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ABSTRACT 

 

In the past two decades, nautical archaeology has turned its attention to 

identifying and locating the ships used during the Atlantic Slave Trade. While the 

archival evidence exists, only a small number of these ships has been found, and even 

less have been excavated. Spatial analysis tools like GIS can be a powerful tool to help 

further this research. This thesis is an exploration of how predictive modeling and GIS 

could make the identification of slave wrecks plausible, and an overview of the ethical 

issues that surround the use of GIS within the context of the African Diaspora.  

With more representative sampling of ships, archaeologists can continue 

analyzing the slave trade not only from the archival documents of the owners, but also 

from the artifacts of those on board. Locating and identifying wrecks that are suitable for 

excavation will add invaluable data to the understanding of this journey; yet, numerous 

ethical issues must be taken into consideration. As this data deals with a crucial element 

of the African Diaspora, the larger anthropological community must involve the present 

descendants of these captives. If GIS is used in a larger theoretical context, it should also 

actively engage with present-day community stakeholders. 
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CHAPTER I  

INTRODUCTION: OVERVIEW OF THE TRANS-ATLANTIC SLAVE TRADE 

 

Introduction 

Archaeology has the ability to contextualize those who are not present in the 

historical narrative. The wrecks of slave ships are exemplary of this fact, as they have 

the potential to supplement the archival history with concrete archaeological data on the 

millions of captives shipped into slavery. The artifactual evidence can reframe the 

written history in the voices of those with untold stories. The value of a shipwreck is 

similarly multifaceted, as it represents the technological capabilities of its time while 

tying all its artifacts together to the same point in time. However, until 2008 very little 

academic attention had been paid to slave wrecks (Webster 2008a, 1-2). To date, there 

are 1,011 recorded slave wrecks lost at sea, 433 of which were engaged in slaving at the 

time of sinking. The dearth of data on this topic needs to be addressed (Webster 2008b, 

6). Even though the journey of captives across the Atlantic is an important narrative, 

supplemented by oral histories and artifacts in the destination ports, it is rarely addressed 

by material culture from the ship itself. With more representative sampling of ships, 

archaeologists can continue analyzing the slave trade not only from the archival 

documents of the owners, but also from the artifacts of those imprisoned on board. 

Locating and identifying wrecks that are suitable for excavation will add invaluable data 

to the understanding of this journey. Geospatial Information Systems (GIS) can be used 

to help contextualize archival data to locate the wreck remains in the ocean floor. 
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This thesis is an exploration of how predictive modeling and GIS could make the 

identification of slave wrecks plausible, and an overview of the ethical issues that 

surround the use of GIS within the context of the African Diaspora. Using documented 

non-slaving wrecks off the coast of Rhode Island, a sample workflow was generated, 

examining the issues that an archaeologist with little exposure to GIS would encounter in 

the creation of such a toolset. The GIS model is intended to be a proof of concept and an 

example of a workflow, rather than a fully-fleshed working model, as any model should 

be adapted and tested for regional suitability.   

Finding and investigating slaving vessels will not only reshape the Trans-Atlantic 

narrative, it may also yield archaeological evidence for the scale of the slave trade and 

the impact it had on West African communities. Evidence suggests that the Gold Coast 

population decreased between the seventeenth and eighteenth century (Kea 1982; 

Manning 2013). Debate still surrounds the question of the magnitude of the slave trade 

and the volume of specific countries’ participation (Eltis and Richardson 1997). 

Understanding the construction and material culture of these ships is critical to 

grounding the available documentary evidence, which has been interpreted to support 

multiple conflicting hypotheses.  

 

Background 

The Trans-Atlantic Slave trade started incrementally. Captive Africans were 

bought or captured, and sold in Europe by the middle of the 15th century. By the end of 

that century, they were sent overseas to the Americas (Curtin 1969, 15-50). As Native 
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Americans died from European diseases for which they did not have immunological 

defenses, during the 16th century the settlement of the Americas drove up the demand for 

slave labor to work the new sugar, tobacco, rice, and cotton plantations. This 

dramatically shifted the pathways for human trafficking, switching the focus from 

European destinations to an ever-increasing number of agricultural fields in South 

America and the American Islands. The use of African slaves on the Spanish and 

Portuguese sugar plantations in the Mediterranean and Atlantic was carried over to 

develop the new plantations, especially in Brazil (Rawley 2005, 9). Both the Spanish and 

the Portuguese initially brought captive Africans to the Americas by way of Europe, but 

this traffic was soon supplanted by a direct route from the coastline of West Africa to the 

Americas (Curtin 1969, 15).  

Calculating the total number of captives trafficked into slavery is a guessing 

game. As Basil Davidson states in Black Mother, “The short answer is that nobody 

knows or ever will know: either the necessary records are missing or they were never 

made.” (1961, 89). In The Atlantic Slave Trade: A Census, published in 1969, Philip 

Curtin examined oft-cited numbers of 15 million and 20 million and concluded that the 

numbers were lower (Curtin 1969, 3-14). Projecting that approximately 11.8 million 

captives had departed Africa and 9.4 million arrived in the Americas, he started a 

vigorous debate over the “numbers game”, which has only expanded with the 

introduction of computer modeling (Eltis and Richardson 1997, 2).  Voyages previous to 

the Iberian Union in 1580 are not as well documented as the later ones, but the archives 

still show an active trade focusing on captives from the coastal regions (Curtin 1969, 96-
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104). With the discovery of new shipping records and the development of databases, 

there have been efforts to not only quantify the magnitude of the slave trade and its 

impacts on both coasts but also humanize this moment with autobiographies of slaves 

(Eltis and Richardson 1997, 3). Captive Africans represent the largest migration to the 

Americas prior to the increase in immigration to the U.S. in the late 18th century (Curtin 

1969, 3). 

 The Trans-Atlantic Slave Vessel Database has compiled a list of almost 36,000 

ships that once carried African slaves during 1514 – 1866 (2016). Several nations are 

represented, including but not limited to Portugal, Great Britain, Netherlands, United 

States of America, France, Spain, Denmark, and other Baltic states. According to the 

Database, Portugal transported the most human cargo across the Atlantic, with Great 

Britain also playing a key role in the slave trade in this period (Webster 2008a, 1). As 

many of these nations have archival records from their ports, military, and economic 

transactions, documentary evidence can play a key role in locating and identifying 

archaeological shipwreck sites (Webster 2008a, 2).  

 

Sources 

Almost all our understanding regarding the slave ship itself comes from written 

accounts, primarily told from the perspective of those who benefited from the trade. 

Most come from ship logs, letters, company and naval reports, newspaper articles, and 

bills of sale. These can be somewhat problematic; for instance, precise details on ship 

tonnage varied from port to port and can be unreliable (French 1973, 441). Registered 
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tonnage differs from measured tonnage, and each are calculated independently from the 

other (Davis 1962). Port authorities also kept written records of ship arrivals and their 

cargo. This includes documentation from Barbados, Jamaica, and many other colonial 

destinations for these ships. British, Portuguese, and Dutch companies’ correspondence, 

ledgers, and accounts also survive in the U.K. National Archives from this period 

(2016b). Predictably, the archival evidence comes from European sources. While these 

sources are instrumental in identifying and contextualizing a ship, the archival evidence 

can not only be contradictory, but also sparse on tangible details like ship construction 

and its effect on those on board. The voices of the captives transported across the sea – 

those without access to pens, paper, or the language of their captors – are rarely found 

within this documentation. 

In this thesis, I relied on contemporary newspaper articles and national records 

like the annual U.S. Life-Saving Service reports to narrow down the location of 

wrecking incidents. In addition to these, local dive communities and maritime historians 

were consulted.  

 

Using archival evidence to locate slave wrecks 

In 1974, Leif Svalesen found the shipwreck of the Norwegian slave trader 

Fredensborg in the water of southern Norway chiefly through archival research (2000, 

13-20). While Svalesen was a diver and not an archaeologist, he worked with local 

historian Hartvig Dannevig to comb through archival evidence for this ship. Beginning 

with documents from a maritime court of inquiry, Svalesen, Dannevig, and two others 
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used this information to narrow the search to a geographic range. As the area was too 

large to search by diving alone, they added oceanographic information and information 

from local fishermen to further narrow the search area. After a year of archival research, 

they identified the most likely location of the wreck. Upon finding some artifacts, they 

contacted the Norwegian Maritime Museum, which confirmed that their finds matched 

the cargo the Fredensborg was reported to carry (Svalesen 2000, 13-20). The museum 

then excavated the wreck, utilizing both experienced archaeological divers and volunteer 

amateur divers (Svalesen 2000, 173-175).  

Other excavations of slave wrecks also started with investigations into the 

historical records. In 2004, the Trouvadore project utilized archival data to locate 

potential areas where the Spanish slave ship may have sank (Sadler 2008). The project 

began with the publication of two dispatches, one from 1849 and one from 1878, both 

referring to the sinking of two ships off the Turks and Caicos Islands (Sadler 2008, 57). 

These two ships, the Trouvadore and the Esperanza, were not mentioned by name in the 

1849 dispatch from the Council President, Frederick Forth. Writing to London, President 

Forth references an oral tradition among the workers that linked their heritage to two 

shipwrecks (Sadler 2008, 57). The 1878 letter, meanwhile, accompanied two statues sent 

to the Smithsonian by a resident of the island, George Judson Gibbs. He expresses the 

belief that these were found on board of a Spanish slaver, Esperanza, which sank off the 

Caicos islands in 1841 (Sadler 2008, 57). Further research at the Public Record Office in 

London showed that the 1841 wreck was the Spanish brigantine Trouvadore, whereas 

the Portuguese Esperanza sank earlier in 1837. Although a wooden wreck was 
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discovered within the survey area, the researchers have yet to positively identify the 

ship, and are currently seeking archival evidence of other ships that wrecked in the area 

(Sadler 2008, 68).  

Another example of a slave wreck excavation originating from the archives is the 

search for the Portuguese slaver São José. In 2011, archival research yielded the 

captain’s account, and helped researchers correct an earlier misidentification of a 

shipwreck site off South Africa. Later that year, the ship was proven to be São José 

(Slave Wrecks Project, 2015).  

