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ABSTRACT 

 
 

A Groupware Interface to a Shared File System.  (December 2004) 

Timothy Collin Faltemier, B.S., University of I llinois – Urbana 

Chair of Advisory Committee:  Dr. Du Li 

 

Current shared file systems (NFS and SAMBA) are based on the local area network 

model.  To these file systems, performance is the major issue.  However, as the Internet 

grows, so does the distance between users and the Local Area Network.  With this 

increase in distance, the latency increases as well.  This creates a problem when multiple 

users attempt to work in a shared environment.  Traditionally, the only way to 

collaborate over the Internet required the use of locks.   

These requirements motivated the creation of the State Difference 

Transformation algorithm that allows users non-blocking and unconstrained interaction 

across the Internet on a tree based structure.  Fine Grain Locking, on the other hand, 

allows a user the ability to set a lock on a character or range of characters while using a 

form of the transformation algorithm listed above.  This thesis proposes an 

implementation that integrates these two technologies as well as demonstrating the 

effectiveness and flexibility of State Difference Transformation. 

 The implementation includes two applications that can be used to further 

research in both the transformation and locking communities.  The first application 

allows users to create tests for SDT and Fine Grain Locking and verify the correctness of 
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the algorithms in any given situation.  The second application then furthers this research 

by creating a real-world groupware interface to a shared file system based on a client-

server architecture.  This implementation demonstrates the usability and robustness of 

these algorithms in real world situations.  
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CHAPTER I 
 
 

INTRODUCTION 
 

Current shared file systems NFS, Samba, and AFS, are based on the idea that you are on 

a network.  To these file systems, performance is the major issue.  Their purpose is to 

store and serve data to a network environment where the latency and delays are 

minimized.  Today, this limited view of a network is becoming dated.  As the Internet 

grows, so does the distance between users and the local area network model that we 

were accustom to is no longer sufficient for business today.   

To move beyond these limits set by traditional network file systems, we must be 

able to communicate over long distances.  In the past, this has caused numerous 

problems due to the unknown latency that is inherent in the design of the Internet.  Part 

of this problem is the fact that the file systems are implemented in a client server 

infrastructure.  Communication follows the logic, a client makes a change, it is sent to 

the server where the change is executed, and then that information is sent to the remote 

users.  Over long distances the latency for these operations can be immense [Ahuja  

1990].  On the other hand, studies [Mauve  2000] have shown that local response is one 

of the most commonly cited criteria of a program by users. 

Operational Transformation (OT) allows the users to execute commands instantly 

on their local machines (thereby allowing for a very responsive system), and then 

transmits the change to the server (where it is kept in case late joiners arrive), and then 

____________ 
This thesis follows the style and format of ACM Transactions on Computer-Human 
Interaction. 
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the server transmits those changes to the remote sites (where they execute them 

as the arrive and concurrency issues are dealt with at that point locally).  By using an 

algorithm based on OT, I believe that mitigating results can be shown.  

 This algorithm is interesting due to the fact that as long as users start at the same 

state, no matter what the latency of the network is, the data should eventually converge 

which is something that gives this approach appears to be more promising in its ability to 

solve these problems. 

 Another issue with current network file systems (NFS in particular) is their 

ineffectiveness in using locks [Suess  1995].  Their inability in certain implementations 

to lock remote directories and their lack of native concurrency control makes group work 

difficult [Li  2004a].  I believe that locking is not only possible in a distributed file 

system but is necessary.  To accomplish this task, we plan to implement a new locking 

algorithm based on OT [Sun  2002b] and integrate it with the new file system that will 

allow users to lock files, directories, or a range of directories.

 Finally to test these algorithms and theories in a working environment, we have 

created a flexible, user-friendly, and extendable framework that implements a version of 

the OT algorithm in a file system infrastructure.  Currently there are no such applications 

available that demonstrate the theoretical ideas and algorithms listed throughout this 

paper.   
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CHAPTER II 
 
 

RELATED WORK 
 

This section of the thesis will describe the current work related to shared file systems 

and operational transformation.  The first section describes how NFS, Samba and AFS 

operate as the basis of comparison to traditional shared file systems.  The second section 

describes the current OT based work relevant to this thesis.  The final section describes 

the difference between the type of locking that we have implemented and traditional 

locking that is available in current systems. 

