
RESERVOIR FLOODING OPTIMIZATION BY CONTROL POLYNOMIAL

APPROXIMATIONS

A Dissertation

by

NADAV SOREK

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Eduardo Gildin
Co-Chair of Committee, Christine Ehlig-Economides
Committee Members, Akhil Datta-Gupta

Sergiy Butenko
Head of Department, A. Dan Hill

August 2017

Major Subject: Petroleum Engineering

Copyright 2017 Nadav Sorek



ABSTRACT

In this dissertation, we provide novel parametrization procedures for water-flooding

production optimization problems, using polynomial approximation techniques. The meth-

ods project the original infinite dimensional controls space into a polynomial subspace.

Our contribution includes new parameterization formulations using natural polynomials,

orthogonal Chebyshev polynomials and Cubic spline interpolation.

We show that the proposed methods are well suited for black-box approach with

stochastic global-search method as they tend to produce smooth control trajectories, while

reducing the solution space size. We demonstrate their efficiency on synthetic two-dimensional

problems and on a realistic 3-dimensional problem.

By contributing with a new adjoint method formulation for polynomial approximation,

we implemented the methods also with gradient-based algorithms.

In addition to fine-scale simulation, we also performed reduced order modeling, where

we demonstrated a synergistic effect when combining polynomial approximation with

model order reduction, that leads to faster optimization with higher gains in terms of Net

Present Value.

Finally, we performed gradient-based optimization under uncertainty. We proposed

a new multi-objective function with three components, one that maximizes the expected

value of all realizations, and two that maximize the averages of distribution tails from

both sides. The new objective provides decision makers with the flexibility to choose the

amount of risk they are willing to take, while deciding on production strategy or perform-

ing reserves estimation (P10,P50,P90).
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1. INTRODUCTION

Reservoir management requires making many decisions throughout the life of a hy-

drocarbon field. Within this decision-making processes, incorporating reservoir simula-

tion has become increasingly common in the petroleum industry. The quest for optimal

decisions with the aid of reservoir simulation can be classified as PDE-constrained opti-

mization, as reservoir simulation solves numerically partial differential equations (PDE)

describing the underground flow.

The broad class of PDE-constrained optimization problems includes problems such as

optimal design, inverse problem and optimal control [3].

With reservoir simulation, we can simulate different processes of hydrocarbons recov-

ery. Primary recovery is the process of utilizing the natural energy stored in a reservoir,

combined with artificial lift techniques (such as pumps), to withdraw oil and gas. Sec-

ondary recovery is the injection of fluids into the ground to increase reservoir pressure and

to enhance production. This process is often called reservoir flooding, and when water

is the injected fluid, the process called waterflooding, which is the most used secondary

recovery method worldwide [4].

In waterflooding, once the wells are drilled, the main reservoir management task is to

determine how much water to inject from injection wells and how much fluid to withdraw

from production wells and at what pressures. The development of smart down-hole valves,

as part of an intelligent completion of a wellbore, has encouraged researchers to address

this reservoir management optimization problem with the theory of optimal control [5].

Then, the common goal is to find a continuous scheme to control the opening level of

each valve at any point in time, which maximize some financial measure. Although the

formulation of the problem is somewhat easy to state, it has brought up issues with the

1



size of the large-scale optimization and the computational efficiency.

1.1 Waterflooding Optimal Control

Optimal control is a PDE-constrained optimization problem, where the PDE describes

some dynamic system that evolves through time. In waterflooding optimal control, reser-

voir simulation is often used to solve a dynamic system of flow in a porous media and

wells. Then, the goal is to seek inputs to the simulator that optimize some objective func-

tion.

In section 1.1.1, we briefly describe the governing equations and numerical procedures

within a reservoir simulation. Then, We briefly mention several methods to perform re-

duced order modeling to ease the computational burden of a reservoir simulation. We

then show how the simulation equations can be presented in a typical optimal control state

space formulation.

In section 1.1.2, we describe the objective function used in this work, namely, the

Net Present Value (NPV) integral function. Then in section 1.1.3, we integrate previous

sections to present the infinite dimensional optimal control problem. Thereafter, we de-

scribe how to transform the infinite dimensional problem into a solvable finite dimensional

problem.

1.1.1 Reservoir Simulation PDE

We consider two-phase immiscible system containing oil (o) and water (w). The mass

conservation equations for the two phases, with Darcy law and gravity, in its differential

form can be written as follow:

∂

∂ t
(Φρlsl) = ∇ ·

(
ρlkrlK

µl
(∇pl−ρg∇z)

)
− m̃l, (1.1)

where, l = liquid (oil or water), φ = porosity of the porous medium, ρ = density of the

2



fluid per unit volume, and m̃ denotes the external sources (injection, negative) and sinks

(production, positive) as mass per unit volume per unit time. µ,krl and K are the viscosity,

relative permeability and absolute permeability, respectively. pl is the pressure of each

phase, and sl is the saturation of each phase. g is the gravity acceleration constant and z

accounts for vertical coordinates.

Eq. 1.1, written for i = o,w, along with the saturation equation (so + sw = 1) and

capillary equation (pcow = po− pw) defines the flow problem. The equations are then

discretized and two equations with two variables are assigned for each grid cell: po and

sw.

Here, we take a simplified form of the conservation equations in porous media. Many

books and papers have been published in this area, and the keen reader can visit classical

references as [6, 7, 8, 9, 10].

Using an implicit formulation, the two coupled equations, one for each phase, can be

rearranged in a matrix form:

T n+1xn+1 +Dn+1(xn+1−xn)+Gn+1 +Qn+1 = Rn+1, (1.2)

where, x = [po,sw]
T , D is the Accumulation matrix, T is the Transmissibility matrix,

G is the Gravity vector and Q contains the (volumetric) ql sources and sinks terms, and R

is the residual vector. We satisfy Rn+1 = 0 upon convergence to the solution for each time

step (see [8] for detailed derivation). This nonlinear system of equations is solved using

Newton’s method:

Jn+1δn+1 =−Rn+1 (1.3)

xn+1 = xn +δn+1, (1.4)

3



where, the Jacobian matrix is Jn+1 = ∂Rn+1/∂xn+1. The numerical solution size usually

ranges from hundreds to millions of cells. For example, for a reservoir with the order of

100,000 cells - 80%-90% of the total simulation time is spent on solving Equation 1.3

with a linear solver [7]. Considering the computational complexity of performing single

reservoir simulation, one can realize the need for both efficient optimization methods and

simulation. As we will see in the next chapters, reduced order reservoir modeling and

control parameterization are some of the ways to mitigate such problems.

Reduced Order Reservoir Modeling

Reservoir Simulation involves solving a large scale system of nonlinear equations,

which might render this problem to be computationally expensive for real-time processing.

This might be the case in production optimization and history matching problems which

require several hundred to thousands of simulation runs.

Numerous techniques have been applied to reduce the computational costs associated

with solving the high fidelity models across different branches of engineering, of which

Reduced Order Modeling techniques are often sought-after for many applications such as

Design Optimization [11], Control [12], and Computational Fluid Dynamics [13]. Re-

duced Order Modeling techniques have been investigated in the past decade in the context

of reservoir simulation and optimization to mitigate the computational cost associated with

the large-scale nature of the reservoir models while maintaining a high order of accuracy.

This is achieved by transforming high-dimensional models into lower-dimensional rep-

resentations that contain dominant characteristics of the corresponding solution space to

replicate the input-output behavior of the fine scale model.

Previously, reduced order modeling procedures have been applied for the well-control

optimization problem using POD [14], POD-TPWL [15, 16, 17], POD-TPWQ [18] and

POD-DEIM [19, 1, 20]. We will devote one section in this work to the last one, POD-
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DEIM (Proper Orthogonal Decomposition - Discrete Empirical Interpolation Method).

Reservoir Modeling as a State Space Equation

In order to formulate an optimal control problem, Eq. (2) can be rearranged as follow:

ẋ = D̃−1T xn+1− D̃−1G− D̃−1Q, (1.5)

where D̃ = D∆t.

Note that the control input is assigned through the source-sink ql terms found in the Q

matrix. ql is the volumetric flow rate defined as:

ql =
m̃l∆x∆y∆z

ρl
=WIl(po− pw f ), (1.6)

where ∆x,∆y and ∆z are a given grid cell dimensions and ρl is the phase l density. WIl

is the well index associated with each phase, po is the pressure of the oil phase in the

well block and pw f is the bottom hole flowing pressure. The control input can either be

the value assigned as ql (known as rate control) or as pw f (known as pressure control).

Another option is to introduce additional valve control variable as was done in [21].

To this end, as was discussed in [22], the controls enter linearly into the flow model,

and we can rewrite the flow equation as:

ẋ(t) = f1(x(t))+ f2(x(t))u(t), (1.7)

where u(t)= [u1(t), . . . ,u j(t), . . . ,uNw(t)]
T is a column vector contains continuous con-

trol functions of each well j. Here, Nw is the total number of wells. Originally, prior to

any discretization, each u j function maps a continuous time input to a continuous control

trajectory.
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Equation 1.7 represents the governing partial differential reservoir flow equation, which

is now formulated in a well-known optimal control form that describes the reservoir sys-

tem dynamics in a state space form.

1.1.2 The Objective Function

We consider the Net Present Value (NPV) function as the objective, which accounts for

revenue associated with produced oil and for the cost of handling produced and injected

water (which is incurred as a result of pumping and separation requirements),

J(u) = NPV =
∫ Tf

0

(
Np

∑
j=1

roq j
o(u)−

Np

∑
j=1

cwpq j
wp(u)−

Ni

∑
j=1

cwiq
j
wi(u)

)
1

(1+ ir)t/tre f
dt, (1.8)

where q j
o, q j

wp and q j
wi are the flow rates of the oil, water produced and water injected

for well j, respectively. The revenue from a unit of oil produced, the cost of a unit of water

produced and a unit of water injected are represented by ro, cwp and cwi, respectively. t and

Tf are continuous and terminal times, respectively. ir is the interest rate associated with

a time reference tre f . Ni and Np are the total number of injection and production wells,

respectively.

Again, as can be observed from Equation 1.8 and as was discussed in [22], the perfor-

mance measure (the objective function) is linear in the control and can be rewritten in a

typical optimal control form:

J(u) = Ψ(x(Tf ),Tf )+
∫ Tf

0
L(x(t),u(t), t)dt, (1.9)

where Ψ is the terminal cost function such as wells plug and abandonment (P&A)

costs, and L is the integrand inside the integral in Equation 1.8.
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1.1.3 The Infinite Dimensional Problem

Given Eqs. 1.7 and 1.9, we can now introduce the infinite dimension optimal control

problem, as follow:

max
u(t)

Ψ(x(Tf ),Tf )+
∫ Tf

0
L(x(t),u(t), t)dt (1.10a)

subject to

ẋ(t) = f1(x(t))+ f2(x(t))u(t) (1.10b)

u(t) =
[
u1(t), . . . ,u j(t), . . . ,uNw(t)

]T (1.10c)

u j(t) ∈ U,∀t ∈ [0,Tf ] (1.10d)

U=
{

u j(t) : ulb ≤ u j(t)≤ uub
}

(1.10e)

x(0) = x0, (1.10f)

where the initial conditions are specified as x(0) = x0, and the original bounded infinite

dimension control space is defined by U. All the variables in problem 1.10 are continuous

(or piecewise continuous), and thus the problem lies in an infinite dimensional space.

The set of equations 1.10 are called the Bolza problem. Two special cases of the Bolza

problem are the Lagrange problem when there is no terminal cost, i.e., Ψ = 0, and the

Mayer problem, in which there is no running cost, i.e., L = 0 [23].

1.1.4 The Finite Dimensional Problem

In general, there are two distinct classes of algorithms to solve optimal control prob-

lems such as shown in Equation 1.10, namely indirect and direct methods [24]. In the

former, one analyzes the optimality conditions before applying numerical discretization.

Such indirect methods are dynamic programming which solves the Hamilton-Jacobi-Bellman

(HJB) equation (suitable to a few state variables problem) and the Pontryagin Maximum
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Principle (PMP) method [25].

In the direct method, on the other hand, the optimal control problem is approximated

by a finite-dimensional nonlinear programming (NLP) problem. Then, different standard

optimization algorithms (stochastic or deterministic, global or local) can solve the approxi-

mated problem. Direct methods include single shooting, multiple shooting, and orthogonal

collection approaches [26]. The last two methods introduce many decision variables and

constraints which might lead to prohibitive computational efforts in reservoir simulation

problems. However, implementation of multiple shooting for reservoir flooding problem

was recently introduced in [27].

In this work, we use a direct single shooting approach to solving the optimal control

problem. This method parameterizes the control trajectories along time, and the parame-

terization coefficients become the decision variables in the finite-dimensional optimization

problem.

To solve the problem formulated in Eq. 1.10, spatial and temporal parameterization of

the state variables x takes place within the reservoir simulator, where control variables u

temporal parameterization occurs on the optimization level.

In order to cast the solution space into a reduced space, for each well j we perform a

linear combination of basis functions, denoted as Φ(tk) , as follows:

∀tk ∈ {t0, . . . , tNsim}, u j(tk)≈ ũ j(tk) =
NΦ

∑
i=1

wi, jΦi, j(tk), (1.11)

where w is a weight value determined by the optimizer (that is, w values become the

decision variables). Φ(tk) will be evaluated for each simulation time step tk on the bounded

interval {t0, . . . , tNsim}.

Let us now denote ũ(tk) =
[
ũ1(tk), . . . , ũ j(tk), . . . , ũNw(tk)

]
as the vector contains ap-

proximations for all wells at each time step. By inserting Eq. 1.11 into Eq. 1.10, we
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project the infinite dimensional optimization problem into a finite dimension (of a degree

NΦ ·Nw) optimization problem. Taking into account the simulation time discretization, we

get a new problem formulation, as described by Eq. 1.12.

Note that the integral from Eq. 1.10 was replaced in Eq. 1.12 by a summation over

Nsim simulation time steps, such that the flow rates are now associated with discrete values

with an index k. In this formulation, there is a finite number, n, of decision variables.

max
wi, j

Ψ(x(tNsim), tNsim)+
Nsim

∑
k=0

L(x(tk), ũ(tk), tk) (1.12a)

subject to

ẋ(tk) = f1(x(tk))+ f2(x(tk))ũ(tk) (1.12b)

ũ j(tk) =
NΦ

∑
i=1

wi, jΦi, j(tk),∀ j ∈ {1, . . . ,Nw} (1.12c)

wlb ≤ wi, j ≤ wub (1.12d)

x(0) = x0. (1.12e)

A common approach to parameterize a well-control is by the so-called Piece-Wise-

Constant (PWC), or piece-wise zero order polynomial approximation. This method speci-

fies a predefined number of intervals along a time horizon, and the goal is to find the opti-

mal constant value for each interval. Figure 1.1 shows an example of piece-wise zero order

polynomial approximation. This method is used in almost all published work on well-

control production optimization ([5, 28, 29, 30, 31], to list a few examples out of many).

There are also several PWC approaches that design an optimization scheme that dynami-

cally adjusts the number of intervals throughout the optimization process [32, 33, 34].
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Figure 1.1: Example of piece-wise zero order polynomial approximation often used in the
literature.

1.2 Motivation for Polynomial Approximation

Let us introduce a synthetic, two-dimensional and channelized reservoir. The model

includes 51 by 51 grids consisting of four producing wells and one injector arranged in

a five-spot pattern. The grid cell dimensions are 20ft x 20ft x 20ft. Fig. 1.2a shows the

permeability distribution as well as the five wells. There are three permeability sub-regions

in three distinct geological facies: the original low-permeability geological environment

(Facies 1), east-west moderate permeability channels formed by ancient rivers (Facies 2)

and newer high-permeability channels whose flow eroded the environment from north to

south (Facies 3). Fig. 1.2b provides a table with the minimum, maximum and average

permeability values for each sub-region as well as the homogeneous assigned porosity.

The initial water saturation is 0.2 (equal to residual water saturation).
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(a)

Min
Perm
(mD)

Max
Perm
(mD)

Ave.
Perm
(mD)

Porosity

Facies
1 100 100 100

Facies
2 102.3 2000 1366.7 0.2

Facies
3 100.2 1000 679.2

(b)

Figure 1.2: (a) Permeability field and wells for the motivating example. (b) Permeability
and porosity ranges for each facies.

We used the flow transport two-phase incompressible solvers Matlab Reservoir Simulation

Toolbox (MRST) as our forward model simulator [10, 35]. Throughout this work, we

controlled all wells by adjusting BHP, so that we determine the optimal BHP for each well

at all the different time intervals. We simulated a one-year production and adjusted the

control every ten days, leading to 185 optimization variables. Throughout this paper, we

considered an oil price of $100 per barrel, produced and injected water treatment costs of

$10 per barrel, and a discount rate of 10%.

We performed the optimization for this example using two approaches: global search

with a parallelized dynamic-neighborhood Particle Swarm Optimization (PSO) algorithm,

as detailed in section 3.2, and local search with the adjoint aggressive-line-search method

MRST implementation [36].

Figure 1.3 shows the best solution found by the two algorithms. We can see that the

global optimizer found a solution with a slightly better NPV with more even water dis-

tribution throughout the reservoir. Though the convergence mechanism and convergence

criteria differ between the two methods, our main goal in this section is to compare the
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Figure 1.3: Best solution found by Left: Local (gradient-based) search and Right: Global
(stochastic) search.

shape of the control trajectory solutions found by each method, rather than the obtained

objective function values.

We can see from Figure 1.3 that while the gradient-based method exhibits a smooth solu-

tion, the stochastic nature of the global optimizer provides an erratic and impractical con-

trol strategy. This control strategy might not be acceptable since such dramatic repeated

changes in the pressure will quickly cause a fatigue to production instruments and will

damage the equipment. Therefore, in developing a new optimization method, it is better

to achieve a smooth and practical solution for the control trajectories, while maintaining

the ability to obtain better NPV values.

The adjoint smooth solution, shown in Figure 1.3, inspires considering a new method,

other than PWC, that will represent each control trajectory with a polynomial function.