Archival research is sometimes an onerous task, demanding a knowledge of not 

only the source material but also the culture of the original author (Ahlström 1997; 

Svalesen 2000). It must be constantly contextualized for a meaningful interpretation, and 

GIS requires further interpretation and extrapolation of archival data. Due to the layering 

of interpretation, archival data is not and should not be treated like the metaphorical X 

on the map. Rather, it should be treated like a highlighter, throwing possible areas and 

locations into relief. As with all types of contextualized information, an archaeologist 

should be cognizant that even though GIS is presented in the format of a map, it often 

represents numerous interpretations derived from collaborative research.  

By utilizing the documentary evidence, archaeologists can seek out physical 

evidence and material culture. However, documentary evidence alone rarely provides 

enough context to identify a shipwreck. The wrecks that leave archival evidence are 

those that had economic or societal value, ones that “cast a shadow on dry land, with 

traces and leads in archiving” (Ahlström 1997, 208). Not every shipwreck will have an 
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archival presence; the earlier the shipwreck, the less likely it is to leave an archival 

record. This holds true for medieval and earlier wrecks. More importantly, documentary 

evidence cannot be utilized conclusively without artifactual evidence, although a 2013 

review of International Journal of Nautical Archaeology articles found that when 

investigations begin with historical research, archaeological data is used primarily as a 

supplement (Harpster, 592-600). Rather, the two data sets should act as complements. 

Drawing on this, it is imperative that the documentary evidence be treated as subjective 

and contextually linked, and not as the final truth. Most archival text was written to 

communicate between not only contemporaries, but contemporaries with the same 

cultural background. As such, crucial details to modern day researchers are often glossed 

over or omitted entirely as self-evident to the intended audience (Ahlström 1997, 209). 

 

Problems inherent in excavation 

That few slave wrecks have been found and excavated may be tied to the 

problems inherent in ship identification. While beginning with documentary evidence to 

locate a slave wreck may not be the ideal strategy according to some authors, it is one of 

few definitive ways to identify a ship as a slaving vessel. Compounding this issue, the 

paucity of identified slaving vessels has prohibited a broader analysis of the features of 

slaving vessels. New research has focused on highlighting some of the similarities both 

in artifact assemblage and construction methods (Glickman 2015). 

When slavery became outlawed by a number of countries later in the eighteenth 

century, all construction in the upper-works to hold slaves was made more temporary 
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and less noticeable to avoid naval attention (Webster 2008b). The Anglo-Dutch Treaty 

of 1823 listed the following traits of a slave ship:  

1. Iron shackles 

2. Ventilation gratings (vs. slide hatches), and ventilation holes above the water line  

3. Spare bulkheads and other planks to construct temporary decks and structures for 

the slaves 

4. Native canoes to expedite landings; waiting for local canoes to be loaded with 

captives and other cargo could leave a slave ship exposed in port (Ward 1969). 

This gives very few structural and artifactual cues to positively identify a wreck as part 

of the trans-Atlantic slave trade. While shackles are the prevailing symbolic artifact for a 

slave wreck, non-slaving ships were also known to carry them. Compounding this 

archaeological problem, slave ships were commonly repurposed cargo vessels, and along 

the other legs of the Trans-Atlantic route, carried additional trade goods and employed 

removable decking to allow more space within the hold (Webster 2008b). These trade 

goods, when taken as a whole, may help identify ships that were part of the slave trade.  

 Artifactual evidence that may indicate a ship was once a slaver include trade 

goods to exchange for captives, such as the following: beads; bale seals from fabric 

bales; dyewood; iron and copper bars; firearms; ivory; and manillas (Glickman 2015, 

64). Manillas are a West African metal currency shaped like a horseshoe; they were 

originally formed from bronze or copper, but were made of lead, pewter, iron, and tin 

later in the slave trade (Herbert 1984, 125-132). Cowrie shells are often overlooked in 

shipwreck contexts, but may be an important indicator due to their use on the African 
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continent as a form of currency (Glickman 2015, 68). Finally, additional stone or pig 

iron ballast and ventilation gratings may also survive the marine environment. 

 Artifacts may also be used in conjunction with ship construction to tentatively 

identify a slaving vessel as well. However, most of the vessels used were common 

merchantmen types, such as caravels and naos (Glickman 2015, 28; Cook 2012, 71) in 

the early years. During the height of the trade, a variety of vessel types were used, 

including ships, brigs, schooners, and sloops; although some had lighter framing patterns 

than their traditional cargo-vessel counterparts, this may not be standard (Glickman 

2015, 35-45). The diversity of ships continued after the trade was outlawed by Britain, 

dominated by faster ships that could avoid capture by the naval patrols. This included 

incorporating a few steamships into the trade (Klein 2010).  

 Given the diversity in ship construction and artifact assemblages, documentation 

remains one of the best methods available for identifying a slaver. As such, exploring 

methods that can help spatially analyze where wrecking incidents occurred is vital to 

gathering more archaeological evidence.  
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CHAPTER II 

INTRODUCTON TO GIS 

 

Introduction to GIS 

Geographic information systems (GIS) are spatial analysis technologies used to 

combine multiple types of data sets into a coherent map. The utility of the technology 

has made it a commonplace tool in the archaeological toolkit. A GIS can be used not 

only to expedite mapping, but also to develop and test social hypotheses (Wescott and 

Brandon 2000, 1 – 5). However, the application of GIS to represent, model, and predict 

human interaction with the landscape has raised questions about the assumptions held by 

researchers and the methodologies used (Conolly and Lake 2006, 1 – 10; Eve 2014, 7 – 

27; Green 2011, 9 – 21). 

 

What is GIS? 

A geographic information system is comprised of several factors. James Conolly 

and Mark Lake identify three important components: software, hardware, and the GIS 

operators (2006). The software requires a database, a mechanism to link attribute data to 

a spatial object, and a ‘geoprocessing engine’ that allows for alteration of information in 

both the spatial database and the attribute database. The software package chosen, which 

will be discussed later, will also require hardware to be installed on the computer 

running the GIS software. However, with advent of the web and 3-D modeling software, 

distributing maps and spatial information has become markedly easier.  
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Conolly and Lake rightly identify the GIS operator as the most critical 

component of the system (2006). The framework of the research question, the choice of 

data, and the analysis are as critical to the result as the data. Each of the above choices 

impacts the resulting product, and can create misleading or skewed results (DeMers 

2002, 123).  

 

Types of data 

 There are two types of data used in GIS: vector and raster. Vector data consists 

of discrete points, lines, and polygons, whereas raster data, comparatively, consists of a 

gridded matrix of pixels (Conolly and Lake 2006, 27). While these are commonly used 

together in map products, each operates very differently. As such, their applications in 

modeling also vary. Vector data relies on x and y coordinates to define an object, either 

as a single point, a line consisting of segments in between points (also known as nodes), 

or polygons created from these lines. The boundaries between objects are solid, and 

intersections are defined by shared nodes (Conolly and Lake 2006, 27). An analogous 

comparison would be the familiar paper map, with bounded forest polygons, discrete 

state lines, and city points. While raster pixels also have x and y values, these values 

refer to the row and column of a specific cell, which then contains another value, z, to 

differentiate it from the surrounding pixels. Much like a mosaic formed of the same size 

tiles, a raster dataset can be used to form polygons, points, and lines, although they will 

appear pixelated.  For instance, a discrete vector point can be represented in raster as a 
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single cell. While the vector point has more locational accuracy, the point can still be 

represented in a raster format. This provides different functional abilities for raster data.  

 

Vector advantages and disadvantages 

 While this thesis focuses primarily on utilizing raster data, a brief overview of 

the opportunities made available by vector data can help contextualize why raster data 

was used for this model. The spatial precision provided by vector data makes the 

mapping of discrete objects feasible. To use an example from nautical archaeology, a 

vector format would be preferable to mapping the location of timbers and the deposition 

of cargo. In this context, the arrangement of the artifacts and the negative area of space 

in between them are discrete entities that an archaeologist can analyze and infer data 

from.  In a broader sense, vector can also be used to show and analyze trade routes and 

networks (Wheatley and Gillings 2002, 134 – 135). Also, unlike raster data, vector data 

allows for a range of scales to be represented in the same data model without being 

bound to a minimum resolution (Conolly and Lake 2006, 30) 

 Vector data has disadvantages, however. Vector constructs (point, line, polygon), 

by being so precise, do not allow for fuzzy boundaries. Further, if a value is attributed to 

a polygon on a map (say, a survey area), there is no way to represent any distribution of 

that value within. Whereas raster data represents space broken into specific units of 

measurements, vector implies the space in between and portrays it as a solid, uniform 

block despite any internal differences or muddled boundaries (Tomlin 2013, 26-27; 

DeMers 2002, 20-21). Finally, even with contour lines, interpolating elevation and depth 
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heights with vector data requires generating additional models, like TINs (triangulated 

irregular networks), which may need to be exported to raster data in order to be used in 

further computations (Conolly and Lake 2006, 108 – 111; Wheatley and Gillings 2002, 

113). 

 

Raster advantages and disadvantages 

Raster cells, unlike vector shapes, can define multiple entities in a uniform 

manner. For instance, a road and a building can be differentiated from each other by 

content (normally, by a different color based on the z numerical value), but each are 

composed by the same size and shape cell. By prioritizing uniformity over locational 

accuracy, different types of data can be layered, analyzed and represented in a final 

spatial product (DeMers 2002, 14). Since the spatial aspect of the cell can be represented 

by its location in the grid, the z value, traditionally representative of elevation, can 

therefore be aspatial. It can represent traditional geographic indicators, like elevation or 

bathymetry, but it can also represent the spatial relationship between aspatial topics, like 

artifact density. Further, raster data allows for fuzzy boundaries, rather than arbitrarily 

defining spatial areas. For instance, an archaeologist can show how density of pot sherds 

changes within a field instead of defining a boundary of where the artifact is found, or 

can use raster to show the mixtures of soil types over a site plan (Conolly and Lake 

2006, 30). Critically to nautical and maritime archaeology, the ability of raster data to 

show a diversity of ranges within a region becomes highly useful when trying to 

incorporate the concept of flow. The gradation allowed by raster data captures more data 
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than a linear equivalent (DeMers 2002, 22; Tomlin 2013, 25-27). Finally, raster data 

easily incorporates data from aerial and other remote-sensor imagery (DeMers 2002, 22). 

There can only be one z value for the entirety of the cell, however, so the size of the grid 

is a critical choice for the developer.  