 

NFS (NETWORK FILE SYSTEM) / SAMBA 

 NFS and Samba are the current defacto standards for network file systems.  First, 

NFS was created by Sun as a means of sharing drives over the Internet using TCP/IP.  

This was an incredibly novel approach in the 1980s.  Distance no longer presented a 

problem when sharing data.  The NFS UNIX only protocol is based on remote procedure 

calls (RPC) that allow users on local systems to interact with remote systems as if it was 

local.  A major problem with this protocol is the fact that it is very inefficient [Raynal  

2002] when it comes to communicating over the Internet.  Primarily designed for Local 

Area Networks, NFS relies heavily on the ability to remain constantly connected to the 

remote host.  This problem is further highlighted when the distance between the 

computers becomes greater.   
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 Samba on the other hand is very similar to NFS in its desire to share files over 

the Internet.  This file system, designed to link Windows and UNIX systems in a 

seamless manner, allows a user on either system to work freely in their own environment 

with the remote files available.  The issue with this system, like that of NFS, is that 

serious problems occur when multiple users attempt to work on the same files or in the 

same directories.  This is a major reason why users have their own home directories 

where the majority of their file operations occur.  Samba accomplishes this multi-user 

ability through the use of locks.  Two types of locks are available, exclusive (only the 

locking user can access the file) and shared (users attempting to alter data receive a 

warning message and are asked to verify changes). 

 

AFS  

AFS is a Unix based distributed network file system that allows remote users to 

share and access files anywhere in the world as if they were on their local machine.  The 

AFS file system works by creating a root shared directory /afs.  By looking at the 

contents of this directory, you will see all of the files that are located in the AFS cells.  

These cells can be stored either locally or remotely [Blackburn  1998] and the files can 

be operated on with traditional commands (cd, rm, cp, mkdir, rmdir, etc..).  One of the 

great strengths of AFS is the fact that is has location independence.  This means that 

unlike traditional file systems, where the user had to know the exact file server 

information (hostname, and mapping information), the user only needs to know the 
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pathname of the file.  The following situation is an example of why AFS is superior to 

NFS. 

To understand why such location independence is useful, consider having 20 
clients and two servers. Let's say you had to move a filesystem "/home" from 
server a to server b. 

 
Using NFS, you would have to change the /etc/filesystems file on 20 clients and 
take "/home" off-line while you moved it between servers. 

 
With AFS, you simply move the AFS volume(s) which constitute "/home" between 
the servers. You do this "on-line" while users are actively using files in "/home" 
with no disruption to their work. 

 

The locking however in AFS like NFS and Samba is very rigid.  It allows you to lock by 

file, or set access restricts as to who can access which files, however it is unable to allow 

multiple users access to the same file.  In addition, if a parent directory is locked, as are 

all of the children. 

 

OT / SSD 

OT was originally created to allow for concurrent word processing over the 

Internet.  The main design goal of this algorithm was that local responsiveness is 

paramount when using an application.  OT allows for the integration of remote 

commands in a seamless manner without user interaction and without requiring the user 

to be constantly connected to the Internet.  Designed for collaborative use, the OT 

algorithm was based around three major data manipulation goals. 

1) Convergence:  After all of the changes have been made at all of the 

sites, the final product must be the same throughout. 
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2) Causality Preservation:  If two operations A and B are given, and A 

comes before B, then that order must be reflected on all of the remote 

sites. 

3)   Intention Preservation:  If two sites are working on the same 

document, and site 1 changes the state of the tree, and site 2 changes 

the state of the tree before knowing that site 1 had already done so, the 

execution of the remote events must be preserved.  For example, if site 

1 wants to change the first node, but site 2 had already added a node 

there, the algorithm should take consider the change node and modify  

the incoming operation to reflect the new state. 

