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ABSTRACT

Modeling and Estimation Techniques

for Understanding Heterogeneous Traffic Behavior. (May 2004)

Zhili Zhao, B.S., East China Normal University;

M.S., Shanghai Institute of Technical Physics, Chinese Academy of Sciences

Chair of Advisory Committee: Dr. A. L. Narasimha Reddy

The majority of current internet traffic is based on TCP. With the emergence of

new applications, especially new multimedia applications, however, UDP-based traf-

fic is expected to increase. Furthermore, multimedia applications have sparkled the

development of protocols responding to congestion while behaving differently from

TCP. As a result, network traffic is expected to become more and more diverse. The

increasing link capacity further stimulates new applications utilizing higher band-

widths of future. Besides the traffic diversity, the network is also evolving around

new technologies. These trends in the Internet motivate our research work.

In this dissertation, modeling and estimation techniques of heterogeneous traffic

at a router are presented. The idea of the presented techniques is that if the observed

queue length and packet drop probability do not match the predictions from a model

of responsive (TCP) traffic, then the error must come from non-responsive traffic;

it can then be used for estimating the proportion of non-responsive traffic. The

proposed scheme is based on the queue length history, packet drop history, expected

TCP and queue dynamics. The effectiveness of the proposed techniques over a wide

range of traffic scenarios is corroborated using NS-2 based simulations. Possible

applications based on the estimation technique are discussed.

The implementation of the estimation technique in the Linux kernel is presented

in order to validate our estimation technique in a realistic network environment.



iv

Adapted from the NS-2 implementation, the Linux implementation is tuned to pro-

duce accurate estimates under a realistic testbed. The correctness of our Linux

implementation is corroborated through tests.

In order to investigate the feasibility of an approach to regulate the volume of

incoming non-responsive traffic on an aggregate level by utilizing the estimation in-

formation, the performance evaluation of heterogeneous traffic under different queue

management schemes and network configurations is studied. Our evaluation consid-

ers the aggregate bandwidth of different classes of traffic and the delays observed

at the router. Our NS-2 based evaluation shows that queue management schemes

(without per-flow or per-class state) do not provide significant control over the traffic

mix consisting of both long-term and short-term traffic.
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CHAPTER I

INTRODUCTION

Since the first network, ARPANET, that was set up in 1969, the network technology

has attracted significant interest. The increasing interest from researchers, along with

higher demands from users, further stimuates the inventions of new physical layer

technologies and the expansion of the network. Today, the Internet has reached

hundreds of millions of users compared to only 4 hosts when it was first set up and

the backbone capacity has grown from only 50kbps to over 10Gbps [1]. Various new

applications, which may require higher bandwidth and different levels of Quality-of-

Service, tend to grow. Those applications further fuel the evolution of the network.

So the diversities of both network technologies and the network traffic are expected

to increase.

With the observation of current statuses and trends of the network traffic and

the network, our research focuses on understanding heterogeneous traffic behavior

with the modeling methodology and applying developed models for practical uses.

A. Current Status and Trend of the Heterogeneous Network Traffic

Recent measurements shows that current network traffic consists of 10% - 20% UDP

traffic and 80% - 90% TCP traffic [2]. While most UDP traffic is long-term, TCP traf-

fic can be further classified as long-term or short-term. Short-term TCP flows(STFs),

usually referred to as “web mice”, occupy about 30% of total network traffic. Long-

term flows, UDP or TCP, still contribute the majority of the load in current networks.

However, with the emergence of new applications, the usage of protocols other

than TCP is expected to increase. For instance, several multimedia applications

The journal model is IEEE Transactions on Automatic Control.
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rely on UDP to transport packets. Recently, there has been an increased interest in

developing protocols that respond to congestion differently from TCP and provide

smoother bandwidth to end applications [3, 4]. Furthermore, increases in bandwidth

and computation power are expected to fuel the growth of multimedia applications

that do not rely on TCP. These trends point to an increased diversity of network

protocols and changes in the distribution of bandwidth among flows employing these

diverse protocols in the future. Those protocols may not respond to the congestion as

TCP does. The non-responsiveness of those protocols can be utilized to stage Denial-

of-Service (DoS) attacks on end hosts and the network by pumping large amounts

of non-responsive flows into the network. Some of the recent DoS attacks have used

such “UDP floods”. Here, the non-responsive traffic is defined as the type of traffic

that does not respond to the congestion of the network by reducing its sending rate.

Also consider the example of the flash crowds. A flash crowd is a large volume

of short-lived web traffic (short-term TCP traffic) trying to access a certain web

site. It may cause the congestion along the path to the web site and also cause the

web server to be overloaded and refuse further connection requests from other users.

Those flash crowds consist of legitimate TCP flows, while the aggregate behavior of

flash crowds is similar to that of DoS attacks. So the existence of short-term flows

impacts the performance of network.

Because of the important role of short-term TCP flows on the netowrk per-

formance, STFs have gained growing attention of researchers. Previous research

has shown that: 1) the aggregated behavior of STF at the router appears to be

non-responsive [5, 6]; 2) the performance of queue management schemes is different

under a mixed workload with STFs when compared to workloads consisting of only

long-term flows [7, 8].

The non-responsive traffic, including both network attacks and the flash crowds,
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causes various problems in the network. Those problems have been pointed out by

authors in [9] and are summarized as follows:

- Unfairness

The responsive TCP traffic suffers from less available bandwidth by competing

with the non-responsive traffic, since the responsive flow is designed to reduce

its sending rate at the time of congestion. With the increasing sending rate of

the non-responsive traffic, the responsive traffic will stop transmission.

- Congestion Collapse

The congestion collapse can occur when there are too many retransmitted

packets from responsive flows in the network to overload the network, or when

a large volume of undelivered packets arises from those non-responsive flows.

Then the network resources will be wasted to try to deliver those packets which

will be dropped before they reach the destination.

- Exhausting Network Resources

As being brought out in the previous item, not only the network bandwidth

but also the computation power and the memory of routers will be exhausted,

while routers keep trying to deliver the large volume of non-responsive traffic.

B. Current Status and Trend of the Heterogeneous Network

Considering characteristics of the network, the heterogeneity of current network

comes from asymmetric link bandwidths, non-congestion link errors, and larger band-

width delay products [10].

The capacity of the backbone increases steadily due to new physical layer tech-

nologies, such as the DWDM technologies of high capacity optical fibers. This con-

tribute to the increasing bandwidth delay product (BWDP) over the Internet.
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The increased BWDP impacts largely on currently TCP-based traffic. The TCP

protocol self-clocks using the estimated round trip time (RTT). The longer the RTT,

the slower a TCP application sends packets and the lower the throughput will be. The

increased BWDP also impacts the performance of queue management schemes. Since

the buffer size of a queue management scheme in current routers is determined based

on the BWDP of the link, the buffer size will increase with BWDPs. Consequently

the queuing delay may also increase due to larger buffers. It is possible that future

routers may be configured with smaller amounts of buffer than the traditional rule

of one BWDP, since each interface card of a router may not be able to hold that

much buffer memory at higher link capacities.

It is our interest to investigate the impact of larger BWDPs on the performance

of TCP-base applications and queue management schemes. And if the routers are

configured with smaller buffer sizes in the future, does this impact the decisions on

buffer management algorithms? Do these trends impact the throughput of respon-

sive and non-responsive flows differently? And does the early dropping of packets

in RED allow non-responsive flows to force the responsive flows to realize smaller

throughputs?

With the evolution of network technologies, the network itself becomes more

and more heterogeneous in order to provide “increased productivity, performance,

or throughput” [11]. And the evolution of network technologies gives new applica-

tions/services plentiful resources. Those new applications/services further stimulate

the widespread use of the Internet. Internet users are able to gain the access to the

network almost anywhere with wired or wireless connections. It is very convenient for

legitimate users to connect to the network and use those new applications/services.

At the same time, however, the convenience of access also makes it very easy for ma-

licious users to launch network attacks to compromise hosts or to deny the service
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of end hosts or network to other users.

As we can see, the network traffic is becoming more and more heterogeneous

due to the growth of new applications which employ protocols other than TCP. The

proportion of traffic mix tends to change with the increase of UDP-based applica-

tions. The impact of non-responsive traffic on modern network is severe enough to

warrant close attention. So it is necessary to investigate the impact of trends of

the heterogeneous network traffic and network on both responsive traffic and queue

management schemes.

C. Scope of the Presented Work

The trends in both network and Internet traffic attract researchers to investigate the

potential impacts and possible solutions. But, as pointed out in [11], current short-

term or point solutions to individual problems in the internet “have been the result of

a tremendous amount of engineering intuition and heuristics, common sense, and trial

and error, and have sought robustness to new uncertainties with added complexity,

leading in turn to new fragilities.” And the solutions are “lack of a coherent and

unified theory of complex networks.”

In order to systematically understand the behavior of heterogeneous traffic and

further provide a possible solution based on the theoretical analysis, in this presented

work, we emphasize on mathematically modeling the heterogeneous traffic behavior

at a router. Based on the models, we develop techniques to estimate the propor-

tion of the incoming non-responsive traffic. Then we validate our techniques with

implementations and tests in both the NS-2 simulator and the Linux testbed.

Since our estimation technique is performed on an aggregate level, i.e. our

technique estimates the incoming non-responsive traffic as one entity as long as

the aggregate behavior of the traffic appears to be non-responsive at the router,
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it is desirable to investigate some possible approaches also based on an aggregate

level to regulate non-responsive traffic and protect responsive traffic. So in this

work, we evaluate the impact of heterogeneous network and network traffic on queue

management schemes to probe the possibility of employing such approaches.

D. Motivation for the Presented Work

1. Modeling the Dynamics of Heterogeneous Traffic and Estimating the

Proportion of Non-responsive Traffic

Considering the adoption of protocols other than TCP and the increasing proportion

of UDP-based traffic in the Internet traffic, one can expect that the proportion of

non-responsive traffic increases. The impact of such non-responsive traffic on the

modern network has been pointed out earlier in this chapter. If the network could

monitor and regulate the utilization of non-responsive traffic to a fraction of the link

capacity, the impact of such attacks could be mitigated. If the link utilization by the

non-responsive traffic can be estimated, some possible directions of applications can

be adopted to regulate non-responsive traffic at the time of congestion:

- Dealing within the router

The estimating router can raise an alarm to the network administrator for a

manual interference. It can also de-route packets of non-responsive flows to

alternative paths or tune traffic control schemes to drop packets from non-

responsive flows to alleviate the congestion on the major path.

- Dealing outside of the router

The estimating router can push back the congestion notification to upstream

routers in order to trace back to attacking sources or drop packets of those

sources at the nearest edge before those packets get into the network to cause
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congestion. By attaching information bits to packets to notify responsive

sources, the router can inform responsive sources to react correspondingly to

different levels of congestion.

Let us consider a possible tool which might be able to retrieve the utilization

information. If all the non-responsive traffic used UDP for transport, a simple counter

of UDP bytes at a link will provide an estimate of the proportion of non-responsive

traffic. However, non-responsive traffic may use other protocols or use variants of

TCP; some UDP applications, such as Real Audio/Video, actually respond to the

congestion of network by adapting the sending rate. A simple counter of UDP bytes

at a link/router, therefore, will not suffice for estimating the “apparent” proportion

of non-responsive traffic. A protocol byte counter has other drawbacks: Consider a

scenario where the arriving traffic consists of a large number of “small” bandwidth

TCP flows, usually referred to as “web-mice”, which send out a small amount of bytes

intermittently[5]. In this scenario, a counter for UDP bytes will yield a count of zero

while packet drops do not reduce congestion significantly at the router. Although

each flow employs TCP, the aggregate behavior of “web-mice” at the router cannot

be differentiated from that of non-responsive traffic. A simple protocol counter is

also easily defeated by fake protocol ids in packet headers by malicious users for

avoiding this detection mechanism.

It is necessary to find mechanisms to estimate the amount of arriving traffic

at a router that is not responding to congestion. Such an estimation can lead to

a better control of heterogeneous network traffic through appropriate adaptation of

traffic control algorithms at a router. For example, an estimate of the proportion

of non-responsive traffic (PONRT) at a router can aid the choice of appropriate

parameters for Active Queue Management (AQM). A need for such a tuning is indi-

cated recently in [12]. With the knowledge of the PONRT at a router, appropriate
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traffic management and congestion control algorithms can be employed in different

operating domains of network traffic [9, 8, 13].

In the presented work, the model in [14] is extended to account for the effects

of heterogeneity in traffic, by including the effects of non-responsive traffic into the

model. Based on the extended model, a method is developed for estimating the

PONRT at a router. The presented method employs a normalized gradient method

for estimation and utilizes queue length history and packet drop history at the router,

which are easily measurable at a router. The effectiveness of the proposed method

is corroborated through NS-2 [15] based simulations and a Linux-based prototype.

2. Linux Implementation of the Estimation Algorithm

Following up our NS-2 implementation and simulations, a Linux implementation can

give us a much practical perspective of the effectiveness of our estimation scheme in

a realistic environment. It can also help us to improve the scheme for practical uses.

Linux is an open source operating system. Since kernel version 1.0 developed in

1994, it has gained more support from both individual developers and big companies.

Its source code is developed under the GNU Public License and free for everyone, so

it becomes a low-cost alternative operating system that everyone can adapt it to fit

one’s specific need.