   

GIS in archaeology 

The applicability of GIS has grown steadily in many fields of study and likewise 

in archaeology. GIS have been commonplace in archaeology and anthropology for over 

two decades. Conolly and Lake (2006) assign five basic tasks that GIS can help 

archaeologists accomplish:  

1. Spatial data acquisition: a GIS user can obtain and integrate spatial datasets 

like topographic maps, locations, site plans, satellite imagery, and geophysical 

data 

2. Spatial data management: GIS provides storage and retrieval of data, creation 

of metadata, and the editing of new datasets  

3. Database management: the user can construct databases and create links 

between spatial and non-spatial databases 

4. Spatial data analysis: the user can use the combination of datasets to examine 

and create new data, including predictive modeling 

5. Spatial data visualization: finally, the user can create visual aids, interactive 

map data, and printable paper maps. 
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Interpreting an archaeological site includes the analysis of contextual spatial data, 

both internally to the site and externally to the greater socio-economic landscape. This 

spatial data may be qualitative, like soil typology, or quantitative, like number of 

artifacts (Conolly and Lake 2006, 14 – 16). It can also be linked to aspatial attributes of 

artifacts and sites, allowing various attributes to be studied by location distribution. 

Recently, GIS has been used to develop 3-D representations of excavation units 

(Riel 2016), in augmented reality analyses for archaeologists and tourists alike (Eve 

2014, 25 – 31), as a tool to conceptualize time and rate of change within cultural 

landscapes (Green 2011), and to quantitatively reconstruct the shoreline of Thera, now 

Santorini (Oikonomidis et al. 2016). More commonly, GIS is also encountered in other 

contexts, like cultural management resource databases, spatial plans of archaeological 

excavations, and in landscape archaeology (Conolly and Lake 2006, 33 – 45). In 

landscape archaeology, GIS has been used to create predictive models to measure the 

likelihood of site occurrence in unsurveyed lands (van Leusen et al. 2005).   

 

Predictive models in archaeology 

One of the applications of GIS is predictive modeling, where a known 

relationship between factors is projected onto an unknown place, either temporally or 

geographically (Wescott and Brandon 2000). This supplies archaeologists with a tool to 

identify potential sites terrestrially, as demonstrated by Ben Ford (2007), as well as 

within a maritime context. A predictive model has been intensively used by the Dutch 

Archaeological Heritage Management to locate archaeological sites within the 



 

17 

 

Netherlands, and to incorporate the possibility of excavation into the planning process. 

Initial models were broad, examining landscape variables such as soil type; however, 

later works focused on more linear infrastructure construction or local area studies. 

These models are implemented when the Dutch government is planning the long-term 

development of the land, and when assessing the potential effect of specific projects (van 

Leusen et al. 2005). The same model was adapted to the underwater area of the 

Netherlands, focusing on wrecks that would have been quickly covered by sediment. 

However, no publications have reviewed the efficacy of the maritime extension of this 

model.  

The first Dutch predictive model was set in the eastern Netherlands in the 

Rijssen-Wierden area (Anlum and Groenewoudt 1990, Brandt et. al. 1992), and was 

reanalyzed in 2009 (van Leusen et. al.). Seventy-six archaeological sites were compared 

to 80 random control points. Correlations between eight geographic variables and 

archaeological were determined, and five were tested: soil textures, geomorphology, 

ecological border distance, distance to water, and distance to a different ecological zone. 

These five factors were weighted between 0 and 3, depending on which was more likely 

to be found associated with the studied archaeological site values (Brandt et. al. 1992). 

These factors were added together, yielding ranges from 0 – 13 (van Leusen et. al. 

2009). These were then grouped into four categories, with the lowest sums assigned poor 

archaeological potential and the highest values assigned as favorable for archaeological 

excavation (Brandt et. al. 1992).  
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Ford’s terrestrial model followed the same basic steps to identify potential 

locations for Chesapeake shipyard locations (2007). Numerous resources were needed 

for the shipyard, but many of these (cordage, sails, ironworks, pine trees for masts and 

spars, pitch, turpentine) could be imported. Access to oak, however, was critical to 

shipbuilding and could help determine the shipyard’s placement. Other weighed factors 

include: sheltered areas of water for construction; wide swaths of shoreline; deep water; 

stable soil; a slope of 4% - 7%; and within eight kilometers (4.97 miles) of an urban 

center. Finally, the land had to be owned by a shipbuilder. Using 95 known locations of 

shipyards, Ford tested the importance of each location statistically. 79% were located 

within eight kilometers of a town; 67% had access to sheltered waters; and all the 

shipyards were within 1.1 kilometers (0.07 miles) of soils that would promote oaks. 

Additionally, Ford found that soils that promoted tobacco-growing were avoided (2007, 

131). Areas suitable to oak growth were assigned a value of 5; places within eight 

kilometers of a city limit were assigned a 5, and areas between eight and sixteen 

kilometers were assigned a 2; areas with a slope between 6 and 8º were assigned a 3, and 

slopes of 4 – 6º and 8 – 11º were assigned a 1. Soils considered beneficial to the growth 

of tobacco were given a score of -2. These values were added together, ranging from 0 – 

15; low scores range from 0 to 3, moderate scores between 4 – 7, and high scores over 8. 

Nine of the high probability areas were studied, resulting in one positive identification 

and three possible locations (2007, 128 – 132).   
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GIS in nautical archaeology 

While predictive models are not common in nautical archaeology, the utilization 

of GIS has been successfully adapted within the field. In Northern Ireland, GIS has been 

used to combine bathymetric features, seabed contours, and marine bottom type together 

with historical and archival evidence of shipwrecks (Breen et al. 2007). From this 

analysis, the authors could examine the wreck distribution not only spatially but 

temporally, using the distribution to analyze the causes of wrecking such as natural 

hazards and weather. They also made inferences regarding the economic pathways by 

incorporating historical data on the cargoes, their origins, and their possible ports (Breen 

et al. 2007). Another study, conducted on the Egadi Islands, concluded that the popular 

GIS software provided by ESRI, ArcGIS, could integrate data from side-scan sonar and 

sub-bottom profiling, as well as magnetic and bathymetric information, into a thematic 

map. While GIS did not reveal the anomalies, the researchers found that it could assist 

greatly in planning the excavations (Gravili and Ialuna 2006).  

 

Possibilities for predictive modeling in nautical archaeology 

Conceptualizing wreck site formation and wreck processes is not new to nautical 

archaeology (Muckelroy 1976; Ward et al. 1999; Gibbs 2006). Keith Muckelroy, in his 

publication 40 years ago outlining the process of wrecking and deposition on the 

seafloor, emphasized understanding the ship and its contents prior to the wrecking 

incident, and any post-depositional salvage or archaeological interactions that have 

occurred to the site (1976). Subsequent studies have elaborated both on the quantifiable 



 

20 

 

natural effects that occur on shipwreck sites and the impact of indirect and direct human 

intervention (Ward et al. 1999). Gibbs further distinguishes between catastrophic 

shipwrecks and intentionally abandoned shipwrecks (Gibbs 2006). For this study, only 

catastrophic shipwrecks, those that were lost unintentionally, were analyzed.   

 Through cultural resources surveys, nautical archaeologists also created a 

methodology of predicting historic shipwreck “cluster” locations for the Bureau of 

Ocean Energy Management (Science Applications, Inc. 1981). While GIS was not a 

component of this analysis, the methods used were very similar to conceptualizing a GIS 

model.  

 There are three immediate uses for predictive modeling in nautical archaeology: 

to use archival and physical evidence to narrow down the likely location of a ship’s 

sinking, to understand how the ship and its debris field settled on the seabed during the 

wrecking incident, and to analyze the wrecks that may be at risk of either cultural or 

environmental damage. The first option was used to create a sample model below. 

 

Predictive modeling in raster 

 For the scope of this project, predictive modeling in raster data best matches the 

datasets available for analysis. Archival evidence rarely gives details further than a 

general area, which may be too large for surveys, but may mention the area where a ship 

sank. As remote sensing surveys are normally limited by time and money (Murphy and 

Saltus 1990), archival sources are frequently backed up by local knowledge and 

oceanographic data (Svalesen 2000, 17 – 18). Raster data not only has the capability to 
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model the fuzzy boundaries given by archival data, but it also has the capability to model 

the flow of currents, bathymetric depths, and incorporate digital images generated by 

side-scan sonar data (Kaeser and Litts 2010).  

In the process of creating a predictive model, there are inherent uncertainties and 

assumptions the model developer accepts. These assumptions happen at every step of the 

process, from observation, interpretation, measurement, and data manipulation (Shi 

2010,  3 – 26). Generally speaking, the more handling that data requires, the more error 

is introduced into the database created (Burrough and McDonnell 1998, 220-264). Since 

errors are probably included in the datasets themselves, whether a factor of scale, 

resolution, coverage, observer bias, age of the data, relevance of the data, or the format 

of the data (Burrough and McDonnell 1998, 222-225), these may be compounded by the 

modeling processes performed on them. These problems fall into three primary areas: 

the accuracy of the spatial data itself, the quality of the model, and the appropriateness of 

the model for the data (DeMers 2002, 29). If unaddressed, these factors can proliferate 

into costly errors and render a model useless. 

 

What programs are available to use GIS?  

Numerous software options exist to operate and manipulate GIS data. The 

existing champion, ArcGIS, is created by Esri. While some aspects of ArcGIS are 

available online, the cost of the software can be prohibitive to small archaeological 

organizations and independent contractors. Free alternatives, like QGIS and GRASS 

GIS, are available for download as well. As an open-source software, QGIS and GRASS 
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GIS can be changed and distributed, encouraging collaborative volunteer efforts to fix 

errors and increase ease of access. Finally, Discovery Software’s STEMgis has been 

discussed as a GIS that supports a range of spatial and temporal data (Green 2011, 47). 

While other alternative GIS programs exist, ArcGIS is the most commonly encountered 

purchased software. QGIS and GRASS GIS are the most commonly encountered free 

GIS software.   
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CHAPTER III 

PREDICTIVE MODEL METHODOLOGY 

 

There are many types of predictive models, from simple pass-fail tests, weighted 

linear analyses, and fuzzy weighted linear regression models. In this chapter, I propose a 

pass-fail workflow, and I encourage other nautical and maritime archaeologists to adapt 

it to their own studies to see if the results could be useful.  

