes, RFLPs, 

RAPDs, AFLPs, ISSRs, and SSRs (microsatellites).  There are advantages and 

disadvantages to each of these markers.  

Of great interest is the work that has been conducted using molecular markers to 

distinguish between somoclonal variants.  While these studies were conducted primarily 

on tissue culture derived variants, and met with mixed results, they appear to be 
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promising techniques for distinguishing closely related genotypes from one another.   

Since strain or sub clonal variants can be viewed as analogous to tissue culture derived 

somoclonal variants, except that they occur in the field, it is reasonable to assume that 

similar techniques and approaches can be used to differentiate field derived subclonal 

selections.   Investigators working to distinguish somoclonal variants are quick to point 

out both practical and theoretical weaknesses in previously attempted methods.  They 

begin by stating that phenotypic analysis, while simple and cost effective, does not detect 

recessive mutations or cryptic changes in the genome, and perhaps most importantly, are 

quite time consuming since the plants must be grown out (Brown et. al. 1993b).   

 

Karyological and Isozyme Analyses  

 Karyological analysis is able to reveal significant chromosomal changes such as 

gross rearrangements and alterations in ploidy levels; however, small chromosomal 

rearrangements and alterations in specific genes are frequently missed (Isabel et al, 

1993).   

Once investigators discovered that examining the entire genome was not entirely 

effective, they moved on to techniques such as isozyme analysis that examined 

biochemical changes. Sabir et al. (1992) was able to show variation in isozyme migration 

times between somoclonal variants and parental varieties of beet, but frequently, 

isozymes are not as revealing.   Douches and Ludlam (1991) examined the possibility of 

using isozymes to separate intraclonal variants from one another.  While the izozymes 

were able to separate closely related genotypes of potato (even full sibs), they failed to 

separate intraclonal variants from one another.   Isozymes are limited by the number of 
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available markers and are subject to alterations by environment and development, so they 

were abandoned for first-generation DNA analyses such as RFLPs.   

 

Restriction Fragment Length Polymorphisms (RFLP) 

Sabir, et al. (1992) continued their work on beet plants using RFLP markers to 

determine the genetic stability of tissue culture regenerants, and they were able to identify 

molecular differences between variants with several probes.  The authors point out, 

however, that there was more phenotypic variation than was reflected by the isozyme and 

RFLP markers, thus indicating the limited success rate of these markers.  Muller, et al. 

(1990) reported similar results in a study using RFLPs to differentiate somoclonal 

variants of rice.  While they were able to differentiate between somoclonal variants, the 

rate of phenotypic change due to tissue culture was much greater than that reflected by 

molecular markers.  In addition, plants with “normal” phenotypes were still able to reveal 

altered DNA restriction patterns.   One possible explanation for the polymorphisms 

revealed by RFLP markers is a change in methylation patterns.  Since a methylation 

sensitive enzyme (HINDIII) was used, restriction sites could have been lost when the 5’ 

adenosine of a recognition sequence was methylated.  Another explanation for the 

differences between regenerants is the possibility that the callus was a genetic mosaic.    

Cecchini et al. (1992) also described methylation differences in their cytogenetic and 

molecular analysis of regenerated Pisum sativum L. (pea) plants.  Cytogenetic, molecular 

(RFLP), and methylation differences were evident, though it was not clear whether these 

changes were transient or permanent.  Mitochondrial DNA differences were 

demonstrated using wheat mitochondrial gene-specific RFLP probes on the tree Larix 
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leptolepis, L. deciduas, and the reciprocal hybrids of these two Larix species (DeVerno et 

al. 1994).  De Verno et al. (1994) demonstrated that there were quantitative changes in 

the relative abundance of certain mitochondrial regions.  Since these changes were due to 

mitochondrial differences, they were not always passed on to trees regenerated from the 

aberrant cell cultures.   While the use of RFLPs to differentiate somoclonal variants was 

successful in some species, they have two major limitations.  RFLPs are quite time 

consuming and costly, and perhaps, most importantly, the result of such an analysis is 

limited only to the gene sequence used as a probe, and thus, a small area of the genome.   

The relevance of this technique is severely reduced since no particular sequence has yet 

been identified as being directly responsible for somoclonal variation (Brown et. al. 

1993b; Isabel et. al. 1993). 

 

Randomly Amplified Polymorphic DNA (RAPD) 

With the development of PCR and randomly amplified polymorphic DNA 

(RAPDs) primers, many limitations of previously used methods were overcome.  Using 

RAPDs, large numbers of samples can be analyzed economically and quickly, small 

quantities of DNA are needed, and the DNA fingerprints obtained are independent of 

ontogenic expression.  In contrast to RFLPs, most of the genome can be sampled with a 

potentially unlimited number of markers, making RAPDs a better marker choice (Isabel 

et al. 1993).   

RAPD markers have been used on a number of species for cultivar identification 

and the detection of somoclonal variants, but the technique has had mixed results.   While 

Hashmi, et al. (1997) were able to successfully separate peach variants, and Brown et al. 
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(1993b) were able to differentiate between Triticum aestivum (wheat) variants, no 

differences were detected between somoclonal variants of Norway Spruce (Picea abies) 

(Fourre et al. 1997).   Sosinski and Douches (1996) had limited success using RAPDs to 

separate intraclonal variants of the potato variety Russet Burbank.  Out of the 29 utilized 

RAPD primers, only one band from one primer showed variation between the six 

variants.  Similar results were encountered by Demeke et al. (1993).  Using 20 RAPD 

primers, they were able to discriminate clonal variants of Russet Burbank and those of 

Viking, but not those of Superior, Norland or Norgold Russet.  Cabrita, et al. (2001) 

conducted a study on field-selected variants of dried fig (Ficus carica, L.), and were able 

to distinguish between clones of the same fig variety.   Of the 31 RAPD primers used in 

the latter study, approximately 1% were able to distinguish among the clones, 

demonstrating the weak resolution power of the RAPD technique for this purpose.    

 

Amplified Fragment Length Polymorphisms (AFLPs) 

The advantages of using AFLPs include the fact that no sequence information is 

needed, they have a high multiplex ratio and thus require fewer primer combinations, 

they are insensitive to the template DNA concentrations, and they are highly reproducible 

(Breyne et al. 1999; Vos et al. 1995; Becker 1995).  AFLPs can be tailored according to 

the complexity of the genome, and, by altering various steps in the process, have proven 

to be successful on organisms with very large genomes (Han et al. 1999).  Its applications 

are very versatile and include the construction of linkage maps, marker saturation at 

specific genomic regions, the analysis of genetic diversity, and, perhaps most 

importantly, cultivar identification.     
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 AFLP marker analysis has been used successfully in plants of various species 

including potato.  In potato, AFLPs have been used in phylogenetic studies (Kardolus 

1998), fingerprinting (Kim et al. 1998a), as well as for development of high-resolution 

genetic maps (Meksem 1995).  While many contend that AFLP markers contain high 

multiplex ratios, Meyer et al. (1998) point out that, in a tetraploid species, much of the 

associated benefit is reduced to a point where the use of an alternative multi-allelic 

marker type would be significantly more efficient.   This reduction in efficiency is due to 

masking by dosage that significantly reduces the number of individual markers that can 

be scored in a population. 

Goulao (2001) used AFLP and inter-simple sequence repeats (ISSR) to 

distinguish plum clutivars from one another, emphasizing that AFLP and ISSR 

approaches are valuable for identification of different genotypes.  Combined mapping of 

AFLP and RFLP markers in Barley (Hordeum vulgare L.) demonstrated that AFLP 

markers seldom interrupt RFLP clusters like their RAPD counterparts, but rather group 

next to them (Becker et al. 1995), indicating that AFLPs could reveal some variation in 

genotypes that was not previously revealed by RFLP and RAPD analysis.   

 Perhaps most importantly, AFLPs have been successfully used in the past to 

distinguish closely related genotypes of plants.  They have been used to differentiate 

between Arabidopsis thaliana ecotypes, where a low but significant level of 

polymorphism was detected.  This is interesting considering these natural populations are 

self-pollinating and are probably very similar in genetic makeup.  The authors indicated 

that AFLP analysis is a reliable classification system for distinguishing closely related 

varieties (Breyne et al. 1999).  A study conducted on pecan (Carya illinoinesis) trees 
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regenerated from somatic embryogenic cultures utilized AFLP analysis to determine 

genetic fidelity among and between lines of clonally propagated tissue culture lines after 

4 years in the field.  AFLP analysis readily detected differences between culture lines. 

Within culture lines, it was revealed that some trees exhibited greater divergence and less 

similarity than other trees from the same line (Wagner et al. 2000).   Both the study on 

pecan and Arabidopsis thaliana indicate that AFLPs could be a promising approach to 

distinguish Russet Norkotah subclonal selections from one another.   

AFLPs have been used repeatedly to determine the population structures of a 

number of clonally propagated species (Arens et al. 1998; Escaravage et al. 1998; Van 

Der Hulst et al. 2000; Pornon et al. 2000).   Since these populations were wild, and 

sometimes ancient, the parentage was not known;  however, the results of these studies 

revealed some important aspects of the AFLP technique.  While a 2% error rate is 

reported on numerous occasions, the studies clearly show the ability of AFLPs to 

differentiate between different clonal populations.  Some, however very few, differences 

were reported within populations, but it is not clear if these polymorphisms were due to 

error or mutational events. 

Even more promising are studies that have been conducted using AFLPs to 

distinguish somoclonal variants.  Cabrita et al. (2001) were able to distinguish between 

field-selected clonal variants of Ficus carica L. (figs).  They were able to distinguish 

between 11 ‘Salidirop’ clones with only eight primer combinations.  Comparing their 

AFLP and RAPD analysis, the authors were able to demonstrate the superior resolution 

power of the AFLP technique.  While the AFLP technique has been able to separate 

clonal variants of some species, it has not met with 100% success.  A study of the genetic 
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diversity of Poplus betulifolia (Black Poplar) revealed an “almost 100% similarity” 

between trees planted in the same field (Winfield et al. 1998).  Since Black Poplar is 

clonally propagated and clones were planted in the same location, this study indicates that 

AFLP was not a good technique for discriminating between clones.  The very low level 

of differences that was found was within the bounds of scoring errors for AFLP.   These 

scoring errors were reported to be approximately 2% by Arens et al.  (1998).  While 

AFLP is not 100% successful, it could prove to be an excellent tool for distinguishing 

between clonal variants of Russet Norkotah. 

 

Microsatellites 

Another promising technique is microsatellite marker analysis, also known as 

simple-sequence repeats (SSR).  While microsatellites do not have the high multiplex 

ratios that are found in AFLPs, and prior sequence knowledge is required to design 

primers, they may be co-dominant (reveal multiple alleles at a single locus) and exhibit a 

much higher degree of polymorphism than do any other markers (Bowers et al. 1996).    

This high degree of polymorphism is because the region of DNA that is being analyzed is 

a repeat motif, and thus susceptible to changes in length due to slippage of DNA 

polymerase during replication.  Since the regions do not contain coding regions, they are 

generally not under selection.  Therefore, modification of these areas of the genome is not 

detrimental to the organism, and thus quite abundant, making them a good tool to 

distinguish between closely related cultivars.  Primers are designed that flank the repeats, 

and variations in lengths of repeat motifs of individuals are revealed by amplifying the 

DNA with the regions flanked by the primers.   
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Microsatellites have been used in a number of species, including potato, to distinguish 

between genotypes.   The original microsatellite primers for potato were designed by 

Provan et al. (1996) using known potato sequences, as well as tomato primers.  A single 

microsatellite primer was sufficient to discriminate between all 18 potato cultivars in 

their study, indicating that microsatellites are a potentially powerful tool for genotyping 

individuals, even in a tetraploid species.   This work was expanded upon by Milbourne et 

al. (1997) who compared the ability of AFLPs, RAPDs, and microsatellites to genotype 

sixteen potato cultivars.   Comparisons were based on the number of loci revealed and the 

amount of polymorphism detected.  While AFLPs revealed the highest number of loci, it 

was clear that microsatellites revealed the greatest amount of polymorphism.  McGregor 

et al. (2000) conducted a similar study on potato and found similar results when 

comparing AFLPs, multi-locus SSRs, RAPDS, Inter-simple sequence repeats (ISSRs), 

and single locus SSRs.   AFLPs and SSRs were the most reproducible, as well as the 

most polymorphic of the marker systems analyzed.  However, unlike the study conducted 

by Milbourne et al.(1998) McGregor et al. found AFLPs to be more highly polymorphic 

than SSRs.    

Milbourne et al. (1998) expanded on their SSR research by using SSRs to anchor new 

PCR-based linkage maps to already existing RFLP maps.  They reported an obvious bias 

in amplification toward 5’ and 3’ untranslated regions, with 55.8% of the SSRs in this 

sequence category.  Introns were also significant contributors to SSRs, with 29.4%, 

followed by 11.8% in coding regions.  Using the SSR primers identified by Milbourne et 

al., Spooner and Raker (2002) conducted a phylogenetic study on cultivated S. tuberosum 
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and its wild relatives.  Their results indicate that, while SSRs work well with S. 

tuberosum, they are less successful for phylogenetic studies of distantly related species.    

Schneider and Douches (1997) investigated the ability of SSRs to discriminate 

between 39 commercial potato varieties, including Burbank and Russet Burbank.  Using 

five SSR primers, they were able to discriminate between 24 of 40 potato varieties, and 

grouping by tuber type before SSR analysis allowed them to discriminate between all but 

5 pairs of genotypes.  While the five SSR primers utilized were unable to discriminate 

between Burbank and Russet Burbank, it does not necessarily imply that discrimination 

between sports is not possible with SSRs.   The authors explain that as more SSRs are 

identified for potato, the discrimination power of this marker type will be increased.    

Microsatellites have been used in species other than potato to discriminate between 

very closely related genotypes.  Grapes are among the taxa that have been extensively 

examined via SSR markers.  Vignani et al. (1996) attempted to find allelic polymorphism 

between seven probable somatic mutants of the grape cultivar Sangiovese.    Seven 

microsatellite loci were analyzed in 12 clones of Sangiovese.  Eleven of the clones were 

identical at all seven loci; however, one clone differed from the others by one allele at 

each of four loci.  This indicates that either this was not in fact a somatic mutant of 

Sangiovese or that microsatellite analysis is able to distinguish between somatic mutants.  

In addition, 110 accessions of 25 grape taxa from the Vitis genetic resources collections 

were characterized by microsatellite analysis, and the authors strongly recommended 

SSRs for fingerprinting purposes (Lamboy and Alpha 1998).   Later work conducted on 

grapes demonstrated that microsatellites could successfully discriminate among cultivars 

of grape sampled from seven European vine-growing regions; however, they were not 
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able to detect differences between closely related vines with blue and white grapes (Sefc 

et al. 2000).  Through examination of the Portuguese grapevine collection via 

microsatellites, many of the previously assumed synonymous cultivars were not able to 

be differentiated (Lopes et al. 1999).  Furthermore, SSRs were not able to differentiate 

between Pinots (Regner et al. 2000).  Work on grapes indicates that SSR analysis may 

not be ideal for clonal discrimination; however, these results could be species specific. 

Work conducted on apple (Malus x domestica) demonstrated that as few as three 

microsatellite markers were sufficient to differentiate between 21 cultivars (Guilford et 

al. 1997).  Furthermore, a later study conducted on 142 accessions of 23 Malus species 

found that eight primer pairs were able to unambiguously differentiate all but five pairs of 

accessions.  There was, however, detection of identical accessions in the collection which 

were previously considered to be unique, indicating that perhaps SSRs cannot 

differentiate between closely related Malus genotypes (Hokanson et. al. 2001).  Research 

on barley had successes, with microsatellite markers able to distinguish between barley 

genotypes, even those with the same pedigree (Struss and Plieske 1998; Russell et al. 

1997).   
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CHAPTER III 

INTRASPECIFIC VARIABILITY FOR ANTIOXIDANT ACTIVITY 

IN POTATO (S. TUBEROSUM  L.) 

  
Introduction 

 Many consumers recognize the potato as an important source of carbohydrates, 

but few recognize it as an important source of vitamin C and potassium.  Though there is 

increasing interest, relatively little is known about the important phytochemicals 

contained in this most-consumed vegetable.  Based on the 1997-1998 National Food 

Consumption Survey, white potatoes ranked first among vegetables in consumption, and 

data from PMA, UFFVA, and ERS USDA ranked potato first among vegetables by sales, 

promotion, or consumption (Kolasa 1993).  Therefore, considering consumption 

estimates, even modest antioxidant levels in potato probably play a major role in 

maintaining a healthy population.  Unlike crops such as blueberries, potatoes have not 

been considered among foods important for their high antioxidant content.  This is 

unfortunate considering the per capita consumption of potatoes in the U.S. is about 137 

pounds (National Potato Council 2003), while that of blueberries stands at 13.9 ounces 

(North American Blueberry Council).   

 There is preliminary evidence to suggest that potatoes do in fact contain 

significant levels of important antioxidants, including phenolic acids, flavonoids, and 

carotenoids, among others (Al Saikhan et al. 1995; Al-Saikhan 2000; Arai et al. 2000; 

Gazzani et al.  1998;  Lachman et al. 2000;  Yamamoto et al. 1997; Dao and Freidman 

1992;  Freidman 1997).    Using potato varieties high in health-benefiting compounds as 
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parents in a traditional breeding program could lead to the development of new potato 

varieties that are enhanced with these beneficial chemicals. The resulting “healthy” 

varieties could be used as a vector for increasing antioxidant consumption among the 

general public.   Before this concept can be extensively promoted, antioxidant activity 

and specific antioxidant compounds in a wide range of genotypes must be definitively 

identified and their levels quantified. 

Several specific antioxidant compounds have been identified in potato.  Previous 

studies have reported phenolic concentrations in potato ranging from 157-560 µg/gfw in 

the flesh and carotenoid concentrations ranging from 0-1435 µg/100gfw (Dao and 

Freidman 1992; Hamouz et al. 1999a; Lewis et al. 1999; Lewis et al. 1998b; Lewis et al. 

1998a    Repeated studies have indicated that the major phenolic compounds in potato are 

chlorogenic acid, caffeic acid, tyrosine, and tryptophan, with smaller quantities of 

neochlorogenic acid, cryptochlorogenic acid, p-coumaric acid, sinapic acid, ferulic acid, 

quercetin, myricetin, rutin, gallic acid, protocatechuic acid, vanillic acid, naringenin, 

catechin, epicatechin, syringic acid, cinnamic acid, kaempherol, and eriodictyol 

(Lachman et al. 2000; Dao and Freidman 1992; Monday et al. 1979; Rodriguez de Sotillo 

et al 1998; Lewis et al. 1998b; Lewis et al. 1998a; Reeve et al. 1969).   Major carotenoid 

constituents of potato are lutein and zeaxanthin with smaller amounts of β-carotene, a-

carotene, β-cryptoxanthin, neoxanthin, violaxanthin, lutein-5,6-epoxide, and 

antheraxanthin (Tevini et al. 1984 as cited by Gross 1991; Caldwell et al. 1945; 

Brunstetter and Wiseman 1947; Kasim 1967; LePage 1968 as cited by Gross 1991; 

Iwanzik et al. 1983; Lu et al. 2001; Granado et al. 1992; Heinonan et al. 1998; Bushway 
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and Wilson 1982; Pendlington et al. 1965; Tevini and Schonecker 1986; Brown et al. 

1993c;  Breithaupt and Bamedi 2002; Al-Saikhan et al. 1994;  Al-Saikhan 2000).   

The objective of this study was to screen a wide range of potato genotypes for 

antioxidant activity, and determine the specific compounds contributing to this activity.   

Genotypes showing high levels of total antioxidant activity, or unusually high levels of 

particular compounds, will be selected as parents for use in the Texas Potato Variety 

Development Program.  The long-range objective of the program in relation to this 

project is to develop potato varieties that can be promoted to the public at large as a 

vector for antioxidant consumption. 

 

Materials and Methods 

Plant Materials 

 Named varieties and advanced selections entered into the Texas Potato Variety 

Development Program’s 2000 and 2001 Field Day Trials grown near Springlake, Texas 

were utilized in this study.   Entries in the 2000 Field Day Trial included 67 advanced 

selections and 24 named varieties, including Russet Norkotah and eight Russet Norkotah 

clonal variants (Table 3-1).  The 2001 Field Day Trial was comprised of 73 advanced 

selections and 27 named varieties, including Russet Norkotah and the eight clonal 

variants (Table 3-2).  Thirty-five advanced selections and 18 named varieties were 

common between the two years (Table 3-3).  In addition to the Springlake entries, 

potatoes grown near Dalhart, Texas in 2000 were tested in order to compare the effects of  
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location on antioxidant activity.  These included six advanced selections and 11 named 

varieties (Table 3-1).   

Since the majority of potatoes are consumed as French fries and potato chips, 

seven different types of chips were purchased from a local grocery store to determine 

their antioxidant activity.  The brands of chips were as follows:  Bob’s Texas Style 

(Poore Brothers, Inc.), Kettle Chips (Kettle Foods), Lays Wow Original (Frito Lay), 

Ruffles (Frito Lay), Terra Blues (The Hain Celestial Group, Inc.), Terra Yukon Gold 

(The Hain Celestial Group, Inc.), Wavy Lays (Frito Lay), and Zapps – salt and vinegar 

(Zapps Potato Chip Co.).  The genotypes of these potatoes were not known.  In addition, 

for comparison purposes, 18 vegetables obtained at the grocery store (including potato) 

were analyzed for antioxidant activity.   These included broccoli, cabbage, carrot, celery, 

cucumber, green onion, green bell pepper, zucchini, iceberg lettuce, maroon carrot, 

radish, red potato, romaine lettuce, spinach, white onion, white potato, yellow onion, and 

yellow squash. 
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TABLE 3-1 – Genotypes grown in 2000, which were used in the antioxidant analysis.  
 
Genotype Location  Genotype Location 
Adora Springlake  ATX96007-1P/Y Springlake/Dalhart 
All Blue Springlake/Dalhart  BTX1544-2W/Y Springlake 
Atlantic Springlake  BTX1749-1Ru/Y Springlake 
Russet Burbank Springlake  BTX1749-2Ru/Y Springlake 
Cherry Red Springlake  BTX1810-2aR Springlake 
Chipeta Springlake  BTX1810-3aR Springlake 
CORN3 Springlake/Dalhart  BTX1813-2R Springlake 
CORN8 Springlake  CO92059-8W Springlake 
Dark Red Norland Springlake  COTX93032-1R Springlake 
Morning Gold  Springlake  COTX93053-4R Springlake 
Russet Norkotah Springlake/Dalhart  COTX93068-1R Springlake 
Russet Nugget Springlake  COTX93069-5R Springlake 
Purple Peruvian Springlake/Dalhart  COTX94016-2 Springlake 
Ranger Russet Springlake  COTX94216-1R Springlake 
Red LaSoda Springlake  COTX94218-1R Springlake 
Russian Blue Dalhart  COTX95111-1Ru Springlake 
Shepody Springlake  MWTX2609-2Ru Springlake 
Stampede Springlake  MWTX2609-4Ru Springlake 
TXNS102 Springlake/Dalhart  MWTX4241-1W Springlake 
TXNS112 Springlake/Dalhart  MWTX548-2Ru Springlake 
TXNS223 Springlake/Dalhart  NDC4069-4R/R Dalhart 
TXNS278 Springlake  NDO4300-1 Springlake 
TXNS296 Springlake/Dalhart  NDO4323-2R Springlake 
Vivaldi Springlake  NDO4588-5R Springlake 
Yukon Gold Dalhart  NDTX4784-1R Springlake 
A8792-1Ru Springlake  NDTX4784-7R Springlake 
A8893-1Ru Springlake  NDTX4784-9R Springlake 
A9014-2Ru Springlake  NDTX4828-2R Springlake 
A9045-7Ru Springlake  NDTX4930-5W Springlake 
A90467-14W Springlake  NDTX5067-2R Springlake 
A90490-1W Springlake  NDTX5407-1R Springlake 
A90586-11Ru Springlake  NDTX5438-11R Springlake 
A92657-1R Springlake  NDTX6345-2R Springlake 
AC87079-3Ru Springlake  NDTX8-731-1R Springlake 
AC87138-4Ru Springlake  TX1385-12Ru Springlake 
AC89536-5Ru Springlake  TX1523-1Ru/Y Springlake 
AC89653-3W Springlake  TX1673-2W/Y Springlake 
AC90636-3Ru Springlake  TX1674-1W/Y Springlake/Dalhart 
AC91014-2Ru Springlake  TXA549-1Ru Springlake 
AC91365-1Ru Springlake  TXDH99-1Ru Springlake 
AO91812-1W Springlake  TX93483 Dalhart 
AOTX97275-2Ru Springlake    
ATX84706-2Ru Springlake    
ATX91137-1Ru Springlake    
ATX9202-1Ru Springlake    
ATX9202-3Ru Springlake    
ATX92230-1Ru Springlake    
ATX9312-1Ru Springlake/Dalhart    
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TABLE 3-2 – Genotypes grown in the 2001 Field Day Trial, which were used in the 
antioxidant analysis.  

 
Genotype   Genotype  Genotype 
Adora  AOTX 96458-1Ru  NDO4323-2R 
All Blue  AOTX 97130-1Ru  NDTX4271-5R 
CORN3  AOTX 97175-4Ru  NDTX4304-1R 
CORN8  AOTX 97213-1Ru  NDTX4784-7R 
Dark Red Norland  AOTX 97287-1Ru  NDTX4790-1Ru 
Ilong  AOTX97164-1Ru  NDTX4828-2R 
Latona  ATTX82700-12R  NDTX4828-7R 
Mazama  ATTX83355-11R  NDTX4898-1Ru 
Morning Gold  ATTX83355-7R  NDTX5407-1R 
Platina  ATX82539-4Ru  NDTX5438-11R 
Ranger Russet  ATX84378-1Ru  TC1675-1Ru 
Red LaSoda  ATX84706-2Ru  TDA99-1Ru 
Russet Burbank  ATX91137-1Ru  TX1385-12Ru 
Russet Norkotah  ATX9202-1Ru  TX1523-1Ru/Y 
Sating  ATX92230-1Ru  TX 1674-1 W/Y 
Shepody  ATX9302-1Ru   
Stampede Russet  ATX9332-12Ru   
TXNS102  ATX9332-8Ru   
TXNS112  ATX96007-1   
TXNS223  ATX96744-1R   
TXNS249  ATX 97232-1Ru   
TXNS278  ATX96746-1R   
TXNS296  BTX1544-2W/Y   
Vivaldi  BTX1749-2Ru/Y   
Winema  BTX1754-1W/Y   
Yukon Gold  BTX810-1R   
A8893-1Ru  BTX810-2Ra   
A9014-2Ru  CO 92077-5Ru   
A9045-7Ru  CO92027-2Ru   
A90586-11Ru  CO93032-1R   
A92584-3BB  CO93037-6R   
AC87138-4Ru  COTX4216-1R   
AC89536-5Ru  COTX4218-1R   
AC91014-2Ru  COTX93053-4R   
AC92009-4Ru  COTX95111-1R   
AC87079-3Ru  MSE192-8Ru   
AF1753-16Ru  MSE202-3Ru   
AO92017-6Ru  MWTX2609-2Ru   
AOTX 91861-4R  MWTX2609-4Ru   
AOTX 93483-1R  MWTX548-2Ru   
AOTX 95156-4Ru  NDC5281-2R   
AOTX 96265-2Ru  NDC5372-1Ru   
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TABLE 3-3 – Genotypes grown in the 2000 and 2001 Field Day Trials, which were used 
in the antioxidant analysis for comparison of location. 

 
 
Variety  Advanced Selection  Advanced Selection 
Adora  A8893-1Ru  BTX810-1R 
All Blue  A9014-2Ru  BTX1810-2a 
CORN 3  A9045-7Ru  COTX93032-1R 
CORN 8  A90467-14  COTX93053-4R 
Dark Red Norland  A90490-1  COTX93069-5R 
Morning Gold  A90586-11Ru  MWTX2609-2Ru 
Ranger Russet  A92657-1R  MWTX2609-4Ru 
Red LaSoda  AC87079-3Ru  MWTX548-2Ru 
Russet Burbank  AC87138-4Ru  NDC5281-2R 
Russet Norkotah  AC89536-5Ru  NDO4323-2R 
Shepody  ATX82539-4Ru  NDTX4784-7R 
Stampede Russet  ATX84706-2Ru  NDTX4828-2R 
TXNS102  ATX91137-1Ru  NDTX5407-1R 
TXNS112  ATX9202-1Ru  NDTX5438-11R 
TXNS223  ATX9202-3Ru  TX1385-12Ru 
TXNS278  ATX92230-1Ru  TX1523-1Ru/Y 
TXNS296  BTX1544-2W/Y  TX1674-1 W/Y 
Vivaldi  BTX1749-2Ru/Y   
 

Extraction of Antioxidants  

For the evaluation of potato antioxidant activity, total carotenoids, and individual 

carotenoid and phenolic components via HPLC, whole tubers were diced into quarter 

inch cubes. Three tubers per genotype were diced and kept separate, and a representative 

sample was weighed and stored at –20C until extractions were performed.  Previous 

studies have analyzed only the center section of the tuber, but since concentrations of 

phenolics are known to vary from stem to bud end, and are more concentrated in the skin 

than in the inner tissues (Lewis et al. 1998a,b; Reeve et al. 1969), it was reasoned that 

antioxidant concentrations based on the entire tuber would be more representative of the 

concentrations consumed in the diet (Figure 3-1).  

Extraction of Phenolics - For the evaluation of potato antioxidant activity and the 

HPLC analysis of phenolics, antioxidants were extracted from 5 g tuber samples by 

mixing 15 ml of methanol and homogenizing with an ultra turrax tissumizer from Tekmar 
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(Cincinnati, Ohio).  Homogenized samples were centrifuged at 15,000 rpm for 15 

minutes in a refrigerated centrifuge (Beckman model J2-21)  using a J-17 rotor.  One and 

a half ml of the supernatant was collected in 1.5ml snap-cap tubes for analysis of total 

antioxidants, and 7 ml was collected in glass vials for the analysis of individual phenolics 

via HPLC.  The sample extracts were stored at –20C until analysis, and the pellet was 

discarded (Figure 3-1). 

Extraction of Carotenoids - A 10 g sample of diced tuber tissue was used to 

extract carotenoids for both the total carotenoid broad screen and the analysis of 

individual carotenoids via HPLC.  Since potatoes contain both oxygenated (i.e., β-

carotene and α-carotene) and non-oxygenated carotenoids (i.e., lutein and zeaxanthin), 

both ethanol and hexane were used to ensure complete extraction.   Fifteen ml of ethanol 

plus BHT (1g/L) was added to 10 g of tuber tissue and homogenized using an ultra turrax 

tissumizer from Tekmar (Cincinnati, Ohio).  Five ml of ethanol +BHT (1g/L) was added 

to the resulting slurry, and it was incubated overnight at –20C to facilitate a more 

efficient extraction.  The following day, 10 ml of hexane was added, and the sample was 

centrifuged for 20 minutes at 1600 rpm in a refrigerated centrifuge (Beckman model J2-

21) using a J-17 rotor.  Eight ml of each layer (hexane and ethanol) were saved in 

separate falcon tubes, and the remaining solvent was discarded, while the pellet remained 

at the bottom of the tube.  Five ml of methanol and 10 ml of hexane were added to the 

pellet, and the tube was shaken.  The second extract was centrifuged as described above, 

and 4 ml each of the hexane and ethanol layers were added to the previous extracts.    

Seven ml of the combined ethanol extracts were saved for HPLC analysis, and 1.5 ml 
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were saved for the estimation of total carotenoids.  The hexane extracts were saved in an 

identical manner (Figure 3-1). 

 

DPPH Assay for Total Antioxidant Activity 

  
 The determination of antioxidant activity was based on the 2,2-Diphenyl-1-

picryhydrazyl (DPPH) analysis described by Brand-Williams et al. (1995).  DPPH, a 

stable radical, absorbs at 515 nm, and upon reduction by an antioxidant species, a 

decrease in absorbance is observed.  The change in color (from purple to yellow) 

provides an easy and rapid assay to evaluate the antiradical activities of potato extracts.  

Since this study dealt with such a large number of samples, the DPPH assay was used as 

a broad screen to identify those genotypes that were high in antioxidant activity. 

 DPPH stock solution was prepared by dissolving 24 mg of DPPH in 100 

ml of methanol.  The stock was diluted ~10:55 until the display on the spectrophotometer 

at 515 nm read 1.1.  Two thousand eight hundred fifty µl of the dilute DPPH was allowed 

to react with 150 µl of the tuber methanol extract for 15 minutes, and then read on the 

spectrophotometer at 515 nm.  All genotypes were analyzed in triplicate (Appendix O).
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 Figure 3-1.  
Diagram of extraction procedure for carotenoids and phenolics. 

A 5 g and 10 g 
sample was taken 
from each tuber 

3 replications of 1 tuber 
each.

1 2 3 

1 2 3 

3 replications for 
antioxidant activity 
and HPLC 

3 replications for 
total carotenoids 
and HPLC 

2 3 

Add 15 ml methanol Add 20 ml ethanol 

Homogenize Homogenize  

Add 10 ml 1 2 3 1 2 3 

Centrifuge 

1 2 3 1 2 3 

Save 7 ml for 
HPLC and 1.5 ml 
for antioxidant 
assay 

Save 8 ml  
hexane and 8 
ml ethanol.  
Five ml of 
ethanol and 
10 ml hexane 
were added to 
the pellet and 
re-
centrifuged. 

Mix 4 ml  hexane and ethanol 
with previous extraction.  Save 
7ml for HPLC and 1.5 for total 
carotenoid estimation
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 Two standard curves, one with Ascorbic acid, and one with trolox (6-Hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid – a commonly used synthetic antioxidant), 

were prepared, and absorbance readings were converted to uM equivalents of these 

compounds.  While most studies report antioxidant activity based on DPPH in trolox 

equivalents, an ascorbic acid curve was also prepared because it is a compound with 

which the general public is familiar, while trolox is not.  Three samples were prepared 

separately for each concentration, and were assayed in the same manner as the potato 

samples.  One hundred fifty ul of the standard at various concentrations was allowed to 

react for 15 minutes with 2850 ul of the DPPH working solution.  Curves were prepared 

based on absorbance at 515 nm.  

