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ABSTRACT 

 

Clinical inertia (CI) is the failure to intensify treatment in patients with evidence 

of poor glycemic control. It is a critical barrier in the effective management of type 2 

diabetes and can have adverse effects, such as elevated risk of diabetes-related 

complications. The aims of this thesis are to study the long-term effects of CI and its 

interaction with population characteristics on the incidence of diabetes-related 

complications. An agent-based simulation has been constructed to study these effects. The 

base model was developed by researchers from The New York Academy of Medicine and 

the Icahn School of Medicine at Mount Sinai. It was then extended by adding an HbA1c 

update formula and treatment intensification processes, which offers a flexible avenue 

through which to compare diverse populations and parameters in a controlled and 

systematic approach. 

 To assess the accuracy of our model, we have conducted model validation using 

5 published trials and compared the rates of complication incidence. We performed 12 

validation exercises, comparing simulated outcomes with published outcomes. The R-

square of the overall fit was 0.9065, indicating overall good agreement between the 

outcomes. Thus, we concluded that the model was reliable for modeling the progression 

of diabetes-related complications in a population.  

Additionally, we performed a series of experiments to meet our aims. The results 

indicated that a 1-year, 3-year, and 7-year CI significantly increases the 25-year 
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cumulative incidence of most diabetes complications when compared to the non-CI group. 

It also indicates that CI has greater impact on specific race and age-group populations; for 

example, the 65-100 age-group experienced a significantly higher percent increase in the 

incidence of myocardial infarction, stroke, and retinopathy in comparison to the 45-64 

age-group while experiencing a 3-year CI. Additionally, it indicates that the incidence of 

neuropathy and nephropathy due to a 3-year CI in a Native American population is 

significantly less than the non-Hispanic White, African American, Hispanic, and Asian 

populations undergoing a 3-year CI.  Our model results provide insightful information for 

the development of effective diabetes treatment guidelines. Future research is needed to 

investigate the mechanism behind the differences among different population groups.   
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CHAPTER I  

INTRODUCTION  

 

The first chapter of this thesis provides background information concerning 

diabetes, diabetes-related complications, and treatment. In the last two sections of this 

chapter, the motivation, goal, and methodology selected for this thesis are discussed.  

I.1 Diabetes, Complications, and Treatment  

I.1.1 Diabetes Mellitus (DM)   

Diabetes mellitus is a complex, chronic disease where the body fails to produce or 

respond to the hormone insulin, which results in elevated blood glucose levels.  Diabetes 

mellitus can be classified into the following three major categories: type 1 diabetes, type 

2 diabetes, and gestational diabetes.  

Type 1 diabetes, also known as insulin-dependent diabetes, develops when the 

body fails to create the hormone insulin to regulate blood glucose. Type 1 diabetes patients 

must receive insulin by injection or pump to regulate their glucose. Type 1 diabetes 

mellitus is most common among children and young adults; hence it is often referred to as 

juvenile diabetes. According to the Center of Disease Control (CDC), the risk factors for 

type 1 diabetes may be autoimmune, genetic or environmental, but it remains uncertain.33 
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Type 2 diabetes mellitus, also known as non-insulin-dependent diabetes mellitus 

(NIDDM), occurs when the body cannot create enough insulin to control blood glucose 

levels or when the body fails to respond appropriately to the insulin produced. This type 

of diabetes is associated with body weight, history of gestational diabetes, family history, 

age, sex, lifestyle, and race/ethnicity. Type 2 diabetes is common among adults above the 

age of 20, and makes up approximately 90% of all the diabetes cases. 33 

Unlike type 1 and type 2 diabetes, gestational diabetes mellitus (GDM) is usually 

a temporary illness. GDM is developed during pregnancy and is a result of pregnancy 

hormones. GDM is common among women with a family history of diabetes and obese 

women. The CDC reports that 5 - 10 % of women diagnosed with GDM will have diabetes 

after pregnancy, most commonly type 2 diabetes. 33 

In this thesis, we will focus on type 2 diabetes, due to its high prevalence 

worldwide. The objective of diabetes care and management is to reach and maintain a 

glycemic target assigned to each individual by their physician. For the typical non-

pregnant individual with type 2 diabetes, the glycemic target is commonly set to a glycated 

hemoglobin (HbA1c) of less than 7% (53 mmol/mol).46 The HbA1c is a measure of the 

mean blood glucose levels for the previous 2 to 3 months. People with type 2 diabetes use 

insulin, medications, and lifestyle modifications, such as improved diet and exercise, to 

meet their glycemic target. Failure to meet the glycemic goal can increase the person’s 

risk of complications such as cardiovascular disease, retinopathy, neuropathy, 

nephropathy, and, in severe cases, death. It has been reported that an increase of 1% in 

HbA1c is associated with an increased risk of 18%, 12 -14%, and 37% in cardiovascular 
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events, death, retinopathy or renal failure, respectively.17 Due to the elevated risk for 

complications, effective management of HbA1c levels is crucial.   

Diabetes is a progressive epidemic throughout the world, especially within the 

United States. In 2012, 29.1 million Americans, or 9.3% of the United States population 

had diabetes and approximately 1.4 million more individuals are diagnosed with diabetes 

each year.6 According to the American Diabetes Association (ADA), if present trends 

continue, by 2050 one in every three Americans will have diabetes. In the state of Texas, 

diabetes is the 6th leading cause of death with approximately 10.6% of the population 

impacted directly by the disease.13, 14 For this reason, we are particularly interested in 

observing the progression of diabetes in the state of Texas, especially in Bexar County, 

which has a higher prevalence rate of diabetes than Texas at 14.2% and whose 4th leading 

cause of death is diabetes. 13, 14 Our experiments, later described in Chapter IV, will use 

data from different sources to simulate the Bexar County population. 

I.1.2 Diabetic Complications   

I.1.2.1 Neuropathy   

Neuropathy is the medical term used to refer to general diseases of the nerves, 

which can be damaged from injury or sickness. Diabetes is the chronic disease most 

closely associated with neuropathy. There are three subdomains of neuropathy, the most 

common being peripheral neuropathy, which usually affects the feet and legs. Peripheral 

neuropathy in people with diabetes is commonly caused by poor glycemic control (HbA1c 

levels > 7%). It has been reported that up to 7.5% of type 2 diabetes patients had clinical 
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neuropathy at the time of diagnosis.40 The symptoms of peripheral neuropathy include 

tingling, numbness, burning and pain. Due to the nerves being damaged, they cannot carry 

messages to the brain concerning cuts or sores on the feet. Consequently, it is important 

for people with diabetes to regularly check their feet for ulcers and cuts because unhealed 

cuts and ulcers can often lead to other complications including lower-extremity 

amputations (LEAs). LEAs are rare, but are extreme complications among people with 

diabetes.  According to the World Health Organization (WHO), LEAs are 10 times more 

likely to occur in people with diabetes compared to people without diabetes.24 According 

to the CDC, there are approximately 80,000 LEAs performed among people with diabetes 

every year.7 In addition, there is a high mortality rate associated with this debilitating 

complication. The mortality rate for 1-year post amputation can be anywhere between 

10% and 50%, and for 5-year post amputation between 30% and 80%.24 

I.1.2.2 Retinopathy  

Diabetic retinopathy (DR) is a disease of the retina caused by diabetes, in which 

the small blood vessels of the retina are damaged.  DR is the leading cause of blindness in 

adults with diabetes. A person's risk for DR is associated with diabetes duration, poor 

glycemic control, race, smoking habits, blood pressure, and cholesterol levels. DR can be 

prevented by maintaining glycemic and cholesterol control, which is accomplished by 

receiving a comprehensive dilated exam at least once a year, and keeping a healthy 

lifestyle (exercise, no smoking, etc.). According to the Eye Disease Prevalence Research 

Group, in 2014 DR was estimated to have caused 195,000 cases of vision impairment and 
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blindness in the United States.5 DR is responsible for approximately 20% of new blindness 

among people ages 45 to 74 with type 2 diabetes.36 

I.1.2.3 Nephropathy  

Nephropathy refers to kidney disease or damage. Diabetic nephropathy is a type 

of nephropathy caused by diabetes mellitus, and it is the leading cause of end-stage renal 

disease (ESRD).19 It is estimated that approximately 40% of patients in the Unites States 

with ESRD have diabetes.1 Diabetic nephropathy consists of 4 different phases: micro-

albuminuria, macro-albuminuria, nephrotic syndrome, and chronic renal failure. There’s 

an elevated risk of diabetic nephropathy among people with diabetes that have high blood 

pressure, elevated HbA1c levels, and those of races with higher risks for nephropathy, 

such as African Americans.  It has been estimated that diabetes increases the risk of ESRD 

approximately 12-fold.4 The projections from a UKPDS model reported that 34.3% of 

type 2 diabetes patients are likely to have persistent microalbuminuria or worse by 20 

years of being diagnosed with diabetes and 38.3% by 25 years.1 However, achieving 

glycemic control has been proven to be effective in preventing the development of 

microalbuminuria and delaying the progression into further stages of nephropathy.20 