 

Nature of the data 

 Data can come from primary or secondary sources. For archaeology, much of 

the primary data comes from excavation and survey. While there are problems inherent 

in primary (or “raw”) spatial data collection and interpretation, this study will focus on 

secondary source implementation. Secondary spatial data has already been processed 

and interpreted, whether digital or paper-based, and inherently has assumptions 

presented as fact (Conolly and Lake 2006, King 1996). However, using secondary data 

greatly reduces the time commitment, and is already a practice inherent within 

archaeology. As with terrestrial archaeology, using secondary data necessitates 

anticipating errors (Conolly and Lake 2006).  

 Tracing the slave trade through historical records also adds another level of 

secondary data. Retrieving and researching old maritime records is a time consuming 

process, especially when the ship is foreign (Science Applications, Inc. 1981). The 

material may be poorly organized, and may only be available in distant and hard-to-
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access archives. Newspapers are a helpful source of information, but without digitization 

may be time-consuming and hard to access. Within the documentary evidence, ship 

location is often vague. Recording longitude was only made possible in the late 18th 

century (Science Applications, Inc. 1981). 

Converting archival data into raster data involves two additional levels of 

interpretation. The archaeologist must determine the range of space mentioned in the 

documentation. A knowledge of that location’s history is instrumental, as place names 

can be highly regional; for instance, a New York Times article from 1899 reads that “a 

large four-masted schooner lies sunk off Whale Rock early this morning” (New York 

Times, 16 February 1899). The third level of interpretation lies in quantifying that 

textual data, which, in this example, is the area around a specific rock approximately a 

half-mile (0.73 kilometers) off the coast of Narragansett, Rhode Island. Adding a spatial 

dimension to the phrase “lies sunk off” is an inherently subjective process. Taking this 

and other sources which may narrow this range, the archaeologist then quantifies that 

phrase into a measurable distance. Through this process, the archaeologist has already 

started interpretation prior to creating the model. As Michael DeMers states in GIS 

Modeling in Raster, “the process begins by conceptualizing our real world and then 

converting it to a cartographic abstraction of that reality” (2002, 11). Understanding this 

distinction is crucial, as GIS models can be presented as mathematically valid truth built 

on incorrect assumptions. Like all other investigations in archaeology, the model creator 

should be methodical in noting any assumptions or interpretations built into the data in 

the accompanying report.  
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 After the data is interpreted into an abstraction, it then will be converted into a 

digital equivalent through tessellation, which DeMers defines the division of geographic 

space so that it can be represented inside a computer (2002, 11). These tessellations can 

be squares, parallelograms, or hexagons; however, the square is commonly chosen due 

to the simplicity of performing operations on it.  By deciding on raster data, this 

geographic data is divided into spatial packets, or quanta, which are then analyzed 

through the GIS operations (DeMers 2002 ,11; Kemp 1993, 364).  

 Previous publications have reviewed digital data repositories, both federal, local, 

and educational, as well as methods to convert paper maps into digital data (Conolly and 

Lake 2006, DeMers 2002), and I will not review them here. Luckily, as the technology 

becomes increasingly affordable, there are more accessible versions of both digitized 

analog maps and spatial data sets available to the archaeologist. Like knowing the 

traditional archival resources available for a region, archaeologists should also research 

the digital archival resources available for the study area. Comparatively, archaeologists 

should also understand the origin, methods, resolution, and projection of their digital 

data, as without these data can be easily misconstrued (DeMers 2002, 25). These are 

often coded within the data’s metadata, a separate text file that is normally available 

within the data download or as a separate link to download with the data.  

Reviewing the metadata can help contextualize the z value of the grid cell. As 

stated, the z value of the grid cell can represent a myriad of different variables. While 

some can be straightforward, like land elevation, others like bathymetry can be 

deceptive. For instance, the bathymetry grid used in this project was generated from 
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soundings taken from the National Ocean Service (NOS) and the NOAA Coastal Relief 

Map (CRM), projected at a scale of approximately 90 meters (0.056 miles) in resolution. 

However, the data does not address the water level that the soundings were generated 

from. Given that the NOS data was produced from soundings from 1965 to 1975, and the 

CRM was generated in 1998, fluctuation from the surface of the water must be 

considered. It is not clear what is considered the zero point from which the 

measurements were taken. The scale of these data ranges from a positive value of 89 to -

2,719 (The Nature Conservatory, 1999). All positive values occur very close to shore, as 

shown in Figure 1.  

Similarly, if data was converted from a vector format into a raster format, more 

than one data value can be linked to a cell, but only one will be represented. GIS 

programs have a few methods of creating raster data from vector data. For instance, the z 

value can represent an average of the data within the cell or the data located most 

centrally in the cell. This means that when datasets are superimposed, the same two 

points may not be compared (DeMers 2002, 23). This leads to a loss of accuracy, and 

should be considered when analyzing a raster model.  
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Figure 1. Bathymetry layer. White and light gray shade values represent positive values. 
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Quality of the model 

Models are conceptualized representations of real-world systems and their 

interactions. To construct a model, a series of assumptions must be made to simplify the 

complexity of the moving components (DeMers 2002, 43), much like Muckelroy’s flow 

diagram is a simplification of the wrecking process (1976, 282).  

 

Creating a model 

As with most models, the designer should first start by defining the goal of the 

project, or the intended spatial information product (SIP), and the audience. Both help 

define the types of assumptions and data manipulations performed throughout the 

process. This is also important to clarify what data are needed for the model. It is 

tempting, when on data repository sites, to download all the data sets. However, even 

though the data set is available, it should not drive the model (DeMers 2002, 25). In GIS 

Modeling in Raster, DeMers (2002, 124) lists five reasons why existing data sets should 

not be the starting point for creating a model:  

1. If the data set is not compiled for the research question, the data may not fit 

the necessary accuracy or scale; 

2. data sets will include too many irrelevant themes; 

3. commonly, the data will be incomplete for a specific model; 

4. external data may bias the methodology and the maker’s conceptualization; 

and 

5. sampling and area coverage may be inadequate. 
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Secondly, the developer should consider properties of the map itself. This below 

list is by no means extensive, but the following factors should be considered. 

Grid size: (DeMers 2002, 26) While in the past, this was primarily related to the 

computing power of the processor, this now can be driven by the needs of the 

model. Choosing the proper resolution revolves around the objects that need to 

be mapped and the size of the area to be mapped. It is recommended that four 

grids should be allocated for each object to be mapped; but this can lead to 

skinny and long objects, like rivers (and specifically timbers), being missed. 

However, if the grid size does not also mesh well with the overall area being 

mapped (i.e., is far too small), then the model will work sluggishly and format 

awkwardly. Finally, if remotely sensed data is a key component of the analysis, 

matching the grid cell to the pixel size may be another factor in choosing an 

appropriate size if it fits the rest of the model. This should only be applied if the 

pixelated data is a critical factor.  

 

Data measurement scale: There are four types of data, as Conolly and Lake 

outline (2006,46). 

1. Nominal, or descriptive categories  

2. Ordinal, or ranked data 

3. Interval, continuous data with an arbitrary ‘0’ 

4. and Ratio, continuous data with a fixed ‘0’. 
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For instance, the bathymetry data mentioned earlier in this chapter would count 

as ratio data, as the zero is a fixed datum to which other values are measured. 

The type of analyses one can perform is determined by the scale of the data used, 

and they can only be compared to each other. Comparisons outside of their order 

require additional computations to avoid the proverbial apples and oranges 

problem (DeMers 2002, 79). One way to compare different sets of data is 

through logistic regression analysis (Conolly and Lake 2006, 183; Stopher and 

Meyburg 1979; Menard 2002). 

 

Map algebra: (DeMers 2002, Chapter 4; Conolly and Lake 2006, 187-189) 

Map algebra refers to combining and altering raster grids by mathematical 

operations cell-by-cell, otherwise known as point operations (Conolly and Lake 

2006, 188; Tomlin 2013, 43).  This necessitates that the data are in the same 

resolution, so they can be “stacked” and calculated correctly (Conolly and Lake 

2006, 187).  

There are numerous types of operators in map algebra, including 

arithmetic, relational, and Boolean. Arithmetic encompasses the basic addition, 

subtraction, multiplication, division, and modulus, which only works for integers 

(DeMers 2002, 46). Relational operators analyze if something is greater than (or 

equal to), less than (or equal to), or equal to. Normally, if true, the output is equal 

to 1; if false, the output is 0. Boolean operators are similar, insofar that they 

evaluate the contents of the cell; they rely on three operators: ‘&&’ for and; ‘|’ 
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for or; and ‘!’ for not. There are several other categories of operators, some of 

which expand on the Boolean methodology, including those to remove areas with 

no data and those that can multiply entire tables by one number. Refer to DeMers 

for a full breakdown (2002, 45-52).  

 

Functions (DeMers 2002, 52–55): Operators are components of functions, which 

can be categorized in a number of ways. Two specific types of functions will be 

discussed here:  

Local functions operate cell-by-cell, where a grid cell or function in one 

matrix interacts with a corresponding cell; and  

Global functions, alternatively, change the whole matrix.  

Functions, in turn, are components of statements, which operate similarly to 

programming languages (DeMers 2002, 54). Local functions also have a set of 

potential operators, which can vary from trigonometry to statistical; one of the 

most commonly used sets of operators for local functions reclassify cells based 

on user input. Similarly, another tool is to resample grid matrixes, which 

changes the cell size of the matrix. Both functions will be discussed in the sample 

workflow. 

 

Sample workflow  

To explore the applicability of modeling shipwrecks, I chose a well-documented 

and well-researched area. The coast of Rhode Island has approximately 3.2 shipwrecks 
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per linear mile, and an active maritime and diving community (Science Applications, 

Inc. 1981, 219). As such, the locations of many wrecks are highly documented, allowing 

the ability to test the data (Clancy 2010, Jenney 2008). Many of the located wrecks are 

motorized vessels rather than sailing vessels, which changes their sailing patterns, 

especially near port areas. However, the ability to test this data against specific locations 

outweighs the need to use solely wind-powered vessels. The spatial information product 

aims to use archival and natural data to limit the survey area. This map intends to take 

the historical area of sinking, and analyze factors within that boundary to highlight areas 

where a wreck is likely to happen. The intended audience is other nautical 

archaeologists.  

 Next, contributing factors needed to be identified and grouped together.  

