

AUTOMATIC POSITIONING SYSTEM FOR INDUCTIVE WIRELESS

CHARGING DEVICES AND APPLICATION TO MOBILE ROBOT

A Thesis

by

IVAN CORTES

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Won-Jong Kim

Committee Members, Sivakumar Rathinam

Nancy Amato

Head of Department, Andreas Polycarpou

August 2017

Major Subject: Mechanical Engineering

Copyright 2017 Ivan Cortes

ii

ABSTRACT

Inductive power transfer (IPT) remains one of the most common ways to achieve

wireless power transfer (WPT), operating on the same electromagnetic principle as

electrical transformers but with an air core. IPT has recently been implemented in wireless

charging of consumer products such as smartphones and electric vehicles. However, one

major challenge with using IPT remains ensuring precise alignment between the

transmitting and receiving coils so that maximum power transfer can take place. In

literature, much of the focus is on improving the electrical circuits or IPT coil geometries

to allow a greater transmission range. Nevertheless, most IPT products today rely on

precise alignment for efficient power transfer.

In this thesis, the use of sensing coils to detect and correct lateral misalignments

in a typical IPT system is modeled and tested. The sensing coils exploit magnetic-field

symmetry to give a nonlinear measure of misalignment direction and magnitude. To test

this idea, three experiments are performed: 1) measure the voltage of experimental sensing

coils for various lateral misalignment distances, 2) implement closed-loop control and

measure performance for an experimental two-dimensional (2D) automatic IPT alignment

mechanism, and 3) test automatic IPT alignment on a plausible mobile robot wireless

charging scenario. The experimental sensing coils give a misalignment sensing resolution

of 1 mm or less in two lateral directions, allowing automatic alignment control in real time

with a maximum lateral positioning error of less than √2 mm. This precise alignment

allows for efficient power transfer to occur. When implemented on the mobile robot

iii

platform, the automatic positioning system gives similar results, allowing the robot to

position itself above a wireless charger precisely—a task the mobile robot cannot

accomplish using its navigation camera alone. The results of this experiment give

confidence that similar sensing coils can be used to reduce lateral misalignments in scaled

IPT systems, such as electric-vehicle wireless chargers.

iv

DEDICATION

I dedicate this thesis to my brothers, to my sister, and to my parents who have

supported me in everything I do since I can remember. Thank you, Eric, Hiram, Dario,

Leslie, mom, and dad.

v

ACKNOWLEDGMENTS

I thank my advisor, Dr. Kim, for his guidance and support throughout the course

of this research and my pursuit of the master’s degree. I also thank Dr. Rathinam and Dr.

Amato for serving on my thesis committee.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Professors Won-

Jong Kim and Sivakumar Rathinam of the Department of Mechanical Engineering and

Professor Nancy Amato of the Department of Computer Science and Engineering.

Several commercially-available products detailed in this thesis (Arduino,

Raspberry Pi, Qi wireless charger, and others) were used for experimentation. Open-

source software and library packages were also used. All other work conducted for the

thesis was completed by the student independently.

Funding Sources

This work was made possible in part by the National Science Foundation through

a fellowship award to Ivan Cortes. Award No. HRD-1502335. “Texas A&M University

System Louis Stokes Alliance for Minority Participation (TAMUS LSAMP) Bridge to the

Doctorate (BTD) Cohort XI (2015-2017) Program.”

vii

NOMENCLATURE

AC Alternating current

ADC Analog-to-digital conversion

DC Direct current

DOF Degrees of freedom

FOV Field of view

GPIO General-purpose input/output

HSV Hue, saturation, value

IPT Inductive power transfer

MIMO Multiple-input multiple-output

MQS Magnetoquasistatic

P Proportional

PWM Pulse-width-modulation

RGB Red, green, blue

SISO Single-input single-output

WPT Wireless power transfer

1D 1-dimensional

2D 2-dimensional

3D 3-dimensional

viii

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

DEDICATION .. iv

ACKNOWLEDGMENTS .. v

CONTRIBUTORS AND FUNDING SOURCES ... vi

NOMENCLATURE ...vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES .. x

LIST OF TABLES .. xiv

 INTRODUCTION .. 1

1.1 Origin of inductive power transfer ... 1

1.2 Inductive wireless power transfer ... 2

1.3 Limitations of inductive wireless charging .. 5
1.4 Misalignment detection and coil positioning for IPT systems 7
1.5 Applications of inductive wireless charging .. 9

1.6 Contributions of this thesis ... 10
1.7 Methods .. 12

 ANALYSIS ... 14

2.1 Analysis of IPT system ... 14
2.2 Misalignment-sensing coils .. 16
2.3 Expected results for sensing coils ... 21
2.4 Dual sensing coils in general .. 25

2.5 Automatic 2D IPT positioner ... 28
2.6 Mobile robot dynamics and control .. 33

 HARDWARE ... 42

3.1 Experimental IPT System ... 42
3.2 Sensing coils ... 44
3.3 2D positioner .. 47
3.4 Mobile robot ... 50

ix

3.5 Target-tracking camera ... 53
3.6 Raspberry Pi and Arduino UNO communication 54

 SOFTWARE .. 56

4.1 Sensing-coil voltage measurement ... 56
4.2 2D positioner driver .. 59
4.3 Target-tracking camera ... 64
4.4 Mobile robot driver ... 71

 CONTROLLER DESIGN ... 77

5.1 2D positioner controller .. 77
5.2 Mobile robot controller ... 80

 EXPERIMENTAL RESULTS .. 85

6.1 Sensing-coil voltage measurements .. 85
6.2 Automatic 2D positioner performance ... 92
6.3 Mobile robot camera tracking ... 96

6.4 Mobile robot performance simulation .. 101
6.5 Overall mobile robot system performance ... 105

 CONCLUSIONS AND FUTURE WORK ... 110

REFERENCES ... 112

APPENDIX A: SENSING COIL SIMULATION—MATLAB CODE 119

x

LIST OF FIGURES

 Page

Figure 1. Simplified diagram of an inductive power transfer (IPT) system. The

curved arrows represent magnetic field lines created by the primary coil. 3

Figure 2. Magnetic flux density vectors due to a current loop. Magnitudes shown

are scaled for visibility .. 5

Figure 3. Example of a commercially available Qi wireless phone charger that relies

on precise alignment to function efficiently (Samsung model EP-

NG930TBUGUS) ... 7

Figure 4. Mobile robot IPT wireless charging scenario ... 11

Figure 5. Misalignment directions that decrease power transfer 15

Figure 6. Proposed sensing coils for misalignment detection in one direction 17

Figure 7. Magnetic flux’s z component at a height of 0.25 m (left) and 0.75 m (right)

due to a single loop of wire carrying a current of 1 A 18

Figure 8. Sensing coil configuration for lateral misalignment sensing 19

Figure 9. Magnetic flux density’s z component at various heights (left) and the zero-

crossing location at each height (right) ... 19

Figure 10. Visualization of magnetic flux penetrating sensing coils as they move

with the secondary coil in an IPT system (curves reproduced from Figure

9) ... 20

Figure 11. Voltage difference for dual sensing coils versus x misalignment for

various sensing coil diameters, at 1 m height ... 22

Figure 12. Voltage difference in sensing coils versus x misalignment distance at

various heights, with sensing coil diameter of 1 meter 23

Figure 13. Voltage difference in dual sensing coils versus x misalignment for

various sensing coil diameters, at 1/8 m height .. 24

Figure 14. Flux for sensing coils with diameter 3/4 times the primary coil radius, at

a height of 1 primary coil radius ... 26

Figure 15. Voltage for dual sensing coils of diameter 0.25 m, primary coil radius 1

m, and height 0.75 m .. 27

xi

Figure 16. Closed-loop feedback control scheme for automatic IPT positioning

system ... 29

Figure 17. Decoupled automatic IPT positioning control system, with x- and y-

direction signal flows .. 30

Figure 18. Representative scenarios for sensing coil positions; arrows represent

direction of movement by the automatic positioner ... 31

Figure 19. Basic differential drive mobile robot with passive ball caster 33

Figure 20. Differential drive mobile robot reference frames and force diagram 34

Figure 21. Mobile robot dynamics modeled in Matlab Simulink 38

Figure 22. Feedback controller simulation setup using Matlab Simulink 39

Figure 23. Kinematic calculations used to find the global mobile robot position 39

Figure 24. Modeled functions of a camera sensor mounted to a mobile robot 40

Figure 25. Mobile robot distance and heading angle errors ... 41

Figure 26. Yootech wireless Qi charger model used for IPT experimentation [33] 42

Figure 27. Wireless Qi receiver module [34] ... 44

Figure 28. Sensing coils wound on a 3D-printed bobbin; model (left) actual (right) 44

Figure 29. Sensing coil circuit for each sensing coil to measure peak induced

voltage ... 45

Figure 30. Arduino UNO revision 3 board used for sensing coil voltage

measurement and control of actuators [35] .. 46

Figure 31. Two-dimensional positioner assembly (wire connections not shown) 47

Figure 32. Electrical schematic for either the x- or y-direction sensing coils in the

2D positioner assembly ... 49

Figure 33. Electrical schematic for 2D positioner stepper motors and L298N H-

bridge motor drivers; schematic is the same for the x- and y-direction

motors ... 49

Figure 34. Differential drive platform used for mobile robot application........................ 50

xii

Figure 35. Wiring diagram for PWM control of the differential drive mobile robot 51

Figure 36. Mobile robot precise positioning over Qi wireless charger using sensing

coils (top view) ... 52

Figure 37. Raspberry Pi 2 B (left) and Raspberry Pi Camera 1.3 (right) [36, 37] 53

Figure 38. Raspberry Pi and Arduino UNO connections for i2C serial

communication using a Sparkfun-brand logic level converter [38] 55

Figure 39. Logic diagram for IPT coil positioner automatic alignment 78

Figure 40. Closed-loop IPT coil controller with proportional control 79

Figure 41. Proposed mobile robot controller structure and signals 80

Figure 42. Equivalent robot control loop when there is only a distance error 82

Figure 43. Equivalent robot control loop when there is only a heading angle error 83

Figure 44. Experimental 2D coil positioner for sensing coil voltage measurements

and automatic coil alignment experiments ... 85

Figure 45. Sensing coil output voltage before (left) and after rectification (right) 86

Figure 46. Voltage time response for a single sensing coil with rectification 87

Figure 47. Sensing coil voltages versus misalignments in the x direction with zero

misalignment in the y direction ... 88

Figure 48. Offset in the y direction added to test 2D sensing coil misalignment

voltages ... 89

Figure 49. Sensing coil voltages for misalignments in x direction, with y offset of

10 mm ... 90

Figure 50. Sensing coil voltages for misalignments in x direction, with y offset of

15 mm ... 91

Figure 51. Automatic positioner performance for several initial misalignments in

the x direction ... 93

Figure 52. Automatic positioner response for several 2D initial misalignments 94

Figure 53. Positioner trajectory for correction of several initial misalignment in the

x and y directions (same trials plotted in Figure 52) ... 95

xiii

Figure 54. HSV filtering of camera image frame for target detection; (a) Original

RGB image (b) HSV image (c) HSV threshold value selection window

(d) Filtered image ... 97

Figure 55. Tracked target display with polygon contour and center marked 98

Figure 56. Foreign object interference in target detection ... 99

Figure 57. Pixel area of target for known distances with line fit 100

Figure 58. Simulation of mobile robot response for pure straight motion (left) and

pure rotation (right) with two-second force inputs ... 103

Figure 59. Proportional controller simulation response ... 104

Figure 60. Distance error versus time for several experiment trials of the mobile

robot target approach .. 106

Figure 61. Heading angle error versus time for several experiment trials of the

mobile robot target approach .. 106

Figure 62. Initial sensing coil voltage difference upon completion of camera-

assisted target approach for mobile robot ... 107

Figure 63. Sensing coil voltage difference in x and y directions through time with

the use of closed-loop coil positioning ... 108

xiv

LIST OF TABLES

 Page

Table 1. Mobile robot gearmotor specifications .. 51

Table 2. Arduino program for measuring sensing coil voltages at various x and y

misalignments ... 57

Table 3. Arduino programs for closed loop control of the 2D positioner to eliminate

IPT lateral misalignment ... 60

Table 4. Raspberry Pi Python script for target-tracking with distance and angle

calculations ... 65

Table 5. Image processing steps for colored target-tracking.. 68

Table 6. Raspberry Pi Python script for experimentation with HSV filtering values 69

Table 7. Arduino program for driving the mobile robot and 1D positioner 71

Table 8. Mobile robot dynamic parameters used for simulation 102

1

INTRODUCTION

Most electronic devices today rely on wired connections for battery charging or

direct power. However, wires require secure physical connections that limit freedom of

movement. Solutions for this include using flexible connections like brushes, slip rings,

or liquid conductors. Many of these connections remain susceptible to friction wear,

contact resistance, material fatigue, or environmental effects, such as oxidation or

contamination.

An alternative to wired connections is wireless power transfer (WPT). WPT refers

to any method of power transfer which does not use wires, and may include using light,

radio frequency (RF), acoustics, electric fields, or others. However, one of the most

common methods for WPT is inductive power transfer (IPT). As the name suggests, this

method relies on an inductive link between coils to transfer energy.

1.1 Origin of inductive power transfer

Some of the first experiments with IPT were conducted by Tesla in the late 1800’s

[1]. His experiments included highly-resonant transformer circuits and inductive coils that

could power electronic devices though the air. Earlier in the same century, Faraday and

Henry had discovered electromagnetic induction using coils of wire and various

transmission media [2]. In 1885, the first electrical transformer, which operated using IPT,

was designed by Stanley [3]. The magnetic induction principle gave way to the invention

of various electromagnetic machines, such as electric generators and motors. Some of the

2

first consumer products to use IPT for wireless charging included electric toothbrushes,

and the creation of the Qi wireless charging standard in 2008 prompted widespread

adoption of the technology for many other consumer products [4].

Today, IPT is still the preferred method for short and mid-range WPT since these

ranges allow for an inductive link between coils in proximity of each other even through

the air. In a typical alternating-current (AC) transformer, the inductive link between the

primary and secondary coil is strengthened by using an iron core and placing the coils very

close to each other, allowing for transfer efficiencies easily exceeding 95%.

Other methods of wireless power transfer have not been as widely implemented

due to some limitations. Capacitive WPT generally requires large voltages or large surface

areas. Light, RF, and acoustic-based transfer are susceptible to attenuation by foreign

objects. Nevertheless, there is some notable work being done in these areas [5–8].

1.2 Inductive wireless power transfer

A simplified version of a typical IPT system is shown in Figure 1. The main

components of this setup are an AC power source, primary coil, secondary coil, and

rectifier circuit. Two additional components, compensators, are shown in a lighter shade.

Compensator circuits are not required, but are essential for increasing transfer efficiency.

The compensators may include a variety of resonance-shaping schemes or advanced

functions for controlling the power to the primary coil. The space between the primary

and secondary coil in Figure 1 may be filled with different media. In a general WPT

scenario for wireless charging, this space is filled by ambient air.