Figure1.4 shows the results of fitting this smooth adjoint control trajectories solution to

different polynomial functions (with degrees ranging from one to four). Of course, a better
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(a) u(t) = a0 +a1 · t (b) u(t) = a0 +a1 · t +a2 · t2

(c) u(t) = a0 +a1 · t +a2 · t2 +a3 · t3 (d) u(t) = a0 +a1 · t +a2 · t2 +a3 · t3 +a4 · t4

Figure 1.4: Polynomials functions (red curves) fitted to adjoint gradient-based solution
(blue dots).

fit is observed for higher degrees, as higher order polynomials can capture multimodal

trajectories (for example, see Producer 2 trajectory).

However, it has been repeatedly argued in the literature [37, 38, 31] that the objec-

tive function might have a high plateau with an infinite number of control realizations that

give similar field life-cycle NPV. Hence, it might be possible to find smaller degree control

polynomials amongst the infinite options that leads to the objective function’s high plateau.
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1.3 Scope and Objectives

Following the motivation example in the previous section, and since clearly there is a

lack of published petroleum-related work with higher order polynomial parameterizations,

the scope of this work is to purpose novel representation of the control trajectories in

waterflooding optimization problems, using polynomial approximation techniques. We

will compare the proposed methods with global and local optimization algorithms, and by

both fine and reduced order modeling. Eventually, we will consider both deterministic and

probabilistic optimization cases.

Specifically, we look into different polynomial approximation methods, and we go a

great deal further than the common piece-wise zero order polynomial approximation found

in most waterflooding optimization literature. The purposed methods are well suited for

the stochastic global-search method as they produce smooth control trajectories while re-

ducing the solution space size. We demonstrate its efficiency on synthetic two-dimensional

problems and a realistic 3-dimensional problem.

Waterflooding optimal control problems pose computational difficulties not only in the

optimization levels but also at the simulation level. Reduced order modeling techniques

can alleviate the hurdle at the simulation level. In this work, we also contribute with a

novel workflow that combines polynomial approximation with reduced order modeling.

We address first deterministic cases, that is, we use a single model realization to test

the different methods. We perform both stochastic, gradient-free, global-search method

and gradient-based local-search method. Researchers and reservoir engineers often use

gradient-free methods, where the simulation is treated as a black-box. We show that poly-

nomial approximation serves as an efficient tool for the black-box approach executed in a

high-performance computing environment.

Since the true reservoir model is never entirely known, we also consider optimization
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under uncertainty represented by multiple realizations. For that purpose, gradient-free

methods might not be tractable to compute, and one should resort either to an approximate

gradient or gradient-based methods. We choose gradient-based method while contributing

a new adjoint method formulation for polynomial approximation. We purpose a new multi-

objective function with three components, one that maximizes the expected value of all

realizations, and two that maximize the average of distribution tails from both sides.

Our objective in this work is to present the following contributions to the field:

1. To present novel parameterization alternatives, other than commonly used PWC ap-

proach, using polynomial approximation methods.

2. To demonstrate the added values these methods bring when using a "black-box,"

gradient-free, optimization approach:

(a) The purposed methods regulate and smoothen erratic solutions often obtained

by stochastic global-search optimization algorithms, and thus amenable for

practical deployments in the field.

(b) Achieve a reduction in the original solution space size and thus enable efficient

optimization.

3. To formulate and implement the adjoint method for a polynomial approximation that

enables the use of efficient gradient-based methods.

4. To combine control polynomial approximations with reduced order modeling and to

demonstrates the computational virtues of the new suggested workflow.

5. To perform optimization under uncertainty with a scenario-based approach (multiple

geological realizations), and to contribute the following:
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(a) Observation that the addition of more well-control parameters, not only in-

creases the expected objective value but also reduces the associated risk.

(b) To purpose a new objective function that:

i. Considers also the upper tails of the NPV distribution (and not just the

mean and the lower tail as shown in the literature)

ii. Provides flexibility for reserves estimation (P10,P50,P90).

1.4 Dissertation Organization

This dissertation continues as follows: Chapter 2 gives an introduction to polyno-

mial approximation theory, following by a detailed discussion on the different polynomial

approximation methods presented in this work. Next, Chapter 3 describes the global op-

timization method we use, and stress importance of re-parameterization when using the

gradient-free method. This chapter also presents a workflow for gradient-based optimiza-

tion under uncertainty and explains how to acquire the derivative values with the adjoint

method for polynomial approximation. Then, Chapter 4 brings all numerical results of this

work. We start by demonstrating the effect of dimensionality reduction, followed by per-

forming a comparison between gradient-based methods and a gradient-free method. Then,

we compare three different parameterization methods when combining optimization with

reduced order modeling, and we conclude this chapter with results for optimization under

geological uncertainties. Chapter 5 presents conclusions and provides a list of suggested

venues for future scope of study.
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2. POLYNOMIAL APPROXIMATION AND OPTIMIZATION METHODS

In this chapter, we describe the different polynomial approximation methods presented

in this dissertation. We start with a general introduction to polynomial approximation the-

ory, and then we go back to the earlier mentioned piece-wise zero order polynomial ap-

proximation method, this time with a more rigorous formulation. Then, we continue by

bringing two polynomial function approximation approaches, namely, natural polynomi-

als and orthogonal Chebyshev polynomials. We also describe how to obtain a polynomial

approximation with interpolation control method, rather than a function control method,

using cubic spline interpolation. Finally, we conclude by presenting the scaling procedure

we perform for both time and control domains, along with an explanation why this proce-

dure is expected to outperform previous scaling methods presented in the water-flooding

optimization literature.

2.1 Introduction to Polynomial Approximation Theory

Approximation theory is a branch of study in mathematics, concerns with the search

for best approximations to complicated functions by using simpler functions. We use ap-

proximation applications in many aspects of our everyday life. When we take a photo with

our cell phone camera, we approximate the reality with an ensemble of pixels. When we

ask a computer to compute a complicated function such as sin(x) or exp(x), the computer

approximates these by simple basic functions, such as addition and multiplications.

The machines carry these approximations up to a desired resolution or accuracy. Stor-

age capacity and camera quality in our cell phone set a limit on the desired resolution,

whereas, in the case of mathematical function approximations, the underlying computer′s

floating point arithmetic dictates the level of accuracy.

We measure an approximation quality not only by its accuracy but also by its effi-
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ciency. In general, the smaller the number of simpler functions to approximate the more

complicated function, the better. The efficiency can be quantified both in speed and in

(storage) space. The information found in the pixels of a photo are compressed and saved,

for example, as a JPEG file, in which several discrete cosine or wavelet functions encode

and approximate the relevant information and enable efficient data storage [39]. How-

ever, taking too few elements to represent a system would deteriorate the accuracy and the

resolution. Hence, we see a trade-off between efficiency and accuracy, which lead to the

question: How many basic elements are sufficient to approximate the reality?

This dissertation explores several different approaches to approximate solutions to

petroleum engineering optimization problems. Specifically, we will approximate solu-

tions to water-flood optimal control problems which aim at finding the optimal settings of

a well along time. Since the original solution is a continuous function in the time domain

(or piecewise continuous), we can define the original problem as an infinite dimensional

optimization problem.

To illustrate that the problem lives in infinite dimensional space, we add Figure 2.1

which shows a schematic control function of a well valve opening level, as well as a zoom

in into an infinitesimal segment. This continuous function can be divided into infinite

different such infinitesimal segments. In other words, the optimal control function can

take infinite different values along the curve shown in Figure 2.1. Methods derived from

the calculus of variation that finds infinite different optimal values are often impractical

[40], and thus we cast the problem into a finite dimensional space by parameterization

schemes which approximate the original solution. Once we define the optimization in

a finite space, we can take advantage of one out of many efficient standard non-linear

optimization tools to solve the problem.

In this work, we will investigate several approximation methods, and we will test which

leads to better reparameterization of waterflooding optimization problems, both in terms of
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Figure 2.1: Illustration of a continuous control function with infinite different infinitesimal
segments, ∂x. Therefore, the original problem lies within an infinite dimensional space.

accuracy (measured by the quality of an objective function) and by its efficiency (measured

by the rate of convergence).

Researchers have been developed numerous different approximation methods over the

years, including wavelet analysis, compressed sensing and multivariate approximation

[41]. In this dissertation, we will investigate the most fundamental family of approxima-

tion methods− the polynomial approximation. Specifically, we will test the performances

of ordinary polynomials, orthogonal polynomials, especially Chebyshev polynomials, and

Cubic spline polynomials.

2.1.1 Polynomial Approximation: Continuous Functions

One of the most important theories in the development of mathematical analysis as-

serts as follows: we can approximate every continuous function on a bounded interval, up
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to an arbitrary accuracy, by polynomials. This is the famous Weierstrass approximation

theorem, and it is the basis to the theory of approximation of functions of a real variable

[42]. Formally, the theorem reads as follow:

Theorem 1. Weierstrass approximation theorem. Let f be a continuous function on

[−1,1], and let ε > 0 be arbitrary. Then there exists a polynomial p such that | f − p|
∞
< ε ,

where, |·|
∞

is the infinity norm (also known as the supremum norm). In words, the

maximal error between a polynomial p and the original function f is smaller than a positive

arbitrarily small number ε . Karl Weierstrass was 70 years old when he proved that at 1885,

and it was Carl Runge who independently discovered it at about the same time [43].

Usually, approximation theory deals with two types of problems: either seeking for a

function best fitted to a given data set or alternatively, looking for a simpler representation

of a given complicated function. However, is it always the case where we have at hand a

data set or a true function to approximate? The answer is no.

Consider the case of optimization. For example, assume we are looking for a function

of time to generate optimal profit. In this case, we are not given with data to fit, nor with

a known explicit function to approximate. The true shape of the function is not known a

priory, and we need to make some assumptions regarding the behavior of this function.

Since a polynomial can approximate any continuous function, Weierstrass approxima-

tion theorem provides the motivation to look for an optimal polynomial function and to

seek for the optimal solution within a polynomial space.

Note, that Weierstrass approximation theorem requires only continuity, but not differ-

entiability. In fact, Weierstrass provided an example of a function (the Weierstrass func-

tion) that it has the property of being continuous everywhere but differentiable nowhere

[44]. Thus, we can approximate optimal functions with polynomials even when they are

not differentiable.
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In petroleum engineering, we might encounter in many cases optimal functions which

are not differentiable at certain points. This often happens at points where a control func-

tion reach (or leave) a given constraint. In optimization, we call a constraint ”active” when

the optimal solution lies on this constraint. At the transition point, where the constraint

become active, the function might be not differentiable. Figure 2.2 depicts this situation,

where we imposed an upper constraint of 80%, on the same control function from Figure

2.1. In this case, we assume, for example, that specification of some equipment installed

in a well does not allow valve opening above a threshold of 80%.

Figure 2.2: Control function with two-non-differentiable points, when it meets the upper
constraints.

How the differentiability and the smoothness of a function affect the efficiency of its

polynomial approximation? Weierstrass approximation theorem states only that for a given

continuous function there exists a polynomial approximation. Specifically, the polynomial

of degree n will converge to the approximated function as n approaches ∞. However,

the theorem does not tell us the whole story. We still do not know at what value of n the
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approximation would suffice our needs. In different words, what is the smallest polynomial

degree that is sufficient to approximate a function? Recall that for the sake of efficiency

we would like to approximate a function with the fewest elements as possible, and thus

with the smallest polynomial degree as possible.

To answer the question above let us first define a vital property for polynomial approx-

imation, the smoothness property of f (x). We can measure the smoothness of a function

by how many derivatives it has which are continuous. Let us denote this number by ν .

Then, we can define a class of continuously differentiable functions as Cν . For example,

the function |x| is continuous, but its derivative is not continuous (as it is not differentiable

at the origin), and thus it belongs only to the class C0 . On the other hand, the functions

exp(x) and sin(x) are infinite times differentiable and thus belong to the class C∞.

Trefethen in his great book [43] demonstrates that the smoother a function, the faster its

approximants converge when n→∞. In general, if a function is ν time differentiable, then

the error of its approximation by a polynomial of degree n reduces at a rate proportionally

to n−v−1. For example, the continuous function |x| is zero times differentiable, and its

approximation accuracy improves at a rate of O(n−1).1 We demonstrate this in Figure 2.3

and Figure 2.4, where we show the improvement of the approximation as n gets bigger.

We see that the polynomial degree should be very high to approximate a function when it

is not differentiable.

Let us demonstrate it one more time with the two control functions shown in Figure 2.1

and Figure 2.2. The first function is differentiable (and in fact belongs to C∞ as we built

it from sinusoidal functions, and thus it is infinite time differentiable), whereas the second

function is not differentiable at the two transition points where the constraints become

from not active to active, and vice versa.
1The rate of error decay is dependent also on the total variation of a function, defined as the norm of its

derivative. See chapter 7 in (Trefethen, 2013)
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Figure 2.3: The function f (x) = |x| and its fitting to varying degree polynomials

Figure 2.4: Fitting error as a function of a polynomial degree
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In Figure 2.5 and Figure 2.6 we perform polynomial fitting with Chebyshev polyno-

mials to the functions shown in Figure 2.1 and Figure 2.2, respectively. We observe that

the smooth control can be perfectly approximated with an eight-degree polynomial. In the

other case, we observe some oscillations still at a degree of 25 (note that the oscillations

occur around the non-smooth-non-differentiable points). To demonstrate that the function

indeed can be approximated with a polynomial (Weierstrass approximation theorem) we

also plot the perfect approximation with a degree of 100. Note from both non-smooth

cases [Figure 2.3 ( f (x) = |x|) and Figure 2.6 (the constrained control)] the non-smooth-

non-differentiable points suffers from the biggest approximation error.

This results lead to the question: can polynomial approximation be efficient also for

non-differentiable functions. In this work, we devise a simple method to get similar poly-

nomial approximation efficiency to non-smooth functions as smooth ones.

Recall that we generated the control function in Figure 2.6 by truncating the function in

Figure 2.5 (same as Figure 2.1 and Figure 2.2) at the constraint value. Thus, we can simply

approximate the original non-truncated control function and then ”chop” it wherever it

violates some bound constraints before introducing the control into the simulator. We

apply this method in this work

2.1.2 Polynomial Approximation:Non-Continuous Functions

Weierstrass approximation theorem requires a function to be continuous to guarantee

the convergence of its approximation by a polynomial. What if the function is not contin-

uous? Can we still approximate it with a polynomial?

There are several remedies to this non-continuity problem. The most common ap-

proach is, instead of approximating with a single polynomial throughout the finite time

horizon, one can split the horizon into predefined segments and find the optimal polyno-

mial for each segment.
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Figure 2.5: Control function from Figure 2.1 and its fitting to varying degree polynomials.

Figure 2.6: Control function from Figure 2.2 and its fitting to varying degree polynomials.
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This approach of piecewise polynomials is, in fact, the most used approach in an ap-

proximation of well-valve opening level, or its representation as either flow-rate or bottom

hole pressure (BHP). As we already mentioned, most applications found in the literature

use zero order polynomial approximation in each segment, which translated into piece-

wise constant (PWC) parameterization. One of the reasons for its popularity might be that

PWC requires only one variable per each interval, while higher order polynomials require

more variables in each interval. Another important reason for its popularity is the ability

to describe abrupt changes in the well valve position, for example, at a sudden shut-in of a

well.

However, there might be cases, from a practical point of view, that using continu-

ous approximations will still render a good job even when the original function is non-

continuous. This can happen when the polynomial function exhibits a sharp slope, which

when evaluated numerically it becomes non-continuous due to discretization.

2.2 Piecewise Zero Order Polynomial Approximation

As was described in section 1.1.4, the common way to parametrize the control trajec-

tory is by piece-wise constant steps, which imply zero order piecewise polynomials. In

this approach of reservoir flooding optimization, the decision variables values enter di-

rectly as input to the simulator using a surjective function ξ : RNsim → RNu , where each

simulation time step of the total Nsim simulation time steps is associated with one of the

Nu control time intervals. In each interval, the control is kept constant, which render a

piecewise constant approximation of the original continuous control (decision) variable.

To formalize this concept, for each well with index j = {1, . . . ,Nw}, we can obtain a

piecewise constant parameterization over Nu intervals of equal duration h =
Tf
Nu

. The basis

function are defined as:
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∀k ∈ {0, . . . ,Nsim},∀i ∈ {1, . . . ,Nu},∀ j ∈ {1, . . . ,Nw},

Φ
PWC
i, j (tk) =


t0
k = 1, if (i−1)h≤ tk ≤ ih

0, otherwise,

(2.1)

where t0
k = 1 denotes the zero order polynomial basis function.

By applying a linear combination of basis functions ΦPWC
1 (tk),ΦPWC

2 (tk), . . .ΦPWC
Nu

(tk),

the control of each well j is approximated as follow:

u j(tk)≈ ũ j(tk) =
Nu

∑
i=1

ai, jΦ
PWC
i, j (tk), (2.2)

where that equality u j(tk) = ũ j(tk) holds when Nu→ ∞.

Again, we note ũ(tk) =
[
ũ1(tk), . . . , ũ j(tk), . . . , ũNw(tk)

]
as the vector contains approxi-

mations for all the wells at every time step. Then, the new optimization problem will take

the following form:

max
ai, j

Ψ(x(Nsim),Nsim)+
k=Nsim

∑
k=0

L(x(tk), ũ(tk), tk) (2.3a)

subject to

ẋ(tk) = f1(x(tk))+ f2(x(tk))ũ(tk), ∀tk ∈ RNsim (2.3b)

ũ(tk) =
Nu

∑
i=1

ai, jΦ
PWC
i, j (tk), ∀ j ∈ {1, . . . ,Nw} (2.3c)

ulb ≤ ai, j ≤ uub (2.3d)

x(0) = x0. (2.3e)
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2.3 Natural Polynomial Approximation

Following the earlier discussion we know that if a control function is continuous, it has

a polynomial representation. Then, instead of optimizing the control values at different

time steps, we can search for optimal coefficients to construct one polynomial function

describing the control over time.