See Table 1 for a full breakdown of the factors and their effects, based on existing 

models of wreck site deposition (Muckelroy 1976; Ward et al. 1999; Gibbs 2006). These 

factors are both spatial and aspatial; could be demonstrated in vector and raster; and are 

both specific and general. Although the impulse is to immediately indicate those with 

spatial factors, it is important to not limit the contributing factors. There may be data that 

could be converted into spatial data, or be used as an aspatial multiplier (DeMers 2002, 

132 – 133). 
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Factor 
Predepositional or 

Postdepositional? 
Why? Effect 

Bathymetry Post 

If at an angle, ship will 

spill down to deeper 

depths. 

Deeper the water, the 

greater the debris field. 

Move in the direction 

of the decline. 

Wider artifact 

distribution at deeper 

depths. 

Island Topography Pre 
Some areas may be 

hazardous, like reefs. 

Move in the direction 

of the decline. 

Currents 

Both; surface wave 

motion on surface, tidal 

currents at depth 

May drive a ship into 

an obstacle. 

Move in the direction 

of the current. 

Criminal 

activity/salvage 
Post Site destruction. Variable. 

Benthic Cover Post 

Affects conservation 

and visibility of timbers 

and artifacts. 

Variable with sediment. 

Seafloor sediments Post 

Affects conservation 

and visibility of timbers 

and artifacts. 

Hard beds may be poor 

conditions for 

preservations; fine 

layers may allow for 

quick coverage of 

timber. 

Boat traffic Post 

Dependent on activity 

of boat and depth of 

channel. 

Depth dependent, move 

in the direction of the 

boat activity. 

Commercial vessels Post See above See above 

Recreational boater 

activities 
Post See above See above 

Recreational SCUBA 

diving activities 
Post 

Increases likelihood of 

salvage. Locals will 

know about this. More 

likely to flag for local 

historians. Would be a 

popular SCUBA spot. 

Increase visibility; 

more likely to be 

around sites of interest. 

Cargo Both 

Affects wrecking 

process; may have been 

salvaged; affects 

conservation of 

timbers. 

- 

Water Temperature Post 
Affects conservation of 

timbers and artifacts. 

Variable depending on 

temperature. 

Water Salinity Post 
Affects conservation of 

timbers and artifacts. 

Variable depending on 

salinity. 

 

Table 1. An overview of possible factors to include in the predictive model. 
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These factors were then grouped together into two categories, natural and human. 

 

Table 2. Groupings of possible factors. 

 

After identifying the factors, I returned to my research question to identify how 

the factors contributed. I found two that consistently affect wrecking incidents: the 

bathymetric depth, which is correlated with island topography, and the current speed. 

Many of the ships ran aground during fog or bad weather conditions. While the other 

factors have noticeable effects on wrecks, these were all post-depositional or made 

changes that did not significantly migrate the boat into a new grid cell. 

 

Overview of the data: currents 

Based on the premise that a ship will move or drift in the direction of a current 

during periods of distress, oceanographic surface current data was obtained through the 

Northeast Ocean Data Portal (Northeast Regional Ocean Council, 2016). This data was 

collected by the School of Marine Science and Technology at the University of 

Natural Factors

Bathymetry/Island topography

Benthic cover

Currents

Seafloor sediments

Water temperature and salinity

Human Factors

Cargo

Criminal activity/salvage

Boat traffic

SCUBA activities
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Massachusetts, Dartmouth from 1978 to 2013, and collated on February 29, 2016. This 

current data has two bands of data; one to measure the speed of the current in meters per 

second, and the other to measure the direction of the current by compass degrees. The 

speed data set ranged from a high speed of 1.0939 meters per second (approximately 

3.5889 feet per second, or 2.12 knots) to a low of 0.00096 meters per second (0.0033 

feet per second, or 0.018 knots).  

These data present a few interpretation problems. One major question is the 

applicability of modern current data to historical events. Can we project the values 

collected between 1978 to 2013 into the past as accurate numbers? The answer, 

reasonably, is no. However, the hypothesis that areas where the current is faster 

historically may be applied to the past. Although the speed with which currents move 

varies yearly (Walczowski et al. 2012, 867), the 40 years that this dataset encompasses 

actually increases its applicability. The long view here can tell us, if not the speed at 

which the historic currents were borne, the areas where currents tend to be strongest. 

This means that the dataset is not useful as ratio data, but is useful as integer data. To do 

this conversion, current speeds local to the area need to be determined. 

Additionally, the question of incorporating directionality is posed. Currents 

would skew the vessel’s location in the direction of the current while sinking, and 

bottom currents would lead to post-depositional erosion and possible sedimentation 

depending on the benthic cover. It would also yield a larger debris field (Ward et al. 

1999, 564 – 566). However, the data are limited by historic boundaries. To test the 
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hypothesis regarding where currents tend to be the strongest, the directionality is not 

needed. 

Finally, the dataset is projected to the GCS North American 1983, and each unit 

is projected to 0.002 decimal degrees.  

 

Overview of the data: bathymetry and topography 

 The bathymetry data has already been used as an example earlier, but a quick 

review is in order. The data set was created from NOS soundings taken from 1965 to 

1975, and the NOAA Coastal Relief Map (CRM) created in 1998. The scale of these 

data ranges from a positive value of 89 to -2719. This dataset’s resolution is 90 meters 

(0.56 miles), and it is projected to the NAD 1983 datum (The Nature Conservatory, 

1999). 

 The same question of applying modern data to historical times exists in this 

context as well. As ocean levels change yearly, this data set should be taken as an 

indicator of shallower areas and, similarly, converted into an integer dataset.  

 

Other needed data 

 Other miscellaneous data were used to clip the above datasets to historical areas. 

The Rhode Island Continually Updated Shoreline Product was used to create a buffer 

around possible areas of sinking (RIGIS, 2016). It was initially projected to NAD 1983. 

Finally, to validate the model, coordinates for known shipwrecks from avocational diver 
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observation were converted into a vector point feature (Clancy 2010). Please note that no 

unpublished wreck coordinates were used in this dataset. 

 

Creation of a workflow 

With a defined goal and a grasp on the interrelation of factors, a basic outline of a 

workflow can be drafted. There are a few approaches one can take in the creation of a 

workflow, as outlined in an overview of Dutch archaeological predictive modeling (van 

Leusen et. al. 2005, 31): 

1. the presence/absence model 

2. the ordinal/interval (Boolean multivariate) 

3. and ratio (probabilistic multivariate) 

I chose to create a simple pass-fail model to test against the longitude and latitude of 

known shipwreck locations, as compiled by the local Rhode Island diving communities 

(Clancy 2010, Jenney 2008). This method has two benefits. While the other two rely on 

logistical regression and weighted variables, without a greater analysis of the shipwrecks 

of this region and the historical conditions under which they sank, it is hard to ensure the 

variables are weighted correctly. Without a more precise understanding of the historic 

climatic interaction of this area, a weighted map can only represent what is possible 

rather than what is probable. This, in turn, can be easily misconstrued as a definitive 

model, rather than an estimation (van Leusen et al. 2005, 31). Secondly, unlike terrestrial 

data, shipwrecks represent a discrete and limited site. While there may be a 

preponderance of wrecks along difficult to navigate areas, seeking out a single wreck for 
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further research from archival sources requires highlighting the likely areas where they 

may be found. This model is not intended to replace further research and survey, but 

rather give it a focal area. 

  As such, the basic outline of the workflow resembles this:  

 

Figure 2. Basic overview of suggested workflow 

 

Even with the conceptual workflow, the actual workflow in GIS looks slightly 

different. There are conversions, reprojections, and other steps necessary to realize the 

above model. These can be seen in Appendix 3. 

 

Running through the workflow 

This model was processed in ArcGIS, which requires the Spatial Analyst 

extension. If ArcGIS is not available to an archaeologist through their affiliated 
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organization, there are similar tools within QGIS, such as the raster calculator in the 

raster menu.  

Initially, the scope of the coastline to be analyzed was determined. Of the 

shipwrecks known by coordinates and archival evidence, the documents revealed that 

the farthest sank seven miles (approximately 11 kilometers) from the Rhode Island 

shore. The Rhode Island Continually Updated Shoreline Product (RI CUSP) vector file 

was projected to the spatial reference, WGS 1984 Web Mercator Auxiliary Sphere, and 

then used to generate a seven-mile buffer through the Geoprocessing tool kit.  

The current data was also projected to the same spatial reference; however, as a 

raster dataset, it was projected using the Project Raster function. This gave the raster a 

resolution of 256 meters (0.15 miles). The reprojected raster was clipped to the area of 

study, and analyzed to find the regional minimum and maximum. This yielded a span of 

values from 0.001 to 0.3 meters per second (0.003 – 0.984 feet per second; 0.002 – 0.583 

knots).  

Here, the developer faces the question of what counts as a high, or dangerous, 

current. On the open ocean, current speeds are between 0.1 and 0.5 mps (0.3–1.5 fps; 

0.25–1 knots), reaching 1.5 mps (5 fps; 3 knots) in some areas of the Gulf Stream 

(Duxbury 1996, 145). Longshore currents, meanwhile, are created from waves striking 

the shore at a slight angle, with the resulting energy moving parallel to the shore rather 

than against the shore (Duxbury 1996, 193). Other nearshore currents, like riptides, 

move seaward (Duxbury 1996, 194). Over time, this can change the shape of small 

islands and coastlines (Pilkey 1983, 91). Longshore currents can be either slower or 
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faster than their open ocean counterparts, and move in a southerly direction along both 

North American coasts (Duxbury 1996, 193). The currents around Narragansett Bay and 

the coast of Rhode Island are slower than those on the open ocean, ranging from 0.0010 

to 1.0939 mps (0.0033 – 3.5889 fps; 0.018 – 2.12 knots).   

The Gulf Stream was charted by Benjamin Franklin and his cousin in 1769, 

noting that it moved approximately 3 – 4 miles per hour, or 1.3 to 1.8 meters per second 

(Cohn 2000, 130). The historically recorded speeds are roughly comparable to modern 

speeds on the Gulf Stream. However, this may not apply to the longshore currents, as 

these can be affected by eddies created by differential temperatures in larger oceanic 

currents (Duxbury 1996, 195). For the model, the goal is to identify areas where the 

currents are strongest. To use this data set in a historical context, I am assuming that the 

current speeds have maintained a static variability in recent history.  

Using the zonal statistics as table feature, we know that the mean of the current 

data is 0.0695 mps. However, viewing the graph of the data under “Reclassify” shows 

that the data are skewed by outliers in high current areas, making the mean a less 

accurate measure of central tendency than the median, 0.0605 mps. While the median is 

a better measure of central tendency, I opted to reclassify everything above the mean as 

“fast” due to its higher value. As such, everything greater than or equal to 0.0695 was 

reclassified as a 1, and everything less than was reclassified as a 0.   