 

Shared Semantic Directories (SSD)  is another similar project.  SSD allows 

multiple users to connect to a centralized server, and work in a manner similar to the 

Windows and UNIX file browser.  This program gives users more options when dealing 

with the individual files, essentially giving the user an almost shared whiteboard feel.  A 

user could upload a file to the server and annotate it for other users to see.  This system 

however lacks an effective consistency control mechanism.  Locking was implemented 

to prevent users from accessing certain files, but for the most part if multiple users 

worked together at the same time in the same location problems could occur.  Due to its 

desire to be locally responsive, SSD utilized a replicated communication system.  While 

this design is very responsive, synchronization and convergence can occasionally be an 

issue. 
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FINE GRAIN LOCKING 

 Traditional locking is used to ensure that only one user at a time is allowed to 

make updates to a certain piece of data.  By nature, this prevents concurrent access and 

therefore presents a challenging problem for groupware applications.  Fine grain locking 

[Sun  2002b] is a technique that extends traditional locking to alleviate some locking 

issues.  Originally created for group text editing, it allows a user to update a certain piece 

of text immediately after requesting the lock (contrary to traditional locking mechanisms 

that wait for the server to respond with the go-ahead command).  This algorithm, like 

OT, was made for use over the Internet with the knowledge that latency and delays may 

occur.  What makes this algorithm so unique is shown in [Sun  2002b], “In contrast to 

existing locking schemes, the locking scheme proposed in this paper is optional in the 

sense that a user may update any (unlocked) region without necessarily requesting a lock 

on it.  If a lock has been placed on a region, however, a user can update this region only 

if she/he owns a lock covering the region.”   By eliminating the need to have exclusive 

ownership, fine grain locking is a perfect fit for OT.
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CHAPTER III 
 
 

CONCEPTUAL DESIGN / USER REQUIREMENTS 
 

The major goal for this project is to create a system that will be completely functional 

over a potentially disconnected Internet and when users are eventually able to reconnect, 

their changes will eventually converge to a single state.  In addition, we would like to 

give the user all of the options and features that would be available in a traditional 

workspace.  This includes the ability to add and remove files and folders from a 

centralized location, modify those files, and generally interact with the other users that 

are connected to the space.  Samba in contrast allows for very few of these features.  It 

allows for a drive to be visible remotely, however it is not a groupware solution by any 

means.  Through this implementation, we are attempting to demonstrate how 

concurrency and convergence algorithms can be used to provide users with a real work 

environment.   

When implementing this algorithm, we chose to use a traditional client-server 

architecture.  This choice however makes absolutely no difference to the algorithm itself.  

We could just as easily have implemented a peer-to-peer or replicated architecture.  Due 

to the nature of the algorithm, the implementation is not effected by latency delays or 

loss of connections between users.  The only thing that matters is that at some point in 

time, everyone must be on the same initial state. 
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Note, in this implementation, we used a file system model to show the capabilities of the 

algorithm.  This is only one of many possibilities that exist for the algorithm.  A goal of 

the implementation was to make this model as general as possible to allow for future 

extensions and modifications.  Essentially the algorithm does not care what it is ordering 

as long as a key and a tree structure are available. 

 A major goal of this application is to create an interface that is as similar to a 

traditional file system as possible.  These file systems all contain normal file operations 

such as create, copy, move, delete, and execute.  Each of these operations is enabled in 

our application.     

 The communication protocol is based on non-static connections.  This means that 

each time a message is sent, a new connection to the server is made rather than having 

the server keep a steady open connection to the client.  The following advantages are 

achieved by handling connections in this manner. 

1) Connection malfunctions are inconsequential (you always know if your 

message / file was sent successfully because if you cannot connect the 

transaction will not occur.) 

2) Fewer open connections result in less stress on the server. 

3) Multiple messages can be sent back and forth at the same time.  This is 

incredibly useful if a user is transferring files to the server and other users are 

attempting concurrent actions.  
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The main file system is virtual rather than physical (i.e. the users upload files to a 

directory specified on the server and the individual sites see only what the users 

themselves have uploaded).  This allows for a single server to run for multiple groups of 

people.  Initially each user-space is blank.  As users upload files to the server, their 

existence is propagated to each of the remote sites, which in turn updates their local 

TreeView controls.  If users want to access certain files, they simply double click on the 

files (as if they were local) and the system downloads and executes it accordingly with 

the desired application.  For example, if a user sees a Microsoft Excel file and wants to 

edit it,, a simple double click downloads the file (behind the scenes) and, when 

complete, launches Microsoft Excel with the specified file for editing.  When editing is 

finished, the user can choose to update the file from the client interface and once again 

the server holds the latest copy of the file with changes included. 