The main advantage of this approach is that the optimization dimension is decoupled

from the reservoir simulation time discretization, and a fine control approximation can be

optimized only with a few optimization (decision) variables. This cardinality reduction of

the decision variables set gets important, as optimization algorithms might not converge

in a reasonable time when the number of variables grows unbounded [45].

Let us denote p(tk) j as the control polynomial function for well j, evaluated at discrete

time steps tk. We can construct this polynomial p(tk) j with different families of basis

functions, as we described in Eq. 1.11, as we discuss below.

The most basic polynomial representation is the natural polynomial with the simple

basis function shown below:

∀k ∈ {0, . . . ,Nsim} ∈,∀i ∈ {1, . . . ,N p
nat},∀ j ∈ {1, . . . ,Nw},

Φ
Pnat
i, j (tk) = t i−1

k

(2.4)

where i− 1 denotes the degree of each natural polynomial basis function, and N p
nat − 1

denotes the degree of the resulted polynomial after applying a linear combination of basis

functions, as follow:

u j(tk)≈ ũ j(tk) =
N p

nat

∑
i=1

cnat
i, j Φ

Pnat
i, j (tk), (2.5)

where that equality u j(tk) = ũ j(tk) holds when N p
nat → ∞, if the control is continuous.

Again, we note ũ(tk) =
[
ũ1(tk), . . . , ũ j(tk), . . . , ũN p

nat
(tk)
]

as the vector contains approx-
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imations for all the wells at every time step. Then, the new optimization problem will take

the following form:

max
cnat

i, j

Ψ(x(Nsim),Nsim)+
k=Nsim

∑
k=0

L(x(tk), ũ(tk), tk) (2.6a)

subject to

ẋ(tk) = f1(x(tk))+ f2(x(tk))ũ(tk), ∀tk ∈ RNsim (2.6b)

ũ(tk) =
Nu

∑
i=1

cnat
i, j Φ

Pnat
i, j (tk), ∀ j ∈ {1, . . . ,Nw} (2.6c)

−1≤ cnat
i, j ≤ 1 (2.6d)

ulb ≤ cnat
i, j ≤ uub (2.6e)

x(0) = x0. (2.6f)

See a further discussion on the constraints shown in Eqs. ??, in section 2.6.

2.4 Orthogonal Chebyshev Polynomial Approximation

The natural form of the polynomial might be inefficient during an optimization since

all the monomials look very similar on [0,1], such that large changes in the polynomial

coefficients yield only small changes in the control [46].

Therefore, in this work, we consider orthogonal polynomial basis functions, which

provide more variability and efficient search during the optimization. Some examples

from the optimal control literature are Lagrange Polynomials [47], Legendre polynomials

[25] and Chebyshev polynomials [48]. The latter is also our choice in this work.

Our choice of Chebyshev polynomials stemmed from an inspection of their image on

the support [−1,1]. By scaling both times and controls coordinates to the box [−1,1]×

[−1,1] (see later section 2.6), the Chebyshev polynomials of the first kind are promising

29



candidates as the image is bounded and pass through the whole range of value in this

box. We illustrate that in Figure 2.7 where we present the first seven natural and eight

Chebyshev basis functions. Note that indeed all monomials look very similar on [0,1],

while all the similarity on [−1,0] is between odd and even degree, separately. On the other

hand, Chebyshev basis functions are significantly different from each other.

Figure 2.7: Comparison of Monomial basis functions and Chebyshev basis functions.

The Chebyshev polynomials of the first kind are defined as follow:

Tn(x) = cos(n ·arccos(x)), (2.7)

which take the following recursion form:

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)−Tn−2(x). (2.8)

These polynomials are orthogonal on the interval −1 ≤ x ≤ 1 with respect to the fol-

lowing weight function:
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w(x) =
1√

1− x2
, (2.9)

such that:

1
σn

∫ 1

−1
Tn(x)Tm(x)w(x)dx = δn,m =


0 i f n 6= m

1 otherwise,
(2.10)

where σn is a scaling factor:

σn =


π, m = n = 0

π

2 , m = n 6= 0
(2.11)

Note that the integral bounds in Eq. 2.11 are [−1,1], and thus we perform time scaling,

as explained in section 2.6. Using the trigonometrical definition from Eq. 2.7, we can

describe the Chebyshev control parameterization as follow:

∀k ∈ {0, . . . ,Nsim} ∈,∀i ∈ {1, . . . ,N p
cheb},∀ j ∈ {1, . . . ,Nw},

Φ
Pcheb
i, j (tk) = cos(i ·arccos(tk))

(2.12)

where NP
cheb−1 denotes the degree of the resulted polynomial after applying a linear com-

bination of basis functions, as follow:

u j(tk)≈ ũ j(tk) =
NP

cheb

∑
i=1

ccheb
i, j Φ

Pcheb
i, j (tk), (2.13)

where that equality u j(tk) = ũ j(tk) holds when NP
cheb→ ∞, if the control is continuous.

Figure 2.8 demonstrates the control and time scaled box with three polynomials re-

sulted from a linear combination of Chebyshev polynomials shown in Eq. 2.13. in this

work ,we let the weight coefficients ccheb
i, j to lives in the range [−1,1]. Note that with
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this choice the trajectories might get slightly out of bounds to enable bang-singular con-

trol (which in this case the control is set by the simulator to the nearest boundary to the

polynomial curve).

Figure 2.8: Demonstration of the control and time scaled box with three polynomials
resulted from a linear combination of Chebyshev polynomials

Again, we note ũ(tk) =
[
ũ1(tk), . . . , ũ j(tk), . . . , ũNP

cheb
(tk)
]

as the vector contains approx-

imations for all the wells at every time step. Then, the new optimization problem will take

the following form:
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max
ccheb

i, j

Ψ(x(Nsim),Nsim)+
k=Nsim

∑
k=0

L(x(tk), ũ(tk), tk) (2.14a)

subject to

ẋ(tk) = f1(x(tk))+ f2(x(tk))ũ(tk), ∀tk ∈ RNsim (2.14b)

ũ(tk) =
Nu

∑
i=1

ccheb
i, j Φ

Pcheb
i, j (tk), ∀ j ∈ {1, . . . ,Nw} (2.14c)

−1≤ ccheb
i, j ≤ 1 (2.14d)

ulb ≤ ccheb
i, j ≤ uub (2.14e)

x(0) = x0. (2.14f)

2.5 Piecewise Polynomial Approximation by Spline Interpolation

In the previous section, the bounds on the polynomial coefficients cp
i. j were chosen

heuristically. A more natural choice for decision variables’ bounds is obtained when us-

ing a polynomial-control representation using piecewise polynomial interpolation. In this

case, the decision variables are bounded are the interpolation points, sampled from the

original solution space. Some examples of interpolated curves used in the optimal control

literature are B-spline functions [49] and Bézier curves [50]. The advantages of piecewise

polynomial over a polynomial interpolation in terms of numerical stability is well-known

[51, 52].

Our choice here is cubic spline interpolation with a not-a-knot condition (for details

see [51]) . Cubic spline interpolation guarantees continuity up to the second derivative

and thus impose a smooth control trajectory that might be beneficial from a production

engineering point of view [34].

Similar to section 2.2, for each well with index j = {1, . . . ,Nw}, we shall devide the
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time horizon into intervals of equal duration h =
Tf

Nz−1 . The basis function are defined as:

∀k ∈ {0, . . . ,Nsim},∀i ∈ {2, . . . ,Nz},∀ j ∈ {1, . . . ,Nw},

Ωi, j(z j, tk) =


γ0,i, j + γ1,i, jtk + γ2,i, jt2

k + γ3,i, jt3
k , if (i−1)h≤ tk ≤ ih

0, otherwise,

(2.15)

where z j ∈ RNz denotes the vector contains Nz interpolation points for each well j.

A piecewise cubic spline interpolation between the decision variables in the vector z j

determines the coefficient γi, with i ∈ {0,1,2,3}, for each Ωi, j(z j, tk).

Then, the control of each well j is approximated as follow:

u j(tk)≈ ũ j(tk) =
Nz−1

∑
i=1

Ωi, j(z j, tk), (2.16)

where that equality u j(tk) = ũ j(tk) holds when Nz→ ∞, if u j(tk) is continuous.

Again, we note ũ(tk) =
[
ũ1(tk), . . . , ũ j(tk), . . . , ũNw(tk)

]
as the vector contains approxi-

mations for all the wells at every time step. Then, the new optimization problem will take

the following form:
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max
z j

Ψ(x(Nsim),Nsim)+
k=Nsim

∑
k=0

L(x(tk), ũ(tk), tk) (2.17a)

subject to

ẋ(tk) = f1(x(tk))+ f2(x(tk))ũ(tk), ∀tk ∈ RNsim (2.17b)

ũ j(tk) =
Nz−1

∑
i=1

Ωi, j(z j, tk), ∀ j ∈ {1, . . . ,Nw} (2.17c)

ulb ≤ ai, j ≤ uub (2.17d)

x(0) = x0. (2.17e)

Note that the decision variables, in this case, are the interpolation points inside z j

vectors. To the best of our knowledge, this is the first work which treats the waterflooding

production optimization problem with the interpolation concept.

2.6 Time and Control Scaling

Scaling is a very crucial step in any optimization workflow. Here, we would like

to describe how we scaled both time and control to the interval [−1,1]. We then give

some justifications to this normalization compared to other scaling procedure shown in the

literature.

The time and control scaling in this work are as follow:

t̃ = 2 · t− t0
t f inal− t0

−1 (2.18)

ũ = 2 · u−ulb

uub−ulb
−1 (2.19)

where, u again describes the control values (in units of either flow rate or pressure) at each
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time interval, t represents the time passed from production initiation, and ũ and t̃ are the

normalized (and shifted) control and time, respectively.

A polynomial approximation method for production optimization was proposed in

[53]. In this contribution, the author defined the fractional time as the ratio of the length

of time counted from the beginning of operating the well to the total life of the field.

Thus, the independent variable scaled from zero to one. As shown in Eqs. 2.18 and 2.19

here we took a different approach by normalizing both the operation time and the control

values and shifting their scale between -1 and 1. This shifting enables to better capture

multi-modality polynomial behaviors from both sides of the vertical and horizontal axes.

Also, the work in [53] bounded the variable to [−1/n,1/n] where n is the polynomial

degree, to restrict the polynomial to stay within the original control bounds. This restric-

tion allowed the control to be on the boundary at only one point in time (at the start or the

end of the simulation).

However, following the already mentioned works by Sudaryanto and Yortsos [54, 55]

and Zandvliet et al. [22], which show bang-bang or bang-singular solutions, the optimal

control trajectory can be found on the boundary in several intervals. Therefore, we allow

the polynomial to take values out of the [−1,1] normalized-time-controls box, by setting

the hard bounds on the polynomial coefficients to be also [−1,1]. In the case where the

polynomial is indeed above (or below) the hard bounds, we set the control in the simulation

schedule to be on the nearest boundary.

Finally, the range [−1,1] is the natural choice when working with orthogonal polyno-

mials.
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3. OPTIMIZATION METHODS

This chapter discusses the optimization tools and approaches used in this work. We

start with a discussion that brings the virtues and caveats of global-search and local-

search methods, in the context of water-flooding optimization. Specifically, we discuss

gradient-free global-search and gradient-based local-search. We describe the importance

of re-parameterization, especially for global-search methods, to reduce the solution space

dimension.

We then describe the algorithm used for global-search, the particle swarm optimiza-

tion. Next, we describe how to obtain gradients required for local-search gradient-based

optimization (GBO) with the adjoint method, where we contribute with adjoint derivation

for polynomial approximations.

We continue with proposing a new work-flow for incorporating reduced order mod-

eling with the POD-DEIM method, to be tested on different polynomial approximation

parameterization approaches.

Finally, we lay our framework for gradient-based optimization under uncertainty. We

proposed a multi-objective function that includes a new sub-objective function, which

gives weight to the upper distribution tail. The other two sub-objectives, which are the

ones used in the literature, provide weight to the expected value and the lower distribution

tail.

3.1 Global versus Local Search in Production Optimization

The solution of well-control optimization problems is directly tied with the optimiza-

tion solver which will be used. Historically, this optimal control problem was first solved

by a local search with GBO methods, where the gradients are acquired using the adjoint

method [29].
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Local-search GBO methods use derivative information of the simulation to guide the

search, and under certain continuity assumptions of the control profiles, as well as the pre-

requisite that derivatives can be calculated and are not noisy, they are designed to have a

globally convergent behavior towards local stationary points, regardless of the initializa-

tion of the algorithm. A review of globally convergent gradient-based optimization meth-

ods for dynamic process optimization using interior-point methods can be found in [56].

Local gradient-based methods have the advantages of robustness and providing smooth

solutions. However, they require an initial point which might affect the final local solution

obtained. Two local-search alternatives to GBO, shown in the water-flooding optimization

literature: approximate gradients optimization (see e.g., [57]) and local-search gradient-

free optimization (GFO) (see e.g., [58]).

On the other hand, recently there is a growing interest in solving the well-control

production optimization problem in waterflooding scenario using global-search gradient-

free optimization (GFO) methods, usually in conjunction with additional problems such

as well-placement. GFO algorithms are either stochastic and based purely on sampling

[2, 59], or use surrogate approximating functions [60, 61].

GFO methods can be generically used for any simulation since they do not depend on

derivatives. Efficient methods to obtain derivative values, such as the adjoint method (see

later section 3.3), are not always available and its implementation requires a considerable

effort. Note, that even when the adjoint method is available, derivative values may be

damaged if one does not treat constraints handling carefully (see [62]).

Even a more important motivation to use GFO for well-control production optimization

is to optimize well-control variables in conjunction with discrete variables. These are non-

differentiable variables that render the problem as a Mixed Integer Non-Linear Programing

(MINLP) problem. Such reservoir management variables may include well-placement

coordinates, sequence of drilling, well type (drilled as injector, producer, or not drilled
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at all) and number of wells [63]. We note the recent attempt shown in [64] to solve this

general oil-field development problem within a gradient-based framework.

However, the efficiency of GFO methods is limited by the number of decision vari-

ables, and often they tend to lead to non-smooth profiles for well-control optimization

problems. Furthermore, although many of the GFO methods aim at obtaining a global so-

lution, they might converge to poor solutions when the curse of dimensionality is present.

In fact, in a more pragmatic sense, it is often necessary to accept good quality solutions

rather than the sole (global) optimal solution.

Thus, parameterization procedures, which are both efficient and promote smoothness,

are highly desirable for GFO methods. In that sense, polynomial approximation might be

a good choice due to their smooth nature. Next, we discuss the effect of dimensionality

reduction in more details.

3.1.1 Optimization Dimensionality Reduction

In reservoir simulation, the initial control parameterization takes place at the simu-

lation level, where each simulation time step is associated with a correspondent control

value. Then, in the optimization level, one might perform a re-parameterization to search

within a smaller subspace than the original parametrized space. This procedure is essen-

tially a reduction in the optimization search space, and hence we denote it as Optimization

Dimensionality Reduction (ODR).

As we will show later, ODR plays a vital role for gradient-free optimization (GFO)

methods. Below, we compare the solution spaces forms by the base parameterization and

with the two approaches of polynomial approximation, namely function, and interpolation.

By that, we set the stage for the results shown in the next chapter that demonstrates the

importance of ODR to GFO methods.

Note that we distinguish between Model Order Reduction (MOR) and ODR. While
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the first aims at improving the efficiency by accelerating a single forward simulation using

model reduction techniques (see examples in [1, 65, 17, 66, 67, 19]), the second accel-

erates the optimization by a reduced optimization representation. In other words, MOR

methods reduce the cardinality of the simulation variable set, while ODR methods reduce

the cardinality of the optimization variables set. We present work that combines the two

approaches in section 3.4.

We address ODR for the production optimization step of Closed-Loop Reservoir Man-

agement (CLRM) [37, 68, 29] in a water flooding campaign. We consider a fixed location

for all wells, and we strive to find an optimal (or near-optimal) controls-trajectory of each

well. We compare three cases: fine parameterization, with the original parametrized space;

polynomial approximation with Function Control Method (FCM), where we look for opti-

mal (natural) polynomial function coefficients to describe well-controls; and Interpolation

Control Method (ICM), where we look for an optimal piecewise polynomial interpolant,

and the optimization variables in this case are the interpolation points (knots).

In the previous chapter, we formulated the optimization problems arises from the dif-

ferent parameterization approaches. Here, for the sake of clarity, we introduce a more

concise formulation to describe the three box-constrained well-control optimization prob-

lems.

Optimization Problem P1: Fine Parameterization

The original parametrized box-constrained well-control optimization problem, called

here P1, is defined as follows:

P1 : max
u

NPV(u(t)) subject to

 g(u) = 0

u ∈ U
, (3.1)

Let Nw =(Ni+Np) be the total number of injection and production wells, j = 1,2, . . . ,Nw
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denote the well number, and k = 1,2, . . . ,Ntsim denote a time intervals. Each well-control

variable uk, j can be described either by flow rates or by Bottom Hole Pressures with the

corresponding upper and lower bounds. Let us define the vector of well-control variables

as u = (u1,1,u2,1, . . . ,uNtsim ,1, . . . ,uNtsim ,Nw). Then, all the possible u vectors forms the so-

lution space U:

U= {u ∈ RNtsim ·Nw : ulb ≤ u≤ uub}, (3.2)

where the box-constraints vectors inequality follows to definition below,

Definition 3.1.1 (Vector Relation). For two vectors v = (v0, . . . ,vm),w = (w0, . . . ,wm) ∈

Rm we write v≤ w if for every 0≤ i≤ m, vi ≤ wi.

We note that an efficient log transformation can eliminate the hard bounds shown in Eq.

3.1 and Eq. 3.2, transforming the constrained optimization problem to an unconstrained

problem (see [28, 69]). However, this implementation was not considered in this current

work.