The bathymetric data was reprojected to the same spatial reference, yielding a 

resolution of 251 meters (0.156 miles).  Since these resolutions are slightly incongruent, 

one dataset must be resampled so both have the same resolution. The developer can 
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choose to resample the lower resolution to the higher resolution, which keeps the fidelity 

of the higher resolution dataset. However, by doing so, the developer can imply a level 

of false accuracy to the lower resolution data. As such, I resampled the bathymetric data 

to the larger resolution of 256 meters (0.159 miles) using the resample tool. Then the 

data was clipped to the extent of the seven-mile boundary around the coastline.  

Again, a choice had to be made concerning what depth constitutes shallow water. 

Given that water depth is highly variable year from year, and the zero in the data set 

represents a mean water level, assigning a depth where it is likely for a ship to run 

aground is highly subjective. For the purposes of this exercise, I chose a depth of 4 

meters (approximately 13 feet) or higher to classify as a risk for a ship to run aground. If 

construction details for a ship are available, it is possible that the ship’s draught could be 

entered; however, the water depth variability and differentials in registered tonnage will 

still make this calculation a best guess, rather than hard math. The data was reclassified, 

with values below -4 meters reclassified as a 0, and values above -4 meters reclassified 

as a 1.  

After, these results are input into the raster calculator in a simple pass-fail 

equation:  

"RI_Currents_Surface_Clipped_Reclass_1" * "RI_Bathymetry_Resampled_Clipped_Reclass_1" 

As each dataset was reclassified into a binary set, wherever one of these two 

values equals zero, the region will come up as a zero, thereby failing the test.  
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Figure 3. Initial results of pass-fail test. The red areas indicate possible locations for 

shipwrecks. 
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Appropriateness of the model  

 There are a few ways to analyze these data, but quantification is not needed to 

see by way of Figure 3 that this initial test did not work. Isolating and optimizing the 

weak link in this model was the next step. However, in the pursuit of loosening 

constraints, the original data model must be consulted to ensure that the intent remains 

the same (DeMers 2002, 154–156). 

Comparing the data layers in Figures 4 and 5, it is clear that the reclassified 

bathymetric data is a map of mostly zeros. There are a few options for changing the 

values. Similar to the current data, the mean can be used as a dividing line. In this case, 

it is -27.96 meters (91.73 feet). Alternatively, we can focus on an area with the most 

shipwrecks to see at what depth they currently sit at. From the data in Appendix 1, at 

least eight ships ran aground on the southern shore of Block Island. Drawing a polygon 

around this region, we can isolate the shipwrecks from this area and use the “Extract 

Multi Values to Points” tool. This gives us the results in Table 3.  
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Figure 4. Initial bathymetry layer with the -4-meter delineation, after being reclassed 

into possible locations (1, denoted by the purple), and less possible locations (0, denoted 

by the gray).  
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Figure 5. Currents layer, after being reclassed into possible locations (1, denoted by the 

orange), and less possible locations (0, denoted by the gray). 
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Vessel Location Latitude Longitude Depth 

USS Leyden Block Island RI 41.1475 -71.564333 No Data 

Meteor Block Island RI 41.146117 -71.58445 No Data 

Spartan Block Island RI 41.161333 -71.542767 No Data 

Grecian Off Block Island RI 41.074317 -71.538517 -27.02869034 

Idene Off Block Island RI 41.112467 -71.489917 -26.73840523 

Essex Block Island RI 41.148333 -71.550817 -6.767851353 

Palmetto Off Block Island RI 41.140567 -71.594933 -6.228220463 

Lightburne Block Island RI 41.14955 -71.5473 -5.69284153 

 

Table 3. Raster values from vessels on the south edge of Block Island 

 

 Note that the depth values range between -5.69 meters and -27.03 meters. The 

larger values (-9999 meters) are the values returned for the areas where there was no 

raster data to draw on, discussed further in chapter 4. Barring the No Data values, there 

are three ships that fall under -7 meters (-22.97 feet) and two more that fall under the 

mean, -27.9 meters (-91.73 feet). Figure 6 shows the results of using the mean as the 

dividing line. Reclassifying the bathymetric raster layer using the mean, the resulting 

pass/fail results appear as in Figure 7. Although the model now works, the interpretation 

of the model changed, as will be discussed in chapter 4.  
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Figure 6. Bathymetry layer with the -27.9-meter delineation, after being reclassed into 

possible locations (1, denoted by the purple), and less possible locations (0, denoted by 

the gray).  
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Figure 7. Final results of pass-fail test. The green areas indicate possible locations for 

shipwrecks. 
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CHAPTER IV 

ANALYZING AND APPLYING THE DATA 

 

Predictive models, by their nature, need to be tested and refined. Verhagen 

(2009a, 63) outlined the following criteria to judge models by:  

1. The model provides a framework by which to explain patterns.  

2. It should be reproducible, with clear steps.  

3. It should be optimized to give the best possible prediction for the data set.  

4. It should perform well in future situations 

5. It should specify the uncertainty level in the predictions.  

The first two deal with the qualitative structure of the model, and can be addressed by 

conscientious decision making and detailed reports. The latter three criteria can be 

quantitatively addressed. 

 There is a difference between performance, validation, and testing (Verhagen 

2009b, 72). A model’s performance relates to the accuracy of its predictions for the data 

it was constructed for; validating a model requires comparing it against a test data set, 

which may or may not be new data; however, in order to test a model, it must be 

compared with new, independently collected data.  It is also important to note that 

models can be sample test dependent if not tested against outside, independently 

collected data, and can therefore be overly optimistic in results (van Leusen et al. 2005, 

34). 
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Ideally, the model will be tested against blind observations, made independently 

from the creation of the model. However, this rarely happens. More commonly, the 

model is tested against existing evidence or by looking directly for confirmation (van 

Leusen et al. 2005, 54). Another concern for terrestrial predictive modeling is spatial 

autocorrelation, where a stronger degree of significance may be observed due to similar 

and interrelated geographical characteristics. The same characteristics play into 

shipwrecks. For instance, strong currents may be due to the interplay between the 

shoreline and nearby sandbars; however, these are also key factors that would lead to an 

increase in wrecking incidents (van Leusen et al. 2005, 66).  

 

Statistical assessment  

One of the primary ways to validate a model is by using Kvamme’s gain 

equation (Kvamme 1988, 329). This equation calculates the utility of the predictive 

model, ranging from high positive values to negative lower values, through the 

following equation:  

𝐺 = 1 −
𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑟𝑒𝑎 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖𝑡𝑒𝑠 𝑎𝑟𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑖𝑡𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 
 

Equation 1. Kvamme’s gain calculation 

 

Since a random sample would theoretically have 50% of the known sites in 50% of the 

area, the equation would yield a 0.  

To calculate, some values will need to be pulled from the model. By using the 

Extract Multi Values to Points tool again, the developer can create a table with the raster 
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values within it. Since the ships sunk off the southern coast of Block Island were used to 

generate the bathymetric data, they were withheld in the test of this model. Five wrecks 

generated a No Data value, as the projection read them as on land; they were reassigned 

a zero value, as the points were not inside the model’s area for passing. The proportions 

were calculated as follows. 

Value Ships Proportion 

Fail - 0 16 0.7272 

Pass- 1 6 0.2727 

Total 22 1 

 

Table 4. Percentage of wrecks observed 

 

 Secondly, the percent total area needs to be calculated. By opening the raster’s 

attribute table, one can view the pixel count for both layers.  

 

 

 

Table 5. Area calculation 

 

These can then be applied to Kvamme’s gain equation, giving the following:  

𝐺 = 1 −
21.98

27.27
 

𝐺 = 1 − .81 

𝐺 = .19 

Equation 2. Kvamme’s gain as applied to the model. 

 

As demonstrated, this model was not very effective.  

Value Area (Pixels2) Percent Area 

0 39,119 0.7802 

1 11,018 0.2198 

Total: 50,137 1 
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 To analyze the model’s components and see which parameter was relatively 

effective, each individual component can be run through the Kj-parameter, developed by 

Wansleeben and Verhart (1992). This equation can also be used in place of Kvamme’s 

gain, as it measures accuracy slightly more than it measures a model’s precision 

(Verhagen 2009b, 76). However, for this formula to be effective, the proportion of sites 

in an observed area to the total number of sites must be larger than the proportion of the 

area with sites to the total area. The currents layer does not match this requirement, as 

shown in Table 6.  See Appendix 2 for an overview of the formula, and its application to 

the individual layers. 

Value Bathymetry Currents 

Predicted area (pass) 41,852 22,583 

Proportion (pass) 0.42 0.44 

Non-predicted area (fail) 59,090 29,183 

Proportion (fail) 0.59 0.56 

Ships in predicted area 17 7 

Ships outside of predicted area 5 15 

Proportion of ships inside prediction area  0.77 0.32 

 

Table 6. Analysis of raster layer details. 

 

The Kj test shows that the bathymetry was by far the most effective level.  

 

Discussion 

 It is imperative that the model is analyzed and reinterpreted in light of the 

intended research question. Each separate component should be analyzed separately and 

in conjunction. Errors can occur within the accuracy of the spatial data itself, the quality 
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of the model, and the appropriateness of the model for the data (DeMers 2002, 29). To 

analyze the model, a review of these areas is necessary. 

 

Spatial data 

Data accuracy can be divided into three separate groups: thematic accuracy, 

positional accuracy, and temporal accuracy (Aalders 1996). The No Data values that 

were returned show one source of error. Since this map dealt solely with bathymetry, 

wrecking incidents that occurred on the shoreline or near the shoreline on previously 

underwater areas were not able to be modeled. This could be rectified by using a joint 

topography and bathymetry layer, or by adding a topography layer separately. However, 

as the shoreline is the area of the most interest, the bathymetry and topography layers 

should match. Another source of the No Data values was the slight buffer around the 

coastline in the currents map, as shown in Figure 8. Outside of this, all datasets were at 

appropriate scales and resolutions for this form of manipulation.   

There is a mismatch in the temporal component of this data, which could have 

led to the failure of the currents layer to predict the site locations. The variability of 

surface currents through time may be too great to accurately project data from this 

century into the past. Another source of error may be the use of the mean rather than the 

median to delineate between areas of high currents versus low currents. The use of a 

middling value to determine high and low values may not be suitable for this operation. 