A Linux prototype will enable us to evaluate the practical difficulties in imple-

menting the proposed algorithm.

3. Performance Evaluation of Queue Management Schemes for Aggregate Control

of Heterogeneous Traffic

With our estimation technique, the proportion of incoming non-responsive traffic can

be estimated and available for other applications. So the next step that interests us



9

is to investigate a possible approach to regulate the non-responsive traffic in order

to protect the responsive traffic at the router at the time of a network attack. The

attack can be defined by a threshold. If our estimation output is over the threshold,

we say that the link is under attack due to the high volume of non-responsive traffic.

Since our estimation is performed on an aggregate level, the possible approach

also needs to be effective on an aggregate level so that it can eliminate the overhead

of examining packet headers or keeping per-flow state. The initiative of the possible

approach is motivated by our early experiment results. Those results show that,

by dynamically tuning RED parameters, under long-term traffic mix scenarios, the

approach effectively regulates the bandwidth utilization of long-term non-responsive

traffic and protects the responsive traffic.

To take one step further, we would like to investigate the feasibility of the

possible approach under more heterogeneous traffic mix, by including both short-

term flows and long-term flows, and various network configurations. The performance

of both responsive traffic and queue management schemes with different parameters

is studied in this work.

We study the performance of three different queue management schemes, drop-

tail (DT), RED and RED with ECN enabled (RED-ECN) under different workloads,

link capacities and buffer sizes. The workloads have different fractions of Long Term

Non Responsive Flows (LTNRFs), Long Term Responsive Flows (LTRFs) and Short

Term Flows (STFs). We consider different performance metrics, such as realized

throughput for responsive flows, delay and link utilization.

The study in the presented work tries to address the resulting issues of these

two trends of increasing link capacities and increasing non-responsive loads. We are

motivated by the following questions: (a) what impact do higher non-responsive loads

have on different queue management schemes?, (b) is one queue management scheme
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better at protecting responsive traffic over the others?, (c) are there differences in

the performance of queue management schemes at different buffer sizes?, and (d) can

we observe any discernible trends in the performance of queue management schemes

with the expected trends in workloads and link capacities?

By answering previous questions, the feasibility of our possible approach to

regulate non-responsive traffic and protect responsive traffic on an aggregate level

can be thoroughly studied.

E. Present Status of Related Work

In this section, present status of related work is summarized. Related literature is

categorized into three subjects: 1) modeling techniques; 2) estimation techniques;

and 3) performance evalution of queue management schemes under various network

and traffic configurations.

1. Related Work on Modeling Techniques

Mathematical models for the dynamics of TCP flows and associated control schemes

have been proposed [14, 16, 17]. These studies have led to better analysis of TCP

behavior and proposals for improved traffic controllers [18, 19].

The TCP/RED system is modeled with a set of differential equations in [14].

This model precisely describes the transient behavior of a TCP flow and a RED

queue at the equilibrium state. A theoretical analysis of the TCP/RED system is

presented and is further validated through simulations.

In [20], a fluid-based model is utilized to describe both responsive TCP flows and

non-responsive flows. The non-responsive load is treated as an average load, which

effectively reduces the link capacity allocated to responsive flows. Furthermore, the

model of short-lived TCP flows is described as a shot noise process and long-lived
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UDP flows as Markov ON-OFF process or M/G/∞ model. The impact of non-

responsive flows on the performance of AQM schemes is shown through linear analysis

and simulation.

The basic fluid-based model of [14] is extended to a larger IP network topology

in [21]. By considering only possible congested links, the computation complexity

of the model can be reduced. Average queue lengths, loss probabilities, and average

end-to-end delays can be calculated at a low computational cost using the reduced

model. Variants of TCP and RED are also considered in the model. Authors show

the scalability of the reduced model for large IP networks.

2. Related Work on Estimation Techniques

In [9], several per-flow-based approaches are proposed to detect high bandwidth flows

and the limitations of those methods are discussed. A simple estimation mechanism

to estimate arrival rates by using RED dropping history is proposed in [9, 22]. It

utilizes RED packet drop history and maintains the fraction of packet drops from

the flow with highest packet drops. To produce a reasonable estimation, it needs

to accumulate the number of packet drops till the number meets the requirement

calculated by preset parameters. The calculation is based on a statistical equation

showing the probability of a flow receiving more than its arrival bandwidth share.

The simulation results show that, with certain parameters, it gives a good estimate

of the bandwidth of the high-bandwidth flow.

The estimation mechanism is extended in [23] to develop an AQM scheme –

“RED-PD”. RED-PD keeps tracking a certain number of high bandwidth flows and

preferentially drops packets from them. In [24], authors further propose a clustered

mechanism to detect aggregates of high bandwidth flows with RED dropping history

instead of per flow detection. The aggregate-based congestion control (ACC) clusters
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a random sample of traffic based on one field in the packet header (usually the

destination address). The ACC agent can also push back the aggregate information

to the upstream so that the upstream routers can control the aggregate to alleviate

the downstream congestion.

Authors of [25] propose a tomography-based congestion control (TCC) scheme.

The network tomography is an edge-to-edge mechanism to infer per-link internal

characteristics of a domain. The congestion detection includes delay and loss mea-

surements. Both measurements use a stripe based probing mechanism by sending

special unicast packets into the network. Loss probing happens after the scheme

identifies higher delay paths. After identifying the congested link, the congestion

information is sent back to the ingress router where flows causing congestion enter

into the network. Ingress router identifies unresponsive flows by comparing ingress

and egress rates of each monitored flow.

Partial state schemes are proposed to estimate and control high bandwidth flows

by maintaining limited state information. The limited state information is selected

by either sampling or caching shemes. SRED [26] utilizes a zombie list to record

information of flows that have most recent packets enqueued. The information of an

entry in the list is probabilistically replaced by a new information of the incoming

flow if the list is full and the information of the incoming flow does not match the

information of that entry. SACRED [27] uses sampling and caching method to keep

a list with limited number of entries. Flows, information of which is marked in the

list, receive higher drop rates when the dropping threshold is exceeded. LRU-RED

[28] cooperates a LRU (Least Recently Used) cache with RED to maitain the states

of high bandwidth and long-term flows. By identifying those flows with the LRU

cache, LRU-RED is able to provide higher drop rate to penalize them in order to

protect low bandwidth and short-term flows. LRU-FQ [29] is a Linux-based partial
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state router prototype. By using the similar LRU cache in LRU-RED, it is able to

identify high bandwidth and long-term flows. The bandwidth distribution between

cached flows and normal flows can be tuned with the weight of Fair Queuing (FQ)

scheme. LRU-FQ provides shorter delays for short-term flows.

3. Related Work on Performance Evaluation

In [8], authors analyze TCP goodput, loss rate, and average queuing delay and

deviation by changing number of LTRFs and STFs under a fixed RED/droptail

configuration. In [30], authors analyze TCP average throughput, number of bytes

sent, and UDP loss% by changing RED parameters. However, those changes do

not clearly reveal the relation between RED configurations or buffer sizes and TCP

throughput. And in both papers, a fixed 10% UDP load is used.

The impact of STFs on RED queue dynamics is illustrated in [7]. The im-

portance to consider STFs is stressed while conducting any network modeling or

simulation.

RED performance under different configurations is investigated with web traffic

[12]. The response time is the performance metric. Authors compare cumulative

distribution functions of response times between RED and droptail and conclude

that the performance difference is fairly small between them and that tuning RED

configurations gains little in performance. Authors further extend their previous

work on RED to several AQM schemes in [31]. The response time of web traffic,

along with other performance metrics, is compared between AQM schemes with and

without ECN. Authors point out that AQM schemes with ECN enabled can improve

the response time under highly loaded links and that droptail performs better under

moderately loaded links.

The difficulties and stability issue in configuring RED for a better performance
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of the TCP/RED system are explained in [32]. A queue law and a feedback control

law of RED control system are derived at equilibrium. The queue law describes the

steady-state average queue size as a function of packet drop probability: q = G(p).

The feedback control law describes the packet drop probability as the function of

the steady-state average queue size: p = H(q). RED control system may become

stable if there exists an equilibrium point (ps, qs), qs of which is in the linear region

of RED drop function (between minth and maxth), such that G(ps) = H(qs). The

equilibrium point is the ideal operation point of RED.

F. Contributions of the Presented Work

Motivated by trends in both network and Internet traffic and the present status of

related work, the major contributions of the presented work include:

- Modeling the heterogeneous traffic behavior

The presented work is the first to extend the fluid-based TCP/RED model

in [14] to a traffic mix model by accounting for the long-term non-responsive

flow. The traffic mix model then is modified to describe the aggregate behavior

of long-term responsive and non-responsive flows over a single bottleneck link

based on assumptions for the purpose of simplifying the model. By extending

the single-hop traffic mix model to a more general multi-hop model, the multi-

hop model is able to clearly illustrate the aggregate traffic behavior under a

general network topology with multiple congested links. The simulation results

shows the correctness of the developed models when those assumptions are

relaxed.

- Developing and implementing the estimation technique based on models

Based the aggregate traffic mix models, corresponding estimation schemes are

developed. It is the first attempt of utilizing the fluid-based model for practical
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use. In the estimation schemes, a parameter identification method is adopted

from the adaptive control theory. Our schemes successfully combine techniques

from different academic fields to achieve the estimation goal with a very low

computation cost. Besides the NS-2 implementation, the estimtion technique

is also implemented in the Linux kernel and tested in a Linux testbed. NS-

2 simulation and Linux test results show the effectiveness of the estimation

schemes.

- Investigating the possible applications of the estimation technique

By utilizing the estimation information, the presented work investigates the

possible application to control non-responsive traffic and protect responsive

traffic on an aggregate level. It is the first attempt to control non-responsive

traffic on an aggregate level without housekeeping any per-flow information.

G. Organization of Dissertation

The rest of the dissertation is organized as follows. In Chapter II, the development of

extended traffic model is presented. A basic estimation algorithm is developed based

on the extended model. Implementation details of and modifications to the basic

algorithm are presented, along with the corresponding NS-2 based simulation results

and analyses. Then the basic algorithm is extended to multi-hop topology. NS-2

simulations are also provided to verify the correctness of the multi-hop algorithm.

Limitations and potential applications of the presented techniques are discussed.

In Chapter III, the Linux implementation of the one-hop estimation algorithm

is presented and discussed in detail. The configuration and setup of the testbed is

demonstrated. Estimation results obtained from Linux testbed are presented and

analyzed.

In Chapter IV, the performance of RED, RED with ECN enabled and droptail
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routers is investigated under various network configurations. Performance metrics

are collected, compared and analyzed. Configuration guideline and possible usage of

REDs and droptail are presented.

Chapter V summarizes our current work and discusses some future work direc-

tions.
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CHAPTER II

MODELING AND ESTIMATION OF HETEROGENEOUS TRAFFIC AT A

ROUTER

In this chapter1, a scheme for estimating the proportion of the incoming traffic, that

is not responsive to congestion at a router, is presented. The idea of the proposed

scheme is that if the observed queue length and packet drop probability do not match

the predictions from a model of responsive (TCP) traffic, then the error must come

from non-responsive traffic; it can then be used for estimating the proportion of

non-responsive traffic. The proposed scheme is based on the queue length history,

packet drop history, expected TCP and queue dynamics. The effectiveness of the

proposed scheme over a wide range of traffic scenarios is corroborated using ns-

2 based simulations. Potential applications of the proposed algorithms in traffic

engineering and control are discussed.

A. A Model of the Aggregate Dynamics of Heterogeneous Traffic at a Router

The focus of this section is on the development of a dynamical model of heterogeneous

traffic on a congested link in the network that is particularly well suited for estimating

PONRT at a router. Traffic is assumed to consist of only two types of flows - TCP

flows and Constant Bit Rate (CBR) flows. Without any loss of generality, it is

assumed that TCP and CBR flows represent responsive and non-responsive flows

respectively in the traffic. Following the fluid based models of TCP flows in [14],

the extended model developed in this section is described in terms of three states

- window size for responsive flows, sending rate for non-responsive flows and queue

1 c©2004 IEEE. Reprinted, with permission, from “A Method for estimating the
proportion of non-responsive traffic at a router” by Z. Zhao, S. Darbha, and N.
Reddy, IEEE Transactions on Networking, August 2004.
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length at the router. The following are the underlying assumptions in developing

this model:

- The effect of all non-responsive flows can be modeled by a number of equivalent

“average flows”. Similarly, all responsive flows can be modeled by the same

window adaptation behavior and observe the same round trip time (RTT). Such

assumptions are crude first approximations of the real-world traffic; neverthe-

less, they capture the average or macroscopic dynamics of the heterogeneous

traffic at the router, especially when the number of flows is large. This assump-

tion seems reasonable for applications where one is interested in the evolution

of the queue length at time scales slower than the longest possible RTT of a

responsive flow. The estimate of PONRT is a representative of the true time-

averaged PONRT at this time scale. Such approximations are also used in

modeling ground traffic flow, see [33].

- Queue length and window size of responsive flows change slowly within a single

RTT of a responsive flow. Packet drop rate at the router changes slowly.

The impact of non-responsive traffic is modeled through its effect on the queue

length and hence, on RTTs and packet drop probabilities, which, in turn, impact the

window size of TCP flows; this interaction is captured by the presented model.