 

HPLC Analysis of Phenolic Compounds 

 Based on the results of the DPPH analysis, the top 10% of genotypes in 

antioxidant activity were chosen for analysis via HPLC in triplicate.  The reduction in 

numbers was necessary because of both monetary and time costs involved in HPLC 

analysis.   

Concentrating the Samples – A 7 ml sample of the 5 g methanol extract was 

retained for analysis of individual phenolic components on the HPLC.   The samples 

were dried to completion in a heated speed vac, and resuspended in 1.5 ml of methanol 

for analysis.  Prior to injection, the concentrated samples were filtered through a 0.45 um 

syringe filter. 
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The Compounds Analyzed – Based on the phenolics previously reported in the 

literature, the following 19 compounds were selected for this analysis:  Rutin hydrate, 

chlorogenic acid, gallic acid, protocatechuic acid, catechin, p-hydroxybenzoic acid, 

caffeic acid, vanillic acid, (-) epicatechin, p-coumaric acid, syringic acid, sinapic acid, 4’-

5,7-Trihydroxyflavanone, ferulic acid, myricetin, saliclylic acid, quercetin dihydrate, t-

cinnamic acid, and kaempherol.  Standard samples for each of these compounds were 

obtained from Acros Organics (Pittsburgh, PA). 

The HPLC System– The samples were run using Waters Melinnium 3.2 software 

on a system equipped with a binary pump system (Waters 515), an autoinjector (Waters 

717 plus), a photodiode array (PDA) detector (Waters 996), and a column heater 

(SpectraPhysics SP8792).  Compounds were separated on a 4.6 x 150 mm, 5µm, Atlantis 

C-18 reverse-phase column manufactured by Waters (Milford, MA), which was 

maintained at 40C.   The Atlantis column was chosen based on its ability to separate 

polar compounds using conventional reverse-phase chromatography.  For analysis of 

phenolics, the following gradient system was used:  Solvent A (Acetonitrile), solvent B 

(water/HCL, adjusted pH 2.3); gradient (min/%A) 0/85, 5/85, 30/0, 35/0.  The column 

was brought back to initial conditions, and allowed to equilibrate for 11 minutes before 

the following injection (Appendix P).  All solvents were filtered and degassed before use.   

Nine point calibration curves were prepared for all standards but tryptophan, and each 

was analyzed at its lambda max.   
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Broad Screen for Carotenoid Content 

 It has been reported in numerous studies that carotenoid content is highly 

correlated with the yellow-intensity of tuber flesh, and as a result, this is frequently used 

as a measure of the carotenoid levels in potato (Lu et al. 2001; Haynes et al. 1994; 

Haynes et al. 1996; Haynes 2000; Janave and Thomas 1979).  Based on a method 

published in Current Protocols in Food Analytical Chemistry, the carotenoids in the 

broad screen were determined by absorbance of the ethanol and hexane extracts at 445 

nm and 450 nm, respectively (Scott 2001).    

 Standard curves were prepared for both the ethanol and hexane extracts to convert 

the absorbance into lutein and β-carotene equivalents, respectively.  The lutein curve was 

prepared by determining the absorbance at 445 nm of solutions of lutein ranging in 

concentration from .001-.02 µg/ml.  This curve allowed the determination of tuber 

carotenoid concentrations in the ethanol extract ranging from 0-2000 µg/100gfw lutein 

equivalents.  A similar curve was prepared for the hexane extract based on the 

absorbance of β-carotene at 450 nm.  This curve allowed the determination of  tuber 

carotenoid concentrations in the hexane extract ranging from 0-667 µg/100gfw β-

carotene equivalents. 

 

HPLC Analysis for Carotenoid Compounds 

 Based on the results of the spectrophotometric broad screen for carotenoids, the 

top 10% of genotypes were chosen to be analyzed via HPLC.   

Concentrating the Samples – A 7 ml sample of the 10 g ethanol and hexane 

extracts were retained for analysis of individual carotenoid components by HPLC.   The 
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samples were dried to completion under a nitrogen stream and resuspended in 1 ml of 

50% ethanol for analysis.  Both prior to drying and following concentration, samples 

were filtered through a 0.45 µm syringe filter. 

The Compounds Analyzed – Based on previously reported studies, the following 

seven carotenoids were selected for this analysis:  Lutein, zeaxanthin, β-cryptoxanthin, 

antheraxanthin, canthaxanthin, β-carotene, and violaxanthin.  The lutein, zeaxanthin, 

canthaxanthin, and β-cryptoxanthin were kindly provided by Hoffman La Roche (Basel, 

Switzerland), β-carotene was purchased from Sigma-Aldrich, and antheraxanthin 

violaxanthin, and antheraxanthin were purchased from CaroteNature (Lupsingen, 

Switzerland).   

The HPLC System– The samples were run using Waters Melinnium 3.2 software 

using a system equipped with a binary pump system (Waters 515), an autoinjector 

(Waters 717plus), a PDA detector (Waters 996), and a column heater (SpectraPhysics 

SP8792).  Compounds were separated on a 4.6 x 250 mm, 5µm, YMC Carotenoid 

column (C-30 reverse-phase) purchased from Waters (Milford, MA), which was 

maintained at 35C.   The YMC carotenoid column was chosen based on its ability to 

separate lutein and zeaxanthin.  For analysis of carotenoids, the following gradient 

system was used: methanol/water/triethylamine (90:10:0.1 v/v/v)(A), and 

methanol/MTBE/triethylamine (6:90:0.1v/v/v)(B); gradient (min/%A) 0/99, 8/99, 45/0, 

50/0, and 53/99 (Breithaupt and Bamedi 2002).  The column was brought back to initial 

conditions, and allowed to equilibrate for 10 minutes before the following injection 

(Appendix Q).  All solvents were filtered and degassed before use.   All carotenoids were 

analyzed at 450 nm. 



 

 

74

 

Results and Discussion 

 The samples from each harvest were processed simultaneously, and stored at  

-20C until extraction and analysis.  The DPPH assay was performed first, followed by the 

HPLC phenolic analysis. Carotenoid extractions were performed as phenolic samples 

were run on the HPLC. 

 
DPPH Assay for Total Antioxidant Activity 

 Standard Curves for Ascorbic Acid and Trolox – The standard curve for Trolox 

was estimated between 0 and 900 uM Trolox. The resulting equation was as follows:   

y = 888.12x + 3.4883 where y = µg trolox equivalents/gfw  and x = absorbance at 515nm.  

The R2 value for this curve was 0.9977.  The curve for ascorbic acid was prepared in the 

same manner, with the following regression equation:  y = 853.82x –0.2539, where y = 

µg trolox equivalents/gfw and x = absorbance at 515.  The R2 value for this equation was 

0.998.  The values reported in subsequent discussion are based on the aforementioned 

equations. 

 Field Day Trial 2000 - A wide range of variation in antioxidant activity was 

found among the 67 advanced selections and 24 named varieties analyzed in the 2000 

Field Day Trial.  Antioxidant activity ranged from 104 to 565 µg trolox equivalents/gfw, 

with an average value of 303.    The same values converted to µg ascorbic acid 

equivalents/gfw ranged from 97-535, with an average value of 286.  Advanced selections 

ranged from 103-375 µg trolox equivalents/gfw, while antioxidant activities of the named 

varieties ranged from 127-565 (Table 3-4).  There was a five-fold difference between the 

variety which was lowest in antioxidant activity and that which was highest.  Analysis of 
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variance revealed significant differences between genotypes (<.0001), while replications 

were insignificant (p=0.1229) (Table 3-5).  Due to the number of genotypes analyzed, 

Tukey’s HSD analysis revealed little about which genotypes would be the best for use as 

parents.  Each Tukey grouping had far more genotypes than parents desired, so the means 

were graphed in order to visually observe the distribution (Figure 3-2).    The graph 

revealed eight genotypes that were above the rest of the cluster.  These genotypes 

included Purple Peruvian, TXNS 112, All Blue, ATX 9312-1Ru, CORN 8, ATX 96007-

1P/Y, Russet Norkotah, and TXNS 296.   It is interesting to note that two of these 

genotypes contained purple flesh, and one had purple skin.  This indicates that 

anthocyanins can be a major contributor to antioxidant activity in potato.  Of interest are 

the significant differences observed between Russet Norkotah and its intraclonal variants 

when analyzed separately from the rest of the data.  An analysis of variance showed a p-

value of <.0001 for genotype with no significant difference for replications at the α=.05 

level (p=.0243). TXNS112, CORN8, Russet Norkotah, and TXNS296 were found to be 

significantly different from CORN3 and TXNS102.  Furthermore, TXNS278, TXNS223, 

and CORN 3 were significantly different from TXNS102 (Figure 3-3).  
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TABLE 3-4 – Antioxidant activities of tubers grown in 2000. 
 

Genotype µgTrolox eq/gfw  Genotype µgTrolox eq/gfw 
Purple Peruvian 565  AC91365-1Ru 196 
TXNS112 452  MWTX2609-4Ru 195 
All Blue 389  TX1674-1W/Y 192 
ATX9312-1Ru 376  NDTX4390-5W 192 
CORN8 370  A9045-7 186 
ATX96007-1P/Y 351  COTX93068-1R 186 
Russet Norkotah 347  COTX93069-5R 185 
TXNS296 346  Cherry Red 185 
NDTX4828-2R 312  AC89536-5Ru 184 
ATX9202-1Ru 305  TX1385-12Ru 182 
ATX99137-1Ru 301  Red LaSoda 181 
TXNS278 301  AC90636-3Ru 178 
NDTX4784-1R 299  MWTX4241-1W 177 
TXNS223 295  NDTX5438-11R 176 
AC87138-4Ru 289  A9014-2 175 
NDC4069-4R/R 284  A8893-1 174 
NDTX8731-1R 282  BTX1544-2W/Y 173 
Chipeta 281  MWTX2609-2Ru 173 
ATX92230-1Ru 267  MWTX548-2Ru 172 
NDTX5067-2R 262  A92657-1R 171 
NDTX5407-1R 260  ATX84706-2Ru 169 
Ranger Russet 254  COTX95111-1 169 
BTX1810-1 252  BTX1810-2a 169 
NDTX4784-7R 247  ATX82539-4Ru 162 
Vivaldi 245  CORN3 161 
NDO4588-5 243  TXDH99-1Ru 161 
NDTX6345-2R 240  BTX1749-1Ru/Y 160 
Russet Burbank 240  AO91812-1 158 
TX1673-2W/Y 235  AOTX97275-2Ru 151 
COTX93032-1R 232  Morning Gold 150 
NDC5281-2R 230  BTX1749-2Ru/Y 145 
NDO4323-2R 227  TX1523-1Ru/Y 143 
COTX90046-5W 225  CO92059-8W 141 
COTX94216-1R 224  A90490-1 139 
A90467-14 223  Atlantic 128 
Shepody 223  ATX9202-3Ru 128 
Stampede Russet 221  Dark Red Norland 127 
NDTX4784-9R 220  TXNS102 125 
COTX93053-4R 219  BTX1813-2R 120 
BTX1810-3a 218  TX549-1Ru 119 
AC91014-2Ru 211  AC89653-3W 108 
Adora 207  A8792-1 104 
AC87079-3Ru 207    
NDO4300-1 206    
COTX94218-1 206    
Russet Nugget 204    
COTX94016-2 203    
A90586-11 200    
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TABLE 3-5 – ANOVA table for Field Day Trial 2000 samples.  
 
Source DF Type III SS MS F-Value Pr > F 
Genotype 90 1725036.505 19167.072 8.86 <.0001 
Replication 2 9178.963 4589.482 2.12 0.1229 
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FIGURE 3-2. 
Distribution of antioxidant activities for genotypes analyzed in 
Field Day Trial 2000.   
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FIGURE 3-3. 
Variation in antioxidant activity among Russet Norkotah and its intraclonal variants, 
Field Day Trial 2000.    
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 Location Effect - In 2000, six advanced selections and 11 named varieties were 

grown near Dalhart, Texas in order to compare the effect of location on antioxidant 

activity.  In an analysis of variance, significant differences were found between varieties 

(p<.0001) and locations (p<.0001) , but not replications (p=.0875).  Furthermore, 

significant interaction was found between variety and location (p<.0001).  The effect of 

location is consistent with previous reports by Hamouz et al.(1999a), who reported that, 

over a three year period, potatoes cultivated on loam soils in warm dry regions with low 

altitudes contained less total phenolics than those cultivated in cooler and more humid 

regions on sandy loam soil.   Furthermore, it is known that tubers that are exposed to 

abiotic and biotic stresses increase their production of phenolics as a defense mechanism  

(Lewis et al. 1998b; Hamouz et al. 1999a).   Since the conditions in the two locations are 

not identical, the location effect is not surprising.  The tubers grown in Springlake, which 

tends to be a more stressful environment, were 1.6 times as high in antioxidant activity as 

those grown in Dalhart (Figure 3-4). 
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Comparison of Potato Chips Using the DPPH Assay – The seven types of potato 

chips were analyzed to determine antioxidant activity.  Three replications were taken 

from each bag of chips.  Significant differences were observed between some chip types 

(p=0.0473), with Terra Blues significantly different from Bob’s Texas Style chips.  

Antioxidant activities were very low in the chips as compared to raw potatoes, ranging 

from 0-49 µg trolox equivalents/gfw.  It is not known whether the low values for the 

chips were due to interaction of the oil with the DPPH assay, or if most of the antioxidant 

activity was lost during processing.   Since some of the chips were treated with butylated 

hydroxytoluene, a synthetic antioxidant, reasonable levels of antioxidant activity in the 

chips were expected (Table 3-6). 

 

Figure 3-4. 
Comparison of antioxidant activity from tubers grown in Springlake and Dalhart 
during the 2000 growing season. 

µg
 T

ro
lo

x 
eq

/g
fw

 



 

 

81

TABLE 3-6 – Antioxidant activity of 7 different brands of chips ranked by the DPPH assay.  
 

Chips µg trolox equivalents/gfw Tukey’s grouping 
Terra Blues 37 a 
Zapps - salt and vinegar 12 ab 
Tera Yukon Gold 4 ab 
Wavy Lays 3 ab 
Ruffles 0 ab 
Kettle Chips 0 ab 
Lays Wow Original 0 ab 
Bobs Texas Style 0  b 

 

 Comparison of Different Vegetables Using the DPPH Assay – Eighteen 

vegetables were analyzed for antioxidant activity.  Significant differences (p<.0001) were 

found between vegetables, with values ranging from 0-793 µg trolox equivalents/gfw.  

These same values, converted to µg ascorbic acid equivalents/gfw ranged from 0-752.   

No significant differences were detected between replications (p=.2858).  Leading the 

vegetables in antioxidant activity were green pepper, maroon carrot, and broccoli with 

values of 793, 560, and 511, respectively.  Red-skinned potato fell below the top 

vegetables, with antioxidant activity equivalent to 126, and white skinned potato had an 

average value of 149 µg trolox equivalents/gfw.  Potato was found to be significantly 

higher than celery in antioxidant activity, and fell in the same group as tomato, carrot, 

radish, yellow onion, romaine lettuce, white onion, yellow squash, green squash, and 

cucumber.  The ranking of different vegetables, with their groupings from Tukey’s HSD 

mean separation test, and their average antioxidant values is shown in Table 3-7.



 

 

82

TABLE 3-7 – Antioxidant activities of 18 different vegetables ranked by the DPPH assay.  

 
Vegetable µg trolox equivalents/gfw Tukey’s grouping 
Green Bell pepper 751 a 
Maroon carrot 539 b 
Broccoli 493 b 
Spinach 292 b 
Green onion 212 cd 
Cabbage 196 cde 
Tomato 177 cdef 
White potato 152 cdef 
Carrot 146 cdef 
Red potato 130 cdef 
Radish 109 cdef 
Yellow onion 107 cdef 
Romaine lettuce 94 def 
White onion 58 def 
Yellow squash 39 def 
Zucchini 33 def 
Cucumber 19 ef 
celery 0 f 

 
 
 

Field Day Trial 2001 – A wide range of variation was observed in the 73 

advanced selections and 27 named varieties analyzed in the 2001 Field Day Trial.  

Average antioxidant activity of genotypes ranged from 108-648 µg trolox 

equivalents/gfw, with an average value of 289.  The same values converted to µg 

ascorbic acid equivalents/gfw ranged from 101-614, with an average value of 273.  The 

antioxidant activities of advanced selections ranged from 108-642 µg trolox 

equivalents/gfw, while those of named varieties ranged from 146-648 (Table 3-8).  There 

was a six-fold difference between the genotype which had the lowest antioxidant activity 

and that which was highest.  Analysis of variance revealed significant differences 

between genotypes (p<.0001), while replications were insignificant (p=.0982).  As in the 
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2000 Field Day Trial samples, Tukey’s HSD revealed little about which genotypes would 

be best for use as parents, so the mean antioxidant activities for each genotype were 

graphed in order to visually observe the distribution (Figure 3-5).  The graph revealed 10 

genotypes that were above the rest of the cluster.  These included Stampede Russet, 

ATX91137-1Ru, A8893-1Ru, ATX9332-12Ru, Russet Norkotah, Ranger Russet, 

ATX9202-1Ru, A92017-6Ru, ATX92230-1Ru, and COTX93053-4R.   Again, Russet 

Norkotah and its intraclonal variants were analyzed separately from the rest of the 

genotypes.  An analysis of variance showed a p-value of <.0001 for genotypes, with no 

significant difference observed for replications (p=.6633).  The relative differences, 

however, were not the same as those observed in 2000, with Russet Norkotah 

significantly different from all other varieties.  CORN8, TXNS296, CORN3, TXNS223, 

TXNS278, and TXNS249 were significantly different from TXNS102 and TXNS112.  

Interestingly, TXNS112 was ranked at the top of the Norkotah analysis for antioxidant 

activity in 2000, while in 2001 it had the lowest mean antioxidant activity.    
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TABLE 3-8 -  Antioxidant activity of tubers grown in 2001. 
 
Genotype µg Trolox eq/gfw  Genotype µg Trolox eq/gfw 
Stampede Russet 590  Yukon Gold 281 
ATX91137-1Ru 568  A90586-11Ru 276 
A8893-1Ru 549  ATTX83355-11R 275 
ATX9332-12Ru 514  AOTX96458-1Ru 270 
Russet Norkotah 464  AOTX96265-2Ru 269 
Ranger Russet 464  MWTX2609-4Ru 262 
ATX9202-1Ru 454  AC87079-3Ru 261 
AO92017-6Ru 433  CO93032-1R 252 
ATX92230-1Ru 409  NDTX5407-1R 247 
COTX93053-4R 407  CO92027-2Ru 246 
Mazama 406  TXNS223 246 
TX1523-1Ru/Y 391  COTX4218-1R 239 
BTX810-1R 390  ATX9302-1Ru 238 
ATX96744-1R 380  NDC5281-2R 233 
Red LaSoda 374  TX1385-12Ru 233 
AOTX97164-1Ru 370  AOTX93483-1R 230 
Sating 366  A9045-7Ru 230 
ATX96746-1R 363  TXNS278 230 
Shepody 362  CO93037-6R 224 
CO92077-5Ru 362  ATTX83355-7R 224 
ATX9332-8Ru 360  NDC5372-1Ru 216 
Winema 348  TXNS249 213 
TX1674-1 W/Y 343  All Blue 204 
CORN 8 335  A9014-2Ru 195 
ATX84706-2Ru 332  AC87138-4Ru 193 
BTX1754-1W/Y 331  AC92009-4Ru 192 
Russet Burbank 326  NDTX4271-5R 190 
ATX961007-1 326  TC1675-1Ru 186 
AOTX97175-4Ru 325  AOTX97213-1Ru 183 
ATTX82700-12R 321  AC89536-5Ru 181 
NDTX4790-1Ru 321  MSE192-8Ru 180 
Dark Red Norland 319  NDO4323-2R 176 
AOTX95156-4Ru 318  Platina 170 
Ilong 316  A92584-3BB 167 
ATX82539-4Ru 313  NDTX4898-1Ru 162 
MWTX2609-2Ru 313  AOTX97130-1Ru 161 
BTX1544-2W/Y 311  COTX95111-1R 160 
BTX810-2Ra 310  NDTX4828-7R 153 
ATX84378-1Ru 305  MSE202-3Ru 152 
Morning Gold 303  NDTX4784-7R 152 
TXNS296 297  Adora 146 
CORN3 297  TDA99-1Ru 143 
Vivaldi 296  AF1753-16Ru 143 
AOTX91861-4R 293  TXNS102 134 
MWTX 548-2Ru 292  TXNS112 127 
ATX97232-1Ru 290  NDTX5438-11R 122 
Latona 288  NDTX4828-2R 116 
COTX4216-1R 287  NDTX4304-1R 108 
BTX1749-2Ru/Y 282    
AOTX97287-1Ru     
AC91014-2Ru     
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FIGURE 3-5. 
Antioxidant activities of genotypes analyzed in 2001. 
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 Effect of Year on Antioxidant Activity – Thirty-one advanced selections and 18 

named varieties were analyzed from both the 2000 and 2001 Field Day Trials. Analysis 

of variance revealed significant differences between genotype (p<.0001), year (p<.0001), 

and the genotype x year interaction (p<.0001), with no significant differences between 

replications (p<.2614) (Table 3-9).  A graph of the data reveals that, of the 47 genotypes 

analyzed, 32 increased in antioxidant activity between 2000 and 2001, and 15 decreased 

(Figure 3-6).  The genotypes that decreased in antioxidant activity had an average 

decrease of 27%, while those increasing in activity had an average increase of 85% 

(Table 3-10).  The genotype with the largest difference between years was A8893-1 

(240% increase). 
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FIGURE 3-6. 
Comparison of Field Day data for antioxidant activity across 2 growing seasons reveals a 
significant interaction between year and genotype.  Thirty-two genotypes showed an increase in 
antioxidant activity while 15 showed an decrease between 2000 and 2001.  
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TABLE 3-9 – ANOVA table for comparison of antioxidant activity of tubers grown in 
2000 and 2001. 

 
 
Source DF Type I SS MS F-value Pr>F 
Variety 53 1729821.847 32638.148 7.16 <.0001 
Year 1 517532.562 517532.562 113.51 <.0001 
Variety*Year 44 1356923.430 30839.169 6.76 <.0001 
Replication 2 12322.985 6161.493 1.35 0.2614 
Error 187 852581.860    
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TABLE 3-10 – Comparison of antioxidant activities from Field Day Trials 2000 and  
2001. 

 
Genotype µg Trolox/gfw 2000 µg Trolox/gfw 2001 Increase/Decrease % Difference 
A8893-1 174 590 240 increase 
A9014-2 175 195 11 increase 
A9045-7Ru 186 230 24 increase 
AC87138-4Ru 289 193 -33 decrease 
AC89536-5Ru 184 181 -1 decrease 
AC91014-2Ru 211 282 34 increase 
Adora 207 146 -29 decrease 
AllBlue 389 204 -47 decrease 
ATX82539-4Ru 162 318 96 increase 
ATX84706-2Ru 169 343 102 increase 
ATX91137-1Ru 301 642 113 increase 
ATX9202-1Ru 306 464 52 increase 
ATX92230-1Ru 267 454 70 increase 
BTX1544-2W/Y 173 313 80 increase 
BTX1749-2Ru/Y 145 288 98 increase 
BTX1810-1R 252 406 61 increase 
BTX1810-2Ra 169 313 85 increase 
CORN3 161 303 88 increase 
CORN8 370 348 -6 decrease 
COTX93053-4R 219 433 98 increase 
COTX95111-1R 169 160 -5 decrease 
Dark Red Norland 127 321 152 increase 
Morning Gold 150 310 106 increase 
MWTX2609-2Ru 173 316 82 increase 
MWTX2609-4Ru 195 262 34 increase 
MWTX548-2Ru 172 296 72 increase 
NDC5281-2R 230 233 1 increase 
NDO4323-2R 227 176 -23 decrease 
NDTX4784-7R 247 152 -38 decrease 
NDTX4828-2R 313 116 -63 decrease 
NDTX5407-1R 260 247 -5 decrease 
NDTX5438-11R 176 122 -30 decrease 
Ranger Russet 254 514 102 increase 
Red LaSoda 181 390 115 increase 
Russet Burbank 240 332 38 increase 
Russet Norkotah 347 549 58 increase 
Shepody 223 366 64 increase 
Stampede Russet 221 648 193 increase 
TX1385-12Ru 182 233 28 increase 
TX1523-1Ru/Y 143 407 186 increase 
TX1674-1W/Y 192 360 87 increase 
TXNS102 125 134 7 increase 
TXNS112 452 127 -72 decrease 
TXNS223 295 246 -17 decrease 
TXNS278 301 230 -24 decrease 
TXNS296 346 305 -12 decrease 
Vivaldi 245 297 21 increase 
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 Since there were genotype x environment interactions, it was interesting to 

observe which genotypes performed well in both 2000 and 2001.   To estimate which 

genotypes performed well in both years, rankings were given to each genotype.  If a 

genotype was the highest in antioxidant activity, it received a ranking of one, if it was the 

second highest, two, etc.  Rankings for both years were added together for each geontype, 

and those with the lowest number were considered to be consistently high in carotenoid 

content and of interest to the breeding program.  These genotypes, in order of ranking 

were Russet Norkotah, ATX91137-1Ru, ATX9202-1Ru, CORN8, Ranger Russet, 

ATX92230-1Ru, Stampede Russet, BTX1810-1R, TXNS296, and COTX93053-4R. 

 
HPLC Analysis of Phenolic Compounds  

Based on the results of the DPPH analysis, the top 10% of genotypes in 

antioxidant activity were analyzed, in triplicate, via HPLC.   At the beginning of this 

study, HPLC analysis of phenolics was not anticipated, thus only the Field Day 2001 

genotypes were included in this analysis.  These genotypes included Stampede Russet, 

ATX91137-1Ru, ATX8893-1Ru, ATX9332-12Ru, Russet Norkotah, Ranger Russet, 

ATX9202-1Ru, AO92017-6R, ATX92230-1Ru, COTX93053-4R, and Mazama.  As in 

previous studies, the primary phenolics identified in the tubers were chlorogenic and 

caffeic acids, with minor amounts of rutin hydrate.  Chlorogenic acid levels ranged from 

26-341 µg/gfw, but with the minimum significant difference of 494 µg/gfw for Tukey’s 

studentized range test, no significant differences between genotypes were observed 

(p=0.1547).  This is consistent with values reported by Dao and Freidman (1992), who 

reported chlorogenic acid concentrations ranging from 97-187 µg/g.    Caffeic acid levels 

ranged from 33-41 µg/gfw.  Significant differences were found between varieties at the 
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a=.05 level (p=.0203), while reps were insignificant (p=.7040).  These values are above 

those reported by Yamamoto et al. (1997) who reported a caffeic acid concentration 

between 0.2-3.2 µg/gfw.  ATX9202-1Ru was found to be significantly different from 

COTX93053-4R.  No other significant differences were observed.  Rutin hydrate levels 

ranged from 7 µg/gfw in Mazama to 306 µg/gfw in Ranger Russet.  Significant 

differences were observed between genotypes (p<.0001), but not between replications 

(p=.5561).  Ranger Russet was found to be significantly different from all other 

genotypes analyzed. The high levels of rutin hydrate make it an interesting candidate for 

crossing since no other genotypes contained levels nearly this high.  Tryptophan was 

observed in all samples subjected to HPLC, but was not quantitated.  Total phenolics 

were calculated by adding each of the individual components together.  They ranged from 

60-394 µg/gfw; however, no significant differences were observed between genotypes 

(Table 3-11).  The range of values is equal to or higher than those reported by Rodriguez 

de Sotillo et al. (1994) (321 µg/gfw), Lewis et al. (1998b) (157µg/gfw), and Hamouz et 

al. (1996b) (36-85-52.89 µg/gfw).  The lack of significance could be explained by the 

fact that only the top varieties were analyzed from the screen for antioxidant activity.  

Had the entire range of antioxidant activities been analyzed, there is little doubt that 

significant differences between genotypes would have been observed.  A typical 

chromatogram (Ranger Russet) is shown in Figure 3-7.  Although there were peaks 

observed other than tryptophan, chlorogenic acid, caffeic acid, and rutin hydrate, and they 

sometimes matched retention times with the standards analyzed, none of the spectra in 

the library matched these peaks.  
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A correlation analysis was performed between the results from the DPPH assay 

and the total phenolics as quantitated via HPLC analysis.  Pearson’s correlation 

coefficient was calculated as 0.43, and linear regression revealed that only 18% of the 

variability in the DPPH analysis could be explained by total phenolic content.  The 

discrepancy between these two analyses could be explained by at least two factors.  The 

first of these is that the DPPH assay accounts for the total antioxidant activity of the 

methanol extract, and there are antioxidants other than phenolics present in this extract.  

Thus, the estimated antioxidant activity probably involved more than just the phenolics 

analyzed via HPLC.  Secondly, in the HPLC analysis, there were large peaks that remain 

unidentified.  As is clear from the chromatogram shown in Figure 3-7, significant peaks 

were not quantitated due to the lack of a spectral match in the library of 19 phenolics 

used.  These unidentified peaks, possibly phenolic glycosides, could have antioxidant 

activity, which contributes to the total antioxidant activity calculated in the DPPH assay.    

 
TABLE 3-11 – Phenolic compounds identified via HPLC in 2001 Field Day Trial samples. 
 

 Caffeic Acid Chlorogenic Acid Rutin Hydrate Total Phenolics  
 Genotype µg/gfw µg/gfw µg/gfw µg/gfw DPPH 
Russet Norkotah 36 329 29 394 549
ATX9202-1 42 341 9 391 464
Ranger Russet 36 39 306 380 514
ATX9332-12Ru 38 304 Not detected 342 590
ATX91137-1Ru 37 286 Not detected 323 642
Stampede Russet 38 270 14 322 648
AO92017-6R 35 217 14 266 464
Mazama 34 122 7 163 409
ATX92230-1R 35 112 Not detected 146 454
A8893-1Ru 35 82 14 131 590
COTX93053-4R 33 26 Not detected 60 433

 



 

 

92

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Broad Screen for Carotenoid Content 

 Standard Curves for Lutein and β-carotene – Spectrophotometric readings for the 

ethanol samples at 445 nm were converted into lutein equivalents based on the following 

equation:  y = 3028.6x + 8.1063, where x = absorbance at 445nm and y = µg lutein 

equivalents/100gfw.  The R2 value for this curve was 0.9991.  Hexane samples were 

analyzed at 450 nm and converted into β-carotene equivalents with the following 

equation:  y = 373.59x + 2.0463, where x = absorbance at 450nm, and y = µg  β-carotene 

equivalents/100gfw.  The R2 value for this equation was 0.9993.  The values reported in 

the subsequent discussion on the broad screen of carotenoids are based on the 

aforementioned equations.  

Field Day Trial 2000 – A wide range of variation in carotenoid content was 

observed in the 67 advanced selections and 24 named varieties analyzed in the 2000 Field 

Day Trial.  Micrograms of lutein equivalents  ranged from 85-310 µg/100gfw, with an 
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FIGURE 3-7.  
A representative chromatogram of the separation of  phenolics in Field Day Trial 2001 
samples via HPLC.   
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average value of 184, while average values of β-carotene equivalents ranged from 3-59 

µg/100gfw, with an average value of 14.  Total carotenoid content was estimated by 

adding together the lutein and β-carotene equivalents, and was found to range from 94-

367 µg/100gfw.  Analysis of variance revealed significant differences between genotypes 

(p<.0001), while replications were insignificant (p=0.4697).  A four-fold difference was 

observed between the genotype with the lowest total carotenoid content and that with the 

highest (Table 3-12).  Due to the number of genotypes analyzed, a graphical 

representation was deemed the most appropriate for identifying parents for use in future 

crosses.  The mean total carotenoid content of each genotype based on the absorbance of 

the extracts at 445 and 450, was graphed, and revealed 11 genotypes, which fell above 

the rest of the cluster (Figure 3-8).  These genotypes included ATX82539-4Ru, Chipeta, 

TX1674-1W/Y, CORN8, NDTX4784-7R, NDTX5067-2R, BTX1810-3a, Dark Red 

Norland, Purple Peruvian, CORN3, and Russet Burbank.  While it was expected that the 

yellow flesh variety TX1674-1W/Y would be among the top entries, it was surprising that 

the other yellow flesh varieties were not.  Despite falling in the cluster with the varieties 

with lower carotenoid content, differences were not statistically significant from the 11 

varieties listed above.  When analyzed separately from the rest of the data, significant 

differences were found between Russet Norkotah and its intraclonal variants.  An 

analysis of variance revealed significant differences between genotypes (p=.0015), while 

no differences were noted between replications (p=.9678).  CORN8 lead the Russet 

Norkotah variants with a total carotenoid content of 307 µg carotenoid 

equivalents/100gfw.  CORN8, while not significantly different from CORN3 or 

TXNS223, was different from TXNS112, TXNS102, TXNS296, TXNS278, and Russet 
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Norkotah.  Furthermore, CORN3 was significantly different from TXNS278 and Russet 

Norkotah (Figure 3-9).  No significant differences were observed between the hexane 

fractions of the Russet Norkotah genotypes (p=0.8925); however differences were 

observed in the lutein fraction (p=0.0011).  

 
TABLE 3-12 – Carrotenoid content of genotypes analyzed from the 2000 Field Day 

Trial. 
 