The measure for the size of a vector space is its dimension, which is defined as the

cardinality of its basis vectors set. Since all ui, js are linearly independent, the dimension

of U can be defined as follow:

dim(U) = Nw ·Ntsim . (3.3)

Optimization Problem P2: Function Control Method

To achieve dimensionality reduction, while generating smooth and achievable control,

let us assign for each well a polynomial function that describes the control. We use here

natural polynomial representation (see section 2.3), where we use the short notation of

N p = N p
nat (recall that N p−1 denotes the polynomial degree), and denote the polynomial
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coefficients as C = cnat . Eq. 3.4 shows a general form of a polynomial control function

for well j:

ũ j(C0 · · ·Cn, t̃k) =C0 +C1 · t̃k +C2 · t̃k2 + · · ·+Cn · t̃kNp−1, (3.4)

where t̃k is the normalized (discrete) time shown in Eq. 2.18, and ũ j is the normalized

control shown in Eq. 2.19.

Let i = 1,2, . . . ,Np denote the polynomial coefficient index, and define a new well-

control variables vector as c̄ =
(
C1,1,C2,1, . . . ,CNp,1, . . . ,CNp,Nw

)
. In this formulation the

polynomial coefficients, Ci, j, are now the optimization decision variables.

Note that we distinguish between vectors that reside in the original space U and those

which reside in the reduced space P (the polynomial space). Thus, for the sake of nota-

tional clarity, we write x̄ for elements in the space RNpNw and x for elements in RNtsim Nw .

By inserting Eq. 3.4 as additional constraints into Eq. 3.1 and adding hard bounds

constraints for the polynomial coefficients, we arrived at the new problem formulation,

denoted here as P2, as shown in Eq. 3.5.

P2 : max
ā

NPV(u(ā, t)) subject to


g(u) = 0

u(c̄, t) ∈ U

c̄ ∈ P

, (3.5)

where P = {c̄ ∈ RNpNw : c̄lb ≤ c̄ ≤ c̄ub}. Where, again, the box constraints is defined

according to Definition 3.1.1.

Note that the solution space P is a subspace of U. The formulation in Eq. 3.5 indicates

that the number of decision variables is independent of both optimization horizon time and

the number of control intervals. More precisely, we reduce the solution space dimension

by a factor of
Ntsim
Np

as inferred from Eq. 3.6.
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dim(P) = Np ·Nw (3.6)

Although only hard bounds constraints were considered in this work, we mention here

how one can impose smoothness constraints by adding additional constraints to P2 (eq.

3.5). Taking the derivative of the polynomial, as shown in Eq. 3.7, will enable determining

the maximum allowable change in every control interval. This facilitates controlling the

smoothness of the obtained solution.

dũ j(c̄, t)
dt

=
Np

∑
i=1

i · ci · t i−1. (3.7)

Note that for a linear case, the polynomial slope is not time-dependent. Thus, by for-

mulating FCM as a linear control, we might limit the maximum allowable control change

by only setting a hard bound on the coefficient a1 for each well. On the contrary, for FCM

with higher polynomial degrees, the constraints are time dependent and should be intro-

duced as additional inequality constraints in problem P2. A quadratic control requires

imposing linear constraints, and cubic and higher degree PCMs require non-linear con-

straints. However, in this work, we imposed only hard bound constraints, as we want to

test the smoothness of the obtained control trajectories without adding linear and nonlinear

constraints (if using Eq. 3.7).

Optimization Problem P3: Interpolation Control Method

The keen reader might notice that the hard bounds for the functions coefficients in

FCM are determined heuristically. Thus, one can avoid the hurdle of debating which hard

bounds to impose on the coefficients by using piece-wise polynomial interpolation. In this

approach, which we call the Interpolation Control Method (ICM), the decision variables

are control values at selected equidistant points in time. Those variables have the same
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bounds as the original optimization variables. Then, the control is determined based on a

piecewise polynomial interpolation between these points.

In this chapter, among different piece-wise polynomial interpolation methods, we

chose cubic spline interpolation, which requires continuity up to the second derivatives

at the interpolation points (also called knots), and thus yields highly smooth curves. We

used ”not-a-knot” cubic spline, which also requires third derivative continuity at the first

and one before the last points [70, 71].

For Nz selected equidistant points per each well j, we shall denote each selected point

as zi, j, where i = 1,2, . . . ,Nz. Let z̄ = (z1, j,z2, j, . . . ,z j,Nz), and define P3 as

P3 : max
z̄

NPV(u(z̄, t)) subject to


g(u) = 0

u(z̄, t) ∈ U

z̄ ∈ Z

, (3.8)

where Z= {z̄ ∈ RNzNw : z̄lb ≤ z̄≤ z̄ub}.

The new solution space Z is again a subspace of U, and note that we reduce the solution

space dimension again by a factor of Nt/(n+1) as inferred from Eq. 3.9.

dim(Z) = NzNw, (3.9)

were we reduce the solution space dimension by a factor of
Ntsim

Nz
.

At this point, it should be mentioned that using either methods, FCM or ICM, the size

of the optimization problem is going to remain the same even if the simulation control

time-step is decreased. However, decreasing the simulation control time-step would in-

crease the computational time of a single forward model and enable us to obtain a more

detailed control scheme. Unlike several well-control parameterization approaches pre-

sented in the literature, the number of FCM and ICM parameters stay constant throughout
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the optimization process, which facilitates a simpler implementation. Next, we show two

application examples.

3.2 Gradient-Free Optimization Using Particle Swarm Optimization

The Particle Swarm Optimization (PSO) method is a population based stochastic op-

timization technique developed by Dr. Eberhart and Dr. Kennedy in 1995 [59], inspired

by social behavior of bird flocking or fish schooling. PSO shares many similarities with

evolutionary computation techniques such as Genetic Algorithms (GA). The system is

initialized with a population of random solutions and searches for optima by updating

generations. However, unlike GA, PSO has no evolution operators such as crossover and

mutation.

In the PSO each particle carries memory through the iterations of his own best loca-

tion it has found so far ("cognition" part) and the best location found so far in the whole

swarm, or in the currently defined neighborhood ("social part"). Those best locations are

the optimum particles. In PSO, the potential solutions (the particles) fly through the prob-

lem space by following the current optimum particles. The particle swarm optimization

concept consists of, at each time step, changing the velocity of (accelerating) each particle

toward optimum particles.

PSO has been successfully applied in many research and application areas. It is demon-

strated that PSO gets better results in a faster and cheaper way compared with other meth-

ods. Another reason that PSO is attractive is that there are few parameters to adjust [72].

This work utilized the PSO implementations provided with the Global Optimization

Toolbox in Matlab [73]. We used the default parameters unless we specified otherwise.

The optimization algorithm is described in details in Figure 3.1 (modified version of the

documentation shown in [74].).

This PSO version has a variable neighborhood size and variable inertia magnitude. In
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Figure 3.1: Pseudo-code for PSO maximization with a dynamic neighborhood (adopted
from Matlab documantaion).
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each iteration, each particle has a location (defined by its vector values) and a velocity.

The velocity updating equation is the core of the PSO algorithm. The equation updates

the new velocity, which carries each particle from one location (a feasible solution) to a

neighboring location (a neighbor feasible solution).

As can be seen in the pseudo-code, the algorithm combines meta-heuristic features

with local search approach. A particle is "attracted" to the best solution found by him and

to the best solution found by his current dynamic-neighborhood, M. Thus, the local search

here can be viewed as "attraction" to the good quality solutions.

However, at the same time, the algorithm introduces few variables that add stochastic

search which might explore meta-heuristically the new areas. These variables are rand1

and rand2, that add random effect to each source of attraction.

Additional global exploration is achieved by adaptively changing the inertia parameter,

I, and the dynamic neighborhood M, according to the optimization process. For example,

once a better solution is found, the neighborhood is set to its minimum size. Thus, a parti-

cle can be attracted to a direction, which might be very different than a direction achieved,

if the total swarm was considered as the neighborhood. This dynamical neighborhood ap-

proach was not presented in several previous works that utilized PSO to solve the problem

under consideration.

Construction heuristic refers to the first ensemble of guesses that constitute the first

location of each particle in the swarm, and it is the zeroth iteration of the optimization

process. The construction heuristic of the particle swarm algorithm starts by creating the

initial set of solutions (particles) and assigning each one of them initial velocities (steps 2

and 3 in Figure 3.1).

The algorithm has the capability of getting user supplied particles and creates the rest

of the particles at random uniformly within bounds. This provides a sort of greedy ran-

domized construction capability. However, in the current work, all the particles have been
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randomly initialized, where a greedy creation of particles can be introduced in future work.

Greedy criteria can be based, for example, on engineering and geological reasoning.

Let us note the number of design variables as nvars, their upper bound as ub and lower

bound as lb. The random initialization creates for particle i a position x(i), which is a row

vector with nvars elements. If any component of x is outside a bound, algorithm set it

equal to that bound.

Table 3.1: Parameter values used in both examples for the Particle Swarm Optimization
algorithm

Example 1 Example 2

Function Tolerance 10−6 10−4

stallIterLimit 20 12
K 30

nFrac 0.25
inertiaRange (0.1,1.1)

c1, c2 1.49

3.3 Adjoint Method for Polynomial Approximation

One of the key steps in designing a gradient-based optimization workflow is to assure

efficient calculation of the objective function’s gradients with respect to the control vari-

ables. Gradient computation is often not feasible analytically when the objective function

is related to the control variable through a numerical simulation, and thus gradients are

evaluated numerically.

The adjoint method is probably the most efficient method to obtain gradients numer-

ically. The common example for its efficiency is by comparison to the finite-difference

method: while the finite difference requires n+ 1 simulation runs to evaluate gradients
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with respect to n control variables, the adjoint only requires one forward simulation run

and one backward run.

Many published works demonstrated applications of the adjoint method for the water-

flooding production optimization problem [37, 29, 5, 22, 1, 27]. As the adjoint method

gained popularity, it was only natural that adjoint equations have been implemented in

several simulators at recent years. Eclipse 300 [75], MRST [76] and AD-GPRS [29, 30]

are examples for simulators with an adjoint capability, that enables the user to efficiently

obtain gradients of defined objective function with respect to control variables.

To the best of our knowledge, all previous works performed the adjoint method only

with respect to zero order polynomial parameterization, i.e., to the traditional piece-wise

constant (PWC) control steps. Usually, the gradients are provided for each forward simu-

lation time step. Then, in the simple case of PWC, one simply sums up all the gradients

values of all simulation time steps that belongs to the same control time step.

In this work, we explore adjoint-gradients computation with respect to higher degree

polynomials, and, in general, to an arbitrary parameterization by a linear combination of

basis functions. We show how to obtain the gradients with respect to the linear combina-

tion coefficients, using the adjoint simulator output.

We start with writing the optimization problem shown in Eq. 1.10 in a discrete form,

taking into consideration, for now, only the initial values and PDE constraints. For better

exposition, we assume no terminal cost function Ψ(xNsim). We arrange all variables into

one side to form a residual, and by using discrete time steps n, the problem takes the

following form:
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max
un

J =
Nsim

∑
n=0

Ln(xn,un) (3.10a)

subject to

r(xn,xn−1,un) = 0, (3.10b)

Now, we can adjoin all constraints into an augmented objective function, using the

Lagrange multiplier method:

Jaug =
Nsim

∑
n=0

(
Ln(xn,un)+λ

T
n r(xn,xn−1,un)

)
(3.11)

A necessary condition for optimality for both the objective function in Eq. 3.10 and

the augmented function in Eq. 3.11, is that the first variation of Jaug is zero (δJaug = 0)

[77].

Using the chain rule, and after some variables grouping, δJaug can be written as:

δJaug (xn,xn−1,un,λn+1,λn) =

Nsim

∑
n=0

(
∂L(xn,un)

∂xn
+λT

n
∂ r(xn,xn−1,un)

∂xn
+λT

n+1
∂ r(xn+1,xn,un+1)

∂xn

)
δxn+

Nsim

∑
n=0

(
∂L(xn,un)

∂un
+λT

n+1
∂ r(xn+1,xn,un+1)

∂un

)
δun+

Nsim

∑
n=0

r(xn+1,xn,un+1)δλ
T
n+1,

(3.12)

Note that since the variations of xn,un,and λn are independent of one another, each of

the three summation terms must vanish for optimality [77]. The last summation term is

zero by the residual definition of the reservoir simulation equations. Thus we left with two
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summation terms. As we further explain below, the first remaining term is used to obtain

the Lagrange multipliers, and the second is immediately utilized to compute the required

gradients.

For gradient-based optimization, we need the gradients of the objective function with

respect to the control variables un. This information is found inside the second summation

term in Eq. 3.12 that describes the variation of the objective function as a result of the

perturbation δun. Specifically, the required gradients are as follows:

dJ
dun

=
dJaug

dun
=

∂L(xn,un)

∂un
+λT

n+1
∂ r(xn+1,xn,un+1)

∂un
(3.13)

The two Jacobian matrices ∂L
∂u and ∂ r

∂u (written here without subscripts), can be calcu-

lated either analytically [78] or by means of automatic differentiation [79]1.

The vector of Lagrange multipliers λT
n+1 is obtained form the adjoint equations. These

equation are resulted from the first summation term in Eq. 3.12. We can choose λT
n+1 in

such a way that the entire first summation term will be equal to zero as required by the

optimality condition. Thus, for each time step n, we solve:

∂L(xn,un)

∂xn
+λT

n
∂ r(xn,xn−1,un)

∂xn
+λT

n+1
∂ r(xn+1,xn,un+1)

∂xn
= 0. (3.14)

This is a linear system of equations solved backward for λT
n :

λT
n =−

(
∂L(xn,un)

∂xn
+λT

n+1
∂ r(xn+1,xn,un+1)

∂xn

)(
∂ r(xn,xn−1,un)

∂xn

)−1

, (3.15)

where we assume λT
Nsim

= 0 at the last time step.

1In MRST, the well controls appear as linear combinations of states, and thus, the objective J is a function
of states only, and the partial derivative ∂ r

∂u becomes zero except for a small identity block resulted from the
control equations [79].
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We are now interested in finding the gradients with respect to the coefficients of the

linear combination parameterization. This can easily be done by the chain rule as we

describe below.

First, we shall define the parameterization for control u of each well j at each time step

n, as a linear combination of Np basis functions Φ:

∀ j ∈ {1, . . . ,Nw},∀n ∈ {0, . . . ,Nsim}, u j,n =


ulb

j , ∑
Np
i=0 wi, jΦi, j,n ≤ ulb

j

uub
j , ∑

Np
i=0 wi, jΦi, j,n ≥ uub

j

∑
Np
i=0 wi, jΦi, j,n, otherwise,

(3.16)

Taking the derivative of u j,n with respect to wi, j, we get:

∀i ∈ {1, . . . ,Np},∀ j ∈ {1, . . . ,Nw},∀n ∈ {0, . . . ,Nsim},

(
∂u j

∂wi, j

)
n
=


0 ∑

Np
i=0 wi, jΦi, j,n ≤ ulb

j

0 ∑
Np
i=0 wi, jΦi, j,n ≥ uub

j

Φi, j,n otherwise,

(3.17)

.

Summing up all contributions from all time steps and by using the chain rule we get:

dJ
dwi, j

=
Nsim

∑
n=0

(
dJ
du j

∂u j

∂wi, j

)
n

(3.18)

Thus, insertion Eqs. 3.13 and 3.17 into Eq. 3.18 yields the desired gradients. From

Eq. 3.17 we can see that at time steps where the control is found on the bounds there is no

contribution to the total gradient value. Note that any scaling or normalization of the time

domain should be performed to the gradients as well.
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Figure 3.2: Implementation test for second order Chebyshev polynomial approximation
(three coefficients per well): Adjoint gradients are compared against numerical finite-
difference gradients. Each curve represents a different well. Horizontal axis: the three
coefficients. Vertical axis: gradients magnitude. The test was performed on the 5-spot
case presented in section 1.2.

Figure 3.2 shows a test of our implementation where the adjoint gradients for Cheby-

shev polynomial approximation are compared against numerical finite-difference gradi-

ents.

3.4 Model Order Reduction

In this work, in addition to fine-scale simulation, we also perform an optimization

with reduced order modeling. We use the POD-DEIM technique for that propose and the

detailed math behind it is provided in Appendix A.
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In short, the fist step of this method requires a construction of a snapshot matrix. This

matrix is generated by the outputs of training simulation runs. Then a SVD is applied to

this matrix to obtain the POD basis functions. The solution is then approximated in terms

of a linear combination of the POD basis functions. However, when POD is applied to a

nonlinear problem, the evaluation of the nonlinear terms require projecting back to the fine

scale solution with similar computational cost as the original system. Thus, Discrete Em-

pirical Interpolation Method is used where one constructs another subspace for reducing

the nonlinear function evaluations [80].

Local search optimization methods are usually used when coupled with POD-based

approaches, since the vector of controls is expected to differ relatively slightly between

consecutive iterations, and thus the POD-based approach can be expected to be accurate for

several iterations. By contrast, consecutive iterations of global stochastic search methods

can differ significantly, such that POD-based methods may not maintain accuracy [37].

However, in this work, we will show an example in which harnessing the stochastic nature

of a global search to train the model leads to accurate results.

3.4.1 Model Order Reduction with On-line Training

The accuracy of the POD-DEIM procedure during the well control optimization pro-

cess is dependent on the quality of the snapshot matrix and hence on the training BHP

profiles. Thus, the training scheme that produces the snapshot matrix is a key factor to the

success of reduced order modeling. A common practice is that well conditions in train-

ing should correspond as closely as possible to those encountered during the optimization

[15, 81]. Our approach here is to start the optimization with fine-scale simulation runs

and use them as an online training set. During the optimization process within the PSO

framework, we spend a good amount of effort simulating different particles in parallel.

Thus, assuming the initial swarm profiles will adequately represent the dynamics of the
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Figure 3.3: Work-flow for optimization-online training of POD-DEIM.

reservoir during the subsequent optimization iterations, we use the fine-scale solutions of

these particles from the first optimization iteration to construct the snapshot matrix.

In more detail, in the gradient-free approach using PSO, all simulations state outputs

of the initial random swarm are concatenated into one snapshot matrix. After constructing

the POD-DEIM basis, the optimization proceeds to the second iteration of the reduced

order model. Similarly, in the gradient-based approach, we used an ensemble of random

BHP profiles for training, where the profile which produced the best NPV was chosen as

the initial guess for the optimization procedure. By doing so, we utilize the training effort

also to advance the optimization process.