Dynamic models of homogeneous traffic with TCP flows have been proposed

and studied in [14, 16, 17]. This model extends [14] by:

- introducing an evolution equation for the representative (or aggregate) sending

rate of non-responsive flows as seen by the router, and by

- accounting for non-responsive flows in the evolution of queue in the buffer.
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This model is described by the following set of differential equations:

Ẋu = 0, (2.1)

Ẇs(t) =
1

R(q(t))
− Ws(t)Ws

(
t−R(q(t))

)

2R(q(t))

· p
(
t− R(q(t))

)
, (2.2)

q̇(t) =
NsWs(t)

R(q(t))
+NuXu − C. (2.3)

In eqn. 2.1, Xu is the sending rate of a representative non-responsive flow. In

eqn. 2.2, Ws(t) is the window size of a TCP flow; Ns is the number of incoming

TCP flows; Nu is the number of incoming non-responsive flows; R(t) is the Round

Trip Delay, which is given by q(t)
C

+ Tp, where Tp is a fixed propagation delay; p(t)

is the packet drop probability. In eqn. 2.3, q(t) is the queue length and C is the

outgoing link capacity. Note that the impact of reverse path congestion is minimized

by the implementation of TCP cumulative ACKs, and hence not considered in this

model. Eqn. 2.1 describes the aggregate behavior of a CBR flow as a representative

non-responsive flow. Eqn. 2.2 describes the behavior of a representative TCP flow in

congestion control phase and is the same as in [14]. It indicates that the evolution

of window size is related to the round trip delay, drop probability and to its history.

Eqn. 2.3 represents the dynamics of queue length.

We then define Wu(t) := XuR(q(t)). As shown in Figure 1, the deviation of

measured RTTs from the equilibrium state of the system is sufficiently small. For

the simplicity of the model, on an average, Wu(t) can be approximated not to change

with time, i.e.,

Ẇu(t) = 0.

By replacing XuR(q(t)) with Wu in eqn. 2.3, one gets:

q̇(t) =
NsWs(t) +NuWu

R(q(t))
− C. (2.4)
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Fig. 1. Measured RTT under the Equilibrium State

Based on the model, an algorithm to determine the PONRT at a router is

proposed in the next section. The focus is on estimating of PONRT on the aggregate

as opposed to identifying individual flows that are non-responsive [28, 27, 9].

As with any model, the reasonableness of the proposed model depends on how

well it predicts the proportion of non-responsive traffic. Simulation studies reported

in the subsequent sections corroborate the suitability of the proposed model.

A model accounting for constant sending rate flows(CBR fows), instead of the

approximation of using constant Wu flows, is presented in Appendix A. The main

idea of the estimation algorithm based on that model remains the same as the one

presented in section B. The only difference is that there are three unknown quantities

(Ns, z(t), XuNu) to be estimated and they are related by one equation. In contrast,

here are two unknowns(Ns, z(t)) in the model presented in this chapter.
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B. Basic Estimation Algorithm

In this section, an algorithm for estimating the PONRT will be developed based on

the extended model presented in Section A. At first, a basic estimation algorithm

will be presented in this section. This algorithm will then be modified to account for

scenarios where no packets are dropped or where large number of incoming packets

are dropped in Section C. The basic algorithm, which considers a single bottleneck

link, will be extended to the multi-hop topology in Section D. The simulations

corresponding to the algorithms developed in this section are presented in Section

C.

For the purpose of developing an estimation algorithm, the dynamics of the

traffic mix will be expressed in terms of the total responsive load z(t) and the total

non-responsive load D. The terms z(t) and D are given by the following relation-

ships:

z(t) := NsWs(t), (2.5)

D := NuWu (2.6)

The terms z(t) and D are scaled loads and are respectively representative of the

number of responsive and non-responsive packets seen by the router in a RTT. The

quantity of D will be estimated in the algorithm.

In terms of z(t) and D, the dynamics is given by:

ż(t) =
Ns

R(t)
− z(t)z(t−R(t))

2NsR(t)
p(t−R(t)), (2.7)

q̇(t) =
z(t) +D

R(t)
− C, (2.8)

R(t) =
q(t)

C
+ Tp, (2.9)

where ż(t) = NsẆs(t). The underlying assumption in the estimation algorithm is
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that the number of TCP flows and non-responsive flows does not change or changes

very slowly.

The packet drop probability, p and the queue length, q, are sampled at each

Sampling Interval to estimate the desired fraction of non-responsive load, ψ:

ψ = 1 − z(t)

D + z(t)
. (2.10)

The term D + z(t) represents the total number of incoming packets and can be

counted at the ingress link of a router. If z(t) can be estimated, ψ can be calculated

with eqn. 2.10.

By taking the second derivative of q using eqn. 2.8, one gets

q̈(t) =
ż(t)

R(t)
− z(t) +D

R2(t)
Ṙ(t). (2.11)

Combining eqn. 2.11 with eqn. 2.7 yields

R(t)q̈(t)+(
q̇(t)

C
+ 1)q̇(t) =

Ns

R(t)

− z(t)z(t− R(t))

2NsR(t)
p(t− R(t)). (2.12)

It is possible to show that the only physically realistic equilibrium of the dy-

namics for a fixed packet drop rate is stable, using standard linearized analysis of

nonlinear differential equations [34, 35, 36]. The stability of equilibrium indicates

that a “small signal” approximation of the above differential equation describes the

evolution of solutions of the nonlinear differential equation reasonably accurately

when the deviation from the equilbrium is sufficiently small.

The estimation algorithm is based on the small-signal behavior of the dynamics,

i.e., q(t) ≈ q0;R(t) ≈ R0 = q0

C
+ Tp; z(t) ≈ z0 ≈ z(t − R0), where variables with

subscript 0 correspond to their respective equilibrium values. The problem at hand
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is as follows: Given that the equilibrium is known partially in terms of q0, can we

describe the equilbrium completely (i.e., determine z0, D) from the measurements of

the packet drop rate, p and the queue length, q. The determination of equilbrium

provides an estimate of PONRT using eqn. 2.10.

At this point, we may question why it cannot be assumed that the equilibrium

value of packet drop rate, p0, is known. The term p0 is assumed small and in

practice, the signal-to-noise ratio (SNR) of p0 is small. We can develop a scheme for

parameter identification based on the Jacobi linearization of eqn. 2.12; however, this

would involve the computation of the deviation of the packet drop rate, p, from its

equilibrium value, p0. This was the scheme we first tried, but with little success owing

to the small SNR of p0. We can then think of treating p0 as an unknown constant;

however, this leads to an overparametrization with an equilbrium constraint 2N2
s =

z2
0p0. In order to circumvent such difficulties, we obtain the following parametrization

of the dynamics based on the practical small-signal approximations stated above:

R0q̈(t) + (
q̇(t)

C
+ 1)q̇(t)

=
[

1
R0

− p(t−R0)
2R0

]
⎡
⎢⎢⎣
Ns

z2
0

Ns

⎤
⎥⎥⎦ (2.13)

The resulting model is still nonlinear; however, it has the advantage that the un-

known parameters are linearly parametrized in terms of the output, which is the left

hand side of the equation.

We can define the following from eqn. 2.13:

χ(t) := R(t)q̈(t) + (
q̇(t)

C
+ 1)q̇(t)

= WT (t)

⎡
⎢⎢⎣
β∗

0

β∗
1

⎤
⎥⎥⎦ = WT (t)β∗, (2.14)
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where WT =
[

1
R0

− p(t−R0)
2R0

]
, and

β∗ =

⎡
⎢⎢⎣
β∗

0

β∗
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Ns

z2
0

Ns

⎤
⎥⎥⎦ .

The term χ(t) may be thought of as an output which is linearly parametrized

in terms of the unknown vector of parameters, β∗. The term β(t) represents the

estimate of the unknown vector of parameters at time t and χe(t) represents the

predicted output with the current estimate of parameters. Then,

χe(t) =
[

1
R0

− p(t−R0)
2R0

] ⎡
⎢⎢⎣
Ns

z2
0

Ns

⎤
⎥⎥⎦

= WT (t)

⎡
⎢⎢⎣
β0

β1

⎤
⎥⎥⎦ = WT (t)β (2.15)

To develop a parameter adaptation algorithm, we require the knowledge/measurement

of the output, χ(t), and the regressor, W (t). Since the parameter identification is

expected to evolve at a time scale slower than an RTT, sampling of q(t) must be

made at least once in a RTT. If T is the time between two successive samplings of q(t)

(also called a sampling interval), it is required to be smaller than one RTT. While the

regressor can be computed directly from the measurements of the packet drop rate

and the queue length, the determination of χ(t) requires the measurements of q̇ and

q̈. The signal q(t) is numerically differentiated in order to obtain q̇ and q̈; specifically,

they are computed as: q̇(t) = (q(t) − q(t− 1))/T , and q̈(t) = (q̇(t) − q̇(t− 1))/T .

The error e(t) between χ(t) and χe(t) is used to update β recursively. The error

e(t) is given by:

e(t) = χ(t) − χe(t)

While there are several recursive algorithms available for updating the parame-
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ters, Kaczmarz’s projection algorithm [37, 38, 39] is employed due to its low compu-

tational complexity and quick convergence properties. Applying normalized Kacz-

marz’s projection algorithm to update β(t) yields:

β(t+ 1) = β(t) + e(t)
γ2W(t)

γ1 + WT (t)W(t)
, (2.16)

where γ1 ≥ 0 and 0 < γ2 < 2

γ1 and γ2 are user-defined tuning gains2.

Once β0 and β1 are determined from eqn. 2.16, we can estimate the number of

responsive flows, Ns and the scaled load of responsive flows, z0, as:

Ns = β0

z0 =
√
β0β1

From the last equation for z0 and from eqn. 2.10, we can estimate PONRT. Note

that, in eqn. 2.10, z(t) +D is the total number of packets coming at time t and can

be counted at the ingress interface of the router in practice. It must be emphasized

that the proposed algorithm measures this fraction relative to the arrival rate at the

switch, and not relative to the capacity C of the outgoing link.

Note that the algorithm only depends on drop probability and queue length.

Since the required number of samples of history information of q(t) and p(t) is rela-

tively small, the use of memory resource is limited and the computation complexity

is O(1).

2γ1 = 5, γ2 = 0.45 for the simulations in Section C and γ2 = 0.25 in Section D
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C. Implementation and Modifications of Basic Algorithm

The basic estimation algorithm developed in the earlier section was implemented in

the RED module of the Network Simulator (ns-2). The main issues in the imple-

mentation are the choice of the Sampling Interval T and the numerical differentia-

tion/filtering of the signals used in estimation.

It is a common practice in control applications [40, 41] to numerically difference

discrete inputs to obtain a differentiated value. The implementation of numerical

differentiation of queue length(q̇(t) and q̈(t)) was provided in Section B. In some

cases, one further filters the difference to attenuate the high frequency content in

the numerically differentiated value; this is referred to as a “dirty” derivative of

the signal. The rationale behind filtering is to attenuate the high frequency noise

content in the “dirty” derivatives as well as in the signal. The corner frequencies

of the filters may be chosen so as to filter frequency components faster than one

RTT. In the implementation, the drop probability and queue length are filtered

according to the relation: wp = α × wpold + (1 - α) × ap of current sampling

interval and wq = α × wqold + (1 - α) × aq of current sampling interval, where

α is the forgetting factor. The average value is calculated by averaging all inputs

over one sampling interval. A value of α = 0.4 is chosen for filtering the queue

length and a value of α = 0.6 is chosen for filtering the drop probability. This choice

of parameters results in forgetting the history information of p and q within a few

sampling intervals(approximately one RTT).

A bottleneck link topology shown in Figure 2 was employed for simulations. A

RED drop function with (minth, maxth, pmax) = (15, 45, 0.1) is chosen for managing

the queue. The bottleneck router has 60 buffers and a link capacity of 28Mb and

a propagation delay of 50ms. CBR flows with a transmission rate of 1Mbps were

employed to simulate non-responsive flows, and FTP flows were used to simulate
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Fig. 2. Simulation Topology

long term responsive TCP flows. In the simulation, each packet has a size of 1000

bytes and the sampling interval, as discussed in Section B, is 33ms (corresponding

to 1/3rd of RTT of TCP traffic).

Each simulation was run for 320s. The estimation algorithm was started after the

first 100s of each simulation when the system stabilized. The estimation algorithm

updated the unknown parameters every sampling interval. Several of these estimates

were aggregated to produce a smoothed estimate over a larger time interval called

an estimation interval. In our NS-2 implementation, the estimation interval was

chosen to equal 20 sampling intervals and is approximately 700 ms with the choice

of parameters made previously in this section.

In each estimation interval, the true value of PONRT is computed by counting

the packets of non-responsive flows and dividing it by the total number of arrived

packets. The estimate produced by the algorithm is then compared to their respective

true values.