 The final part of this project is to incorporate awareness information about the 

various clients to improve usability.  The system includes a list of online users each with 

a unique color-coded name.  These color-coded names are used throughout the system to 

uniquely associate the user with various attributes.  The three major sections where this 

color scheme is used are File Post-its, directory level awareness, and directory locking.  

For File Post-its, whenever a user creates a new post-it, it is created with that user’s 

associated color.  The information contained as well as the color id will be sent to the 

server and to the remote clients that are connected.  The second area utilizing this color 

scheme is awareness on a directory level.  This awareness is crucial in situations where 

User A needs to manipulate a subdirectory of User B.  User A is adding various files to 
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the subdirectory, at the same time User B is preparing to delete that directory.  The third 

area where this color scheme is useful is when a user locks a directory or range of 

directories.  The user’s unique color shows the remote users the action being performed 

and the status.  This color-coding is used when a user wishes to lock a directory.  The 

lock will show up with their color and a red X to signify that this file is in use by the user 

with the given color.  Even though the system is prepared to handle the desired updates 

without throwing an error, it is better to know where your peers are working.  The 

combination of these features allows everyone on the system to be aware of what other 

users are doing on the system.      
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CHAPTER IV 
 
 

SDT ALGORITHM / FINE GRAIN LOCKING 
 

SDT ALGORITHM 

SDT and other OT algorithms are very theoretical in nature and the concept of mapping 

them to a real file system is not trivial.  To make these operations possible in a 

concurrent environment, we used the SDT algorithm based on Operational Transform 

functions that are described in many concurrency-based papers [Sun  2002a].  These 

functions essentially shift a command in relation to the previous commands that have 

been executed at the current site.  For example if we received two commands that were 

concurrent to the first command, the other would need to be transformed to allow for the 

first operation to be consistent in the same context as the first.  In addition to the actual 

implementation of the algorithm, additional modifications were made so that real-world 

commands could be accepted from the user in a file system environment.  Users are 

provided abilities similar to those found in Windows File Explorer or Linux File 

Explorer.  These include the ability to create a new file / folder, delete a file / folder, 

search for specific nodes, and expand / collapse the file system.  Basic functions from 

the SDT that have been implemented and their descriptions are listed below.  All of 

these operations are based on the OT algorithm and various low level commands such as 

Inclusion Transformation (IT), Exclusion Transformation (ET), Transform, etc.  [Sun  

2002]. 
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Inclusion Transformation (IT) / Exclusion Transformation (ET)  

The IT  function is used to determinalistically shift node positions of certain 

instructions to account for instructions being inserted or deleted before (to the left of) the 

given instruction, thereby including the effects of the operation on the current 

instruction.  Instructions that are to the right of the node in question do not affect the 

algorithm, as it will simply be executed.  If the instruction however happens to left of the 

same node, IT must decide if that node needs to be incremented (if the local instruction 

was an insert) or decremented (if the local instruction was a delete).  Given that there are 

4 different types of operations: Insert, Delete, Lock, and Unlock, there are a total of 16 

IT functions available (i.e. ITii, ITid, ITdi, ITli, ITlu, etc..) and the function used is 

based on the two operations being examined at any one time.  Below is the format of the 

IT function. 

Oi’  = IT(Oi, Oj)  

 The ET  is the inverse of IT.  It is designed to allow the program to trace back its 

steps and get the operation to the point before the IT function has occurred.  As you will 

see later, this is crucial when attempting to break ties (i.e. determine precedence when 

two instructions appear to be inserting at the same position).  The format of the ET 

function is listed below. 

Oi = ET(Oi’ , Oj) 
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Available Operations 

InsNode(Target, Position, NewNode) 

This operation inserts the new node into the existing tree.  Target is the location (or path) 

in the tree where the insert will take place.  For example [A, 0, 1] designates that the 

path to the target in tree A starts at the root, takes the 2nd child down (see below).  The 

command InsNode([A,0,1], 1, S) would show Figure 1. 

DelNode(Target, Position, Node) 

This operation functions just like the InsNode mentioned above except it removes the 

selected node (and all of its subsequent children) from the tree.  DelNode([A,0,1], 1, S) 

would remove the node highlighted below. 