Further examination of the current speeds at which other shipwrecks occurred can 

deepen the understanding of how this spatial feature effects wrecking events.  
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Figure 8. Closeup of current dataset, as compared to the coastal boundaries. 

 

 



 

55 

 

Quality and appropriateness of the model 

There are many factors here that can be further studied to optimize the model. 

Although reinterpreting the mean for the bathymetric data yielded better results, it is 

highly problematic as the mean is subjective to how the dataset is clipped. Further, it 

invalidates the initial premise: that the shallower the water, the more likely a ship is to 

run aground. Objectively, 27 meters can be considered deep, offshore water depths. By 

using the mean, the model was adapted to fit the available data, rather than testing a 

hypothesis. Instead of testing for shallow areas, the model now tests on an arbitrary point 

in the water column. Even though it yielded good results, archaeologically it is a 

meaningless factor.  

The relative lack of known location for deep-water wrecks may be due to their 

inaccessibility, rather than their absence, yet the predictive model would not mark those 

areas as likely for excavation.  To address this, a weighted linear model may be more 

effective than a pass-fail model. This could be a graduated screening model, where the 

lowest value a cell has for each factor is the cell’s overall value, or a summation model, 

where the cell’s overall value is a sum of each factor. Bayesian inference allows for the 

revision of models based on observed evidence and beliefs by using confidence levels. 

This can allow archaeologists to give a higher weight to inputs they have greater faith in, 

separating what van Leusen calls “expert judgement” and observations (van Leusen et al. 

2005, 65) 

Fuzzy logic can also be incorporated, where variables are placed on a range, 

rather than decided based on a binary code (van Leusen et al. 2005, 65). It allows for 
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uncertainties, making it applicable to “real world” issues. It has been used in numerous 

archaeological applications, like storing uncertain age, gender, and other data on human 

remains in cemeteries (Crescioli et al. 2000), reconstructing Roman pathways from 

imprecise or incomplete excavation data (de Runz et al. 2013), and analyzing site 

maintenance in Peru (Malinverni and Fangi 2009).  

 

Applications 

Even though this specific model did not fare particularly well, GIS predictive 

modeling has been applied within terrestrial archaeological contexts and has great 

potential in nautical archaeology. Terrestrially, it is often used in “location-allocation 

analyses” where a set of observations about cultural interaction with environments are 

codified and used to predict the possible locations of yet-undiscovered archaeological 

sites (van Leusen et al. 2005, 26). Primarily, it is used to prioritize an area’s probability 

to have an archaeological site present (van Leusen et al. 2005), focusing on prehistoric 

areas that had been previously undocumented. This is analogous to the efforts in the U.S. 

to locate wreck sites along the Atlantic seaboard, and can be used to test and refine these 

methodologies (Science Applications, Inc. 1981). However, the efficacy of using 

predictive models to estimate the probability of site location is contested and criticized 

as being reductionist (Wheatley 2004). 

 Predictive models can also be used to hypothesize the state of conservation. No 

two wreck incidents are identical, but by using GIS to combine the spatial and aspatial 

data, predictive modeling can be applied at numerous levels in the frameworks 
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constructed by Muckelroy’s original wreck formation processes (1976), Ward’s 

modified wreck formation focusing on environmental factors (1999), and possibly even 

Gibbs’s modified wreck formation focusing on cultural interaction (2006). By 

correlating this information in GIS, an archaeologist can make inferences that could help 

construct an appropriate conservation and excavation strategy. 

Finally, predictive models can aid the location and excavation of ships from 

archival evidence, especially those directly engaged with the slave trade. Important 

archaeological comparisons of artifacts and ship construction methods have been done to 

help classify ships as slave wrecks without archival identification (Webster 2008b, 

Glickman 2016). Yet of the known slave wrecks, the ship’s name has been what 

classifies the wreck as a slaver. If more slave wrecks are to be found, the search must 

begin in the archival record. In the Trans-Atlantic Slave Trade Database alone, over 

1,000 ships are listed as shipwrecked.  

Due to the tumult that happens during a shipwreck, location information found 

within logs and letters tends to be a vague area, rather than a specific set of coordinates. 

Additionally, information can be found in unusual places. A letter regarding the 1870 

sale of artifacts, for instance, discussed “two African idols, found on board the last 

Spanish slaver…wrecked in the year 1841 at Breezy Point on the Caicos Islands” (Sadler 

2008).  Logs and letters, however, have the distinct advantage of telling a story, which 

could include details on the wrecking incident itself.  

This exercise on known Rhode Island wrecks can inform this process. While 

pass-fail models are attractive, they are limited in their abilities. A graduated screening 
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or summation model as used in other terrestrial applications may be more proficient. 

Using the data from sets like the Rhode Island wrecks to run these models can show 

correlative trends, which can then be used to refine the assessment of probability. By 

using weighted linear analyses and incorporating “fuzzy” logic, many of the 

uncertainties encountered in this process can be reduced or properly defined. Further 

factors may be found contributory through additional iterations.  

For this process, I propose a sample workflow: using initial sources like those 

compiled by the Trans-Atlantic Slave Trade Database, known archival evidence is 

assembled and reviewed. Factors that contributed to the wrecking incident, likely trade 

paths, and area of sinking are acknowledged and quantified spatially, if needed. The 

method of modeling is determined, either through graduated screening, summation, or 

pass-fail. The model is run, and limitations to the data sets are addressed. If there are 

known shipwrecks in the region, checking the model against these locations may help 

refine it. Prior to excavation, more information on high probability areas can be sought 

out, including past geological or oceanographical surveys.  
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CHAPTER V 

ETHICAL CONSIDERATIONS 

 

 While creating a predictive model for slave wrecks involves applied usage of 

data and archaeological science, the purpose and impact of the subject should not be lost 

in the technicality of the methodology. This chapter is dedicated to exploring the 

ramifications of the excavation of slave shipwrecks not only in an archaeological 

context, but within the communities affected by the slave trade.  

 

GIS, data, and interpretation 

The concern that GIS masks subjective data interpretation in a cloak of reality 

has been raised numerous times (Berry 1995; Conolly and Lake 2006; Shi 2010). As Dr. 

Julian Thomas contends, there is a persistent ability to assume “data assembled are data 

understood” (Thomas 1993, 26).  While data can be processed objectively, construed 

spatially, and interpreted quantitatively, such a processual approach must not be taken to 

use this conjecture anthropologically. Furthermore, models are inherently simplistic 

conceptualizations of real-world systems and their interrelations, no matter how well-

packaged the final product is (DeMers 2002, 147). Archaeologists should be direct about 

their assumptions and cognizant of the limitations of their data. 

The implications of using GIS as a tool or as a science has been discussed in both 

archaeology and geography (Wheatley and Gillings 2002, Conolly and Lake 2006), 

especially in discussions about the pitfalls of cultural resource management adaptation of 
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predictive modeling (Wheatley 2004). Archaeological predictive models tend to be 

separated by purpose into two categories, correlative and explanatory (van Leusen et al. 

2005, 30). However, Wheatley notes that correlative predictive models, that is, models 

that test for spatial relationships, can be substituted for explanations of past human 

behaviors (Wheatley 2004, 6). This not only reduces all behaviors as reactionary to the 

environment, but also removes the social sphere through which humans understand their 

surroundings.  

This concern primarily focuses on the interpretation of prehistoric sites, and does 

not necessarily have the same basis in correlative models used in the context of the slave 

trade. Due to the inherent mobility of a ship, spatial relations between other places are 

hard to judge. Further, if information about where a ship wrecked is found within an 

archival source, the cause of the wreck may also be documented. Finally, ships are 

inherently bounded by the ocean, and in transport the social spheres are created within 

the interior context of the ship. Each wreck is an entity within itself. By applying a 

correlative approach to finding wrecked slaving vessels, the research is based on locating 

a known entity with a known social structure. The factors that are being analyzed by the 

model are not inherently cultural. 

Predictive models are also correctly criticized for prioritizing visible sites, as the 

models are created based on known quantities and thus may not be an accurate 

approximation of undiscovered sites with unknown qualities (Wheatley 2004, 9). As the 

models are based on inductive reasoning, they function on the assumption that known 

archaeological remains are representative of all archaeological remains (van Leusen et 
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al. 2005, 31). Terrestrially, this can lead to misguided sampling and excavation 

strategies, and may have the same effect in nautical contexts. van Leusen goes further 

and divides predictive models into the possible and the probable, categorizing almost all 

archaeological examples as possible (2005, 30). As such, results should never be 

construed to be the proverbial “x” on the map. 

Finally, the context within which the model is created matters. While new 

methods can be and are being developed, many of the initiatives come from cultural 

resource management rather than academia. Due to the interaction of legal necessities 

and construction demands, methodology within archaeological heritage management 

will have specific goals closely tied to deadlines (van Leusen et al. 2005). These goals 

should always be explicit and analyzed closely before a method is adopted wholesale 

into an academic context.    

 

Interacting with history  

Stepping away from problems inherent in the model, the developer also needs to 

ensure the model is appropriately placed within the modern social context. People’s 

interaction with history goes further than reading an academic article, or visiting an 

historic monument. We are simultaneously agents, actors, and subjects of history, living 

and changing the impact and implications of the past. Michel-Rolph Trouillot defines 

these roles as follows:  

 Agents: occupants of structural positions (such as wives, workers, priests),  
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Actors: those working within an intersecting spatial and temporal context, and 

affecting that same context 

and Subjects, as people conscious of their own impact within history, with their 

narrative shaping the story (Trouillot 1995, 23).  

As subjects, the power of narrative relies on the intentions and the voices of the people 

involved. Trouillot invokes the example of workers on strike: if workers collectively 

decide to abstain from work the next day, the workers’ reasoning behind that decisions 

matter. If they avoid work due to a bad snowstorm, the incident has little impact; 

comparatively, if their absence is a resistance due to poor working conditions, their 

collectivism takes a new place in history (Trouillot 1995, 23).  

 Through focusing on how history is produced rather than the nature of history, 

Trouillot identifies junctures where the narratives are not told (1995, 27). These silences 

can happen at four stages throughout the creation of historical and archaeological 

records: where the facts are created in the sources or in the material culture; the 

assembly of facts into archives or data sets; how the facts are retrieved in the narratives 

or interpretation created from them; and the facts’ retrospective significance, or history 

created from these facts themselves (Trouillot 1995, 27 – 29).  