3

Figure 1. Simplified diagram of an inductive power transfer (IPT) system. The curved

arrows represent magnetic field lines created by the primary coil.

The following is a brief explanation for the role of each component presented in

Figure 1:

• AC power: This can be a voltage or a current source. The working frequency may

vary from kilohertz to megahertz depending on the application. If powered by a

DC source, this component will include an inverter.

• Primary coil: This coil is made with one or more turns of insulated wire or

conductive tube and creates a concentrated magnetic field which alternates at the

same frequency as the AC power source.

• Secondary coil: This coil need not have the same number of loops or shape as the

primary coil. Some of the time-varying magnetic flux from the primary coil

penetrates the secondary coil. By Faraday’s law of induction, a voltage is induced

in the secondary coil due to the varying magnetic flux.

AC

power

Primary

comp.

Secondary

comp.
Rectifier

Primary Secondary

End

device

4

• Rectifier: The voltage induced in the secondary coil will alternate at the same

frequency as the AC power source. The rectifier converts voltage to DC, if

necessary, to power an end device.

• Compensators: These represent a variety of specialized circuits that improve

transfer efficiency. For example, they may shape the resonance frequency of the

coils by introducing series or parallel capacitors. They may also introduce smart

control to the system, modulating the output frequency or amplitude of the primary

coil depending on the demand or presence of a secondary coil.

Designs of IPT systems vary in selection of the components of Figure 1. Variations

may include different coil geometries, power source designs, or compensation schemes.

The compensation scheme used depends on the application. Resonance-based IPT has

been shown to improve efficiency especially in mid-range power transfer applications [9].

Common resonance schemes include series-series, parallel-parallel, series-parallel, or

parallel-series compensation [10, 11]. These scheme names refer to the placement of

resonance capacitors on the primary and secondary coils, respectively. Many wireless

chargers available on the market today adhere to standards that specify the configuration

of IPT components. One of the most popular standards is the Qi standard. This published

standard has been adopted by many companies and has been implemented in wireless

chargers for products such as smartphones and tables. The most recent Qi standard

specification allows up to 15 W of power transfer and operates at a frequency from about

100 kHz to 200 kHz [4].

5

1.3 Limitations of inductive wireless charging

Figure 2 shows normalized magnetic flux density vectors created by circular loop

of wire, calculated using the Biot-Savart law (1). The flux density vectors are scaled for

visibility and to show relative magnitudes. The loop of wire in Figure 2 represents a

primary coil in an IPT system. Some of the magnetic flux density vectors penetrate a

secondary coil in proximity—the rest are fringed into space.

𝑩 =

μ0𝑁𝐼

4𝜋
∫

𝑑𝒍 ×𝒓

|𝒓|3
 , (1)

where

 B: magnetic flux density [T]

dl: wire segment [m]

𝒓: vector from wire segment to point of interest

N: number of coil loops

I: current through wire [A]

μ
0
= 4π×10

−7
[H/m]

Figure 2. Magnetic flux density vectors due to a current loop. Magnitudes shown are

scaled for visibility

Figure 2 suggests that to experience the greatest energy transfer, the secondary coil

should be close, parallel, and concentric with the primary coil. The main issue with IPT

6

lies here since, to achieve appreciable energy transfer, the secondary coil must remain

aligned with the primary coil. Outside of the region directly above the primary coil, the

magnetic flux density is too weak to induce a voltage in the secondary coil. Previous work

quantifies the loss of efficiency for different misalignment conditions [12, 13].

Previous research in IPT has largely focused on increasing the operating range for

efficient power transfer. Some ways to increase the operating range of IPT are to increase

the operating frequency, input power, or dimension of the primary coil. Each of these

would increase the magnetic flux magnitude or its time rate of change in the space around

the primary coil. There are other effects to consider, such as resistive losses in the coils,

skin effect, interaction with foreign objects, and power supply limitations. Much work has

been done in deciding optimal coil characteristics for IPT [14, 15].

Another way to increase working range is to increase the number of coils used. For

instance, there can be an array of primary coils instead of just one [16–19]. Multiple

secondary coils in novel arrangements have also been used to capture more magnetic flux

when there is a misalignment [20].

Still, another way to increase the IPT operating range is to exploit coil resonance.

As mentioned before, this approach is called resonance-based IPT and involves tuning the

primary and secondary coils to the same resonance frequency. Most commercially-

available wireless chargers use some form of this. In previous research, there are even

examples of using intermediary resonance coils between the primary and secondary to

effectively increase the total range of power transfer [21].

7

Commercially, the most common solution for misalignment intolerance is to

ensure good alignment between the primary and secondary coils and to use a tuned

resonance compensation scheme of some kind. The popular Qi standard, for example, uses

series-series compensation for coil resonance, but also relies on close alignment between

the primary and secondary coil, with a typical misalignment tolerance of less than 5 mm.

Still, the misalignment tolerance is only a few centimeters for 5-W chargers using this

standard. To help users align their devices on these chargers, manufacturers place visual

markers on the charger or construct it so that the device falls into alignment (Figure 3).

Figure 3. Example of a commercially available Qi wireless phone charger that relies on

precise alignment to function efficiently (Samsung model EP-NG930TBUGUS)

1.4 Misalignment detection and coil positioning for IPT systems

One way to maintain alignment between a primary and secondary coil of an IPT

system is to use active positioning, where either the primary or the secondary coil is moved

in real time to align with the other. There are currently a few examples of active

positioning. The Qi standard publication suggests the idea of using a capacitive touch

Indicator light

Phone stand

Primary coil and compensator

8

surface or, alternatively, an array of sensing coils to detect the location of the secondary

coil. There is also mention of using a positioning mechanism to provide automatic

alignment for the IPT system. No design is given for the positioning mechanism, but the

standard suggests a positioning resolution of 0.1 mm or better [4]. The standard also

presents some guidelines for device detection based on coil impedance and frequency

measurements.

One example of active positioning can be found in the online electric vehicle

(OLEV) experiments of South Korea [22, 23]. These feature the application of IPT for

wireless charging of electric vehicles, where the primary coils are installed in the road

itself. The first generation of this experiment used a golf cart as the test platform, which

carried an automatic positioning system to keep the secondary coil aligned with the in-

road primary coil. Details of the positioning system were not made clear, but it is apparent

that a camera sensor was used to detect misalignments. Subsequent generations of this

project excluded an alignment mechanism, focusing instead on creating a more favorable

magnetic-field distribution to tolerate more misalignment.

In their contribution to vehicle wireless charging research, one group recently used

two small sensing coils placed next to the secondary coil on a vehicle to detect

misalignment between the vehicle and the in-road wireless power transmitter [24]. These

sensing coils were used to measure the difference in magnetic field between the left and

right side of the vehicle. A difference indicated that the vehicle was not centered above

the in-road primary coil. This information was then used to steer the vehicle and maintain

9

a good alignment with the charger. The steering control was already a function included

in the vehicle platform.

Many methods have been used to detect misalignments in IPT systems, some of

which were previously mentioned. In electric vehicle charging, lateral misalignment

between the ground transmitter and the vehicle-mounted receiver have been detected using

magnetic sensing, camera sensors, ultrasonic sensors, and RF sensors [25]. One research

group used frequency and phase measurements of the wireless receiver (secondary coil)

to determine the misalignment of the electric vehicle over the wireless charger [25]. In this

study, additional coils, named auxiliary coils, were added symmetrically to the secondary

coil to detect minor lateral misalignments. These measurements could be used to assist the

driver in parking the vehicle over the wireless charger for efficient power transfer.

1.5 Applications of inductive wireless charging

With recent advancements in IPT and, especially, the release of wireless charging

standards like Qi, an increasing number of wireless charging-enabled products has reached

the market. Electric toothbrushes with wireless charging have been available for years.

Wireless charging has become a premium feature in many high-end smartphones and

tablets. Wireless charging of electric vehicles has been implemented in some public

parking spots and is available for private home use as well [26]. Typically, these vehicle-

charging systems include a stationary charger and a vehicle parking assistance device to

ensure good IPT coil alignment. Misalignment leads to inefficient electric vehicle

charging [12, 13]. The position assistance device included with electric vehicle chargers

10

helps the driver park in the correct spot so that the secondary coil can be aligned precisely

above the charger. Wireless phone chargers suffer the same problem but phones can easily

be adjusted to align with markings on the charger.

IPT has other usages, such as wireless tracking of rodent in a cage [27, 28].

Another application is wireless charging of implanted medical devices [21, 29]. Both

applications suffer even more from misalignment since the location and orientation of the

secondary coil is more unpredictable. Solutions for the misalignment problem in these

cases may include using multiple IPT coils or smart control of charging circuits.

1.6 Contributions of this thesis

The focus of this thesis is to develop a method to sense lateral misalignment in IPT

wireless charging systems and to provide a means for correcting this misalignment. To

achieve this goal, the following three tasks are pursued:

1. Develop a method, preferably non-intrusive, for detecting lateral misalignment

in an IPT charging system.

2. Implement an experimental automatic positioning mechanism that can reduce

lateral misalignment to allow efficient power transfer.

3. Demonstrate the use of an automatic positioning mechanism in a mobile robot

wireless charging application.

The use of autonomous mobile robots has been proposed for many settings,

including cleaning, surveillance, product transport, and other services [30–32]. To

maximize productivity, mobile robots can benefit from autonomously recharging

11

themselves at designated charging stations. Power transfer can be accomplished using

electrical contacts, but using a misalignment-tolerant wireless charger would reduce

contact wear and risk of short circuits, and could allow for completely enclosed circuits.

The mobile robot wireless-charging scenario which is considered in this thesis is

depicted in Figure 4. In this scenario, a mobile robot platform is equipped with a secondary

coil for IPT. The primary coil (a wireless charger) is located some distance away from the

robot and is marked by a colored target. A camera sensor onboard the mobile robot allows

the robot to detect the colored target and approach it. However, the camera sensor alone

is not precise enough to align the mobile robot with the wireless charger. The IPT

misalignment sensor developed in this thesis complements the mobile robot platform by

providing the fine misalignment detection needed to ultimately align the mobile robot with

the wireless charger—allowing for efficient power transfer to take place.

Figure 4. Mobile robot IPT wireless charging scenario

Colored target

Wireless charger

Mobile robot

Camera

Misalignment

sensor and

secondary

coil

12

If successful in detecting and automatically correcting lateral misalignments, the

results of this thesis can be applied to similar IPT systems, such as wireless charging of

electric vehicles, mobile robots, and autonomous vehicles.

1.7 Methods

To accomplish the three tasks presented in Section 1.6, a hypothesis is formed for

each task. The three hypotheses are:

1. Sensing coils can be used to sense lateral misalignment direction and

magnitude in an IPT system by detecting imbalances in the magnetic field

around the secondary coil.

2. With sensing coil misalignment detection, closed-loop control of a positioning

system can be used to automatically align an IPT system precisely.

3. An automatic positioning system can aid a mobile robot in aligning with a

wireless charger as long as the robot can approach the wireless charger.

The method for testing each of these hypotheses follows the steps of modeling and

simulation, experimentation, and discussion.

First, each of the systems introduced in the thesis tasks is analyzed using the

appropriate physical laws, approximations, and simulations to predict the behavior of the

real systems. For example, the IPT system coils are modeled as circular coils with no

resistive losses and ideal current sources. The outcome of this analysis is plots of expected

results for the real systems.

13

Second, appropriate hardware and software are selected for experiments designed

to support the analysis results. The experimental setups are described and physical

variables are established. Any limitations of using the selected hardware are also

identified.

Finally, experimental results for the experiments are discussed and their

significance is highlighted in the context of the hypotheses. Whenever appropriate, the

experimental results are compared with analysis results. Final conclusions summarize the

thesis findings and suggest future work that can be done in automatic alignment of IPT

devices.

14

ANALYSIS

The following analysis provides a basic understanding of an IPT system and

mobile robot platform. The analysis aids in the design of an IPT lateral misalignment

sensor, a misalignment reducing mechanism, and its implementation on a mobile robot.

2.1 Analysis of IPT system

In an IPT system, a current is provided by an AC source to create a magnetic field

around the primary coil (Figure 1). Even at high frequencies—typical of IPT systems—

the primary coil circuit is tuned so that significant current flows and a magnetic field

exists. Ideally, there are no significant sources of electric field. Therefore, the magnetic

field effects dominate the system and it can be treated as a magnetoquasistatic (MQS)

system. Under this assumption, Faraday’s law (2) can be used to calculate the induced

voltage in a secondary coil that is placed within the magnetic field of the primary coil.

vinduced = −

d

dt
∮ B ∙ da (2)

Equation (2) states that the secondary coil will experience an induced voltage equal

to the time derivative of the magnetic flux that penetrates the coil. The induced voltage in

the secondary coil will alternate at the same frequency as the AC source of the and, after

being rectified, the voltage in the secondary coil acts like a direct-current (DC) source that

can power an end device. Equation (2) implies that to increase the voltage induced in the

secondary coil, the time-varying magnetic field penetrating the secondary coil should be

increased. Hence, the mutual inductance between the coils should be maximized through

15

their placement relative to each other to maximize power transfer. The mutual inductance

is greatest when the primary and secondary coils are parallel, concentric, and close to each

other. The fringing of the magnetic field cannot be ignored and the mutual inductance is a

function of five misalignment directions, as shown in Figure 5. Misalignment in any of

the five directions in Figure 5 will reduce the mutual inductance and total power transfer

of the IPT system.

Figure 5. Misalignment directions that decrease power transfer

The AC power source is assumed to provide a sinusoidal current to the primary

coil with time frequency ω. From (1), the magnetic flux density B everywhere will also

vary sinusoidally at the same frequency. Substituting a sinusoidal magnetic flux density

into (2) gives an induced voltage in the secondary coil given by (3).

vinduced = (n ω ∮ B⊥da) sin (ωt) (3)

The dot product from (2) is realized in (3) by keeping only the component of the magnetic

field perpendicular to the secondary coil area (B⊥). The number of turns in the secondary

coil is n and multiplies the induced voltage. With n and ω as constants, the amplitude of

the induced voltage in (3) and can be used as a measure of the magnetic flux penetrating

the secondary coil. The amplitude of the induced voltage (4) can easily be measured.

v

v

x
y

z

θx

θ
y

Primary coil

Secondary coil

16

vinduced, amplitude = n ω ∮ B⊥da (4)

All subsequent analysis of the IPT system will be based on (4) and the magnetic

flux densities calculated using (1). In this way, the induced voltage in any coil within the

primary coil magnetic field can be calculated. In using (4), the time-derivative of the

magnetic flux due to movement of the coils is ignored; time-varying magnetic flux due to

movement of the coils is negligible compared to the varying flux caused by the high-

frequency AC current.

The integral in (4) can be approximated by sampling the magnetic flux density

vectors in the secondary coil area. Furthermore, if misalignments of the secondary coil are

constrained to the x and y directions of Figure 5, then B⊥ becomes Bz—the z component

of the magnetic flux density. Constraining motion of the secondary coil to the x and y

directions is consistent with many applications of IPT, including the mobile robot wireless

charging scenario of Figure 4. For the remainder of this thesis, only misalignments in the

x and y direction are considered and collectively called lateral misalignments.