Figure 3.3 describes this work-flow. From the first block in this flowchart, we can

see that we investigate this method while comparing its performance for different opti-

mization parameterization techniques. Our contribution here is two-fold. First, we pro-

pose a workflow that uses the global-optimization technique (PSO), while all previously

published work used local search methods for POD-based MOR. Secondly, and more im-

portantly, we show that high order polynomial approximation provides more information
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in the snapshot matrix and thus both reduced order modeling and optimization are more

accurate, which lead to higher obtain NPV.

3.5 Optimization Under Uncertainty

So far, we considered only a single reservoir model to maximize the NPV of a water

flooding campaign. However, the true specification of the reservoir is never known, and

a set of geological realizations is the common approach to depicting the geological un-

certainty. Each geological realization might consist of a different permeability or porosity

field, or varying structural features and facies distribution.

Hence, Eq. 1.8 that describes the NPV objective function for the deterministic case,

can now be restated as a function of model parameters field θi, e.g., permeability or poros-

ity, as follow:

J(u,θi) = NPV (u,θi) (3.19)

There are several families of methods for optimization under uncertainty, and one can

find different classifications by different optimization scholars. For examples, Grossman

in his review paper [82], suggests the two categories of robust optimization and stochastic

programming, while Sahinidis [83] suggests a categorization into stochastic programming,

fuzzy programing, and stochastic dynamic programming, where he classifies robust and

probability programming as sub-categories under stochastic programing2.

2The stochastic programming approach models uncertainty through discrete or continuous probability
functions. On the other hand, fuzzy programming describes random parameters and constraints as fuzzy
numbers or fuzzy sets, respectively. In stochastic dynamic programming, one solves a series of sub-problems
in time, where the random parameters follow some distribution that depends only on the current subproblem.

According to Sahinidis, stochastic programming includes recourse (or two-stage) models, robust stochas-
tic programming, and probabilistic (or chance-constrained) models. Recourse models optimize an expected
recourse function by assigning first and second stages variables, where the values of the first are determined
before uncertainty is revealed and the values of the second acts as corrective measures after the first stage
uncertainty has been revealed. Robust optimization methods minimize risks in addition to optimizing the
expected value. In probabilistic methods, the constraints should be satisfied up to a certain probability value.
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Thus, it is only natural that the confusion in terminology has diffused into the petroleum

literature. For example, several published works define robust optimization as merely op-

timizing the expected value, e.g. [84, 85], while in [86] robust optimization refers to

optimizing the worst case scenario. The latter is the more common definition outside

the oil-reservoir engineering literature. Ben-Tal et al., in the book "Robust Optimization"

[87], describe an optimization philosophy that guarantees feasibility to all scenarios. As

a result, robust optimization model returns a solution that is optimal for the worst-case

scenario, and hence it is equivalent to optimizing the worst-case (max-min problem, for

maximization, or min-max problem, for minimization). However, considering the worst

case is often overly conservative.

In oil-reservoir water flooding optimization, it is now customary to solve the problem

with a scenario-based multi-objective optimization approach, where the expected value is

optimized along with additional objective function that minimizes the risk. The additional

function is required since optimizing only the average value does not reduce associated

risk and uncertainty. Several such risk-averse functions have been tested for waterflooding

optimization problems, such as the standard deviation [88, 89, 90], semi-variance [86],

worst-case objective value [90, 89, 86] and conditional value at risk (CVaR) [91, 90, 89,

86]. All these works consistently demonstrated that CVaR serves as a better secondary

objective function to reduce the risk.

For example, minimizing standard deviation as the secondary objective often leads to

a significant NPV reduction for the best cases in a distribution (found in the upper tail of

a distribution). On the other hand, CVaR optimizes the lower tail of the objective function

while less compromising the upper-tail values. Figure 3.4 depicts the concept of CVaR

and VaR measures, which are explained later in more details in section 3.5.3.

However, some deterioration in the upper values is often observed even with CVaR.

Thus, in this work, we propose an additional risk measure, complimentary to CVaR, which
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serves to maximize the upper tail and to improve the best cases values further. The sug-

gested function is a mirror image of CVaR, and we denote it as Conditional Value at

Success(CVaS).

In addition to these terms, CVaR, Mean and CVaS, we investigate the results with

statistical measures, which are more used in the petroleum industry, namely, P10, P50,

and P90. We provide more details below.

3.5.1 Multi-Objective Optimization

Dealing with several objectives turns the problem into a multi-objective optimization

problem, which can be treated as a simple linear combination of the objectives, or as

a two-stage, primary-secondary, optimization approach [90]. The linear combination of

objectives, which is the chosen method in this work, can be define as follow:

Jtot =
Nob j

∑
k=1

ηkJk(u), (3.20)

where Nob j is the number of objective functions and ηk is the predefined weight per each

objective jk. Often, Nob j = 2, where two competitive objectives form a solution that lies

on the so-called pareto front. For example, expected value and CVaR form such a front

(see e.g., [89]).

3.5.2 Expected Value

The objective function of the expected value can be defined as follow:

JE(u) =
Nr

∑
i=1

piJ(u,θi), (3.21)

where pi is the probability associated with a realization scenario i. Assuming uniform

distribution of the geological model realizations, we get:

58



JE(u) =
1
Nr

Nr

∑
i=1

J(u,θi). (3.22)

Recalling that u is a function of parameters w j, (see Eq. 3.18), we can compute the

expected value of the gradient in a similar manner:

dJE

dw j
=

1
Nr

Nr

∑
i=1

dJ(u,θi)

dw j
. (3.23)

3.5.3 Conditional Value-at-Risk

Conditional Value-at-Risk (CVaR) introduced first in [92], is a popular measure for

managing financial risk. For a given percentage α , CVaR indicates the probability-weighted

avarage of the α−tail of worst cases of a distribution, while Value at Risk (VaR) indicates

the value of the α percentile, as illustrated in Figure 3.4.

Formally, for a random variable X with cumulative gain distribution function FX(Z) =

P{X ≤ z}, the VaR and CVaR of X with α ∈]0,1[ are given as3:

VaRα(X) = max{z|FX(z)≤ α}, (3.24)

CVaRα(X) = E[X |X ≤VaRα(X)]. (3.25)

CVaR has superior mathematical properties over VaR and it is is a coherent risk mea-

sure, while VaR is not (see [92, 93]).

Practically, if we assume again uniform distribution of the geological model realiza-

tions, we can compute the objective CVaR by sorting all J(u,θi) such that J(u,θ1) ≤
3The definition in Eq.3.25 for CVaR holds as long as α does not "split" scenarios. That, is αNr ∈ N.

If αNr is not a natural number, the definition in Eq.3.25 corresponds to CVaR+
α , while CVaRα is defined

differently [93]. We assured that α does not split scenarios in all cases tested in this work.
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Figure 3.4: Illustration of VaR and CVaR for a given distribution. Realizations with cu-
mulative distribution (shaded area) that falls below α constitute the distribution lower tail.
VaR is the highest NPV amongst these realizations, while CVaR is their weighted average.

J(u,θ2)≤ ·· · ≤ J(u,θNr), and compute the average for first αNr objectives, as follow:

JCVaRα
(u) =

1
αNr

αNr

∑
i=1

J(u,θi). (3.26)

We can define the gradients in a similar manner:

dJCVaRα

dw j
=

1
αNr

αNr

∑
i=1

dJ(u,θi)

dw j
. (3.27)
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3.5.4 Conditional Value-at-Success

The objective defined in Eq.3.26 strives to improve the worst cases, while the objective

defined in Eq.3.22 addresses the mean value. Next, we propose an additional measure that

also considers the best cases. Thus, we cal our proposed measure Conditional Value at

Success (CVaS), that accounts for the success in fulfilling the tail of optimistic cases:

Definition 3.5.1 (VaS). For a random variable X with a cumulative gain distribution func-

tion FX(Z) = P{X ≤ z}, and for β ∈]0,1[, the VaSβ is the value

ζβ (X) = min{ζ |FX(ζ )≥ β}. (3.28)

Definition 3.5.2 (CVaS). For a random variable X with a value-at risk ζβ (X), the CVaSβ

is the value

φβ (X) = E[X |X ≥VaRβ (X)]. (3.29)

Since we assume uniform distribution of the geological model realizations, the ex-

pected value is the simple arithmetic mean. Thus, symmetrically to CVaR, let us sort all

J(u,θi) such that J(u,θ1) ≥ J(u,θ2) ≥ ·· · ≥ J(u,θNr), and compute the average for last

βNr realizations, as follow:

JCVaSβ
(u) =

1
βNr

βNr

∑
i=1

J(u,θi). (3.30)

where β is the percentage defines the lower bound of the upper tail.

We can define the gradients in a similar manner:

dJCVaSβ

dw j
=

1
βNr

βNr

∑
i=1

dJ(u,θi)

dw j
. (3.31)
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3.5.5 Total Objective Function

Using Eqs. 3.20, 3.22, 3.26 and 3.30, we can write the following total objective func-

tion:

Jtot = η1JE(u)+η2JCVaRα
(u)+η3JCVaSβ

(u), (3.32)

Taking the derivative of Eq.3.32, and using Eqs. 3.23, 3.27 and 3.31, we can write the

gradient of the total objective as follow:

dJtot

dw j
= η1

dJE

dw j
+η2

dJCVaRα

dw j
+η3

dJCVaSβ

dw j
. (3.33)

Note that only the ratio η1 : η2 : η3 dictates the obtained solution, and not the absolute

value of each weight ηi. For convenience, one can formulate the weights as a convex

combination:

η1 +η2 +η3 = 1, ηi ≥ 0, (3.34)

and reformulate Equation 3.32, as follow:

Jtot = η1JE(u)+η2JCVaRα
(u)+(1−η1−η2)JCVaSβ

(u). (3.35)

Figure 3.5 illustrate the different measure found in the objective function 3.35.

62



Figure 3.5: Illustration of VaR, CVaR, Expected Value (EV), VaS and CVaS for a given
distribution.
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4. NUMERICAL RESULTS

This chapter brings together all results for the computational experiments used to test

the methods developed in chapters 2 and 3. In section 4.1 we demonstrate the importance

of dimensionality reduction to global-search method, while we compare polynomial ap-

proximations with both function and interpolation control methods. In section 4.2, we

compare the performances of gradient-free versus gradient-based methods. Those two

first sections show experiments on a channelized 2-dimensional synthetic reservoir with

inverted-five-spot wells configuration and on a 3-dimensional realistic reservoirs with 25

vertical and horizontal wells.

Then in section 4.3, we present computational results for polynomial approximation

with model order reduction. We demonstrate, on another 2-dimensional synthetic reser-

voir, superior performances of the Chebyshev and Spline polynomial representation over

the PWC parameterization. We conclude with results for optimization under uncertainty

where we show the added value brought our proposed method, using 30 channelized 2-

dimensional synthetic reservoirs.

We used Matlab Reservoir Simulation Toolbox (MRST) for two-phase incompressible

flow [94], detailed in Appendix B. As an exception, in section 4.3 we used an in-house

fully-implicit compressible solver, as described in section 1.1.1.

We conduct all experiments using Texas A&M High Performance Research Comput-

ing facility, which facilitated, through MATLAB Distributed Computing Server, running

30 simulations in parallel, each on a different node. Again, an exception is section 4.3,

where we used our office 8-core machine, which enable 8 simulation in parallel.
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4.1 Optimization Dimensionality Reduction

Results shown in this section were originally published in "Dimensionality Reduc-

tion for Production Optimization Using Polynomial Approximations" by Nadav Sorek,

Eduardo Gildin, Fani Boukouvala, Burcu Beykal and Christodoulos A. Floudas, in Com-

putational Geoscience, 2017, Springer1.

In this section, we demonstrate the importance of ODR to gradient-free optimization

(GFO) methods by polynomial approximation. We compare the fine parameterization with

two polynomial approximation methods, namely, natural polynomials and spline method.

We also show the importance of the scaling procedure.

We tested our proposed method on two cases with increasing complexity. First, we

solved the same two-dimensional problem as in the motivating example. In the second ex-

ample, we solved the realistic UNISIM benchmark [95] based on the Namorado reservoir

from the Campus basin offshore Brazil [96], where we incorporated a total of 25 wells as

implemented in the work shown in [1].

In order to test our method, we performed an optimization procedure for different

polynomial degrees and for different number of interpolation points. We compared the

FCM and ICM results with traditional optimization methods, employing both gradient-

based and gradient-free approaches.

4.1.1 Example 1: Two-Dimensional Model

In the first example, we used the same two-dimensional problem settings as for the

earlier motivating example (see Figure 1.2). We formulated the optimization problems

as shown in Eq. 3.5 and 3.8. We ran the optimization for different polynomial controls

with degrees ranging from one to four (Linear, Quadratic, Cubic and Quartic polynomi-

als) and equivalently, for two, three, four and five interpolation points. We compared the

1Reproduced with permission of Springer. Further reproduction is prohibited without permission.
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performances of different approaches along with a comparison with the traditional control

formulation. We call this traditional formulation as ”Free” control, since the control trajec-

tory is free to have any irregular shape, without being confined to follow any polynomial

trajectory. In Table 4.1 we present the control set cardinality for each method, as followed

from Eq. 3.3 and Eq. 3.6, and dimensionality reduction as a ratio between the Free method

and the ICMs and FCMs. We can see that the problem becomes smaller as the polynomial

degree or the number of interpolation points decrease.

Table 4.1: Control set cardinality and space dimensionality reduction for Example 1

Control Method Control Set
Cardinality

Dimensionality
Reduction Ratio

Linear
10 18.5

Two Points

Quadratic
15 12.33

Three Points

Cubic
20 9.25

Four Points

Quartic
25 7.4

Five Points

Free 185 1.00

We show in Table 4.2 the box constraints used in this work, which are applied for both

Example 1 and next in Example 2. For all cases we used PSO as the global-search algo-

rithm. Since PSO is a stochastic optimizer, we ran the simulation multiple times in order

to obtain statistically meaningful interpretations regarding the robustness of the compared

methods. Each case was run 10 times, each with a different seed random generator.

66



Table 4.2: Variables hard bounds in both example 1 and example 2.

Control
Method

Control
Variables

Units

Injectors
Lower
Bound
Ex.1

Injectors
Upper
Bound
Ex.1

Producers
Lower
Bound
Ex.1

Producers
Upper
Bound
Ex.1

PCM a j,p 1/psia −1 1 −1 1

ICM z j,p psia 2,200 3,000 500 2,100
Free

Control
u j,k

For all gradient free methods, Figure 4.1 and Figure 4.3 show the controls of the best

solution found among the 10 runs. We provide the results in a ”side” view such that the

polynomial shape can be observed. We also provide a ”top” view for the reader who is

more comfortable to this sort of visualization. For both plots we show the Free control

with a bang-bang solution for comparison (though not pure bang-bang, as some values

are not exactly on the boundaries). Note that we can observe the polynomial behavior

between the bounds. Whenever the polynomials went out of bounds, the actual control

was set to the bound value. We can see that even without imposing Eq. 3.7 as a constraint,

the solutions are very smooth and amendable for deployment in the field. It seems that due

to high water cut all solutions drive the controls to gradually minimize the draw-down as

can be inferred from the decreasing distance between the injector and producers curves.

Fig. 4.2 and Fig. 4.4 show the optimization progress along the first 100 iterations

for the best, worst, and closest to the mean of all 10 runs. Note to the rapid objective

function (NPV) improvement in the FCM and ICM comparing to the Free method. This

fast improvement is due to efficient search in a small dimension space, which will have a

major impact for larger optimization problems, as we will see in the next example.

Table 4.3 shows the average (mean), best, worst and standard deviations results of all
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Table 4.3: Example 1: Results of 10 optimization runs, (Function tolerance: 10−6 for 20
consecutive stall iterations)

Best Mean Worst Standard Deviation

Control
Method

NPV

$ Millions

Total
Sim.

(Equiv.
Sim.)
Runs

NPV

$ Millions

Total
Sim.

(Equiv.
Sim.)
Runs

NPV

$ Millions

Total
Sim.

(Equiv.
Sim.)
Runs

NPV

$ Thousands

Total
Sim.

(Equiv.
Sim.)
Runs

Linear 17.37
3,720
(124)

17.36
3,894

(129.8)
17.35

2,550
(85)

6.64
1,086.5
(36.22)

Quadratic 17.42
12,120
(404)

17.40
11,190
(373.0)

17.34
10,128
(337.60)

3.57
798.77
(26.63)

Cubic 17.47
12,480
(416)

17.45
13,800
(460.0)

17.43
7560
(252)

14.20
4,529.40
(150.98)

Quartic 17.51
42,150
(1,405)

17.51
29,244
(974)

17.50
28,020
(934)

7.07
6,632.96
(221.10)

Two-
Points

17.22
3,270
(109)

17.21
3,513

(171.1)
17.19

3,360
(112)

9.48
1,127.07
(37.57)

Three-
Points

17.39
9,720
(324)

17.39
7,785

(259.5)
17.39

7,440
(248)

0.62
1,226.48
(40.88)

Four-
Points

17.49
12,420
(414)

17.48
15,399
(513.3)

17.4
9,720
(324)

27.11
5,705.12
(190.17)

Five-
Points

17.53
14,160
(472)

17.52
13,404
(446.8)

17.51
12,180
(406)

10.41
2,429.56
(80.99)

Free 17.74
59,040
(1,968)

17.67
38,295
(1,276.5)

17.62
33,660
(1,222)

38.69
9,264

(308.79)
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Figure 4.1: Example 1 - FCM and Free controls - results of the best objective function
found among all 10 runs.

Figure 4.2: Example 1 - FCM and Free controls - First 100 iterations of the best, worst
and closest to mean runs out of the 10 runs.
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Figure 4.3: Example 1 - ICM and Free controls - results of the best objective function
found among all 10 runs.

Figure 4.4: Example 1 - ICM and Free controls - First 100 iterations of the best, worst and
closest to mean runs out of the 10 runs.
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(a)

(b)

Figure 4.5: UNISIM Benchmark: a) Permeability distribution. b) Completed wells in-
tervals of the four vertical and 10 horizontal producing wells (in red) and 11 horizontal
injection wells (in blue) used for production optimization (following the work in [1]).