I.1.2.4 Cardiovascular Disease (CVD) 

Cardiovascular disease (CVD), which leads to myocardial infarctions (MI) and 

strokes, is the leading cause of death in people with diabetes. According to the American 

Heart Association (AHA) at least 68% of individuals 65 years or older with diabetes die 

from some type of heart disease and 16% die of stroke.42 In addition, the AHA also reports 
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that diabetic adults are 2 to 4 times more likely to die from heart disease than people 

without diabetes and people with diabetes also have a risk of mortality due to stroke that 

is almost 3-fold compared to non-diabetic people.42 A Finnish population-based study, 

found that people with type 2 diabetes without previous MI have approximately the same 

risk of having a MI as a person without diabetes that has had a previous MI.22 Other factors 

that increase the risk of CVD are age, hypertension, and obesity. One method for 

preventing cardiovascular events is maintaining controlled glucose levels.44 

I.1.2.5 Mortality 

 According to WHO more than 3 million people worldwide die from diabetes and 

diabetes-related complications every year.48 Due to the increased risk of developing 

diabetes-related complications, people with diabetes have a shorter life expectancy and 

higher all-cause mortality risk than non-diabetic individuals.39 

I.1.3 Treatment  

Type 2 diabetes is usually treated with combinations of medications and lifestyle 

modifications, all with the objective of reaching and maintaining glycemic control.  Due 

to the increasing amount of anti-hyperglycemic drugs and the uncertainty on the best 

treatment algorithm, many of the national and international organizations founded to 

prevent diabetes have developed their own recommendations for the management and care 

of type 2 diabetes The treatment guideline developed by The American Diabetes 

Association (ADA) was published in their Standards of Medical Care in Diabetes.46 We 
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used the ADA treatment algorithm when creating our model, adopting their algorithm for 

the modeling of the medical treatment process for simulated diabetic individuals.  

The ADA suggests that most people newly diagnosed with type 2 diabetes should 

begin with lifestyle modifications, which may include daily exercise and a healthy diet. If 

the lifestyle intervention alone does not maintain the glucose levels within the glycemic 

goal, then the patient should initiate metformin monotherapy. If the patient is intolerant to 

metformin, ADA suggests starting with another anti-hyperglycemic drug. If the HbA1c 

target is not reached using metformin monotherapy within 3 months of therapy initiation, 

it is suggested that the patient shift to dual therapy. Dual therapy consists of maintaining 

metformin treatment and adding a second drug from the following options: sulfonylurea, 

thiazolidinedione, DPP-4 inhibitor, SGLT2 inhibitor, GLP-1 receptor agonist, or basal 

insulin. The choice of the second-line drug is based on patient preferences with the goal 

of minimizing side effects, and reducing HbA1c levels. If the HbA1c goal is not met after 

3 months of dual therapy, it is recommended that the patient starts triple therapy, which 

consists of the addition of another oral anti-diabetic drug. If the HbA1c target is not 

reached after 3 months of triple therapy, then treatment should advance to combination 

injectable therapy.  

In the case of people newly diagnosed with diabetes with severely elevated glucose 

levels, the ADA recommends a different approach to the assignment of initial treatment. 

If the newly diagnosed diabetic has HbA1c levels greater than 9% and less than 10%, the 

ADA recommends dual therapy as the initial treatment. Similarly, if the diabetic has an 

HbA1c greater than 10% at diagnosis, the ADA recommends combination injectable 
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therapy as the initial treatment. A flowchart to the generally recommended ADA treatment 

algorithm is displayed in Figure 1.46  

 

 

 

 
 

Figure 1. Flowchart of ADA’s treatment algorithm for type 2 diabetes. 

 

 

 
I.1.3.1 Clinical Inertia 

Despite all the national and international evidence-based guidelines specifying the 

process of medication intensification, research suggests that only 33% of people with 

diabetes are achieving their glycemic target of an HbA1c less than 7% .43 Additionally, a 
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UK study on 80,000 patients with type 2 diabetes reported to have an average time to 

intensification of 3 years among patients with HbA1c levels greater than 7% .47 The delay 

in treatment intensification, despite the evidence of poor glycemic control, is called 

clinical inertia.  

Clinical inertia can be a result of many different factors, including provider factors, 

patient factors, and the health care system.35 In the provider-level, clinical inertia can occur 

due to a lack of knowledge and training, time constraints, or patient health concerns. For 

example, patients who are cared for by general practitioners were 2.95 times more likely 

to experience clinical inertia compared to patients treated by specialists. 35 The delay in 

treatment intensification can occur in the patient-level due to, for example, concerns about 

weight gain and/or hypoglycemia. Clinical inertia can also be an outcome of system-level 

factors such as poor access to health care services and expensive new medications.  

Many studies have revealed evidence of high prevalence of clinical inertia in the 

management of type 2 diabetes, and identified the factors associated with it.48, 35 Additional 

retrospective studies have identified some of the adverse short-term outcomes of clinical 

inertia, but there have been fewer studies regarding the long-term effects of clinical inertia 

on diabetes-related complications. The studies we found regarding the effects of clinical 

inertia on diabetes-related complications are described in detail in the literature review 

discussed in Chapter II.  
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I.2 Research Motivations and Goals   

As discussed in previous sections, diabetes mellitus is a complex, chronic disease 

that can lead to other severe complications. According to WHO, diabetes is the 6th leading 

cause of death in the world, having claimed a total of 1.59 million deaths worldwide in 

2015.49 In the United States, it has been projected that the number of Americans with 

diagnosed diabetes will increase by 165%, from 11 million in 2000 to 29 million in 2050.3 

There is an evident need to control the prevalence of this chronic disease, which can be 

enabled by the effective and timely control of glycemic levels; however, clinical inertia 

remains a critical barrier to effective care. According to epidemiological data, clinical 

inertia is responsible for an excess of at least 200,000 avoidable diabetes-related 

complications per year.48 Despite the various retrospective studies on clinical inertia, to 

our knowledge, no previous studies have examined the long-term effects clinical inertia 

has on diabetes-related complications. 

Thus, the primary purpose of this study is to determine the long-term impacts of 

clinical inertia on diabetes-related complications across different populations using an 

agent-based model. The model was programmed in AnyLogic, a Java-based multi-method 

simulation suite. The aims of this study are to use the agent-based model to test the impact 

of clinical inertia on the incidence of diabetes-related complications, including 

retinopathy, neuropathy, nephropathy, and CVD. Another aim of the study is to use the 

model to test the impact of interactions between clinical inertia and population 

characteristics, such as age, on the aggregate onset of diabetes-related complications.  
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I.3 The Choice of an Agent-Based Modeling Approach for This Research   

In the last few years, there has been an increase in the utilization of systems 

science methodologies such as system dynamics, discrete-event simulation, and agent-

based modeling to solve problems in the public health domain, such as the management 

of chronic diseases.30, 31 

To simulate the progression of diabetes and diabetes-related complications, we 

have selected agent-based modeling as our method. Although several simulation models 

of diabetes have been developed in other studies, many of them are Markov models, which 

do not consider population heterogeneity and past disease history. Moreover, Markov 

models have limitations in modeling adaptive behaviors, feedback loops, and contextual 

effects.31 To the best of our knowledge, agent-based modeling has only been used to study 

the progression of diabetic retinopathy in a population. Agent-based modeling can model 

more complex properties and simulate agents who can represent heterogeneous 

individuals and behaviors and, thus, represents a more advanced approach for population 

health modeling.32 
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CHAPTER II  

LITERATURE REVIEW   

 

II.1 Research on the Use of Agent-Based Modeling in Chronic Disease Management 

In 2013, Day et al. constructed an agent-based model of diabetic retinopathy 

(DR).11 The model was developed based on medical records of patients from the VA St. 

Louis Healthcare System Eye Clinic. The authors considered many patient 

characteristics—such as gender, age, and HbA1c—and determined which of these factors 

were associated to the progression of DR using logistic regression models. Within the 

agent-based model, the progression of DR was modeled using a state chart, which 

consisted of non-proliferative DR, proliferative DR, and blindness states. The medical 

records were separated into a developing and testing dataset, which allowed for model 

validation. The simulated DR patients showed no significant deviation from the cohort of 

real-world patients with regards to their progression of DR, and other predictors. The 

authors state that agent-based modeling is an emerging platform with unexplored potential 

for the management and study of chronic diseases. Moreover, in a later publication in 

2014, Day et al. used the same agent-based model to evaluate the effect of different 

screening intervals on the incidence of vision loss among a simulated cohort of patients.12 

The authors found that there was no significant difference between 1- and 2-year screening 

intervals and, thus, increasing the screening interval to 2 years was the most reasonable.  
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In 2014, Li et al. constructed an agent-based model of CVD to evaluate the effects 

of several lifestyle interventions—such as quitting smoking, improving diet, and weight 

loss—on the long-term prevalence and incidence of cardiovascular events across different 

populations.29 Each of the simulated individuals in the population was assigned several 

behaviors, which were chosen according to the American Heart Association’s (AHA) 

concept of ideal cardiovascular health. Data from the 2007 and 2012 Behavioral Risk 

Factor Surveillance System were used in the validation of the model. The authors showed 

that the effectiveness of an intervention varies from population to population and, thus, 

local health departments should consider population demographics when designing and 

implementing preventive interventions. 