Genotype µg luteineq/100gfw µg β-carotene eq/100gfw 
Total µg 

carotenoids/100gfw 
ATX82539-4Ru 310 56 366 
Chipeta 296 21 317 
TX1674-1W/Y 289 26 316 
CORN8 299 8 307 
NDTX4784-7R 288 7 295 
NDTX5067-2R 284 10 294 
BTX1810-3a 282 8 289 
Dark Red Norland 280 8 288 
Purple Peruvian 271 8 279 
CORN3 270 6 276 
Russet Burbank 256 18 273 
BTX1813-2R 245 9 253 
TX1673-2W/Y 241 11 252 
BTX1810-2a 241 10 248 
A90490-1 244 Missing data 244 
TXNS223 234 9 243 
NDO4588-5 235 3 239 
A90467-14 237 Missing Data 237 
CherryRed 228 7 235 
BTX1810-1 224 8 232 
BTX1544-2W/Y 191 39 230 
NDTX4784-1R 219 11 230 
ATX9312-1Ru 197 32 229 
ATX96007-1P/Y 167 59 226 
Stampede Russet 217 5 222 
CO92059-8W 211 8 220 
BTX1749-1Ru/Y 178 39 217 
NDTX4828-2R 204 9 216 
NDTX4784-9R 204 10 214 
Ranger Russet 203 11 213 
COTX90046-5W 208 4 212 
ATX84706-2Ru 193 17 210 
TX1523-1Ru/Y 188 20 208 
Vivaldi 197 11 208 
ATX91137-1Ru 178 23 202 
NDO4323-2R 196 5 201 
AC87138-4Ru 195 8 199 
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TABLE 3-12 – continued 
    

Genotype µg luteineq/100gfw µg β-carotene eq/100gfw 
Total µg 

carotenoids/100gfw 
TXNS112 185 9 194 
TXNS102 182 11 193 
MWTX4241-1W 184 8 192 
TXA549-1Ru 182 8 190 
AllBlue 180 12 189 
COTX90046-5W 208 4 212 
ATX84706-2Ru 193 17 210 
NDTX8-731-1R 197 12 209 
TX1523-1Ru/Y 188 20 208 
Vivaldi 197 11 208 
ATX91137-1Ru 178 23 202 
NDO4323-2R 196 5 201 
AC87138-4Ru 195 8 199 
NDC5281-2R 191 3 195 
TXNS112 185 9 194 
TXNS102 182 11 193 
MWTX4241-1W 184 8 192 
TXA549-1Ru 182 8 190 
All Blue 180 12 189 
Morning Gold 163 24 188 
A9045-7 181 6 187 
BTX1749-2Ru/Y 174 12 186 
TXNS296 171 14 184 
A92657-1R 183 Missing Data 183 
NDO4300-1 174 5 179 
COTX93068-1R 166 13 179 
MWTX2609-2Ru 171 7 178 
AOTX97275-2Ru 155 21 177 
NDC4069-4R/R 169 5 174 
AC90636-3Ru 141 33 174 
ATX9202-1Ru 153 21 173 
MWTX2609-4Ru 151 21 172 
TXDH99-1Ru 146 25 171 
AC87079-3Ru 145 27 170 
Red LaSoda 163 7 170 
COTX93032-1R 164 5 169 
TXNS278 161 6 168 
Russet Norkotah 161 6 167 
Shepody 153 5 158 
ATX9202-3Ru 166 19 158 
AC89536-5Ru 135 20 155 
MWTX548-2Ru 148 5 153 
NDTX4930-5W 146 6 152 
COTX94216-1R 140 9 149 
COTX93053-4R 138 10 148 
AC91365-1Ru 129 19 148 
A8893-1 142 14 148 
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FIGURE 3-8. 
Total carotenoid content of genotypes harvested in 2000. 
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 Field Day Trial 2001 - A wide range of variation in carotenoid content was 

observed in the 73 advanced selections and 27 named varieties analyzed in the 2001 Field 

Day Trial.  Micrograms of lutein equivalents ranged from 91-482 µg/100gfw, with an 

average value of 183, and β-carotene equivalents ranged from 5-66 µg/100gfw, with an 

average value of 18.  Total carotenoid content, estimated by adding together the lutein 

and B-carotene equivalents, was found to range from 97-536 µg/100gfw, with an average 

value of 195.  Analysis of variance revealed significant differences between genotypes 

(p<0.0001), while replications were insignificant (p=.3426).  A six-fold difference was 

observed between the genotype with the lowest total carotenoid content (TDA99-1Ru), 

and the genotype with the highest (TX1674-1W/Y) (Table 3-13).  Analysis of the ethanol 

extract revealed significant differences between the genotypes in lutein equivalents 

(p<.0001), while replications were insignificant (p=.1395).  In the analysis of the hexane 

extract, both genotype and replication were significant (p<.0001, and p=.0003, 
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FIGURE 3-9. 
Comparison of total carotenoid content of Russet Norkotah and its intraclonal variants. 
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respectively).  Due to the large number of genotypes analyzed, the data was graphed, and 

genotypes falling above the cluster were considered to be of interest in the breeding 

program.  Genotypes of interest include TX1674-1W/Y, Yukon Gold, BTX1544-2W/Y, 

BTX1749-2Ru/Y, BTX1754-1W/Y, ATX9202-1Ru, Latona, and ATX961007-1Pu/Y 

(Figure 3-10).  Unlike the 2000 Field Day Trial, in 2001, most of the yellow flesh 

varieties analyzed were among the highest in carotenoid content.   

 Once again, significant differences were observed between Russet Norkotah and 

its intraclonal variants.  When total carotenoid content was analyzed separately, an 

analysis of variance revealed genotype to be significant at the α=.05 level (p=.0189), 

while replications were insignificant (p=.6890).  CORN8 was shown to be significantly 

different from TXNS223.  No other significant differences were observed in total 

carotenoid content.  When the hexane extract was analyzed, analysis of variance showed 

significant differences in β-carotene equivalents between both genotype (p<.0001) and 

replications (p=.0024).   The lutein extract revealed significant differences at the α=.05 

level between genotypes (p=.0273) but not between replications (.5952).   
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TABLE 3-13 – Carotenoid content of genotypes analyzed from the 2001 Field Day Trial. 

Genotype µg Lutein/100gfw µg  β-carotene/100gfw Total µg carotenoid/100gfw
TX1674-1 W/Y 483 53 536
Yukon Gold 419 37 457
BTX1544-2W/Y 372 58 430
BTX1749-2Ru/Y 339 53 392
BTX1754-1W/Y 334 47 381
ATX9202-1Ru 289 35 363
Latona 328 33 361
ATX961007-1 304 43 347
CORN8 282 27 308
ATX91137-1Ru 243 66 296
Ilong 264 31 296
TXNS296 271 11 282
NDTX4898-1Ru 278 8 281
TX1523-1Ru/Y 238 40 277
CORN 3 247 23 271
Vivaldi 230 40 270
ATX9202-3Ru 258 8 263
BTX810-2Ra 221 34 256
AOTX97287-1Ru 226 11 237
ATX9332-8Ru 228 7 236
ATX97232-1Ru 204 28 233
Winema 214 12 226
Russet Norkotah 200 16 216
Sating 174 31 205
BTX810-1R 181 21 201
ATX96744-1R 186 13 200
Stampede Russet 189 7 196
ATX82539-4Ru 179 16 195
CO92077-5Ru 182 11 193
NDTX4271-5R 184 8 192
ATX84706-2Ru 206 51 190
COTX4216-1R 291 13 187
NDTX4790-1Ru 176 8 184
NDTX5438-11R 174 8 182
A9014-2Ru 165 24 181
Ranger Russet 175 6 181
NDO4323-2R 166 12 178
Platina 155 23 178
COTX4218-1R 171 6 177
AC87079-3Ru 172 14 177
Morning Gold 147 22 175
NDTX5407-1R 167 8 175
TXNS112 163 9 172
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TABLE 3-13 - continued 
Genotype µg Lutein/100gfw µg  β-carotene/100gfw Total µg carotenoid/100gfw
ATTX83355-7R 160 12 171
AOTX95156-4Ru 155 16 171
NDTX4828-7R 160 10 171
AC87138-4Ru 136 33 169
ATTX83355-11R 157 12 169
COTX93032-1 162 6 169
Russet Burbank 154 15 168
TXNS249 157 9 166
ATX84378-1Ru 147 19 166
AOTX93483-1R 145 19 164
A92584-3BB 151 28 163
A9045-7Ru 141 31 163
TXNS102 153 9 162
CO92027-2Ru 144 16 160
TXNS278 153 6 159
MWTX548-2Ru 147 11 158
Red LaSoda 142 16 158
AOTX 97213-1Ru 140 17 157
Shepody 140 13 153
MWTX2609-4Ru 141 10 152
A8893-1Ru 132 20 151
COTX95111-1R 143 8 151
A90586-11Ru 143 8 150
NDC5281-2R 141 8 150
Dark Red Norland 137 12 149
AOTX97175-4Ru 138 11 148
NDC5372-1Ru 140 7 147
COTX93053-4R 137 8 145
NDTX4828-2R 134 11 145
ATX9302-1Ru 135 10 145
A92657-1R 138 7 145
AOTX97130-1Ru 129 15 143
AOTX97164-1Ru 129 15 143
ATTX82700-12R 127 14 141
ATX 9332-12Ru 129 7 136
NDTX4784-7R 129 7 136
AOTX96265-2Ru 115 19 135
TX1385-12Ru 123 11 134
MWTX2609-2Ru 121 10 132
Mazama 116 16 131
AC87079-3Ru 104 24 128
CO93037-6R 115 12 127
TXNS223 119 7 126
TC1675-1Ru 114 9 123
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Genotype µg Lutein/100gfw µg  β-carotene/100gfw Total µg carotenoid/100gfw
MSE192-8Ru 115 7 123
TDA99-1Ru 112 5 117
AOTX96458-1Ru 96 20 115
MSE202-3Ru 107 7 114
ATX96746-1R 102 8 110
ATX92230-1Ru 91 7 98
NDTX4304-1R 92 6 97
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FIGURE 3-10. 
The carotenoid content of genotypes harvested in Field Day 
Trial 2001. 
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Latona ATX961007-1 

TABLE 3-13 - continued 
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Effect of Year on Carotenoid Content –Forty-four genotypes were analyzed for 

carotenoid content from both the 2000 and 2001 Field Day Trials.  Analysis of variance 

revealed significant differences between genotypes (p<0.0001) and genotype by year 

interaction (p<0.0001), but not between years (p=0.9113) or replications (p=0.7639) 

(Table 3-14).  A graph of the data reveals that, of the 44 genotypes analyzed, 17 

increased in carotenoid content between 2000 and 2001, and 27 decreased (Figure 3-11).  

The genotypes that increased in carotenoid content had an average increase of 44%, while 

those decreasing in carotenoid content had an average decrease of 19% (Table 3-15). The 

genotype with the largest difference between years was BTX1749-2Ru/Y (111% 

increase).  Since there were genotype x year interactions, it was interesting to observe 

which genotypes performed well both years.  Determining percent change is interesting 

and calculating averages across years was informative, however, relative ranking among 

other genotypes was of more interest than were absolute values.  To estimate which 

genotypes performed well in different years, rankings were given for genotypes analyzed 

in both 2000 and 2001.  If a genotype was the highest in carotenoid activity, it received a 

ranking of one, if it was second highest, a two, etc.  Rankings from both years were 

added together for each genotype, and those with the lowest number were considered to 

be consistently high in carotenoid content and of interest to the breeding program.   These 

genotypes, in order of ranking, included TX1674-1W/Y, BTX1544-2W/Y, CORN8, 

BTX1749-2Ru/Y, ATX9202-1Ru, ATX91137-1Ru, TXNS296, Vivaldi, and CORN3. 
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TABLE 3-14 – ANOVA table for comparison of total carotenoid content of tubers grown 

in 2000 and 2001. 
 
Source DF Type III SS MS F-Value Pr>F 
Variety 51 872641.3265 17110.6142 9.92 <.0001 
Year 1 21.4782 21.4782 0.01 0.9113 
Variety*Year 43 420388.5182 9776.4772 5.67 <.0001 
Replication 2 930.9008 465.4504 0.27 0.7639 
Error 162 279505.827 1725.345   

FIGURE 3-11. 
Comparison of total carotenoid content for Field Day Trial 2000 and 2001.  
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. 
 
 µg carotenoid eq/100gfw  Difference 

Genotype 2000 2001 Change (%) 
A8893-1 148 151 increase 2
A9014-2 115 181 increase 58
A9045-7Ru 187 163 decrease -13
AC87138-4Ru 199 169 decrease -15
ATX82539-4Ru 366 195 decrease -47
ATX84706-2Ru 210 190 decrease -10
ATX91137-1Ru 202 296 increase 47
ATX9202-1Ru 173 363 increase 109
ATX9202-3Ru 158 263 increase 67
ATX92230-1Ru 144 98 decrease -32
BTX1544-2W/Y 230 430 increase 87
BTX1749-2Ru/Y 186 392 increase 111
BTX1810-1R 232 201 decrease -13
BTX1810-2Ra 248 256 increase 3
CORN3 276 271 decrease -2
CORN8 307 308 increase 0
COTX93032-1R 169 169 increase 0
COTX93053-4R 148 145 decrease -2
Dark Red Norland 288 149 decrease -48
Morning Gold 188 175 decrease -7
MWTX2609-2Ru 178 132 decrease -25
MWTX2609-4Ru 172 152 decrease -12
MWTX548-2Ru 153 158 increase 3
NDC5281-2R 195 150 decrease -23
NDO4323-2R 201 178 decrease -12
NDTX4784-7R 295 136 decrease -54
NDTX4828-2R 216 145 decrease -33
NDTX5407-1R 145 175 decrease 21
NDTX5438-11R 142 182 increase 28
Ranger Russet 213 181 decrease -15
Red LaSoda 170 158 decrease -7
Russet Burbank 273 168 decrease -38
Russet Norkotah 167 216 increase 29
Shepody 158 153 decrease -3
Stampede Russet 222 196 decrease -12
TX1385-12Ru 139 134 decrease -3
TX1523-1Ru/Y 208 277 increase 33
TX1674-1W/Y 316 536 increase 70
TXNS102 193 162 decrease -16
TXNS112 194 172 decrease -12

TABLE 3-15 – Comparison of total carotenoid content from Field Day Trial 2000 
and Field Day Trial 2001. 
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 µg carotenoid eq/100gfw  Difference 

Genotype 2000 2001 Change (%) 
  
TXNS223 243 126 decrease -48
TXNS278 168 159 decrease -5
TXNS296 184 282 increase 53
Vivaldi 208 270 increase 30
 

HPLC Analysis of Carotenoid Compounds 

 Based on results of the spectrophotometric broad screen, the top 10% of 

genotypes in total carotenoid content were analyzed via HPLC. Standards included in the 

carotenoid analysis were violaxanthin, neoxanthin, antheraxanthin, lutein, zeaxanthin, 

canthaxanthin, β-cryptoxanthin, and β-carotene.  A HPLC chromatogram of seven 

compounds analyzed is shown in Figure 3-12. β-carotene eluted much later than these 

seven compounds, and separation was not a problem.   

 

 

 

 

 

 

 

 

 

  

FIGURE 3-12. 
Chromatogram showing the separation of  carotenoid components via HPLC. 

TABLE 3-15 – continued 
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Field Day Trial 2000 – Genotypes included in the Field Day Trial 2000 analysis 

included the top 10% of genotypes from the carotenoid broad screen, as well as Russet 

Norkotah and its intraclonal variants, and 3 yellow flesh Texas advanced selections.  Five 

other varieties were run for comparison with the 2001 data.  Genotypes in the top 10% 

included ATX82539-4Ru, Chipeta, TX1674-1W/Y, CORN8, NDTX4784-7R, 

NDTX5067-2R, BTX1810-3a, Dark Red Norland, Purple Peruvian, and CORN3.  To 

determine the range of carotenoids found in the varieties analyzed, two varieties which 

were very low in total carotenoid content, Atlantic and A91790-13, were analyzed via 

HPLC.   Other genotypes analyzed were TXNS296, TXNS112, TXNS102, TXNS278, 

TXNS223, CORN3, Russet Norkotah, TX1523-1Ru/Y, Russet Burbank, BTX1544-

2W/Y, TX1673-2W/Y, Vivaldi, All Blue, and Morning Gold.  Although many peaks 

were observed, particularly in yellow-flesh samples, only antheraxanthin matched 

retention time and spectra with compounds in the library.  TX1674-1W/Y and 

ATX82539-4Ru each contained antheraxanthin, with concentrations of 14.45 and 18.75 

µg/100gfw, respectively (Figure 3-13).   In addition to peak matches for antheraxanthin, 

there were frequent retention time matches for lutein, violaxanthin, canthaxanthin, 

neoxanthin, and zeaxanthin; however, the spectra were slightly different than the spectra 

of standard compounds. 
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 Field Day Trial 2001 – Entries in the 2001 Field Day Trial included in the HPLC 

analysis were TX1674-1W/Y, Yukon Gold, BTX1544-2W/Y, BTX1749-2Ru/Y, 

BTX1754-1W/Y, A9202-1Ru, Latona, ATX96007-1Pu/Y, CORN8, ATX91137-1Ru, 

NDTX4304-1R, ATX92230-1Ru, TXNS296, TXNS112, TXNS249, TXNS102, 

TXNS278, TXNS223, CORN3, Russet Norkotah, TX1523-1Ru/Y, Russet Burbank, 

NDTX4271-5R, Vivaldi, Sating, Platina, Morning Gold, and Dark Red Norland.  These 

genotypes included the top10% from the broad screen, the 2 genotypes which were 

lowest in carotenoid content from the broad screen, Russet Norkotah and its intraclonal 

variants, and well known and yellow flesh varieties.  While more carotenoids were 

identified in the analysis of this trial than that of the 2000 Field Day Trial, results were 

still very low.  Neoxanthin and lutein were the only compounds identified in genotypes 

FIGURE 3-13. 
Carotenoid chromatogram for ATX82539-4Ru.   
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from Field Day Trial 2001.  Sating contained 4.65 µg neoxanthin/100gfw, and Platina 

and Morning Gold contained 8.25 and 8.9 µg lutein/100gfw.  As in the Field Day 2000 

trial, other peaks were observed, but none of them matched both the retention time and 

spectra of the standards.  Many peaks matched the retention times, however.  Figure 3-14 

shows BTX1749-2Ru/Y.  While there were no matches to the spectral library, there were 

retention time matches for violaxanthin, neoxanthin, antheraxanthin, lutein, and 

zeaxanthin.   

 

 

 

 

 Check Genotypes for Field Day 2000 and Field Day 2001 – Since the carotenoid 

content observed in the Field Day Trials 2000 and 2001 were so far below the previously 

FIGURE 3-14. 
Carotenoid HPLC chromatogram for BTX1749-2Ru/Y grown in Field Day Trial 2001.   
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reported amounts, several of these samples were re-examined from Field Day Trial 2003.  

It was suspected that due to the large number of genotypes analyzed and the time in 

storage, many of the carotenoids in the samples and sample extracts were degraded, or 

had changed into different compounds.   Fourteen genotypes were re-examined by 

processing, performing extractions, and running spectrophotometric and HPLC analyses 

in a single week.  Suspicions of degradation during storage were confirmed with both 

spectrophotometric and HPLC analysis.  Comparison of the samples from the three field 

day trials revealed an average of 164% loss of carotenoids between Field Day Trial 2000 

and Field Day Trial 2003, and a 132% loss between 2001 and 2003 (Table 3-16).  More 

loss in carotenoid content was attributed to the ethanol fraction than was attributed to the 

hexane fraction.   When the genotypes were ranked in order of carotenoid content, the 

order was quite consistent between 2001 and 2003, but not as consistent between 2000 

and 2003 (Figure 3-15).  When the samples are ranked in relative order of carotenoid 

content across all three years, all of the top varieties, with the exception of ATX82539-

4Ru, are yellow-fleshed.  It’s interesting to note that the variance decreases with 

increasing age of samples.  The Field Day Trial 2003 samples had a variance of 59439, 

while the Field Day 2001 samples had a variance of 16385.  This is a 3.6 fold loss in 

variance in carotenoid content.  Even more drastic is the comparison of the Field Day 

Trial 2003 and the Field Day Trial 2000 samples.  The Field Day Trial 2000 samples 

showed a variance of 4439, which is a 13 fold decrease in variance from the 2003 

samples.   This loss in variance is demonstrated in Figure 3-16. 
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 TABLE 3-16 – Comparison of Field Day Trial 2003 samples with Field Day Trial 2000 
and 2001. 

        
 µg carotenoid eq/100gfw 
 Total Total Total 
 Genotype 2003 2001 2000 
BTX1544-2W/Y 749 430 230 
Yukon Gold 855 457 NA 
BTX1749-2Ru/Y 910 392 186 
Chipeta 320 NA 317 
ATX82539-4Ru 607 195 366 
BTX1754-1W/Y 610 381 NA 
Dark Red Norland 465 149 288 
ATX9202-1Ru 435 363 173 
TX1523-1Ru/Y 804 277 208 
TX1674-1W/Y 720 536 306 
NDTX4784-7R 532 136 295 
Russet Norkotah 321 216 167 
ATX961007-1 1134 347 226 
All Blue 366  NA 189 
average 630 323 247 
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FIGURE 3-15. 
The relative order of the genotypes is quite consistent between 2001 and 2003, but less 
consistent between 2000 and 2003.  
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 HPLC analysis revealed very similar results to the spectrophotometric analysis; 

however, the results were much more dramatic.  Lutein, violaxanthin, antheraxanthin, and 

neoxanthin were identified in the samples analyzed from Field Day Trial 2003 (Table 3-

17).  As in the previously analyzed Field Day Trials, there were peaks which remained 

unidentified.  These peaks had identical retention times to carotenoid compounds of 

interest; however, they failed to match the standards contained in the spectral library.     

20002003 2001

FIGURE 3-16. 
Total carotenoid content of tubers grown in Field Day Trial 2000, 2001, and 2003.  
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TABLE 3-17 – HPLC results of Field Day Trial 2003 Samples (processed, extracted, and 
analyzed in a single week).   

   
 µg/100gfw 
Genotype Lutein Violaxanthin Antheraxanthin Neoxanthin 
Dark Red  Norland 18.55    
ATX961007 35.55 18.25   
TX1674-1W/Y  11.95   
BTX1754-1W/Y 31.15 39.55 18.40 13.25 
BTX1544-2W/Y  29.90  13.10 
ATX82539-4Ru 48.75 15.10   

 

It has been previously reported that during storage, the amount of carotenoid 

esters remains stable in comparison to the amount of free carotenoids (Tevini et al. 1986).  

In addition, Haynes et al. (1996) reported a significant effect of environment on yellow-

flesh intensity.  Keeping previous studies in mind, there are a number of possible 

explanations for the differing carotenoid contents observed between years.  The first, and 

most obvious explanation is that the carotenoids degraded during storage.  The presence 

of unidentified peaks with similar retention times to the standards suggests that minor 

modifications could have occurred to the compounds during processing and/or storage.  

This is further supported by the fact that the spectra, while not identical, are very similar 

to the standard spectra, thus indicating that at least part of the compound structure is 

maintained.  One possible explanation is that the carotenoids were esterified, causing a 

slight change in spectra, yet allowing the extracts to maintain their color.   Another 

possibility is that the esters remained in the tuber extracts, while the free carotenoids 

degraded.  
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Pendlington et al. (1965) reported that during the rapid growth period of potato, 

carotenoid epoxides are more abundant than free carotenoids.   Since the tubers analyzed 

were harvested at Field Day, they were somewhat immature and still bulking rapidly.  It 

is possible that the unidentified peaks in the samples are carotenoid epoxides as opposed 

to free carotenoids.  While this can explain the presence of unidentified peaks, which 

were present in all three Field Day Trials, it does not explain the difference between the 

2003 results and those from 2000 and 2001.  

Environment has a significant impact on carotenoid content.  The differences 

between seasons could be explained by differences in growing conditions between years; 

however, it is suspicious that the total carotenoid content decreased with increasing 

storage time.   

Finally, it is important to note that many of the other HPLC analyses performed 

on potato matched peaks based solely on retention time.  Had the HPLC peaks in the 

current study been match based on retention time alone, the levels of individual 

carotenoids quantified would have been much greater.  Slight modifications to structure 

can have little effect on retention time, and as mentioned earlier, there were many times 

that peaks matched retention times with known standards, but did not match the spectra.  

If they did not meet both of these criteria, they were not quantified.   

Since all of the samples in a given year were harvested the same day, and it was 

possible that the living tubers could go through physiological changes while analyzing 

them one genotype at a time, the decision was made to dice and weigh the tubers 

immediately after harvest.  Due to the number of samples analyzed, the choice to analyze 
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the phenolic compounds first, and the need to perform both broad and fine screens for 

antioxidant compounds, it was impossible to analyze all samples quickly.  As a result, 

storage may have been excessive, particularly for the Field Day 2000 samples.   

Since the phenolic compounds were analyzed first, and the results obtained from 

this data are consistent with those obtained from other groups, it is believed that this 

method of processing, analyzing for antioxidant activity, and performing subsequent 

HPLC analysis is an efficient and reliable way to screen for phenolic compounds in 

potato. 

On the other hand, given the instability of carotenoids, and the long extraction 

process, this method could be improved upon.  Based on the results of this study, it is 

recommended that fewer samples be analyzed at one time.  Alternatively, broad screens 

could be conducted on relatively large samples of carotenoids, and subsequent fine 

screens could be performed using fresh extracts.  Furthermore, the broad, 

spectrophotometric screen could be performed on only the ethanol extract since the 

hexane extract contributes little to the overall result.  Eliminating the hexane extraction 

would greatly speed up the process and allow the screening to proceed at a much faster 

pace.  Genotypes that perform well on the broad screen could be re-extracted with both 

hexane and ethanol for the HPLC analysis. It is recommended that, if only one harvest is 

available, whole tubers for HPLC analysis be stored until the broad screen is complete.  

HPLC analysis can then be performed on freshly processed tubers, thus eliminating any 

degradation of carotenoids that might occur in solution.  Batch processing for the broad 

screen does not appear to be a problem as evidenced by the relative consistency between 
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the 2001 and 2003 samples.  Tubers which ranked high in 2001, despite being stored, 

ranked in the same relative order in 2003. 

The objective of this study was to identify parents for use in the Texas Potato 

Variety Development program, and to identify genotypes already in the program which 

could be released as new varieties and marketed based on their antioxidant content.  Two 

different sets of parents have been identified based on their carotenoid and phenolic 

contents.  The genotypes, which appear to be consistently high in carotenoid content are 

TX1674-1W/Y, BTX1544-2W/Y, CORN8, BTX1749-2Ru/Y, ATX9202-1Ru, 

ATX91137-1Ru, TXNS296, Vivaldi, and CORN3.  Another advanced selection, which 

appears to be superior to other genotypes is BTX1754-1W/Y.    This genotype is of 

interest because it contains a wide array of carotenoid compounds including lutein, 

violaxanthin, antheraxanthin, and neoxanthin.  A white flesh variety of interest is 

ATX961007-1 P/Y.  While containing white flesh, this variety ranked high in Field Day 

Trial 2001, as well as when analyzed with the 2003 check varieties.  Furthermore, during 

HPLC analysis, it was shown to contain significant amounts of lutein and violaxanthin.  

 Genotypes considered to be high in antioxidant activity and phenolics which are 

of interest to the variety development program are as follows: Russet Norkotah, 

ATX91137-1Ru, ATX9202-1Ru, CORN8, Ranger Russet, ATX92230-1Ru, Stampede 

Russet, BTX1810-1, TXNS296, and COTX93053-4R.  In addition, the purple-flesh 

varieties All Blue and Purple Peruvian, as well as the purple skinned yellow-fleshed 

advanced selection ATX961007-1P/Y are of interest because of their high levels of 

anthocyanins.   
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CHAPTER IV 

INTERSPECIFIC VARIABILITY FOR ANTIOXIDANT ACTIVITY 

AMONG SOLANUM SPECIES 

 

Introduction 

 A number of  studies have investigated the level of compounds with antioxidant 

activity contained in cultivated potato (S. tuberosum L.);  however, little is known about 

the levels of these important compounds in wild tuber-bearing species.  Since 

antioxidants serve as plant defense compounds, it is likely that, due to natural selection, 

wild species contain higher levels of these compounds than do cultivated varieties.  If 

levels of these compounds are significantly higher than those of cultivated potato, it could 

be beneficial to incorporate them into a breeding program, with the goal of introgressing 

these wild genes into the genepool of cultivated potato.  Wild germplasm could serve as a 

source of important heath benefiting compounds in this fourth most important food crop.. 

 Phenolic content in the flesh of eight wild tuber-bearing species was found to 

range from 84-274 µg, while that in the flesh of cultivated potato was 157 µg/gfw 

(Lewis, et al. 1988b).  A more diverse phenolic profile was observed in the flesh of wild 

species, which contained protocatechuic acid, chlorogenic acid, and p-coumaric acid.  

Flavanoids, however, were significantly higher in S. tuberosum than in the wild species.  

Furthermore, it is well documented that tubers produced from diploid yellow-flesh clones 

are 3-13 fold higher in carotenoid content than tubers of Yukon Gold, suggesting that 
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wild germplasm may be a good source for carotenoid genes in potato (Lu et al. 2001).  

Brown et al. (1993c) also reported high levels of carotenoids in diploid breeding 

populations.  Perhaps the most compelling evidence for using wild species to increase 

antioxidant content in potato is the fact that the source of yellow flesh in many popular 

varieties is from the diploid potato species S. phureja (Johnston and Rowberry 1981; 

Coffin et al. 1988a; and Coffin et al. 1988b).   

 Since intensive selection in wild tuber-bearing species has not been practiced by 

breeders, it is expected that the genetic base for many traits, including antioxidant 

activity, is broader than that of cultivated varieties. 

 The objective of this investigation was to conduct a broad screen of wild tuber 

bearing species to determine if there are accessions which are significantly higher in 

antioxidant activity and carotenoid content than found in cultivated potato.  If the level of 

these important compounds is higher in the accessions, parents from these wild species 

can be selected for use in a breeding program, with the ultimate goal of producing 

varieties that are higher in antioxidant compounds than those currently available.  
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Materials and Methods 

 

Plant Materials 

 Thirty accessions representing 27 wild species were obtained from Dr. John 

Bamberg, Project leader at the Inter-Regional Potato Introduction Station (Sturgeon Bay, 

WI) in September and October of 2000 (Table 4-1).   In addition, 65 accessions, 

representing 25 species, and 2 field replications were obtained in January 2001 (Table 4-

2).  Individual accessions were mixed populations, representing one or two tuber 

families, and were used as a broad screen for antoxidant and carotenoid contents.   These 

groups will be referred to as Bamberg 1 and Bamberg 2, respectively.   In addition to 

these accessions, 50 S. jamesii  accessions, obtained in November 2001, were analyzed 

for antioxidant activity and phenolic content (Table 4-4).  Based on results from these 

three groups and the ability to cross with tetraploid S. tuberosum, accessions and species 

were selected to fine-screen potato germplasm for antioxidant compounds.  The final 

group of tubers was received in April 2002 (Bamberg 02), and was comprised of 272 

entries of single genotypes (as opposed to mixed populations), representing 23 species 

(Table 4-3).  A broad range of cultivated genotypes were analyzed simultaneously to 

determine the differences between wild and cultivated genotypes (Chapter III). 
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TABLE 4-1 – Mixed populations obtained from the Inter-Regional Potato Introduction 
Station, Sturgeon Bay, WI (Bamberg 1). 

 
          
Accession Species   Accession Species 
PI 184764 pinnatisectum  PI 558404 hougasii 
PI 255545 polytrichon  PI 558464 demissum 
PI 283088 laxissimum  PI 564029 fenderli 
PI 310993 lignicaule  PI 564050 jamesii 
PI 320266 commersonii  PI 568929 bukasovii 
PI 320316 microdontum  PI 595507 berthaultii 
PI 320342 polyadenium  PI 597710 oplocense 
PI 458374 vernei  PI 597721 hoopesii 
PI 473086 gourlayi  PI 597732 megistacrolobum 
PI 47310A median  PI 597753 hoopesii 
PI 473412 commersonii  PI 597768 sparsipilum 
PI 498314 violaceimarmoratum  PI 604040 alandiae 
PI 545828 nayaritense  PI 607860 oxycarpum 
PI 545832 brachistotrichum  PI 607866 brachycarpum 
PI 558101 oplocense   PNT bulked pinnatisectum 
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TABLE 4-2 - Mixed populations obtained from the Inter-Regional Potato Introduction 
Station, Sturgeon Bay, WI in January 2001 (Bamberg 2). 

 
          

Accession Species   Accession Species 
PI 160208 demissum  PI 472661 acaule 
PI 161173 verrucosum  PI 472842 commersonii 
PI 184770 polytrichon  PI 472894 infundibuliforme 
PI 184774 pinnantisectum  PI 472923 Kurtzianum 
PI 195190 jamesii  PI 472941 kurtzianum 
PI 195204 stenotomum  PI 472986 spegazzinii 
PI 195206 tarijense  PI 473062 gourlayi 
PI 197760 chacoense  PI 473133 megistacrolobum 
PI 205407 spegazzinii  PI 473171 microdontum 
PI 205510 stoloniferum  PI 473185 oplocense 
PI 218225 microdontum  PI 473190 oplocense 
PI 230589 demissum  PI 473243 tarijense 
PI 243503 commersonii  PI 473336 tarijense 
PI 243513 bulbocastanum  PI 473345 canasense 
PI 249929 papita  PI 473411 commersonii 
PI 255547 polytrichon  PI 473481 acaule 
PI 265579 gourlayi  PI 497998 fendleri 
PI 265863 canasense  PI 498004 fendleri 
PI 265867 infundibuliforme  PI 498033 papita 
PI 265873 megistacrolobum  PI 498039 polytrichon 
PI 275139 chacoense  PI 498057 stoloniferum 
PI 275156 fendleri  PI 498232 demissum 
PI 275187 bulbocastanum  PI 498351 infundibuliforme 
PI 275236 pinnantisectum  PI 498359 kurtzianum 
PI 275262 jamesii  PI 498383 megistacrolobum 
PI 283109 stoloniferum  PI 500041 microdontum 
PI 310956 canasense  PI 500047 acaule 
PI 320293 chacosense  PI 500049 gourlayi 
PI 320316 microdontum  PI 500053 spegazzinii 
PI 347766 pinnantisectum  PI 545725 papita 
PI 347773 tuberosum  PI 545751 bulbocastanum 
PI 435079 oplocense  PI 597710 oplocense 
PI 458425 jamesii       
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TABLE 4-3 - Accessions obtained from the Inter-Regional Potato Introduction Station, 
Sturgeon Bay, WI in April 2002 (Bamberg 02). 