Mean Square Error(MSE) and Relative Error(RE) are chosen as a metric for

the accuracy of estimation. Mean square error is computed as
∑n

i=1(estimatei −
actuali)

2/n and relative error is computed as
∑n

i=1(estimatei−actuali)/∑n
i=1 actuali,

where n is the total number of estimations per simulation.
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1. High Non-responsive Load

Three simulations were set up to examine the effectiveness of the proposed algorithm

under different non-responsive load conditions. There were 35 responsive flows in

each simulation; three simulations correspond to 16, 22 and 25 CBR flows respec-

tively. Each CBR flow sends packets at the rate of 1Mbps. The PONRT correspond-

ing to 25 CBR flows is larger than PONRT corresponding to 16 or 22 flows. Shown

in Figure 3 are the estimated and measured values of the PONRT obtained with the

basic algorithm.

The PONRT is computed relative to the arrival rate at the switch and hence, it

varies over time as the responsive traffic arrival rate changes over time.

The estimates of PONRT in Figure 3 fluctuate around their true values in a

very small band. This indicates that the accuracy of estimating PONRT with the

basic algorithm is high when the non-responsive load is high.
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2. Persistency of Excitation and Modification of Basic Algorithm

Persistency of Excitation (PE) is an important issue in the convergence of parameters

to their true values. For the parameter estimates to converge to their true values

through the known regressor W (t), it is required that W (t) be persistently exciting.

The rate of convergence, in general, depends on the strength of the reference signal,

as can be inferred from the proofs of convergence [42].

Since the “small signal” behavior of the nonlinear dynamics of heterogeneous

traffic is approximated with a static linear parametrization in terms of unknown

parameters, the allowable strength of the reference signals will necessarily be limited

by the region of validity of this approximation. Such an analysis is out of the scope

of our research work; as such, this contribution is focused on and can only be viewed

in the engineering design context.

Since there are only two unknown parameters with the parametrization chosen

in the algorithm, it follows that there must necessarily be a non-zero frequency

component in the regressor for the parameter estimates to converge to their true

values. When the load of non-responsive arriving traffic is high, continued packet

drops and fluctuations in queue length provide the necessary persistence of excitation.

It is for this reason, the basic algorithm performs well under these conditions, as can

be noticed from Figure 3.

In a real scenario, packet drops and variations in queue length occur persistently

except when the buffer is empty. The first modification to the basic algorithm is

specifically meant to address this shortcoming of the basic algorithm when there are

no packet drops or queue variations.

When the buffer is empty, zero packet drop rate corresponds to the additive

increase of the window size of TCP flows. For this reason, by applying p(t−R0) = 0
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to eqn. 2.7 and eqn. 2.12, we get:

ż(t) =
Ns

R(t)
= R(t)q̈(t) + (

q̇(t)

C
+ 1)q̇(t) (2.17)

Note that ż(t) is reflective of the load change and can be calculated with known pa-

rameters/measurements (R(t), q(t) and C) according to eqn. 2.17. If one knows

z(t0), which is the last estimate of z(t) prior to having no packet drops, then

z(tx) (x = 1, 2, · · · , n − 1) can be computed recursively in the following way when

p(t− R0) = 0:

z(t1) = z(t0) + ż(t1)(t1 − t0),

z(t2) = z(t1) + ż(t2)(t2 − t1),

· · ·

z(tn−1) = z(tn−2) + ż(tn−1)(tn−1 − tn−2).

This algorithm is employed when no packets are dropped. As soon as packets

are dropped, the basic algorithm developed in the earlier subsection is used. In

Figure 4, the MSEs of basic and modified algorithms under different non-responsive

loads are compared. As can be seen from this figure, the modified algorithm is more

accurate than the basic algorithm in terms of MSE when non-responsive load is below

60%. Therefore, this modified estimation algorithm will be used in the rest of the

simulations.

3. Effectiveness of the Estimation Algorithm with Time Varying Non-responsive

Loads

To examine the effectiveness of the proposed algorithm under time varying non-

responsive loads, 35 responsive flows, and 26 non-responsive flows were considered;
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of the non-responsive flows, 6 were ON/OFF type flows. The ON/OFF flows were

ON for ”x” number of seconds and OFF for the next ”x” number of seconds. As

a result, the non-responsive load has the shape of a square wave with a period of

”2x” seconds. Different sets of simulations were performed corresponding to three

different values of x: x = 100 seconds, 20 seconds, and 5 seconds. The results from

these simulations are shown in Figure 5.

From Figure 5, one can observe that the algorithm can estimate the PONRT

fairly well even when the non-responsive load is varying with time. It is possible

to estimate faster varying non-responsive loads by choosing an estimation interval

smaller than 700ms, which is used in the above simulations.

4. Mixed Traffic

To test the effectiveness of the proposed algorithm under a more realistic traffic

scenario, mixed traffic consisting of short-term TCP flows, long-term TCP flows and
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(b) Continuous Change (x=20s)
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Fig. 5. Dynamic Response to Change of Traffic
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Fig. 6. Traffic Mix – Short-term TCP, Long-term TCP and Non-responsive Load

a number of non-responsive flows was simulated. In the simulations, only long-term

TCP flows and non-responsive flows populate the traffic initially. At 100s, 300 short-

term TCP flows were introduced into the traffic. Each short-term flow sends 20

packets randomly five times in a 50-second time period.

From Figure 6, it is clear that the estimation algorithm treats short-term TCP

flows as a part of the non-responsive load. These flows do not persist in the network

long enough to experience significant number of packet drops and the congestion

response of a short-term TCP flow only results in an insignificant difference in the

amount of traffic at the router. Moreover, the response of a single short-term TCP

flow may be replaced by the arrival of another flow. As a result, these flows on an

aggregate appear to be non-responsive. Similar observations about short-term flows

have been made in a number of recent studies [5, 6].
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Fig. 7. TCPs with Different RTTs

5. Impact of RTTs

Another set of simulations was conducted to study the impact of RTTs. In these

simulations, 35 TCP flows with different RTTs ranging from 24.4ms to 175.5ms were

considered. The parameter R0 in the algorithm was set to be the average value of

the range (90ms). The result of simulations is shown in Figure 7.

From Figure 7, the estimation algorithm is still effective, although the algorithm

over-estimates the non-responsive traffic by a small amount. This small discrepancy

can be attributed to the assumption that all TCP flows have the same RTT in

the traffic model. Nevertheless, the results here show that as long as we employ a

reasonable average RTT in the estimation algorithm, the different RTTs of different

flows do not impact the accuracy of estimation significantly. Recent studies based

on wavelets provide a convenient way to estimate the range of RTTs of flows passing

through a router [43] and further help us to set a reasonable average value.



35

40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8
x 10

−3

M
S

E

RTT (ms)

(a) MSE vs. RTT of Flows

(R0=120ms)

40 60 80 100 120 140 160 180 200
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

R
E

RTT (ms)

(b) RE vs. RTT of Flows

(R0=120ms)

Fig. 8. Accuracy vs. RTT of Flows

In order to further study the impact of RTT on the estimation, a set of sim-

ulations, where R0 in the algorithm was fixed to be 120ms, were conducted. The

RTTs of all TCP flows in one simulation were the same, but different between sim-

ulations, varying from 40ms to 200ms. MSEs and REs from the set of simulations

were collected and presented in Figure 8.

From Figure 8, we can notice that when RTT of the flows is below R0, the

algorithm overestimates the non-responsive traffic (since it underestimates the re-

sponsive TCP traffic). When RTT of the flows is higher than R0, the algorithm

underestimates the non-responsive traffic. However, it is observed the relative errors

are within 10% even over such a wide range of RTTs.

6. Impact of Variable Bit Rate(VBR) Traffic

The estimation algorithm is based on the model, in which non-responsive flows were

represented by CBR flows. Since not all non-responsive flows are CBR flows, the

effectiveness of the estimation algorithm in realistic scenarios will depend on its
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(a) Slowly Changing VBR Flows -

Period in [1 20]s (MSE=0.003534)
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Fig. 9. Estimation under VBR and TCP Traffic

ability to estimate the PONRT in the presence of other non-responsive flows.

To address this issue, a set of simulations was set up with 16 VBR flows and

35 TCP flows. Each VBR flow is a non-responsive flow and changes its sending rate

randomly selected in the range of 0.5Mbps and 1.5Mbps. A time interval between 2

different sending rates is also randomly selected within a given interval range. Each

VBR flow changed its sending rate at the end of each interval till the simulation

finished.

Figure 9 shows the simulation the proportion of VBR traffic with 2 different

interval ranges, [1 20]s and [0.1 1]s. The larger the interval is, the less frequently the

non-responsive flow changes its sending rate. So a VBR flow with intervals in [0.1

1]s changes its sending rate faster than one with intervals in [1 20]s. X axis shows

the simulation period of 220s. It is noticed that the estimate of PONRT is still

accurate, although the non-responsive load changes randomly. The MSEs (0.003534

and 0.002445) of this set of simulations compares well with MSE(0.003353) of the
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simulation with 16 CBR flows.

7. Responsive Protocols Other Than TCP

New applications, such as multimedia applications, require smooth bandwidth adap-

tion in order to deliver quality service over internet. As a result, variants of TCP

congestion control have been proposed and studied. They tend to provide much

smoother sending rate than TCP does [4, 3] and still be fair to TCP over a longer

time scale. In [4], the authors propose IIAD and SQRT binomial algorithms and

claim that they are TCP-friendly using AQM schemes, such as RED.

Since TCP flows are one type of responsive flows, the effectiveness of the pro-

posed estimation algorithm can be checked against other types of responsive flows.

If, indeed, the other variants of TCP employing IIAD and SQRT binomial algorithms

were responsive to congestion at the time scale of estimation, then the estimate of

PONRT using the proposed algorithm should be accurate, provided the algorithm is

effective.

To test this hypothesis, a simulation was set with up 22 CBR flows representing

non-responsive traffic and 35 responsive flows represented by a mixture of TCP

and IIAD/SQRT flows. The same topology and RED configurations, as in previous

simulations, was used. A comparison of MSEs with different proportions of IIAD and

SQRT binomial flows is shown in Table I. If there is 0% of IIAD/SQRT, it means

that all the 35 responsive flows are TCP flows. If there is 100% of IIAD/SQRT,

it means that no TCP flow is among the 35 responsive flows. From the simulation

results, it can be observed that the difference among MSEs is very small. This result

corroborates the effectiveness of the proposed scheme with other responsive flows.



38

Table I. Comparison of MSEs under Different Mixture

TCP est. model

Prop. of binomial flows
IIAD SQRT

0% 0.000550 0.000550

50% 0.000584 0.001206

100% 0.002199 0.000451

8. Modification of Basic Algorithm for High Packet Drop Rate

The model, on which the estimation algorithm is based, assumes that the packet

drop rate is small enough to affect the queue dynamics (see eqn. 2.8). However,

packet drop rates can be significant when the queue lengths are close to the buffer

capacity or to the maximum threshold of a RED router. In order to account for such

high drop rates, the estimation algorithm is improved by considering packet drops

in the queue dynamics of the model.

Specifically, the queue dynamics can be modeled as:

q̇(t) =
z(t) +D − l(t)

R(t)
− C, (2.18)

where l(t) is the number of packet drops at time t and is known at the router.

Following the same procedure presented in section B, but replacing eqn. 2.8 with

eqn. 2.18, one gets:

R(t)q̈(t) + l̇(t) + (
q̇(t)

C
+ 1)q̇(t) =

Ns

R(t)

− z(t)z(t− R(t))

2NsR(t)
p(t− R(t)) (2.19)

The left hand side of eqn. 2.19 is either known or can be easily calculated by em-

ploying a numerical differentiation scheme: l̇(t) ≈ (l(t)− l(t−1))/T . The calculation

of q̇(t) and q̈(t) was given in section B. The left hand side of this equation can be
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Fig. 10. Comparison of Basic and Modified Algorithm w/ l(t)

thought of as the modified χmod(t), while the right hand side is the same as that for

the basic algorithm developed in an earlier subsection. Eqn. 2.19 provides a linear

parametrization of the modified output, χmod(t), with respect to the set of unknown

parameters, β∗; following the same procedure as in B, the normalized Kaczmarz’s

projection algorithm is employed to update the unknown parameter vector recur-

sively.

To corroborate the effectiveness of the modified algorithm when the drop proba-

bility is high, a simulation with 35 TCP flows and 22 CBR flows was set up. In order

to increase drop probability p(t), the minimum threshold of RED was increased. In

Figure 10, MSEs of algorithm with and without l(t) are compared. It is noticed that,

with the increase of drop probability(large number of packet drops), the algorithm

that accounts for l(t) yields more accurate estimates of PONRT.



40

D. Estimation Algorithm for Multi-hop Topology

The traffic model developed in Section 2 for one-hop network topology is extended

to a multi-hop network topology in this section. Correspondingly, the estimation

algorithm is modified. Under a multi-hop topology, the drop probability observed

by each TCP flow reflects all the packet drops along the path from its source to its

destination. Let P i
T denote the total drop probability of TCP flow i along its path.

In particular, P i
T = total number of packet drops/total number of packets sent by

TCP flow i.

The total drop probability P i
T of TCP flow i can be further decomposed as

pe(t)+ pi∑(t). The term pe(t) represents the drop probability seen by the flow at the

router employing the proposed estimation algorithm and pi∑(t) is the sum of all drop

probability encountered by TCP flow i along its path, excluding the drop probability

pe(t). This decomposition is based on the fact that RED routers operate in the linear

region of the drop function under recommended configuration so that the drop rate

is small enough. Then the approximation rule of (1 − pa)(1 − pb) ≈ 1 − pa − pb can

be applied to decompose PT . It is noted that pe(t) is known by the algorithm, while

the measurement of pi∑(t) is not available and must be determined or taken into

account by the estimation algorithm.