2.2 Misalignment-sensing coils

To correct lateral misalignments in an IPT system, it would be beneficial to know

the magnitude and direction in which misalignment occurred. Knowing that misalignment

results in decreased power transfer, one might monitor the induced voltage in the

secondary coil to detect changes in power transfer. However, changes in power transfer

could occur for reasons other than misalignment, such as variations in the power source.

17

In addition, there are many misalignment directions which would lead to decreased power

transfer (see Figure 5). Thus, a different method is proposed in this thesis.

The proposed method is to use additional sensing coils, like those used in [24, 25].

The use of sensing coils is based on the observation that the magnetic field is symmetric

about the primary coil z axis in Figure 5. Thus, lateral misalignments result in magnetic

field imbalances around the secondary coil. These imbalances could be measured using

sensing coils that can operate independently of the IPT system as long as the primary coil

is powered.

Consider the case where misalignment occurs in the x direction of Figure 5. Two

small sensing coils are introduced and placed as shown in Figure 6. The sensing coils are

attached symmetrically to the secondary coil and move along with it. Just as the secondary

coil experiences an induced voltage from the time-varying magnetic field, each sensing

coil also experiences and induced voltage (vL for the left sensing coil and vR for the right

sensing coil). However, due to the symmetric magnetic flux density distribution shown in

Figure 2, a different magnetic flux penetrates the sensing coils when there is a lateral x

misalignment. Thus, x misalignment results in different induced voltage magnitudes for

the sensing coils. This voltage difference can be measured to detect misalignments.

Figure 6. Proposed sensing coils for misalignment detection in one direction

v

v
R

v
v

L

Sensing coils

Primary coil

Secondary coil

x

18

When there is no x misalignment, the sensing coils in Figure 6 experience the same

induced voltage—again, due to the magnetic field symmetry. Thus, a near-zero induced

voltage difference between the sensing coils serves as an indication that the IPT system is

in alignment.

The z component of the magnetic flux density distribution at two fixed heights

from the primary coil are plotted (Figure 7). As previously discussed, only the z

component of the magnetic flux will induce a voltage in the sensing coils because they

remain parallel to the primary coil. The SI unit values of operating current and primary

coil radius are used for the magnetic flux calculation of Figure 7 to normalize results. Note

that the magnetic flux density distribution is indeed axisymmetric. Furthermore, note that

the greatest magnetic flux densities are concentrated above the primary coil area.

Figure 7. Magnetic flux’s z component at a height of 0.25 m (left) and 0.75 m (right) due

to a single loop of wire carrying a current of 1 A

19

The axisymmetric magnetic flux distribution shown in Figure 7 means that sensing

coils such as those in Figure 6 can be used to detect misalignment in any radial direction.

Two more sensing coils are added to detect misalignments in the y direction (Figure 8).

Figure 8. Sensing coil configuration for lateral misalignment sensing

 Figure 9 shows the radial dependence of Bz for various heights. The zero-crossing

locations at each height are also included.

Figure 9. Magnetic flux density’s z component at various heights (left) and the zero-

crossing location at each height (right)

x

y
z

XL
X

R

Y
L

Y
R

Secondary coil

Primary coil

20

The curves in Figure 9 can be used to predict the magnitude of the induced voltage

in sensing coils that exists parallel to the primary coil. For instance, the following

predictions can be made:

• At a greater height, the induced voltage in a sensing coil will be smaller because

the magnetic flux density is weaker.

• From the zero-crossing plot, it is evident that the height affects how much

misalignment the sensing coil can experience before it does not experience a

sensing coil voltage.

These predictions are for a single sensing coil. To detect misalignment in an IPT system,

the use of two sensing coils is proposed. Figure 10 illustrates how the magnetic flux

distribution affects two sensing coils differently.

Figure 10. Visualization of magnetic flux penetrating sensing coils as they move with

the secondary coil in an IPT system (curves reproduced from Figure 9)

Primary coil

Secondary coil

21

From Figure 10, one can see that the two sensing coils experience a different

induced voltage when misalignment occurs. The expectation is that this voltage difference

can be measured to detect misalignments in the IPT system.

2.3 Expected results for sensing coils

Using (4) and a discrete approximation of (1), the induced voltage for

misalignment sensing coils was calculated for different sensing coil diameters, heights

from the primary coil, and misalignment amounts. The calculations were performed in a

Matlab script (Appendix A). A custom function uses (1) to calculate the magnetic flux

density vectors in the space around a loop of current-carrying wire. The SI unit quantities

were used for primary coil radius, operating current, and frequency to obtain normalized

results. The normalized results are expected to be useful in predicting the behavior of

scaled IPT systems.

Figure 11 shows the calculated voltage difference for dual sensing coils at a height

of one 1 m from the primary coil. The results of four different sensing coil diameter sizes

are included and the misalignments are constrained to one direction only (the x direction

in Figure 5). For each sensing coil diameter size, the sensing coils are placed so that their

outermost edges are one primary coil diameter apart. This sensing coil placement ensures

that both sensing coils are within the strong magnetic flux region when there is no

misalignment (see Figure 10). If the sensing coils are placed too far apart, then zero

misalignment and small misalignments alike would leave the sensing coils outside of the

magnetic flux region and no induced voltage would occur.

22

Figure 11. Voltage difference for dual sensing coils versus x misalignment for various

sensing coil diameters, at 1 m height

In Figure 11, the magnitude of the voltage difference increases with misalignments

up to about 1 m in either direction. Beyond 1 m, which is the primary coil radius, the

voltage difference magnitude begins to decline. The voltage difference is positive in one

direction of misalignment and negative in the other, which suggests that the sensing coil

voltages are useful for detecting misalignment direction. However, due to the nonlinear

voltage output, the sensing coils are not useful for measuring misalignment amount unless

the misalignment is known to be less than one primary coil radius. The result in Figure 11

also suggests that the maximum detectable misalignment is about 2 m, or one primary coil

diameter. Finally, note that a larger sensing coil diameter results in larger voltages. Larger

voltages could also be achieved by increasing the number of turns in the sensing coils,

according to (4).

23

To see how height from the primary coil affects the voltage difference between the

sensing coils during misalignment, the sensing coil diameter is fixed at 1 m and the results

for different heights are plotted (Figure 12).

Figure 12. Voltage difference in sensing coils versus x misalignment distance at various

heights, with sensing coil diameter of 1 meter

In Figure 12, it is apparent that the voltage trend remains the same at most heights,

although greater voltages are obtained at lower heights due to a stronger magnetic flux

density (see Figure 9). At the lowest plotted height of 1/8 m, however, the trend

experiences some anomalies; these manifest as small peaks near zero and one meter

misalignment. To further explore these anomalies, the same height of 1/8 m is used with

different secondary coil dimeters (Figure 13).

24

Figure 13. Voltage difference in dual sensing coils versus x misalignment for various

sensing coil diameters, at 1/8 m height

Figure 13 shows that anomalies (in the form of voltage spikes) occur for many

sensing coil diameters when the height is low. Therefore, it is speculated that for dual

sensing coils to work as desired, the operating height should be greater than 1/8 m. The

voltage spikes at low heights can be explained by the magnetic flux density distribution

of Figure 9, where local flux density spikes are also seen at low heights.

Results in Figures 11−13 suggest that, regardless of the height and sensing coil

diameter, the misalignment sensing range is about one primary coil diameter. This occurs

because the sensing coils measure a noticeable voltage only when they are within

(approximately) the area directly above the primary coil radius.

25

2.4 Dual sensing coils in general

The analysis plots from Figures 9−13 were calculated using the SI unit values for

the primary coil radius and operating conditions (frequency and current). Using the unit

values means that the results are normalized and can be used as a general representation

of other systems. This claim is now shown to be true in simulation.

From (1) and (4), operating current, number of coil windings, and operating

frequency are constants of integration. As a result, the flux in a sensing coil is directly

proportional to each of these variables. Changing any of these variables scales the trends

in Figures 9−13 but does not affect the trends. This means that a higher induced voltage

can be achieved by increasing any one of these variables. In reality, there are other factors

to consider, such as greater resistive losses in a longer wire and system resonance effects.

In contrast, the geometry of the primary and sensing coils affects the integrations of (1)

and (4) so that there is no linear relationship between the coils’ dimensions and the results

of the analysis plots. However, the results from the plots can be normalized with respect

to the primary coil radius.

To show that the results in Figures 9−13 represent a normalized case that can be

applied to scaled coil geometries, the flux through a sensing coil versus misalignment is

plotted in Figure 14 for two different coil geometries. In both cases, the sensing coil

diameter is 3/4 times the primary coil radius and the height is equal to one primary coil

radius. In other words, the sensing coil dimeter and operating height of both plots shown

in Figure 14 are the same when normalized with respect to the primary coil radius.

26

Figure 14. Flux for sensing coils with diameter 3/4 times the primary coil radius, at a

height of 1 primary coil radius

The two plots in Figure 14 show identical results, but with scaled axes values. The

scaling factor from the normalized to the non-normalized plot is the primary coil radius of

the non-normalized case. In short, this scaling is possible because the geometric ratios

between the coils are the same in both cases. The importance of this result is that the plots

presented in Figures 9−13 can be applied to other systems with scaled geometry, assuming

ideal conditions.

The geometric variables in an IPT system that can be scaled are the primary coil

radius, sensing coil diameter, and operating height. To find results for any combination of

these geometric variables using normalized plots, two non-dimensional numbers can be

defined:

• D: Ratio of the sensing coil diameter to the primary coil radius

• H: Ratio of the operating height to the primary coil radius

Primary coil radius:

1 m

Sensing coil diameter:

¾ m

Height:

1 m

Primary coil radius:

0.25 m

Sensing coil diameter:

0.1875 m

Height:

0.25 m

27

The numbers D and H are normalized quantities with respect to the primary coil radius.

Once D and H are found, they can be used to find a corresponding normalized plot. For

example, if the sensing coils are 0.1 m in diameter, the primary coil is 0.4 m in radius, and

the working height is 0.3 m, the normalized quantities are D = 0.25, and H = 0.75. Then,

the normalized plot for a sensing coil diameter of 0.25 m and height 0.75 m (shown in

Figure 15) can be used. Note that the plot in Figure 15 shows small voltage values because

the number of sensing coil turns and operating frequency used were the SI unit values.

Increasing the frequency and number of coil turns increases the induced voltages.

Figure 15. Voltage for dual sensing coils of diameter 0.25 m, primary coil radius 1 m,

and height 0.75 m

To find the values for the sensing coil diameter 0.1 m, primary coil radius 0.4 m,

and working height of 0.3 m, one only needs to multiply the axes values in Figure 15 by

28

the radius 0.4 m. Thus, the general trends and results provided in the previous analysis can

be used to address the behavior of larger (or smaller) IPT systems, neglecting effects of

coil resistance and other variables.

The significance of the simulations presented in Figures 9−13 is that the dual

sensing coils are expected to function as intended even in larger-scale IPT systems. That

is, using the sensing coil configuration of Figure 6 is expected to be a suitable way to sense

misalignment direction. The analysis also reveal some limitations, such as a maximum

sensing range of about one primary coil diameter and minimum working height of 1/8

primary coil radius. In addition, it is difficult to sense misalignment amount due to the

nonlinear voltage trend; a specific voltage maps to two different misalignment amounts.

Misalignment amount can be calculated if the sensing coils are used between −1 and 1

primary coil radius only.

2.5 Automatic 2D IPT positioner

Typically, the user of an IPT system is tasked with ensuring good alignment

between a primary and secondary coil. If the misalignment can be detected (as has been

proposed in this thesis), then an automated mechanism can perform the alignment task.

The mechanism should be able to move either the primary or secondary coil to align with

the other. Since only planar misalignments are considered in this thesis, the mechanism is

only required to move in the two planar directions (x and y in Figure 5). To reduce

misalignment in the x and y directions, a closed-loop control system is implemented in

each misalignment direction (Figure 16). The sensing coils play the crucial role of

29

detecting misalignment and closing the control loop. The voltage subscripts in Figure 16

refer to the sensing coil configuration of Figure 8.

Figure 16. Closed-loop feedback control scheme for automatic IPT positioning system

In Figure 16, the 2D positioner mechanism can change the x and y position of the

secondary coil, and the primary coil remains stationary. The opposite configuration can

also be used. The sensing coils, which remain fixed to the secondary coil, help close the

control loop by converting the position errors (XE and YE) into measurable voltages (VXL,

VXR, VYL, and VYR). If a proper, stabilizing controller is implemented, this control loop

works to drive the position error to zero, at which point the lateral misalignments between

the primary and secondary coil are eliminated.

Since there are two degrees of freedom (DOFs) along the plane of lateral

misalignments, at least two control signals (S1 and S2) are needed to command the

positioner. Depending on the positioner dynamics, the control signals can be coupled or

decoupled. For instance, rotating robotic arm that operates in polar coordinates would

require kinematic transformations that couple the x and y signals non-linearly. The obvious

Controller 2D

Positioner

Sensing

Coils Ʃ
+ –

Xp

Yp

XE

YE

VXL

VXR

VYL

VYR

X
S

YS

S1

S2

XP, YP: Primary coil position [m]

XS , YS: Secondary coil position [m]

XE , YE: Position error [m]

V
XL

, V
XR

: X-direction sensing coil voltages [V]

V
YL

, V
YR

: Y-direction sensing coil voltages [V]

S
1
, S

2
: Positioner control signals [V]

30

solution is to avoid control signal coupling and instead use a positioner that can move in

the x and y directions independently.

The signal flow within the sensing coils cannot be decoupled since the x-direction

sensing coil voltage depends on the y position of the coils, and vice-versa. The x-y

dependence of the sensing coils is a result of the 3-dimensional (3D) distribution of the

primary coil magnetic field (Figure 7). Nevertheless, the following simplified approach is

proposed for use of the sensing coils: ignore cross coupling between the sensing coils and

treat the sensing coil output voltages as if they are linear. This approach allows the control

system of Figure 16 to be split into x and y direction flows and allows linear controller

design. The decoupled control system is shown in Figure 17.

Figure 17. Decoupled automatic IPT positioning control system, with x- and y-direction

signal flows

X

Controller

X

Positioner

X

Sensing

Coils
 Ʃ

+ –

Xp XE

VXL

VXR

X
S SX

XP, YP: Primary coil position [m]

XS , YS: Secondary coil position [m]

XE , YE: Position error [m]

V
XL

, V
XR

: X-direction sensing coil voltages [V]

V
YL

, V
YR

: Y-direction sensing coil voltages [V]

S
1
, S

2
: Positioner control signals [V]

Y

Controller
Y

Positioner

Y

Sensing

Coils
Ʃ

+ –

YP Y
E

VYL

VYR
YS SY

31

In Figure 17, x- and y-direction misalignments are treated separately. However, the

control system will strive to reduce misalignments in any lateral direction. To demonstrate

the expected outcome, consider the misalignment scenarios in Figure 17. The large circle

represents the range of significant magnetic flux, which is approximately the same as the

primary coil (Figure 9). As long as one of the sensing coils (represented by black circles

in Figure 18) is within the large circle, there will be a measurable voltage and

misalignment correction can be achieved.