 

 

 

 

 

 

 

 

 

SDT Version of Fine Grain Locking 

The following operation combines OT together with the concept of keeping the 

goals of a groupware system (Convergence, Causality Preservation, and Intention 

Tree A 

0 

0 

0 

1 

1 

S 

Fig. 1.  SDT Tree Example 
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Preservation) in mind.  These functions use many of the same utilities developed for the 

SDT algorithm. 

LockNode(Target, StartPosition, EndPosition, SubDirectories) 

This function is a bit more complicated than the previous ones.  The locking mechanism 

must allow for a range of nodes to be locked according to the needs of the user and of 

the system.  The user must elect to lock  an individual node or a range of nodes.  For 

example, if the user is working in multiple directories on the server, we would want the 

range of the directories that we was working in locked so that other users would not 

interfere.  Given the file system C:\Tim\Dev\Test\Bin, and the fact that we was working 

in the Dev and Test directories, we would simply lock those two and NOT C:\Tim or 

\Bin.  LockNode([A], [0], [0,1,0]) would lock all of the nodes along the path to the 

destination.  So in this case the highlighted nodes would be locked.  If the command 

were LockNode([A], [0,1], [0,1]) it would only lock the 2nd child of A. 

 UnlockNode(Target, StartPosition, EndPosition, SubDirectories) 

This function is the inverse of the LockNode.  Note that when you unlock nodes, you are 

not required to unlock all of the nodes that were previously locked.  You can choose to 

unlock certain directories leaving the rest in their locked position. 

 

SDT Control Algorithm 

The SDT algorithm [Li  2004b] is the core of this project.  Before this algorithm 

was created, the original OT algorithm was able to handle many of the concurrency 

problems.  However, it was not complete and depended on only two sites existing.  
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Under certain situations, shown below, it fails to give the correct result.   Local 

operations are executed as soon as they are performed.  This creates an illusion of 

complete local control.  When a remote operation is executed, it is taken through a range 

of functions that transform the operation into its execution format for the local site.  The 

flowchart below lists these functions.  The basic idea of the SDT algorithm is to break 

the ties that occur when two operations point at the same object.  Previous 

implementations, i.e. OT [Sun, Davis, and Lu 2002], used the site id to break a tie; this 

however is incorrect when there are 3 or more sites.  Ties are better resolved by tracing 

both instructions back to the Last Synchronization Point (LSP).  By doing this, the 

algorithm is able to determine the original intentions of a certain instruction and which 

should get precedence.  If they still point to the same position, then and only then are site 

ids relevant.  This relationship is stored in a list for later use and to prevent unnecessary 

recalculations.  A diagram of these operations can be seen in Figure 2. 
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A Remote 
Instruction Arrives 

Make a Copy of the History Buffer 
on local site. 

Break the History Buffer (HB) into all of the 
instructions that come before O (Lprec) and all 
that are concurrent to O (Lpar), for each item in 
Lpar, do the following: 

Break Lprec and Lpar into all of the instructions 
that come before both O and the current 
instruction (L[i]) (Llsp) and concurrent with at 
least one of the instructions (Lex) 

Build the State Difference (SD) list based on all 
of the concurrent instructions (Lex).  This list 
excludes all non-consequential instructions (an 
insert followed by a deletion of the same node). 

Given the SD, transform both O and the current 
instruction L[i] to get the LSP for both 
instructions. 

Now that you know the original execution 
formats of both instructions (O and L[i]) 
compare them and record the result. 

Finally, Inclusively Transform (IT) O and L[i] so 
that O’ now includes the effects of L[i]. 

Execute O’ on the local site and add the 
operation to the History Buffer (HB) 

Fig. 2.  SDT Control Algorithm Diagram 
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SDT Execution Example 
 

The following is an example that has not previously been solved.  Given three 

sites all starting with one initial node (A), the following operations occur.  For ease of 

explanation, screenshots have been included to demonstrate the results.  These can be 

seen in Figures 3-7 below.   