 
          

Accession ID Species  Accession ID Species 
PI 197760 AO 10.3 chacoense  PI 218225 AO 34.14 microdontum 
PI 197760 AO 10.4 chacoense  PI 218225 AO 34.15 microdontum 
PI 197760 AO 10.5 chacoense  PI 218225 AO 34.16 microdontum 
PI 197760 AO 10.6 chacoense  PI 218225 AO 34.17 microdontum 
PI 197760 AO 10.7 chacoense  PI 218225 AO 34.18 microdontum 
PI 197760 AO 10.8 chacoense  PI 498383 AO 39.1 megistacrolobum 
PI 197760 AO 10.9 chacoense  PI 498383 AO 39.2 megistacrolobum 
PI 197760 AO 10.10 chacoense  PI 498383 AO 39.3 megistacrolobum 
PI 197760 AO 10.11 chacoense  PI 498383 AO 39.4 megistacrolobum 
PI 197760 AO 10.12 chacoense  PI 498383 AO 39.5 megistacrolobum 
PI 197760 AO 10.13 chacoense  PI 498383 AO 39.6 megistacrolobum 
PI 197760 AO 10.14 chacoense  PI 498383 AO 39.7 megistacrolobum 
PI 197760 AO 10.15 chacoense  PI 498383 AO 39.8 megistacrolobum 
PI 197760 AO 10.16 chacoense  PI 498383 AO 39.9 megistacrolobum 
PI 197760 AO 10.17 chacoense  PI 498383 AO 39.10 megistacrolobum 
PI 275262 AO 28.1 jamesii  PI 498383 AO 39.11 megistacrolobum 
PI 275262 AO 28.2 jamesii  PI 498383 AO 39.12 megistacrolobum 
PI 275262 AO 28.3 jamesii  PI 498383 AO 39.13 megistacrolobum 
PI 275262 AO 28.4 jamesii  PI 498383 AO 39.14 megistacrolobum 
PI 275262 AO 28.5 jamesii  PI 498383 AO 39.15 megistacrolobum 
PI 275262 AO 28.6 jamesii  PI 498383 AO 39.16 megistacrolobum 
PI 275262 AO 28.7 jamesii  PI 498383 AO 39.17 megistacrolobum 
PI 275262 AO 28.8 jamesii  PI 498383 AO 39.18 megistacrolobum 
PI 275262 AO 28.9 jamesii  PI 500053 AO 60.2 spegazzinii 
PI 275262 AO 28.10 jamesii  PI 500053 AO 60.3 spegazzinii 
PI 275262 AO 28.11 jamesii  PI 500053 AO 60.4 spegazzinii 
PI 275262 AO 28.12 jamesii  PI 500053 AO 60.5 spegazzinii 
PI 275262 AO 28.13 jamesii  PI 500053 AO 60.6 spegazzinii 
PI 275262 AO 28.14 jamesii  PI 500053 AO 60.7 spegazzinii 
PI 275262 AO 28.15 jamesii  PI 500053 AO 60.8 spegazzinii 
PI 275262 AO 28.16 jamesii  PI 500053 AO 60.9 spegazzinii 
PI 218225 AO 34.2 microdontum  PI 500053 AO 60.10 spegazzinii 
PI 218225 AO 34.3 microdontum  PI 500053 AO 60.11 spegazzinii 
PI 218225 AO 34.4 microdontum  PI 500053 AO 60.12 spegazzinii 
PI 218225 AO 34.5 microdontum  PI 500053 AO 60.13 spegazzinii 
PI 218225 AO 34.6 microdontum  PI 500053 AO 60.14 spegazzinii 
PI 218225 AO 34.7 microdontum  PI 500053 AO 60.15 spegazzinii 
PI 218225 AO 34.8 microdontum  PI 500053 AO 60.16 spegazzinii 
PI 218225 AO 34.9 microdontum  PI 500053 AO 60.17 spegazzinii 
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Accession ID Species  Accession ID Species 
PI 218225 AO 34.10 microdontum  PI 500053 AO 60.18 spegazzinii 
PI 218225 AO 34.12 microdontum  PI 472846 EV 691 commersonii 
PI 218225 AO 34.13 microdontum  PI 590921 EV 695 Commersonii 
PI 320295 EV 772 infundibuliforme  PI 558379 TAX 13 bulbocastanum 
PI 414147 EV 774 infundibuliforme  PI 190115 TAX 30 pinnatisectum 
PI 435076 EV 776 infundibuliforme  PI 275231 TAX 31 pinnatisectum 
PI 442676 EV 778 infundibuliforme  PI 275232 TAX 32 pinnatisectum 
PI 458322 EV 782 infundibuliforme  PI 275236 TAX 33 pinnatisectum 
PI 458325 EV 785 infundibuliforme  PI 251720 TAX 40 brachistotrichum 
PI 472856 EV 787 infundibuliforme  PI 255527 TAX 41 brachistotrichum 
PI 472860 EV 791 infundibuliforme  PI 255528 TAX 42 brachistotrichum 
PI 472862 EV 793 infundibuliforme  PI 255529 TAX 43 brachistotrichum 
PI 472869 EV 800 infundibuliforme  PI 255530 TAX 44 brachistotrichum 
PI 472871 EV 802 infundibuliforme  PI 320265 TAX 45 brachistotrichum 
PI472873 EV 804 infundibuliforme  PI 497993 TAX 46 brachistotrichum 
PI 472876 EV 806 infundibuliforme  PI 498217 TAX 48 brachistotrichum 
PI 472878 EV 808 infundibuliforme  PI 545812 TAX 49 brachistotrichum 
PI 472880 EV 810 infundibuliforme  PI 545813 TAX 50 brachistotrichum 
PI 472882 EV 812 infundibuliforme  PI 545814 TAX 51 brachistotrichum 
PI 472884 EV 814 infundibuliforme  PI 545815 TAX 52 brachistotrichum 
PI 472886 EV 816 infundibuliforme  PI 545817 TAX 53 brachistotrichum 
PI 472888 EV 818 infundibuliforme  PI 545832 TAX 54 brachistotrichum 
PI 472892 EV 820 infundibuliforme  PI 558401 TAX 55 brachistotrichum 
PI 472894 EV 822 infundibuliforme  PI 558460 TAX 56 brachistotrichum 
PI 472896 EV 824 infundibuliforme  PI 558460 TAX 56B brachistotrichum 
PI 472898 EV 826 infundibuliforme  PI 184762 TAX 57 cardiophyllum 
PI 472901 EV 828 infundibuliforme  PI 184771 TAX 58 cardiophyllum 
PI 472903 EV 830 infundibuliforme  PI 186548 TAX 59 cardiophyllum 
PI 472907 EV 834 infundibuliforme  PI 255519 TAX 60 cardiophyllum 
PI 472909 EV 836 infundibuliforme  PI 255520 TAX 61 cardiophyllum 
PI 472913 EV 838 infundibuliforme  PI275212 TAX 62 cardiophyllum 
PI 472915 EV 840 infundibuliforme  PI 275213 TAX 63 cardiophyllum 
PI 472917 EV 842 infundibuliforme  PI 275214 TAX 64 cardiophyllum 
PI 473414 EV 844 infundibuliforme  PI 275216 TAX 66 cardiophyllum 
PI 473522 EV 846 infundibuliforme  PI 283062 TAX 68 cardiophyllum 
PI 498333 EV 850 infundibuliforme  PI 283063 TAX 69 cardiophyllum 
PI 498335 EV 852 infundibuliforme  PI 341231 TAX 70 cardiophyllum 
PI 498337 EV 854 infundibuliforme  PI 341233 TAX 71 cardiophyllum 
PI 498339 EV 856 infundibuliforme  PI 341235 TAX 72 cardiophyllum 
PI 498341 EV 858 infundibuliforme  PI 347759 TAX 73 cardiophyllum 
PI 498343 EV 860 infundibuliforme  PI 545753 TAX 74 cardiophyllum 
PI 498345 EV 862 infundibuliforme  PI 545824 TAX 76 cardiophyllum 
PI 498351 EV 868 infundibuliforme  PI 595467 TAX 78 cardiophyllum 

TABLE 4-3 - continued 
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Accession ID Species  Accession ID Species 
PI 498354 EV 870 infundibuliforme  PI 595476 TAX 80 cardiophyllum 
PI 500046 EV 873 infundibuliforme  PI 595480 TAX 83 cardiophyllum 
PI 545894 EV 875 infundibuliforme  PI 595482 TAX 84 cardiophyllum 
PI 566767 EV 881 infundibuliforme  PI 595486 TAX 85 cardiophyllum 
PI 566769 EV 883 infundibuliforme  PI 595488 TAX 86 cardiophyllum 
PI 275184 TAX 6 bulbocastanum  PI 595489 TAX 87 cardiophyllum 
PI 545752 TAX 12 bulbocastanum  PI 597678 TAX 88 Cardiophyllum 
PI 605371 TAX 141 jamesii  PI 190115 HERB 3.1-.7 pinnatisectum 
PI 612456 TAX 142 jamesii  PI 230489 HERB 4.1-.9 pinnatisectum 
PI 545820 TAX 143 nyaritense  PI 253214 HERB 5.1-.8 pinnatisectum 
PI 545827 TAX 144 nyaritense  PI 275230 HERB 6.1-.9 pinnatisectum 
PI 595478 TAX 145 sambucinum  PI 275231 HERB 7.1-.9 pinnatisectum 
PI 604209 TAX 146 sambucinum  PI 275232 HERB 8.1-.8 pinnatisectum 
PI 558483 TAX 150 verrucosum  PI 275233 HERB 9.1-.9 pinnatisectum 
PI 611104 TAX 198 edinense  PI 275234 HERB 10.1-.3 pinnatisectum 
PI 320266 F2 4.2 commersonii  PI 275235 HERB 11.1-.9 pinnatisectum 
PI 320266 F2 4.3 commersonii  PI 275236 HERB 12.1-.9 pinnatisectum 
PI 320266 F2 4.4 commersonii  PI 347766 HERB 13.1-.9 pinnatisectum 
PI 320266 F2 4.5 commersonii  PI 537023 HERB 14.1-.7 pinnatisectum 
PI 320266 F2 4.6 commersonii  PI 473481 FFAO 2 acaule 
PI 320266 F2 4.7 commersonii  PI 243510 FFAO 4 bulbocastanum 
PI 320266 F2 4.8 commersonii  PI 275187 FFAO 5 bulbocastanum 
PI 320266 F2 4.9 commersonii  PI 545751 FFAO 6 bulbocastanum 
PI 320266 F2 4.10 commersonii  PI 265863 FFAO 7* canasense 
PI 320266 F2 4.11 commersonii  PI 310956 FFAO 8* canasense 
PI 320266 F2 4.12 commersonii  PI 473345 FFAO 9* canasense 
PI 320266 F2 4.13 commersonii  PI 197760 FFAO 10 chacoense 
PI 320266 F2 4.14 commersonii  PI 275139 FFAO 11 chacoense 
PI 320266 F2 4.15 commersonii  PI 320293 FFAO 12 chacoense 
PI 320266 F2 4.17 commersonii  PI 500049 FFAO 24 gourlayi 
PI 320266 F2 4.18 commersonii  PI 458425 FFAO 29 jamesii 
PI 320266 F2 5.1 commersonii  PI 592422 FFAO 30 jamesii 
PI 320266 F2 5.2 commersonii  PI 472923 FFAO 31 kurtzianum 
PI 320266 F2 5.4 commersonii  PI 472941 FFAO 32 kurtzianum 
PI 320266 F2 5.5 commersonii  PI 218225 FFAO 34 microdontum 
PI 320266 F2 5.6 commersonii  PI 473171 FFAO 35 microdontum 
PI 320266 F2 5.7 commersonii  PI 500041 FFAO 36 microdontum 
PI 320266 F2 5.8 commersonii  PI 265873 FFAO 37 megistacrolobum 
PI 320266 F2 5.9 commersonii  PI 473190 FFAO 42 oplocense 
PI 320266 F2 5.11 commersonii  PI 498130 FFAO 47 okadae 
PI 320266 F2 5.12 commersonii  PI 184770 FFAO 49 polytrichon 
PI 320266 F2 6.1 commersonii  PI 255547 FFAO 50 polytrichon 
PI 320266 F2 6.2 commersonii  PI 498039 FFAO 51 polytrichon 

 TABLE 4-3 – continued 
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Accession ID Species  Accession ID Species 
PI 320266 F2 6.11 commersonii  PI 184774 FFAO 52 pinnatisectum 
PI 320266 F2 6.16 commersonii  PI 545725 FFAO 57 papita 
PI 320266 F2 6.17 commersonii  PI 205407 FFAO 58 spegazzinii 
PI 320266 320266.1 commersonii  PI 472986 FFAO 59 spegazzinii 
PI 320266 320266.2 commersonii  PI 230512 FFAO 62 stenotomum 
PI 320266 320266.5 commersonii  PI 205510 FFAO 64 stoloniferum 
PI 320266 320266.7 commersonii  PI 283109 FFAO 65 stoloniferum 
PI 320266 320266.16 commersonii  PI 195206 FFAO 67 tarijense 
PI 320266 320266.17 commersonii  PI 473243 FFAO 68 Tarijense 
PI 184774 HERB1.1-.6 pinnatisectum  PI 473336 FFAO 69 tarijense 
PI 186553 HERB 2.1-.9 pinnatisectum     
 
 
TABLE 4-4 – S. jamesii accessions obtained from the Inter-Regional Potato Introduction 

Station, Sturgeon Bay, WI in November 2001 (Jamesii). 
              
Accession  Accession  Accession  Accession 

275169  498407  585118  596519 
275172  564048  592398  603055 
275262  564049  592399  603056 
275263  564051  592411  603057 
275264  564053  592414  603058 
275265  564054  592417  605358 
275266  564055  592418  605359 
458423  564056  592419  605361 
458424  564057  592422  605365 
458425  578236  592423  605366 
458426  578237  595778  605367 
458427  578238  595782   
458428   585116   595784     

 
 

 
 

Extraction of Antioxidants  

For the evaluation of potato antioxidant activity, total carotenoids, and individual 

carotenoid and phenolic components via HPLC, whole tubers were diced into quarter 

inch cubes. Since the wild tubers tend to be small, more than one tuber comprised a 

single replication.  Three groups of tubers per accession were diced and kept separate, 

 TABLE 4-3 – continued 
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and a representative sample was weighed and stored at –20C until extractions were 

performed.  Since tuber material was limited, not all accessions had three replications for 

each analysis  (Figure 4-1).  

Extraction of Phenolics - For the evaluation of potato antioxidant activity and the 

HPLC analysis of phenolics, antioxidants were extracted from 5 g tuber samples by 

mixing 15 ml of methanol and homogenizing with an ultra turrax tissumizer from Tekmar 

(Cincinnati, Ohio).  Homogenized samples were centrifuged at 15,000 rpm for 15 

minutes in a refrigerated centrifuge (Beckman model J2-21) using a J-17 rotor.  One 

point five ml of the supernatant were collected in 1.5 ml snap-cap tubes for analysis of 

total antioxidants, and 7 ml were collected in glass vials for the analysis of individual 

phenolics via HPLC.  The sample extracts were stored at –20C until analysis, and the 

pellet was discarded (Figure 4-1). 

Extraction of Carotenoids - A 10 g sample of diced tuber tissue was used to 

extract carotenoids for both the total carotenoid broad screen and the analysis of 

individual carotenoids via HPLC.  Since potatoes contain both oxygenated (i.e., β-

carotene and α-carotene) and non-oxygenated carotenoids (i.e., lutein and zeaxanthin), 

both ethanol and hexane were used to ensure complete extraction.   Fifteen ml of ethanol  
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plus BHT (1g/L) were added to 10 g of tuber tissue and homogenized using an ultra 

turrax tissumizer from Tekmar (Cincinnati, Ohio).  Five ml of ethanol +BHT (1g/L) was 

added to the resulting slurry, and it was incubated overnight at –20C to facilitate a more 

efficient extraction.  The following day, 10 ml of hexane was added, and the sample was 

centrifuged for 20 minutes at 1600 rpm in a refrigerated centrifuge (Beckman model J2-

21) using a J-17 rotor.  Eight ml of each layer (hexane and ethanol) were saved in 

separate falcon tubes, and the remaining solvent was discarded, while the pellet remained 

at the bottom of the tube.  Five ml of methanol and 10 ml of hexane were added to the 

pellet, and the tube was shaken.  The second extract was centrifuged as described above, 

and 4 ml each of the hexane and ethanol layers were added to the previous extracts.    

Seven ml of the combined ethanol extracts were saved for HPLC analysis, and 1.5 ml 

were saved for the estimation of total carotenoids.  The hexane extracts were saved in an 

identical manner (Figure 4-1). 
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 FIGURE 4-1.  
Diagram of extraction procedure for carotenoids and phenolics. 

A 5 g and 10 g 
sample was taken 
from each tuber 

3 replications of 1 tuber 
each.

1 2 3 

1 2 3 

3 replications for 
antioxidant activity 
and HPLC 

3 replications for 
total carotenoids 
and HPLC 

2 3 

Add 15 ml methanol Add 20 ml ethanol 

Homogenize Homogenize 

Add 10 ml 1 2 3 1 2 3 

Centrifuge 

1 2 3 1 2 3 

Save 7 ml for 
HPLC and 1.5 ml 
for antioxidant 
assay 

Save 8 ml  
hexane and 8 
ml ethanol.  
Five ml of 
ethanol and 
10 ml hexane 
were added to 
the pellet and 
re-
centrifuged. 

Mix 4 ml  hexane and ethanol 
with previous extraction.  Save 
7ml for HPLC and 1.5 for total 
carotenoid estimation
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DPPH Assay for Total Antioxidant Activity 

 The determination of antioxidant activity was based on the 2,2-Diphenyl-1-

picryhydrazyl (DPPH) analysis described by Brand-Williams et al. (1995).  DPPH, a 

stable radical, absorbs at 515 nm, and upon reduction by an antioxidant species, a 

decrease in absorbance is observed.  The change in color (from purple to yellow) 

provided an easy and rapid way to evaluate the antiradical activities of potato extracts.  

Since this study dealt with such a large number of samples, the DPPH assay was used as 

a broad screen to identify those genotypes that were high in antioxidant activity. 

 DPPH stock solution was prepared by dissolving 24 mg of DPPH in 100 ml of 

methanol.  The stock was diluted ~10:55 until the display on the spectrophotometer at 

515 nm read 1.1.  Two thousand eight hundred fifty µl of the dilute DPPH was allowed to 

react with 150 µl of the tuber methanol extract for 15 minutes, and then read on the 

spectrophotometer at 515 nm.  All accessions were analyzed in triplicate when enough 

tuber material was available. 

 Two standard curves, one with Ascorbic acid, and one with trolox (6-Hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid – a commonly used synthetic antioxidant), 

were prepared, and absorbance readings were converted to µM equivalents of these 

compounds.  While most studies report antioxidant activity based on DPPH in trolox 

equivalents, an ascorbic acid curve was also prepared because it is a compound with 

which the general public is familiar, while trolox is not (Appendix O).  Three samples 

were prepared separately for each concentration, and were assayed in the same manner as 

the potato samples.  One hundred fifty µl of the standard at various concentrations was 
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allowed to react for 15 minutes with 2850 µl of the DPPH working solution.  Curves 

were prepared based on absorbance at 515 nm.  

 

HPLC Analysis of Phenolic Compounds 

 Based on the results of the DPPH analysis, the top 10% of genotypes in 

antioxidant activity were chosen for analysis in triplicate via HPLC.  The reduction in 

numbers was necessary because of both monetary and time constraints involved in HPLC 

analysis.   

Concentrating the Samples – A 7 ml sample of the 5 g methanol extract was 

retained for analysis of individual phenolic components on the HPLC.   The samples 

were dried to completion in a heated speed vac, and resuspended in 1.5 ml of methanol 

for analysis.  Prior to injection, the concentrated samples were filtered through a 0.45 µm 

syringe filter. 

The Compounds Analyzed – Based on the phenolics previously reported in the 

literature on cultivated potato, the following 19 compounds were selected for this 

analysis:  Rutin hydrate, chlorogenic acid, gallic acid, protocatechuic acid, catechin, p-

hydroxybenzoic acid, caffeic acid, vanillic acid, (-) epicatechin, p-coumaric acid, syringic 

acid, sinapic acid, 4’-5,7-Trihydroxyflavanone, ferulic acid, myricetin, saliclylic acid, 

quercetin dihydrate, t-cinnamic acid, and kaempherol.  All standard were obtained from 

Acros Organics (Pittsburgh, PA). 

The HPLC System– The samples were run using Waters Melinnium 3.2 software 

on a system equipped with a binary pump system (Waters 515), an autoinjector (Waters 
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717 plus), a photodiode array (PDA) detector (Waters 996), and a column heater 

(SpectraPhysics SP8792).  Compounds were separated on a 4.6 x 150 mm, 5µm, Atlantis 

C-18 reverse-phase column manufactured by Waters (Milford, MA), which was 

maintained at 40 C.   The Atlantis column was chosen based on its ability to separate 

polar compounds using conventional reverse-phase chromatography.  For analysis of 

phenolics, the following gradient system was used:  Solvent A (Acetonitrile), solvent B 

(water/HCL, adjusted pH 2.3); gradient (min/%A) 0/85, 5/85, 30/0, 35/0.  The column 

was brought back to initial conditions, and allowed to equilibrate for 11 minutes before 

the following injection (Appendix P).  All solvents were filtered and degassed before use.   

Nine point calibration curves were prepared for all standards except tryptophan, and each 

was analyzed at its lambda max.   

 

Broad Screen for Carotenoid Content 

 It has been reported in numerous studies that carotenoid content is highly 

correlated with the yellow intensity of tuber flesh, and as a result, this is frequently used 

as a measure of the carotenoid levels in potato (Lu et al. 2001; Haynes et al. 1994; 

Haynes et al. 1996; Haynes 2000; Janave and Thomas 1979).  Based on a method 

published in Current Protocols in Food Analytical Chemistry, the carotenoids in the 

broad screen were determined by absorbance of the ethanol and hexane extracts at 445 

nm and 450 nm, respectively (Scott 2001).    

 Standard curves were prepared for both the ethanol and hexane extracts to convert 

the absorbance into lutein and β-carotene equivalents, respectively.  The lutein curve was 
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prepared by determining the absorbance at 445 nm of solutions of lutein ranging in 

concentration from .001-.02 µg/ml.  This curve allowed the determination of tuber 

carotenoid concentrations in the ethanol extract ranging from 0-2000 µg/100gfw lutein 

equivalents.  A similar curve was prepared for the hexane extract based on the 

absorbance of β-carotene at 450 nm.  This curve allowed the determination of tuber 

carotenoid concentrations in the hexane extract ranging from 0-667 µg/100gfw β-

carotene equivalents. 

 

HPLC Analysis for Carotenoid Compounds 

 Based on the results of the spectrophotometric broad screen for carotenoids, the 

top 10% of accessions were chosen for HPLC analysis.   

Concentrating the Samples – Seven ml samples of the 10 g ethanol and hexane 

extracts were retained for analysis of individual carotenoid components by HPLC.   The 

samples were dried to completion under a nitrogen stream and resuspended in 1 ml of 

50% ethanol for analysis.  Both prior to drying and following concentration, samples 

were filtered through a 0.45 µm syringe filter. 

The Compounds Analyzed – Based on previously reported studies on cultivated 

and diploid potatoes, the following seven carotenoids were selected for this analysis:  

Lutein, zeaxanthin, β-cryptoxanthin, antheraxanthin, canthaxanthin, β-carotene, and 

violaxanthin.  The lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin were kindly 

provided by Hoffman La Roche (Basel, Switzerland), β-carotene was purchased from 
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Sigma-Aldrich, and antheraxanthin violaxanthin, and antheraxanthin were purchased 

from CaroteNature (Lupsingen, Switzerland).   

The HPLC System– The samples were run using Waters Millennium 3.2 software 

using a system equipped with a binary pump system (Waters 515), an autoinjector 

(Waters 717plus), a photodiode array (PDA) detector (Waters 996), and a column heater 

(SpectraPhysics SP8792).  Compounds were separated on a 4.6 x 250 mm, 5µm, YMC 

Carotenoid column (C-30 reverse-phase) purchased from Waters (Milford, MA), which 

was maintained at 35 C.   The YMC carotenoid column was chosen based on its ability to 

separate lutein and zeaxanthin.  For analysis of carotenoids, the following gradient 

system was used: methanol/water/triethylamine (90:10:0.1 v/v/v)(A), and 

methanol/MTBE/triethylamine (6:90:0.1v/v/v)(B); gradient (min/%A) 0/99, 8/99, 45/0, 

50/0, and 53/99 (Breithaupt and Bamedi 2002).  The column was brought back to initial 

conditions, and allowed to equilibrate for 10 minutes before the following injection 

(Appendix Q).  All solvents were filtered and degassed before use.   All carotenoids were 

analyzed at 450 nm. 

 

Results and Discussion 

The accessions from each shipment were processed simultaneously, and stored at 

–20C until extraction and analysis.  The DPPH assay was performed first, followed by 

the HPLC phenolic analysis.  While phenolic samples were run on the HPLC, carotenoid 

extractions were performed. 

 



 

 

134

DPPH Assay for Total Antioxidant Activity 

Standard Curves for Ascorbic Acid and Trolox – The standard curve for Trolox 

was estimated between 0 and 900 µM Trolox. The resulting equation was as follows:   

y = 888.12x + 3.4883 where y = µg trolox equivalents/gfw  and x = absorbance at 515nm.  

The R2 value for this curve was 0.9977.  The curve for ascorbic acid was prepared in the 

same manner, with the following regression equation:  y = 853.82x –0.2539, where y = 

µg trolox equivalents/gfw and x = absorbance at 515.  The R2 value for this equation was 

0.998.  The values reported in subsequent discussion are based on the aforementioned 

equations. 

 Bamberg 1 – A wide range of variation in antioxidant activity was found among 

the thirty accessions analyzed in the Bamberg 1 group.  Antioxidant activity ranged from 

48-892 µg trolox equivalents/gfw, with an average value of 353.  The same values 

converted to µg ascorbic acid equivalents/gfw ranged from 43-846, with an average value 

of 333.  There was a 18-fold difference between the accession which was lowest in  
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antioxidant activity (PI 545832) and that which was highest (PNT Bulked) (Table 4-5).  

Analysis of variance revealed significant differences between accessions (p<.0001), 

while replications were insignificant (p=.2186).  Due to the number of accessions 

analyzed, mean separation analysis revealed little about which accessions would be 

useful in a breeding program to enhance antioxidant levels above what is already 

available in cultivated potato.   Each grouping had far more accessions than parents 

desired, so the means were graphed in order to visually observe the distribution (Figure 

4-2).   The graph revealed 6 accessions that were above the rest of the cluster.  

Interestingly, these six accessions were also above the cultivated potato samples, which 

were analyzed at the same time.  Significantly different from most other accessions was a 

bulked sample of S. pinnatisectum (892 µg trolox/gfw).  Following this accession were S. 

comersonii 320266 (778 µg trolox/gfw), S. pinnatisectum 184764 (744 µg trolox/gfw), S. 

oxycarpum 607860 (742 µg trolox/gfw), S. jamesii 564050 (622 µg trolox/gfw), and S. 

violaceimarmoratum 498314 (580 µg trolox/gfw).   
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FIGURE 4-2. 
Distribution of accessions analyzed in Bamberg 1 group. 
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TABLE 4-5 – Antioxidant activities of Bamberg 1 accessions. 
 

   

Accession Species ug Trolox eq/gfw 
PNT bulked pinnatisectum 892 
PI 320266 commersonii 778 
PI 184764 pinnatisectum 744 
PI 607860 oxycarpum 742 
PI 564050 jamesii 622 
PI 498314 violaceimarmoratum 580 
PI 568929 bukasovii 489 
PI 607866 brachycarpum 471 
PI 310993 lignicaule 454 
PI 458374 vernei 448 
PI 597732 megistacrolobum 429 
PI 320342 polyadenium 413 
PI 320316 microdontum 347 
PI 595507 berthaultii 338 
PI 473412 commersonii 335 
PI 47310A med 328 
PI 558464 demissum 248 
PI 558404 hougasii 232 
PI 597721 hoopesii 228 
PI 564029 fenderli 228 
PI 558101 oplocense 213 
PI 597753 hoopesii 193 
PI 473086 gourlayi 192 
PI 604040 alandiae 191 
PI 597767 sparsipilum 183 
PI 255545 polytrichon 173 
PI 283088 laxissimum 159 
PI 545828 nayaritense 84 
PI 597710 oplocense 81 
PI 545832 brachistotrichum 48 
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Bamberg 2 – A wide range of variation in antioxidant activity was found among 

the 65 accessions analyzed in the Bamberg 2 group. Antioxidant activity ranged from 

160-847 µg trolox equivalents/gfw, with an average value of 530.  The same values 

converted to µg ascorbic acid equivalents/gfw ranged from 150-803, with an average 

value of 501 (Table 4-6).  There was a five-fold difference between the accession which 

was lowest in antioxidant activity (S. megistacrolobum 265873), and that which was 

highest (S. spegazzinii 500053).  Many accessions were higher than the cultivated 

genotypes analyzed.  Analysis of variance revealed significant differences between 

accessions (p<.0001), species (p=.0332), and replications (p=.0069), but not between 

field replications (p=.6229).   

Bamberg 02 – Based on the mixed populations analyzed in the Bamberg 1 and 

Bamberg 2 screens for antioxidant activity, accessions and species which had been 

consistently high were chosen for analysis of individual clones grown from tuber seed 

within these populations.   
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TABLE 4-6 – Antioxidant activities of Bamberg 2 accessions. 

Accession 
number Species 

µgTrolox 
eq/gfw 

 Accession 
number Species 

µgTrolox 
eq/gfw 

PI 500053 spegazzinii 847 PI 545725 papita 455
PI 498383 megistacrolobum 827 PI 310956 canasense 446
PI 347766 pinnantisectum 819 PI 265863 canasense 432
PI 197760 chacoense 818 PI 473185 oplocense 414
PI 275236 pinnantisectum 816 PI 498359 kurtzianum 408
PI 184774 pinnantisectum 815 PI 472941 kurtzianum 407
PI 473481 acaule 811 PI 243513 bulbocastanum 400
PI 320293 chacosense 804 PI 275187 bulbocastanum 391
PI 160208 demissum 802 PI 498033 papita 389
PI 472661 acaule 796 PI 473243 tarijense 383
PI 218225 microdontum 786 PI 184770 polytrichon 379
PI 275262 jamesii 779 PI 265867 infundibuliforme 375
PI 497998 fendleri 734 PI 205407 spegazzinii 373
PI 498351 infundibuliforme 718 PI 472923 Kurtzianum 372
PI 435079 oplocense 701 PI 500041 microdontum 364
PI 195190 jamesii 689 PI 472986 spegazzinii 299
PI 265579 gourlayi 689 PI 347773 tuberosum 298
PI 473190 oplocense 676 PI 249929 papita 287
PI 500047 acaule 666 PI 195204 stenotomum 268
PI 473336 tarijense 656 PI 597710 oplocense 249
PI 243503 commersonii 638 PI 472894 infundibuliforme 237
PI 498004 fendleri 636 PI 195206 tarijense 233
PI458425 jamesii 635 PI 498057 stoloniferum 202
PI 473062 gourlayi 613 PI 255547 polytrichon 197
PI 498232 demissum 605 PI 265873 megistacrolobum 160
PI 472842 commersonii 586
PI 320316 microdontum 573
PI 230589 demissum 573
PI 205510 stoloniferum 559
PI 473411 commersonii 553
PI 500049 gourlayi 532
PI 473133 megistacrolobum 530
PI 161173 verrucosum 529
PI 275156 fendleri 527
PI 498039 polytrichon 512
PI 283109 stoloniferum 497
PI 545751 bulbocastanum 487
PI 275139 chacoense 468
PI 473345 canasense 440
PI 473171 microdontum 436
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Since the overall objective of the study was to increase antioxidant levels consumed in 

the diet through potato, preference was given to those species that can be easily crossed 

with S. tuberosum.  Large numbers of individual clones from families which were high in 

antioxidant activity in the Bamberg 1 and Bamberg 2 groups, in addition to species which 

performed well in these screens, and other accessions of interest, were screened in 2002.    

Antioxidant activity of the clones screened in 2002 ranged from 43-884 µg trolox 

equivalents/gfw, with an average value of 338.32.  The same values, converted to µg 

ascorbic acid equivalents/gfw ranged from 150-803.  There was a 21-fold difference 

between the accession that was lowest in antioxidant activity and the accession that was 

highest.  Analysis of variance revealed significant differences between accessions 

(p<.0001), while replications were insignificant (p=.1230).  S. pinnatisectum and S. 

jamesii clones were consistently high in antioxidant activity, while S. brachistotrichum 

continually ranked low.  Clones of S. jamesii accession 275262 appeared to be 

consistently high in antioxidant activity (Table 4-7).  
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TABLE 4-7 - Antioxidant activities of Bamberg 02 accessions. 