10 runs for each method. The results are given in terms of the obtained NPV, the number

of simulations and the number of equivalent simulation runs (equal to one parallelized

PSO iteration). We can see that in addition to dimensionality reduction, the flexibility

and multi-modality of the function is also essential, as inferred from the results shown in

Table 4.3. Note that in all categories (mean, best and worst) among the ICMs and FCMs,

a higher polynomial degree (or number of interpolation points) corresponds to a superior

NPV at convergence, along with larger number of iterations and simulation runs. Thus,

we observe a trade-off between the rate of improvement and the quality of the solution.

4.1.2 Example 2: Three-Dimensional UNISIM-I-D Model

Under the curse of dimensionality paradigm, the idea is that the larger the problem,

the computational cost should be exponentially increased, and thus the effects of a dimen-

sionality reduction should be more evident. Thus, we test ICM and FCM on a much larger
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system, namely the UNISIM-I benchmark.

The original high resolution reference benchmark (with approximately 3.5 million ac-

tive grid blocks) is based (with some modifications) on the structural, petrophysical and

facies model of the Namorado oil field, located in Campos Basin, Brazil [95]. Avansi

and Schiozer [97] upscaled the reference model into a medium-scale reservoir in order to

make the model applicable to reservoir management optimization procedures that require

many simulation calls. In our work, we used this upscaled version of UNSIM-I-D, which

consists of 20 layers, a 100 x 100 x 8 m grid cell resolution, and about 37,000 active grid

blocks (see [98] for further model specifications).

Fig. 4.5a shows the permeability distribution, in a log10 scale, of the UNISM-I-D

model. In addition to the four vertical producing wells provided as part of the bench-

mark, we incorporated additional 10 horizontal producing wells and 11 horizontal injec-

tion wells, as it was done in [1]. That is, we considered in total 25 wells for the production

optimization procedure (see Fig. 4.5b).

We set the simulation horizon time to be 5 years and adjusted the controls each month.

Hence, the control set per each well included 60 decision (design) variables, and the total

cardinality for all 25 wells amounted to 1500 variables for problem P1 as dictated by Eq.

3.3.

As in Example 1, we solved the problem with both P1, P2 and P3 formulations (Eqs.

3.1, 3.5 and 3.8, respectively). Due to relatively long simulation time of this reservoir

model, we limit the number of methods tested. We chose quadratic and cubic polynomials,

and their dimension-equivalent methods, the 3 and 4 points interpolation. Following the

results of Example 1, these methods yield a combination of fast convergence and good

quality solutions.

Following again from the results of the first example, which show excessive number of

simulation runs without significant improvement, we loosen the convergence criteria for
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all methods solved by PSO algorithm from 20 stalled iterations below a relative objective

function change of 10−6 in Example 1, to 12 stalled iterations with a 10−4 threshold (see

Appendix A for more details). In Table 4.4 we present the obtained control set cardinality

for each method, as followed from Eq. 3.3 and Eq. 3.6, and the dimensionality reduction

ratio.

Table 4.4: Control set cardinality and solution space dimensionality reduction for Example
2.

Control Method Control Set
Cardinality

Dimensionality
Reduction Ratio

Quadratic
75 20

Three Points

Cubic
100 15

Four Points

Free 1500 1.00

Due to the large computational cost, we conducted the optimization for each one of the

PSO implementation only three times, each with a different seed random generator. These

mere three optimization repetitions were sufficient to demonstrate the increasing effective-

ness (comparing to Free PSO) of the ICM and FCM when solving a bigger problem. Table

4.5 shows the average (mean), best, worst and standard deviations results of the three runs

of each tested method. As predicted, the improvement in computation effort is consider-

ably more profound in a larger scale problem. While the Free method used an excessive

number of simulation runs and did not converge within the optimization time limitation

(36 hours), the FCMs and ICMs quickly converged to a considerable higher value.
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Table 4.5: Example 2: Results of 10 optimization runs, (Function tolerance: 10−4 for 12
consecutive stall iterations)

Best Mean Worst Standard Deviation

Control
Method

NPV

$ Millions

Total
Sim.

(Equiv.
Sim.)
Runs

NPV

$ Millions

Total
Sim.

(Equiv.
Sim.)
Runs

NPV

$ Millions

Total
Sim.

(Equiv.
Sim.)
Runs

NPV

$ Thousands

Total
Sim.

(Equiv.
Sim.)
Runs

Quadratic 17.57
5,220
(174)

17.47
4,190

(139.67)
17.33

4,410
(147)

122.16
1,155.8
(38.53)

Cubic 17.67
4,410
(147)

17.60
5,140

(171.33)
17.48

2,940
(98)

100.94
725.8

(24.19)

3
Points

17.58
3510
(117)

17.53
3,660

(122.00)
17.48

3,750
(125)

50.04
130.77
(4.36)

4
Points

17.68
4,680
(156)

17.65
4,830

(161.00)
17.62

4,980
(166)

42.96
212.1
(7.1)

Free 15.94a 18,915
(630.5)

16.09a 18,960
(632)

15.80a 18,870
(629)

145.0
45.00b

(1.5)b

a Optimization ended due to maximum allowable execution time: 36 hours. All other
values in the table were obtained within less than 12 hours.

b Following a, all optimization had approximately same number of iterations, and thus
low standard deviation.
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4.1.3 Dimensionality Reduction: Results Conclusions

In this chapter we demonstrated the importance of optimization dimensionality reduc-

tion to Gradient Free Optimization Method. We used Particle Swarm Optimization as

the gradient-free optimizer in a high performance computing environment, and provided

two parametrization procedures for water-flooding production optimization problems by

projecting the original infinite dimensional controls space into a polynomial subspace.

The goal of these parametrization procedures is twofold: acceleration of a gradient-

free optimization process and leading the controls to gain smooth solutions, which might

be required from a production engineering point of view. We named our polynomial ap-

proximation approaches as Functional Control Method (FCM) and Interpolation Control

Method (ICM). In the first method, the FCM, the (normalized) controls of each well are

represented by a polynomial function with a normalized time as its variable. In the sec-

ond method, the ICM, piecewise cubic polynomials are obtained by a ”not-a-knot” smooth

spline interpolation between equidistant points in time. The optimization variables are ei-

ther the polynomial coefficients, or the values sampled from the original space (BHP in

this paper) at the selected points for interpolation.

We stressed the importance that any polynomial parametrization should be able to pro-

duce bang-singular solutions. Following this discussion, we showed how we improved

previous FCM formulation shown in the literature by allowing the polynomial to take val-

ues out of the actual bounds. In these cases the control values introduced to the simulator

are the bound values. We also show different normalization procedure, which better cap-

ture the polynomial multi-modality behavior.

We tested our proposed methods on two examples with increasing complexity: a two-

dimensional synthetic channelized reservoir and the realistic three-dimensional UNISIM

benchmark. In the first example, we considered a five spot pattern where we have exten-
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sively tested four different FCMs (and ICMs): linear (2 points), quadratic (3 points), cubic

(4 points) and quartic (5 points). Furthermore, in a second three-dimensional example, we

imposed horizontal and vertical wells (25 in total) where we compared two FCMs (and

two ICMs): quadratic (3 points) and cubic (4 points).

In both examples we saw higher rate of objective function growth when optimizing

over a reduced space. The difference was more distinct in the realistic case (Example 2),

and demonstrates the importance of re-parameterization.

In both examples, we showed that ICM outperforms FCM. We attributed this behavior

to the well-defined bounds on the decision variables in the ICM when compared to the

FCM. We also observed that the higher the polynomial degree or the number of interpola-

tion points, the higher the obtained objective function value, along with increasing number

of iterations up to convergence. We showed that as the problem scale increases, the contri-

bution of FCM or ICM is greater. In the larger problem, the traditional formulation solved

by PSO did not converge within maximum allowed CPU time, while our approach did

converge to a considerably higher NPV within significantly fewer iterations.

Though ICM outperforms FCM in the experiments shown in this chapter, this might

not always be the case. Other functions than natural polynomials might be used and lead

to better performances. Specifically, orthogonal polynomial basis functions, which will be

tested in the next chapter seems to be a promising avenue.

4.2 Gradient-Based versus Gradient-Free

As mentioned in the introduction, well-control production optimization problems have

been predominantly solved insofar by two approaches: stochastic global-search algorithms

and local-search algorithms. The local search can be either gradient-based [37, 29, 31, 32,

99, 28], approximated-gradient-based [100, 57, 38] or gradient-free [101, 58]. Hybrid

methods of global and local search have been suggested as well [63]. In this Chapter we
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will conduct a comparison between the two approaches. In the local search we use a GBO

method with the adjoint method as implemented in [10].

Although gradient-based methods might converge to a local optimum, they have the

obvious advantage of faster convergence and the ability to cope with considerable large

number of decision variables, if implemented wisely. We obtained the gradients using

MRST adjoint implementation, and compared different optimization methods provided by

the built-in Matlab fmincon function [73]. Based on preliminary tests we performed to the

different algorithms implemented in fmincon, we found three that perform better than the

others. These three constrained optimization algorithms are active-set, interior point with

the BFGS inverse hessian quasi-Newton approximation (IP-BFGS), and interior point with

limited memory BFGS inverse hessian quasi-Newton approximation (IP-LBFGS).

We will use the same two examples from the previous chapter. In both examples we

use PSO algorithm as the global solver. As for the local solver, for Example 1 we compare

only IP-LBFGS, while for Example 2 we compare also IP-BFGS and Active-Set methods.

4.2.1 Example 1: Two-Dimensional Model

Results shown in this section were originally published in "Model Order Reduction and

Control Polynomial Approximation for Well-Control Production Optimization" by Nadav

Sorek, Hardik Zalavadia and Eduardo Gildin, in the proceeding of Reservoir Simulation

Conference, 2017, Society of Petroleum Engineers2.

We show in this section a test case for the three different parametrization methods,

namely PWC, Spline and Chebyshev polynomials, each for ten different levels of parametriza-

tion and for two types of algorithms (gradient-based and gradient-free). In total, we per-

formed 60 optimization runs for this section. Our goal here is to compare the different

parametrization schemes as well as compare gradient-based and gradient-free methods.

2Copyright 2017, Society of Petroleum Engineers, Reservoir Simulation Conference. Reproduced with
permission of SPE. Further reproduction is prohibited without permission.
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For each parameterization, we tested the range from one decision variable per well (con-

stant value) up to ten variables per well. We reiterate that this number translate to the

number of control intervals for PWC, to the number of interpolation points in Spline and

to the number orthogonal polynomial basis in the Chebyshev method.

As for the gradient-based algorithm, we used the Interior Point Optimization (IPOPT)

method with limited memory BFGS (L-BFGS) inverse hessian quasi-Newton approxima-

tion (MathWorks, 2016). Average values were used as initial guess for all gradient-based

optimization runs. For the gradient-free method, we used Particle Swarm Optimization

with dynamic neighborhood and dynamic inertia (MathWorks, 2015), with a swarm of 30

particles.

We assumed a ratio of ten to one between oil revenue and cost of water produced and

injected (100 : 10 : 10$/ST B, respectivly), with an interest rate of 10%. Note that though

these prices might not reflect the actual market prices for a given point in time, same

optimal control solution would be obtained for different prices scenarios as long as the

oil-water price ratios are kept the same, as can be inferred from Eq. 1.8.

The only inequality constraints we considered are hard bounds. Output inequality

constraints are out of the scope of this work. For all producers, we set a lower bound of

500 psia and an upper bound of 2200 psia. For the injector, the upper and lower bounds

are 2100 and 3000 psia, respectively.

Figure 4.6 shows the relative comparison results and Figure 4.7 shows the number of

iterations to convergence for all ten levels of parameterization, and for both gradient-free

using PSO and gradient-based using IPOPT methods. All the values are given in percent-

age relative to the best solution ($17.73 million) obtained by Chebyshev parameterization

with 10 polynomials basis for each well.

The convergence criterion for the PSO was 10 stall iterations without a relative im-

provement above a threshold of 10−6. All the IPOPT cases stopped after the relative norm
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(a) (b)

Figure 4.6: (a) Gradient free (PSO) and (b) gradient based (IPOPT) results for different
numbers of basis functions, normalized to the best solution found ($17.73 million).

of the step (change in the decision variables) reached below a threshold of 10−8. We note

that at the time of convergence with respect to this criterion, all gradient base cases did not

satisfy the first optimality condition. Thus, the algorithm did not guarantee the existence

of KKT conditions, implying the local optimality was not necessarily obtained.

From both Figure 4.6a and Figure 4.6b it is hard to derive a general conclusion which

parameterization methods yield the best results. Note that parameterization level 1 trans-

lates into optimization of one constant value, and thus all methods are equivalent in this

level. In the gradient-free approach, (Figure 5a) PWC achieved the highest objective func-

tion at four levels (3,4,7 and 10), Chebyshev polynomials at three levels (2,5 and 6) and

Spline at two levels (8 and 9) which had the highest value in the gradient free group ($17.67

million). Note that due to the stochastic nature of PSO, testing more realizations per each

level of parameterization might lead to different observations.
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In the gradient-based approach (Figure 4.6b), PWC achieved the highest objective

function values at four levels (4,5,6 and 9) and Chebyshev polynomials at five levels

(2,3,7,8 and 10, the last with the highest value in all 60 runs). Note that Spline method

underperformed at all levels in the gradient-based approach.

(a) (b)

Figure 4.7: (a) Gradient free (PSO) and (b) gradient based (IPOPT) number of iterations.

In terms of computational cost, note from Figure 4.7a that, in the gradient-free ap-

proach, Spline achieves the fastest convergence in most of the cases, and Chebyshev is

the slowest in most of the cases. From Figure 4.7b, we can see that, in the gradient-based

approach PWC converge the fastest in most of the cases, while Spline is the slowest in

most of the cases.

Though local optimality was not proven, we can see from Figure 4.6 how the gradient-

based method consistently outperforms the gradient-free method. We performed tests (not

shown here) with more tight gradient-free convergence criteria, but they yielded only slight

solution improvements with much higher computational cost (number of iterations). We
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note here the work of [2] which had a different observation, that the gradient free methods

outperform SQP gradient based algorithm, where the gradients were acquired via finite

difference derivatives (same as this current work). If the adjoint implementation is avail-

able, the gradient based methods become much more efficient in terms of the number of

simulation runs.

From Figure 4.6b, the gradient-based method consistently produced better objective

values upon adding more variables for most of the cases. PWC is an exception where, in

some cases (in both algorithms) adding more variables causes a decrease in the obtained

solution. Thus, it seems that PWC is more prone to be trapped in the local solutions.

From the previous observation of improving solutions as the number of basis increases,

we reinforce the claim that as the number of basis approaches infinity, the approximation

to the infinite solution turns more accurate.

Figure 4.8 shows the optimal control trajectories obtained by each parametrization

method for a level of 10 variables per well. The control changes every 10 days in these

cases. The results are given for both gradient-free (PSO) and gradient-based (IPOPT)

methods. The control trajectories shown for IPOPT with Chebyshev polynomial approxi-

mation is the solution which produced the highest NPV.

4.2.2 Example 2: Three-Dimensional UNISIM-I-D Model

Results shown in this section were originally published in "Dimensionality Reduc-

tion for Production Optimization Using Polynomial Approximations" by Nadav Sorek,

Eduardo Gildin, Fani Boukouvala, Burcu Beykal and Christodoulos A. Floudas, in Com-

putational Geoscience, 2017, Springer3.

In this section, we go back to the 25 wells UNISIM model shown in Figure 4.5b.

In the previous section we saw that the gradient based method outperforms the gradi-

3Reproduced with permission of Springer. Further reproduction is prohibited without permission.
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Figure 4.8: Optimal controls of level 10 obtained by each parametrization method. Top:
Gradient-free (PSO). Bottom: Gradient-based (IPOPT).

ent free method. In fact, once the gradients are acquired by the adjoint model, gradient

based method can perform well even with thousands of variables. Hence, in this section

we would like to compare adjoint-based method with fine-scale parameterization with

gradient-free method parametrized by polynomial approximation.

Fig. 4.9 shows three comparison of the processes along the optimization iterations.

First, Fig. 4.9a compares the best runs of the gradient-free methods, where we can see how

a relatively high dimensional problem (comparing to Example 1) impacts the optimization

process. Note that the objective functions of ICMs and FCMs increase and converge much

faster than the Free PSO. All ICMs and FCMs converged within less than 12 hours, while

the Free PSO did not converge and terminated after 36 hours with an objective function

values almost 10% lower than the ICMs and FCMs results.
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Fig. 4.9b compares the gradient-based methods. We ran all three methods once from a

single starting point, with a maximum of 1000 iterations. Note that IP-LBFGS performed

far better than the other gradient-based methods (converging faster to a significant higher

NPV). These superior performances of the L-BFGS algorithm is consistent with previous

results for large-scale optimization problems (see [102, 103]).

Figure 4.9: Example 2 - a) Gradient-free methods best runs comparison. b) Gradient-based
methods comparison with final solutions. c) Zoomed-in to the first 200 iterations of the
ICMs, PCMs and the IP-LBFGS methods.

Note also from Fig. 4.9b that IP-BFGS did not converge and the optimization ended

when reached to the maximum allowable number of iterations. On the other hand, the

active-set method had more than 1000 simulation runs, as each iteration might consist of

several simulation runs when a quadratic sub-problem is solved. Active-set converged after

736 iterations (with 1570 simulation runs), when the magnitude of directional derivative

in search direction was less than 2 ·10−6 and maximum constraint violation was less than

10−6. Contrarily, IP-LBFGS converged after only 644 iterations (with 716 simulation
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Figure 4.10: Example 2: Percentage difference between the best solutions of FCMs and
ICMs to IP-LBFGS. Left: Three variables per well. Right: Four variables per well. Mark-
ers and lines are differences before and after convergence, respectively. Final differences
after IP-LBFGS convergence are shown.

runs). Similar to the active-set method, the IP-LBFGS had more simulation runs than

iterations. The reason here is that the interior point algorithm might not accept a particular

step, for example when an attempted step does not decrease the merit function (see [73]).