Under a multi-hop topology, the window dynamics of TCP flow i is as follows:

Ẇ i
s(t) =

1

R(q(t))
−
W i

s(t)W
i
s

(
t− R(q(t))

)

2R(q(t))

·
(
pe

(
t− R(q(t))

)
+ pi∑(

t− R(q(t))
))

(2.20)

The aggregated TCP traffic dynamics ż(t) at the ingress interface of the esti-

mation router is defined as ż(t) =
∑Ns

i=1 Ẇ
i
s(t), where Ns is the total number of TCP
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flows. Applying eqn. 2.20 to the definition of ż(t), we have:

ż(t) =
Ns

R(t)
− z(t)z(t − R(t))

2N2
sR(t)

·
(
Nspe(t− R(t)) + SP (t− R(t))

)
(2.21)

where SP (t− R(t)) =
∑Ns

i=1 p
i∑(t− R(t)).

Following the same procedure presented in section B and accounting packet

drops l(t) in section 8, we get the following equation using eqn. 2.21:

R(t)q̈(t)+l̇(t) + (
q̇(t)

C
+ 1)q̇(t)

=
Ns

R(t)
− z(t)z(t − R(t))

2N2
sR(t)

·
(
Nspe(t− R(t)) + SP (t− R(t))

)
(2.22)

An observation from ns-2 simulations is that SP (t − R(t)) changes very slowly

or is constant within each sampling interval T . So are z(t) and Ns. We can then

parametrize the output linearly in terms of the unknown parameters, analogous to

eqn. 2.22:

R(t)q̈(t) + l̇(t) + (
q̇(t)

C
+ 1)q̇(t)

=
[

1
R(t)

− p(t−R(t))
2R(t)

− 1
2R(t)

]
·

⎡
⎢⎢⎢⎢⎢⎢⎣

Ns

z(t)z(t−R(t))
Ns

z(t)z(t−R(t))SP (t−R(t))
N2

s

⎤
⎥⎥⎥⎥⎥⎥⎦

≈
[

1
R0

− p(t−R0)
2R0

− 1
2R0

]
·

⎡
⎢⎢⎢⎢⎢⎢⎣

Ns

z2
0

Ns

z2
0SP (t−R(t))

N2
s

⎤
⎥⎥⎥⎥⎥⎥⎦

= WT (t)β (2.23)
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Fig. 11. Multi-hop Simulation Topology with Cross Traffic

With normalized Kaczmarz’s projection algorithm, the unknown vector β can

be estimated by utilizing the error e(t) between measured and estimated values. The

term e(t) has the same import as in in section B.

Figure 11 shows the simulation topology with multiple hops and congestion links.

The capacity of each link is 28Mb. Router R1 employs the extended estimation

algorithm on Link 1. Router R2 employs RED queue management scheme on its

outgoing Links 2 and 3. Let TCP flows be assigned to the flow set of A, C and

E and CBR flows to the flow set of B, D and F . The terms N,M, J,K, I and L

represent the number of flows in their corresponding flow set. The proposed multi-

hop estimation algorithm is corroborated using two sets of simulations.

First, the number of CBR flows M of flow set B was changed to be 25, 22 and

16. The number of TCP flows was set to 35 for flow set A(N = 35), 17 for flow

set C(J = 17) and 18 for flow set E(I = 18). The number of CBR flows was set

to 11 for flow set D(K = 11) and 6 for flow set F (L = 6). Half of the flows in

A(N ′ = N/2) and in B(M ′ = M/2) went through router R3. Rest of the flows in A

and B went through router R4. Drop probabilities of each link are shown in Table

II. The simulation results are shown in Figure 12.
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Table II. Drop Probabilities under Different Non-responsive Loads

# of CBRs (M) Link1 Link2 Link3

25 3% 2.7% 1.6%

22 1.1% 2.8% 1.7%

16 0.3% 1.8% 1.4%
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Fig. 12. Estimation of Non-responsive Load under Multi-hop Topology at Router R1
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It is observed that even though the drop probability at the router under consid-

eration is equal to or smaller than drop probabilities over other links, the extended

estimation algorithm still can produce accurate estimates. In case of 16 CBRs, since

most of drops happen at other links, the drop probability at the router under consid-

eration was very low(pe = 0.3%). The level of excitation is low, so the convergence is

slow (Notice that estimates converge to measures after 70s.) Here, the modification

to the basic algorithm for low packet drop rate is employed to ensure accuracy of

estimation.

Second, instead of evenly distributing M to either branch of sinks, 6 flows were

assigned to the top branch and 16 to the bottom branch. So in the case, M = 22

and M ′ = 6. The number of flows for other flow sets was the same as it was in

the previous simulation. The simulation result is shown in Figure 13. It is observed

from this simulation that the extended estimation algorithm can produce accurate

estimates, independent of the distribution of CBR flows.

E. Discussion

In this chapter, an estimation algorithm to estimate the fraction of incoming traffic

that is non-responsive to congestion signals (packet drops) is presented. This method

relies on the evolution of queue length and packet drop rate.

When the arrival rate at the router is low, the queue lengths tend to remain low

and so is the dropping probability. In this case, the level of excitation used in this

method is low. As a result, the presented method tends to be more accurate in higher

load situations. It is at these times of higher loads that traffic engineering decisions

or potential attack detections need to be made. Hence, the proposed method seems

well suited for such situations.

Besides the persistency of excitation, the estimation error may also come from
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Fig. 13. Estimation under Multi-hop Topology with Unevenly Distributed Flows at

Router R1

the following:

- The accuracy of the model

The TCP model describes the general behavior in the congestion avoidence

phase. It does not cover the fast recovery and the fast retransmission in the

implementation of TCP-Reno. Neither does it completely describe the be-

havior of TCP-Sack in its congestion avoidence phase. Furthermore, Linux

enhances the performance of TCP-Sack for various traffic scenarios. Some of

those enhancements have already deviated from TCP-Sack related RFCs. So

the general TCP model may lead to a certain level of error.

- The assumptions

To simplify the development of the estimation scheme and make it easier to

understand, some assumptions are made. Some of those assumptions are hard
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to conform in the real network. For instance, TCP window behavior is assumed

to be identical so that the window behaviors of all TCP flows can be aggregated

by using a simple equation. It is a strict assumption. The similarity of window

behavior (similar window sizes) can be approximated when the non-responsive

load is high, i.e. the window size of each TCP flow is small enough that the

difference between window sizes of different TCP flows is negligible. A similar

assumption is the same RTT for all TCP flows. Although, through simulations,

it is shown that a reasonably accurate estimation can still be obtained by using

an average RTT, the range of RTTs still needs apriori knowledge.

The focus of the presented method is on estimating the aggregate amount of

non-responsive traffic at the router; this is in contrast to the earlier work suggesting

the implementation of checks to see if individual flows are responding to congestion

[9].

The presented work is motivated by traffic engineering concerns. It is expected

that the estimation of non-responsive traffic would lead to the following applications:

(a) providing a means to controlling non-responsive traffic; it is possible that an

attack detection mechanism could be developed based on a robust estimation of

PONRT. One may probably declare that an “attack” is in progress if the PONRT

exceeds certain acceptable threshold. (b) providing a mechanism for tuning traffic

control algorithms at the time of congestion. In [8], it is shown that in the presence

of high non-responsive loads, drop tail buffer management may be better than RED

style active queue management. The presented method could possibly be used to

make such decisions at the times of congestion. To illustrate this, a simulation was set

up with 22 CBR flows and 35 TCP flows competing over one 28Mb bottleneck link.

In first two rows of Table III, the ability of Droptail and RED(15/45/0.1) routers

to handle non-responsive flows and protect responsive flows is compared. One can
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Table III. Performance of Droptail and RED

Queue Mngt. % of TCP% of CBRDrop Rate

Droptail 71.5% 28.4% 34.2%

RED (15/45/0.1) 24.3% 75.6% 5.64%

RED (minth=maxth=buf. size) 61.3% 38.6% 29.3%

observe that Droptail outperforms RED in protecting TCP flows from non-responsive

CBR flows, since TCP still consumes approximately 70% of link bandwidth using

Droptail, compared to 25% of bandwidth using RED. But, as shown in the third

row of Table III, if one sets minth = maxth = buffer size of RED, RED performs

better to protect TCP flows than RED with (15/45/0.1) parameters. So it may be

possible to tune the configurations of RED to suit different workloads. (c) providing

a better control for enforcing service differentiation. Earlier work [44] on analyzing

assured forwarding in differentiated services has shown that non-responsive traffic

may disrupt service for responsive sources even when traffic is marked differently at

the edge. With the presented estimation method, it is possible to adapt the traffic

control parameters to provide better service.

Initial results based on the simulation are promising. In the next two chapters,

the implementation of the estimation method in the Linux kernel will be presented

and the performance of different queue management schemes for aggregrate control

of traffic will be investigated as a part of possible applications of the estimation

method.
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CHAPTER III

LINUX IMPLEMENTATION OF ESTIMATION ALGORITHM

In this chaper, the Linux implementation of the estimation algorithm is presented.

Linux is an open source operating system with traffic control functionalities. By

implementing our scheme in Linux kernel, we are able to test and improve the scheme

in a more realistic environment. Implementation details and encountered issues are

discussed. Test results are presented.

A. Implementation in Linux Kernel

Since kernel version 2.2, Linux provides a wide variety of traffic control functions [45].

Those functions are categorized into: 1) filters; 2) classes; 3) queuing disciplines; 4)

policing mechanisms. They support the architectures of both intserv and diffserv

depending on dynamically loadable configurations. Since the traffic control happens

after the network layer has decided to pass on a packet to other hosts, control func-

tions are loaded at the output queue of a network interface of a Linux router. Besides

forwarding or dropping a packets, richer functionalities can be easily added to the

Linux traffic control, such as flow classification, rate limitation, and etc. Figure 14

shows a simple forwarding path in the Linux kernel and the location where the traffic

control happens. Figure 15 shows a typical Linux traffic control structure with a root

queuing discipline and classes. A simplified procedure of the Linux traffic control

process is described as follows: Filters classify packets into different classes. Each

class enqueues packets into its own queuing discipline. Before packets are sent to the

output device, they are scheduled by the root queuing discipline.

Linux traffic control functionalities are divided into two components: kernel

component and user space component(“tc” utility in the “iproute” package). The



49

 TCP,UDP 
Transport

Forwarding
??

NN

Network

 Packet Arrival 

 Output Queuing 

 Packet Departure 

Link

YY

Traffic Control

Fig. 14. Packet Forwarding Path in Linux Kernel

� �

Queuing discipline(root)

�

�

�

Filter

Filter

Filter

�

���
�

Class
� Queuing Disc. �

Class
� Queuing Disc. � ��

Fig. 15. Linux Traffic Control Structure



50

kernel component implements the traffic control functions to regulate the outbound

packets, while the user space component interacts with the kernel component in order

to configure or get status from it. Via the user space component, the traffic control

structure, and hence the functionalities, can be dynamically modified and configured

without affecting other services of the system.

Because of the merits of Linux and Linux traffic control functionalities, Linux

becomes an ideal platform to implement our estimation algorithm so that our scheme

can be tested and improved in a realistic environment. Conforming to the Linux

traffic control architecture, our estimation algorithm is also implemented in both

kernel and user space.

Linux traffic control functionalities include a variety of queuing disciplines , such

as First In First Out (FIFOQ), Random Early Detection (RED), Generalized RED

(GRED), Stochastic Fairness Queuing (SFQ), Class Based Queuing (CBQ), and

HTB (Hierarchical Token Bucket, a new replacement of CBQ). FIFOQ is the default

queuing disciplines, if no other discipline is loaded. Dynamically loading/unloading

a discipline and setting/reading parameters are realized with the “tc” utility.

Our estimation algorithm, similar to the implementation in NS-2 simulator pre-

sented in Chapter II, is built upon Linux RED module. We call our queue manage-

ment scheme “ESTMRED”. In order to control the estimation module in the Linux

kernel, tc utility is also modified. The detailed implementations are presented in:

1) the estimation scheme as part of Linux traffic control functions; 2) modified user

space tc utility to control the estimation scheme.

1. Design of the Estimation Scheme

The estimation scheme implemented in the Linux kernel is the modified one-hop

algorithm accounting for the common scenario when p(t) = 0 (refer to Chapter
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II - Section B and C.2). The modified one-hop algorithm is the fundamental of

the multi-hop algorithm. Once it is successfully implemented, corroborated and

improved, the implementation of one-hop algorithm can be easily extended to the

multi-hop algorithm, which can be further tested accordingly.

Our estimation scheme employs a recursive parameter adaptation algorithm

based on our traffic mix model (refer to Chapter II- Section A). The recursive algo-

rithm is implemented as follows: It collects the drop probability and the queue length

and updates the estimation parameters β[.] each time when “enqueue” function of

ESTMRED is called. Figure 16 shows the recursive algorithm.