        
Accession ID Species µg trolox eq/gfw 
341235 TAX 72 cardiophyllum 884 
320266 320266.17 commersonii 882 
275262 AO 28.10 jamesii 880 
275234 HERB 10.1-.3 pinnatisectum 880 
275231 HERB 7.1-.9 pinnatisectum 873 
347766 HERB 13.1-.9 pinnatisectum 872 
275232 HERB 8.1-.8 pinnatisectum 870 
230489 HERB 4.1-.9 pinnatisectum 869 
275262 AO 28.13 jamesii 869 
341233 TAX 71 cardiophyllum 869 
190115 TAX 30 pinnatisectum 867 
275233 HERB 9.1-.9 pinnatisectum 867 
537023 HERB 14.1-.7 pinnatisectum 866 
184774 HERB1.1-.6 pinnatisectum 865 
275236 TAX 33 pinnatisectum 863 
184774 FFAO 52 pinnatisectum 862 
253214 HERB 5.1-.8 pinnatisectum 861 
275230 HERB 6.1-.9 pinnatisectum 861 
275235 HERB 11.1-.9 pinnatisectum 858 
275232 TAX 32 pinnatisectum 858 
275236 HERB 12.1-.9 pinnatisectum 857 
275262 AO 28.4 jamesii 856 
275231 TAX 31 pinnatisectum 850 
498383 AO 39.5 megistacrolobum 844 
275262 AO 28.11 jamesii 832 
275262 AO 28.2 jamesii 823 
275262 AO 28.7 jamesii 819 
275262 AO 28.16 jamesii 809 
275262 AO 28.9 jamesii 808 
498383 AO 39.10 megistacrolobum 794 
275262 AO 28.8 jamesii 789 
275262 AO 28.6 jamesii 783 
612456 TAX 142 jamesii 764 
275262 AO 28.3 jamesii 763 
605371 TAX 141 jamesii 760 
275262 AO 28.5 jamesii 743 
190115 HERB 3.1-.7 pinnatisectum 700 
197760 AO 10.3 chacoense 685 
275262 AO 28.1 jamesii 684 
595478 TAX 145 sambucinum 653 



 

 

142

Accession ID Species µg trolox eq/gfw 
473243 FFAO 68 tarijense 642 
197760 AO 10.7 chacoense 626 
186553 HERB 2.1-.9 pinnatisectum 623 
275262 AO 28.15 jamesii 596 
218225 AO 34.18 microdontum 591 
320266 F2 4.18 commersonii 588 
283109 FFAO 65 stoloniferum 584 
500053 AO 60.7 spegazzinii 537 
218225 AO 34.17 microdontum 521 
473336 FFAO 69 tarijense 480 
275262 AO 28.12 jamesii 478 
472871 EV 802 infundibuliforme 473 
458425 FFAO 29 jamesii 469 
320266 F2 5.4 commersonii 465 
218225 FFAO 34 microdontum 464 
197760 AO 10.14 chacoense 458 
218225 AO 34.14 microdontum 450 
472986 FFAO 59 spegazzinii 439 
458322 EV 782 infundibuliforme 430 
218225 AO 34.3 microdontum 423 
472869 EV 800 infundibuliforme 420 
230512 FFAO 62 stenotomum 413 
320266 F2 5.2 commersonii 409 
320266 F2 5.11 commersonii 408 
197760 AO 10.17 chacoense 402 
218225 AO 34.7 microdontum 399 
197760 AO 10.4 chacoense 396 
320266 F2 4.5 commersonii 394 
218225 AO 34.5 microdontum 393 
197760 AO 10.13 chacoense 391 
218225 AO 34.16 microdontum 390 
320266 F2 4.17 commersonii 382 
498333 EV 850 infundibuliforme 380 
205510 FFAO 64 stoloniferum 376 
218225 AO 34.13 microdontum 369 
197760 AO 10.16 chacoense 368 
320266 F2 4.12 commersonii 368 
218225 AO 34.15 microdontum 360 
500053 AO 60.13 spegazzinii 360 
197760 AO 10.9 chacoense 357 
472898 EV 826 infundibuliforme 354 
275262 AO 28.14 jamesii 353 
197760 AO 10.15 chacoense 342 

TABLE 4-7 - continued 
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Accession ID Species µg trolox eq/gfw 
498345 EV 862 infundibuliforme 341 
197760 AO 10.12 chacoense 338 
197760 AO 10.10 chacoense 338 
255519 TAX 60 cardiophyllum 337 
500046 EV 873 infundibuliforme 336 
320266 F2 5.8 commersonii 334 
197760 AO 10.8 chacoense 333 
500053 AO 60.4 spegazzinii 330 
320295 EV 772 infundibuliforme 330 
500053 AO 60.14 spegazzinii 329 
218225 AO 34.4 microdontum 327 
498383 AO 39.16 megistacrolobum 326 
320266 320266.2 commersonii 326 
197760 AO 10.11 chacoense 323 
320266 F2 4.10 commersonii 323 
320266 F2 4.2 commersonii 322 
320266 F2 4.9 commersonii 319 
472876 EV 806 infundibuliforme 317 
498383 AO 39.18 megistacrolobum 314 
500053 AO 60.2 spegazzinii 306 
320265 TAX 45 brachistotrichum 306 
265863 FFAO 7,8,9 canasense 305 
197760 AO 10.5 chacoense 301 
498383 AO 39.11 megistacrolobum 298 
320266 F2 4.6 commersonii 296 
472862 EV 793 infundibuliforme 294 
472886 EV 816 infundibuliforme 293 
442676 EV 778 infundibuliforme 291 
473171 FFAO 35 microdontum 291 
320266 F2 4.3 commersonii 288 
414147 EV 774 infundibuliforme 288 
498351 EV 868 infundibuliforme 281 
500053 AO 60.6 spegazzinii 281 
435076 EV 776 infundibuliforme 281 
500053 AO 60.16 spegazzinii 281 
473190 FFAO 42 oplocense 279 
265873 FFAO 37 megistacrolobum 277 
472892 EV 820 infundibuliforme 275 
283062 TAX 68 cardiophyllum 274 
472860 EV 791 infundibuliforme 273 
472915 EV 840 infundibuliforme 273 
218225 AO 34.12 microdontum 272 
595486 TAX 85 cardiophyllum 272 

TABLE 4-7 - continued 
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Accession ID Species µg trolox eq/gfw 
320266 F2 5.6 commersonii 271 
498383 AO 39.6 megistacrolobum 271 
458325 EV 785 infundibuliforme 269 
472882 EV 812 infundibuliforme 267 
592422 FFAO 30 jamesii 266 
320266 F2 4.15 commersonii 265 
498354 EV 870 infundibuliforme 265 
473522 EV 846 infundibuliforme 263 
472856 EV 787 infundibuliforme 263 
320266 F2 5.1 commersonii 263 
320266 F2 4.7 commersonii 262 
498383 AO 39.14 megistacrolobum 261 
498383 AO 39.17 megistacrolobum 261 
500053 AO 60.3 spegazzinii 260 
566769 EV 883 infundibuliforme 259 
472913 EV 838 infundibuliforme 258 
283063 TAX 69 cardiophyllum 256 
500053 AO 60.8 spegazzinii 255 
320266 F2 5.9 commersonii 255 
472888 EV 818 infundibuliforme 252 
500053 AO 60.15 spegazzinii 251 
320266 F2 4.4 commersonii 246 
205407 FFAO 58 spegazzinii 245 
595476 TAX 80 cardiophyllum 243 
218225 AO 34.6 microdontum 243 
498341 EV 858 infundibuliforme 242 
500053 AO 60.12 spegazzinii 240 
218225 AO 34.2 microdontum 240 
498339 EV 856 infundibuliforme 239 
320266 F2 4.11 commersonii 239 
320266 F2 5.5 commersonii 238 
320266 F2 6.1 commersonii 238 
218225 AO 34.8 microdontum 235 
320266 F2 4.8 commersonii 235 
498383 AO 39.9 megistacrolobum 235 
472878 EV 808 infundibuliforme 234 
545725 FFAO 57 papita 233 
498383 AO 39.12 megistacrolobum 233 
500053 AO 60.11 spegazzinii 233 
197760 AO 10.6 chacoense 232 
498343 EV 860 infundibuliforme 231 
545894 EV 875 infundibuliforme 231 
595467 TAX 78 cardiophyllum 230 

TABLE 4-7 - continued 
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Accession ID Species µg trolox eq/gfw 
320266 F2 5.7 commersonii 225 
472873 EV 804 infundibuliforme 225 
473481 FFAO-2 acaule 224 
558401 TAX 55 brachistotrichum 222 
472846 EV 691 commersonii 220 
275184 TAX 6 bulbocastanum 219 
500041 FFAO 36 microdontum 219 
195206 FFAO 67 tarijense 217 
500053 AO 60.10 spegazzinii 217 
218225 AO 34.10 microdontum 217 
472884 EV 814 infundibuliforme 216 
500049 FFAO 24 gourlayi 216 
500053 AO 60.9 spegazzinii 213 
500053 AO 60.18 spegazzinii 210 
500053 AO 60.5 spegazzinii 207 
347759 TAX 73 cardiophyllum 207 
320266 320266.1 commersonii 207 
472896 EV 824 infundibuliforme 205 
472917 EV 842 infundibuliforme 203 
498130 FFAO 47 okadae 201 
472901 EV 828 infundibuliforme 200 
566767 EV 881 infundibuliforme 200 
472894 EV 822 infundibuliforme 199 
320266 320266.16 commersonii 195 
497993 TAX 46 brachistotrichum 195 
320266 F2 6.2 commersonii 193 
320266 F2 5.12 commersonii 191 
275212 TAX 62 cardiophyllum 188 
500053 AO 60.17 spegazzinii 187 
498383 AO 39.1 megistacrolobum 184 
472909 EV 836 infundibuliforme 183 
558460 TAX 56 brachistotrichum 181 
498383 AO 39.13 megistacrolobum 176 
558483 TAX 150 verrucosum 175 
341231 TAX 70 cardiophyllum 173 
498383 AO 39.7 megistacrolobum 172 
275214 TAX 64 cardiophyllum 171 
472923 FFAO 31 kurtzianum 167 
545752 TAX 12 bulbocastanum 167 
251720 TAX 40 brachistotrichum 166 
320266 320266.7 commersonii 165 
320266 F2 6.17 commersonii 165 
498039 FFAO 51 polytrichon 164 

TABLE 4-7 - continued 
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Accession ID Species µg trolox eq/gfw 
184770 FFAO 49 polytrichon 161 
473414 EV 844 infundibuliforme 160 
597678 TAX 88 cardiophyllum 158 
472907 EV 834 infundibuliforme 155 
218225 AO 34.9 microdontum 155 
498383 AO 39.3 megistacrolobum 154 
320266 F2 4.14 commersonii 154 
320266 F2 4.13 commersonii 154 
320266 F2 6.11 commersonii 151 
498383 AO 39.2 megistacrolobum 150 
595482 TAX 84 cardiophyllum 148 
595480 TAX 83 cardiophyllum 146 
472880 EV 810 infundibuliforme 146 
498383 AO 39.4 megistacrolobum 137 
320293 FFAO 12 chacoense 137 
255520 TAX 61 cardiophyllum 136 
275213 TAX 63 cardiophyllum 133 
472941 FFAO 32 kurtzianum 133 
472903 EV 830 infundibuliforme 131 
498217 TAX 48 brachistotrichum 130 
595488 TAX 86 cardiophyllum 129 
320266 320266.5 commersonii 127 
275216 TAX 66 cardiophyllum 127 
595489 TAX 87 cardiophyllum 126 
498335 EV 852 infundibuliforme 125 
590921 EV 695 commersonii 122 
255527 TAX 41 brachistotrichum 118 
498337 EV 854 infundibuliforme 117 
498383 AO 39.15 megistacrolobum 116 
186548 TAX 59 cardiophyllum 115 
498383 AO 39.8 megistacrolobum 110 
197760 FFAO 10 chacoense 108 
243510 FFAO 4 bulbocastanum 107 
558460 TAX 56B brachistotrichum 106 
611104 TAX 198 edinense 102 
184771 TAX 58 cardiophyllum 100 
184762 TAX 57 cardiophyllum 98 
545751 FFAO 6 bulbocastanum 98 
275139 FFAO 11 chacoense 97 
255547 FFAO 50 polytrichon 96 
275187 FFAO 5 bulbocastanum 95 
545824 TAX 76 cardiophyllum 88 
558379 TAX 13 bulbocastanum 81 

TABLE 4-7 - continued 
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Accession ID Species µg trolox eq/gfw 
545753 TAX 74 cardiophyllum 78 
320266 F2 6.16 commersonii 74 
545817 TAX 53 brachistotrichum 69 
545832 TAX 54 brachistotrichum 66 
545814 TAX 51 brachistotrichum 65 
545827 TAX 144 nyaritense 61 
545820 TAX 143 nyaritense 61 
545812 TAX 49 brachistotrichum 59 
255529 TAX 43 brachistotrichum 59 
545813 TAX 50 brachistotrichum 55 
255530 TAX 44 brachistotrichum 51 
545815 TAX 52 brachistotrichum 48 
255528 TAX 42 brachistotrichum 43 

 
  

Jamesii Samples – In addition to the broad screen of species, 50 S. jamesii 

accessions were analyzed for antioxidant activity.  While the range in variation among 

the S. jamesii samples was lower than that for any other group, the mean was the highest 

among the Bamberg samples.  Furthermore, the mean of the S. jamesii samples was 

higher than the highest tetraploid genotype tested.  Antioxidant activity ranged from 365-

871 µg trolox equivalents/gfw, with an average value of 662.  Analysis of variance 

revealed significant differences between both accessions (p<.0001) and replications 

(p=.0295).  Accessions with antioxidant activities above 800 µg trolox equivalents/gfw, 

which is exceptionally high considering the highest tetraploid genotype analyzed (see 

chapter III) had an antioxidant activity of 648, include PI 603056, PI 595784, PI 603055, 

PI 275172, PI 275266, PI 275262, PI 458424, PI 592399, and PI 275264.   

  

TABLE 4-7 - continued 
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HPLC Analysis of Phenolic Compounds 

  
 Based on results of the DPPH analysis, the top10% of accessions in antioxidant 

activity were analyzed, in triplicate, via HPLC.   At the beginning of this study, HPLC 

analysis of phenolics was not anticipated, thus only the Bamberg 2, Bamberg 02, and 

Jamesii accessions were included in this analysis. 

 Bamberg 2 – The accessions included in the Bamberg 2 HPLC analysis were the 

accessions ranked in the top 10% in antioxidant activity (high), the accessions which 

were the lowest (low) in antioxidant activity, and accessions representing several species  

(species) that were not included in the top 10%.  When available, tubers from two 

locations in the field (field replications) were analyzed.  Accessions included in the top 

10% were PI 184774 (S. pinnatisectum), PI 197760 (S. chacoense), PI 275236 (S. 

pinnatisectum), PI 347766 (S. pinnatisectum), PI 473781 (S. acaule), PI 498383 (S. 

megistacrolobum), and PI 500053 (S. spegazzinii).  Accessions low in activity, which 

were analyzed to determine the range of phenolics contained in wild species were PI 

195204 (S. stenotomum), and PI 249929 (S. papita).  Since S. pinnatisectum and S. 

jamesii dominated the top 10%, it was possible that accessions high in one particular 

compound (though not total activity) would be overlooked if only the top 10% were 

examined via HPLC.   

To reduce the possibility of overlooking an accession that could contribute to the 

level of one particular compound when used as parents, at a survey of species were 

analyzed via HPLC.  Accessions included in this survey were PI 265579 (S. gourlayi), PI 
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430579 (S. oplocense), PI 473781 (S. acaule), PI 497998 (S. fendleri), PI 498232 (S. 

demissum), and PI 545725 (S. papita). As discovered in previous studies on cultivated 

varieties, the primary phenolics identified in the tubers were chlorogenic and caffeic 

acids, which were both present in all but one of the accessions analyzed.  Salicylic acid 

and p-coumaric acid were identified in some of the accessions as well.  Chlorogenic acid 

levels ranged from 0-1836 µg/gfw, while caffeic acid levels ranged from 45-149 µg/gfw.  

Total phenolic levels, calculated by adding up the individual compounds quantified, 

ranged from 37-1967 µg/gfw (Table 4-8).  These levels have a much greater range than 

those found in tetraploid S. tuberosum (See chapter III).  The values in cultivated S. 

tuberosum, obtained by the same extraction and HPLC method, ranged from 26-341 µg 

chlorogenic acid/gfw, 33-41 µg caffeic acid/gfw, and 60-396 µg total phenolics/gfw.  

Analysis of variance for chlorogenic acid revealed significant differences between 

accessions (p=<.0001), while no differences were found between  replications (p=.7427), 

or field replications (p=.0795).  PI 347766 was significantly higher in chlorogenic acid 

content than all other accessions but PI 275236.  PI 275236 was significantly different 

than all other accessions except PI 184774 and PI 347766 (Table 4-9).  It is noted that all 

of the accessions that were high in antioxidant activity in the broad screen, were also high 

in chlorogenic acid.   A correlation analysis was performed between the results from the 

DPPH assay and chlorogenic acid content as quantified via HPLC analysis.  Pearson’s 

correlation coefficient was calculated as 0.63, and linear regression revealed that 40% of 

the variability in the DPPH analysis could be explained by chlorogenic acid content.  
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TABLE 4-8 – HPLC phenolic results for Bamberg 2. 

                  

ACNO Species Group Field
Caffeic 

Acid 
Chlorogenic 

Acid 
p-coumaric 

acid 
Salicylic 

Acid 
Total 

Phenolics 
   Rep (µg/gfw) (µg/gfw) (µg/gfw) (µg/gfw) (µg/gfw) 

347766 pinnatisectum high 1 149 1818   1967 
275236 pinnatisectum high 2 120 1475   1595 
197660 chacoense high 2 170 1134   1304 
275236 pinnatisectum high 1 127 1022   1149 
347766 pinnatisectum high 2 123 969   1092 
184774 pinnatisectum high 2 126 836  6 968 
498232 demissum species 2 90 746 9  845 
184774 pinnatisectum high 1 102 695   797 
498383 megistacrolobum high 2 48 702   750 
498383 megistacrolobum high 1 40 451   491 
473781 acaule species 1 90 370   460 
430579 oplocense species 2 55 401   455 
265579 gourlayi species 1 53 330   383 
473781 acaule high 2 51 314   365 
497998 fendleri species 1 50 292   342 
265579 gourlayi species 2 44 221 44  309 
430579 oplocense species 1 56 225 18  299 
197660 chacoense high 1 71 155   226 
249929 papita low 2 47 157   204 
497998 fendleri species 2 48 151   200 
545725 papita species 2 47 94   141 
249929 papita low 1 44 91   135 
545725 papita species 1 45 78   123 
498232 demissum species 1 44 78   122 
195204 stenotomum low 1 36 45   82 
500053 spegazzinii high 2 37    37 
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TABLE 4-9 – Mean separation for levels of chlorogenic acid contained in Bamberg 2. 

          
ACNO Species Group µg chlorogenic acid/gfw Tukey's Grouping 
347766 pinnatisectum high 1606 a 
275236 pinnatisectum high 1316 ab 
184774 pinnatisectum high 779   bc 
197660 chacoense high 645    cd 
498383 megistacrolobum high 551    cde 
498232 demissum species 412    cde 
473781 acaule species 356    cde 
430579 oplocense species 286    cde 
265579 gourlayi species 269    cde 
497998 fendleri species 222    cde 
249929 papita low 118     de 
545725 papita species 87     de 
195204 stenotomum low 45 e 

 

 Analysis of variance for caffeic acid revealed significant differences between 

accessions (p<.0001), while no differences were observed between replications (p=.8326) 

or field replications (p=.0827).  PI 347766 (pinnatisectum) was significantly higher in 

caffeic acid content than all other accessions except PI 197660 (chacoense), PI 184774 

(pinnatisectum), and PI 275236 (pinnatisectum) (Table 4-10). 
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TABLE 4-10  –  Mean separation of levels of caffeic acid contained in Bamberg 2. 

Accession Species Group µg caffeic acid/gfw Tukey's Grouping 
347766 pinnatisectum high 142 a 
197660 chacoense high 121 ab 
184774 pinnatisectum high 116 ab 
275236 pinnatisectum high 116 ab 
473781 acaule species  80  bc 
498232 demissum species  62   c 
430579 oplocense species  56   c 
265579 gourlayi species  49   c 
497998 fendleri species  49   c 
545725 papita species  46   c 
249929 papita low  45   c 
498383 megistacrolobum high  43   c 
195204 stenotomum low  36   c 

  

 

As with chlorogenic acid, when accessions were ranked according to caffeic acid 

content, all of the species, with the exception of one, that were high in antioxidant 

activity ranked at the top in caffeic acid content. A correlation analysis was performed 

between the results from the DPPH assay and caffeic acid as quantified via HPLC 

analysis, giving almost identical results to the results found for chlorogenic acid.  

Pearson’s correlation coefficient was calculated as 0.62, and linear regression revealed 

that 40% of the variability in the DPPH assay could be explained by caffeic acid content.  

PI 184774  (pinnatisectum) contained 6µg/gfw salicylic acid, while PI 265579 (gourlayi), 

PI 430579 (oplocense), and PI 498232 (demissum) contained 44, 18, and 9 ug/gfw p-

coumaric acid, respectively.  A typical chromatogram is shown in Figure 4-3. 
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Bamberg 02 – The genotypes included in the Bamberg 02 HPLC analysis 

included accessions ranked in the top 10% in antioxidant activity (high), the accessions 

which were the lowest in antioxidant activity (low), and accessions representing several 

other species (species).  Accessions included in the HPLC analysis are listed in Table 4-

11.  As in the Bamberg 2 analysis, chlorogenic acid and caffeic acid were identified in 

tubers; however vanillic acid was also quite abundant.  Other compounds identified 

included p-coumaric acid, epicatechin, t-cinnamic acid, rutin hydrate, and gallic acid.  

Chlorogenic acid levels ranged from 18-1117 µg/gfw, while caffeic acid levels ranged 

from 34-1570 µg/gfw.  These levels have a much greater range than those found in 

FIGURE 4-3. 
A typical chromatogram of phenolic separation of the wild species.  The accession pictured is 
PI 275236 (S. pinnatisectum). 
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tetraploid S. tuberosum, with values ranging from 26-341µg chlorogenic acid/gfw, and 

33-41µg caffeic acid/gfw.   Analysis of variance for chlorogenic acid, caffeic acid, and 

vanillic acid as well as the total phenolic levels, revealed significant differences between 

accessions, while no differences were found between replications.  PI 184774 

(pinnatisectum) was significantly different in caffeic acid from all other accessions 

analyzed.  As in the Bamberg 2 samples, the varieties that were high in antioxidant 

activity were also high in chlorogenic and caffeic acids.   S. pinnatisectum accessions 

were consistently high in caffeic and chlorogenic acid, and many also contained 

measurable levels of vanillic acid.  Vanilic acid had a small range of concentration, 

ranging from 6-17 µg/gfw.  Accessions containing p-coumaric acid included  PI 283109 

(S. stoloniferum), PI 275231 (S. pinnatisectum), PI 498383 (S. megistracrolobum), PI 

275262 (S. jamesii), PI 341233 (S. cardiophyllum), PI 341235 (S. cardiophyllum), PI 

595478 (S. sambucinum), PI 595486 (S. cardiophyllum), and PI 320265 (S. 

brachistrotrichum).  Accessions containining epicatechin included PI 341235 (S. 

cardiophyllum), PI 545813 (S. brachistotrichum).  Trans-cinnamic acid was identified in 

3 accessions and ranged from 11-127 µg/gfw.  These accessions included PI 275230 (S. 

pinnatisectum), PI 473190 (S. oplocense), and PI 341325 (S. cardiophyllum).  Rutin 

hydrate was identified in PI 283109 (S. stoloniferum), PI 473481(S. acaule), and PI 

500049 (S. gourlayi). While gallic acid was only identified in one accession (PI 255530, 

brachistortrichum), it is possible that it was contained in other accessions as well.   
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Due to its immediate elution from the column, it co-eluted with the void volume, 

therefore, the spectra was frequently contaminated by other compounds.  Compounds 

were only quantitated if they matched both the retention time and spectra of the standard 

compounds. Had the analysis been based solely on retention time, gallic acid, and may 

other compounds, would have been identified and quantified.  

Jamesii Samples – Jamesii accessions ranking in the top 10% from the DPPH 

assay were analyzed for individual carotenoid components by HPLC.  Caffeic acid levels 

ranged from 157-268 µg/gfw, while chlorogenic aicd levels ranged from 65-105 µg/gfw.  

One accession, PI 603056 contained 9 µg vanillic acid/gfw.  Total phenolic content 

ranged from 164-356 µg/gfw (Table 4-12).  Since the accessions contained in this group 

of samples were segregating populations, grown from true botanical seed, the values are 

not the same as those reported in Bamberg 02.   Further differences could be a result of 

environment on levels of antioxidant compunds since the Bamberg 02 samples were 

grown in a different location than were the jamesii samples.
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TABLE 4-11 – HPLC phenolic results for Bamberg 02.  

             

    
Caffeic

Acid
Chlorogenic

Acid
Vanillic

Acid
p-coumaric 

Acid epicatechin
t-cinnamic

Acid
Rutin

Hydrate
Gallic

Acid
Total

Phenolics
Accession ID Species Group µg/gfw µg/gfw µg/gfw µg/gfw µg/gfw µg/gfw µg/gfw µg/gfw µg/gfw

184774 FFAO 52 pinnatisectum high 1570 161  1730
320266 320266.17 commersonii high 236 1117 11  1360
230489 HERB 4.1-.9 pinnatisectum high 213 1003 12  1221
275235 HERB 11.1-.9 pinnatisectum high 174 1019 12  1201
275234 HERB 10.1-.3 pinnatisectum high 175 986 12  1169
253214 HERB 5.1-.8 pinnatisectum high 226 911  1137
275233 HERB 9.1-.9 pinnatisectum high 199 890 10  1093
473243 FFAO 68 tarijense species  41 1000 9  1030
275231 TAX 31 pinnatisectum high 145 813  959
184774 HERB1.1-.6 pinnatisectum high 200 742 11  946
197760 AO 10.3 chacoense species  49 802  851
275232 TAX 32 pinnatisectum high 107 722  829
197760 AO 10.7 chacoense species  46 609  655
275232 HERB 8.1-.8 pinnatisectum high 151 720 12  639
190115 TAX 30 pinnatisectum high 124 471 8  598
275230 HERB 6.1-.9 pinnatisectum high 150 420 12  16 580
283109 FFAO 65 stoloniferum species  70 470 7 11 558
275262 AO 28.7 jamesii high 121 602 11  530
186553 HERB 2.1-.9 pinnatisectum high 183 331 12  518
275231 HERB 7.1-.9 pinnatisectum high 174 488 8 9 508
275236 TAX 33 pinnatisectum high 126 372 11  506
218225 AO 34.18 microdontum species  55 408 8  465
498383 FFAO 37 megistacrolobum high 100 332 17 8 453
275262 AO 28.13 jamesii high 207 216 11 430
275262 AO 28.2 jamesii high 141 280 13  426
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Caffeic

Acid
Chlorogenic

Acid
Vanillic

Acid
p-coumaric 

Acid epicatechin
t-cinnamic

Acid
Rutin

Hydrate
Gallic

Acid
Total

Phenolics
Accession ID Species Group µg/gfw µg/gfw µg/gfw µg/gfw µg/gfw µg/gfw µg/gfw µg/gfw µg/gfw

341233 TAX 71 cardiophyllum high 79 964 7 7 405
498383 AO 19.10 megistacrolobum species 58 180 11  241
275262 AO 28.4 jamesii high 90 147 12  200
255530 TAX 44 brachistotrichum low 35  270 170
205510 AO 34.13 stoloniferum species 46 119  165
498039 FFAO 51 polytrichon species 45 97 9 148
473190 FFAO 42 oplocense species 63 39  127 145
341235 TAX 72 cardiophyllum high 60 88 7  6 13 101
500053 AO 60.7 spegazzinii species 56 43  99
473481 FFAO-2 acaule species 53 31  14 98
500049 FFAO 24 gourlayi species 50 31  9 90
472871 EV 802 infundibuliforme species 63 63  84
500053 AO 60.14 spegazzinii species 55 20 9 67
472923 FFAO 31 kurtzianum species 48  48
595478 TAX 145 sambucinum species 39 18 6  46
595486 TAX 85 cardiophyllum species 40 7  41
611104 TAX 198 edinense low 39  39
545817 TAX 53 brachistotrichum low 37  37
545813 TAX 50 brachistotrichum low 34  7 36
545820 TAX 143 nyaritense low 35  35
545815 TAX 52 brachistotrichum low 35  35
545827 TAX 144 nyaritense low 35  35
255528 TAX 42 brachistotrichum low 34  34
320265 TAX 45 brachistotrichum species 38 7  22

TABLE 4-11 – continued 
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TABLE 4-12 – HPLC phenolic results for jamesii samples. 

              
Accession Species Group Caffeic Acid Chlorogenic Acid Vanillic Acid Total

      µg/gfw µg/gfw µg/gfw µg/gfw
595784 Jamesii high 268 88 . 356
275262 Jamesii high 172 105 . 277
275172 Jamesii high 183 68 . 250
603056 Jamesii high 224 . 9 233
458424 Jamesii high 157 65 . 223
603055 Jamesii high 189 . . 189
275266 Jamesii high 164 . . 164
 

 

Broad Screen for Carotenoid Content 

Standard Curves for Lutein and β-carotene – Spectrophotometric readings for the 

ethanol samples at 445 nm were converted into lutein equivalents based on the following 

equation:  y = 3028.6x + 8.1063, where x = absorbance at 445nm and y = µg lutein 

equivalents/100gfw.  The R2 value for this curve was 0.9991.  Hexane samples were 

analyzed at 450 nm and converted into β-carotene equivalents with the following 

equation:  y = 373.59x + 2.0463, where x = absorbance at 450nm, and y = µg  β-carotene 

equivalents/100gfw.  The R2 value for this equation was 0.9993.  The values reported in 

the subsequent discussion on the broad screen of carotenoids are based on the 

aforementioned equations.  

Due to a freezer malfunction, all jamesii samples were lost, and thus were not 

analyzed for carotenoids. 

Bamberg 1 – A wide range of variation in carotenoid content was observed in the 

30 accessions analyzed in Bamberg 1.  Micrograms of lutein equivalents ranged from 

142-859 µg/100gfw, with an average value of 387, while average values of β-carotene 
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equivalents ranged from 6-52 µg/100gfw, with an average value of 21.  Total carotenoid 

content was estimated by adding together the lutein and β-carotene equivalents, and was 

found to range from 151-893 µg/100gfw, with an average value of 404. A six-fold 

difference was observed between the accession with the lowest total carotenoid content 

and that with the highest (Table 4-13).  The average total carotenoid content of the 

cultivated genotypes analyzed by the same method ranged from 94-536 µg/100gfw (see 

chapter III).  Since the interest in the wild species was to enhance the levels of 

carotenoids already contained in cultivated potato, only species that are higher in total 

carotenoid content are of interest.  Only three accessions, PI 458374 (S. vernei), PI 

310993 (S. lignicaule), and PI 607860 (S. oxycarpum), met this criterion.  Analysis of 

variance revealed significant differences between genotypes (p<.0001), while replications 

were insignificant (p=.5956).  When the hexane and ethanol fractions were analyzed 

separately, significant differences were found between accessions, but not between 

replications for both fractions. Since it was observed during the DPPH analysis that many 

of the accessions high in antioxidant activity were quite yellow, a correlation analysis 

was performed between total carotenoid content and total antioxidant activity.  Pearson’s 

correlation coefficient was calculated to be 0.34.  
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TABLE 4-13 – Carotenoid content of accessions analyzed from Bamberg 1. 

          

Accession Species 
µg Lutein eq/

100gfw
µg/B-carotene eq/ 

100gfw 
Total µg carotenoid eq/

100gfw
PI 458374 vernei 859 34 893
PI 310993 lignicaule 781 28 809
PI 607860 oxycarpum 620 37 672
PI 498314 violaceimarmoratum 559 26 586
PI 604040 alandiae 541 41 583
PI 597721 hoopesii 526 52 579
PI 607866 brachycarpum 464 41 518
PI 558108 oplocense 463 28 491
PNT bulked pinnatisectum 447 15 462
PI 47310A medians 417 30 447
PI 597732 megistacrolobum 399 13 412
PI 595507 berthaultii 390 20 409
PI 568929 bukasovii 346 13 359
PI 558404 hougasii 340 16 356
PI 320266 commersonii 337 11 349
PI 597710 oplocense 312 27 339
PI 473086 gourlayi 300 17 318
PI 320316 microdontum 290 15 305
PI 597753 hoopesii 286 13 298
PI 564050 jamesii 278 19 297
PI 283088 laxissimum 242 25 267
PI 564029 fenderli 250 14 263
PI 473-412 commersonii 250 13 263
PI 255545 polytrichon 240 9 249
PI 320342 polyadenium 226 12 237
PI 597767 sparsipilum 221 8 230
PI 545828 nayaritense 152 6 158
PI 545 832 brachistotrichum 142 9 151
PI 597768 sparsipilum 536 . . 

 

 Bamberg 2 – A wide range of variation in carotenoid content was observed in the 

62 accessions analyzed in the Bamberg 2 group.  Micrograms of lutein equivalents 

ranged from 125-699 µg/100gfw, with an average value of 335, while average values of 

β-carotene equivalents ranged from 4-52 µg/100gfw, with an average value of 15.  Total 

carotenoid content was estimated by adding together the lutein and β-carotene 
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equivalents, and was found to range from 130-771, with an average value of 351.  A six-

fold difference was observed between the accession with the lowest total carotenoid 

content and that with the highest (Table 4-14).  Since the interest in the wild species was 

to enhance the levels of carotenoids already contained in cultivated potato, only species 

that were higher in total carotenoid content than the highest cultivated varieties (536 

µg/100gfw) were of interest.  Eight accessions met this criterion.  They included PI 

498232 (S. demissum), PI 184774 (S. pinnatisectum), PI 498383 (S. megistacrolobum), PI 

275236 (S. pinnatisectum), PI 347766 (S. pinnatisectum), PI 498351 (S. 

infundibuliforme), PI 218225 (S. microdontum), and PI 473244 (S. tarijense).  Analysis 

of variance revealed significant differences between genotypes (p<.0001), while no 

significant differences were found between replications (p=.6394) or replications from 

different areas of the field (p=.9892). When the hexane fraction was analyzed separately, 

significant differences were found between accessions (p<.0001) and field replications 

(p=.0030), but not between replications (p=.0604). Similar to the results for Bamberg 1, 

the ethanol fractions had significant differences between accessions (p<.0001), but not 

field replications (p=0.4517) or replications (p=.6262)  Since it was observed during the 

DPPH analysis that many of the accessions high in antioxidant activity were quite yellow, 

a correlation analysis was performed between total carotenoid content and total 

antioxidant activity.  Pearson’s correlation coefficient was calculated to be 0.48. 
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TABLE 4-14 - Carotenoid content of accessions analyzed from Bamberg 2. 