Thus, the algorithm attempts a new step and perform additional simulation. Comparing

Figs. 4.9a-b, the FCMs and ICMs performed much better than the active-set and the IP-

BFGS.

Fig. 4.9c is a zoom-in to the first 200 iterations of the best methods performed: ICMs,

PCMs and the IP-LBFGS. Note that while the PSO-ICMs and PSO-FCMs grow faster

than the IP-LBFGS initially, the IP-LBFGS gradually exceeds all other methods. Fig.

4.10 shows this process as an instantaneous difference between each ICM or FCM method

to the IP-LBFGS method.

Following the obtained results, some additional remarks are in order:

• If the objective function has indeed a flat plateau, we shall assume in this discussion that
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the optimal solution can be described by the IP-LBFGS solution. Its value as shown

in Fig. 4.9b is $17.81 billions.

• Interestingly, each best run of the dimension-equivalent ICM and FCM converged to

a similar objective function value, and thus to a similar distance from the optimal

solution.

• As can be seen from Fig. 4.10 the difference from the optimal solution is rather small:

1.35% and 0.8% for the cases of 3 and 4 variables per well, respectively.

• Similar to the results of Example 1, a higher degree polynomial or a higher number of

interpolation points, leads to better objective function values as well as an increased

number of iterations up to convergence (see mean results in Table 4.5).

• The FCMs and ICMs objective function values can improve and reach the optimal solu-

tion by adding more variables per well. This can be done iteratively by refining the

controls with adding more interpolation points or polynomial coefficients.

• Tightening the PSO convergence criteria will improve the obtained results.

Figs. 4.11 and 4.12 show the best control results obtained by the FCMs, ICMs, Free

PSO and the gradient-based methods. Again, we can see the erratic control behavior

obtained by the Free PSO (refer to Figs. 4.11e and 4.12e). Interestingly, the FCMs and

ICMs exhibit smoother results than all gradient-based methods, even without imposing

smoothness with Eq. 3.7. From Fig. 4.9 we can see that the two FCMs, two ICMs

and the IP-LBFGS obtained the best objective function values. From Figs. 4.11a-d and

4.11h we observe that these five also share similar control patterns, where most wells

were controlled by the maximum (injectors) or minimum (producers) allowable BHP. In

all five, there are three producers wells (numbered 17, 19 and 21) in which their pressure
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Figure 4.11: Top view: control results obtained by the ICMs, FCMs , Free PSO and the
gradient-based methods.

is increase from minimum to maximum allowable BHP during the simulated 5 years. This

is consistent with the problem of delaying the water breakthrough and minimizing water

cut (as can be seen in Fig. 4.13). Note to the pure bang-bang solution of well 21, and

to the short singular arc of wells 17 and 19 in the solution obtained by IP-LBFGS. Also

from Fig. 4.13 we observed that the project has not yet reached the economic limit. This

proves the need for setting the terminal time as an additional optimization parameter as

previously suggested in [22]. Also, note that with ICM or FCM parametrizations, adding

a terminal time as another decision variable would only increase the dimensionality of the

problem by one. This might, however, require some adjustments to the parallel computing

work-flow, as the simulation durations might vary significantly.

As previously done by others [104, 63], we use the term ”equivalent simulation runs”

as a performance comparison measure. We note here that this comparison criterion is

not "one to one" computational time convertible. That is, one equivalent simulation run
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Figure 4.12: Side view: control results obtained by the ICMs, FCMs , Free PSO and the
gradient-based methods.

Figure 4.13: Best run of 4 points interpolation for Example 2 - water cut, producers oil
and water rates, injector water rates and economics measures
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Table 4.6: Average simulation duration for each method.

Method Average Sim. Duration (Min.)

Act. Set 3.19
4 Points PSO 3.37

Free PSO 3.42
3 Points PSO 3.49
Cubic PSO 3.61
Quad PSO 3.83
IP-BFGS 3.91

IP-LBFGS 4.01

may not have the same duration amongst all methods. Since each PSO simulation (Free,

ICM, or FCM) was executed in parallel on a separate node, we observed some increase

in average simulation time, due to communication between nodes. On the other hand, in

the gradient-based methods, which were run on a single node sequentially, most of the

equivalent simulation runs include one adjoint simulation run in addition to the forward

simulation run. Due to the high control resolution, each adjoint simulation run consumed

a considerable amount of time, about 80% of one forward simulation run time. Thus, the

average simulation duration of the gradient-based and gradient-free methods are rather

similar, as can be observed from Table 4.6.

When comparing to gradient-based method, the FCMs and ICMs performed better

than the active-set and the IP-BFGS. While the ICMs and FCMs grow initially faster than

the IP-LBFGS, the IP-LBFGS gradually exceeded all other methods. The final difference

from the best solution found by IP-LBFGS was in the range of 0.8%-1.35%.
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4.2.3 Gradient-Based versus Gradient-Free: Results Conclusions

In this section, we compared between a gradient free method and a gradient based

method for different parameterization method.

We conclude that our method might serve as a handy tool for ”black-box” and gradient-

free optimization researchers who aim to optimize general field development (which entail

more decision variables such as well-placement). When solving solely the optimal control

problem, our methods can be useful in the absence of an adjoint model. If the adjoint

model is available, our model can serve as a global search phase before switching into

efficient local optimizer (such as IP-LBFGS used in this work) to refine the solution.

4.3 Model Order Reduction with Polynomial Approximation

Results shown in this section were originally published in "Model Order Reduction and

Control Polynomial Approximation for Well-Control Production Optimization" by Nadav

Sorek, Hardik Zalavadia and Eduardo Gildin, in the proceeding of Reservoir Simulation

Conference, 2017, Society of Petroleum Engineers4.

In this section, we test POD-DEIM methodology (as shown in Appendix A) coupled

with control polynomial approximation. We tested three different parameterization meth-

ods: Piece-Wise Constant, Chaebyshev Polynoials and Spline.

4.3.1 Problem Description

The tested model is a modified version of the one shown in [2] . The 2D model used

is a 40×40×1 reservoir (1600 grid blocks) with 4 producers and 1 injector placed in the

channelized area. The model is discretized using Cartesian grid of size 20× 20× 20 f t3.

The porosity of the field is set constant to 0.2. Fig. 4.14 shows the permeability field and

the well locations. Here, we use a black-oil fully implicit simulator which solve Eq. 1.1

4Copyright 2017, Society of Petroleum Engineers, Reservoir Simulation Conference. Reproduced with
permission of SPE. Further reproduction is prohibited without permission.
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during each simulation time step (In this section we used an in house black oil simulator).

As mentioned earlier, we neglect the capillary pressure effects and consider a slightly

compressible flow of oil and water. The initial saturation of oil and water is 0.8 and 0.2,

respectively. The Corey-type relative permeability curves with exponent of 2 are used for

both the fluids.

Figure 4.14: Reservoir permeability for testing POD-DEIM with polynomial approxima-
tion (after [2] )

Initial reservoir pressure is 2100 psia. The injector has an upper bound of 3200 psia

and a lower bound of 2200 psia, while the upper bound for all four producers is set to

90



2100 psia and lower bound to 500 psia. Control time step for each well is 10 days. Oil

price is considered to be 50 $/STB and the water-injection and production costs are each

10 $/STB.

4.3.2 On-line Training

As we explained in section 3.4, the 8 simulation state outputs of the initial random

swarm are concatenated into one snapshot matrix. After constructing the POD-DEIM

basis, the optimization proceeds to the second iteration with the reduced order model.

Similarly, in the gradient-based approach we used 8 random BHP profiles for training,

where the profile which produced the best NPV was chosen as the initial guess for the

optimization procedure. By doing so, we utilize the training effort also to advance the

optimization process.

The snapshot matrix here is a (3200 x 1530) matrix collected from the 8 particles. The

POD basis is constructed using 40 columns from the pressure left projection matrix and

70 columns from saturation left projection matrix. The number of basis for pressure and

saturation are selected to capture 99% of the energy of snapshot matrix (see Fig. 4.15a-

4.15b ). The DEIM greedy algorithm selected 65% cells that need to be used for function

evaluations (see Figure 9c). All optimization and parameterization methods use the same

number of basis and interpolation cells. Here, we do not try to determine the strategies to

reduce the number of interpolation points. This would be a future scope of study.

4.3.3 POD-DEIM Performance for a Representative Case

We will now show a detailed analysis of the POD-DEIM performance. Out of the 6

POD-DEIM optimization runs (3 parameterization methods with 2 different algorithms),

we chose one representative case to analyze its POD-DEIM performance. Our choice is

Chebyshev Polynomial Approximation coupled with PSO. As will be shown in the next

section, Chebyshev method obtained the best results in both optimization search methods.
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(a) (b) (c)

Figure 4.15: a) Pressure and (b) Saturation basis selection for POD and (c) cells selected
for DEIM (in strong colors).

Figure 4.16 shows three training samples from the eight initial random Chebyshev profiles

of four producers and an injector.

Figure 4.16: Three training samples from the initial eight-particles swarm of Chebyshev
profiles.

Next, we validate the accuracy of the reduced order model, by taking the Chebyshev

optimal control from the POD-DEIM optimization as an input and comparing the simula-

tion outputs from both full and reduced order models. As can be seen in the results below,

the POD-DEIM produces accurate results.

Figure 4.17 compares the saturation profiles for the POD-DEIM optimal control at
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three points in time: at the first time-step, after 1 year and after 2 years. The comparison

is between fine scale and reduced scale simulations. It also shows the relative error for

POD-DEIM saturation at these times.

(a) t = 0.01 day
Relative Error = 0.01%

(b) t = 365 days
Relative Error = 1.6%

(c) t = 730 days
Relative Error = 2.7%

Figure 4.17: Top) Saturation profiles from POD-DEIM Chebyshev optimal control using
fine scale simulation and (Below) using the reduced model at different times and their
relative errors.

The oil production and water production rates for the POD-DEIM optimal control us-

ing fine scale and reduced scale simulations are shown in Figs 4.18 and 4.19, respectively,

which show a good agreement in the production rates between the two. The production

rates are off in a few initial time-steps but do not have a large effect on the NPV values

since these time-steps are very fine. Although we can increase the number of saturation

basis to remedy this issue, we found it unnecessary at this point.

We performed similar accuracy analysis to all optimization techniques mentioned and

they show a reasonable accuracy as the Chebyshev results.

In the next section, we perform a different accuracy comparison, where we compare the
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Figure 4.18: Oil production rate from the high fidelity simulation and reduced model
simulation for 4 production wells using the Chebyshev optimal control solution from POD-
DEIM.

optimal solutions obtained by an optimization using a full-order model to an optimization

using a reduced order model.

4.3.4 Comparison: PSO Optimal Control Solutions

In this subsection, we show that global search method such as PSO with POD-DEIM

can obtain reasonable optimization accuracy. For that purpose, we use a relative error

indicator for the control trajectories, as defined below:

ErrorBHP(%) =

∥∥BHPPOD−DEIM−BHPf ine
∥∥∥∥BHPf ine

∥∥ , (4.1)

where, BHPPOD−DEIM is the optimal control obtained from optimization with POD-DEIM

and BHPf ine is the optimal control from fine scale optimization.

Fig. 4.20 shows the relative error, as defined in Eq. 4.1, for the control trajectories

obtained by the PSO algorithm for the Chebyshev control, Spline control and piece-wise
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Figure 4.19: Water production rate from the high fidelity simulation and reduced model
simulation for 4 production wells using the Chebyshev optimal control solution from POD-
DEIM.

Figure 4.20: Control trajectories relative error for a PSO algorithm.
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constant control. Figure 14 shows these optimal control trajectories. As is evident from

these optimal control and relative error plots, the polynomial approximations from POD-

DEIM and fine scale optimization show similar control strategies.

4.3.5 Global versus Local Search with POD-DEIM

In this section, we compare results of all the parameterization methods for optimization

with POD-DEIM and fine scale simulation using gradient-based and gradient-free optimiz-

ers. The NPV from each method and number of iterations to convergence are shown in

the Table 1 and Table 2 using IPOPT and PSO optimizers respectively. We also use the

optimal control obtained from POD-DEIM to calculate NPV in the fine scale simulator

(last columns of the Table 4.7 and Table 4.8).

Table 4.7: NPV and number of iterations for fine scale and reduced scale optimization
using the 3 methods with IPOPT. NPV values are in million USD

Fine Scale POD-DEIM Fine Scale with
POD-DEIM Control

NPV Iterations NPV Iterations NPV

PWC 1.871 92 1.817 87 1.801

Spline 1.87 204 1.864 178 1.846

Chebyshev 1.881 46 1.903 25 1.875

We can see from the tables that POD-DEIM proves to be a viable model reduction

technique for production well control optimization problems especially for Chebyshev

and Spline controls. We can see again that IPOPT outperforms the PSO.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.21: PSO optimal control solutions from POD-DEIM and fine-scale using all three
parameterization methods.
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Table 4.8: NPV and number of iterations for fine scale and reduced scale optimization
using the 3 methods with PSO. NPV values are in million USD

Fine Scale POD-DEIM Fine Scale with
POD-DEIM Control

NPV Iterations NPV Iterations NPV

PWC 1.828 205 1.79 159 1.74

Spline 1.814 413 1.801 446 1.803

Chebyshev 1.84 262 1.878 280 1.839

In Fig. 4.22, we compare the relative errors of the NPV estimated for each parame-

terization method using fine scale and POD-DEIM simulations. The relative NPV error is

computed as follow:

ErrorNPV (%) =

∥∥NPVPOD−DEIM−NPVf ine
∥∥∥∥NPVf ine

∥∥ , (4.2)

where, NPVPOD−DEIM is the optimal control obtained from optimization with POD-DEIM

and NPVf ine is the optimal control from fine scale optimization.

Figure 4.22: Relative NPV errors between the fine scale and reduced scale optimization
using PSO and IPOPT for each parameterization methodology.
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We can see from Figure 4.22, Table 1 and Table 2 that Chebyshev control optimization

showed the best accuracy and the highest NPV for the two optimizers. Also note from

Table 4.7 and Table 4.8 that it had a fast rate of convergence when used with IPOPT for

this example. NPV with PWC and Spline was less than that of Chebyshev, and Spline

showed the least convergence rates for all the cases.

Overall we can say that the POD-DEIM with PWC did not show good results. One of

the reasons could be a need for retraining during optimization or a large number of basis

need to be selected for such control profiles to represent the dynamics of all the controls.

Regarding runtime saving, one simulation run during the optimization on fine scale is

about 20 seconds, whereas, using POD-DEIM takes on an average 12 seconds. Since the

optimizations for all the methods were performed on different platforms, we do not report

the overall time. But the total computational saving on the entire optimization run in all the

cases using the reduced model was about 45-50% (including the offline basis computation

stage) when compared to the fine scale optimization.

These results justify the use of POD-DEIM for well-control optimization problem and

also a good set of training that is representative of all the BHP profiles during the opti-

mization run particularly for Chebyshev and Spline control methods.

4.3.6 Model Order Reduction: Results Conclusions

In this section, we compare different parameterization methods to reduce the cardinal-

ity of the original infinite set of control-decision variables to a finite set. The parameteriza-

tion techniques include a traditional piece-wise constant (PWC) approximation, a polyno-

mial approximation by Chebyshev orthogonal polynomials and a piece-wise polynomial

approximation by cubic Spline interpolation. This optimization problem is proposed to

be used with POD-DEIM as the global model order reduction method for computational

advantage at the reservoir simulation level, where a new training procedure is proposed
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that can be used as a part of an optimization run.

In the first example, the parameterization methods are tested for increasing level of re-

finement using fine scale simulation to evaluate their performances for gradient-free (PSO)

and gradient-based (IPOPT) methods. The results showed an increasing performance of

optimization with respect to the objective function upon increasing the number of decision

variables. For the highest refinement level, Chebyshev polynomial approximation found

the maximum NPV for the case considered. PWC exhibited the fastest convergence, but

with more likelihood to be trapped in local solutions. Spline method suffered from slow

convergence when gradient-base method was used.

In the second example, we tested the control parameterization strategy with POD-

DEIM for a given level of parameterization refinement. We observed that Chebyshev

polynomials performed better than Spline control and PWC control. The training selection

for POD-DEIM here utilizes the information from the first fine scale optimization iteration

on multiple random particles run in parallel, which is then used as a snapshot matrix. The

optimization then follows from the next swarm chosen by PSO in case of gradient free

method and from the best solution as the initial guess for the IPOPT method.

Choice of such a training set proved to perform consistently well for the polynomial

and piece-wise polynomial control approximations. POD-DEIM when used for optimiza-

tion using Chebyshev polynomial approximation, produced very good accuracy with the

fine scale optimization as was evident from the errors in optimal control solution and NPV.

A 45-50% speedup on the reduced scale optimization runs was achieved for all the cases

compared to high fidelity runs. This work demonstrates the use of control parameteriza-

tion with model order reduction as an efficient methodology for optimization particularly

when used with polynomial controls.

In future work, investigation of this methodology on benchmark models and longer

simulation horizons will be more appropriate to demonstrate the benefits of such approach.
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For example, the test cases in this work performed significantly well without a need for

retraining. However, it might be necessary to retrain the model during the course of the

optimization run for more complex cases, which may require a robust error indicator to

quantify the errors from POD-DEIM.

4.4 Optimization Under Uncertainty

In this section, we test control polynomial approximations under uncertainty, using

the methodology presented in section 3.5. We acquire the gradients of each individual

realization with the adjoint method described in section 3.3.

In section 4.4.1 we describe the ensemble of scenarios used to represent the geological

uncertainty. Each scenario is a different realization of permeability field.

We use the objective function shown in Eq. 3.32. Following the recommendation

shown in [90], we tested CVaR at a value of α = 20% and symmetrically, we chose β =

20% for CVaS, such that the objective function reads as follow:

J(u) = η1JE(u)+η2JCVaR20%(u)+η3JCVaS20%(u), (4.3)

First, in section 4.4.2, we test the case when we only maximize the expected value.