 
 

 
 

Fig. 3.  Execution Example (Step 1):  Initial Starting Position 
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Fig. 4.  Sites 2 and 3 Have Executed Their Local Operations, Transferred Them to the 
Remote Sites, and Are Waiting in the Remote Queue 

 
 
 

 
 
Fig. 5.  Execution Example (Step 3):  Sites 2 and 3 Executed Their Remote Operations   
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Fig. 6.  Execution Example (Step 4):  Site 1 Executed its Local Insert Operation, and 
Transferred it to the Remote Sites 

 
 
 

 
 

Fig. 7.  Execution Example (Step 5):  Final Position, All Sites Have Executed Their 
Instructions, and Convergence is Achieved
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CHAPTER V 
 
 

INTERFACE FEATURES 
 
 
SDT SITUATION TESTER 
 
 

 
 

Fig. 8.  SDT Situation Tester 
 
 
 The original intent of this application was to test the SDT algorithm before 

actually implementing it into the actual File System client.  After seeing how useful it 

was in demonstrating situations and validating the algorithm, a decision was made to 

include it as part of the project.  The prototype can be seen above in Figure 8. 
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The user can start this application in three different ways.  A predetermined 

situation can be loaded for easy testing.  In a plain text file, simply enter the site where 

you want the instruction to be listed as local, followed by the instruction itself.  On 

startup, if a situation file exists, it will be loaded.  The next manner to load instructions is 

via the command line entry.  In the text box at the bottom of the screen, the user can 

enter commands manually and add them to whichever sites they desire by pressing the 

Add Op button.  Finally the user can treat the situation tester as a real file system and 

right click for file operations.  In this box you have the full capability of adding 

operations without having to type anything in.  The operations themselves are 

determined by the node and tree that the user has selected.  In the example above, I have 

selected the second node in the second tree.  Currently it is locked, if I wanted to unlock 

that node, I simply choose the unlock option from the menu.  When that local operation 

is executed, no matter which way it is entered, it is then broadcast to all of the remote 

sites.  At this point, the remote sites display the queue of waiting operations.  At this 

point, the user can choose to execute the remote operations or continue with what they 

are doing and execute them at a later time.  This will be further explained in the client 

interface implementation.  The final two useful operations are Print Effect Relations and 

Print History Buffer (HB).  These two operations are interesting because they show the 

two crucial lists in the system that allow the user to trace back operations visually and 

verify that the situation that is presented is actually correct, and repeatable. 
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SDT FILE SYSTEM SERVER 
 
 

 
 

Fig. 9.  SDT File System Server 
 
 

The server as shown above in Figure 9, was designed to be very simplistic.  As 

shown, there are really only three options that can be done as this system was designed 

to be very client-oriented.   The user only needs to do three things, 1) specify the port to 

listen for incoming connections.  This allows users behind firewalls to still use the 

system.  Second is the location on the server where the user files will be stored.  Initially 

you start with an empty space.   
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Due to the fact that this system allows late-joiners, the server must keep track of 

all operations that have been executed so that they can be transmitted to the new client 

and get them synchronized with the rest of the users.  This ensures that all of the clients 

(no matter when they join) are on the same page.  The last step is to simply start the 

server.  After this point (from the operators perspective) the server becomes simply a 

log.  It will visually keep track of the client communication in the top window.  In the 

status window at the bottom, any client messages will be echoed.  Finally because this is 

a file system, users must be able to upload files to the server.  As files are coming in, the 

progress bar at the bottom lets the server operator know incoming transfer speed and 

which files are being transferred.  The rest of the server operations occur behind the 

scenes and depend on client interaction.  When the server receives a message, it decides 

what to do based on the instruction.  Table I below outlines what instructions the server 

is setup to receive and their associated actions.  Listed to the left is a list of the 

instructions that the server receives, to the right is what it sends back to the client (if 

anything). 
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Table I.  Server Message Action Table 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

INCOMING OUTGOING 

LOGIN 

FILELIST – a current list of the 
operations that have taken place to 
allow the user to synchronize with the 
other clients. 

FILEINFO – the client wishes to add a 
file to the server, the server then 
prepares to store the file. 

FILEOK – the server is ready to accept 
the file, go ahead and send. 

ADDINSTR (local site) – the client has 
just performed a local operation, add it 
to the server’s master list. 

ADDINSTR (remote sites) – the server 
forwards the local instruction to all of 
the remote sites (not including the 
initial sending site) 

ADDNOTE (local site) – the client 
wishes to annotate a file for others to 
see. 