In 2015, Zhang et al constructed an agent-based model to study the impact of social 

influence on the incidence of adolescent overweight and obesity, in an effort to improve 

existing interventions.52 The model was built using results from an R package, called 

SIENA (Simulation Investigation for Empirical Network Analysis), and the National 

Longitudinal Study of Adolescent Health. In order to ensure model accuracy, they 

performed model validation against empirical observations. Overall, they conducted five 

experiments in which characteristics of the high-BMI agents, agent interactions, strength 

of peer influence, BMI distribution, and dietary targets were varied. The results from the 

experiments suggested that an increased peer influence showed a substantial decrease in 

the prevalence of overweight; yet, the effect of peer influence varied by the distribution of 

BMI among the peers, where if the BMI was increased, strong peer include led to an 

increase in overweight prevalence.  
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II.2 Research on the Prevalence and Effects of Clinical Inertia  

In 2016 Osataphan et al. conducted a retrospective cohort study at a university-

based hospital in Thailand to assess the effects of clinical inertia, specifically the delay of 

insulin initiation, on the progression of DR within a non-insulin dependent diabetes 

mellitus (NIDDM) population.35 Ninety-eight patients were included in the study, all of 

which were already using at least 2 oral anti-diabetic drugs (OADs) as treatment and had 

an HbA1c level >9%. Approximately 68.7% of study participants were classified into the 

clinical inertia group. Clinical inertia was defined as failing to intensify treatment with 

insulin after 3 months of poor glycemic control. After a mean follow-up time of 29.5 

months, the median time of study enrollment to a new event of DR was significantly 

shorter within the clinical inertia group than the non-inertia group. The clinical inertia 

group had an incidence rate of 10 cases per 1000 person-months, while the non-inertia 

group had an incidence rate of 2.2 cases per 1000 person-months. The authors noted that 

a future study with a larger sample size and longer follow-up time would be beneficial to 

confirm the association between clinical inertia and diabetes related complications. 

In 2015 Paul et al. conducted a retrospective cohort study to evaluate the effect of 

clinical inertia on the risk of macro-vascular events within the first 2 years post diagnosis 

for type 2 diabetes patients.41 Based on a cohort of 105,477 patients, approximately 26% 

of the patients with poor glycemic control (HbA1c>7%) never received any treatment 

intensification during the 2 years post diagnosis. It was also found that all patients with 

poor glycemic control with a delay in intensification of 1 year had their risks of MI, stroke, 
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heart failure (HF), and composite macro-vascular events (CVE) increase by 67%, 51%, 

64%, and 62%, respectively, compared to patients with HbA1c <7% who received 

treatment intensification before 1 year from diagnosis. The authors also considered the 

history of CVD and found that among patients with HbA1c >7% and no history of CVD, 

a 1-year delay in intensification significantly increased their risk of MI, HF, stroke, and 

CVE by 80%, 63%, 50%, and 64%, respectively. The authors found that clinical inertia 

was associated with 42% and 48% increased risk of CVE among patients with and without 

a history of CVD, respectively.   

Based on the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes 

Model, Chen et al. constructed a discrete-event simulation model called Januvia Diabetes 

Economic (JADE) Model to study the impact of alternative HbA1c thresholds for 

treatment intensification.8 The authors studied the effect of varying the threshold for 

intensifying therapy from OADS to insulin and the threshold for intensifying insulin to 

multiple-dose insulin (MDL) treatment. The JADE Model was developed using Microsoft 

Visual Basic 6.3 with Microsoft Excel 2003, and it consisted of five modules: initial 

conditions of population, treatment, risk factor/adverse events, diabetes-related events, 

and costs. The model was used to make projections on the number of diabetes-related 

complications based on patient data from the Real-Life Effectiveness and Care Patterns of 

Diabetes Managements study. The seven diabetes-related complications recorded by the 

model were ischemic heart disease, MI, congestive heart failure (CHF), stroke, 

amputation, renal failure, blindness, and death. The model showed that lower HbA1c 

thresholds for the intensification of treatment resulted in a decrease in the projected 
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number of patients experiencing diabetes-related complications. Based on model 

projections with intensification thresholds for basal insulin and MDL at 7.0%, the patients 

spent approximately 54% of their time with HbA1c>7.0%. In comparison, if the threshold 

was 9.0%, then the patients spent 95% of their time with HbA1c >7%.  In addition, the 

model showed that clinical inertia could lead to a large increase in the incidence of MI; 

644 patients more than the baseline were projected to experience at least 1 MI within the 

first 5 years post diagnosis if the threshold was 9.0% compared to 7.0%. The projected 

incidence of amputation also showed a large increase resulting from higher thresholds.   
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CHAPTER III 

 MODEL STRUCTURE AND PARAMETERS   

 

 This chapter describes the model structure and parameters used in our agent-based 

model. Our model simulates the progression of diabetes and 4 diabetes-related 

complications: retinopathy, neuropathy, nephropathy, and CVD. This model includes 

some of the structures and parameters from published papers and other models, such as 

the CDC RTI Model.23  

III.1 Model User Interface 

 The agent-based model was constructed using AnyLogic University Researcher 

7.3.6, which is a Java-based simulation suite.16 This version of the software is accessible 

through the developer’s website and available for free download. AnyLogic allows for 

user interface design, and the interface of our model is shown in Figure 2. Using the 

interface, the user can input the characteristics of the population they want to simulate, 

specify the run length of the simulation, and initiate the simulation by clicking the ‘run’ 

button. 
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Figure 2. User interface of the agent-base model.  

 

 

 
III.2 Agent’s Characteristics 

Each agent’s characteristics, such as gender, race/ethnicity, height, weight, and 

age, are generated using the population characteristic, which can be input by users.   

III.2.1 Gender 

 One of the user inputs is the proportion of females in the population. The 

proportion is utilized as the probability, p, in a Bernoulli distribution, which determines 

the gender of each agent. The gender will take the value 1 with probability p, which means 
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the agent is female; otherwise, the gender takes the value of 0 with probability 1-p, which 

means the agent is male.  

III.2.2 Age 

 Each agent is assigned their age using the parameters inserted by the user. The 

parameters are used in a function programed into the model, which uses a normal 

distribution to return a value for each of the agents. The function ensures that the value 

falls within the minimum and maximum age values. This model was designed for the study 

of type 2 diabetes populations and, thus, it models only adult populations, which includes 

people 18 years and older. Additionally, a scheduled event within the model simulates the 

annual aging of each individual agent. When the event is triggered, a year is added to each 

of the agents’ age, unless the agent has already died.  

III.2.3 Race/Ethnicity 

 In real life, the risk of diabetes varies throughout ethnic groups; thus, the model 

was constructed to allow for the simulation of populations with various races/ethnicities. 

Race/ethnicity is assigned to each of the agents also using a function, which utilizes the 

user inputs as parameters. The races/ethnicities defined in our model include non-Hispanic 

White, African American, Asian, Hispanic, and Native American. Each of the 

races/ethnicities is represented by an integer for simplicity. The integers assigned are 1, 2, 

3, 4, and 5 to White, African American, Asian, Hispanic, and Native American, 

respectively.  



20 

 

 To simplify the model, we created a variable, RGL index that combines the gender 

and race of an agent to a single value. The RGL index is assigned whenever the simulation 

is initialized. The table describing the method of calculating each agent’s RGL index is in 

Appendix A. The RGL index remains constant once it is assigned to an agent in the 

beginning of the simulation. 

III.2.4 Height 

 The height of each agent is assigned using a function, which uses a normal 

distribution and the parameters (mean, standard deviation, minimum, and maximum) input 

by the user. An assumption of our model is that each of the agents has achieved their 

maximum height since they have reached adulthood; thus, the height for all agents remains 

a constant throughout the entirety of the simulation. Height in our model is specified in 

meters to simplify the calculation of the body mass index (BMI) of each agent. The method 

of calculating each agent’s BMI is described in later sections.  