Our estimation algorithm collects N0 consecutive sets of sampling data within

1 RTT before producing one estimate output. Each sampling set includes p(t−R),

q̇(t), and q̈(t). p(t) and q(t) are collected using Exponential Weighted Mean Average

(EWMA). Weights of either EWMA scheme can be tuned independently to achieve

better accuracy. After collecting N0 samples, our scheme produces one output every

RTT/3 (one sampling interval). Those outputs are processed with EWMA scheme

to produce one weighed average estimation every 7 RTTs (one estimation interval).

If there are PZTHD consecutive p(t − R) = 0 periods, our scheme will switch

to calculate z(t) using the modified algorithm derived in Chapter II - Section C.2.

Once p(t − R) is not 0, our scheme will switch back to the estimation algorithm.

All parameters mentioned above, along with the tuning gains (γ1 and γ2) of the

parameter identification algorithm, are required to be carefully tuned for an accurate

estimate.

2. Implementation in Linux Kernel

Our new queuing discipline is added under “linux/net/sched” directory. Various

modifications are distributed into other directories of the Linux source tree in order
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Fig. 17. Implementation Related Files in Kernel

for the kernel to recognize the new queuing discipline and interact with it. In Figure

17, it shows the relationship between some related files and the new discipline.

Here are some major issues of the implementation:

- The unit of packets

Recall that in NS-2 implementation described in Chapter II - Section C, the

unit of packet is used by the estimation, while RED module in the Linux kernel

works under the “byte mode”, i.e. the size of each packet and the queue length

are counted in bytes.

In the process of implementation, it is observed that:

1) with different sampling intervals (because RTT changes) and different work-

loads, ingress bytes, dropped bytes, and queue lengths change unpredictably.

Sometimes they can become very large;

2) during the estimation process, there are many multiplication and division

operations. These operations can cause the overflow/underflow of the integer

storage unit unexpectedly. It is harder to contain those overflow/underflow

errors when operands are some unpredictably large or small numbers. After

trying different implementations, it is noticed that by converting large inputs

in the unit of bytes into relatively small numbers in the unit of packets, the
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entire intermediate calculation is independent of inputs and easier to debug.

Hence, the current implementation of our estimation scheme has both units

coexisting. The procedure for processing data is as follows: Our scheme first

collects all data, such as total ingress bytes, total bytes dropped, and queue

lengths, in the unit of bytes. Then it converts queue lengths into the number

of packets by dividing them by the average packet size 1. It guarantees that

there is no overflow/underflow error during intermediate calculations. Before

it produces estimation results, our scheme converts the estimation data into

units of bytes so that the estimation data can be combined with total ingress

bytes to give the proportion of ingress non-responsive traffic in eqn. 2.10.

- Floating point numbers or arithmetic in kernel

One of the limitations of programming in the Linux kernel is that there should

have no floating point arithmetic in the kernel, since floating point calculations

in the kernel do NOT preserve any state of the floating point unit (FPU)2.

Since FPU is shared with user space processes, a kernel floating point operation

without preserving the FPU state will cause unexpected floating point error in

user space. So floating point is not recommended in the kernel programming.

A common practice of dealing with the situation is to scale up all floating point

numbers into “signed long” integers. The scaling number is selected according

to the number of significant digits being reserved. It is usually a number of the

power of 2 so that up or down scaling can be efficiently accomplished by bit

shifting.

1The average packet size is imported from tc when the scheme is loaded.
2Extra code needs to be added to manually perform the context switch of FPU, if

floating point arithmetic is inevitable. Because those extra code for context switching
are heavy weight, the entire kernel operation is slower than it is without them.
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Our estimation involves a lot of floating point numbers and calculations. And as

mentioned in the previous issue, inputs are unpredictable. So are intermediate

calculation outputs. It is very easy to overflow a “signed long” variable after

being scaled up, if either inputs or the intermediate outputs are too large.

In our implementation, a dynamic scaling scheme is employed as follows: A

preset scale is defined (in our implementation, it is 14, i.e. every floating point

number multiplies 214 to scale up to a ”signed long” integer); Then the number

is tested for overflow if it is scaled up with the preset value; If the number is

small enough without overflow, the preset scale will be used; If the upscaled

value of the number overflows the storage unit, it will be scaled up by using a

dynamically assigned smaller scale. After desired calculation (usually division),

the output of the calculation will be scaled up again to the preset scale. So all

scaled outputs are always in the same magnitude, when no overflow happens.

Note that the arithmetical accuracy is lower with the dynamic assigned scale

than the preset scale, since the reserved significant digits is less. The second

advantage to the preset scale does NOT improve the accuracy, but the potential

overflow with the preset scale is effectively prevented.

- Mathematical functions in kernel

There is no math function library supported within the Linux kernel and the

user space C “math.h” library cannot be called from the kernel. So in case of

using a math function, a dedicated integer version of the math function should

be coded by utilizing only integer operations supported by the kernel.

In our implementation, a square root function is needed to calculate the esti-

mated z0. One can use Taylor series to do the operation. Here, we employ a

faster and resource-friendly square root algorithm with fast convergence and

reasonable accuracy. Our algorithm is adapted from [46] and improved to
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bound the iteration times (usually lower than 10 times) and achieve better

accuracy. It includes only integer operations supported by the kernel.

- Time related issues

For Intel compatible platforms, using a kernel global variable Jiffies is the

most efficient way to measure the elapsed time. Jiffies is increased by 1 every

10 msec. So it limits the finest time granularity of our implementation.

Recall that the sampling interval is RTT/3, which is not necessary to be a

multiple of 10 msec. So the finish time of a sampling period is triggered

at the time point when the difference, called “rT”, between it and the last

sampling finish time is larger than RTT/3 and a multiple of 10 msec(In our

implementation, rT is usually 40 msec). Then rT is used in the estimation

algorithm to calculate average values and differentials, instead of RTT/3.

Because Jiffies is counted every 10 msec, while our estimation algorithm uses

the standard unit of seconds to calculate the first and second order of the

differentiation of queue lengths, units of milli-seconds and seconds coexist in

our implementation. They are converted to each other when needed.

tc utility is able to read the status and statistic data from current loaded traffic

control modules. To utilize it, our estimation scheme writes the current estimation

result into the shared data structure interface so that tc can read it at any time

during the estimation period by issuing the status/statistics showing command. It

also requires to modify tc utility to realize the function. Detailed tc implementation

will be presented in the next subsection. Our estimation scheme also logs some debug

information and all estimation results in the system log file. One can examine the

running status and retrieve all estimation results during the entire estimation period

by looking into the log file.
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Fig. 18. Implementation Related Files in tc Utility

Our scheme is implemented such that if estimation is not required, it can be

turned off at the loading time and our scheme works just like a normal RED scheme.

Our scheme also automatically turns off the estimation function when there are no

drops at the router.

3. Implementation in tc Utility

The tc utility is part of iproute2 package. It is a user space utility to control traf-

fic control functions of the Linux kernel. It can load/unload, set parameters, and

show status/statistic information of kernel queuing disciplines. It utilizes a kernel

supported mechanism – “rtnetlink” to interact with the kernel to realize all its func-

tionalities. It shares data structures with the Linux kernel so that it can read/write

them to exchange data with traffic control modules in the kernel. Figure 18 shows the

relationship among new files related to our kernel module in tc utility. q estmred.c

is the main interface to the kernel ESTMRED module.

The tc utility includes some unit conversion function calls (in tc util.h and

tc util.c). It is very important for us to understand the units of final outputs of

those functions and to make sure that the data are converted correctly at the input

of our estimation scheme. For example, at tc command line input, the “bandwidth”

can be described in the unit of bits/sec, Kbits or Kbytes/sec, Mbits or Mbytes/sec,
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pepper:/usr/src/dev-tc-20010824/tc# ./tc -s -d qdisc show

qdisc estmred 809c: dev eth0 limit 60000b min 15000b max 45000b avpkt 1000b

band width 100Mbit delay 50ms estm ewma 4 Plog 19 Scell log 6

Sent 2030435088 bytes 1845783 pkts (dropped 82704, overlimits 82704)

marked 0 early 82704 pdrop 0 other 0 estm 14259

�
The prop. of non-responsive traffic: 14259/214 ≈ 0.87

Fig. 19. Status/Statistical Output of the tc Utility

and bytes/sec. One can also omit the unit, if it is in the unit of bits/sec. The output

is always converted into bytes and the conversion uses the standard 1024 bytes(=1K

bytes, not 1000) for Kilo or Mega units.

Then during the running period of our scheme, the intermediate estimation

result and current status/statistical data can be retrieved using “tc -s -d qdisc show”

command. Figure 19 shows an example of the command output. The estimation

value “estm” is scaled up using the preset scale. By dividing “estm” with 214, one

gets the estimated proportion of incoming non-responsive traffic, as illustrated in the

figure.

B. Experimental Testbed

In this section, the setup of Linux systems and the configuration of the experimental

testbed are presented. Some important configuration issues are discussed.

Three Linux systems are set up in the testbed. Each has the kernel version of

either 2.4.18 or 2.4.22 due to hardware support issues. The sender has two 100Mbit

network interface cards(NICs). It sends out both TCP (long-term and short-term)

and UDP based traffic to saturate the testbed network. TCP-based traffic is isolated

from UDP-based traffic by being dispatched through different NICs. The router has

three 100Mbit NICs, two for incoming traffic and one for outgoing traffic. The router
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Table IV. Hardware Configurations of Linux Systems

Type CPU RAM Swap SpaceKernel Ver.# of NICs

TCP Senders
AMD K6

500MHz
256MB 256MB 2.4.18 2UDP Senders

Web Server

Router Pentium 4 2.4GHz 512MB 512MB 2.4.22 3

TCP Receivers
AMD K6

500MHz
256MB 128MB 2.4.18 1UDP Receivers

Web Clients

box is powerful enough to ensure no kernel drops due to routing computation and

forwarding overhead. It guarantees that packets are dropped only because the output

queue length is over the limit. The receiver has one 100Mbit NIC to receive both

types of traffic through the router. Three pairs of NICs are connected independently

with a designated 10/100Mbit auto-sensing ethernet hub to isolate traffic from one

another. Figure 20 illustrates the testbed topology. Table IV lists the hardware

configuration of each Linux system.

Total round trip link delay is around 100ms. It is an average round trip delay

in the Internet [47]. Link delays are introduced by the Nist Net emulator [48].
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Nist Net is developed at NIST Internet Technology Group. It is a general purpose

emulator for Linux platform to simulate variety of dynamics in IP network. It can

be easily loaded as a module when needed and comes with a user interface to make

configuration easier. In our testbed, it is configured such that forward and return

paths evenly split the total link delay, i.e. 50ms for the forward path and 50ms for

the return path.

Each TCP/UDP sender and receiver can collect statistical information, such as

total bytes and packets sent/received and data rate in bits/sec. By utilizing these

data, we can verify if our testbed is set up correctly. For example, since we have one

100Mbit outbound link from the router, the sending rate of one UDP sender in the

full speed should be close to 100 Mbits/sec. If the statistical information shown by

either the UDP sender or the UDP receiver were not close to 100 Mbits/sec, there

would be some configuration problems in the testbed. The UDP packet size is set to

972 bytes. The TCP segment size is usually 1448 bytes for our testbed network.

The generation of short-term TCP traffic(web mice) is triggered by WebStone2.5

benchmark [49]. It is designed to evaluate the performance of web servers with or

without CGI and API tests. In our testbed, WebStone is used to emulate hundreds

of browsers requesting files in various sizes from the web server. The requesting

frequency of each file size by web clients is controlled with a “filelist” file. Figure 21

shows the requesting frequencies of five different file sizes used in our testbed. The

requesting frequency is calculated as: the weight of each file size/total weights.

So take every 1000 page requests for example. It can be calculated using Figure 21

that, among every 1000 page requests, 500 requests are for the file with the size of 5

kbytes and 350 requests are for the file with the size of 500 bytes.

The web server used in our testbed is the well-known open source Apache server

[50]. The Apache server is configured to its maximal capacity, i.e. allowing the
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maximal number of alive requests, clients, and running servers, so that a higher

server throughput is possible to be reached if the number of clients/requests keeps

increasing. So with the configurations of machine hardwares in our testbed, the upper

bound of the web server throughput is more likely to be bounded by the computation

power of the machine than by the upper limits in the Apache configuration.

C. Implementation Results

In this section, testing results will be presented and analyzed. Each test runs for

more than 300 seconds. The estimation starts at the 60th second of the entire testing

span when the traffic becomes stable, since some simplifications of our algorithm are

made under the condition that the system is in the equilibrium state.

Queue lengths and drop probabilities collected from RED queue management

scheme are filtered by using the EWMA. The forgetting factor α for queue lengths

is 0.23; The forgetting factor α for drop probabilities is 0.8. After each estimation
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interval, estimation results then are compared with measurement values and the

accuracy of the estimation is described using MSE defined in Chapter II - Section C.

Measurement values are calculated the same way as estimation results with EWMA.

The forgetting factor α for both estimate and measure is 0.975 in order to effectively

damp down the fluctuation.

Since UDP-based flows and web mice are considered to be non-responsive in our

tests, each measurement of non-responsive load is obtained by counting bytes from

those two types of flows.

1. High Non-responsive Loads

In this experiment, non-responsive loads were 63%, 76%, and 87%. 35 TCP flows

were set up to generate responsive load. Figure 22 shows the test results. Curves in

dashed lines are measure values. Curves in solid lines are estimate values.
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Fig. 23. Dynamic Response under Linux Testbed

It is observed that the higher the non-responsive load, the more accurate the

estimation values. These results conform to those from NS-2 simulations.