That is the weights vector η = [η1,η2,η3] equal to [1,0,0]. We used the piece-wise zero-

order polynomials and the Chebyshev polynomials, as described in sections 2.5 and 2.4,

respectively. We show in both cases that by increasing the number of variables we do

not just increase the obtained objective, as we saw in the detrminstic case, but we also

mitigates the risk expressed by a reduction in the standard deviation of the objective values.

Then, in section 4.4.3, we test the objective function shown in Eq. 4.3, for different

weights vectors η. We show that the including the proposed objective CVaS in the total

objective leads not only to values increase in the upper tail, but also increase the mean

and the median (P50). On the other hand, it have a negative effect on the mode and the
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standard deviation.

4.4.1 Test Case Description

Figure 4.23 shows the permeability of the 30 different realizations of channelized reser-

voir. The realizations generated with a sinusoidal functions with uniformly random ampli-

tudes, periods and phase shifts.

We use the same inverted 5-spot pattern, as in section 4.1.1, where four production

wells are located at the corners and the injector well sits in the center. Figure 4.24,

shows the histogram of the permeability values present in all realizations. The rest of

the simulation-settings are identical to the 2-dimensional deterministic case.

Figure 4.23: Ensemble of 30 permeability field realizations of channelized reservoirs

4.4.2 Uncertainty Reduction by Control Refinement

We now test the case where we consider only the expected value. Thus, the weights

vector used in the objective in Eq. 4.3 is η = [1,0,0]. We compare the zero-order poly-
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Figure 4.24: Histogram of permeability values for all realizations.

nomial approximation and the Chebyshev polynomial approximation, as described in sec-

tions 2.5 and 2.4, respectively. Again, we used the LBFGS interior-point algorithm, while

we computed the gradients as describe in section 3.3.

For both parameterization methods we performed different optimization runs ranging

from one to ten variables per well. That is, Ncheb
p = {1, . . . ,10} and Nu = {1, . . . ,10},

where Ncheb
p and Nu are the number of basis functions, as described in Eqs. 2.13 and 2.2,

respectively.

Figure 4.25 shows the objective function value (the mean) per each run and per each

parameterization method, along with the standard deviations. As we saw in the determin-

istic case, the objective function increases as more variables are presented. This follow

the logic that more variables provide more degrees of freedom to improve the solution.

A non-trivial observation though is that the standard deviation decreases as we add more
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variables. Thus, increasing the number of variables might serves as a natural tool to miti-

gate risk, and vice versa, using a too-small number of variables might increase the risk.

Figure 4.25: Maximizing expected NPV for all realizations: Sensitivity of number vari-
ables per well to expected (mean) and standard deviation values.

Figure 4.26 compares the optimization efficency when each parameterization method

is used. Note that the number of simulation forward runs is larger than the number of iter-

ations, as each iteration might includes several simulation runs, for example when several

conjugate gradient inner iterations are required.

We observed, that in all cases, but one (5 variables per well), PWC requires more

iterations up to convergence. However, in many cases Chebyshev requires more total

simulation runs.
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Figure 4.26: Maximizing expected NPV for all realizations: optimization efficiency.

4.4.3 Testing the Multi-Objective Function

In this section, we conducted different optimization runs to test the proposed multi-

objective function. We compared different combinations for the vector (η). The moti-

vation is to test whether we can increase the upper tail of the objective PDF while still

mitigating risk.

We chose a PWC parametrization (zero order polynomials). We used 8 variables per

well, since this number led to the smallest standard deviation for the expected optimization

case, as we observed from Figure 4.25.

Figure 4.27 shows the results for different combinations of weights ηi. Results are

given for the averages of all realizations ensemble, and of the bottom and top 20% (AVG,

CVaR and CVaS, respectively). Best (MAX) and worst (MIN) results are also plotted.
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Figure 4.27: Maximizing total objective Jtot : results for different combinations of weights
ηi. Results are given for the averages of the all ensemble of realizations, and of the bottom
and top 20% (AVG, CVaR and CVaS, respectively). Best (MAX) and worst (MIN) results
are also plotted.

From Figure 4.27, it’s hard to tell the pros and cons of each combinations. Thus, in the

following we discuss several comparison options.

First, we rank each combination according to each of the partial objectives, JE , JCVaR

and JCVaS. We show each one of the 3 rankings in Figure 4.28. In each ranking the scores

range from 1 (left) to 8 (right). Then, in Figure 4.29 we show the accumulated ranking as

a measure to compare all combinations. Note that according to this comparison measure,

the proposed CVaS function is presented in all top three combinations.

To perform a more intuitive comparison, we now use a more common tool used in the

petroleum industry. Rather than measures like mean, CVaR and CVaS, it is customary to

describe uncertainty in terms percentiles such as P90, P50 and P10. Both the Petroleum
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Resource Management System (PRMS) and the Securities and Exchange Commission

(SEC) use this measures to define the reserves and resources estimates [4]. SPE convention

is to quote cumulative probability of exceeding or equaling a quantity where P90 is the

small estimate (conservative) and P10 is the large estimate (optimistic) [105].

Note that this measures of P90, P50 and P10 are similar to the Value-at-Risk (VaR)

discussed in section 3.5.3. For example, P90 is equivalent to Value-at-Risk of 10 percent

(VaR10%).

As also mentioned in section 3.5.3, VaR fails to account for cases found below the

specified percentage. Consider the case that P90 estimate is very high and attractive, but

P91 is extremely small. Albeit this obvious disadvantage, SPE still uses this measure.

Next, we specify the percentile estimates achieved with each combination η. Since

we used CVaR for a confidence level of 20%, we shall indicate the P80, P50 and P20

estimates, rather than P90, P50 and P10. Note that we optimize CVaR values rather than

VaR (or equivantly P90, P50, P10), and optimizing directly for the P’s estimates would

yield better nominal results, but with higher associated risk.

We characterized the uncertainty with 30 realizations, and thus computation of P80,

P50 and P20 estimates boils down to find the NPV of the 6th, 15th and 24th best realiza-

tions, receptively. Figure 4.30 shows the ranking of each combination η according to P80,

P50 and P20 (again lowest ranking on the left and highest ranking on the right, ranging

from 1 to 8). Figure 4.31 shows the accumulated ranking as a measure to compare all com-

binations. Note that according to this comparison measure, the purposed CVaS function is

presented in top two combinations.

Figure 4.32 shows the empirical cumulative distribution function for five selected ηs.

Note that η = [2,1.5,1] yield the best-best case and the second best-worst case (very close

to the first best-worst). Recall that CVaR20% and CVaS20% account for the average of the

NPV values correspond to the first and last 6 stairs, respectively.
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Figure 4.33 shows the probability density function, as approximated by a non-parametric

Kernel Density Estimation (KDE) with MATLAB function ksdensity on the NPV data val-

ues (as was done in [89]). Note that η vectors that includes CVaS (with η3 = 1) tend to

drive the mode of the distribution toward lower values (to the left), which is unfavorable.

Figure 4.28: Maximizing total objective Jtot : Ranking of each ηi combination according
to each objective function: (top) JE , (middle) JCVaR, (bottom) JCVaS. Ranking score range
from 1 (left) to 8 (right)

4.4.4 Optimization Under Uncertainty: Results Conclusions

In this section, we performed optimization under uncertainty described by ensemble

of 30 geological realizations. We used the interior-point algorithm with LBFGS inverse

Hessian approximation, and acquired the gradients with the purpose adjoint method for

polynomial approximation.
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Figure 4.29: Accumulated ranking according to Fig. 4.28.

First, by maximizing only the expected value, we showed with two polynomial approx-

imation methods, the traditional PWC and Chebyshev polynomials, that addition of more

control parameters can both improve the expected NPV and reduce the standard-deviation

and hence the risk.

Then, we perform sensitivity analysis to the purposed multi-objective function, which

enable to consider, in addition to the expected value and the average of the lower tail,

also the average of the upper tail. We called the new measure of the upper tail average as

Conditional Value at Success (CVaS), and we showed that this new measure might serve

as tool to improve mean, best (median or P50) and high estimates (P20). However, we

observed some reduction in the probability mode (shift to the "left", see Figure 4.33).

We performed ranking to different objective’s weights combinations. First, we ranked

according to sub-objective values achieved by each combination, and second, we ranked
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Figure 4.30: Ranking of each ηi combination according to their P percentile: (top) P20,
(middle) P50, (bottom) P80. Ranking score range from 1 (left) to 8 (right)

according to the low, best and high estimates. We showed that the purposed CVaS partici-

pates in the best combinations.

According to the experiments performed and to the ranking methods, the combination

[1,1,1] produced the best results. Thus, we recommend on equal positive weights for all

three sub-objectives.
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Figure 4.31: Accumulated ranking according to Fig. 4.30.

Figure 4.32: Empirical cumulative distribution function (CDF) for selected ηis combina-
tions.
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Figure 4.33: probability density function for selected ηis combinations.
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5. CONCLUSIONS AND FUTURE SCOPE FOR STUDY

In this dissertation, we provided novel parametrization procedures for water-flooding

production optimization problems, using polynomial approximation techniques. The meth-

ods project the original infinite dimensional controls space into a polynomial subspace.

We compared the purposed methods with global and local optimization algorithms,

both by fine and reduced order modeling, and considered both deterministic and proba-

bilistic optimization cases.

In addition to the common piece-wise zero order polynomial approximation found in

most water-flooding optimization literature, we contributed with parameterization formu-

lations using natural polynomials, orthogonal Chebyshev polynomials, and Cubic spline

interpolation.

The proposed methods are well suited for the stochastic global-search method as they

produce smooth control trajectories while reducing the solution space size. We demon-

strated its efficiency on synthetic two-dimensional problems and a realistic 3-dimensional

problem.

We also contributed with a novel workflow that combines polynomial approximation

with reduced order modeling. We demonstrated a synergistic effect when combining op-

timization dimensionality reduction (via polynomial approximation) with model order re-

duction.

Using deterministic cases, with a single model realization, we performed optimiza-

tion runs with both gradient-free global-search method and gradient-based local-search

method. Particle Swarm Optimization serves as the global optimizer in the black-box

approach. We showed that polynomial approximation serves as an efficient tool for the

black-box approach executed in a high-performance computing environment.
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Regarding gradient-based, we tested three algorithms: active-set, interior-point-BFGS,

and interior-point-LBFGS. The last proved to be much more efficient for large scale prob-

lems than the others. By contributing with a new adjoint method formulation for poly-

nomial approximation, we enabled the use of polynomial approximation method also to

gradient-based algorithms.

We also considered optimization under uncertainty represented by multiple realiza-

tions. For that purpose, gradient-free methods are not feasible, as the high-performance

computing power is devoted to simulating all realizations in parallel. Thus, the gradient-

based interior-point-LBFGS algorithm was used. By maximizing only the expected value

to a varying number of control parameters, we contributed with the observation that us-

ing a too small number of well-control parameters might increase the associated risk (see

4.25).

Finally, we proposed a new multi-objective function with three components, one that

maximizes the expected value of all realizations, and two that maximize the average of dis-

tribution tails from both sides. The objective provides decision makers with the flexibility

to choose the amount of risk they are willing to take while performing reserves estimation

(P10,P50,P90).

5.1 Suggested Future Work

We recommend further exploration of other polynomial approximation methods. A

promising candidate would be the B-spline method, discussed outside of the petroleum

literature in [40]. One advantage of B-spline might be that bounds on the coefficients

are well-defined in [0,1], and there is no need to choose the bounds heuristically, as we

did in this work. Also, a linear combination of B-spline basis functions does not violate

bounds constraints, and there is no need to ’chop’ the obtained control function, and thus

also well-defined. The work in [40] also recommends performing orthogonalization to the
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basis functions, to improve the performance of gradient based methods.

To improve cases of non-continuous control functions, such that resulted, for exam-

ple, from a combination of bang-bang and bang-singular control, one might investigate

adaptive schemes that refine the mesh control along the optimization process. Adaptive

schemes can be pursued by gradient refinement indicators [32, 34] or through wavelet

analysis [49].

We also recommend on further investigation of the Chebyshev polynomial method.

Specifically, it would be interesting to investigate a collocation-like method, where the

simulation time steps are enforced to be calculated at Chebyshev nodes.

Finally, further study on optimization that balance between the distribution mean and

both tails can shed more light on this approach. One can test range of values for α and β

for CVaRα and CVaSβ (here we used only 0.2), and test unbalanced cases where α 6= β .
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APPENDIX A

MODEL ORDER REDUCTION: POD-DEIM

A.1 Proper Orthogonal Decomposition (POD)

As a first step to generate reduced order model, the full order system is solved to

generate a matrix of states called the snapshot matrix, X .

X = [x1,x2,x3, . . . ,xNsim ],X ∈ Rn·Nsim , (A.1)

where n is the full order dimension of each state (here pressure and saturation), and Nsim is

the total number of snapshots (at most equal to the total time steps). The snapshot matrix

is computed by numerically solving the fine scale system of nonlinear Eqs. 1.1. The idea

here is to project a fine scale system to a low dimensional space.

In POD, the orthonormal basis {Φi}r
i is obtained by the solution of the minimization

problem:

min
Φi

∥∥∥∥∥x j−
r

∑
i=1

(xT
j Φi)Φi.

∥∥∥∥∥ (A.2)

The solution to this minimization problem [106] is obtained by applying the SVD to

the snapshot matrix and then selecting the first r columns of the left projection matrix.

X =UΛV T , (A.3)

where U and V are the left and right singular matrices and Λ is a diagonal matrix with

eigenvalues in decreasing order. The r columns of U are selected by indication of the

fraction of energy to be captured E:
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E=
∑

r
i=1 σi

∑
Nsim
i=1 σi

, (A.4)

where σi is the ith diagonal element of Λ. The number of columns are usually chosen such

that 0.9 < E < 1. Thus the SVD of pressure and saturation snapshot matrices gives the

projection matrix for each variable and they can be projected to the reduced states by,

p≈Φp pr, (A.5)

s≈Φssr. (A.6)

Thus, we may write,

p

s

=

Φp 0

0 Φs


pr

sr

 (A.7)

which take the short notation:

x = Φxr, r� n. (A.8)

The reservoir simulation involves solving a system of linear equations as given in Eqs.

1.3 and 1.4, which for convenience of reading is also given below:

Jn+1
δ

n+1 =−Rn+1

xn+1 = xn +δ
n+1.

Thus, using Galerkin projection, this equation can be written as follows:
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Φ
T Jn+1

Φδ
n+1
r =−Φ

T Rn+1, (A.9)

which again take a short notation:

Jn+1
r δ

n+1
r =−Φ

T Rn+1, (A.10)

and after solving this reduced linear problem, the reduced state space variable is updated

as follow:

xn+1
r = xn

r +δ
n+1
r , (A.11)

POD-Galerkin reduces the computation cost moderately for nonlinear systems since it

requires computation of the fine scale Jacobian and Residual. Thus, we seek a technique

that avoids projecting back to the fine scale. This is done by DEIM that constructs a

separate subspace of nonlinear terms, selects interpolation points by greedy algorithm,

and then approximate the nonlinear terms in the subspace by a combination of projection

and interpolation [80]. The description of DEIM proposed by these authors is explained

briefly below.

A.2 Discrete Empirical Interpolation (DEIM)

Let f (t) ∈ Rn be a nonlinear function of time or other parameter. f can be approxi-

mated by projecting it into a subspace spanned by the basis function U =(U1,U2, . . . ,Um)∈

Rn·m as

f (t)≈Uc(t). (A.12)

This basis function is determined by assembling the function evaluations in a matrix
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S f ∈ Rn·Nsim and then SVD is employed to this matrix to compute m modes that are used

as the basis functions.

The coefficient vector c(t) can be determined uniquely from the following:

PT f (t) = (PTU)c(t), (A.13)

where, P = [eγ1,eγ2, . . . ,eγm] ∈ Rn·m, and eγi = [0, . . . ,0,1,0, . . . ,0]T ∈ Rn is the γith col-

umn of the identity matrix In ∈Rn·n. These interpolation indices P used for determining the

coefficient vector c(t) are selected inductively from the basis U by the greedy algorithm

to have the non-singular matrix PTU . The greedy algorithm is as follows:

DEIM GREEDY ALGORITHM:

INPUT ul
m
l=1 ⊂ Rn linearly independent

OUTPUT ~γ = [γ1,γ2, . . . ,γm] ∈ Rm

1. [|ρ|,γ1] = max{|u1|}

2. U = [u1],P = [eγ1],~γ = [γ1]

3. for l = 2 to m do

4. Solve (PTU)c = PT ul for c

5. r = ul−Uc

6. [|ρ|,γl] = max{|r|}

7. U ← [U,ul], P← [P,eγl], ~γ ← [γl,~γ]T

8. end for

Thus from Eqs. A.12 and A.13 we may write

f (t)≈U(PTU)−1PT f (t) (A.14)
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The nonlinear functions (in our case the Transmissibility, Gravity, Accumulation, Source/Sink,

Jacobian and the Residual) are thus computed only at the selected interpolation points by

the greedy algorithm (PT f (t)) and then approximated in fine scale by the above expres-

sion. For in depth discussions on the applications of POD-DEIM in reservoir simulation,

the reader is referred to [20].
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APPENDIX B

INCOMPRESSIBLE SEQUENTIAL SOLVER

In the majority of this work we used the sequential solver in Matlab Reservoir Simu-

lation Toolbox (MRST) for two-phase incompressible flow of a wetting and non-wetting

fluids [36]. By neglecting gravity effects, the PDE can be described as follow:

∇ ·~v = q,~v =−K(λ∇p) (B.1)

φ
∂ sw

∂ t
+∇ · ( fw(sw)~v) = qw, (B.2)

where~v denotes the Darcy velocity, q total liquid flux, p pressure, sw water saturation,

K permeability tensor, λ the (total) mobility, fw(sw) the water fractional flow as a function

of saturation, φ porosity and t time. First, pressure and fluxes are provided by fixing the

saturation values and solving Eq. B.1. Subsequently, fluxes are used in Eq. B.2 to solve

for the saturation in the next simulation time step. For further details the reader is referred

to [36, 10].
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