III.2.5 Weight 

 The initial weight of each agent is determined using a function, which utilizes a 

normal distribution and the parameters (mean, standard deviation, minimum, and 

maximum) input by the user. Additionally, the weight in our model is assigned in 

kilograms (kg). Unlike the height parameter, the weight of an agent is continuously 

changing throughout the run of the simulation. Details on the process of an agent’s weight 

change is presented in Section III.4.1.   
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III.3 Agent’s Health Behaviors  

 Each agent has a set of state-charts that represent their health behaviors and health 

factors, which can develop simultaneously and interactively. During the run length of the 

simulation, agents may transition between states leading to status changes in their health.  

For our simulation, the transition between states happens at discrete-time intervals of 3 

months. Every 3 months, the model determines what fraction of the agents that will 

transition from one state to another based on transition probabilities. The transition 

probability pj,k (t) is the probability that an agent in state j at time t will move at time t+1 

to state k. The transition probabilities for all the state-charts are estimated from various 

published trials, and they can vary from agent to agent due to the transition probabilities 

being dependent on agent characteristics (gender, race, etc.) and the statuses of health 

behaviors and factors (smoking status, cholesterol, etc.). The health behaviors and factors 

state-charts are displayed in Figure 3.  
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Figure 3. State-charts of the health behaviors and factors. 

 

 

 

III.3.1 Smoking  

 The state-chart representing the current smoking status of the agent consists of two 

states, “Non Smoker” and “Smoker”. The proportion of currently non-smoking agents in 

the population is input by the user, which is then used by the model to determine the initial 

smoking status of each agent.  The proportion is utilized as probability p in a Bernoulli 

distribution. The smoking status will take the value 1 with probability p to represent a 

smoker; otherwise, the status will be 0, which represents a non-smoker. 
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 To determine the transition rates between the smoke states, the model uses the 

agent’s age and probability tables, SmokeStartProbTable and SmokeStopProbTable. The 

tables contain the probability of an agent, given their age, to start or quit smoking. The 

probability tables are shown in detail in the Appendix B.  

III.3.2 Physical Activity 

 The physical activity state-chart consists of two states, “Poor physical activity” 

and “Ideal Physical Activity”. The initial physical activity status is determined using a 

Bernoulli distribution and the proportion of physically active people in the population, 

which is specified by the user, as probability p. The agents with ideal physical activity 

have a physical activity status of 1, and those who have poor physical activity status have 

a value of 0. The transition rates between the states are shown in Table 1.  

 

 

 
 Poor to Ideal Ideal to Poor  Source 

Transition Rate 0.01225 0.01225  Dalziel et al.9 

 

Table 1. Physical activity state-chart transition rates.  

 

 

 

III.3.3 Diet 

 The diet state-chart consists of two states called “Poor Diet” and “Ideal Diet”. The 

initial value of the dietary status is determined using a Bernoulli distribution and the user 

inputs. The dietary status takes a value of 1 to represent an agent with ideal diet, and 0 for 

a poor diet. The transition rates are shown in Table 2.  
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 Poor to Ideal Ideal to Poor Source 

Transition Rate 0.00075 0.00075 Dalziel et al.10 

 

Table 2. Diet state-chart transition rates. 

 

 

 

III.4 Agent’s Health Factors      

 In addition to the health behaviors, the simulated agents also have state-charts 

representing health factors. The health factors modeled for each agent are body weight, 

cholesterol, and blood pressure.  

III.4.1 Body Weight  

 The body weight state-chart consists of three states, “Poor Weight”, “Very Poor 

Weight”, and “Ideal Weight”. Initially, the model calculates the BMI for each agent by 

dividing their weight by their height squared. The calculated BMI is then used to assign 

each agent into their corresponding weight state. If the BMI is less than 25, then the agent’s 

weight status is “Ideal Weight”. If the BMI is greater than 25 but less than 30, then the 

agent’s weight status is “Poor weight”; everything greater than 30 is considered “Very 

Poor Weight”. Agents at the “Ideal Weight” state have a weight status value of 1; 

otherwise, the weight status is equal to 0. The transition rates between each state are 

displayed in Table 3. 

Anytime in the simulation when an agent transitions into a new weight state, the 

agent is assigned a new BMI, which then is used to update their weight. The current weight 
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is updated by multiplying the height squared by the new BMI. The continuous change and 

update of weight is crucial to the HbA1c update formula described in section III.5. 

 

 

 

 

Table 3. Weight state-chart transitions. 

 

 

 

 The diet and activity status directly contribute to the transition rates between 

weight states; such that if an agent is currently in a poor weight state and has an ideal diet, 

where DietStatus is 1, and/or ideal activity status, where ActivityStatus is 1, the agent’s 

transition rate into a healthier weight is greater.  

III.4.2 Cholesterol 

The cholesterol state-chart consists of two states, “Poor Cholesterol” and “Ideal 

Cholesterol”. The parameters input by the user and a Bernoulli distribution determine the 

initial cholesterol status. The cholesterol status has value 1 whenever the agent has ideal 

cholesterol, and a value of 0 otherwise. The transition rates between the cholesterol states 

are determined using a probability table, HighCholesterolProbTable, which contains the 

probability of an agent having high cholesterol, and the agent’s weight status. The 

Transition Rate Source 

Poor to very poor 0.0025*0.76^DiestStatus*0.7^ActivityStatus 

Ogden et al.34, 

Kaukua et al.28, 

and Paul et al.41 

Poor to ideal 0.0025 * 2^DietStatus * 2^ActivityStatus 

Very poor to Poor 0.0025 * 2^DietStatus * 2^ActivityStatus 

Ideal to poor 0.0025*0.76^DiestStatus*0.7^ActivityStatus 
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transition rates are displayed in Table 4, and the probability table is displayed in the 

Appendix B.  

 

 

 

 Poor to Ideal Ideal to Poor Source 

Transition Rate 0.00025 
HighCholesterolProbTable(Age) * 

1.24^(1-WeightStatus) 

Panagiotakos et 

al.40 

 

Table 4. Cholesterol state-chart transition rates. 

 

 

 
III.4.3 Blood Pressure 

The blood pressure state-chart consists of two states, “Poor Blood Pressure” and 

“Ideal Blood Pressure”. The initial blood pressure status of an agent depends on the user 

inputs and a Bernoulli distribution, which returns a value of 1 for ideal blood pressure and 

0 otherwise. The transition rates between blood pressure states are shown in Table 5. The 

transition from ideal blood pressure to poor ideal pressure is a constant rate; however, the 

transition from ideal to poor blood pressure is interrelated with the agent’s weight status 

and their probability of hypertension. The probability table containing the probabilities of 

developing hypertension is displayed in Appendix B.  

 

 

 
 Poor to Ideal Ideal to Poor Source 

Transition Rate 0.00025 
Main.HypertensionProbTable(Age)* 

2.32^(1-WeightStatus) 
Vasan et al.50 

 

Table 5. Blood pressure state-chart transition rates. 
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III.4.4 Diabetes Status 

 Our model was constructed to allow for flexibility in assigning the agents’ initial 

diabetes status. There are two methods to assigning the initial diabetes status. The first 

method utilizes the HbA1c statistics specified by the user. The model then uses them in a 

normal distribution to determine each of the agent’s initial HbA1c. The initial HbA1c 

assignment method is designed so that it will not violate the minimum and maximum 

specifications. Once an agent is assigned an initial HbA1c, the model uses the HbA1c to 

determine the initial diabetes status of the agent. We assume in our model that the time 

from the onset of diabetes to diagnosis is set to 0 years. Thus, if the agent’s HbA1c is 

greater than 6.5%, the agent is then “diagnosed” as diabetic and becomes active in the 

“Have Diabetes” state in the blood glucose state-chart. An agent in the “Have Diabetes” 

state is assigned a diabetes status equal to 1.  Otherwise, the agent is considered non-

diabetic and it is given a diabetes status of 0. The blood glucose state-chart is displayed in 

Figure 4.  

The second method of determining the initial diabetes status of the agents is using 

the proportion of people without diabetes specified by the user. The model uses the 

proportion as the probability for a Bernoulli distribution to assign the initial diabetes status 

of each agent. Once the agents enter their designated state, they are assigned an initial 

HbA1c that is associated with their diabetes status. For agents that are active in the 

“Diabetes” state, they are assigned an initial HbA1c using a uniform distribution with 

minimum of 6.5% and a maximum of 12%. For the agents that are in the “Non-diabetes” 
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state, they are assigned initial HbA1c values using a uniform distribution with minimum 

of 4.0% and maximum of 6.4%.  

 The transition rates between the diabetes states depend on the current weight status 

of the agent and their diabetes probability table shown in Appendix B. Once the agent 

enters the Diabetes state, the agent cannot return back to the non-diabetes state.  

 

 

 

 
Figure 4. Blood glucose state-chart. 