2. Dynamic Response to Change of Traffic

In this experiment, initial non-responsive load were around 63%. TCP-based flows

were still 35. At 150s, another 24% non-responsive load started and added up to the

current non-responsive load. After 100s, the dynamic non-responsive load decreased

to a stop. Figure 23 shows the results.

It is observed that our estimation follows the dynamic change of the traffic rea-

sonably well. So our scheme is able to track changes in the non-responsive traffic and

identify high volume attacks at large time scales. Since the estimation/measurement

output is calculated through EWMA and the forgeting factor is 0.975, it takes about
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200 EWMA calculations3 to “forget” the history information. Recall that the estima-

tion interval is 700 ms. So it takes over 100 s for the estimate/measure to converge

to the new value. That is the reason why our estimation has long up and down slopes

and the “flat top” (the convergence to the new proportion of non-responsive traffic)

is not noticeable.

3. Heterogeneous Traffic

Since the aggregate behavior of short-term TCP traffic appears to be non-responsive

at a router, this test is designed to verify if our implemenation identifies short-term

TCP traffic as part of non-responsive traffic. There were 35 long-term TCP flows

and the initial non-responsive load was around 67%. At 120s, 200 web clients started

to request files from the web server. The crowd of web mice existed for about 120s

and then stopped. Figure 24 shows the testing result.

It is noticed from Figure 24 that our estimation scheme correctly identifies the

short-term TCP traffic as part of the non-responsive traffic. The same conclusion

has also been drawn from the NS-2 simulation.

D. Discussion

There are two major concerns to the estimation scheme. One is the tuning process. It

is a heuristic process and needs to be performed whenever the network configuration,

such as RTT or the link capacity, changes. The other is the “carry-over” problem.

That is if the gains (the values of tuning parameters), which yield accurate estimates

in the simulator, can be carried over to the testbed and further to the real world

product so that the testbed or the product only needs local fine-tunes to obtain

reasonably accurate estimates. If it can be done, the estimation scheme will be

30.975200 < 1%
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Fig. 24. Traffic Mix under Linux Testbed

reasonably easy to deploy due to the less effort to tune the scheme on the real

product. But, apparently, tuning on the simulator for different configurations is

inevitable.

In order to investigate the second concern, the gains in the Linux implementation

are carried back to the NS-2 implementation. Then a NS-2 simulation is run to

obtain MSEs, which show the accuracy of the estimate. The network and the traffic

in the NS-2 simulation is configured similar to those in the Linux testbed. The

NS-2 simulation is set up as follows. There are 35 TCP-Sack flows (since Linux

employs TCP-Sack) and 80 CBR flows (each CBR sends 1Mbps). The bottleneck

link capacity is 100Mb. The round trip propagation delay is around 100ms. The

simulation runs over 300s.

The MSE obtained from the NS-2 simulation using the gains carried over from

the Linux testbed is 0.001586. So the error is less than 4%. It is a reasonably
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small and shows the feasibility of “carry-over” as long as the network and the traffic

configurations are similar.
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CHAPTER IV

PERFORMANCE EVALUATION OF QUEUE MANAGEMENT SCHEMES FOR

AGGREGATE CONTROL OF HETEROGENEOUS TRAFFIC

Motivated by the results in Table III, we investigate the feasibility to develop an

approach to regulate non-responsive traffic and protect responsive traffic at the time

of congestion. Observed from the table, a droptail router strongly biases against

long-term non-responsive traffic on an aggregate level, i.e. the throughput of non-

responsive traffic is much lower with a droptail router than with a normally configured

RED router. This aggregate characteristic of a droptail router is desirable for our

approach, since it can eliminate the overhead to keep state of all flows.So it is possible,

by dynamically tuning RED parameters based on our estimation output, that RED

behaves much more like a droptail router when the proportion of non-responsive load

is over the preset threshold so that it can bias against long-term non-responsive traffic

better than normally configured REDs. The feasibility of this possible approach

needs to be further studied under scenarios of heterogeneous traffic mix and various

network configurations.

In this chapter, we study the impact of bandwidth-delay products and short term

flows on queue management schemes. Our focus is on understanding the aggregate

performance of various classes of traffic under different queue management schemes.

Our work is motivated by the expected trends of increasing link capacities, increasing

amounts of non-responsive traffic, and a possible approach to regulate non-responsive

traffic on an aggregate level. The impact of non-responsive flows and different link

bandwidth-delay products on the performance of RED, RED with ECN enabled

(RED-ECN) and DropTail (DT) routers is investigated. Our study considers the

aggregate bandwidth of different classes of traffic and the delays observed at the
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router. The workloads consist of Long Term Non-Responsive Flows (LTNRFs), Long

Term Responsive Flows (LTRFs), and Short Term Flows (STFs).

A. Performance Evaluation

In this section, the impact of bandwidth-delay product and non-responsive flows on

the performance of DT, RED and RED-ECN is investigated under various configu-

rations of workloads, buffer sizes and link capacities.

Different traffic workloads are considered in our evaluation. The workloads

differ in the amount of the long-term non-responsive load and the amount of load

from short-term flows. The total non-responsive load is fixed to be 60%. We consider

workloads with both long-term only flows and a mixture of long-term and short-term

flows, so we can study the impact of short-term flows on both long-term flows and

buffer management schemes. We use web mice as representative short-term flows.

These flows arrive at a random rate and typically only send a few packets. We use

CBR flows as representative long-term non-responsive flows. We consider high loads

of LTNRFs, from 30% to 60% of the total traffic load, to study their impact on the

buffer management schemes.

We study the impact of link capacities by employing three different link capaci-

ties of 5Mb, 35Mb and 100Mb. This is expected to allow us to study the performance

trends over a range (×20 times difference) of link capacities. The number of flows

(STFs, LTRFs, and LTNRFs) is scaled correspondingly (based on the capacities) to

result in similar workload mix from different classes of traffic (long-term responsive

and non-responsive traffic, and short-term traffic). For each link capacity, we consid-

ered three different buffer sizes of 1/3, 1 and 3 times the bandwidth-delay product.

These buffer sizes are chosen to study the impact of under provisioning and over

provisioning as well as the normal rule of provisioning the buffer sizes.
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Fig. 25. Simulation Topology

Table V. 1 BWDP of Each Link Capacity

Link BW(Mb) 5 35 100

1 BWDP(pkts) 75 500 1500

The realized throughput of responsive flows (long-term TCP throughput), along

with average queueing delay, link utilization and standard deviation of queueing

delay, are considered as performance metrics.

1. Simulation Setup

All simulations are conducted in ns-2 simulator [15]. Simulation topology is shown

in Figure 25. The link between R1 and R2 is the bottleneck link, deployed with DT,

RED or RED-ECN. Link capacities employed at the bottleneck link are 5Mb, 35Mb

and 100Mb. Rest of the links have capacities high enough to avoid packet drops. Tp

is the one-way propagation delay of the bottleneck link. The one-way propagation

delay of each ingress link of R1 and each outgoing link of R2 is 5ms. So the total

round trip propagation delay is 120ms.

Link bandwidth-delay product (BWDP) is used as a criterion to choose the



70

Table VI. Buffer Sizes of Different Link Capacities and BWDPs

Multiple

of BWDP

Link Capacity (Mb)

5 35 100

1/3 25 200 500

1 75 500 1500

3 225 1500 4500

buffer size of a buffer management scheme at the bottleneck link. Three buffer sizes

are chosen here: 1/3, 1 time, and 3 times of 1 BWDP. Based on the link capacity and

the round trip propagation delay, in Table V, 1 BWDP is calculated and rounded up

in units of packets (1 packet=1000 bytes). Different buffer sizes are shown in Table

VI.

RED or RED-ECN is deployed at the bottleneck link as a typical AQM scheme.

It is configured by following the recommendations of [51]: Maxth = 3∗Minth;Maxp =

0.1;wp = 0.002. Its performance then is compared to that of a droptail router of the

same buffer size based on different performance metrics.

Table VII. Characteristics of Different Workloads for

35Mb Link

STF

Load

35Mb Link

# of LTRFs # of STFs # of LTNRFs1

0% 55 0 22

5% 55 250 22

30% 55 1300 14

1 Each LTNRF sends at 1 Mbps

TCP flows include both long-term responsive and short-term flows. Long-term
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TCP connections(FTP) represent LTRFs. Short TCP connections, sending 10 pack-

ets every 10s on average, represent typical STFs (web mice). 0%, 5%, and 30% STF

loads are generated to change the proportion of traffic mix. CBR flows represent

typical LTNRFs. Each CBR flow sends at 1Mbps under 35Mb and 100Mb links and

0.5Mbps under 5Mb link for easily adjusting long-term non-responsive load across

different link capacities.

In current Internet traffic, total non-responsive load of LTNRFs and STFs is

about 40-50%. We intend to investigate scenarios when the non-responsive load is

high as explained in Section 3, so total non-responsive load, including loads of both

LTNRFs and STFs, is set to 60%. 60%, 55% and 30% LTNRF loads are generated

corresponding to respective STF loads. A fixed number of LTRFs are employed to

complete the traffic mix. The packet size is chosen to be 1000 bytes for all flows.

Table VII shows the actual number of LTRFs, LTNRFs and STFs deployed in each

simulation with different STF loads under 35Mb Link. For 5Mb and 100Mb links,

the number of flows are scaled down or up according to the link capacity.

2. Changing Buffer Sizes

By changing buffer sizes, realized long-term TCP throughput, link utilization and

standard deviation of queueing delays are collected for analysis. 0%, 5% and 30%

STF loads were generated. The performance impact of 30% STF load with different

buffer sizes is presented and analyzed in the following simulations.

Figure 26 shows the correlation between average queueing delays and different

multiples of BWDP(buffer sizes) under 30% STF load and 35Mb link. It is noticed

that the average queueing delay increases linearly with the buffer size. Because of

this linear relationship, in order to clearly illustrate the difference in performance

among different buffer management schemes with more information in each plot,
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Table VIII. Link Utilization in Different Configurations under 30% STF Load

Multiple
of BWDP

5Mb Link 35Mb Link 100Mb Link

RED RED-ECN DT RED RED-ECN DT RED RED-ECN DT

1/3 .943 .947 .974 .961 .955 .968 .967 .959 .971

1 .963 .965 .975 .967 .967 .971 .971 .971 .972

3 .973 .973 .976 .969 .970 .972 .972 .972 .973

average queueing delays(instead of buffer sizes) are used.

In Figure 27, realized long-term TCP throughput and average queueing delays

are shown in different configurations under 30% STF load. It is noticed that TCP

throughput of a droptail router is always higher than that of either RED or RED-

ECN. But with the increase of BWDP, the difference in throughput is getting smaller.

Average queueing delay of the droptail router under higher BWDPs is more than 3

times higher than that of RED under the same BWDP. It is undesirable to have high

average queueing delays, especially for delay sensitive multimedia applications. So,

under large BWDPs, RED or RED-ECN is a better choice considering the realized

TCP throughput and lower average queueing delay. It is also noticed that using

RED-ECN has a marginal gain of TCP throughput over RED, while RED-ECN

requires ecn-compatible TCP sources.

Link utilization under 30% STF load is listed in different configurations in Table

VIII. Under low BWDP cases, link utilization of the droptail router is higher than

that of either RED or RED-ECN. It is intuitive, since RED tends to drop pack-

ets earlier than DT. And the impact gets magnified when the buffer is smaller. So

the utilization difference between DT and RED under 5Mb link is larger than those

under 35Mb and 100Mb links. With the increase of BWDP, the utilization differ-

ence between DT and RED becomes smaller. REC-ECN gains marginally on link
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Fig. 27. TCP Throughput with Different Average Queueing Delay under 30% STF

Load
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utilization compared to RED.

Besides the average queueing delay, standard deviation of queueing delay is also

interesting, when jitter may be an important factor for the performance of appli-

cations. In Figure 28, standard deviation under 30% STF load and 30% ON/OFF

LTNRF load is shown with different configurations. Each ON/OFF long-term non-

responsive flow was “ON” for 20s and “OFF” for the next 20s. By configured like this,

the queue length fluctuated much higher than it did under constant non-responsive

load. This can help us to clearly illustrate the differences in queue management

among different buffer management schemes.

It is observed from Figure 28: 1) Under 5Mb link, DT has comparable stan-

dard deviations to RED and RED-ECN; 2) With the increase of the link capacity

and buffer sizes, RED and RED-ECN have much smaller standard deviations (i.e.

less queue length fluctuation) than DT. RED and RED-ECN seem more suitable

for high link bandwidths and larger buffer sizes when delay jitter is an important

consideration under dynamically changing workloads.

3. Changing Link Capacities

The realized long-term TCP throughputs with different link capacities have been

shown in Figure 27 in Section 2. When compared across those three plots, it is also

noticed that: 1) the increase of link capacities has minor impact on the differences

of TCP throughputs among queue management schemes; 2) TCP throughputs are

higher under 100Mb link than those under other link capacities.

In Figure 29, relative average queueing delays with different link capacities are

compared under different configurations. Relative average queueing delay is defined

as

Avg QDelay/Round Trip Propagation Delay. The round trip propagation delay is
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Fig. 29. Relative Average Queueing Delay with Different Link Capacities under 30%

STF Load

120ms.