Figure 18. Representative scenarios for sensing coil positions; arrows represent direction

of movement by the automatic positioner

Scenario (a) represents the case when there is only misalignment in one direction.

According to the results of Section 2.3, misalignments in one direction allow a maximum

sensing distance of about one primary coil dimeter. At the edge of the sensing range, only

one sensing coil remains within the large circle. A voltage from this single coil will be

(a) (b) (c)

x

y

x

y

x

y

32

enough to correct the misalignment and the positioning system movement would follow

the arrow shown in the figure.

Scenario (b) represents the case when misalignment occurs equally in the x and y

directions. Here, the sensing coils can only move about 0.7 primary coil diameters before

the two closest sensing coils reach the edge of sensing range. Within the range of about

0.7 primary coil diameters, the positioner can sense misalignments in the x and y directions

and would move along the straight arrow shown to restore alignment.

Scenario (c) represents another case where there is misalignment in both

directions, but only one sensing coil is within the large circle of magnetic flux. In this case,

the positioner would not be able to sense misalignment in both directions initially.

However, while correcting misalignment in the y direction, other sensing coils will enter

the large circle and full alignment can be completed. In this case, the path to alignment is

not straight.

From the scenarios in Figure 18 it appears that an x-y positioning mechanism with

the sensing coils and control system of Figure 17 can work as intended to reduce lateral

misalignments in an IPT system despite any coupling of the sensing coils. The maximum

range of successful misalignment detection is expected to vary between about 0.7 and 1

primary coil diameters depending on the sensing coil orientation with respect to

misalignment. The smallest range is expected for the orientation shown in Figure 18 (b),

when there is equal misalignment in both the x and y directions. The 2D misalignment

reduction performance of a positioner is tested in Section 6.2, where the x and y direction

control loops are closed independently.

33

2.6 Mobile robot dynamics and control

To test the application of an IPT coil positioner on a mobile platform, a differential-

drive mobile robot platform is developed. This mobile robot design (shown in Figure 19)

is used extensively in literature and practice. In differential drive designs, turning is

achieved by rotating the left and right wheels of the robot at different speeds. At the front

of the robot is a passive ball caster that is low friction and only serves as a contact point

to the ground. This simple design allows the mobile robot to move forward, backward,

travel in a circle, and even turn in place.

Figure 19. Basic differential drive mobile robot with passive ball caster

The dynamic equations of the mobile robot design pictured in Figure 19 are now

presented. Figure 20 defines a global inertial coordinate system (with the basis I, J, K) and

the robot’s body-fixed frame (with the basis i, j, k). The origin of the body-fixed frame is

located at the wheelbase midpoint so that k is the axis of rotation. The turning of each

wheel provides a force to the robot in the i direction. Forces in the in the j or k direction

also exist in the general case, but these are not included in Figure 20. The origin of such

forces come from contact with the ground.

Left wheel and motor

Right wheel and motor

Platform

Ball caster

34

Figure 20. Differential drive mobile robot reference frames and force diagram

Newton’s second law of motion for the robot translation gives

m
d

2
Rcm

dt2
 = (F

L
+ FR) i , (5)

where Rcm is the position of the robot center of mass in the global frame and m is the total

robot mass. The center of mass position vector can be expressed as

 Rcm= Xf I + Yf J + d i
(6)

where Xf and Yf are the global coordinates of the origin of the robot frame. Then, the time

derivatives in the global frame of Rcm are

 dRcm

dt
 =

dXf

dt
I +

dYf

dt
J + d

dθ

dt
 j

d
2
Rcm

dt2
 =

d
2
Xf

dt2
Î +

d
2
Yf

dt2
J + d

d
2
θ

dt2
j − d (

dθ

dt
)

2

i .

(7)

K
I

J

θ

i j

b

d

Xf

Yf
FL

FR

i j

k

35

Substituting (7) into (5) gives the translational equation of motion for the mobile robot

with force inputs. This translational equation is

𝑚 (
d

2
Xf

dt2
I +

d
2
Yf

dt2
J + d

d
2
θ

dt2
 j − d (

dθ

dt
)

2

i) = (F
L
+FR) i .

(8)

Finally, coordinate transformations are used to express all terms in the robot body-fixed

frame. The equations of motion in the i and j directions are

𝑚 (
d

2
Xf

dt2
cos θ +

d
2
Yf

dt2
sin θ) = FL + FR + md (

dθ

dt
)

2

and 𝑚 (−
d

2
Xf

dt2
sin θ +

d
2
Yf

dt2
cos θ) = − m d

d
2
θ

dt2
 ,

(9)

respectively. The accelerations terms on the left side of (9) correspond to the acceleration

of the robot frame origin. These acceleration terms are replaced to give

𝑚
d

2
xf

dt2
 = FL + FR + md (

dθ

dt
)

2

m
d

2
y

f

dt2
 = − m d

d
2
θ

dt2

(10)

where lower-case variable xf and yf denote coordinates of the robot frame origin in the i

and j directions, respectively.

From Newton’s second law for rotating frames, the rotational equation of motion

for the mobile robot is

(Icm + md
2)

d
2
θ

dt2
 =

FRb

2
 −

FLb

2
 + m d sin θ

d
2
Xf

dt2
 − md cos θ

d
2
Yf

dt2
 . (11)

36

The center of rotation in (11) is the robot k axis. The last two terms of (11) can be replaced

by md
d

2
yf

dt2
 using the kinematics to give

(Icm + md
2)

d
2
θ

dt2
 =

FRb

2
 −

FLb

2
 − m d

d
2
y

f

dt2
 . (12)

Equations (10) and (12) define the motion of the mobile robot in its body-fixed

frame. Now, these equations are modified so that they agree with expected results. First,

note that the acceleration of the origin of the robot frame in the j direction (expressed as

d
2
yf

dt2
) should be zero; acceleration in this direction indicates that the robot is slipping in the

j direction. The force that prevents slip in the j direction is friction between the wheels and

the ground, and must be exactly equal to md
d

2
θ

dt2
 so that

d
2
yf

dt2
 is zero. Adding this friction

force to prevent slip, the equation of motion in the j direction becomes

 d
2
y

f

dt2
 = 0 . (13)

Substituting (13) into (12) also gives the updated rotational equation of motion

(Icm + md
2)

d
2
θ

dt2
 =

FRb

2
 −

FLb

2
 . (14)

Now, consider the case when FL is equal and opposite to FR. With these forces, the

robot is expected to turn in place. With such movement, acceleration in the i direction

(expressed as
d

2
xf

dt2
) should be zero. However, (10) contains the term 𝑚d (

dθ

dt
)

2

, which would

result in a positive
d

2
xf

dt2
 even when FL is equal and opposite to FR. A positive

d
2
xf

dt2
 in indicates

that the robot is slipping in the i direction, which is not expected if the robot is turning in

37

place. In reality, friction between the wheels and the ground provide an opposing force

which prevents slip in the i direction in this scenario. The friction force is exactly equal to

𝑚d (
dθ

dt
)

2

 to ensure this slipping does not occur. Adding this friction force, the revised

equation of motion in the i direction becomes

m
d

2
xf

dt2
 = FL + FR (15)

The simplified equations (13) through (15) could have been reached by simply stating that

lateral acceleration of the robot is zero and that its angular velocity is small.

Finally, consider the forces FL and FR. These forces are provided by wheel motors

with their own electromechanical dynamics. However, their response time is relatively

fast compared to the mechanical dynamics of the mobile robot platform. To simplify the

analysis, assume that the motors provide an instantaneous force proportional to their

control signals, which are labeled SL and SR. The gain by which these signals are

multiplied to get the applied force is labeled Km. This constant should not be confused

with the conventional motor torque constant. Also, to impose a realistic energy decay,

damping forces are added to the mobile robot model at the wheel locations. These damping

forces represent frictional losses. With damping cm on the left and right sides of the robot

and damping cr on the ball caster, the final equations of motion for simulation become

m
d

2
xf

dt2
 = Km SL+ Km SR − (2cm + cr)

dxf

dt

If

d
2
θ

dt2
 =

SRKmb

2
−

SLKmb

2
− (

cmb
2

2
 + crw)

dθ

dt

(16)

38

where w is the i coordinate of the ball caster. The moment of inertia expression Icm+md2

is replaced by If for conciseness. The
d

2
yf

dt2
 equation is omitted since it equals zero. The

dynamic equations in (16) serve as a model for the differential-drive mobile robot platform

used in experimentation, and the robot parameter values are estimated in Section 6.4.

The mobile robot response given by (16) can be simulated using Matlab Simulink

(Figure 21). The inputs to the robot dynamic equations are the motor signals and the

outputs are the forward velocity and heading angle of the mobile robot. Note that the

forward velocity is in the robot’s body-fixed reference frame and the heading angle is in

the global frame of reference.

Figure 21. Mobile robot dynamics modeled in Matlab Simulink

Matlab Simulink can also be used to test closed-loop controllers that allow the

mobile robot to reach a target location. The simulation setup used for this thesis is shown

in Figure 22. The reference inputs are the global coordinates of the target, which remains

stationary. The mobile robot begins at the origin of the global coordinate system and

initially faces the x direction with a heading angle of 0 rad.

Drive dynamics

Turning dynamics

K

Km

K

Km

θ

dxf

dt

39

Figure 22. Feedback controller simulation setup using Matlab Simulink

Each of the blocks in Figure 22 are now explained. First, the robot position error

must be known. To calculate the position error, the global coordinates of the robot frame

(xf and yf) are compared with that of the target (Target X and Y). The global coordinates of

the mobile robot is calculated using the kinematic relationships shown in Figure 23.

Kinematics

Figure 23. Kinematic calculations used to find the global mobile robot position

The robot coordinates are fed back and compared to the target coordinates. The

control loop is closed by using a camera sensor (the Pi Camera, introduced in Section 3.5)

onboard the mobile robot. The Pi Camera outputs a measure of distance and heading angle

40

error to the target as seen by the mobile robot. Ideally, the Pi Camera performs the

trigonometric calculations shown in the block of Figure 24. The distance to the target is

the Euclidian norm of the global position error vector and the angle to the target is the

angle of the positon error vector with respect to the I direction. Note that the camera sensor

has the robot heading angle as an input so that the heading angle error of the robot to the

target can be calculated. The heading angle error is the difference between the angle to the

target and the actual heading angle of the robot, both with respect to the I direction.

Pi Camera

Figure 24. Modeled functions of a camera sensor mounted to a mobile robot

The distance and heading angle errors from the camera sensor are used to calculate

control signals for the robot. Control design for the mobile robot is presented in Section

5.2. However, it is important to note that there must be coupling between the control

signals since the left and right wheels work together to drive and steer the robot. The goal

of the controller is to bring the mobile robot to the target—minus an offset distance—so

that the mobile robot faces the target directly at the end of its trajectory (see Figure 25).

41

Figure 25. Mobile robot distance and heading angle errors

The mobile robot wireless charging application presented in this thesis is

illustrated in Figure 4. According to this scenario, the robot requires the camera sensor to

reach the wireless charger location, but the camera sensor is not precise enough to position

the robot precisely over the charger. Once the robot arrives close to the wireless charger,

the sensing coil measurements can be used to achieve precise alignment. This means that

a small steady-state error is allowed with the controller used in Figure 22 as long as the

error is small enough that the sensing coils can detect the wireless charger.

Distance error

Heading angle

error

Colored

target
Qi charger

Distance

offset

42

HARDWARE

Previous analysis gave expected results for the use of dual sensing coils to detect

IPT lateral misalignment. The use of such sensing coils in a mobile robot charging

application was also proposed. The following hardware is used to verify expected results.

3.1 Experimental IPT System

For experimentation of IPT, a commercial wireless charger is used. The specific

model (pictured in Figure 26) is the Yootech T500PB Qi wireless charger. This device

contains the power inverter, compensator circuit, and primary coil necessary for an IPT

system (Figure 1). The right image of Figure 26 pictures a mobile phone that lies on the

Yootech wireless charger. The phone contains the secondary coil, compensator, and power

rectifying circuit that supplies a DC voltage to the phone battery charging circuit.

Figure 26. Yootech wireless Qi charger model used for IPT experimentation [33]

A commercial Qi wireless charger is used for two reasons. First, such commercial

wireless chargers are a cheap, all-in-one solution for IPT that are easy to power using

43

standard power outlet adapters or batteries. Designing and building a new IPT primary

coil circuit is beyond the scope of this thesis and would undoubtedly require an additional

analysis. The second reason for using a commercial wireless charger is that the

experimental results will be more applicable to existing systems, which likely adhere to

the same (or similar) charging standards. The Qi standard is one of the most common

wireless charging standards used today.

 One significant difference between the commercial charger shown in

Figure 26 and the IPT analysis previously presented is the coil construction. In the

analysis, a single coil with a fixed diameter was used to simulate the primary coil.

However, the primary coil in the Yootech charger is made of ten turns in a flat coil. Due

to the wire thickness, this means that the outer loop is at 43 mm diameter and the inner

loop is at 20 mm diameter. To address this, the commercial wireless charger can be

modeled as a superposition of 10 primary coils with different diameters. If seen as such,

the trends from Figures 9−13 remain largely unchanged, with stronger magnetic flux

densities near the center of the primary coil.

 In lieu of using a mobile phone or similar decive as the secondary coil for the

experimental IPT system, a Qi wireless charging receiver is used (Figure 27). This receiver

is essentially identical to the circuits found in mobile phones like, thanks to adherence to

the same Qi standards. The receiver is directly compatible with the Yootech wireless

charger being used. It is necessary to use the receiver in experimentation because the Qi

wireless charger is operates only when it senses the presence of a receiver. When the

receiver is not present, the Qi wireless charger switches to a pulsing mode.

44

Figure 27. Wireless Qi receiver module [34]

Together, the wireless charger and receiver pictured in Figures 26 and 27 are rated

for power transmission up to 5 W. The recommended input voltage to the charger is 5 V

at 2 A via a micro-USB port. According to the charger specifications, the maximum power

transfer to the end device is 5 W at 5 V and 1 A.

3.2 Sensing coils

Misalignment-sensing coils are constructed for experimentation. The coils are

made of enamel-coated 25 AWG copper wire which is wound around a 3D-printed bobbin

to create the circular sensing coil loops (Figure 28).

Figure 28. Sensing coils wound on a 3D-printed bobbin; model (left) actual (right)

45

The bobbin allows four identical sensing coils to be wound in the configuration of

Figure 8. Each pair of sensing coils opposite to each other forms one dual sensing coil pair

for misalignment detection in one direction. The number of turns used for each sensing

coil is 10. This number was decided arbitrarily but also considering the physical

consequence of adding more loops (increasing the coil diameter). Using small gage wire

allowed for 10 turns to maintain a tight sensing coil diameter.