 

 

 

III.5 Complication State-charts 

 In the simulation, each complication is modeled using a state-chart. The state-

charts are interrelated with the health behaviors and health factors state-charts. Initially, 

we assume that all agents have no history of any complication; thus, all agents begin the 

simulation at the normal state of each of the complication state-charts. Throughout the 

simulation run, the agent progresses simultaneously in the state-charts of these 

complications: cardiovascular disease, neuropathy, nephropathy, and retinopathy.  
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III.5.1 Cardiovascular Disease 

 The cardiovascular disease (CVD) state-chart, shown in Figure 5, consists of 

several states, which include MI, stroke, CVD-related death, and non-complication-related 

death. Each agent begins the simulation in the “No CVD” state, where we have 

programmed to determine each agent’s 3-month probabilities of having a MI or Stroke. 

The probabilities depend on gender, age, blood pressure status, smoking status, cholesterol 

status, and diabetes status. Once the probabilities are calculated, they are used as the 

transition probabilities into the CVD states. 

Due to the prevalence of fatal MI and stroke, the state-chart includes a decision 

point for each cardiovascular event, which determines whether the MI or stroke were fatal, 

based on a probability. The probability of a fatal stroke is determined using a condition 

which utilizes RandomTrue function, which generates True with a given probability p. 

The probability of a fatal MI is determined using the probability table DeathFirstMI, 

which contains the probability of an agent dying from their first MI. The probability table 

is shown in detail in Appendix B. If the MI or stroke were not fatal, the agents will 

transition into the MI or Stroke state, where they will remain until further transition. The 

transition rates between CVD states are shown in table 6.   

In addition, this state-chart also includes the transition to a death state, which 

includes all other non-complication related deaths. The transition into the death state 

depends on a probability table shown in detail in Appendix B.  
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Figure 5. Cardiovascular Disease state-chart. 

 

 

 
Transition Rate Source 

No CVD to MI 
ThreeMonthsProbMI * (pow(A1c/(7.0),3.07)) 

*pow(RGL,3.07) * 2 
 

No CVD to Stroke 
ThreeMonthsProbStroke * (pow(A1c/(7.0),3.07)) * 

pow(RGL,3.07)*2 
 

No CVD to MI Death randomTrue (Main.DeathFirstMI (Age) ) Hunink et al.25 

Stroke to Stroke Death randomTrue (0.0376)  

MI to MI death gender==0? Main.DeathMI1(Age):Main.DeathMI2(Age) Weinstein et al.51 

Stroke to Stroke Death 0.022875  

No CVD to Death 
gender==0? 

Main.DeathOther1(Age):Main.DeathOther2(Age) 
 

 

Table 6. Cardiovascular disease state-chart transition rates.   

 

 

 

III.5.2 Retinopathy  

 The retinopathy state-chart, shown in Figure 6, consists of three states, 

“RetiNormal”, “Photo”, and “Blindness”. At the start of the simulation run each agent 

begins at the “RetiNormal” state, which means agents have no history of retinopathy. The 

transition rate from the normal state to the first stage of retinopathy, photocoagulation, 
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depends on the blood pressure status, HbA1c, and RGL index. The transition rates to 

subsequent states are shown in Table 7. 

 

 

 

 
Figure 6. Retinopathy state-chart. 

 

 

 
Transition Rate Source 

RetiNormal to Photo 
(BPStatus==0?0.00275:0.00145)* 

pow(A1c/(A1c+A1cChange),2.74)*pow(RGL,2.74) 
Hoerger et al.23 

Photo to Blindness 0.026625 Hoerger et al.23 

 

Table 7. Retinopathy state-chart transition rates.  

 

III.5.3 Neuropathy  

 The neuropathy state-chart, shown in Figure 7, consists of several states, which 

include normal state, peripheral neuropathy, lower-extremity amputations (LEA), 

subsequent LEA, and LEA-related deaths. All agents begin in the “NeuroNormal” state, 



32 

 

which indicates no history of neuropathy. The transition from the normal state to the first 

stage of neuropathy, “PeriNeuro”, depends on the agent’s HbA1c and RGL index. The 

transition rates from the neuropathy state-chart are shown in Table 8.  

 

 

 

 
 

Figure 7. Neuropathy state-chart. 

 

 

 

 
Transition Rate Source 

NeuroNormal to 

PeriNeuro 
0.005625*(pow(A1c/(7.0),3.07))*pow(RGL,3.07) 

Hoerger et al.23 
PeriNeuro to LEA 0.00168 

LEA to SubLEA 0.0275 

LEA to LEADeath 0.02625 

SubLEA to LEADeath 0.02625 

 

Table 8. Neuropathy state-chart transition rates. 
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III.5.4 Nephropathy 

 The nephropathy state-chart has several states, which include normal state, micro-

albuminuria, clinical nephropathy (a.k.a. macro-albuminuria), ESRD, and ESRD-related 

deaths. The nephropathy state-chart is shown in Figure 8. Initially, all the agents are in the 

normal state, “NephNormal”, and their transition rates into the first stage of nephropathy, 

micro-albuminuria, depend on the agent’s HbA1c and RGL index. All the subsequent 

transition rates are displayed in Table 9. The transition rate between ESRD and ESRD 

death is different from the other rates. Once the agent enters the ESRD state, the model 

determines the agent’s probability of death due to their new nephropathy status. The 

probability of death is determined using the agent’s age, race and gender, and the 

probability is stored in the variable ProbESRDDeath.  
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Figure 8. Nephropathy state-chart. 

 

 

 
Transition Rate Source 

NephNormal to Micro 0.00505*(pow(A1c/(7.0),4.28))*pow(RGL,4.28) 
Adler et al.1, 

UKPDS 3821 Micro to ClinicalNeph 0.0071 

ClinicalNeph to ESRD 0.0058175 

ESRD to ESRDDeath ProbESRDDeath Dong et al.15 

 

Table 9. Nephropathy state-chart transition rates. 

 

 

 
III.6 Glycemic Control and Treatment 

 Diabetes management is focused on the timely and effective management of 

glucose levels. Thus, it was crucial that our model effectively simulated the continuous 

changes in HbA1c levels and the progression of step-wise intensification of treatment for 

each agent with diabetes. According to ADA diabetes care guidelines, a diabetic individual 
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should have their HbA1c tested every 3 months, which then determines if the individual 

requires treatment intensification. To model this process, our model has an event that 

occurs every 3 months, which updates the HbA1c values and initiates the step-wise 

intensification, if necessary. The event updates the HbA1c of each of the agents using the 

following equation:  

A1ci = A1ci-1 + z + x - m  

, where the variables z, x, and m represent the changes in HbA1c associated with the 

change in age, weight change, and medication intensification, respectively. The z variable 

represents the rate of change for HbA1c that is associated with aging, and it is calculated 

using the annual rate of change shown in Table 10. In order to use it in our model, we 

transformed the annual rate to a 3-month rate.  

 

 

 

Annual Rate of Change for HbA1c Source 

0.2 Dong et al.15 

Table 10. Annual rate of change for HbA1c.  

 

 

 

The x variable represents the change in HbA1c associated with weight change, where 

the weight change is calculated each time the agent transitions between any of the weight 

states and the weight is updated. The change in weight used to determine the value of the 

x variable by multiplying the change in weight by a rate of change in HbA1c, which is 

shown in Table 11. In order for the HbA1c to only reflect the last 3 months, the x is set to 

0 after every HbA1c update event. 
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 Rate of Change in HbA1c (per kg) Source 

Weight Gain Normal (0.002, 0.2560) 
Kamil et al.27 

Weight Loss Normal (0.03, 0.8534) 

 

Table 11. Rate of change for HbA1c associated with weight change. Normal (Mean, 

Standard Deviation)  

 

 

 

Lastly, the m variable is associated with the change in HbA1c resulting from an 

intensification of treatment. During each HbA1c update event, a series of conditional 

statements are used to determine if an agent requires an intensification of treatment. 

Firstly, the agent must be alive to receive intensification of treatment. Secondly, the agent 

must have diabetes to receive any treatment. Thirdly, the agent must be in poor glycemic 

control. If the three conditions have been met, the agent can receive treatment 

intensification. 

 In order to track the agent’s current treatment method, a variable numTreatment 

is given values from 1 to 4, each representing the medication stages recommended by the 

ADA, which are monotherapy, dual therapy, triple therapy, and combination injectable 

therapy. During each treatment intensification, the variable numTreatment is increased to 

the next treatment method and the m variable is assigned a value following the distribution 

shown in Table 12. After each HbA1c update, the m variable is set to 0 to avoid 

duplication. A flowchart of the process of assigning values to the variables is displayed in 

Figure 9.  
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One-Time Initial Treatment Effect on HbA1c Source 

Uniform (1, 1.25) Sherifali et al.45 

 

Table 12:  One-time initial treatment effect on HbA1c. 