It is noticed that, for a droptail router under different BWDPs, the relative

average queueing delay tends to be close to the buffer size. For example, DT under

3 BWDP has the average queueing delay around 3 times of 1 round trip propagation

delay. Similar tendencies can be observed in other DT cases. The reason is that, in

a droptail router, under heavy non-responsive loads, the queue tends to stay fully

occupied most of the time. So queueing delay of the droptail router is close to

Buffer Size/Serving Rate. RED, however, has noticeable lower average queueing

delays. For example, under 3 BWDP, the relative average queueing delay of RED is

around 1, while that of DT is around 3; under 1/3 BWDP, that of RED is around 0.1,

while that of DT is around 0.3. The average queueing delay is about 3 times smaller

with RED than with DT under the same multiple of BWDP. It is also noticed that

RED-ECN has similar average queueing delays to RED. Changing link capacities has

almost no impact on the trends of average queueing delays, by observing the almost
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flat curves.

Table IX. Drop Rates or Marking Rates under 30% STF

Load and 1 BWDP

QM Type of
Flow

Link Capacity (Mb)

5 35 100

RED
LTRF1 .03627 .03112 .02503

LTNRF .03681 .03891 .02814

RED-
ECN

LTRF2 .00352/.04256 0/.04123 0/.03036

LTNRF .04688 .05352 .03406

DT
LTRF1 .01787 .01992 .01662

LTNRF .10229 .09954 .12189

1 Format: Drop Rate

2 Format: Drop Rate/Marking Rate

Table IX compares the drop rate or marking rate of long-term responsive and

non-responsive flows from RED, RED-ECN and DT under 30% STF load and 1

BWDP with different link capacities. It is observed that drop rates of LTNRFs are

much higher than those of the other flows in a droptail router, while the drop rates

of RED router and the marking/drop rates of RED-ECN router show no significant

difference across different types of flows. RED-ECN has higher marking rates of

LTRFs than drop rates of LTRFs in RED, but with much smaller actual drop rates

of LTRFs. The drop rates of LTNRFs in RED-ECN are higher than those in RED,

so RED-ECN gains marginally long-term TCP throughput improvement over RED

(see Figure 27).
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Fig. 30. Normalized TCP Throughput with Different STF Loads under 1 BWDP

4. Changing STF Loads

In Figure 30, normalized long-term TCP throughputs with different STF loads are

compared under 1 BWDP of each link capacity. The normalized TCP throughput is

defined as

Total TCP Throughput/(Total TCP Throughput + Total UDP Throughput) so

that TCP throughput is always compared to the amount of throughput from both

TCP and UDP flows regardless of added STF loads. It is observed that with the

increase of STF load, the throughput difference decreases or stays the same between

DT and AQM schemes(RED or RED-ECN).

Because of the similar TCP throughputs between RED and RED-ECN in Figure

30, the throughputs of different classes of traffic in different configurations is listed

in in Table X again. Data in the table were collected with different STF loads and

the buffer size of 1 BWDP at 100Mb link. It is noticed that long-term TCP (LTRF)

throughput under DT is noticeably higher than REDs when STF load is low (0%

and 5%). It is also worth mentioning that short-term flows claimed the proportion
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Table X. Comparison of Throughputs with Different STF Loads under 1 BWDP and

100Mb Link

STF
Load

RED RED-ECN DT

LTRF LTNRF LTRF LTNRF LTRF LTNRF

0% .505 .461 .507 .458 .730 .238

5% .457 .460 .460 .456 .729 .190

30% .454 .244 .457 .242 .478 .220

of the link capacity(5% or 30%) with almost no impact from long-term flows in this

set of simulations, since the aggregated behavior of short-term flows at the router

are more aggressive than long-term flows. RED-ECN has marginal improvement in

TCP throughput compared to RED. Under higher STF load (30% in our experiment),

TCP throughputs from RED and RED-ECN become very close to that of DT.

In Figure 31,relative average queueing delays under 1 BWDP are compared

with different STF loads, queue management schemes and link capacities. Under 1

BWDP, relative average queueing delays of DT are close to 1, as explained in section

3, and about 2-3 times larger than those of RED. It is observed that changing STF

loads has almost no impact on average queueing delay and that RED and RED-ECN

have similar average queueing delay under each STF load.

B. Discussion

In this section, we summarize and discuss simulation results presented in Section A

within the scope of our investigation.

With the existence of STFs, the performance (realized long-term TCP through-

put, average queueing delay, and standard deviation of queueing delay) of both RED
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Fig. 31. Relative Average Queueing Delay with Different STF Loads under 1 BWDP

and RED-ECN with the recommended configuration is comparable to or prevails over

that of DT, especially under higher BWDP cases. Change of link capacity or STF

load has minor impact on trends in long-term TCP throughputs and relative average

queueing delays. With the increase of STF load, TCP throughputs of AQM schemes

become very close to that of a droptail router. As a result, our possible approach

to regulate non-responsive flows on the aggregate level by utilizing the estimation

output is effective only under long-term traffic mix scenarios.

Other observations and discussions are detailed as follows:

- The throughput of STFs is uncontrollable. This observation has been made

earlier. Our results confirm that the throughput of STFs is uncontrollable even

under higher non-responsive loads.

- RED-ECN has marginal long-term TCP throughput improvement compared

to RED, but provides lower drop rate. It was shown earlier that, with ECN

mechanism enabled, TCP throughput will be benefit significantly in a highly
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congested network [52]. The congestion is moderate (drop rates are between

1% and 10%) in our simulations. Secondly, although our simulations employ

recommended TCP-Sack(with or without ECN) by following the recommen-

dations in [53], the performance differences between RED and RED-ECN are

still very small under the workloads in our simulations. However, it is possible

that RED-ECN would perform better with different workload configurations.

So advantages of ECN mechanism are less significant within the scope of our

investigation.

- Between DT and AQM shemes(RED or RED-ECN), for lower BWDPs or

smaller buffers (� 1 BWDP ), droptail routers provide better realized long-

term TCP throughput, but at slightly higher average queueing delays; for high

BWDPs or larger buffers (≥ 1 BWDP ), such as those long-distance high-

capacity links, AQM schemes have better performance in terms of acceptable

realized long-term TCP throughput and significantly lower average queueing

delay and jitter.
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CHAPTER V

CONCLUSION AND FUTURE WORK

In this chapter, contributions of the presented work are summarized. Future research

directions extending our current work are discussed.

A. Summary of the Presented Work

In this dissertation, a mathematical model describing the aggregate dynamics of

heterogeneous traffic at a router was presented. This model extends the fluid based

model by accounting for non-responsive traffic. The effect of non-responsive traffic

was described in the queue dynamics equation and indirectly reflected by the change

of the drop probability of the queue management scheme.

Then the traffic mix model was used in deriving an algorithm for estimating the

fraction of the incoming traffic that is non-responsive to congestion. The purpose

of the presented algorithm is to estimate the proportion of non-responsive traffic on

an aggregate level regardless of protocols the traffic uses. The presented algorithm

utilizes the parameter identification technique in adaptive control theory and has

merits of low memory requirment and computation complexity. The basic estimation

algorithm was modified to estimate accurately under different traffic scenarios. It

was further extended to an estimation algorithm for the multi-hop topology. The

effectiveness of the proposed algorithms, over a wide range of traffic conditions,

was corroborated using ns-2 based simulations. Possible future applications of the

proposed algorithms were discussed.

To further study the feasibility of our estimation algorithm in a realistic network

scenario, our modified basic estimation algorithm was implemented in the Linux ker-

nel. It helped us to validate the estimation technique and improve it in a realistic
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environment. The detailed implementation process and encountered issues were pre-

sented and discussed. A one-hop testbed was set up and test results on the testbed

were shown and discussed.

Motivated by our estimation technique, we investigated the possibility of using

an approach on an aggregate level, by utilizing the estimation output, to regulate a

high volume of the non-responsive traffic and protect responsive traffic as needed and

the effectiveness of this possible approach. The impact of bandwidth-delay product

and non-responsive flows on the performance of both droptail and AQM schemes

was investigated. Simulations under combinations of different link capacities, buffer

sizes and loads of short-term flows were conducted. Observations and discussions of

simulation results were provided. From the evaluation results, we observe that, with

the existence of short-term flows, AQM schemes(RED or RED-ECN) have compara-

ble long-term TCP throughput to a droptail router and have the advantage of lower

queueing delays and jitters, over high-capacity links or links with high bandwidth-

delay products. Droptail routers provide better long-term TCP throughput with

higher delays over links with smaller bandwidth-delay products.

Since there is no obvious advantage of a droptail router over a RED/RED-ECN

router when short-term flows (web mice) exists with long-term flows, our approach

of dynamically tuning RED parameters to regulate non-responsive traffic is effective

only under long-term traffic mix scenarios.

B. Future Work

Motivated by our previous research work, some future work directions are interesting

to be further investigated:

- Auto-tuning the estimation algorihtm

Currently our estimation algorithm is manually tuned by finding the minimal
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MSE among various settings of the algorithm and it may take some time to

find the local optimal point. With changes of network configurations(e.g. link

capacity, link propagation delay, and etc.), the algorithm needs to be re-tuned

to obtain an accurate estimation output. An auto-tuning technique should be

incorporated into the algorithm so that the estimation scheme can be deployed

easily in different configurations.

- Building prototypes of applications based on the estimation technique

The estimation output of our algorithm is very useful to determine if there is

abnormal behavior in the network without the need to inspect individual flows.

Our previous efforts to contain a high volume of the non-responive traffic were

successful only under the long-term traffic mix. An approach utilizing our

estimation results to regulate non-responsive traffic needs to be investigated.

Besides the regulation application, other prototypes of applications using the

estimation output could be designed and developed.

- Implementing the multi-hop algorithm in Linux

In our research work, we implemented a one-hop algorithm in the Linux kernel

to validate the algorithm under a single-hop testbed with only one congested

link. The one-hop algorithm can be easily extended to the multi-hop one in

Linux by following the similar procedure in the NS-2 implementation. The

Linux implementation of the multi-hop algorithm could be tested in a multi-

hop testbed.
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APPENDIX A

ESTIMATION ALGORITHM WITH CBR TRAFFIC

In eqn. 2.1-2.3, we define a model of heterogeneous traffic with the CBR traffic as

a representative for non-responsive traffic. For the simplicity and easy understanding

of our algorithm, we further approximate XuR(t) to be constant because of the

sufficient small deviation in measured R(t) (refer to Chapter II - Section A). In this

section, we would like to derive our estimation algorithm without the approximation.

We first define du = NuXu. du is the aggregate sending rate of Nu CBR flows.

The definition of z(t) is the same as it is in Chapter II - Section B. So in terms of

z(t) and du, the traffic mix model is given by:

ż(t) =
Ns

R(t)
− z(t)z(t−R(t))

2NsR(t)
p(t−R(t)), (A.1)

q̇(t) =
z(t)

R(t)
+ du − C, (A.2)

R(t) =
q(t)

C
+ Tp, (A.3)

where ż(t) = NsẆs(t).

By being taken the second derivative of q(t), eqn. A.2 becomes:

q̈(t) =
ż(t)

R(t)
− z(t)

R2(t)
Ṙ(t). (A.4)

By combining eqn. A.4 with eqn. A.1 and then making some simple mathemat-

ical manipulations, one can get:

R(t)q̈(t)+(
q̇(t)

C
+ 1)q̇(t) =

Ns

R(t)

− z(t)z(t− R(t))

2NsR(t)
p(t− R(t)) + du

˙q(t)

C
. (A.5)
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Fig. 32. Projection of Estimation Results

Taking the small signal approximation pointed out in section B yield:

R0q̈(t) + (
q̇(t)

C
+ 1)q̇(t)

=
[

1
R0

− p(t−R0)
2R0

˙q(t)
C

]
⎡
⎢⎢⎢⎢⎢⎢⎣

Ns

z2
0

Ns

du

⎤
⎥⎥⎥⎥⎥⎥⎦
. (A.6)

So there are 3 unknown parameters to estimate, i.e. Ns, z0, and du, instead of

2 unknown parameters, i.e. Ns and z0, in Chapter II - Section B. Following the

same procedure presented in Chapter II - Section B, this estimation algorithm can

recursively update 3 unknown parameters with the normalized Kaczmarz’s projection

algorithm.

In the equilibrium state, we have q̇(t) = 0. So one gets from eqn. A.2:

C =
z0
R0

+ du.
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The equation above constrains our estimation results of both z0 and du, when the link

utilization is close to 100%. To bound our estimation results within the constraint,

each pair of the estimation results needs to be projected to the constraint line to get

the correct estimation value as shown in Figure 32. (x, y) is the pair of results after

projection, while (x0, y0) is the direct output from our estimation algorithm.

Here we assign: x0 = z0, y0 = du, m = − 1
R0

. So we get 2 functions of vertical

crossing lines:

Line 1 : y = mx+ C,

Line 2 : y = − 1

m
x+ y0 +

x0

m
. (A.7)

By solving eqn. A.7 with regarding to x and y, one gets:

x =
my0 + x0 −mC

m2 + 1
,

y = mx+ C. (A.8)

Then plug in x0, y0, and m into eqn. A.8 to get projected estimation results(x and y).
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