          

accession number Species 
µg Lutein eq/ 

100gfw
µg B-carotene eq 

/100gfw
µg total 

carotenod/100gfw
498232 demissum 516 18 771
184774 pinnatisectum 650 9 634
498383 megistacrolobum 603 8 611
275236 pinnatisectum 596 12 609
347766 pinnatisectum 571 15 586
498351 infundibuliforme 583 13 586
218225 microdontum 555 10 565
473244 tarijense 523 40 538
205510 stoloniferum 699 7 531
283109 stoloniferum 377 52 528
472941 kurtzianum 500 13 515
500053 spegazzinii 478 8 486
473345 canasense 452 11 462
275187 bulbocastanum 399 48 447
275262 jamesii 423 19 441
545751 bulbocastanum 421 18 438
320293 chacoense 415 22 437
472661 acaule 419 12 431
243503 commersonii 408 22 430
265863 canasense 396 16 412
473171 microdontum 382 9 391
500041 microdontum 369 8 377
500047 acaule 366 9 375
497998 fendleri 338 29 367
498039 polytrichon 355 5 360
435079 oplocense 317 9 355
205407 spegazzinii 336 4 340
473062 gourlayi 329 9 338
310956 canasense 303 19 323
473133 megistacrolobum 311 11 322
265579 gourlayi 309 7 316
472923 kurtzianum 288 20 308
498057 stoloniferum 292 7 297
195190 jamesii 264 29 293
195204 stenotomum 279 10 289
473185 oplocense 317 17 289
472894 infundibuliforme 326 18 283
195206 tarijense 274 8 282
243513 bulbocastanum 258 21 280
473243 tarijense 262 15 277
161173 verrucosum 267 4 271
545725 papita 260 6 266



 

 

163

 
accession number species 

µg Lutein eq/ 
100gfw

µg B-carotene eq 
/100gfw

µg total 
carotenod/100gfw

275139 chacoense 238 19 257
160208 demissum 236 20 256
472842 commersonii 240 15 256
230589 demissum 236 20 256
473336 tarijense 255 6 246
458425 jamesii 210 26 236
265867 infundibuliforme 204 23 226
265873 megistacrolobum 169 8 221
473411 commersonii 199 20 220
472986 spegazzinii 209 6 214
255547 polytrichon 203 5 208
473481 acaule 192 10 203
275156 fendleri 191 11 202
184770 polytrichon 183 6 189
500049 gourlayi 166 12 178
473190 oplocense 157 12 169
498033 papita 144 7 150
498004 fendleri 137 11 148
249929 papita 125 5 130
498359 kurtzianum 277 17 294

 

Bamberg 02 – A wide range of variation in carotenoid content was observed in 

the 243 accessions analyzed in the Bamberg 02 group.  Micrograms of lutein equivalents 

ranged from 74-875 µg/100gfw, with an average value of 231, while average values of β-

carotene equivalents ranged from 0-111 µg/100gfw, with an average value of 12.  Total 

carotenoid content was estimated by adding together the lutein and β-carotene 

equivalents, and was found to range from 84-888 µg/100gfw, with an average value of 

246.  An 11-fold difference was observed between the genotype with the lowest total 

carotenoid content and that with the highest (Table 4-15).  Since the interest in wild 

species was to enhance the levels of carotenoids already contained in cultivated potato, 

only species that were higher in total carotenoid content were of interest.  Fifteen 

accessions matched this criterion and are listed in gray in Table 4-15.  Analysis of 

variance for total carotenoid content revealed significant differences between accessions 

TABLE 4-14 - continued 
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(p<.0001), while replications were found to be insignificant (p=.1980).  When the hexane 

fraction was analyzed separately, significant differences were found between accessions 

(p<.0001) and replications (p<.0001). Ethanol fractions had significant differences 

between accessions (p<.0001), but not replications (p=0.0375).  Since it was observed 

during the DPPH analysis that many of the accessions high in antioxidant activity were 

quite yellow, a correlation analysis was performed between total carotenoid content and 

total antioxidant activity.  Pearson’s correlation coefficient was calculated to be 0.54. 

 

TABLE 4-15 - Carotenoid content of accessions analyzed from Bamberg 02. 

Accession ID Species 
µg lutein eq/

100gfw
µg b-carotene eq/ 

100gfw 
µg carotenoids/

100gfw
275231 TAX 31 pinnatisectum 875 13 888
275232 HERB 8.1-.8 pinnatisectum 717 9 726
320266 320266.16 commersonii 669 6 675
498383 AO 39.10 megistacrolobum 665 8 673
275232 TAX 32 pinnatisectum 652 11 663
186553 HERB 2.1-.9 pinnatisectum 605 12 618
347766 HERB 13.1-.9 pinnatisectum 600 10 610
320293 FFAO 12 chacoense 581 15 597
253214 HERB 5.1-.8 pinnatisectum 580 16 596
283109 FFAO 65 stoloniferum 544 41 585
190115 HERB 3.1-.7 pinnatisectum 569 14 583
275230 HERB 6.1-.9 pinnatisectum 564 18 582
275235 HERB 11.1-.9 pinnatisectum 557 10 567
275233 HERB 9.1-.9 pinnatisectum 524 20 544
537023 HERB 14.1-.7 pinnatisectum 523 15 538
197760 AO 10.7 chacoense 512 20 532
184774 HERB1.1-.6 pinnatisectum 507 17 524
472909 EV 836 infundibuliforme 508 11 519
275231 HERB 7.1-.9 pinnatisectum 505 12 517
275234 HERB 10.1-.3 pinnatisectum 498 11 509
320266 320266.17 commersonii 498 9 507
230489 HERB 4.1-.9 pinnatisectum 484 15 499
341231 TAX 70 cardiophyllum 488 7 495
275236 HERB 12.1-.9 pinnatisectum 482 11 493
275236 TAX 33 pinnatisectum 479 5 484
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Accession 
ID Species 

µg lutein eq/
100gfw

µg b-carotene eq/ 
100gfw 

µg carotenoids/
100gfw

    
197760 AO 10.3 chacoense 460 21 481
545751 FFAO 6 bulbocastanum 418 8 425
197760 AO 10.10 chacoense 368 19 387
205510 FFAO 64 stoloniferum 373 6 379
218225 AO 34.2 microdontum 371 4 375
197760 AO 10.8 chacoense 344 13 357
341233 TAX 71 cardiophyllum 344 12 356
472888 EV 818 infundibuliforme 339 16 355
472941 FFAO 32 kurtzianum 341 13 354
197760 AO 10.5 chacoense 343 10 353
498351 EV 868 infundibuliforme 334 14 347
472886 EV 816 infundibuliforme 328 16 344
498383 AO 39.5 megistacrolobum 331 13 343
472846 EV 691 commersonii 335 7 342
472876 EV 806 infundibuliforme 319 22 340
218225 AO 34.5 microdontum 316 8 324
197760 AO 10.9 chacoense 307 16 323
218225 AO 34.14 microdontum 313 10 323
197760 AO 10.14 chacoense 313 6 319
320266 320266.1 commersonii 303 15 318
218225 AO 34.7 microdontum 301 11 312
498354 EV 870 infundibuliforme 300 11 311
218225 FFAO 34 microdontum 296 15 310
197760 AO 10.11 chacoense 297 13 310
498039 FFAO 51 polytrichon 277 27 305
197760 AO 10.4 chacoense 287 12 300
472896 EV 824 infundibuliforme 290 9 298
414147 EV 774 infundibuliforme 266 30 295
320266 F2 4.11 commersonii 287 7 295
218225 AO 34.18 microdontum 285 8 292
472884 EV 814 infundibuliforme 262 22 285
472898 EV 826 infundibuliforme 274 6 281
197760 AO 10.6 chacoense 268 12 279
243510 FFAO 4 bulbocastanum 268 8 277
498345 EV 862 infundibuliforme 267 8 275
190115 TAX 30 pinnatisectum 263 11 275
320295 EV 772 infundibuliforme 251 22 274
320266 F2 5.7 commersonii 259 10 269
590921 EV 695 commersonii 255 11 266
458322 EV 782 infundibuliforme 237 29 266
435076 EV 776 infundibuliforme 245 19 264
442676 EV 778 infundibuliforme 233 31 264
218225 AO 34.3 microdontum 258 5 263
218225 AO 34.13 microdontum 248 14 261
218225 AO 34.12 microdontum 250 9 258

TABLE 4-15 - continued 
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Accession ID Species 

µg lutein eq/
100gfw

µg b-carotene eq/ 
100gfw 

µg carotenoids/
100gfw

    
197760 AO 10.12 chacoense 244 13 257
472869 EV 800 infundibuliforme 242 15 256
275139 FFAO 11 chacoense 242 14 256
472892 EV 820 infundibuliforme 245 10 256
500046 EV 873 infundibuliforme 248 7 255
498343 EV 860 infundibuliforme 242 12 254
472856 EV 787 infundibuliforme 239 15 254
500049 FFAO 24 gourlayi 142 111 252
458325 EV 785 infundibuliforme 233 17 250
500053 AO 60.13 spegazzinii 239 8 247
275262 AO 28.2 jamesii 239 7 246
218225 AO 34.15 microdontum 233 13 246
472880 EV 810 infundibuliforme 189 56 245
566767 EV 881 infundibuliforme 223 21 244
255527 TAX 41 brachistotrichum 238 4 242
498383 AO 39.9 megistacrolobum 230 9 239
545827 TAX 144 nyaritense 223 16 239
275262 AO 28.3 jamesii 234 4 238
218225 AO 34.16 microdontum 225 11 236
473414 EV 844 infundibuliforme 228 7 235
275262 AO 28.4 jamesii 225 9 234
500053 AO 60.18 spegazzinii 221 13 234
218225 AO 34.10 microdontum 225 7 232
545824 TAX 76 cardiophyllum 223 7 230
265863 FFAO 7,8,9 canasense 203 25 228
320266 F2 5.1 commersonii 215 13 228
472917 EV 842 infundibuliforme 216 11 227
472913 EV 838 infundibuliforme 212 15 227
197760 AO 10.15 chacoense 216 10 227
472894 EV 822 infundibuliforme 216 10 226
498333 EV 850 infundibuliforme 215 10 225
275262 AO 28.16 jamesii 220 4 224
595467 TAX 78 cardiophyllum 208 16 224
472882 EV 812 infundibuliforme 196 28 224
197760 AO 10.17 chacoense 213 10 223
472901 EV 828 infundibuliforme 209 14 223
472862 EV 793 infundibuliforme 212 10 222
498341 EV 858 infundibuliforme 207 13 220
498383 AO 39.12 megistacrolobum 208 11 218
275216 TAX 66 cardiophyllum 209 9 218
320266 F2 6.17 commersonii 213 4 218
472923 FFAO 31 kurtzianum 209 9 218
197760 AO 10.16 chacoense 206 11 217
197760 AO 10.13 chacoense 209 8 217
275184 TAX 6 bulbocastanum 202 13 215

TABLE 4-15 - continued 
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Accession ID Species 

µg lutein eq/
100gfw

µg b-carotene eq/ 
100gfw 

µg carotenoids/
100gfw

283062 TAX 68 cardiophyllum 207 9 215
500053 AO 60.7 spegazzinii 210 5 215
472915 EV 840 infundibuliforme 207 8 214
472860 EV 791 infundibuliforme 197 16 213
500053 AO 60.17 spegazzinii 203 10 213
498383 AO 39.18 megistacrolobum 202 8 210
320266 320266.2 commersonii 199 9 208
275262 AO 28.13 jamesii 199 8 207
473522 EV 846 infundibuliforme 199 7 206
218225 AO 34.8 microdontum 197 9 206
498383 AO 39.6 megistacrolobum 200 5 206
275262 AO 28.1 jamesii 201 5 206
320266 F2 4.4 commersonii 196 6 202
498383 AO 39.14 megistacrolobum 195 7 202
472871 EV 802 infundibuliforme 179 23 202
498383 AO 39.1 megistacrolobum 197 4 201
472873 EV 804 infundibuliforme 191 10 201
218225 AO 34.6 microdontum 177 23 199
472903 EV 830 infundibuliforme 188 9 197
275262 AO 28.8 jamesii 189 7 195
218225 AO 34.17 microdontum 178 15 193
500053 AO 60.4 spegazzinii 189 3 193
545752 TAX 12 bulbocastanum 185 7 192
320266 F2 4.7 commersonii 183 8 191
320266 320266.5 commersonii 177 14 191
595478 TAX 145 sambucinum 181 10 190
320266 F2 4.2 commersonii 180 9 189
473481 FFAO-2 acaule 163 26 189
320266 F2 4.6 commersonii 177 12 189
275262 AO 28.15 jamesii 182 5 187
458425 FFAO 29 jamesii 150 37 187
320266 F2 5.6 commersonii 181 6 186
500053 AO 60.14 spegazzinii 176 10 186
218225 AO 34.4 microdontum 181 5 185
595476 TAX 80 cardiophyllum 161 24 185
320266 F2 5.5 commersonii 179 6 185
500053 AO 60.12 spegazzinii 174 11 185
218225 AO 34.9 microdontum 172 11 183
498217 TAX 48 brachistotrichum 177 6 183
275262 AO 28.6 jamesii 177 6 183
566769 EV 883 infundibuliforme 164 18 182
498383 AO 39.2 megistacrolobum 153 27 180
500053 AO 60.16 spegazzinii 171 7 178
498383 AO 39.7 megistacrolobum 171 7 178
320266 F2 5.2 commersonii 172 6 178
595482 TAX 84 cardiophyllum 171 5 177

TABLE 4-15 - continued 
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Accession ID Species 

µg lutein eq/
100gfw

µg b-carotene eq/ 
100gfw 

µg carotenoids/
100gfw

275262 AO 28.12 jamesii 170 6 176
605371 TAX 141 jamesii 167 8 176
186548 TAX 59 cardiophyllum 167 7 175
320266 F2 5.11 commersonii 169 6 175
320266 F2 4.3 commersonii 168 6 174
500053 AO 60.3 spegazzinii 164 10 174
320266 F2 5.9 commersonii 169 4 173
320266 F2 5.12 commersonii 162 11 173
275262 AO 28.5 jamesii 166 6 172
320266 F2 4.17 commersonii 160 11 171
558483 TAX 150 verrucosum 163 8 171
545894 EV 875 infundibuliforme 157 13 170
275262 AO 28.7 jamesii 163 6 169
597678 TAX 88 cardiophyllum 151 16 167
320266 F2 6.1 commersonii 157 10 167
320266 F2 4.12 commersonii 157 9 166
498383 AO 39.3 megistacrolobum 159 7 166
320266 F2 5.4 commersonii 156 10 165
500053 AO 60.8 spegazzinii 158 7 165
341235 TAX 72 cardiophyllum 154 10 164
498383 AO 39.13 megistacrolobum 158 6 164
498383 AO 39.4 megistacrolobum 154 8 162
320266 F2 4.13 commersonii 152 10 162
197760 FFAO 10 chacoense 150 10 161
500053 AO 60.2 spegazzinii 150 10 161
611104 TAX 198 edinense 147 13 160
320266 F2 4.15 commersonii 152 8 160
320266 320266.7 commersonii 152 6 158
498339 EV 856 infundibuliforme 148 10 157
275262 AO 28.9 jamesii 150 6 156
251720 TAX 40 brachistotrichum 150 4 154
500053 AO 60.9 spegazzinii 144 9 153
472907 EV 834 infundibuliforme 144 8 153
320266 F2 4.5 commersonii 144 8 152
498335 EV 852 infundibuliforme 139 12 152
592422 FFAO 30 jamesii 135 16 151
500053 AO 60.15 spegazzinii 143 7 151
320266 F2 5.8 commersonii 134 16 150
545813 TAX 50 brachistotrichum 143 7 150
498337 EV 854 infundibuliforme 132 18 150
275262 AO 28.14 jamesii 143 6 148
275262 AO 28.11 jamesii 142 6 148
500053 AO 60.10 spegazzinii 128 17 145
498383 AO 39.11 megistacrolobum 140 5 145
255519 TAX 60 cardiophyllum 128 17 145
472878 EV 808 infundibuliforme 135 10 145

TABLE 4-15 - continued 
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Accession 
ID Species 

µg lutein eq/
100gfw

µg b-carotene eq/ 
100gfw 

µg carotenoids/
100gfw

320266 F2 4.14 commersonii 134 9 143
275262 AO 28.10 jamesii 138 5 143
545817 TAX 53 brachistotrichum 137 6 143
320266 F2 6.2 commersonii 131 11 142
283063 TAX 69 cardiophyllum 131 9 140
184762 TAX 57 cardiophyllum 125 5 130
500053 AO 60.11 spegazzinii 115 13 128
255530 TAX 44 brachistotrichum 114 13 127
320265 TAX 45 brachistotrichum 121 5 126
320266 F2 6.16 commersonii 119 6 125
500053 AO 60.6 spegazzinii 115 10 125
498383 AO 39.8 megistacrolobum 118 7 125
545812 TAX 49 brachistotrichum 118 5 123
320266 F2 4.18 commersonii 112 9 121
545820 TAX 143 nyaritense 109 10 119
595489 TAX 87 cardiophyllum 111 8 119
497993 TAX 46 brachistotrichum 111 4 115
558401 TAX 55 brachistotrichum 108 7 114
545832 TAX 54 brachistotrichum 106 6 112
595486 TAX 85 cardiophyllum 102 7 109
558460 TAX 56 brachistotrichum 91 18 108
255528 TAX 42 brachistotrichum 94 14 108
595480 TAX 83 cardiophyllum 101 7 108
545753 TAX 74 cardiophyllum 90 17 107
275187 FFAO 5 bulbocastanum 93 12 105
320266 F2 6.11 commersonii 92 9 101
545815 TAX 52 brachistotrichum 94 6 100
184771 TAX 58 cardiophyllum 88 6 94
347759 TAX 73 cardiophyllum 74 20 94
255529 TAX 43 brachistotrichum 85 9 94
558379 TAX 13 bulbocastanum 87 4 91
595488 TAX 86 cardiophyllum 85 5 90
275212 TAX 62 cardiophyllum 80 8 88
612456 TAX 142 jamesii 80 7 87
558460 TAX 56B brachistotrichum 79 5 84
500053 AO 60.5 spegazzinii 78 6 84

 

HPLC Analysis of Carotenoid Compounds  

 Based on results of the spectrophotometric broad screen, the top 10% of 

accessions in total carotenoid content were analyzed via HPLC.  Standards included in 

the carotenoid analysis were violaxanthin, neoxanthin, antheraxanthin, lutein, zeaxanthin, 

TABLE 4-15 - continued 
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canthaxanthin β-cryptoxanthin, and β-carotene.  An HPLC chromatogram of the seven 

compounds analyzed is shown in Figure 4-4.  β-carotene eluted much later than these 

seven compounds, and separation was not a problem.   

 

 

 

 

 

 

Bamberg 1 – The genotypes analyzed from Bamberg 1 included the top 10% of 

accessions from the spectrophotometric broad screen, as well as the bottom two 

accessions.  To reduce the possibility of overlooking an accession that could contribute to 

the level of one particular compound when used as parents, a survey of nine additional 

accessions from different species were analyzed via HPLC (Table 4-16).   

FIGURE 4-4. 
Chromatogram showing the separation of carotenoid components via HPLC. 
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TABLE 4-16 – HPLC carotenoid results for Bamberg 1. 

        
Accession Species  Group µg lutein/100gfw 
458374 vernei high 14.1 
310993 lignicaule high 9.35 
607860 oxycarpum high 18.75 
498314 violaceimarmoratum high  
545832 brachistortrichum low  
545828 nayaritense low  
604040 alandiae species 13.25 
607866 brachycarpum species 15.7 
568929 bukasovii species  
558404 hougasii species  
320342 polyadenium species  
597767 sparsipilum species  
184774 pinnatisectum species  
320266 commersonii species  

 

Lutein was the only carotenoid identified in the samples that matched both 

retention time and spectra.  Lutein concentration ranged from 0-18.75 µg/100gfw.  Had 

the decision been made to quantitate based solely on retention time, the results would 

have been considerably different.  Peaks were identified which matched retention time 

for violaxanthin, neoxanthin, lutein, and zeaxanthin (Table 4-17). PI 607860 (S. 

oxycarpum) contained the highest level of lutein found in Bamberg 1.  A representative 

chromatogram is pictured in Figure 4-5. 
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TABLE 4-17 – HPLC carotenoid results for Bamberg 1 based on retention time only. 
           

Accession Species  group 
µg Lutein/

100gfw
µg violaxanthin/

100gfw
µg neoxanthin/ 

100gfw 
µg zeaxanthin/

100gfw
458374 vernei high 14.1 9.5 6.95  
310993 lignicaule high 9.35    
607860 oxycarpum high 18.75 10.15 9.1 6.66
498314 violaceimarmoratum high   5.55  
545832 brachistortrichum low  8.45   
545828 nayaritense low     
604040 alandiae species 13.25 12.1 9.8  
607866 brachycarpum species 15.7 10.45 7.9  
568929 bukasovii species 7.75    
558404 hougasii species 8.7 8.4 5.6  
320342 polyadenium species     
597767 sparsipilum species     
184774 pinnatisectum species     
320266 commersonii species         

       

 

 

Bamberg 2 - The genotypes analyzed from Bamberg 2 included the top 10% of 

accessions from the spectrophotometric broad screen, as well as the bottom four 

accessions.  To reduce the possibility of overlooking an accession that could contribute to 

FIGURE 4-5. 
A representative HPLC chromatogram of carotenoid samples run from Bamberg 1 (PI 
458374). 
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the level of one particular compound when used as parents, a survey of 15 additional 

accessions from different species was conducted via HPLC (Table 4-18).  Results from 

Bamberg 2 were disappointing, with no carotenoids matching both retention time and 

spectra from the standard library.  Based solely on retention time, only three accessions 

had any carotenoids identified.  These included PI 472941 (7.65 µg lutein/100gfw), PI 

320293 (8.6 µg lutein/100gfw), and PI 497998 (8.35 µg lutein/100gfw and 8.9 µg 

violaxanthin/100gfw). Since none of the accessions contained yellow flesh, they were not 

expected to contain high levels of carotenoids; however, they were expected to contain at 

least small quantities.  Since carotenoids can degrade during storage, and a considerable 

amount of time passed before these were analyzed on the HPLC, this is one possible 

explanation However, the Bamberg 1 samples were stored much longer than the Bamberg 

2 samples, yet carotenoids were still identified in these. 

TABLE 4-18 – Accessions analyzed by HPLC for carotenoid content from Bamberg 2. 

 
              
Accession Species Group  Accession Species Group 
498232 demissum high  500053 spegazzinii species 
184774 pinnatisectum high  275187 bulbocastanum species 
498383 megistacrolobum high  275262 jamesii species 
275236 pinnatisectum high  320293 chacosense species 
347766 pinnatisectum high  472661 acaule species 
498351 infundibuliforme high  497998 fendleri species 
218225 microdontum high  498039 polytrichon species 
473190 ooplocense low  435079 oplocense species 
498033 papita low  473062 gourlayi species 
498004 fendleri low  195204 stenotomum species 
249929 papita low  195206 tarijense species 
205510 stoloniferum species  161173 verrucosum species 
472941 kurtzianum species   545725 papita species 
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Bamberg 02 - The genotypes analyzed from Bamberg 02 included the top 10% of 

accessions from the spectrophotometric broad screen, as well as the bottom six 

accessions.  To reduce the possibility of overlooking an accession that could contribute to 

the level of one particular compound when used as parents, ten additional accessions 

from different species were analyzed via HPLC (Table 4-19).  As in the Bamberg 2 

samples, no spectra matched both retention time and spectra of the standards.  Had the 

decision been made to quantitate based solely on retention time, the results would have 

been considerably different.  Peaks were identified which matched retention times for 

violaxanthin, neoxanthin, lutein, and zeaxanthin and canthaxanthin (Table 4-20).  

TABLE 4-19 - Accessions analyzed by HPLC for carotenoid content from Bamberg 02. 
                  
Accession ID Species Group   Accession ID Species Group
275231 TAX 31 pinnatisectum high  275230 HERB 7.1-.9 pinnatisectum high 
275234 HERB 11.1-.9 pinnatisectum high  537023 FFAO-2 pinnatisectum high 
458425 FFAO 30 jamesii high  275236 TAX 33 pinnatisectum high 
184774 HERB 2.1-.9 pinnatisectum high  197760 AO 10.3 chacoense high 
498383 AO 39.10 megistacrolobum high  197760 FFAO 11 chacoense high 
275232 TAX 32 pinnatisectum high  558379 TAX 13 bulbocastanum low 
230489 HERB 5.1-.8 pinnatisectum high  255529 TAX 43 brachistotrichum low 
473481 FFAO 4 acaule high  545824 TAX 78 cardiophyllum low 
275231 HERB 8.1-.8 pinnatisectum high  545827 TAX 145 nyaritense low 
253214 HERB 6.1-.9 pinnatisectum high  500053 AO 60.5 spegazzinii low 
275232 HERB 9.1-.9 pinnatisectum high  186548 TAX 60 cardiophyllum low 
347766 HERB 14.1-.7 pinnatisectum high  195206 FFAO 68 tarijense species
243510 FFAO 5 bulbocastanum high  218225 AO 34.2 microdontum species
275235 HERB 12.1-.9 pinnatisectum high  472846 EV 691 commersonii species
197760 AO 10.7 chacoense high  500053 AO 60.13 spegazzinii species
190115 HERB 4.1-.9 pinnatisectum high  558483 TAX 198 verrucosum species
472909 EV 836 infundibuliforme high  545820 TAX 144 nyaritense species
186553 HERB 3.1-.7 pinnatisectum high  472923 FFAO 32 kurtzianum species
275233 HERB 10.1-.3 pinnatisectum high  558460 TAX 56B brachistotrichum species
 TAX140  high  595478 TAX 150 sambucinum species
190115 TAX 30 pinnatisectum high  265863 FFAO 10 canasense species
341235 TAX 73 cardiophyllum high           
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TABLE 4-20 - HPLC carotenoid results for Bamberg 02 based on retention time only. 
                  
    µg/100gfw 
Accession ID Species Group Lutein neoxanthin zeaxanthin canthaxanthin violaxanthin
275231 TAX 31 pinnatisectum high  6.4 6.05 3.4  
275234 HERB 11.1-.9 pinnatisectum high     8.4
275232 TAX 32 pinnatisectum high   6.75 3  
230489 HERB 5.1-.8 pinnatisectum high  6.2 5.05   
473481 FFAO 4 acaule high  4.9 4.9   
253214 HERB 6.1-.9 pinnatisectum high 8.15     
197760 AO 10.7 chacoense high  7.5 17.7 2.6 9.35
190115 HERB 4.1-.9 pinnatisectum high  6.2 5.15   
472909 EV 836 infundibuliforme high  6.6 12.95 3.9  
186553 HERB 3.1-.7 pinnatisectum high 8.2 4.75    
275233 HERB 10.1-.3 pinnatisectum high  5.55 5.4 2.65  
190115 TAX 30 pinnatisectum high 9     
341235 TAX 73 cardiophyllum high   5.35 3.25  
275236 TAX 33 pinnatisectum high  5.5 4.9 3  
197760 AO 10.3 chacoense high  5.65 16.45 3.65 8.45
197760 FFAO 11 chacoense high   6.05 2.95  
558460 TAX 56B brachistotrichum species   6.4     8.9

 
 It has been previously reported that during storage, the amount of carotenoid 

esters remains stable in comparison to the amount of free carotenoids (Tevini et al. 1986).  

The absence of spectral matches in the HPLC analysis could be due to esterification of 

free carotenoids.  Such an event could cause a change in spectra, with no resulting shift in 

retention time. This is supported by the fact that the spectra, while not identical, are very 

similar to the standard spectra, indicating that at least part of the compound structure is 

maintained.  Furthermore, carotenoid epoxide standards were not available, but are 

known to exist in potato.  Many of the unexplained peaks could be due to these 

carotenoid epoxides.  

 Since there is no published data pertaining to carotenoid content in wild Solanum 

species, the standards were selected based on reports of cultivated potato.  The fact that 

none of the tubers analyzed contained yellow flesh indicated that there would not be 
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extremely high levels of carotenoids contained in these wild species; however, since the 

cultivated potato originates from these species, and some cultivated potatoes are known 

to contain carotenoids, at least modest amounts of these compounds were expected to be 

revealed in the related Solanum species.  In a study conducted simultaneously on 

cultivated genotypes of S. tuberosum, very few spectral and retention time matches were 

discovered.  Antheraxanthin concentrations ranging from 14-19 µg/100gfw, neoxanthin 

concentrations of 5 µg/100gfw, and lutein concentrations of 809 µg/100gfw were 

reported.  The levels of lutein in the wild species, even based on retention time alone, do 

not appear to be significantly higher than those found in cultivated potato.  This, 

combined with reports that yellow-flesh intensity is highly correlated with carotenoid 

content, indicates that the wild species analyzed, when bred with cultivated varieties, 

would not increase carotenoid content in the progeny. 

 Phenolics, however, were significantly higher in many accessions than in 

cultivated varieties.  In particular, S. pinnatisectum and S. jamesii accessions consistently 

ranked among the highest in antioxidant activity and phenolic content.  In cultivated 

genotypes analyzed at the same time as the wild accessions, antioxidant activity ranged 

from 104-648 µg trolox equivalents/gfw, while the wild accessions ranged in activity 

from 43-884 µg trolox equivalents/gfw.  Since the Bamberg 1 and Bamberg 2 analysis 

was a broad screen and based on segregating populations, recommendations for future 

breeding efforts are based on the Bamberg 02 samples.  Forty clones derived from tuber 

seed were higher in antioxidant activity than the highest of the cultivated genotypes.  

Over half of the accessions analyzed for phenolic content by HPLC were higher in 

individual compounds than were their cultivated counterparts.  In addition, more 
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compounds were identified in the wild species than were identified in the cultivated 

genotypes.  Promising accessions for use in future breeding projects are listed in Table 4-

21.  These accessions were chosen based on their antioxidant activity as well as the levels 

of individual phenolic components. 

TABLE 4-21 – Promising accessions for future breeding projects aimed at increasing 
antioxidant activity and phenolic levels in potato 

  
Accession ID Species 
184774 FFAO 52 pinnatisectum 
320266 320266.17 commersonii 
230489 HERB 4.1-.9 pinnatisectum 
275235 HERB 11.1-.9 pinnatisectum 
275234 HERB 10.1-.3 pinnatisectum 
253214 HERB 5.1-.8 pinnatisectum 
275233 HERB 9.1-.9 pinnatisectum 
473243 FFAO 68 tarijense 
275231 TAX 31 pinnatisectum 
184774 HERB1.1-.6 pinnatisectum 
197760 AO 10.3 chacoense 
275232 TAX 32 pinnatisectum 
197760 AO 10.7 chacoense 
275232 HERB 8.1-.8 pinnatisectum 
190115 TAX 30 pinnatisectum 
275230 HERB 6.1-.9 pinnatisectum 
283109 FFAO 65 stoloniferum 
275262 AO 28.7 jamesii 
186553 HERB 2.1-.9 pinnatisectum 
275231 HERB 7.1-.9 pinnatisectum 
275236 TAX 33 pinnatisectum 
218225 AO 34.18 microdontum 
498383 FFAO 37 megistacrolobum
275262 AO 28.13 jamesii 
275262 AO 28.2 jamesii 
341233 TAX 71 cardiophyllum 
473190 FFAO 42 oplocense 
241235 TAX 72 Cardiophyllum 
473481 FFAO 2 Acaule 
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CHAPTER V 

DIFFERENTIATING SEVEN RUSSET NORKOTAH STRAINS 

USING AFLP AND MICROSATELLITE MARKER ANALYSIS 

 

Introduction 

 The potato cultivar Russet Norkotah was released in 1987, and it quickly became 

the early market variety of choice in the national marketplace.  Due in great part to wide 

promotion, by 1997, Russet Norkotah had become the second most popular variety in the 

U.S., with over 23,000 acres of certified seed grown in the U.S. and Canada (National 

Potato Council 1998).   The popularity of Russet Norkotah is largely attributed to factors 

such as attractive tubers, tuber uniformity, resistance to hollow heart and second growth, 

good storability, and a high percentage of count-carton tubers.  While outweighed by 

positive features, Russet Norkotah also has some negative characteristics such as 

susceptibility to PVY and verticillium wilt, weak vines, and requirements for large inputs 

of nitrogen fertilizers and pesticides.  Russet Norkotah was in high demand in the potato 

industry, but its weak vines and other negative characteristics made it unsuitable for 

growing in Texas.  It became obvious that improved Russet Norkotah strains with 

stronger vines would be required for the Texas industry to remain competitive.     

 Previous years of breeding and selection efforts had proven that potato varieties 

could be improved through strain selection.   Notable successes include Russet Burbank 

from Burbank (Miller 1954), Red LaSoda from LaSoda (Miller 1954), Dark Red Norland 

from Norland, and Norgold Russet Strain M from Norgold Russet (Miller et al. 1995).  

Following the example set by the success with Norgold Russet, the Texas Potato Variety 
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Development Program (and later the Colorado State University Breeding Program) began 

to make selections and evaluate improved strains of Russet Norkotah (Miller et al. 1999).   