It is important to note that silences that occur in the fact creation or assembly 

differ from silences within the retrieval or retrospective significance because they are 

directly tied to real-time power imbalances. This is easily seen historically within the 

context of the archival records regarding the slave trade. The documents are written 

almost entirely by those who stand to gain from emphasizing the trade aspect of slavery 
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and by dehumanizing captives as cargos. Archaeology has the potential to address the 

silences inside of fact creation, but it is an imperfect field subject to misinterpretation 

and selective data gathering. While gathering a wider variety of source material, like 

diaries and archaeological evidence, helps address these imbalances, the attachment and 

weight of meaning to some facts over others means that some are silenced (Trouillot 

1995, 50).  

Archival choices also have a real impact on the experience of slavery; the sheer 

volume of debate on the amount of people exported during the Trans-Atlantic Slave 

Trade should be evidence enough of the inability of the archival record to tell their story 

(Eltis and Richardson 1997). As the act of making a predictive model necessitates the 

assembly of facts,  it is one of the junctures where silences could occur (Trouillot 1995). 

It is imperative, while using a tool like GIS, to remember that in our search to discover 

an untold story we are still constructing and refining a narrative. If the purpose of 

excavating slave wrecks is to add voice to the silent in history, the method must not 

conceal another.  

Finally, the model acts as a method of retrieval of these facts. One ship may be 

prioritized for excavation over another, which could alter the story. There are very few 

ways to mitigate this bias, but the bias should be explicit.  

 

The threat of looting 

 A relevant concern from creating a GIS map of shipwrecks is preventing this data 

from becoming an exploited public resource. Publishing archaeological site locations, 
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such as shipwrecks, can be disastrous for preserving cultural heritage. Treasure hunting 

and modern salvage operations have torn a hole in the maritime record of slave vessels. 

Many of publicly popular ships, like Spanish treasure ships and pirate ships, had similar 

ports of call and were roughly contemporaneous. At least four slave wrecks –  Henrietta 

Marie, Adelaide, Whydah, and Queen Anne’s Revenge –  have been found by 

commercial firms looking for more lucrative wrecks (Webster 2008a). The Fredensborg, 

as discussed earlier, was sought out and excavated for non-commercial reasons – but not 

by an archaeologist (Patterson and Robin 2000, Svalesen 2000). Given this, the 

publication of shipwreck locations must be handled with the utmost caution.  

Such concerns could be addressed by storing the information in an online data 

repository, such as the Digital Index of North American Archaeology (DINAA), which 

restricts access and follows state and federal guidelines for accessing specific location 

data (DINAA 2016). If a version of the map were to be made public, the information can 

be kept to a low spatial resolution, to ensure that shipwrecks would be hard to find by 

diving communities. An example of this is NOAA’s wrecks and obstructions database, 

which opts to obscure the locations of wrecks by using a buffer zone around the exact 

location. However, as demonstrated, many active diving communities know and share 

shipwreck locations among themselves, regardless of academic and governmental efforts 

to protect maritime heritage. Divers need to be treated as an active player in shipwreck 

management plans and execution.  
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CHAPTER VI 

CONCLUSION 

 

To engage in discovering the past is to look at past power imbalances in the context of 

current imbalances (Trouillot 1995, 53). 

 

GIS is a powerful tool; it operates across wide spatial and temporal boundaries. It 

can develop models that may assist in translating archival information into focus areas to 

be analyzed. However, constructing the model does not begin inside the GIS program, 

but rather with the archaeologist’s conceptual model. This model, by nature of the data 

available, will continually be tweaked and revised in the process, but these tweaks can 

easily invalidate the purpose of the model in light of the research question. 

Conceptualizing scale and desired information product are both important to correctly 

designing and interpreting GIS models; similarly, even spatial data components change 

on a temporal level. This should be addressed in the creation and incorporation of 

factors. Due to the potential for errors to propagate, all decisions, assumptions, and 

exclusions must at least be mentioned, and any that may have impacted the results 

discussed. One concern regards the quality of data entering the system; however, another 

concern regards the choice of model being created.  

This pass-fail model shows that these factors can be combined and analyzed 

together in a meaningful way, but also shows areas that need future development. Other 

combinatorial operations need to be run on this data set to test their predictive capability. 

Additionally, other types of shorelines should be tested to see if the same factors apply 

and should be weighted equally. A more complex analysis on how currents operate 
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historically along the shoreline is needed to assist future models. Finally, limitations 

within using secondary data collected for other purposes should be explicit in each 

study. Even with these limitations, GIS can be an important tool to aid the search for 

more archaeological information on the slave trade. Predictive modeling may provide a 

way to parse and coalesce known data into actionable locations.  

 The slave trade had a broad and lasting impact on nearly every continent; it 

involved descendent communities on every shore. Paul Gilroy used the slave ship itself 

as a chronotope, a physical representation of the transition in both time and space of the 

transnational African Diasporic culture (Gilroy 1993). Through his work, Gilroy framed 

the journey into slavery as critical to understanding the current geographic, political, and 

social positions of African-Americans (Gilroy 1993). These are concepts that, in the 

pursuit to save money on excavation and develop new methods to protect our historical 

heritage, archaeologists may overlook. Given the ease with which GIS models can be 

misunderstood, it is important to not only properly contextualize the data within the 

model, but also contextualize the model within the realm of study.  
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APPENDIX 1. LIST OF SHIPWRECKS USED. 

 

This list was compiled using two websites: Shipwrecks of Rhode Island, 

compiled by David Clancy, and the Beavertail Lighthouse Museum Association’s Rhode 

Island Shipwreck Data Base, compiled by Jim Jenney. Shipwrecks of Rhode Island 

provided locations, where BLMA’s Rhode Island Shipwreck Data Base cited 

bibliographies for the wrecks.  

 

Vessel Location Archival Locations Date News source 

Addie M 

Anderson 

Narragansett 

Bay 

"off Whale Rock” 2/15/1899 New York Times 

16 February 1899 

Black 

Point bow 

Point Judith  5/5/1945 New York Times 

10 May 1945 

Black 

Point stern 

Point Judith  5/5/1945 New York Times 

10 May 1945 

Cape Fear Castle Hill “halfway between 

Castle Hill on the 

Newport Shore and 

Rose Island” 

10/29/1920 New York Times 

30 October 1920 

Essex Block Island  “aground at Block 

Island” 

9/26/1941 Newport Mercury & Weekly 

News (NMWN) 

3 October 1941 

Grecian North Block 

Island 

“five miles, 173 

degrees true, from the 

Block Island southeast 

light” 

5/27/1932 NMWN 

3 June 1932 

Hercules Off 

Misquamicut 

 12/14/1907 U.S. Life Saving Service Annual 

Report, 1909 

Lightburne South Block 

Island 

"Ran ashore on a reef 

off Block Island" 

2/17/1939 NMWN  

17 February 1939 

Lydia 

Scholfield 

Castle Hill "On the washbowl" 

"Ashore near Castle 

Hill" 

4/19/1891 Newport Daily News 

20 April 1891 

Mary 

Arnold 

Off 

Charlestown  

"7 miles west of Point 

Judith" 

11/24/1940 NMWN  

29 November 1940 

Meteor South Block 

Island 

"Rocks of the south 

side of Block Island" 

7/10/1926 New York Times 

11 July 1926 
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Vessel Location Archival Locations Date News source 

Metis Off Watch 

Hill 

“6 miles off shore”  8/30/1872 New York Times 

31 August 1872 

Montana North Block 

Island 

"3 mi north of station, 

1.5 mi offshore" 

1/21/1907 U.S. Life Saving Service Annual 

Report, 1908 

Onondaga 

2 

Off Watch 

Hill 

"Off Watch Hill" 6/30/1918 New York Times 

30 June 1918 

Palmetto South Block 

Island 

"Black Rock on the 

southern part of Block 

Island" 

3/23/1858 New York Times 

23 March 1858 

Progress Off 

Charlestown 

"went down in 51 feet 

of water just off 

Charleston Beach" 

11/23/1940 NMWN  

29 November 1940 

Puszta North Block 

Island 

"Grounded on the north 

side of this [Block] 

Island" 

4/17/1934 Lowell Sun 

17 April 1934 

Rhode 

Island 

Narragansett 

Bay 

"between Whale Rock 

and the Bonnet, about 5 

miles northerly from 

Narragansett pier" 

11/6/1880 Newport Daily News 

6 November 1880 

Spartan East Block 

Island 

"stranded during fog on 

the east side of Block 

Island, 1.75 mi 

southeast of the station" 

3/19/1905 U.S. Life Saving Service Annual 

Report, 1906 

USS 

Leyden 

South Block 

Island 

"South side of this 

island"; "200 yards 

from shore, 1 mile west 

of the Southeast Light" 

1/21/1903 Boston Globe 

22 January 1903 and 

U.S. Life Saving Service Annual 

Report, 1904 
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APPENDIX 2. COMPONENT KJ-PARAMETER CALCULATIONS. 

 

Kj-parameter equation 

𝐾𝑗 = √% 𝑜𝑓 𝑠𝑖𝑡𝑒𝑠 𝑖𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑟𝑒𝑎
% 𝑜𝑓 𝑠𝑖𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑟𝑒𝑎 − % 𝑎𝑟𝑒𝑎 𝑤𝑖𝑡ℎ 𝑠𝑖𝑡𝑒𝑠

% 𝑎𝑟𝑒𝑎 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑠𝑖𝑡𝑒𝑠
 

 

Bathymetry layer: 

𝐾𝑗 = √0.77 
0.77 − 0.41

0.58
 

𝐾𝑗 =  √0.77 × 0.61 

𝐾𝑗 =  .69 

 

Currents layer: 

𝐾𝑗 = √0.32 
0.32 − 0.44

0.56
 

𝐾𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑏𝑙𝑒 

 

Pass-fail analysis: 

𝐾𝑗 = √0.27 
0.27 − 0.22

0.78
 

𝐾𝑗 = √0.27 × 0.54 

𝐾𝑗 = 0.14 
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APPENDIX 3. WORKFLOW 

 Insert Current Data Insert Bathymetry Insert geog. boundaries 

Create Buffer 

Use Buffer Layer to clip extent 

Resample and/or reproject 

Clipped Bathymetry Clipped Current data 

Reclassify 

Multiply for pass/fail screening 

Extent of possible shipwrecks 

Resample and/or reproject 

Reclassify 

Reclassified bathymetry Reclassified currents 

Error analysis 