To measure the voltage magnitude in each a sensing coil, a rectifier circuit is

implemented. The rectifier circuit is constructed using a diode rectifier, a smoothing

capacitor, and a shunt resistor (Figure 29). To ensure a low voltage drop in the rectification

circuit, a Schottky diode (1N5819) is used. The values of the smoothing capacitor and

shunt resistor are selected to reduce signal noise but also to allow adequate sampling

response time. The values used in the following experiments are 10 µF and 1 kΩ, giving

a time constant of 10 ms.

Figure 29. Sensing coil circuit for each sensing coil to measure peak induced voltage

Measurement of the voltage for each sensing coil is done using an Arduino UNO

revision 3 microcontroller board (Figure 30). Measurements of the non-rectified voltage

and circuit step response is done using a digital oscilloscope (Rigol DS1054Z).

+

v
L/R

-

46

Figure 30. Arduino UNO revision 3 board used for sensing coil voltage measurement

and control of actuators [35]

The Arduino UNO board contains 6 input channels dedicated to analog voltage

measurement from 0 to 5 V. Each channel features 10-bit analog-to-digital (ADC)

conversion, giving a sensing resolution of about 5 mV. One ADC channel is used per

sensing coil. The Arduino board also contains 14 digital output pins, 6 of which can be

used for pulse-width-modulation (PWM) output. A custom program, written in C, is

created for each experiment procedure. The programs are compiled using the Arduino

software (version 1.8.1) and are saved in the Arduino board flash memory where it can be

executed. In the experiments, some of the Arduino variables are displayed on the computer

screen for analysis and plotting. Serial communication with the Arduino is done in real

time via the programming USB cable.

In the following experiments, custom Arduino programs are used to measure the

voltage in sensing coils, calculate controller signals, and output commands to coil

positioning actuators. Complete schematics and Arduino codes are provided for each

experiment.

47

3.3 2D positioner

The first task of this thesis is to demonstrate a way to sense lateral misalignment

in an IPT system. The second task is to implement automatic alignment of IPT coils using

said misalignment detection capabilities. To complete these tasks, an experimental 2D

positioner is designed and constructed (Figure 31). The 2D positioner has the ability to

position the sensing coil assembly (Figure 28) along a plane parallel to the primary coil

using two stepper motors. The stepper motors are each commanded by an Arduino UNO

board, which measures the voltage of the sensing coils and calculates control signals based

on the automatic positioning control law (to be presented in Section 5.1).

Figure 31. Two-dimensional positioner assembly (wire connections not shown)

y-direction

stepper motor

L298n motor

driver boards

 x Arduino

UNO board

Qi wireless

charger

(primary coil)

x-direction

stepper motor
sensing coil

assembly x-direction

belt

y-direction

lead screw

guide

shafts

x

y

y Arduino

UNO board

48

The 2D positioner in Figure 31 contains some 3D-printed parts but also makes use

of commercially-available components. The leftmost 3D-printed part serves as a mount

for the x-direction stepper motor, the lead screw nut, and guide shafts. The rightmost 3D-

printed part serves as a mount for the guide shafts and the belt pulley. The center 3D-

printed part holds the sensing-coil fixture. The belt is also attached to this part to provide

x-direction movement. As the labeling implies, the x-direction stepper motor moves the

sensing coil assembly in the x direction by turning the belt and the y-direction stepper

motor moves the sensing coil assembly in the y direction by turning the lead screw. Each

NEMA 17 stepper motor has a step resolution of 1.8°. The belt pulley has a diameter of

12.7 mm, and the lead screw has 2 mm pitch. This hardware combination gives a

positioning resolution of 0.2 mm in the x direction and 0.05 mm in the y direction if full

steps are used with the motors.

The 2D positioner shown in Figure 31 is used for two different experiments. First,

the induced voltage in the sensing coils is measured for different misalignment amounts.

The results of this experiment are compared to the analysis results from Section 2.3 and

can be used to address the first thesis task. In the second experiment, the sensing coils

perform as a misalignment sensor to automatically reduce coil misalignment. The sensing

coil voltage outputs are measured by the Arduino boards and a controller program

provides control signals for the stepper motors. This experiment addresses the second

thesis task. The electrical schematics used for the 2D positioner experiments are shown in

Figures 32 and 33. The same wiring is used for both the x and y directions. In addition,

there is one wire (not shown in Figures 32 and 33) that goes from the x-Arduino digital

49

pin 12 to the y-Arduino digital pin 8. The purpose of this wire is explained in the software

Section 4.2. The schematics include the rectifier circuits for the sensing coils as well as

the wiring of the stepper motors using the H-bridge L298N motor drivers.

Figure 32. Electrical schematic for either the x- or y-direction sensing coils in the 2D

positioner assembly

Figure 33. Electrical schematic for 2D positioner stepper motors and L298N H-bridge

motor drivers; schematic is the same for the x- and y-direction motors

The Arduino boards command the stepper motor H-bridge drivers and are powered

through the USB port at the logic level of 5 V. Zener diodes are added to the sensing coil

M

50

circuits (Figure 32) to protect the Arduino board from input voltages higher than 5 V. The

12 VDC supply in Figure 33 is provided by an AC-to-DC wall adapter rated at 1 A output

current. The 12 V ground and the Arduino ground are connected.

3.4 Mobile robot

The differential-drive mobile robot platform used for experimentation is pictured

in Figure 34. The mobile robot contains the Pi Camera sensor introduced in Figure 22, a

sensing coil assembly, and a 1D positioner. The 1D positioner is made with a small dc

motor, belt, and pulley. Together, the robot wheels and the mounted 1D positioner provide

movement to the secondary coil in the two lateral directions.

Figure 34. Differential drive platform used for mobile robot application

Camera sensor

Ardunio UNO

Sensing coil

assembly

Secondary coil

Ball

caster

Raspberry

Pi

Micro gearmotors

Sensing coil

rectifier circuits

1D positioner

(gearmotor, pulley,

and belt)

51

The mobile robot wheels are turned by small gearmotors with specifications shown

in Table 1. The gearmotors are powered by a standard 9 V battery and are controlled using

an Adafruit TB6612 H-bridge motor controller.

Table 1. Mobile robot gearmotor specifications

• Generic brand (UPC 701203386617)

• Gear ratio100:1

• No-Load Speed 120 rpm @ 6 V

• Rated Speed 100 rpm @ 6 V

• Rated current 0.21 A @ 6 V

• Rated Torque 0.6 Kg·cm @ 6 V

• D output shaft diameter 3 mm

• Wheels are Pololu 60 mm diameter

The motor board itself is commanded using PWM signals generated by the

Arduino board. Each gear motor requires its own PWM signal. Figure 35 shows the motor

driver wiring. Another motor driver is added for control of the 1D positioner gear motor.

Figure 35. Wiring diagram for PWM control of the differential drive mobile robot

52

Also mounted on the mobile robot is a set of four sensing coils using the same

wiring of Figure 32. These sensing coils are attached to the robot such that they can sense

misalignment with respect to a Qi wireless charger on the ground. The sensing coil

assembly is attached to the mobile robot using a 1D belt-and-pulley positioning system

actuated by a gearmotor.

The mobile robot becomes a 2D IPT coil positioner on its own, performing the

same function as the experimental positioner in Section 3.3. According to the scenario

presented in Figure 4, after the mobile robot approaches the wireless charging station, it

uses the mounted sensing coils to precisely align itself over the Qi wireless charger on the

ground. The 1D positioner mounted on the robot facilitates fine positioning by moving the

sensing coil assembly in the direction perpendicular to the robot movement (Figure 36).

The robot wheels provide the forward and backward positioning motion.

Figure 36. Mobile robot precise positioning over Qi wireless charger using sensing coils

(top view)

Qi wireless charger 1D

positioner

Sensing coil

assembly and

secondary coil

 Forward/backward

motion by robot wheels

Left/right motion

by 1D positioner Mobile

robot

53

3.5 Target-tracking camera

In the mobile robot charging application presented in Figure 4, the mobile robot

locates the IPT wireless charger by detecting a colored target that marks the charger

location. To detect the target location, a camera sensor with computer-vision software is

installed on the robot. The camera used is the Raspberry Pi Camera (revision 1.3), and the

images are processed using a Raspberry Pi 2 model B computer (Figure 37). These

components are referred to as the Raspberry Pi and Pi Camera, respectively, and they are

mounted on the mobile robot as shown in Figure 34. The Pi Camera is placed at the robot

wheelbase midpoint and faces forward in the direction of robot movement.

Figure 37. Raspberry Pi 2 B (left) and Raspberry Pi Camera 1.3 (right) [36, 37]

When used with the Raspberry Pi, the Pi Camera can capture images up to 5

megapixels in size and video up to 1080p resolution at 30 frames per second. The image

resolution and framerate can be adjusted through software programming. The horizontal

field-of-view (FOV) of the camera at full resolution is about 53°.

The Pi Camera closes the loop in the control system of Figure 22 by giving the

mobile robot a measure of distance and heading angle error to the target. Thus, the target

54

must remain in the camera FOV for target tracking to occur. The accuracy and sampling

rate of the Pi Camera measurements depends on the image-processing script used. The

image processing script used for this thesis is presented in Section 4.3.

3.6 Raspberry Pi and Arduino UNO communication

 The Raspberry Pi is a small computer that runs on a Linux operating system. There

are many ways to program it for use with the Pi Camera. For this thesis, a Python script is

used (see Section 4.3 for the script code). The Raspberry Pi, like the Arduino UNO,

provides some general-purpose input/output (GPIO) pins. However, the native

input/output capabilities of the Raspberry Pi are limited compared to the Arduino. For

example, the Raspberry Pi has no ADCs so reading analog voltages is not possible without

an external ADC chip. Also, the Raspberry Pi only has two hardware PWM-enabled pins,

while the Arduino UNO has 6. Another difference is that the Raspberry Pi operates at the

3.3-V logic level, while the Arduino UNO operates at the 5-V logic level.

The Arduino board’s ability to measure voltages and output several PWM signals

makes it ideal for measuring sensing coil voltages commanding electric motors. However,

the Arduino board is not capable of processing images captured by the Pi Camera. For this

task, the Raspberry Pi is used. To close the control loop of Figure 22, the Raspberry Pi

must be able to communicate with the Arduino board, which generates the motor control

signals. Therefore, it is necessary to establish a link between the Arduino and Raspberry

Pi. Communication between the boards is easily done using the i2C serial communication

protocol, which is supported by both the Arduino and Raspberry Pi. A logic-level

55

converter (the Sparkfun converter based on BSS138 n-channel field-effect transistors) is

used to convert digital voltage signals between the Arduino and Raspberry Pi to the

appropriate voltage levels. The wiring used to establish communication between the

Arduino board and the Raspberry Pi using i2C communication is illustrated in Figure 38.

The appropriate lines of code used for i2C communication are presented in the

programming codes of Sections 4.3 and 4.4.

Figure 38. Raspberry Pi and Arduino UNO connections for i2C serial communication

using a Sparkfun-brand logic level converter [38]

56

SOFTWARE

In this chapter, the software and codes that enable the thesis experiments are

presented. All the Arduino UNO programs and Raspberry Pi Python scripts presented

were written myself specifically for the experiments in this thesis. However, the codes

make use of some open-source libraries and functions that are clearly identified.

Omitted in some of the following scripts are print statements which are used to

display real-time values of program variables—many times for plotting purposes. For

example, the program running time may be printed to time specific functions. The print

statements do no alter the functionality of the codes, so it is of no consequence if they are

not included in this thesis.

4.1 Sensing-coil voltage measurement

In the first experiment, the voltage of the sensing coils is measured using the

Arduino board. The program functions include moving the sensing coils to different x and

y positions and taking voltage measurements at each position. Sensing coil positioning is

achieved by controlling the 2D positioner stepper motors (Figure 31).

The program used to accomplish the sensing coil voltage measurements is

presented in Table 2. First, a function called setZero() gives the user some time to align

the IPT system manually. Then, the main function, called measureVoltages(), measures

the sensing coil voltages at various x-direction misalignments. Between each voltage

57

measurement, the x-direction stepper motor is moved 5 steps, which gives 1 mm of

movement. After the measureVoltages() function is complete, the 2D positioner is once

again at the aligned position. The program then offsets the sensing coils in the y direction

by 5 mm and the measureVoltages() function runs again. This is repeated for y-direction

offsets up to 20 mm. The result of this procedure is a set of x-direction sensing coil voltage

measurements at various y-direction offsets. For this experiment, only the x Arduino is

used and the y stepper motor connections are temporarily moved from pins 2,3,5, and 6

on the y Arduino to the pins 8,9,10, and 11, respectively, on the x Arduino.

Table 2. Arduino program for measuring sensing coil voltages at various x and y

misalignments

// Experiment 1: Sensing coil voltage measurement vs. displacement in the x direction at various y

displacements

// Stepper motor setup

#include <Stepper.h> // Include standard stepper motor library

Stepper xStepper(200, 2, 3, 5, 6); // stepperName(steps_per_revolution, in1, in2, in3, in4);

Stepper yStepper(200, 8, 9, 10, 11);

float vxL, vxR, vyL, vyR, xe, ye; // Voltage reading decimal variables

long t0;

// Required setup function

void setup() {

 Serial.begin(9600); // Initialize serial communication with the Arduino

 setZero(); // Initial function for finding zero dislocation location

 xStepper.setSpeed(20); // Set stepper motor speed in RPM

 yStepper.setSpeed(20); // Set stepper motor speed in RPM

 measureVoltages(); // Main function for voltage measurements vs x displacements, zero y

displacement

 yStepper.step(100); // Offset positioner 5mm in y direction

 delay(1000); // Small time delay

 measureVoltages(); // Take another set of voltage measurements vs x displacement

58

Table 2 Continued.

 yStepper.step(100); // Offset positioner to 10mm in y direction

 delay(1000); // Small time delay

 measureVoltages(); // Take another set of voltage measurements vs x displacement

 yStepper.step(100); // Offset positioner to 15mm in y direction

 delay(1000); // Small time delay

 measureVoltages(); // Take another set of voltage measurements vs x displacement

 yStepper.step(100); // Offset positioner to 20mm in y direction

 delay(1000); // Small time delay

 measureVoltages(); // Take another set of voltage measurements vs x displacement

}

// Required loop function, left empty

void loop() {

}

// This function runs for a few seconds; allows user to center the sensing coil over the primary coil

void setZero()

{

 // Print sensing coil voltages continuously for 15 seconds

 t0 = millis();

 while(millis()-t0<15000){

 // Read voltages for left sensing coils

 vxL = analogRead(A0)*5.0/1023.0;

 vxR = analogRead(A1)*5.0/1023.0;

 vyL = analogRead(A2)*5.0/1023.0;

 vyR = analogRead(A3)*5.0/1023.0;

 // Prints voltage difference for sensing coils

 Serial.print(vxR-vxL, 4);

 Serial.print(" ");

 Serial.println(vyR-vyL, 4);

 delay(100); // Small time delay

 }

}

// This is the main function that runs to measure voltages at x misalignments

void measureVoltages()

{

 // Measure negative x displacements

 // Loop for 5 experiment trials

 for(int n=1; n<=5; n++){

 // For each trial, perform following the loop

 for(int i=0; i <= 40; i++){

 vxL = analogRead(A0)*5.0/1023.0; // Read voltage for left sensing coil

 vxR = analogRead(A1)*5.0/1023.0; // Read voltage for right sensing coil

 // Print the measured voltages for the current displacement

 Serial.print(-i*5*.0002,4);

 Serial.print(" ");

59

Table 2 Continued.