 

 

 

 
 

Figure 9. HbA1c update flowchart.  
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III.7 Agent’s Life Cycle 

In order to best describe the model, the following section describes two scenarios, 

non-clinical inertia and clinical inertia, which were used for the experiments specified in 

Chapter IV.  

 In the case of a typical agent, the agent is initially assigned all of their 

characteristics (age, weight, height, etc.), and statuses of their health factors (cholesterol, 

blood pressure, etc.) and health behavior state-charts (smoking, physical activity, etc.) 

according to the user inputs. The agent is also initially given the status of its complication 

status, which starts in the “normal state”. Figure 10 shows the flowchart for a typical agent 

in the non-clinical inertia scenario. Meanwhile, Figure 11 displays the flowchart for a 

typical agent in a 3-year clinical inertia scenario.  
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Figure 10. Non-clinical inertia flowchart.  
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Figure 11. Clinical inertia flowchart.  
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CHAPTER IV 

 VALIDATION  

 

IV.1. Model Validation  

 To assess the accuracy of our agent-based model, we conducted model validation 

using several published clinical trials and compared the rates of complication incidence 

between simulation results and trial outcomes. We performed 14 validation exercises 

comparing the simulated outcomes with the outcomes from 6 published trials. To simulate 

the outcomes of each of the clinical trials, we generated a population cohort with similar 

baseline characteristics, which were provided in each of the trials, and then modeled the 

development of diabetes-related complications for the same follow-up durations as in the 

trial.  

 Based on the structure of our model, we created the simulated population using the 

following variables: age, sex, ethnicity/race, BMI, HbA1c, smoking status, blood pressure, 

total cholesterol, physical activity, and diet. For each of the complication, we utilized 

published trials that had outcomes only for type 2 diabetes patients. The outcomes that 

were measured were regarding the following complications: retinopathy, cardiovascular 

disease, neuropathy, nephropathy, and mortality. We assessed the goodness-of-fit for the 

model by plotting the model results against the published trial results and then calculating 
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the R-squared value, which measures how much of the actual variance our model can 

explain.  

 The details in each study and the comparison between outcomes are shown in 

Table 13. The results show that for most of the complications, the simulated results closely 

match published results.  

 

 

 

Trial 
Treatment 

Group 
Duration Outcome 

Study 

Result 

Model 

Result 

UKPDS 

3326 

Newly 

diagnosed 

NIDDM people 

10yrs. 

Absolute risk of 

retinopathy events per 

1,000 pt-yrs 

11 5.95 

Absolute risk of MI 

events per 1,000 pt-yrs 
17.4 7.20 

Absolute risk of stroke 

events per 1,000 pt-yrs 
5.00 3.14 

ACCORD17 

Newly 

diagnosed 

NIDDM people 

ages 40 – 75 in 

UK or Ireland 

4yrs. 

Cumulative incidence of 

CVD death 
1.8% 1.1% 

Cumulative incidence of 

non-fatal MI 
4.6% 4.30% 

Cumulative incidence of 

non-fatal stroke 
1.20% 2.50% 

Partanen et. 

Al40 

Finnish newly 

diagnosed 

NIDDM people 

10yrs. 
Cumulative Incidence of 

neuropathy 
20.90% 16.50% 

 

Table 13. Summary comparison of published study results with results from the model.  
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Study 
Treatment 

Group 
Duration Outcome 

Study 

Result 

Model 

Result 

UKPDS 

641 

Newly 

diagnosed Type 

2 diabetics 

15 yrs. 

Cumulative incidence of 

micro-albuminuria or worse 

nephropathy 

28.0% 25.9% 

Cumulative incidence of 

macro-albuminuria or 

worse nephropathy 

7.1% 7.5% 

Cumulative incidence of 

ESRD or worse 

nephropathy 

2.3% 2.1% 

Li et. Al29. 

Control group 

of Chinese 

people w/ IGT 

6yrs 
All-cause mortality 

cumulative incidence 

3.7% 4.7% 

20yrs 29.3% 24.2% 

 

Table 13 (continued).  

 

 

 

To further evaluate the model’s accuracy, we compared the aggregate fit across 

complications by plotting the model results against clinical study results and estimating 

the correlation. The plot for the validation results is shown in Figure 12. The regression 

line slope of 0.7951 is close to 1.00, and the value of R-squared is 0.9065, which indicates 

that our model explains approximately 91% of the variance in the actual data. The model 

fits the data well because the results fall closely to the 45-degree line, which denotes 

perfect correlation between model and study results.  
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Figure 12. Comparison of the modeled diabetes-related complication incidence rates to 

the observed results from published trials.  
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CHAPTER V 

EXPERIMENTS AND OUTPUTS  

 

This chapter provides information on the designed experiments and the statistics 

collected on the model populations in effort to meet the aims specified in Chapter I.  

V.1 Description of Experiments and Model Outputs 

  To meet the aims of this thesis, we designed an experiment for each of the aims. 

The aims of this thesis are:  

Aim 1: Use the agent-based model to study the impact of clinical inertia on the incidence 

of diabetes-related complications.  

Aim 2a: Use the agent-based model to study the impact of interactions between clinical 

inertia and age on the aggregate onset of diabetes-related complications.   

Aim 2b: Use the agent-based model to study the impact of interactions between clinical 

inertia and race on the aggregate onset of diabetes-related complications.   

Aim 2c: Use the agent-based model to study the impact of interactions between clinical 

inertia and gender on the aggregate onset of diabetes-related complications.   

For all of the experiments described in the following paragraphs, the simulations 

had a run length of 25 years and were replicated 15 times each. Each of the replications 

consisted of a population of 10,000 simulated agents with diabetes, which were modeled 
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according to the population characteristics of Bexar County, Texas. The population 

characteristics are described in detail in Appendix C.   

V.1.1 Experiment 1: Impact of the Clinical Inertia on the Incidence of 

Complications 

 For the first aim of this project, we designed an experiment which used the 

incidence of complications as the response variables and the duration of clinical inertia as 

the factor. We created 4 simulations where each modeled different durations of clinical 

inertia, which were 3 months, 1 year, 3 years, and 7 years. The duration of clinical inertia 

represented the time that an agent remained in poor glycemic control before their first 

treatment intensification. The simulation with the 3-month clinical inertia was the non-

clinical inertia scenario based on the ADA guidelines which require patients to wait a 3-

month period after each treatment initiation and before the physicians can suggest 

treatment intensification. The non-clinical inertia scenario was used as the baseline group, 

which was used to compare to the other scenarios with longer clinical inertia durations. 

The purpose of this experiment was to make the comparisons and calculate the percent 

increase in the incidence of complications between the non-clinical inertia and clinical 

inertia groups. Additionally, the controls of this experiments were the population 

demographics and the remaining user inputs. The results from this experiment are 

displayed in Table 14. 

Additionally, we utilized Minitab Software to perform two-sample t-tests to 

compare the different scenarios. The two-sample t-test is designed to compare the means 
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of two populations while assuming the response variables were normally distributed and 

the data from both populations have equal variances. In the case of not normally 

distributed data, we used Mann-Whitney statistical tests, which uses the median to make 

the comparisons instead of the mean. For each of the clinical inertia groups, we compared 

their cumulative incidences to the ones from the baseline group. The two-sample t-tests 

showed that there was a statistically significant difference between the baseline and all 

clinical inertia groups, in which the clinical inertia scenarios had a higher cumulative 

incidence for all complications, except for fatal MI. The results from the Mann-Whitney 

tests are displayed in Appendix D.  It was also observed that as the clinical inertia duration 

increases so does the percent increase in incidence of complications. 
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V.1.2 Experiment 2: Impact of the Interaction between Clinical Inertia and 

Population Characteristics on the Incidence of Complications 

For the second aim, we constructed three individual experiments to study the 

impact of the interaction between clinical inertia and several population characteristics, 

which were age, gender, and ethnicity/race, on the incidence of diabetes-related 

complications. In each of the three experiments, the response variables were the incidence 

of complications, and the controls were the population demographics and the remaining 

user inputs. Each experiment had different factors: age, gender, and ethnicity, where each 

factor had subcategories.  In each experiment, two populations were simulated for each 

subcategory. The first modeled the baseline non-clinical inertia group, which received 

treatment intensification as necessary and as recommended by the ADA. The second 

modeled the clinical inertia group which experienced a 3-year delay in treatment 

intensification. All of the populations were modeled to be 100 % diabetic, because we are 

only interested in the effect of clinical inertia on the health of people with diabetes.  

V.1.2.1 Experiment 2a: Impact of the Interaction between Clinical Inertia and Age 

on the Incidence of Complications 

 For this experiment, we utilized the National Health and Nutrition Examination 

Survey as a guide to determine an appropriate way to divide agents into age-groups. The 

age-groups were determined as 20 to 44, 45 to 64, and 65 to 100.  