By 1998, a nine year selection project, based primarily on yield, vine size, and tuber type 

had produced eight promising intraclonal selections of Russet Norkotah.  These were 

TXNS 102, TXNS 112, TXNS 223, TXNS 249, TXNS 278, TXNS 296, CORN 3, and 

CORN 8.   Five of these, TXNS 112, TXNS 223, TXNS 278, CORN 3, and CORN 8 

have been granted Plant Variety Protection (PVP).  By 1999, 38% of the Russet Norkotah 

acreage entered into seed certification was to one of these five strains (National Potato 

Council 2000), with acreage of the strains increasing every year.  By 2001, 42% of the 

U.S. Russet Norkotah acreage entered into certification was planted to the strains 

(National Potato Council 2002), and by 2002, over half (52%) (National Potato Council 

2003).    The intraclonal selections from both the Colorado and Texas programs exhibit 

higher yield, lower nitrogen requirements, later maturity, longer flowering periods, larger 

tuber size, and generally higher specific gravity than standard Russet Norkotah (Miller et 

al. 1999; Zvomuya et al. 2002) 

 Despite some quantitative differences between the strains and standard Russet 

Norkotah, it can be difficult to distinguish them from one another.  Molecular markers 

could help to distinguish these different selections and aid in the granting of PVP in the 

U.S. and/or Plant Breeder’s rights in Canada to additional strain selections.  Furthermore, 

having markers that differentiate the strains could help to determine if there is an 

infringement of patent rights in the future.  

Previous research has demonstrated that both the AFLP and microsatellite approaches 

are promising for differentiating between cultivars, and potentially, somatic mutants.   
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AFLPs have a high multiplex ratio, thus generate volumes of data, while SSRs are highly 

polymorphic and have been successful in discriminating between closely related species.  

Several successful studies have been conducted on potato using AFLP and SSR analysis 

(Provan et al. 1996; Milbourne et al. 1997; McGregor et al.2000; Milbourne et al. 1988; 

Raker and Spooner 2002; Schneider and Douches 1997; Kardolus 1998; kim et al.1998a; 

Meksem 1995; Meyer et al. 1998 ).  Thus, a multifaceted approach using the 

aforementioned techniques could reasonably be employed to distinguish between the 

Russet Norkotah clonal selections. 

The focus of this study was on AFLPs and SSRs - markers with high multiplex ratios 

(meaning a large number of markers can be generated in a single reaction) and good 

reproducibility (AFLPs) and highly polymorphic markers (microsatellites).   The primary 

objective of this study was to identify polymorphisms among six intraclonal variants of 

the potato cultivar Russet Norkotah.  Any polymorphisms discovered would provide 

additional evidence supporting granting of individual plant variety protection to strain 

selections. 

 

Materials and Methods 

 Six clonal selections (TXNS112, TXNS223, TXNS278, TXNS296, CORN3, and 

CORN8), standard Russet Norkotah, and a white-flesh chipping Texas breeding line, 

ATX85404-8W, were subjected to AFLP analysis to identify DNA markers that differed 

among the strains and/or between the strains and standard Russet Norkotah.   
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DNA Isolation and Concentration 

DNA was isolated from leaves of potato plants grown near Springlake, Texas in 

the spring of 1999 using a procedure developed by Fulton (1995).  Samples were 

collected from single plants in the field, and immediately frozen in liquid nitrogen for 

transport to College Station.  Upon arrival, the plants were stored in a –80 C freezer until 

the following day when extractions were performed (Appendix A).  The DNA 

concentration of each of the genotypes was determined based on the absorbance at 

260nm using the following formula:  (Absorbance 260nm)(4)(1000)=ng/ul.  Following 

the determination of concentration, each genotype’s DNA was diluted to a concentration 

of 50ng/200ul. 

 

AFLP Analysis I – Visualized via Silver Staining     

A modified AFLP system, which was designed for use with plants having 

genomes ranging in size from 5 x 108 to 6 x 109 bp, was used with minor modifications 

(Life Technologies, Gaithersburg, MD.).  This technique involved restriction 

endonuclease digestion of the DNA, ligation of adapters, amplification of the restriction 

fragments, and gel analysis of the amplified fragments (Life Technologies, ND) (Figure 

5-1). 

 Digestion of Genomic DNA - The DNA of each of the eight genotypes was 

simultaneously digested with two restriction enzymes:  EcoRI and MseI.   The digestion 

was carried out according to manufacturer’s instructions, with the reaction volume 

reduced by one fourth (Appendix B).   EcoRI has a 6bp recognition site, while MseI has a 
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4bp recognition site; thus, the types and number of fragments generated were as follows:  

MseI-MseI>>MseI-EcoRI>>EcoRI-EcoRI.   

Ligation of Adapters - Specific double-stranded dinucleotide adapters were 

ligated to the restricted DNA fragments (Table 5-1).  This was done according to 

manufacturer’s instructions with the reaction volume reduced by one fourth.  The 

resulting product was referred to as restricted adapter-ligated diluted DNA (RAD). 

Preamplification - Preamplification followed the ligation of the adapters to the 

digested DNA, and involved using oligonucleotides homologus to the adapters, but 

having extensions at the 3’ end to amplify a subset of the DNA fragments.  The primers 

used had a 1-nucleotide extension on the 3’ end of the primer.  The selective nature of 

AFLP-PCR is based on these 3’ extensions on the oligonucleotide primers.  Since the 

extensions were not homologus to the adapter sequence, only DNA fragments 

complimentary to the extensions were amplified.  Taq DNA polymerase (DNAp) cannot 

extend DNAs if mismatches occur at the 3’ end of the molecule being synthesized.  Due 

to the fact that primers are directional, preselective amplification targeted the MseI-

EcoRI fragments and excluded the MseI-MseI and EcoRI-EcoRI fragments.  

Preamplification was performed according to manufacturers’ instructions with the 

reaction volume reduced by one fourth (Appendix C).  The resulting PCR reaction was 

prepared for selective amplification by diluting the preamplification DNA 1:10 with TE.  

This was termed the Template for Selective Amplification (TSA).  The two 

preamplification primers provided with the kit were used (Table 5-1).  

Selective Amplification - Following preamplification, selective amplification was 

performed using primers with three selective bases on the 3’ end.  This was performed 
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according to manufacturers’ instructions with the reaction volume reduced by half 

(Appendix D).  Sixty-four combinations of EcoRI and MseI AFLP primers supplied by 

the manufacturer were used for selective amplification (Table 5-1).  Following 

amplification, reaction products were dried in a speed vac at medium speed for ~30 

minutes (Savant, Holbrook, NY), and were resuspended in 5ul of water and 5ul of 

formamide manual sequencing dye (Sambrook et al. 1989) (Appendix E).  The resulting 

mixture was denatured for three minutes at 90 C and quickly cooled on ice.   

 

TABLE 5-1 - Primer sequences for adapters, pre-amplification primers and selective       

amplification primers for AFLP analysis System I.   

Oligonucleotide  Primer Sequence Length 

(bp) 

MseI Adapter 1 5’-GAC GAT GAG TCC TGA G-3’ 16 

MseI Adapter 2 3’-TAC TCA  GGA CTC AT-5’ 14 

EcoRI Adapter 1 5’-CTC GTA GAC TGC GTA CC-3’ 17 

EcoRI Adapter 2 3’-CAT CTG ACG CAT GGT TAA-5’ 18 

EcoRI PreAmp Primer 5’-GAC TGC GTA CCA ATT CA-3’ 17 

MseI PreAmp Primer 5’-GAT GAG TCC TGA GTA AC-3’ 17 

M-CNN* 5’-GAT GAG TCC TGA GTA CAN N-3’ 19 

E-ANN* 5’-GAC TGC GTA CCA ATT CAN N-3’ 19 
*NN depicts two nucleotides.  The selective nucleotides for MseI  included CTA, CTG, CTC, CTT, CAA, 

CAG, CAC, and CAT, and those for and EcoRI included AAG, AAC, ACC, ACT, ACG, ACA, AGG, and 

AGC.   
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FIGURE 5-1. 

Diagram of the AFLP procedure using a single primer pair.  Demonstrates restriction, ligation of 

adapters, preamplification, and selective amplification. 

5’ 3’ GAATTC TTAA
3’ 5’ CTTAAG AATT

EcoRI  + MseI 

EcoRI adapter 
MseI adapter 

5’ 3’ AATTC T
3’ 5’ G AATT

TA MseI 
adapter TTAA

EcoRI 
adapter 

5’ 3’ AATTCN NTTA
3’ 5’ TTAAGN NAAT

Primer +1 5’__________________  A 

C  ______________________________  5’ 

Preselective Amplification with EcoRI 
primer +A and MseI primer +C 

5’ 3’ AATTCN NTTA
3’ 5’ TTAAGN NAAT

Primer +3 5’___________________________________  AAC 

 AAC________________________________5’ Selective amplification 
with Primers +3

5’ 3’ AATTCAAC TTGTTA
3’ 5’ TTAAGTTG AACAAT

 

Denaturing Polyacrylamide Gel Electrophoresis 
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 Polyacrylamide Gel Electrophoresis - Each sample (2ul) was loaded on a 6% 

denaturing (sequencing) polyacrylamide gel (Appendix G). Two glass plates (42cm and 

39cm) were prepared according to the silver staining protocol described by Fritz et al. 

(1999) (Appendix F) and placed together with 0.4mm spacers.  

 Following polymerization, the gels were pre-warmed on a Life Technologies Inc. 

S2 upright gel apparatus while the samples were denatured. Two ul of each sample were 

loaded on the gel and allowed to run until the dye band was ¾ of the way down the plate.    

The gels were then removed from the gel apparatus and silver stained according to Fritz 

et al. 1999 (Appendix F).   

Scoring of Gels - Gels were scored manually for presence or absence of bands.  

 

AFLP Analysis II – LiCOR Analysis  

Contrary to the previous method, this AFLP analysis was conducted using 

fluorescently labeled primers and a LI-COR model 4200 sequencer with Tionumerics 

software (Applied Maths, Kortrijk, Belgium). The same basic concepts conveyed in the 

previous section still hold true; however, there were modifications in the methods which 

are detailed below. 

Digestion of Genomic DNA - The DNA from each of the eight genotypes was 

sequentially digested with EcoRI and PstI according to Menz (2002) (Appendix H).      

The decision to use PstI in lieu of the MseI used previously had to do with the fact that 

MseI is a methylation sensitive enzyme, while PstI is not.   In other words, PstI digests 

DNA regardless of its methylation state. Since methylation of DNA is a silencing 

mechanism, it could explain differences between the clones, and it was potentially useful 
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to look at banding patterns using methylation sensitive as well as methylation insensitive 

enzymes in the AFLP analysis.   Since, however, the PstI enzyme digests a GC rich 

region, and expressed regions frequently are rich in GC content, even though both 

methylated and non-methylated regions would be digested, expressed regions would still 

be preferentially digested and subsequently amplified.  

Ligation of Adapters - Specific double-stranded dinucleotide adapters were 

ligated to the restricted DNA fragments (Table 5-2).  This was accomplished by mixing 

1ul of the 10X ligation buffer, 1ul of 50pmol/ul Mse adaptor, 1ul of 5pmol/ul PstI 

adapter, 1ul of T4 DNA ligase, and 6ul of ddH2O.  This formed what was referred to as 

the restriction x adapter mix.  After incubating at 37oC overnight, 440ul of water was 

added to dilute the restriction x adapter mix.  The resulting mixture was termed restricted, 

adapter-ligated diluted DNA (RAD) (Appendix I). 

Preamplification - After optimizing the MgCl2 concentration, preamplification 

was performed according to Klein (2000) with minor modifications.  20ul reactions were 

performed using 5ul RAD template, 2.5ul 10X PCR buffer,0.75ul 50mM MgCl2 , 2.0ul 

2.0mM dNTPs, 1.4ul Pst+C  pre-amp primer (10pmol/ul), 1.4ul of Mse+O pre-amp 

primer (10pmol/ul), 0.2ul Taq DNAp (Promega), and 11.75 of ddH2O.  The sequence of 

the primers is shown in Table 2.    The PCR profile was identical to that of Klein et al. 

(2000), except 25, as opposed to 20, cycles were performed.  (Appendix  J).  The 

resulting product was diluted 1:10 with water, and run on a 1% agarose gel to verify 

amplification. 

Selective Amplification -  Following preamplification, selective amplification was 

performed using primers with three selective bases on the 3’ end.  For visualization 
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purposes, the PstI selective primer was labeled with IRD dye (LI-COR).  10ul selective 

amplification reactions were set up by combining 1ul 10X PCR buffer, 0.5ul 25mM 

MgCl2, 1ul of 2mM dNTPs, 0.15ul of ~1uM PstI-primer (IRD labeled), and 0.5ul MseI 

primer.  This was combined with 2ul of TSA (template), and subsequently diluted with 

4.81ul ddH2O.  Samples were mixed in the dark due to the light-sensitive nature of the 

PstI primer.  The PCR reaction was run under the following profile.  Cycle one began 

with a two minute hold at 95 C followed by continued denaturing for 1 minute at 94 C, a 

1 minute annealing step at 65 C, and a 1 minute 30 second extension at 72 C.  The 

annealing step was reduced by 0.6 C each cycle for the next 12 cycles, giving a touch 

down phase of 13 cycles.  Twenty-three cycles were then performed with an annealing 

temperature of 56oC.  Following these 23 cycles, an additional extension step at 72 C at 

five minutes was performed followed by a 4 C hold (Appendix K).  

For this experiment, three different PstI primers (CGT, CTT and CAA) were 

used.  CTT and CGT were labeled with IRD dye that absorbed at 800nm, and CAA was 

labeled with dye that absorbed at 700nm.  Thus, it was possible to run two different IRD-

labeled PstI primers, one visualized at 700nm, and one visualized at 800nm, 

simultaneously in each well.  Using different wavelengths on primer labels allowed the 

running of twice as many primer pairs per gel as was previously possible.  The same 16 

unlabelled MseI primers used in the silver staining analysis were used for the LI-COR 

analysis.   Each of these 16 primers were run with each of the three PstI  primers, 

producing a grand total of  48 different primer combinations used in the  selective 

amplification for the LI-COR analysis (Table 5-2).  

 



 

 

188

TABLE 5-2 - Primer sequences for adapters, pre-amplification primers and selective 

amplification primers for LI-COR.   

Oligonucleotide  Primer Sequence Length  

(bp) 

MseI Adapter 1 5’-GAC GAT GAG TCC TGA G-3’ 16 

MseI Adapter 2 3’-TAC TCA GGA CTC AT-5’ 14 

PstI Adapter 1 5’- GAC TGC GTA GGT GCA-3’ 15 

PstI Adapter 2 3’ – CCT ACG CAG TCT ACG AG- 5’ 17 

PstI  PreAmp Primer 5’-GAC TGC GTA GGT GCA G-3’ 17 

MseI PreAmp Primer 5’-GAT GAG TCC TGA GTA AC-3’ 17 

MseI-CNN* 5’-GAT GAGTCCTGAGTAACNN-3’ 19 

PstI -ANN* 5’-GAC TGC GTA GGT GCA GCN N -3’ 19 
NN depicts two nucleotides.  All 16 possible combinations of C, G, A, T were used in the place of these 

two Ns for the MseI selective primers.  The selective nucleotides for MseI included CGC, CGT, CGA, 

CGG, CTC, CTT, CTA, CTG, CAC CAT CAA CAG, CCC, CCT, CCG,  and CCA.  Selective nucleotides 

for PstI primers were CAA (IRD dye labeled at 700nm), CGT, and CTT (IRD labeled at 800nm).   

 

Polyacrylamide Gel Electrophoresis - Prior to loading, samples from two 

reactions, each absorbing at a different wavelength, were pooled into a single PCR plate 

in an orientation that allowed the gel to be loaded with an 8-channel syringe (Appendix 

L).  Five ul of each sample amplified with a 700nm IRD selective p-primer, and 5ul of 

each sample amplified with an 800nm IRD selective p-primer were mixed together and 

2ul of LI-COR basic fushion loading dye was subsequently added.  The sample was then 

denatured at 95 C for 2.5 minutes and placed on ice. 

The AFLP amplification products were analyzed using a LI-COR model 4200 

dual-dye automated DNA sequencing system.  Each sample (1ul) was loaded on a 6% 

LongRanger polyacrylamide gel containing 7M urea (Appendix M), and cast using LI-

COR 25cm plates with 0.25mm thick spacers and comb.  Electrophoresis was conducted 
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at a constant power of 40 W and a constant temperature of 47.5 C for 3 hours.  When 

lower bands were not separated satisfactorily, a 7% LongRanger polyacrylamide gel was 

used.  

Analysis of Gels - The raw data from the LI-COR sequencers was converted to a 

gel-like image that was stored in a TIFF format.  Gels were scored visually for presence 

or absence of bands.  

 

Microsatellite Analysis   

Microsatellites were used as an alternative to the AFLP method in the hope that it 

would reveal more differences between the subclonal variants.  Twelve potato 

microsatellite primers, originally identified by Milbourne, et al. (1998) were used in this 

analysis (Table 5-3).  Reaction conditions were modified from Raker and Spooner (2002) 

(Appendix N).  Conditions for a 25ul reaction were as follows:  1X PCR Buffer (Sigma), 

1.5mM MgCl2, 0.2mM dNTPs (Gibco BRL), 0.4uM of each unlabelled primer pair 

(Sigma Genosys), 1U DNAp (REDTaq, Sigma), and 20ng DNA.  The PCR profile 

followed was identical to that of Raker and Spooner (2002) (Appendix N). 
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TABLE 5-3- Primer sequences microsatellite primers used in this study. (Milbourne et al. 1998) 

Primer   Primer sequence Length 

(bp) 

Tm Chromo # 

STM0003-f 5’-GGA GAA TCA TAA CAA CCA G- 3’ 19 48 XII 

STM0003-r 5’-AAT TGT AAC TCT GTG TGT GTG-3’ 21 48 XII 

STM0007-f 5’-GGA CAA GCT GTG AAG TTT AT-3’ 20 52 XII 

STM0007-r 5’-AAT TGA GAA AGA GTG TGT GTG-3’ 21 52 XII 

STM0014-f 5’-CAG TCT TCA GCC CAT AGG – 3’ 18 53 I 

STM0014-r 5’-TAA ACA ATG GTA GAC AAG ACA AA-3’ 23 53 I 

STM0051-f 5’-TAC ATA CAT ACA CAC ACG CG-3’ 20 53 X 

STM0051-r 5’-CTG CAA CTT ATA GCC TCC A-3’ 19 53 X 

STM1005-f 5’-ATG CCT CTT ACG AAT AAC TCG G-3’ 22 59 VIII 

STM1005-r 5’-CAG CTA ACG TGG TTG GGG-3’ 18 59 VIII 

STM1017-f 5’-GAC ACG TTC ACC ATA AA-3’ 17 48 IX 

STM1017-r 5’-AGA AGA ATA GCA AAG CAA-3’ 18 48 IX 

STM1024-f 5’-ATA CAG GAC CTT AAT TTC CCC AA-3’ 23 59 VIII 

STM1024-r 5’-TCA AAA CCC AAT TCA ATC AAA TC-3’ 23 59 VIII 

STM1029-f 5’-AGG TTC ACT CAC AAT CAA AGC A –3’ 22 58 I 

STM1029-r 5’-AAG ATT TCC AAG AAA TTT GAG GG-3’ 23 58 I 

STM1041-f 5’-GTT GAG TAG AAG GAG GAT T-3’ 19 53 V 

STM1041-r 5’-CCT TTG TCT TCT GCT TTT G-3’ 19 53 V 

STM1049-f 5’-CTA CCA GTT TGT TGA TTG TGG TG-5’ 23 58 I 

STM1049-r 5’-AGG GAC TTT AAT TTG TTG GAC G-3’ 22 58 I 

STM2022-f 5’-GCG TCA GCG ATT TCA GTA CTA-3’ 21 57 II 

STM2022-r 5’-TTC AGT CAA CTC CTG TTG CG-3’ 20 57 II 

STM3009-f 5’-TCA GCT GAA CGA CCA CTG TTC-3’ 21 63 VII 

STM3009-r 5’-GAT TTC ACC AAG CAT GGA AGT C-3’ 22 63 VII 
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Following amplification, reaction products were dried in a speed vac at medium 

speed for ~30 minutes (Savant, Holbrook, NY), and were resuspended in 5ul of water and 

5ul of formamide manual sequencing dye (Sambrook et al. 1989) (Appendix E).  The 

resulting mixture was denatured for three minutes at 90 C and then quickly cooled on ice.   

Polyacrylamide Gel Electrophoresis - One ul of the concentrated PCR samples 

was loaded on a 6% denaturing (sequencing) polyacrylamide gel (Appendix G). Two 

glass plates (42cm and 39cm) were prepared according to the silver staining protocol 

described by Fritz et al. (1999) (Appendix F) and placed together with 0.4mm spacers.  

 Following polymerization, the gels were pre-warmed on a Life Technologies, 

Inc. S2 upright gel apparatus while the samples were denatured.  Two ul of each sample 

were loaded on the gel and allowed to run until the dye band was one-half of the way 

down the plate.    The gels were then removed from the gel apparatus and silver stained 

according to Fritz et al. 1999 (Appendix F).   

Scoring of Gels - Gels were scored manually for presence or absence of bands. 

 

Results and Discussion 

 

AFLP Analysis   

For discrimination between the strains, a total of 112 AFLP primer combinations 

were tested.  These included both the 68 MseI/EcoRI primers, which amplified non-

methylated regions,  and the 48 MseI/PstI primers, which amplified both methylated and 

non-methylated regions.   A representative gel is pictured in Figure 5-2.   None of these 

primers were able to detect reliable polymorphisms among the seven Russet Norkotah 
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intraclonal variants, despite the scoring of 3,755 markers.  Some polymorphisms were 

observed, but were not confirmed with subsequent analysis of the same DNA, and were 

thus assumed to be amplification artifacts.    With silver staining, 29 (1.4%) 

irreproducible polymorphisms were observed among the 2,042 bands scored, while 42 

(2.4%) were produced with fluorescent detection.   These numbers are within the bounds 

of error of previous studies suggesting an AFLP error rate of ~2% (Arens et al. 1998; 

Winfield et al. 1998).   

Work conducted by Monte-Corvo et al. (2001), suggests that the difference in the 

percent of irreproducible polymorphisms between silver staining and other forms of 

visualization are due to the fact that many of the weak markers responsible for false 

polymorphisms are not detectible with silver staining.  This is supported by the average 

number of bands per primer, with Li-Cor primers producing an average of 44 bands per 

primer, while silver staining produced 33. This again points to the superior resolution of 

the Li-Cor system.  Eleven primer combinations were not scored due to poor 

amplification or background on the silver-stained gels. Despite the inability to distinguish 

between the seven Russet Norkotah strains, a 14.4% difference was detected between the 

Russet Norkotah clones and the breeding line ATX85404-5W. 
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CAA-CGT CAA-CTA CAA-CTC CAA-CTG 
Figure 5-2.   
A picture of a representative Li-Cor gel with 4 different MseI/PstI primer pairs is shown above.  The 
genotypes, in order from left to right for each primer pair, are CORN3, TXNS223, TXNS112, TXNS278, 
TXNS296, CORN8, Russet Norkotah, and ATX85404-5W.  It is clearly demonstrated that ATX85404-8W  
has a different AFLP pattern from the rest of the genotypes, while Russet Norkotah and its clones are 
indistinguishable from one another. 
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Microsatellite Analysis  

A total of 45 microsatellite primers were scored for 11 primer combinations.  

Primer Stm1049 was not included in the analysis because it failed to produce 

amplification products in two attempts.  The third attempt produced multiple (26) 

inconsistent bands.  Due to the inconsistencies, this primer was not included in the final 

analysis.   The remaining 11 primers produced an average of 4.1 bands per primer with 

no polymorphisms between ‘Russet Norkotah’ and its strains.   Twelve bands (26.7%) 

were polymorphic between ATX85404-8W and Russet Norkotah. A typical microsatellite 

gel is depicted in Figure 5-4. 

 

Discussion 

  The inability to detect differences with molecular markers between the 

clones does not suggest that they are genetically identical, but rather extremely similar.  

The seven Russet Norkotah clones clearly show differences in phenotypic traits such as 

increased yield, larger vine size, generally higher specific gravity, and lower nitrogen 

requirements (Miller et al. 1999; Zvomuya et al. 2002) (Figure 5-4).   These differences 

could be a result of somatic variation.  The absence of  polymorphisms suggests that 

these mutations are restricted to a small part of the genome.    



 

 

195

A
T

X
85

40
4-

8W
 

T
X

N
S 

22
3 

T
X

N
S 

11
2 

C
O

R
N

 3
 

T
X

N
S2

78
 

T
X

N
S 

29
6 

C
O

R
N

 8
 

R
us

se
t N

or
ko

ta
h 

Figure 5-3.   
A typical microsatellite gel depicting differences between ATX85404-
8W on the left, but no differences between Russet Norkotah and its 
strains.  From left to right are ATX85404-8W, Russet Norkotah, 
CORN8, TXNS296, TXNS278, TXNS112, TXNS223, and CORN3. 
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The PCR products generated from different individuals reflect the length of the amplified 

region, but not the particular sequence of that region.  Therefore, a difference in sequence 

could be present between the clones, but would not be detected if it does not alter the 

length of the amplified region.    

 Lack of molecular evidence could also be explained by differences in 

methylation.  Although a methylation sensitive enzyme was used in this study, unless a 

restriction site was differentially methylated between standard Russet Norkotah and the 

clones, methylation differences would not be evident.   Since restriction sites represent a 

very small percentage of the genome, chances are, if there are methylation differences 

between the clones, they will not occur within these restriction sites.   

 While differences in mitochondrial DNA have proven in the past to be involved in 

somoclonal variation, it is unlikely that this holds true in the case of the Russet Norkotah 

subclones (DeVerno, et al. 1994).  Since cytoplasmic DNA is randomly distributed 

during cell division, it’s logical to assume that a phenotype-based mitochondrial or 

chloroplast DNA would vary over time.  This is demonstrated by the reversion to wild 

type of many tissue culture variants.  However, this has not been observed in the Russet 

Norkotah intraclonal variants, as they reproduce true to type.  

 



 

 

197

FIGURE 5-4.   
Russet Norkotah and clonal selections in the 1999 Arizona nursery.   Pictured from left to right 
are TXNS112, TXNS223, Russet Norkotah, TXNS278, CORN3, and CORN8.  Increased vigor is 
evident in the strains. 
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Meyer, et al. (1998) point out the complications of using a tetraploid species in an 

AFLP analysis.  While AFLPs are known for their high multiplex ratios, in tetraploids 

much of the polymorphism is masked by ‘dosage.’  Since AFLPs are frequently dominant 

markers, due to the presence or absence of a priming site, one would not see differences 

if this presence or absence was masked by another copy of that site.  That is, if there are 4 

copies of a gene, for example AAAa, and it is mutated to AAaa, one would not see this 

difference.  For example, in a diploid species, there are two copies of the hypothetical 

gene “A”.  If the genotype is Aa, and the priming site falls in the middle of the “A” form 

of the gene, a mutation from “Aa” to “aa” would cause a loss of this priming site, and the 

corresponding loss of a band.  In a tetraploid, however, if the genotype is changed from 

AAAa to Aaaa, the “A’ allele would still be present, and a band would still be produced 

for this allele.  Thus, it is possible that one chromosome of the four in Russet Norkotah 

was mutated in the clones, but since we cannot reliably discriminate between band 

intensity, it was not detected.  

 Many studies have been performed on somoclonal variation, and the resulting 

literature can provide insight into possible explanations for differences in the Russet 

Norkotah clones.  Since the early 1980’s, researchers have been trying to determine the 

underlying cause of tissue culture derived variants, and possible explanations have 

included everything from gross chromosomal rearrangements to more cryptic changes 

such as methylation.   Frequent explanations are inversions, deletions, translocations, 

polyploidization, transposon activation, point mutations, and methylation (Larkin and 

Scowcroft, 1981).   
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While chromosome breakage is probably accentuated by tissue culture conditions, 

it is still a possibility in the case of the Russet Norkotah clones.  When such 

rearrangement occurs, there is a great potential for loss of genetic material.  Furthermore, 

it could affect genes in which a break occurs, as well as neighboring genes under the 

control of the same promoter.   In addition, translocation of a gene can have a positional 

effect, with one possible result the silencing of a previously expressed gene.  Should a 

dominant allele be “turned off” the phenotype of the recessive allele will be expressed, 

thus leading to an altered phenotype (Larkin and Scowcroft, 1981).  While it may seem 

unlikely that screening the genotypes with 112 AFLP primers would miss such an event, 

it is, in fact, very plausible.  Unless a deletion occurs within two restriction sites, it would 

go undetected.  Furthermore, an inversion, if it doesn’t alter the length of an amplified 

fragment, would also go undetected. 

While microsatellites revealed more polymorphism between ATX85404-8W and 

Russet Norkotah than did AFLPs, they were still unable to distinguish between Russet 

Norkotah and the strains.  Since the clones are so closely related to Russet Norkotah, and 

the mutations in the strains of this cultivar are clearly expressed, this is not surprising.  

Only 12 microsatellite primers were used, and these did not encompass all 12 of the 

potato chromosomes.  Chromosomes III, IV, and VI were not represented.  Therefore, 

either the genetic differences between Russet Norkotah and the strains are not in a 

microsatellite region, or a broad enough sample of primers was not screened. 

Clearly, there are stable genetic differences between Russet Norkotah and its 

strains, but the right marker system to uncover these differences has not been found.   

Point mutations might better be identified by techniques such as single-strand 
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confirmation polymorphism (SSCP), temperature gradient gel electrophoresis (TGGE), or 

denaturation gradient gel electrophoresis (DGGE).  The usefulness of these techniques in 

discriminating between clonal variants is currently under investigation by Monte-Corvo 

et al. (2001).  Another possible technique to detect differences between these and other 

clonal variants is to utilize the relatively new high-throughput “gene chip” technology.   

This fascinating new approach theoretically allows the researcher to place DNA 

sequences representing all of the genes in an organism on small glass supports, and 

subsequently use these genes as hybridization substrates to quantitate the expression of 

the genes represented in a complex mRNA sample (Somerville and Somerville, 1999).  

Differential expression of the genes in Russet Norkotah and its clones could lead to the 

discovery of the genes responsible for their variant phenotypes. 
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CHAPTER VI 

CONCLUSIONS 

 
High levels of variability were found in total antioxidant activity among 138 

cultivated genotypes when analyzed using the DPPH assay.  Ninety-one genotypes 

from Field Day Trial 2000 and 100 genotypes from Field Day Trial 2001 were 

analyzed.  Activities in the Field Day Trial 2000 ranged from 104 µg trolox eq/gfw 

(A8792-1) to 565 µg trolox eq/gfw (Purple Peruvian), and those from Field Day Trial 

2001 ranged from 108 µg trolox eq/gfw (NDTX4304-1R) to 59 µg trolox eq/gfw 

(Stampede Russet). 

Fifty-three genotypes were common between Field Day Trial 2000 and 2001.  

Analysis of variance revealed significant differences between genotypes, years, and 

genotype x year interactions, but no significant differences were found between 

replications.  The genotypes which ranked high in both years were Russet Norkotah, 

ATX91137-1Ru, ATX9202-1Ru, CORN8, Ranger Russet, ATX92230-1Ru, 

Stampede Russet, BTX1810-1R, TXNS296, and COTX93053-4R. 

Six advanced selections and 11 named varieties were grown in Dalhart, Texas in 

2000 and compared to the tubers grown in Springlake, Texas in Field Day Trial 2000 

to determine the effect of location on antioxidant activity.   Analysis of variance 

revealed significant differences between varieties and locations but not between 

replications. Tubers grown in Springlake in the Field Day Trial 2000 were 1.6 fold 

higher in antioxidant activity than those grown in Dahlart. 
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Significant differences were found among Russet Norkotah and its intraclonal 

variants, in both Field Day Trial 2000 and Field Day Trial 2001.  No significant 

differences were found between replications. 

To determine how potato compared to other vegetables, eighteen different store-

bought vegetables were analyzed for antioxidant activity.  Bell pepper had the highest 

antioxidant activity (751 µg trolox eq/gfw), while celery had the lowest  (0 µg trolox 

eq/gfw).  Significant differences were found between vegetables. 

Seven types of potato chips were analyzed for antioxidant activity to determine 

the effect of commercial processing on antioxidant activity.  Terra Blues had the 

highest antioxidant activity (36 µg trolox eq/gfw), and several types had an 

antioxidant activity of zero.  These results indicate that commercially processed 

potato chips contain little or no antioxidant activity.  It is not known if the low values 

for the chips were due to interference of the oil with the DPPH assay. 

A high level of variability in antioxidant activity was found among the 417 

populations, representing 47 Solanum species, which were analyzed.  In the Bamberg 

1 group, 30 accessions representing 27 species were analyzed.  These populations 

were obtained from true potato seed, and were segregating.  Significant differences 

were observed between accessions, but not replications.   Six accessions had higher 

mean antioxidant activities than the highest mean values in cultivated varieties.  

These accessions are as follows:  S. pinnatisectum (892 µg trolox eq/gfw),  S. 

comersonii PI 320266 (778 µg trolox eq/gfw), S. pinnatisectum PI 184764 (744 µg 

trolox eq/gfw), S. oxycarpum PI 607860 (742 µg trolox eq/gfw), S. jamesii PI 564050 

(622 µg trolox eq/gfw), and   S. violaceimarmoratum PI 498314 (580 µg trolox 
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eq/gfw).  The accession with the lowest antioxidant activity was S. brachistotrichum 

PI 545832 (48 µg trolox eq/gfw).   

In the Bamberg 2 group, 65 segregating accessions representing 25 species were 

analyzed.  Two field replications were included in the study.  Significant differences 

were observed between accessions, species, and replications but not field replications.  