ADDNOTE (remote sites) – the server 
forwards the necessary information to 
create the post-it on all of the remote 
sites along with the associated color. 

LOGOFF (local site) 
LOGOFF (remote sites) – this allows 
the clients to remove their colors and 
unlock files that the departing user had. 
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SDT FILE SYSTEM CLIENT 
 
 

 
 

Fig. 10.  SDT File System Client 
 
 

The File System client (seen above as Figure 10) is the last part in this project.  It 

allows the users to manipulate the remote data and layouts as they wish.  Similar to the 

situation tester, this has the SDT algorithm built in.  This application however is built 

more for practical real-world use rather than inventing and testing the possible situations 

that may exist.  When the application first starts, the user must specify their server 
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information.  Once this information is entered, they hit connect to get a list of the 

instructions that have been executed to this point (the list will be empty if they are the 

first client).  At this point, the list populates both the navigation tree menu on the left, as 

well as opening a workspace for the current directory on the right.  At this point, the user 

is free to download or upload files as they wish.   

 As described in the conceptual design, the user is able to do traditional file 

operations (create, copy, move, and delete) through our interface.  These operations are 

based on the primitive operations available in SDT (Ins, Del, Lock, and Unlock).  For 

example, if a user wishes to create a directory, they simply choose where they want to 

create it and select it on the menu.  Behind the scenes, an InsNode operation is called 

with the appropriate parameters.  Copy is achieved by taking the selected node, finding 

its position, and for itself and each of its child nodes, creating an InsNode instruction 

with the ending position parameters.  This leaves the original folders in place, while 

creating a separate copy in an alternate location.  To move a file, it works exactly the 

same as copy except after a copy has been made; a delete command is run on the 

originally selected position thereby leaving only one instance of the file or folder.  The 

delete command is the easiest of them all because delete is natively supported with the 

DelNode function in SDT, therefore no additional work was required on our part. 

  If a user wants to annotate the files, a Post-it can be made via clicking the draw 

button on the toolbar.  This will allow the user to write additional information about the 

file in their user color.  Both individual files and Post-its are entities in the application.  

This means that according to the SDT algorithm, both must be tracked as operations 
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(Insert, Delete, Lock, Unlock).  This allows for easy synchronization for late joiners.  

The bottom of the client is the log.  It keeps track of all user interaction with the server 

and any other miscellaneous messages or notifications the user must know about.  The 

left side contains a list of the currently connected users with their system-defined color.  

Whenever an operation takes place, the client can easily see who executed it or whom a 

lock belongs to by looking at the associated color.  To message an individual user, 

simply double click on their name and direct communication (i.e. not routed through the 

server) can take place.  When remote operations occur, the user has two options.  The 

first is to execute them as soon as they arrive.  Checking the box on the left side menu 

signifies this option.  The second is to allow the user the option to “synchronize”  when 

they wish so as not to interrupt their activities.  A running total is kept on the client’s 

screen showing how many remote operations are in the queue.  Due to the correctness of 

the algorithm, either method will converge on the same result. 
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CHAPTER VI 
 
 

CONCLUSION 
 

The SDT File System implementation allows for a visual, easy to use, and effective 

interface to the SDT algorithm.  As we have shown here, the SDT algorithm is now 

believed to be more complete and effective than its predecessor, OT.  While we were not 

able to test this implementation in a real working environment, our initial tests proved 

very positive.  Not only does it allow for any file interaction, it has created a system that 

is incredibly, locally responsive while at the same time robust enough to allow for any 

type of latency or delay and still converge.  

 While doing this project, the Client-Server implementation has proved very 

effective for a large group of users.  However most of the time, the target audience will 

be around 5 to 7 users.  In this situation, a Peer-to-Peer network would probably be more 

efficient.  The algorithm does not care what network transport is used in it’ s 

implementation nor is response time an issue.  In the future, a wonderful extension 

would be to create a mixed mode version of this system where it could use both a client-

server architecture as well as peer  

 Overall this project has been extremely effective in what it set out to do.  It 

proved that for any type of tree-based ordering, SDT is a definite solution, and it 

provided not only a way to prove this fact, but a system that allows groups to work 

together more effectively. 
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