In an effort to understand the implications of the model results, we performed a 

series of statistical tests, which consisted of 2-sample t-tests and one-way ANOVA tests. 



50 

 

Similarly to experiment 1, we used Minitab software to run these tests. Initially, to confirm 

that the clinical inertia group resulted in higher incidence of complication, we used 2-

sample t-tests to compare the mean incidences between the baseline and the clinical inertia 

scenario of each age group. The results in Table 15 show that the clinical inertia scenario 

did have significantly higher incidences on all complications than the non-clinical inertia 

group. 

Secondly, we used one-way ANOVA tests to compare each of the clinical inertia 

group’s mean percent increase in complication incidence in effort to study the different 

effect of clinical inertia between age-groups. For each of the complications, we compared 

three percent increases of incidences, where each corresponded to an age-group. Several 

ANOVA results suggested one of the means was different, and thus, we also performed 2 

sample t-tests between all means, trying all combinations, to understand which means 

were significantly different. The results are shown in Table 16.  

The model seems to suggest that the 65-100 age group is affected by clinical inertia 

significantly more than the 45-64 age group in the incidences of MI, stroke, and 

retinopathy by 21.6%, 21.8%, and 27.8%, respectively. The 65-100 age group also is 

affected by clinical inertia significantly more than the 20-44 age group in the incidences 

of retinopathy, nephropathy, and complication-related deaths by 21.8%, 27.1%, 6.1%, and 

16.4%, respectively. According to the model results, it might be of interest for public 

health officials to investigate the effects of clinical inertia on elderly populations in the 

future to validate the results from our models.  
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V.1.2.2 Experiment 2b: Impact of the Interaction between Clinical Inertia and 

Ethnicity/Race on the Incidence of Complications 

In this experiment, we studied the following ethnicities/races: Non-Hispanic 

White, African American, Hispanic, Native American, and Asian. We performed two-

sample t-tests to understand the effect of clinical inertia compared to non-clinical inertia 

group, and then performed the ANOVA test to understand the differences in the effect of 

clinical inertia between ethnicities/races. 

 The results for the two-sample t-tests are shown in Table 17. The results from the 

ANOVA tests are shown in Table 18. According to our model, the non-Hispanic White 

group is affected by clinical inertia significantly more than the African American 

population in the incidence of neuropathy, and nephropathy by 2.7% and 3.0%, 

respectively. The model also shows that the Native American group is affected by clinical 

inertia significantly less than the non-Hispanic White, African Americans, Hispanic and 

Asian population groups in the incidence of neuropathy by 5.4%, 2.7%, 3.8%, and 4.2%, 

respectively; similarly, it is significantly less in the incidence of nephropathy by 11.0%, 

8.0%, 7.9%, and 13.9%, respectively. The Asian group was impacted by the 3-year clinical 

inertia significantly more than the African American, Hispanic, non-Hispanic White, and 

Native American groups in the incidence of nephropathy by 5.9%, 5.9%, 2.9%, and 

13.9%. The non-Hispanic White was affected by the clinical inertia significantly more 

than the Hispanic, and Native American population in the incidence of complication-

related deaths by 6.5%, and 5.8%, respectively.   
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V.1.2.3 Experiment 2c: Impact of the Interaction between Clinical Inertia and 

Gender on the Incidence of Complications 

In this experiment, the two subcategories were female and male. Similar to the 

previous experiments, we performed 2 sample t-tests to understand the effect of clinical 

inertia compared to non-clinical inertia group, and then performed ANOVA test to 

understand the differences in the effect of clinical inertia between males and females. The 

results for the comparison of the non-clinical inertia group and the clinical inertia group 

are shown in Table 19.  

The results show that clinical inertia does result in higher incidence rates for all 

complications in both gender populations. The results from the ANOVA tests are shown 

in Table 20. The model results suggest that clinical inertia does not affect females and 

males differently. 
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  CHAPTER VI 

DISCUSSION AND CONCLUSION  

 

This chapter provides a summary of the development of our agent-based model, 

and the results obtained from the experiments. Lastly, potential areas of future work are 

presented.  

VI.1 Discussion 

Clinical inertia is a critical barrier to the effective treatment of diabetes mellitus. 

Despite its prevalence, there have been few studies on its effects. A clear understanding 

of the effects clinical inertia has on diabetes and diabetes-related complications is critical. 

Computer modeling is increasingly being recognized as a practical approach to study 

different chronic diseases, such as diabetes, and various treatment methods.30, 31 This study 

sets out to assess the impact of clinical inertia using a flexible, agent-based simulation 

model. In our study, we found that clinical inertia increases the incidence of diabetes-

related complications among type 2 diabetes agents. These results are broadly consistent 

with the existing literature, such as the reported outcomes by Osataphan et al. and Paul et 

al., which state that clinical inertia increases the risk of diabetes complications.31, 37 

Additionally, the study demonstrated that clinical inertia increases the incidence 

of diabetes-related complications significantly more on certain age and ethnicity groups. 

This is the first study, to our knowledge, that examines the effect of the interaction between 
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clinical inertia and population characteristics on the incidence of diabetes-related 

complications.  

Our study has some limitations. First, our model only predicts the first event of 

diabetes complications, similar to the CDC RTI model, on which our model is partially 

based on.  Consequently, we are only able to track the cumulative incidence of only the 

first event of diabetes complications. Secondly, our model’s treatment intensification 

algorithm is based solely on the agent’s glycemic levels, whereas in reality a treatment 

intensification may be based on other risk factors, such as agent age or overall health. 

Third, the treatment intensification algorithm does not include the discontinuation of 

medication, which in reality can happen due to medication side effects. Fourth, our model 

assumes that the patients are fully adhered to their medication instructions.  Fifth, the 

agents in our model are not in additional treatments or interventions, whereas in reality, 

they might be in multiple treatments and/or interventions for other health conditions. 

Sixth, our model assumes that the time from the onset of diabetes to diagnosis is set to 0 

years, whereas in reality the patient may go undiagnosed for a few weeks or months. 

Finally, the modeling of clinical inertia assumes that it is a one-time occurrence, where 

the patient resumes timely treatment intensification after their first episode of clinical 

inertia. This assumption was made due to lack of literature on the frequency of clinical 

inertia.   

Although it has several limitations, our model was validated using previously 

published clinical trials. Additionally, even though the experiments were conducted on 

Bexar County population, the validation of our model supports the accuracy of the agent-
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based model for other populations. Our study’s findings can contribute considerably to the 

development and evaluation of treatment guidelines for type 2 diabetes patients. More 

research in this area is necessary, particularly with real patient data.  

VI.2 Summary of Thesis Research 

 In conclusion, this thesis provides a simulation tool to evaluate the effects of 

clinical inertia on long-term outcomes of type 2 diabetes patients. The results of this study 

broaden the knowledge on clinical inertia on long-term outcomes. Our study suggests that 

clinical inertia leads to higher incidence rates of diabetes-related complications, and that 

clinical inertia does not affect genders differently, but it does increase the incidence rate 

of complication for particular age and ethnic groups. These findings may help health 

providers and policymakers better understand the potential adverse impact of clinical 

inertia on diabetes outcomes across different populations. 

 VI.3 Contribution   

The thesis research made two important contributions to the knowledge of clinical 

inertia research and chronic disease modeling. 

Previous research has sought to understand the prevalence and causes of clinical 

inertia on the treatment of type 2 diabetes. Our thesis offers a deeper understanding of 

clinical inertia by studying its long-term effects and the effects of its interaction with 

different population characteristics on the incidence of diabetes-related complications. 

Our study reported that clinical inertia increases the incidence of complications in the 

long-term, and that it affects some ethnic and age groups on a higher scale than others. To 
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the best of our knowledge, there are no other studies on the effects of clinical inertia on 

age-groups, ethnic groups, nor gender. Thus, the implications of our model results provide 

valuable and insightful information for the development of effective diabetes treatment 

guidelines, in particular, for the population groups that are suggested to be most affected 

by the delay of treatment intensification.  

Our thesis research also made contributions through the development of the agent-

base model, which was specifically modified to study clinical inertia.  To the best of our 

knowledge, agent-based modeling has only been used to study the progression of diabetic 

retinopathy in a population. Our model can offer more flexibility, by providing projections 

of the incidence of 5 different diabetes-related complications and the prevalence of 

diabetes in a broader range of simulated populations. A large portion of the previous 

modeling work on diabetes has been through Markov models, which offer less intuitive 

user interfaces. Our model is built with Anylogic, which allows for intuitive animated 

presentations for users to understand the system in a more effortless way.  

Most importantly, the current model has the capacity for straightforward integration of 

other diabetes interventions. While the integration of other diabetes interventions is out of 

the scope of this thesis, it is among one of the avenues for future work discussed in the 

next section. 