Twenty-five accessions had higher mean antioxidant activities than the highest mean 

values in cultivated varieties.  Species that were among the top accessions included S. 

spegazzinii, megistacrolobum, pinnatisectum, chacoense, acaule, demissum, 

microdontum, jamesii, fendleri, infundibuliforme, oplocense, tarijense, commersonii, 

and gourlayi.  S. pinnatisectum accessions were frequently very high in antioxidant 

activity. The accession with the highest antioxidant activity was S. spegazzinii PI 

500053 (847 µg trolox eq/gfw), and the accession with the lowest antioxidant activity 

was S. megistacrolobum PI 265873 (160 µg trolox eq/gfw). 

Fifty segregating accessions of S. jamesii were analyzed for antioxidant activity.  

Significant differences were observed between accessions and replications.  Nine 

accessions had exceptionally high antioxidant activities (above 800 µg trolox eq/gfw).  

These accessions were as follows: PI 603056, PI 595784, PI 603055, PI 275172, PI 

275266, PI 275262, PI 458424, PI 592399, and PI 275264.   

Two-hundred-seventy-two clones, representing 23 species were analyzed for 

antioxidant activity in the Bamberg 02 group.  These populations were obtained from 

tuber seed; thus within each group of samples, all tubers were clones.   Significant 

differences were observed between accessions but not replications.  S. pinnatisectum 

and S. jamesii clones were consistently high in antioxidant activity, while S. 
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brachistotrichum continually ranked low.  Clones of S. jamesii accession PI 275262 

appear to be consistently high in antioxidant activity.  The clone with the highest 

antioxidant activity was S. cardiophyllum PI 341235, TAX 72 (884 µg trolox eq/gfw).  

The clone with the lowest antioxidant activity was S. brachistrotrichum PI 255528, 

TAX 42 (43 µg trolox eq/gfw). 

Based on the antioxidant assay of  Field Day Trial 2001, the top 11 genotypes 

were subjected to HPLC analysis to determine phenolic content.  The primary 

phenolics identified were chlorogenic acid, caffeic acid, and tryptophan, with minor 

amounts of rutin hydrate.  Chlorogenic acid levels ranged from 26-329 µg/gfw, but no 

significant differences were observed between genotypes.  Caffeic acid levels ranged 

from 33-41 µg/gfw.  Significant differences were found between genotypes, while 

replications were insignificant.  Rutin hydrate levels ranged from 7-306 µg/gfw. 

Significant differences were observed between genotypes but not replications. 

Tryptophan was observed in all genotypes, but was not quantitated. The lack of 

detection of other compounds previously reported to be present in potato was 

probably due to the fact that quantitation was based on both retention time and 

spectra, while previous studies based quantitation solely on retention time. 

Twenty-six accessions from Bamberg 2 representing 12 species and 2 field 

replications were analyzed in triplicate via HPLC for phenolic constituents.  The 

primary phenolics identified were chlorogenic acid, caffeic acid, and tryptophan, with 

minor amounts of p-coumaric and salicylic acids.  Chlorogenic acid levels ranged 

from 0-1836 µg/gfw.  Pinnatisectum PI 347766 had the highest level of chlorogenic 

acid (1818 µg/gfw).  Significant differences were observed between accessions, but 
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not replications.  Caffeic acid levels ranged from 45-149 µg/gfw.  S. pinnatisectum PI 

347766 contained the highest level of caffeic acid (149 µg/gfw).   Significant 

differences were found between accessions, but not between replications or field 

replications.  Levels of chlorogenic and caffeic acids in some accessions far exceeded 

those found in cultivated potato.  DPPH appeared to be a good indicator of the levels 

of chlorogenic and caffeic acid found in the tuber tissue analyzed. 

Forty-nine accessions from Bamberg 2 representing 20 species were analyzed in 

triplicate via HPLC for phenolic content.  The primary phenolics identified were 

chlorogenic acid, caffeic acid, tryptophan, and vanillic acid, with minor amounts of p-

coumaric acid, epicatechin, t-cinnamic acid, rutin hydrate, and and gallic acid.  

Chlorogenic acid levels ranged from 18-1117 µg/gfw.  Significant differences were 

observed between accessions, but not replications.  Caffeic  acid levels ranged from 

34-1570 µg/gfw.  Significant differences were observed between accessions, but not 

replications.  Levels of chlorogenic and caffeic acids in some accessions far exceeded 

those in cultivated potato.  Vanillic acid levels ranged from 6-17 µg/gfw.  Significant 

differences were observed between accessions, but not replications.  In the current 

study, vanillic acid was not identified in cultivated genotypes.  P-coumaric acid, 

epicatechin, t-cinnamic acid, rutin hydrate, and and gallic acid were identified in a 

small number of accessions.  Of these compounds, only rutin hydrate was identified 

in cultivated genotypes. 

Seven S. jamesii accessions from the 50 samples in the S. jamesii  group were 

analyzed in triplicate for phenolic components using HPLC analysis.  Chlorogenic, 

caffeic, and vanillic acids were identified.  Chlorogenic acid levels ranged from 65-
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105 µg/gfw.  Jamesii  PI 275262 had the highest level of chlorogenic acid (105 

µg/gfw).  Caffeic acid levels ranged from 157-268 µg/gfw. 

A spectrophotometric screen for carotenoid content was conducted on 138 

cultivated genotypes.  Ninety-one genotypes from Field Day Trial 2000 and  100 

genotypes from Field Day Trial 2001 were analyzed.  In Field Day Trial 2000, 

ATX82539-4Ru had the highest total carotenoid content (366 µg carotenoid 

eq/100gfw), while  A8893-1 had the lowest (148 µg carotenoid eq/100gfw).  

Significant differences were found between genotypes, while replications were 

insignificant.  In Field Day Trial 2001, TX1674-1W/Y had the highest total 

carotenoid content (536 µg carotenoid eq/100gfw), while NDTX4304-1R had the 

lowest (97 µg carotenoid eq/100gfw).  Significant differences were found between 

genotypes, while replications were insignificant. 

Forty-four genotypes were common between 2000 and 2001, and analysis of 

variance revealed significant differences in total carotenoid content between 

genotypes and genotype x year interaction, but not between years or replications. 

Genotypes performing well in both 2000 and 2001 are as follows: TX1674-1W/Y, 

BTX1544-2W/Y, CORN8, BTX1749-2Ru/Y, ATX9202-1Ru, ATX91137-1Ru, 

TXNS296, Vivaldi, and CORN3.  Significant differences were found among Russet 

Norkotah and its intraclonal variants, in both Field Day Trial 2000 and Field Day 

Trial 2001.  No significant differences were found between replications. 

Fourteen genotypes from Field Day Trial 2003 were analyzed to determine the 

effect of storage on carotenoid content. There was a substantial loss of carotenoids 

during storage.  While Field Day Trial 2001 entries ranked in approximately the same 



 

 

207

order in Field Day Trial 2003, Field Day Trial 2000 did not.  Variance and mean 

levels of carotenoid content decreased with increasing time in storage.  Comparison 

of data obtained from the three field day trials suggests that, when analyzing large 

numbers of genotypes, a more efficient extraction and screening method should be 

utilized in the broad screen, to reduce storage time and thus degradation of the 

samples. 

Thirty accessions representing 27 species were analyzed for carotenoid content in 

the Bamberg 1 group.  Vernei PI 458374 had the highest total carotenoid content (893 

µg carotenoid eq/100gfw), while brachistortrichum PI 545832 had the lowest total 

carotenoid content (151 µg carotenoid eq/100gfw).  Significant differences were 

found between genotypes, while replications were insignificant.   

Sixty-two accessions, representing 22 species and two field replications were 

analyzed for carotenoid content in the Bamberg 2 group.  Demissum PI498232 had 

the highest total carotenoid content (771 µg carotenoid eq/100gfw), while Papita PI 

249929 had the lowest (130 µg carotenoid eq/100gfw).  Significant differences were 

found between genotypes, while replications and field replications were insignificant.   

Two-hundred forty three clones, representing 20 species were analyzed for 

carotenoid content in the Bamberg 02 group.  Pinnatisectum PI 275231, TAX 31 had 

the highest total carotenoid content (888 µg carotenoid eq/100gfw), while spegazzinii 

PI 500053, AO 60.5 had the lowest total carotenoid content (84 µg carotenoid 

eq/100gfw).  Significant differences were found between genotypes, while 

replications and were insignificant. 
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Twenty-five genotypes from Field Day Trial 2000 were analyzed via HPLC for 

carotenoid content.  The only carotenoid identified was antheraxanthin. TX1674-

1W/Y contained 14.45 µg/100gfw, while ATX82539-4Ru contained 18.75 

µg/100gfw of this compound.  Many other peaks matched retention times for standard 

compounds, but not spectra. Had the decision been made to match solely on retention 

time, many more compounds would have been quantitated. 

Twenty-eight genotypes from Field Day Trial 2001 were analyzed via HPLC for 

carotenoid content.  Neoxanthin and lutein were the only compounds identified. 

Sating contained 4.65 µg neoxanthin/100gfw, and  Platina and Morning Gold 

contained 8.25  and 8.9 µg lutein/100gfw, respectively.  Retention time matches were 

found for violaxanthin, neoxanthin, antheraxanthin, lutein, and zeaxanthin; however, 

the spectra did not match. 

Fourteen genotypes from Field Day Trial 2003 were analyzed via HPLC for 

carotenoid content to determine the effect of storage.  Lutein, violaxanthin, 

antheraxanthin, and neoxanthin were identified. Lutein concentrations ranged from 

14.25-48.75 µg/100gfw. ATX82539-4Ru, a white flesh variety, contained the highest 

level of lutein (48.75 µg/100gfw). Violaxanthin concentrations ranged from 11.95-

39.55 µg/100gfw, with the highest amount being identified in BTX1754-1W/Y.  

Antheraxanthin was only identified in BTX1754-1W/Y (18.40 µg/100gfw), and  

neoxanthin was identified in BTX1754-1W/Y (13.25 µg/100gfw) and BTX1544-

2W/Y (13.10 µg/100gfw).  Occasionally, retention time matches were found that did 

not match the spectra of the standards. 
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Fourteen accessions, representing14 species from the Bamberg 1 group were 

analyzed via HPLC for carotenoid components.  Lutein was the only carotenoid 

identified, ranging in concentration from 9.35-18.75 µg/100gfw.  Retention time 

matches were found for lutein, violaxanthin, neoxanthin, and zeaxanthin; however 

they failed to match the spectra.   

Twenty-six accessions, representing 20 species from the Bamberg 2 group were 

analyzed via HPLC for carotenoid components.  No peaks were found that 

corresponded to both retention time and spectra of carotenoid standards.  Retention 

time matches were found for lutein only.   

Twenty-two clones representing 18 species from the Bamberg 02 group were 

analyzed for carotenoid components via HPLC analysis.  No peaks were found that 

corresponded to both retention time and spectra of carotenoid standards.  Retention 

time matches were found for lutein, neoxanthin, zeaxanthin, canthaxanthin, and 

violaxanthin. 

Despite the use of 112 AFLP primers and 11 microsatellite primers, no 

differences were detected among Russet Norkotah and its intraclonal variants.  This 

suggests that a different approach might be better for differentiating potato subclones.   
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CHAPTER VII 

SUMMARY AND RECOMMENDATIONS 

 
 Potato is the fourth most important food crop worldwide, and a staple in many 

diets.  Due to its large per capita consumption, increasing the level of antioxidants in 

potato through breeding efforts could benefit mankind in general.  This study provided 

basline information regarding antioxidant levels in a wide range of potato genotypes 

including both cultivated and wild species.  Important results and recommendations are 

as follows: 

 

1. Cultivated genotypes of potato vary widely in antioxidant activity, phenolic 

compounds, and carotenoid content.  Significant differences between genotypes 

suggest that antioxidant activity and contributing compounds are under genetic 

control. 

2. Wild Solanum species contain a wider range of phenolic variation than do 

cultivated genotypes, suggesting that they could be important contributors to 

phenolic content if incorporated into  breeding programs. 

3. Due to their low levels of carotenoids, it is not recommended that wild Solanum 

species be used in breeding for increased carotenoid levels. 

4. While large screens are important for identifying genotypes that are high in 

antioxidant components, care should be taken that not too many are analyzed at 

once.  Due to the instability of the compounds, it is recommended that the 

extraction procedure be simplified for the broad screen.  Once varieties containing 
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high levels of antioxidant compounds are identified, extractions should be 

performed again on fresh tubers for HPLC analysis. 

5. Many peaks remained unidentified in both the phenolic and carotenoid HPLC 

analysis.  Identification of these peaks would be the next logical step in the 

process.  It is recommended that standards be obtained for carotenoid esters, 

carotenoid epoxides, and phenolic glycosides as a starting point. 

6. The varieties identified in this screen should be incorporated into the breeding 

program to increase antioxidant levels in potato.   

7. PCR-based marker analysis does not appear to be useful in separating intraclonal 

variants of potato.  Perhaps a functional genomic approach which analyzes 

differential expression would be beneficial for separating the subclones. Since the 

intraclonal variants were different in antioxidant activity and carotenoid content, 

one possible approach for differentiating the strains would be to look for 

differences in antioxidant genes, many of which have known sequences. 
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APPENDIX A 

PROTOCOL FOR DNA EXTRACTION – MINIPREP PROCEDURE 

 
BUFFERS: 
 
Extraction Buffer – 20L  
.35M Sorbitol 1275g 
0.1M Tris-base 242g 
0.005M EDTA 33.6g 
Adjust pH to 7.5 with HCL 
Add Na-Bisulfate (0.02M=3.8g/L) just before use 
 
Nuclei Lysis Buffer: 
 [Final] 
200ml 1M Tris 0.2M 
200ml 0.25M EDTA 0.05M 
400ml 5.0M NaCl 2M 
20g CTAB 2% w/v 
200ml of dH2O  
 

1. Harvest leaf tissue 
a. Harvest approximately 3g young leaf tissue and freeze at –80 C as soon as 

possible 
 

2. Freeze leaf tissue 
a. Immerse samples in liquid nitrogen 
b. Grind to a fine powder 
c. Transfer leaf powder to 50ml screw cap centrifuge tubes and place each 

tube at –20 C until all samples have been ground. 
d. Leave caps off and cover rack with handi-wrap and rubber band. 
e. Store at –80 C until ready to use. 

 
3. Homogenize tissue 

a. Add Na-Bisulfate to extraction buffer just before use (3.8g/L).  For 16 
samples, use 2.28g in 600ml.  Keep on ice. 

b. Add 20-25ml cold extraction buffer to frozen leaf sample one sample at a 
time.  Leave other samples at –20 C until ready for extraction. 

c. Homogenize sample for 5-10 seconds using a polytron at room 
temperature 

d. Set tube on ice and repeat for other samples.  Do not cap tubes. 
 

4. Centrifuge samples in Beckman TJ-6 table-top centrifuge at full speed for 20 
minutes.   
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5. Carefully pour off supernatant, including loose green material. 
a. Add 1.25ml of extraction buffer to the pellet, and vortex full speed for 5 

seconds 
b. Add 1.75ml nuclear lysis buffer and 0.6ml 5% Sarkosyl 
c. Cap tubes and invert 5-10 times. 
d. Incubate at 65 C for 20 minutes 

 
6. Add 7.5ml chloroform/isoamyl alcohol (24:1) 

a. Cap the tubes and place on an orbital shaker for 20-30 minutes. 
b. Centrifuge (Beckman TJ-6) at full speed for 15-20 minutes 
c. Carefully pipet off aqueous supernatant into pre-labeled 15ml Falcon 

tubes.  Do not allow any of the interphase to be drawn up. 
 

7. Precipitate DNA by adding 4ml of cold isopropanol and carefully invert the tubes 
5-10 times 

 
8. Most samples should form a precipitate of DNA which can be hooked out. 

a. Dry the DNA on a Kimwipe 
b. Resuspend it in 100-300ul TE for 10 minutes at 65 C. 
c. Spin down starch and residual plant material in table top centrifuge at a 

setting of “5” for 10 minutes. 
d. Store at 4 C if DNA will be used soon or at –20 C if DNA is to be stored 

for an extended period  
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APPENDIX B 

EcoRI AND MseI RESTRICTION DIGESTION AND ADAPTER 

LIGATION  

Used for Silver Staining Protocol for AFLP 
Taken and modified from GIBCO BRL Manual 

 
Restriction Digestion 

5X Reaction Buffer   1.25ul  
EcoRI/MseI    0.50ul  
DdH2O    0.50ul  
DNA (50ng/ul)   4.0ul 

 
Incubate at 37 C for 2 hours 
Heat inactivate at 70 C for 15 minutes 

 
Adapter Ligation 

Adapter Ligation Solution  6.0ul 
T4 DNA ligase   .25ul 
Restricted DNA   6.25ul 

 
Mix gently at room temperature and incubate on the bench overnight. 
 
Taking 6.25ul from the Restriction x Adapter mix, and add 9.25ul of TE (supplied 
with the kit).  The total volume now becomes 15.5 
 

Restricted Adapter ligated Diluted DNA (RAD) 
 
 
Restriction x Adapter mix  6.25ul 
TE (From kit)    9.25ul  
Total     15.5ul 
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APPENDIX C 

PREAMPLIFICATION FOR AFLP 

EcoRI/ MseI – AFLP for Silver Staining 
Modified from Gobco BRL Manual 

 
 
 
Preamplification 
Template DNA (RAD)   1.25ul 
Pre-Amp Primer Mix    10.0ul 
10X PCR buffer for AFLP   1.25ul 
Taq DNA Polymerase (Gibco)  0.05ul 
DdH2O     0.20ul 
 
PCR Profile 
 
94 C for 30 seconds 
56 C for 1 minute 
72 C for 1 minute 
 
Dilute Pre-Amp DNA 1:10.  This becomes the Template for Selective Amplification 
 
PreAmp PCR product    10ul 
TE      90ul 

20 cycles 
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APPENDIX D 

SELECTIVE AMPLIFICATION FOR AFLP 

EcoRI/ MseI – AFLP for Silver Staining 
Modified from Gobco BRL Manual 

 
 
Selective Amplification 

 
Mix 1 
EcoRI Primer      0.25ul 
MseI Primer (contains dNTPs)  2.25ul 
Total      2.50ul 
 
Mix 2 
ddH2O      3.95ul 
10X PCR Buffer for AFLP   1.00ul 
Taq DNAp (5u/ul Gibco)   0.05ul 
Total      5.00ul 
 
Final Reaction 
Mix 2      5.00ul 

 Diluted Teamplate DNA (TSA)  2.50ul 
 Mix 1      2.50ul 
 Total      10.0ul 
 
 

PCR Profile 
1. Perform 1 cycle at: 

a. 94 C for 30 seconds 
b. 65 C for 30 seconds 
c. 72 C for 60 seconds 

2. Lower the annealing temperature each cycle 0.7 C during 12 cycles.  This 
gives a touch down phase of 13 cycles 

3. Perform 23 cycles at: 
a. 94 C for 30 seconds 
b. 56 C for 30 seconds 
c. 72 C for 60 seconds 

4. Total time is 2 hours 2 minutes 
 
After PCR: 
Dry in a speed vac at medium speed until dry (~30 minutes). 
Resuspend with ½ water and ½ dye (5ul water, 5ul dye) 
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APPENDIX E 

FORMAMIDE MANUAL SEQUENCING DYE 

Sambrook et al., 1989 
 
 
Dye: 
Formamide   10ml 
Xylene Cyanol FF  10ml 
Bromophenol Blue  10mg 
0.5M EDTA pH8  200ul 
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APPENDIX F 

SILVER STAINING SEQUENCING GELS 

Fritz et al., 1999 
 
GEL SOLUTIONS 
 

Bind Silane 
Absolute Ethanol      995ml 
Glacial Acetic Acid      5ml 
Bind Silane (γ-methacryloxypropyltrimethoxysilane) 0.5ul 
 
Sodium Thiosulfate 
10mg/ml in ddH2O       
Store in small snap-cap tubes and make in small aliquots 
 
Fix/Stop Solution 
Glacial Acetic Acid      200ml 
ddH2O        800ml 
 
Staining Solution 
Silver Nitrate (AgNO3)     2g 
37% Formaldehyde      3ml 
ddH2O        to approximately 2L 
 
Store in glass container in the dark.  Can be used 5-10 times 
 
Developer 
Na2CO3       60g 
DdH2O       2L 
 
Chill prior to use: 
Immediately prior to use add: 
400ul sodium thiosulfate (10mg/ml) 
3ml 37% formaldehyde  
 
2% NaOH 
NaOH        40g 
DdH2O       2L 
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1. Preparation of glass plates: 
a. For best results, new plates should be soaked approximately 1 hour in 2M 

NaOH before use.  Wash plates thoroughly after usage.  After washing, 
use acetone and a Kimwipe or paper towel to clean the short plate (2-3 
times).  This removes any excess bind silane from the previous use.  

b. Rinse well with water. 
c. Spray with 100% ethanol and use squeegee to remove the excess.  Wipe 

dry with a Kimwipe.   
d. Apply Rain-X to the large glass plate and use chem. wipe to distribute 

onto the plate.  Use a clean Kimwipe and continue wiping the plate until 
all of the Rain-X is absorbed or evaporated.  

e. Rinse with absolute ethanol. 
f. Clean short plate with acetone, water, and ethanol. 
g. Apply approximately 3-4ml of bind silane to the short glass plate, and 

using parafilm, spread the solution over the surface until the plate is 
coated and the solution has evaporated.  Let the plate dry. 

h. Rinse with absolute ethanol and dry with a kimwipe or a paper towel. 
i. Place treated plates together. 

 
2. Proceed with gel preparation and electrophoresis. 
3. Separate glass plates using a small spatula following electrophoresis.  The gel will 

remain attached to the short plate. 
4. Place the short plate, with the gel attached, in a container with Fix/Stop solution 

(10% Acetic Acid), and agitate gently until dye band disappears (~15 minutes) 
5. Remove the plate and drain the excess solution.  Save the Fix/Stop. 
6. Place the gel in a container with ddH2O and gently agitate for 6 minutes. 
7. Remove plate and drain the excess water. 
8. Place the gel in a container with the stain solution for 10 minutes under gentle 

agitation. 
9. Add 400ul Sodium Thiosulfate and 3ml formaldehyde to 2L of ice-cold 

developing solution. 
10. Gently and briefly (~10 seconds) rinse gel in water and then transfer to ice-cold 

developing solution. 
11. Allow the gel to develop by providing gently agitation until the bands are visible 

(~3 minutes).   
12. When the bands are visible, remove the gel from developer and drain. 
13. Place the gel in the Fix/Stop solution to stop the reaction.  Gently agitate for 2-3 

minutes.   
14. Rinse for 2 minutes in water under gentle agitation. 
15. Place the plate in a tray with 2%NaOH for 2-10 minutes and gently agitate.  The 

gel should not float away, but the edges should begin to loosen from the plate. 
16. Lift plate from the solution and place it carefully in a tray with ~30% Fix/Stop.  

Soak the gel without agitation for 3 minutes. 
17. Transfer to Whatman 3MM paper and dry overnight on the lab bench. 
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APPENDIX G 

DENATURING POLYACRYLAMIDE GELS 

 
6% Denaturing Polyacrylamide Gel 

Urea    12.6g 
ddH2O    7.5ml 
PagePlus polyacrylamide 4.9ml 
10X TBE   3.6ml 
 
Bring volume to 30ml. 
Filter and degas in sterilizing unit. 
Then add: 
 APS (10%)  200ul 
 TMED   20ul 
 
Immediately pour between two glass sequencing plates and allow the gel to 
polymerize for 2-3 hours. 
 
 

7% Denaturing Polyacrylamide Gel 
 Urea    12.6g 

ddH2O    7.5ml 
PagePlus polyacrylamide 5.7ml 
10X TBE   3.6ml 

 
Bring volume to 30ml. 
Filter and degas in sterilizing unit. 
Then add: 
 APS (10%)  200ul 
 TMED   20ul 
 
Immediately pour between two glass sequencing plates and allow the gel to 
polymerize for 2-3 hours. 
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APPENDIX H 

RESTRICTION DIGESTION OF GENOMIC DNA WITH ECORI 

AND MSEI FOR LI-COR ANALYSIS 

Menz et al., 2002 
 
 
Dilute the DNA to be digested to a concentration of 100ng/ul, and aliquot 5ul of each 
genotype into .5ul microcentrifuge tubes.  500ng of genomic DNA will be used for each 
reaction. 
 
MseI Digestion 

10X NE Buffer 2    5.0ul 
10mg/ml BSA     0.5ul 
4 U/ul MseI (New England Biolabs)  0.625ul 
ddH2O      36.275ul 
Total      37.375ul 
 

• Add to 500ng of genomic DNA. 
• Mix gently by tapping. 
• Incubate at 37oC for 2 hours. 
• Heat inactivate at 65oC for 20 minutes. 

 
PstI Digestion 

5M NaCl     0.5ul 
1M Tris HCL pH 7.9    2.0ul 
20 U/ul PstI     0.125ul 
Total      2.625 
 

• After MseI digestion, add 2.625ul to each tube. 
• Mix by tapping. 
• Incubate at 37 C for 2 hours. 
• Heat inactivate at 65 C for 20 minutes. 
• Spin down and place on ice. 
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APPENDIX I 

ADAPTER LIGATION 

MseI/PstI for use with LI-COR system 
 
 
Adapter Ligation Mix 
 

10X Ligation Buffer   1ul 
50pmol/ul MseI adapter  1ul 
5pmol/ul PstI adapter   1ul 
T4 DNA Ligase   1ul 
DdH2O    6ul 
 
Incubate at 37 C overnight. 
Add 440ul H2O to dilute. 
 
Resulting mixture is termed Restricted Adapter-ligated diluted DNA 
(RAD). 
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APPENDIX J 

PREAMPLIFICATION REACTION 

MseI/PstI for use with LI-COR system 
Klein, et al., 2000. 

 
Preamplification Reaction 
 

10X PCR Buffer   2.5ul 
 50mM MgCl2    0.75ul 
 2.0mM dNTPs    2.0ul 
 10pmol/ul P-C-pre-amp primer 1.4ul 
 10pmol/ul M-C pre-amp primer 1.4ul 
 Taq DNAp (Promega)   0.2ul 
 ddH2O     11.75ul 
 Total     20.0ul 
 

• Add to 5ul of RAD DNA. 
• Mix reactions well by drawing up and down 8-10 times with pipettor. 

 
PCR Profile (20ul rxn) 
 
25 cycles of: 
94 C for 30 seconds 
56 C for 1 minute 
72 C for 1 minute 
Final hold at 4oC 
 
Dilute 1:10 with H2O (1ul pre-amp DNA:9ul H2O). 
Make 1% agarose gel to test whether preamplification was successful. 
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APPENDIX K 

SELECTIVE AMPLIFICATION REACTION 

MseI/PstI for use with LI-COR system 
Klein, et al., 2000. 

 
Preamplification Reaction 
 

10X PCR Buffer   1.00ul 
 25mM MgCl2    0.50ul 
 2.0mM dNTPs    1.0ul 
 ~1uM Pst Selective Primer (+3) .15ul 
 7.5ng/ul Mse selective primer  (+3) 0.5ul 
 Taq DNAp (Promega)   0.04ul 
 ddH2O     4.81ul 
 Total     8.0ul 
 

• Add to 2ul of TSA (Template for Selective Amplification). 
• Mix reactions well by drawing up and down 8-10 times with pipettor. 
• Since the p-primer is light sensitive, add it to the mixture last, and keep the 

reaction in the dark. 
 
PCR Profile (20ul rxn) 
 
95 C for 2 minutes 
94 C for 1 second 
65 C for 1 minute (-.6oC/cycle) 
72 C for 1 minute 30 seconds 
 
94 C for 30 seconds 
56 C for 30 seconds 
72 C for 1 minute 
 
72 C for 5 minutes 
4 C for ever 
 
 
 

13 cycles 
reduce annealing temperature 
by 0.6oC/cycle 

 
23 Cycles 
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APPENDIX L 

ORIENTING SAMPLES AND BASIC FUSION LOADING DYE 

MseI/PstI for use with LI-COR system 
 
 
Orientation of PCR plates: 
To allow loading with a Hamilton 8-channel syringe, PCR plates were set up in the 
following orientation.  The letters across the top are the column number, and the numbers 
down the left hand side are the row numbers of the PCR plate.  Numbers on a white 
background are the sample/well numbers. 
 
 A B C D E F G H 
1 1 5 9 13 17 21 25 29 
2 2 6 10 14 18 22 26 30 
3 3 7 11 15 19 23 27 31 
4 4 8 12 16 20 24 28 32 
5 33 37 41 45 49 53 57 61 
6 34 38 42 46 50 54 58 62 
7 35 39 43 47 51 55 59 63 
8 36 40 44 48 52 56 60 64 
9 65 69 73 77 81 85 89 93 
10 66 70 74 78 82 86 90 94 
11 67 71 75 79 83 87 91 95 
12 68 72 76 80 84 88 92 96 
 
 
Basic Fusion Loading Dye 

Basic Fusion Loading Dye   200ul 
10X PCR Buffer    100ul
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APPENDIX M 

LONGRANGE POLYACRYLAMIDE GELS 

MseI/PstI for use with LI-COR system 
 
 
6% Denaturing Polyacrylamide Gel with 7M Urea 

Urea    12.6g 
ddH2O    7.5ml 
LongRanger polyacrylamide 4.9ml 
10X TBE   3.6ml 
 
Bring volume to 30ml. 
Filter and degas in sterilizing unit. 
Then add: 
 APS (10%)  200ul 
 TMED   20ul 
 
Immediately pour between two glass sequencing plates and allow the gel to 
polymerize overnight. 
 
 

7% Denaturing Polyacrylamide Gel with 7M Urea 
 Urea    12.6g 

ddH2O    7.5ml 
LongRanger polyacrylamide 5.7ml 
10X TBE   3.6ml 

 
Bring volume to 30ml. 
Filter and degas in sterilizing unit. 
Then add: 
 APS (10%)  200ul 
 TMED   20ul 
 
Immediately pour between two glass sequencing plates and allow the gel to 
polymerize overnight. 
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APPENDIX N 

MICROSATELLITE AMPLIFICATION  

Raker and Spooner (2002) 
 
 
 
Microsatellite Amplification Reaction 
 

10X PCR Buffer    2.50ul 
 25mM MgCl2     1.50ul 
 2.5mM dNTPs     2.00ul 
 10uM forward primer    1.00ul 
 10uM reverse primer    1.00ul 
 Taq DNAp (Sigma 1u/ul)   1.00ul 
 ddH2O     12.00ul 
 5ng/ul genomic DNA     4.00ul 
 Total     25.00ul 

 
 

PCR Profile (25ul rxn) 
 
94 C for 10 minutes 
[Tm] oC for 2 minutes 
72 C for 5 minutes 
 
94 C for 1 minute 
[Tm] C for 45 seconds 
72 C for 5 minutes 
 
72 C for 45 minutes 
4 C for ever 

 
 

 
 
 

1 cycle 

 
29 Cycles 
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APPENDIX O 

PROTOCOL FOR ANALYZING ANTIOXIDANT ACTIVITY IN 

POTATO USING DPPH 

 
1. Dice the entire potato into ¼ inch cubes and take a random sample from each 

potato. 
 

2.  Weighing the sample 
a. Weigh 5 g of diced potato sample (in triplicate). 
b. Use different tubers for each replicate. 

 
3.  The Extraction 

a. Add 15 ml of methanol to the 5 g of sample. 
b. Homogenize for 3-4 minutes 
c. Centrifuge for 20 minutes at 16,000 rpm 
d. Save 1.5 ml of supernatant for assay 

 
4.  The Assay 

a. Prepare a 607 µM DPPH solution by dissolving 24 mg DPPH in 100 
ml of methanol. 

b. Dilute the stock solution ~10:55 with methanol until the 
spectrophotometer reads 1.1 at 515nm. 

c. Add 2850 µl of diluted DPPH to 150 µl of extract in a scintillation vial 
d. Shake for 15 minutes. 
e. Determine absorption at 515 nm on a spectrophotometer 
f. Note:  It’s best not to analyze more than 12 samples at a time. 

 
5.  Prepare a standard curve of a known antioxidant using known concentrations. 
 
6. Use the regression equation to convert antioxidant activity into equivalents of 

known antioxidants 
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APPENDIX P 

INSTRUMENT METHOD FOR PHENOLIC SEPARATION 

 
Name:       Larry’s Suggestion 2 
Column:   Atlantis 
       4.6 x 150 mm, 5µm 
Solvent A:  Water adjusted with HCL to a pH of 2.3 
Solvent B:  Acetonitrile 
Temperatue:  40C 
Run Time:  47 minutes 
 
 
Gradient 
 
 Time Flow %A %B Curve
1  1 85 15  
2 5 1 85 15 6
3 30 1 0 100 6
4 35 1 0 100 6
5 36 1 85 15 6
6 100 1 85 15 6
7 101 0 85 15 11
 

• Steps 1-3 are the gradient on which the samples were run. 
• Steps 3-4 are a column clean which was run between each injection. 
• Steps 4-6 brought the column back to initial conditions for the succeeding 

injection. 
• Steps 6-7 are automatic shutdown steps for the HPLC system. 
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APPENDIX Q 

INSTRUMENT METHOD FOR CAROTENOID SEPARATION 

Breithaupt and Bamedi (2002) 
 
 
Name:       Carotenoid 
Column:   YMC Carotenoid Column 
       4.6 x 250 mm, 5µm 
Solvent A:  Methanol/water/triethylamine (90:10:0.1 v/v/v) 
Solvent B:  Methanol/MTBE/triethylamine (6:90:0.1v/v/v) 
Temperatue:  35C 
Run Time:  73 minutes 
 
 
Gradient 
 
 Time Flow %A %B Curve
1  1 99 1  
2 8 1 99 1 6
3 45 1 0 100 6
4 50 1 0 100 6
5 53 1 99 1 6
6 73 1 99 1 6
7 100 1 99 1 6
8 101 0 99 1 11
 

• Steps 1-3 are the gradient on which the samples were run. 
• Steps 3-4 are a column clean which was run between each injection. 
• Steps 4-6 brought the column back to initial conditions for the succeeding 

injection. 
• Steps 6-8 are automatic shutdown steps for the HPLC system. 
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