 Serial.print(vxL,4);

 Serial.print(" ");

 Serial.print(vxR,4);

 Serial.print(" ");

 Serial.println(vxR-vxL,4);

 xStepper.step(5); // Move 5 steps in negative x direction

 delay(500); // Small delay in milliseconds

 }

 xStepper.step(-205); // Step backwards to return sensing coils to centered position

 delay(1000); // 1 second time delay

 }

 // Measure positive x displacements

 // Loop for 5 experiment trials

 for(int n=1; n<=5; n++){

 // For each trial, perform following the loop

 for(int i=0; i <= 40; i++){

 vxL = analogRead(A0)*5.0/1023.0; // Read voltage for left sensing coil

 vxR = analogRead(A1)*5.0/1023.0; // Read voltage for right sensing coil

 // Print the measured voltages for the current displacement

 Serial.print(i*5*.0002,4);

 Serial.print(" ");

 Serial.print(vxL,4);

 Serial.print(" ");

 Serial.print(vxR,4);

 Serial.print(" ");

 Serial.println(vxR-vxL,4);

 xStepper.step(-5); // Move a 5 steps in positive x direction

 delay(500); // Small delay in milliseconds

 }

 xStepper.step(205); // Step backwards to return sensing coils to centered position

 delay(1000); // 1 second delay

 }

}

4.2 2D positioner driver

The second thesis experiment demonstrates the use of closed-loop control to

reduce lateral misalignment in an IPT system. Two Arduino programs are used to do

this—one for the x and one for the y direction. These two programs are nearly identical

and are presented in Table 3. At the start of the programs, the sensing coils are given an

initial x- and y-direction misalignment. Then, closed-loop control functions in both

60

Arduinos run simultaneously to provide 2D alignment. The control law used to align the

system, presented in Section 5.2, closes the x and y loops independently, hence the use of

one Arduino for each direction. To ensure that both Arduinos begin operating at the same

time, a master-slave relationship is established between them. The wire from digital pin

12 on the x Arduino to digital pin 8 on the y Arduino is used by the x Arduino to trigger

the operation of the y Arduino. The results of this experiment are time and position data

for the x and y directions of the 2D positioner as the automatic alignment takes place. This

data is used to plot the positioner trajectory as alignment takes place.

Table 3. Arduino programs for closed loop control of the 2D positioner to eliminate IPT

lateral misalignment

// Experiment 2: Closed-loop control of two-dimensional positioner to eliminate IPT misalignment in x

and y directions

// X direction sensing and driver, MASTER to Y direction Arduino

// Stepper motor setup

#include <Stepper.h> // Include standard stepper motor library

Stepper xStepper(200, 2, 3, 5, 6); // stepperName(steps_per_revolution, in1, in2, in3, in4);

// Initialize variables

int xStep, xSpeed, timeDelay; // Stepper motor steps and time delay

float vxL, vxR, xe, cmX, xPos; // Voltage and position variables

float vthresh = 0.05; // Threshold voltage for controller dead band

long t0; // Time storage variable (to set time zero)

// Required setup function

void setup() {

 Serial.begin(250000); // Initialize serial communication with the Arduino

 pinMode(12, OUTPUT); // Pin to command slave Y Arduino

 setZero(); // Function allows user to center IPT coils

 xStepper.setSpeed(200); // Set max stepper motor speed in RPM

 // Set intial misalignmen amounts in cm

 cmX = -2;

61

Table 3 Continued.

// Step motor creates initial misalignment

 xStepper.step(cmX*50);

 // Keep track of position

 xPos = cmX/100;

 // Wait for keyboard input to start program, send command to Y Arduino when start

 Serial.println("Waiting for go command");

 while(Serial.available()<1){}

 digitalWrite(12, HIGH);

 t0 = millis(); // Set zero time

}

// Loop function, runs indefinitely

void loop(){

 alignX();

}

// This function runs for a few seconds; allows user to center the sensing coil over the primary coil

void setZero()

{

 // Print sensing coil voltages continously for 15 seconds

 t0 = millis();

 while(millis()-t0<15000){

 // Read voltages for left sensing coils

 vxL = analogRead(A0)*5.0/1023.0;

 vxR = analogRead(A1)*5.0/1023.0;

 // Prints voltage difference for sensing coils

 Serial.println(vxR-vxL, 4);

 delay(100); // Small time delay

 }

}

// X direction automatic aligning function

void alignX(){

 // Print current time and x position

 Serial.print((millis()-t0)/1000.0, 4);

 Serial.print(" ");

 Serial.println(xPos, 4);

 // Read voltages from sensing coils

 vxL = analogRead(A0)*5.0/1023.0;

 vxR = analogRead(A1)*5.0/1023.0;

 // Caclulate voltage difference

 xe = vxR-vxL;

 // Set time delay in milliseconds

 timeDelay = max((0.75-abs(xe))*20, 0);

62

Table 3 Continued.

 delay(timeDelay);

 // Set step direction for x stepper motor based on error sign

 if(xe>vthresh){

 xStep = -1;

 }

 else if(xe<-vthresh){

 xStep = 1;

 }

 else{

 xStep = 0;

 }

 // Send step to stepper motor

 xStepper.step(xStep);

 // Keep track of x position

 xPos = xPos+xStep*0.0002;

}

// Y direction positioner driver, SLAVE to X direction Arduino

// Stepper motor setup

#include <Stepper.h> // Include standard stepper motor library

Stepper yStepper(200, 2, 3, 5, 6); // stepperName(steps_per_revolution, in1, in2, in3, in4);

// Initialize variables

int yStep, ySpeed, timeDelay; // Stepper motor steps and time delay

float vyL, vyR, ye, cmY, yPos; // Voltage and position variables

float vthresh = 0.05; // Threshold voltage for controller dead band

long t0; // Time storage variable (to set time zero)

// Required setup function

void setup() {

 Serial.begin(250000); // Initialize serial communication with the Arduino

 pinMode(8, INPUT_PULLUP);

 setZero(); // Function allows user to center IPT coils

 yStepper.setSpeed(200); // Set max stepper motor speed in RPM

 // Set intial misalignment amount in cm

 cmY = 2;

 // Step motor creates initial misalignment

 yStepper.step(cmY*200);

63

Table 3 Continued.

 // Keep track of position

 yPos = cmY/100;

 // Wait for command from X driver to start at the same time

 while(digitalRead(8)==LOW){}

 t0 = millis(); // Set zero time

}

// Loop function, runs until X driver is reset

void loop(){

 while(digitalRead(8)==HIGH){

 alignY();

 }

}

// This function runs for a few seconds; allows user to center the sensing coil over the primary coil

void setZero()

{

 // Print sensing coil voltages continously for 15 seconds

 t0 = millis();

 while(millis()-t0<15000){

 // Read voltages for left sensing coils

 vyL = analogRead(A0)*5.0/1023.0;

 vyR = analogRead(A1)*5.0/1023.0;

 // Prints voltage difference for sensing coils

 Serial.println(vyR-vyL, 4);

 delay(100);

 }

}

// Y direction automatic aligning function

void alignY(){

 // Print current time and y position

 Serial.print((millis()-t0)/1000.0, 4);

 Serial.print(" ");

 Serial.println(yPos, 4);

 // Read voltages from sensing coils

 vyL = analogRead(A0)*5.0/1023.0;

 vyR = analogRead(A1)*5.0/1023.0;

 // Caclulate voltage difference

 ye = vyR-vyL;

 // Set time delay in milliseconds

 timeDelay = max((0.75-abs(ye))*20, 0);

 delay(timeDelay);

 // Set step direction for y stepper motor based on error sign

64

Table 3 Continued.

 if(ye>vthresh){

 yStep = 4;

 }

 else if(ye<-vthresh){

 yStep = -4;

 }

 else{

 yStep = 0;

 }

 // Send step to stepper motor

 yStepper.step(yStep);

 // Keep track of y position

 yPos = yPos+yStep*0.00005;

}

4.3 Target-tracking camera

To give the mobile robot autonomy to reach the Qi wireless charger, a Raspberry

Pi Camera (Figure 37) and basic computer-vision software is implemented via a Python

script on the Raspberry Pi. To aid in this task, the open-source computer-vision software,

called OpenCV, is installed. This software includes standard libraries for image

manipulation and analysis.

For completeness, it is noted that installing the operating software on the

Raspberry Pi is a lengthy process that is beyond the scope of this thesis. Suffice it to say

that, in this thesis, the operating system on the Raspberry Pi is Raspbian Wheezy with

OpenCV 3 and scripts that execute in Python 3. Furthermore, the Raspberry Pi is

programmed using the text-based user terminal using standard commands. As an example,

the command sudo nano my_script.py is used to edit a python script with the name

‘my_script.’ Accessing the Raspberry Pi command line can be done via an Ethernet cable,

65

WiFi, or by attaching a monitor, keyboard, and mouse directly into the Raspberry Pi. The

various methods for installing the software or programming the Raspberry Pi are not

detailed in this thesis, and there are many free resources available on the Internet [39−41].

An image processing script that allows the Pi Camera to detect the colored target

and calculate the distance and heading angle error to the target is presented in Table 4.

Since the Raspberry Pi must communicate with the Arduino to control the mobile robot

(see Section 3.6), this script includes proper i2C communication commands.

Table 4. Raspberry Pi Python script for target-tracking with distance and angle

calculations

Target-tracking script with distance and angle calculations

Import necessary packages

from picamera import PiCamera # Camera

from picamera.array import PiRGBArray # Camera RGB array

import time # Time functions (such as time delay)

import cv2 # Computer vision software

import numpy # Allow manipulation of numpy arrays (matrices)

import smbus # Serial communication bus for i2c

import math # Enable math functions

Setup Arduino i2c communication

bus = smbus.SMBus(1)

Initialize variables calculated by camera

distance = 0

angle = 0

Create hsv threshold values for pink post-it target

hmin = 150

hmax = 200

smin = 130

smax = 230

vmin = 100

vmax = 255

Initialize the camera

camera = PiCamera()

66

Table 4 Continued.

width = 320

height = 120

camera.resolution = (width,height)

camera.iso = 400

time.sleep(2)

camera.shutter_speed = camera.exposure_speed

camera.exposure_mode = 'off'

g = camera.awb_gains

camera.awb_mode = 'off'

camera.awb_gains = g

rawCapture = PiRGBArray(camera, size = (width,height))

Target-finding function using opencv image processing

def findTarget(image):

 hsv_image = cv2.cvtColor(image,cv2.COLOR_BGR2HSV)

 # Filter image using hsv threshold values defined previously

 h,s,v = cv2.split(hsv_image)

 hf = cv2.inRange(h,numpy.array(hmin),numpy.array(hmax))

 sf = cv2.inRange(s,numpy.array(smin),numpy.array(smax))

 vf = cv2.inRange(v,numpy.array(vmin),numpy.array(vmax))

 filt_image = cv2.bitwise_and(hf, cv2.bitwise_and(sf,vf))

 #cv2.imshow("Filtered",filt_image)

 #key = cv2.waitKey(1) & 0xFF

 # Find contours in filtered image

 cont_image,cont,hierarchy = cv2.findContours(filt_image, cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

 cont = sorted(cont, key = cv2.contourArea, reverse = True)

 if len(cont)>0:

 for c in cont:

 per = cv2.arcLength(c, True) # Estimate perimeter of contour

 approx = cv2.approxPolyDP(c, 0.075*per, True) # Create approximate

polygon that best fits contour

 # Check number of sides to polygon. If four, do the following:

 if len(approx) == 4:

 area = cv2.contourArea(c) # Calcualte area of contour

 mom = cv2.moments(approx) # Calcualte the moments of the

polygon

 if mom['m00'] != 0:

 # Calculate center of polygon, x and y position

 x = int(mom['m10']/mom['m00'])

 y = int(mom['m01']/mom['m00'])

 return[True, x, y, area, approx]

 break

 return[False, 0, 0, 0, 0]

for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):

 image = frame.array # Image frame array in bgr

67

Table 4 Continued.

 [foundTarget,x,y,area,approx] = findTarget(image) # Send frame to target track function

 rawCapture.truncate(0) # Truncate capture for next

frame

 if foundTarget:

 #cv2.drawContours(image, [approx], -1, (0, 255, 0)) # Draw target polygon

 #cv2.circle(image, (x,y), 2, (255,255,255), -1) # Draw target center

 # Calculate distance and angle to target

 distance = math.sqrt(700/area)

 angle = 53/2-53*x/width

 # Send data to Arduino. 2 bytes sent. Each byte from -127 to 127

 # Convert values to integers

 distance = int(distance*65)

 angle = int(angle)

 # Send data to Arduino

 try:

 bus.write_i2c_block_data(0x08, distance, [angle])

 # If error sending data, Arduino may have frozen. Reset Arduino by making GPIO 4

low.

 except IOError:

 print("Error sending data. Flushing i2c buffer...")

 # Display image

 #cv2.imshow("Image",image)

 #key = cv2.waitKey(1) & 0xFF

 #if key == ord("q"):

 # break

The Python script presented for image tracking presented in Table 4 consists of the

following three main parts:

1. Image processing to identify the target in the image frame

2. Estimation of distance and direction of the target as seen by the robot

3. Data transmission of the distance and angle data to the Arduino board

These three parts are executed in order every time a new image frame is captured. The

first part is an image processing algorithm that identifies the colored target in the image

68

frame. This part calculates the colored target pixel area and pixel location in the image.

The specific steps used to accomplish the image processing are presented in Table 5. These

steps are implemented in the function findTarget() in the script of Table 4.

Table 5. Image processing steps for colored target-tracking

1. Capture an image as a 3D matrix using RGB values. For example, with a resolution of

320×240 pixels, the image is saved in three matrices each 320 elements wide and 240

elements tall. One matrix stores the red intensity values (from 0 to 255), the other stores

green, and the last stores the blue.

2. Convert the image from RGB to hue/saturation/value (HSV) format. This format has the

same structure as the RGB image, but makes it easier to identify different objects in the

image. Converting to HSV is not necessary but yields more consistent image tracking in

some cases.

3. Filter the HSV image according to pre-determined threshold numbers for hue, saturation,

and value. These numbers are selected so that the filtered image contains only the colored

target of interest.

4. Create a contour for each area in the image which survived filtering.

5. Sort through the contours and identify which the colored target is. This is done by fitting

a polygon to the contour in question and checking if the polygon has four vertices (the

target is rectangular).

6. The area and location of the contour in the captured image is approximated using pixel

area moment calculations.

To find the HSV values for the step 3 in Table 5, a short script is executed on the

Raspberry Pi. This script, which is presented Table 6, that allows the HSV values to be

adjusted in real time to show the effects on the filtered image.