VI.4 Future Work   

 A few areas with potential for improvement have been identified, but fall outside 

the scope of this thesis due to time limitations and other considerations. First, additional 



64 

 

investigation using the agent-based model should be performed. For example, an 

investigation on the impact of clinical inertia on the time to onset of diabetes-related 

complications and death. Secondly, further research should be conducted with regards to 

the interaction of clinical inertia and population characteristics, particularly age and 

ethnicity/race. Lastly, further improvements should be made to the agent-based model to 

include additional interventions (diet, physical activity, medication, etc.), all in an effort 

to help evaluate or create treatment algorithms for type 2 diabetes patients.   
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APPENDIX A 

 

Calculating RGL Index 

 
if (Race==1 && gender==0) 

{RGL=1;} 

else if (Race==1 && gender==1) 

{RGL=1;} 

else if (Race==2 && gender==0) 

{RGL=1.04;} 

else if (Race==2 && gender==1) 

{RGL=1.09;} 

else if (Race==3 && gender==0) 

{RGL=1.09;} 

else if (Race==3 && gender==1) 

{RGL=1.04;} 

else if (Race==4 && gender==0) 

{RGL=1.19;} 

else if (Race==4 && gender==1) 

{RGL=1.19;} 

else if (Race==5 && gender==0) 

{RGL=0.95;} 

else 
{RGL=0.95;} 

 

 

Figure A-1. Series of if statements to determine RGL index for each agent, where 1 is 

female and 0 is male, and 1,2,3,4,5 correspond to non-Hispanic White, African American, 

Hispanic, Native American, and Asian, respectively.  

  



75 

 

APPENDIX B 

 

Smoking Initiation and Cessation Probability Tables. 

Table B-1 and Table B-2 contain the age-specific smoke initiation and cessation 

probabilities, respectively.18 

Age Probability of Starting to Smoke 

9.0 0.001255503 

11.0 0.002522152 

13.0 0.005089752 

15.0 0.010368573 

17.0 0.018676257 

19.0 0.018676257 

21.0 0.009030316 

23.0 0.005089752 

25.0 0.002522152 

27.0 0.002522152 

29.0 0.001887421 

31.0 0.001255503 

33.0 6.26372E-4 

 

Table B-1. The age-specific probabilities of smoking initiation. 

 
Table B-2. The age-specific probabilities of smoking cessation. 
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High Cholesterol Probability Table 

 

Table B-3 shows the age-specific probabilities of an agent having high 

cholesterol.37 

Table B-3. The age-specific probabilities of having high cholesterol. 
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Blood Pressure Probability Table 

Table B-4 shows the age-specific probabilities of an agent having hypertension.50 

 

Age Probability of Hypertension 

50.0 0.0 

55.0 0.002156969 

65.0 0.003695434 

 

Table B-4. The age-specific probabilities of having hypertension. 

 

 

Diabetes Probability Table 

Table B-5 shows the age-specific probabilities of an agent having diabetes. 

 

Table B-5. The age-specific probabilities of having diabetes. 

 
 

 

Death from First MI Probability Table 
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Table B-6 shows the age-specific probabilities of having a fatal MI.  

 

 

 
Age Probability of Death from 

First MI 

0.0 0.0 

15.0 0.003872436 

44.0 0.003872436 

45.0 0.008507964 

54.0 0.008507964 

55.0 0.018771998 

64.0 0.018771998 

65.0 0.042281841 

74.0 0.042281841 

75.0 0.083777257 

99.0 0.083777257 

100.0 1.0 

 

Table B-6. The probability of death from first MI, specified by age. 
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Death after First MI 

Table B-7 and Table B-8 shows the age-specific probabilities of dying after first 

MI for females and males, respectively.  

 

 

 
Age Probability of Death After 

First MI 

0.0 0.0 

15.0 0.001151989 

44.0 0.001151989 

45.0 0.002685801 

54.0 0.002685801 

55.0 0.004632085 

64.0 0.004632085 

65.0 0.008277202 

74.0 0.008277202 

75.0 0.027596477 

99.0 0.027596477 

100.0 1.0 

 

Table B-7. The age-specific probabilities of dying after first MI for females. 

 

 
 

Table B-8. The age-specific probabilities of dying after first MI for males. 
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All-cause Mortality Probability Table 

Table B-9 and Table B-10 shows the age-specific probabilities of all-cause 

mortality for females and males, respectively. 

 

 

Table B-9. The age-specific probability of all-cause mortality for females. 
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Table B-10. The age-specific probability of all-cause mortality for males.  
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APPENDIX C 

 

Bexar County Population Data 

Total Population 10,000    

Age 34.98 

(mean) 

22.17 

(standard deviation) 

20 

(Min.) 

100 

(Max.) 

Height 1.52 

(mean) 

0.50 

(standard deviation) 

1.67 

(Min.) 

1.87 

(Max.) 

Weight 80 

(mean) 

14 

(standard deviation) 

62 

(Min.) 

140 

(Max.) 

Female 50.4%    

Race White 30%   

 African American 7%   

 Hispanic 58.9%   

 Native American 1.5%   

 Asian 2.6%   

HbA1c 7.02 

(mean) 

1.72 

(standard deviation) 

3.3 

(Min.) 

19.9 

(Max.) 

No Diabetes 91%    

No Smoking 84%    

Physically 

Active 

78%    

Diet 22%    

No History of 

Hypertension 

    

No History of 

High Cholesterol 

    

 

Table C-1. The Bexar County 2013 data used to run experiments. This data was obtained 

through County Health Rankings and the Texas Demographic Center. The weight and 

height parameters were estimated using BMI data, and diet percent was estimated using 

access to healthy food in Bexar County. No data was available for the history of 

hypertension or high cholesterol.  

  



83 

 

  

T
a
b

le
 D

-1
. 
T

h
e 

M
an

n
-W

h
it

n
ey

 r
es

u
lt

s 
to

 e
x
p
er

im
en

t 
1
. 

M
ed

ia
n
 C

u
m

u
la

ti
v
e 

In
ci

d
en

ce
. 

In
ci

d
en

ce
 i

n
cr

ea
se

 f
ro

m
 n

o
n

-

cl
in

ic
al

 i
n

er
ti

a 
g
ro

u
p

 t
o

 c
li

n
ic

al
 i

n
er

ti
a 

g
ro

u
p
 (

9
5
%

 C
o
n
fi

d
en

ce
 I

n
te

rv
al

s)
. 

*
*
 P

- 
v
al

u
e 

<
 0

.0
5
, 

st
at

is
ti

ca
ll

y
 d

if
fe

re
n

t.
  
 

 T
a
b

le
 D

2
. 
T

h
e 

M
an

n
-W

h
it

n
ey

 r
es

u
lt

s 
to

 e
x

p
er

im
en

t 
2
a.

  

A
P

P
E

N
D

IX
 D

 

M
a
n

n
-W

h
it

n
ey

 T
es

t 
R

e
su

lt
s 



84 

 

  

T
a
b

le
 D

-3
. 
T

h
e 

M
an

n
-W

h
it

n
ey

 r
es

u
lt

s 
to

 e
x
p
er

im
en

t 
2
b
. 

M
ed

ia
n
 C

u
m

u
la

ti
v
e 

In
ci

d
en

ce
. 

In
ci

d
en

ce
 i

n
cr

ea
se

 f
ro

m
 n

o
n

-c
li

n
ic

al
 i

n
er

ti
a 

g
ro

u
p
 t

o
 c

li
n

ic
al

 i
n

er
ti

a 
g
ro

u
p

 (
9

5
%

 C
o
n
fi

d
en

ce
 I

n
te

rv
al

s)
. 

*
*
 P

- 
v
al

u
e 

<
 0

.0
5
, 
st

at
is

ti
ca

ll
y
 d

if
fe

re
n
t.

  
 

 T
a
b

le
 D

-3
. 
T

h
e 

M
an

n
-W

h
it

n
ey

 r
es

u
lt

s 
to

 e
x
p
er

im
en

t 
2
b

 (
co

n
ti

n
u

ed
) 

  

 



85 

 

 

T
a
b

le
 D

-4
. 
T

h
e 

M
an

n
-W

h
it

n
ey

 r
es

u
lt

s 
to

 e
x
p
er

im
en

t 
2
c.

 M
ed

ia
n
 C

u
m

u
la

ti
v
e 

In
ci

d
en

ce
. 

In
ci

d
en

ce
 i

n
cr

ea
se

 f
ro

m
 n

o
n

-c
li

n
ic

al
 i

n
er

ti
a 

g
ro

u
p
 t

o
 c

li
n

ic
al

 i
n

er
ti

a 
g
ro

u
p

 (
9

5
%

 C
o
n
fi

d
en

ce
 I

n
te

rv
al

s)
. 

*
*
 P

- 
v
al

u
e 

<
 0

.0
5
, 
st

at
is

ti
ca

ll
y
 d

if
fe

re
n
t.

  
 

 