69

Table 6. Raspberry Pi Python script for experimentation with HSV filtering values

Import packages for image processing

from picamera.array import PiRGBArray

from picamera import PiCamera

import cv2

import time

import numpy

Initialize the Pi camera

width = 320

height = 240

camera = PiCamera()

camera.resolution = (width, height)

rawCapture = PiRGBArray(camera, size=(width, height))

Create trackbars that user can edit

def nothing(x):

 pass

cv2.namedWindow('Tracking')

cv2.createTrackbar('hmin','Tracking',150,255,nothing)

cv2.createTrackbar('hmax','Tracking',200,255,nothing)

cv2.createTrackbar('smin','Tracking',130,255,nothing)

cv2.createTrackbar('smax','Tracking',230,255,nothing)

cv2.createTrackbar('vmin','Tracking',100,255,nothing)

cv2.createTrackbar('vmax','Tracking',255,255,nothing)

Capture image frames in bgr format

for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):

 # Create an array representing the image

 image = frame.array

Display original image

cv2.imshow("Original", image)

 key = cv2.waitKey(1) & 0xFF

Convert the image to HSV

 image = cv2.cvtColor(image,cv2.COLOR_BGR2HSV)

 # Update HSV threshold values from track bars

 hmin = cv2.getTrackbarPos('hmin','Tracking')

 hmax = cv2.getTrackbarPos('hmax','Tracking')

 smin = cv2.getTrackbarPos('smin','Tracking')

 smax = cv2.getTrackbarPos('smax','Tracking')

 vmin = cv2.getTrackbarPos('vmin','Tracking')

 vmax = cv2.getTrackbarPos('vmax','Tracking')

 # Filter using HSV threshold values

 h,s,v = cv2.split(image)

 hf = cv2.inRange(h,numpy.array(hmin),numpy.array(hmax))

 sf = cv2.inRange(s,numpy.array(smin),numpy.array(smax))

vf = cv2.inRange(v,numpy.array(vmin),numpy.array(vmax))

70

Table 6 Continued.

The second part of the Python script presented in Table 4 estimates the distance

and heading angle to the target as seen by the mobile robot. The estimates are based on

the target pixel area and location in the image frame, respectively. A larger target pixel

area indicates that the robot is closer to the target. Similarly, the horizontal position of

target center indicates if the robot is facing the target. The respective calculations

performed in this part of the target-tracking script are discussed in Section 6.3.

The last part of the Python script in Table 4 is responsible for sending the

calculated distance and angle to the Arduino via i2C serial communication. Two signed

bytes of data are sent consecutively. The first byte is labeled distance, and its value is an

integer that ranges from −127 to 127. The second byte is labeled angle, and it also ranges

from −127 to 127. Note that this integer range makes sense for the unit of angles (the field

of view of the Pi Camera is about 53 degrees), but it does not make sense for distance,

which may range up to a few meters at most. For this reason, the calculated distance is

scaled by a factor of 65 in the Raspberry Pi script (Table 4) to better make use of the −127

to 127 integer range. The distance value received by the Arduino is divided by 65 in the

 filt_image = cv2.bitwise_and(hf, cv2.bitwise_and(sf,vf))

 # Display HSV and filtered image

cv2.imshow("HSV", image)

key = cv2.waitKey(1) & 0xFF

 cv2.imshow("Filtered", filt_image)

 key = cv2.waitKey(1) & 0xFF

 # Clear the capture to allow next frame capture

 rawCapture.truncate(0)

71

Arduino program (Table 7) to convert back to the original unit of meters. The scaling

factor of 65 was selected so that a 2 m distance is scaled to near 127.

Occasionally, serial transmission to the Arduino might fail for unknown reasons.

Normally, this failure aborts the target-tracking program. Rather than exit the program, a

try-catch statement is used to detect this occurrence. The try-catch statement gives some

time for the Arduino to flush the serial data buffer and reset serial communication. This

reset takes only a moment to complete and the script continues to run.

4.4 Mobile robot driver

The Arduino board is responsible for receiving bytes of data from the Raspberry

Pi and commanding the mobile robot according to a control law—also programmed in the

Arduino. The Arduino board is also responsible for reading the sensing coil voltages and

commanding the 1D positioner motor (see Figure 34). These tasks are accomplished in the

Arduino program presented in Table 7.

Table 7. Arduino program for driving the mobile robot and 1D positioner

//Experiment 3: Automatic positioning of mobile robot over Qi wireless charger using Raspberry Pi

camera and sensing coils

#include <Wire.h> // Include library used for i2C serial communication

// Define pins for robot motor control, based on Adafruit TB6612 H-bridge driver board

#define stdby 4

#define rightMotorIn1 5

#define rightMotorIn2 6

#define rightMotorPWM 9

#define leftMotorIn1 7

#define leftMotorIn2 8

#define leftMotorPWM 10

// Define pins for positioner motor control

#define positionerIn1 12

72

Table 7 Continued.

#define positionerIn2 13

#define positionerPWM 11

float vxL, vxR, vyL, vyR, xe, ye; // Sense coil voltage reading variables

// Initialize variables for Rapberry Pi communication

// Char are signed 8bit values sent by Raspberry Pi master (-127 to 127)

char distance = 0; // Distance to target from Raspberry Pi camera

char angle = 0; // Angle to target from Raspberry Pi camera

unsigned long currentTime, lastTime; // Time variables for keeping track of communication times

// Controller variables used for raching target

float dist_setpoint = 0.5; // Distance setpoint [m]

float p_distance = 250; // Proportional gain for distance [pwm/m]

float p_angle = 10; // Proportional gain for angle [pwm/degree]

float dist_error = 0; // Distance error variable

int minPWM = 40; // Set minimum PWM value for motors

int maxPWM = 150; // Set maximum PWM value for motors

float dist_thresh = 0.01; // Set distance threshold for control deadband

int angle_thresh = 0; // Set angle threshold for control deadband

int printing = 1; // Variable to switch between target reach and IPT position printing

void setup() {

 Wire.begin(8); // Join i2c bus with address #8

 Wire.onReceive(receiveEvent); // Function to run when receive data from Raspberry Pi

 // Setup pin umbers for positioner motor driver

 pinMode(stdby, OUTPUT);

 pinMode(rightMotorIn1, OUTPUT);

 pinMode(rightMotorIn2, OUTPUT);

 pinMode(leftMotorIn1, OUTPUT);

 pinMode(leftMotorIn2, OUTPUT);

 pinMode(rightMotorPWM, OUTPUT);

 pinMode(leftMotorPWM, OUTPUT);

 // Enable motor drivers

 digitalWrite(stdby, HIGH);

 Serial.begin(9600);

}

// Main loop function, runs indefinitely

void loop() {

 // If statement to determine if target has been reached

 if(abs(dist_error) > dist_thresh || abs(angle) > angle_thresh){

 // Lines to run at beginning of reach target routine

 if(printing == 1){

 Serial.println("Reach Target [Time Dist_error Angle_error]");

 // Set error thresholds and printing variable until target is reached

 dist_thresh = 0.01;

73

Table 7 Continued.

 angle_thresh = 0;

 printing = 0;

 }

 reachTarget(); // Function for mobile robot to reach Qi target

 }

 // Target has been reached, enable positioning

 else{

 // Lines to run at beginning of positioning routine

 if(printing == 0){

 Serial.println("Positioning [Time xe_voltage ye_voltage]");

 // Set error thresholds and printing variable until reach target is needed again

 dist_thresh = 0.05;

 angle_thresh = 7;

 printing = 1;

 }

 positioning();

 }

 // Stop everything if no data is received from Raspberry Pi for 1 sec

 currentTime = millis(); // Get current time

 if((currentTime-lastTime)>1000){

 dist_error = 0;

 angle = 0;

 }

}

// Receive 2 bytes from Raspberry Pi, each signed from -127 to 127

void receiveEvent(int n) {

 // If else statement used to catch problems with data transmission

 // If more or less than 2 bytes, flush data in else statement

 if(n==2){

 lastTime = millis();

 distance = Wire.read();

 angle = Wire.read();

 dist_error = distance/65.0-dist_setpoint;

 // Print distance and angle data if target reach routine is running

 if(printing == 0){

 Serial.print(millis()/1000.0, 4);

 Serial.print(" ");

 Serial.print(dist_error, 4);

 Serial.print(" ");

 Serial.println((int)angle);

 }

 }

 else{

 while(Wire.available()>0){

 char error = Wire.read();

 }

 }

}

74

Table 7 Continued.

// Function for mobile robot reaching target using Raspberry Pi camera data

void reachTarget() {

 // Drive control laws based on distance and angle error

 int leftPWM = dist_error*p_distance - angle*p_angle;

 int rightPWM = dist_error*p_distance + angle*p_angle;

 motor(leftPWM, leftMotorIn1, leftMotorIn2, leftMotorPWM);

 motor(rightPWM, rightMotorIn1, rightMotorIn2, rightMotorPWM);

 delay(10);

}

// Function for precise positioning of mobile robot above Qi wireless charger

void positioning(){

 // Measure voltage of sense coils

 vxL = analogRead(A0)*(5.0/1023.0);

 vxR = analogRead(A1)*(5.0/1023.0);

 vyL = analogRead(A2)*(5.0/1023.0);

 vyR = analogRead(A3)*(5.0/1023.0);

 // Calculate voltage differences

 xe = vxR-vxL;

 ye = vyR-vyL;

 // Print voltage differences

 Serial.print(millis()/1000.0, 4);

 Serial.print(" ");

 Serial.print(xe, 4);

 Serial.print(" ");

 Serial.println(ye, 4);

 // Set deadband to avoid limit cycling

 if(abs(xe)<0.1){

 xe = 0;

 }

 if(abs(ye)<0.1){

 ye = 0;

 }

 // Drive controller for y-direction misalignment

 int drivePWM = ye*60;

 motor(drivePWM, leftMotorIn1, leftMotorIn2, leftMotorPWM);

 motor(drivePWM, rightMotorIn1, rightMotorIn2, rightMotorPWM);

 // Positioner controller for x-direction misalignment

 int pos = xe*100;

 motor(pos, positionerIn1, positionerIn2, positionerPWM);

 delay(10);

}

// Motor drive helper function, for use with Adafruit TB6612 Motor Driver Board

// sp = -255 to 255, sign indicates direction of movement

75

Table 7 Continued.

void motor(int sp, int in1, int in2, int pin) {

 // Set driver to stop motor of speed is zero

 if(sp==0){

 digitalWrite(in1,LOW);

 digitalWrite(in2,LOW);

 }

 // Set driver to positive motor direction

 else if(sp>0){

 digitalWrite(in1,LOW);

 digitalWrite(in2,HIGH);

 }

 // Set driver to negative motor direction

 else if(sp<0){

 digitalWrite(in1,HIGH);

 digitalWrite(in2,LOW);

 }

 // Limit maximum PWM

 if(abs(sp)>maxPWM){

 sp = maxPWM;

 }

 else if(abs(sp)<minPWM){

 sp = minPWM;

 }

 analogWrite(pin,abs(sp)); // Write PWM to motor

}

The Arduino program presented in Table 7 consists of continuous reading of the

data sent by the Raspberry Pi and two other main routines. The first routine is called

reachTarget() and runs when the mobile robot has not reached the Qi charger. This routine

controls the mobile robot wheel motors based on the distance and angle data from the

Raspberry Pi. The second routine is called positioning() and runs when the mobile robot

has reaches the Qi charger. When the positioning() routine runs, fine positioning of mobile

robot is performed using the sensing coil voltage readings. Forward and backward motion,

as well as the mounted positioner motion, are used in the precise coil alignment task.

76

Finally, there is a helper function called motor() that converts positive and negative PWM

values to the proper motor control signals.

Together, the Pi Camera python script (Table 5) and the mobile robot driver

Arduino program (Table 7) perform the two-step mobile robot alignment task presented

in Figure 4. The first step moves the mobile robot a large distance towards the target,

bringing the mounted sensing coils near the Qi wireless charger. The second step precisely

positions the robot above the Qi wireless charger so that wireless charging can take place

efficiently.

77

CONTROLLER DESIGN

The methodologies used to design the controller of the 2D coil positioner and

mobile robot are presented in this chapter. In both systems, classical control techniques

are used.

5.1 2D positioner controller

Controller design for the 2D coil positioner of Figure 31 is based primarily on two

observations. First, the discrete step control of the stepper motors and the low inertia of

positioner components allows for fast dynamic response with little or no overshoot. Thus,

a simple control law can be used. Second, the sensing coils provide an indication of

misalignment direction, but not necessarily a good measure of the misalignment amount

due to the nonlinear voltage output (see Figure 11). These observations are to be confirmed

through experimentation in Section 6.1. Based on these observations, a proportional (P)

controller is proposed. The logic diagram in Figure 39 depicts the signal flow at each

controller iteration. As mentioned in Section 2.5, the x- and y-direction loops are closed

independently and each direction uses two sensing coils to measure misalignment. The

controller determines the misalignment direction and send the proper step pulses to move

in the direction of misalignment. A small dead band is set by a threshold voltage, vthresh,

to avoid limit cycling for the positioner when it reaches near alignment. Without the

voltage dead band, sensing coil voltage noise could cause the positioner to jitter around

the near-zero misalignment position.

78

Figure 39. Logic diagram for IPT coil positioner automatic alignment

To achieve P control, the time delay between iterations in Figure 39 is calculated

based on the sensing coil voltage difference. Greater sensing coil voltage differences result

in greater stepper motor speeds. A function to calculate the time delay can take the form

tdelay(vdiff) = td, max (1 − |vdiff|/vmax) , (17)

where

tdelay: time delay [ms]

td, max: maximum time delay [ms]

vmax: maximum expected voltage difference between the sensing coils [V]

vdiff: voltage difference between sensing coils [V].

Step in

negative

direction

Measure sensing

coil voltage

difference

Step in

positive

direction

2

Time

delay

No step

1) v
diff

 > v
thresh

2) v
diff

 < − v
thresh

3) |v
diff

|< v
thresh

1

3

79

When calculated using (17), the maximum time delay (and slowest stepper motor

speed) occurs when the sensing coil voltage difference is zero. According to the simulation

results in Figure 11, low voltages occur near zero misalignment or near the sensing coil

sensing range. The time delay in (17) will go to zero (and the stepper motor will reach its

maximum speed) when the sensing coil voltage difference reaches its maximum value.

Note that there will always be a small time delay between motor steps due to computation

time. Furthermore, the maximum motor speed can be set through programming in the

Arduino code using the stepper motor function setSpeed() and overrides any manual time

delay that is too small.

A more conventional representation of the P control system is shown in Figure 40.

The signal types and their units are included in the control loop, and the Arduino functions

are identified.

Figure 40. Closed-loop IPT coil controller with proportional control

80

5.2 Mobile robot controller

A controller layout for the mobile robot application was presented in Figure 22.

The goal of this closed-loop control is to allow the mobile robot to reach the target location

where there is a Qi wireless charger. Closing the loop is made possible by the onboard Pi

Camera that gives the mobile robot a measure of distance and heading angle error to the

target. The distance and heading angle error variables are the inputs to the mobile robot

controller. As previously mentioned, control signal coupling is necessary since the left and

right wheels work together to drive and steer the robot. The controller form shown in

Figure 41, which provides for control signal coupling, is proposed.

Figure 41. Proposed mobile robot controller structure and signals

In the control structure of Figure 41, the distance and angle errors are treated

independently, but the control outputs are coupled. The distance error affects both the left

and the right wheels equally, but the heading angle error affects the wheels in the opposite

way, allowing the robot to turn when there is a heading angle error.

Distance

controller

Heading

angle

controller

Ʃ

Ʃ

+

+

−

+

Distance

error

[m]

Heading

angle

error

[rad]

SL

SR

PWMdrive

PWMturn

100

255

100

255

[%]

[%]

81

The output signals of the controllers in Figure 41 are Arduino PWM values that

range from 0 to 255 in magnitude. Ultimately, the PWM value for each motor is converted

to a duty cycle percentage. Using duty cycle control of DC motors is a common practice.

The DC motor acts as a low-pass filter, and duty cycle modulation is a way of varying the

effective motor driving voltage. Higher duty cycles are the equivalent of higher DC

driving voltages. Note that negative PWM values and duty cycles indicate that the DC

motor rotates in the opposite direction. However, negative duty cycles have no physical

meaning. The Arduino program and H-bridge motor drivers are responsible for converting

the PWM values to the correct duty cycle and motor current direction to control rotation

direction.

To design each error controller in Figure 41, the cases of pure distance error and

pure heading angle error are considered. Considering only one error at a time reduces the

control system to a single-input-single-output (SISO) system. In reality, the system is a

multiple-input-multiple-output (MIMO) problem. To justify the SISO approach, the goal

of control is to eliminate the heading angle error much more quickly than the distance

error, leaving only the SISO case of pure distance error (straight motion).

When there is only a distance error, the system’s block diagram can be represented

as in Figure 42. In this case, the same control signal is sent to both motors.

82

Figure 42. Equivalent robot control loop when there is only a distance error

The robot forward dynamics in Figure 42 is a Type one system if a P distance

controller is used. Since the goal of the mobile robot is to reach a non-moving target, this

system type is sufficient to allow zero steady state error. Let the P control gain be labeled

Kp. Then, the closed-loop transfer function for pure straight motion becomes

 200KmKp

255ms2+255(2cm+cr)s+200KmKp
 .

(18)

The closed-loop transfer function (18) is stable for all positive gains Kp when there

is a step reference signal, but there will be overshoot when Kp > 255(2cm+cr)
2/8Kmm. The

controller gain Kp should be selected so that there is no overshoot and the mobile robot

stops at the desired distance.

Using a P controller may be problematic if there are unknown or unmolded

dynamics in the robot forward motion. For example, if there is a stiffness k in the robot

forward dynamics, then the system with a P controller becomes Type zero and the closed-

loop transfer becomes

 200KmKp

255ms2+255(2cm+cr)s+(200KmKp+255k)

(19)

83

With stiffness k included in the closed-loop transfer function (19), overshoot

occurs when Kp >255(2cm+cr)
2/800Kmm−255k/800Km. Furthermore, the steady-state error

to a step reference input for this Type-zero system becomes 255k/(200KmKp+255k). If the

stiffness k is small, then it makes minor difference to the allowable gain for no overshoot

and the steady-state error will still be near zero. Thus, a P controller for the mobile robot

forward motion is expected to be satisfactory. The performance of this controller is

simulated and tested in Sections 6.4 and 6.5.

When there is only a heading angle error, the system’s block diagram can be

represented as in Figure 43. In this case, the same control signal—but with opposite

direction—is sent to the left and right wheel motors.

Figure 43. Equivalent robot control loop when there is only a heading angle error

The system in Figure 43 has the same structure and is the same Type as that of

Figure 42 when a P controller is used. By the same arguments, a P controller is also

expected to bring the heading angle error to zero. For no overshoot, the controller gain

should be less than 255(cmb2/2+crw)2/400KmbIf. Once again, if there is a stiffness in the

turning dynamics, the system Type will be zero and there will be a small steady state error.

84

For simulation and testing of the mobile robot, a P controller will be implemented

for both distance and heading angle error (see Sections 6.4 and 6.5). Some steady-state

error will be accepted at the end of the mobile robot trajectory, since the sensing coils will

then be used to precisely position the robot over the wireless charger. To minimize errors

due to the SISO approximations of Figures 42 and 43 in controller design, one

performance goal will be to eliminate the heading angle error much faster than the distance

error. Doing so will result in the mobile robot following a straight motion for most of its

trajectory, in which case the system is essentially reduced to Figure 42. The relative speed

of the distance and heading angle controllers can be assessed by comparing the control

loop bandwidths of Figures 42 and 43. The selected controller gains, time response, and

bandwidths are presented in Section 6.4.

85

EXPERIMENTAL RESULTS

The experimental results for each thesis experiment are presented in this chapter.

6.1 Sensing-coil voltage measurements

Sensing coils were constructed as shown in Figure 28 with 10 turns per coil. The

diameter of each coil was 0.5 in and the center-to-center distance between opposite sensing

coils was 1.25 in. Each sensing coil was then connected to a rectifying circuit as shown in

Figure 29 so that the coils’ voltage amplitude could be measured by the Arduino. The 2D

positioner design of Figure 31 was also created, and is shown in Figure 44.

Figure 44. Experimental 2D coil positioner for sensing coil voltage measurements and

automatic coil alignment experiments

Qi

wireless

charger

Y

stepper

motor

X

stepper

motor

Y-direction

ACME

lead screw

Sensing coil

assembly

X-direction

belt Guide

rails

Sensing

coil

rectifier

circuits

Arduino

UNO

L298N H-bridge drivers

86

As an initial test, the output voltage of the sensing coils in the presence of a primary

coil was measured. The Qi wireless charger (Figure 26) was powered using a 5-V, 2-A

power source and placed 1 cm directly below a sensing coil. The Qi receiver module

(Figure 27) was placed between the Qi charger and the sensing coil to enable the charger

operation. The open-circuit voltage of the coils with and without rectification is shown in

Figure 45. Note that the frequency of the signal without rectification is about 140 kHz,

which is the nominal operating frequency of the Qi wireless charger.

Figure 45. Sensing coil output voltage before (left) and after rectification (right)

As expected, the rectified signal in Figure 45 provides a DC measurement of the

sensing coil voltage amplitude (minus a small voltage drop). A measurable coil voltage

amplitude is the basis of magnetic-flux strength sensing, as described in Section 2.1. For

real-time control, it is also necessary to ensure that the measurements can occur at an

acceptable sampling rate. The achievable response time is dictated by the capacitor and

87

resistor values used in the rectification circuit (10 µF and 1 kΩ, respectively). The voltage

response time of the rectification circuit from 5 V to 0 V is shown in Figure 46.

Figure 46. Voltage time response for a single sensing coil with rectification

The time response plot in Figure 46 demonstrates that the sensing coil rectifier

circuits have a time constant of about 10 ms, which could also be calculated from the

resistor and capacitor values. The full response time, then, is about 40 ms, allowing for a

sampling rate of about 25 Hz.

With a measurable voltage amplitude of the sensing coils, the performance of

sensing coils for IPT lateral misalignment detection is tested. The dual sensing coils were

installed in the 2D positioner assembly of Figure 44. The sensing coils circuits, Arduino

board, and stepper motors were connected according to the schematics in Figures 32 and

33. The Qi wireless charger was removed from its case, connected to power, and placed

directly under the sensing coil assembly at a distance of 8 mm from the sensing coils. The

Qi receiver module was placed symmetrically above the charger on top of a paper spacer

88

of 2 mm thickness. Placing the receiver above the charger activates the transmitting

circuit, indicated by a green status light on the charger. Finally, the Arduino program in

Table 2 was uploaded to the Arduino board. This program performs sensing coil voltage

measurements for different misalignment distances in the x direction of Figure 31.

With the wireless charger powered and the sensing coils centered above the

charger, the Arduino program was executed and the serial monitor data was recorded. The

sensing coil voltages as a function of x misalignment when y = 0 is plotted in Figure 47.

The left and right coil labels refer to the sensing coil configuration illustrated in Figure 8.

Figure 47. Sensing coil voltages versus misalignments in the x direction with zero

misalignment in the y direction

The trend in Figure 47 is nearly identical to the trends from Matlab simulation

(Figure 11). As misalignment increases, the voltage difference between the sensing coils

increases in magnitude. At about one primary coil radius (~20 mm in the case of the Qi

89

wireless charger), the voltage difference reaches a maximum and begins to decrease. The

highest misalignment distance with a measurable voltage difference is close to one

primary coil diameter (~ 40 mm). This result agrees with the predictions of Section 2.4

and supports the prediction that sensing coils can be used for measuring coil misalignment

within the range of one primary coil diameter. Figure 47 also supports the claim that each

sensing coil experiences an induced voltage only while it is above the primary coil radius.

These results hold even though the experimental primary coil is not an ideal circular loop,

as was assumed in simulations. Figure 47, also suggests that the sensing coils provide a

misalignment sensing resolution of at least 1 mm. With this sensing resolution, an

automatic alignment mechanism could bring the IPT coils to alignment within a few

millimeters or less, which is sufficient to allow efficient power transfer [12].

To see how 2D misalignment affects the sensing coil performance, the voltage

readings for x-direction displacements were repeated with added y-direction offsets

(Figure 48). First, the sensing coils were offset 10 mm in the y direction and the voltage

measurements for x-direction displacements were repeated.

Figure 48. Offset in the y direction added to test 2D sensing coil misalignment voltages

Sensing coil-assembly

Qi charger

x

y

y offset

x-direction voltage measurements

90

The y misalignment of 10 mm is about half the primary coil radius. The sensing

coil voltage measurements with this y misalignment are plotted in Figure 49. With this

misalignment, the trend remains largely unchanged compared to that of Figure 47. This

demonstrates that small y-direction misalignments do not significantly affect the x-

direction misalignment sensing capability, increasing confidence in the 2D capability of

the sensing coil configuration.

Figure 49. Sensing coil voltages for misalignments in x direction, with y offset of 10 mm

Figure 50 shows the sensing coil voltage measurements when the y-direction offset

is increased to 15 mm. Once again, the trend remains largely unchanged. However, the

voltage magnitudes are smaller compared to Figure 47 and the sensing limit is slightly

decreased. Thus, the 2D performance of the sensing coils is slightly more limited in

misalignment range, but it is still useful for misalignment detection.

91

Figure 50. Sensing coil voltages for misalignments in x direction, with y offset of 15 mm

In the 2D positioner controller design of Section 5.1, any coupling between the x

and y directions was ignored to simplify the analysis. However, the results in Figures 49

and 50 show that y-direction misalignments affect x-direction sensing coil voltages and

vice versa. As previously stated, the main effects of 2D misalignments are decreased

voltage magnitudes and decreased misalignment sensing range. Otherwise, the sensing

coil voltage trends remain largely unaffected. With the sensing coil configuration of

Figure 8, the range of detectable 2D misalignment distances will always be slightly smaller

than that of the 1D misalignment case. The key to any misalignment detection is to ensure

that at least one sensing coil remains within the area directly above the primary coil. The

result of ignoring coupling between the two directions is that the 2D positioner may, in

some instances, not follow a direct path to alignment. Figure 18 predicts some of the

alignment trajectories under several 2D misalignment conditions.

92

6.2 Automatic 2D positioner performance

In the second thesis experiment, the automatic alignment capability of the 2D

positioner (Figure 44) was tested. The sensing coil voltages were implemented in the

control scheme in Figure 40 by using the Arduino programs in Table 3.The system was

wired according to the schematics shown in Figures 32 and 33. Before the program was

executed, the Qi wireless charger was centered under the sensing coils at a distance of 8

mm. The Qi receiver module was placed between the charger and the sensing coils with a

paper spacer of 2 mm above the charger. The presence of the receiver module enables the

wireless charger, as indicated by a green indicator light. The Arduino program was then

executed. This program displaces the sensing coils in the specified x and y directions of

Figure 31 and then activates the controller to measure the system response.

First, 1D misalignment reduction was tested. The closed-loop controller described

in Section 5.1 was used. The values used for time delay calculation (17) were td,max=20 ms

and vmax=0.75 V. The value vmax was selected based on the voltage results of Figure 47 and

the td,max value was selected arbitrarily to set the slowest stepper motor speed. The

threshold voltage (vthresh) used to prevent limit cycling of the positioner was chosen to be

0.05 V. This value was experimentally determined by trial-and-error so that the positioner

did not jitter around the aligned position. The time response for several initial

misalignments in the x direction are plotted in Figure 51. The error lines ±1 mm bound the

steady state errors of all the trials, and the effects of the P control can be seen in the

changing slope of the x position error in time.

93

Figure 51. Automatic positioner performance for several initial misalignments in the x

direction

Figure 51 shows that the closed-loop controller reduces the coil x misalignment to

less than 1 mm in a response time of less than 2 s. The effect of using speed control is a

fast motor movement from about 10- to 20-mm x misalignment, but slower movement

otherwise. This behavior is a result of the voltage trend of Figure 47. As expected, the

controller reduced the misalignment quickly without significant overshoot. This result was

possible due to the 2D positioner dynamics (step control and low system inertia). In

positioner systems that are more susceptible to overshoot, such as may be the case for

systems that use low-friction DC motors, the td,max value used in (17) can be increased to

give larger time delay values and a slower closed-loop system response.

94

Near 40 mm initial x misalignment (not shown in Figure 51), automatic control

action fails because the sensing coils are no longer within their sensing range. From Figure

47, it is evident that the farthest misalignment that can be detected is about 35 mm; larger

misalignments leave the sensing coils outside of the significant magnetic flux region and

result in no induced voltages. To complement the sensing range, a positioning system

could scan the area until the sensing coils detect the primary coil. Otherwise, an alternative

sensor would be required to bring the sensing coils near the primary coil.

The time response for 2D misalignments was also tested. To do this, initial

misalignments in both x and y direction are imposed on the positioning system. The time

response for five initial misalignments are plotted in Figure 52, and the resulting xy-plane

trajectories for the same five trials are plotted in Figure 53.

Figure 52. Automatic positioner response for several 2D initial misalignments

1

1

2

2

3
3

4

4

5

5

95

Figure 53. Positioner trajectory for correction of several initial misalignment in the x and

y directions (same trials plotted in Figure 52)

Figures 52 and 53 show that in the 2D case the controller is still able to reduce

misalignments to 1 mm or less in each direction. As a result, the maximum lateral error

that can be expected at the end of the positioning trajectory is about √2 mm or less. Once

again, this lateral position error is small enough to allows for efficient power transfer [12].

Two-dimensional automatic positioning failed when the initial misalignment was

increased to 22.5 mm in both the x and y directions. This kind of misalignment represents

the worst-case scenario for misalignment (Scenario (b) in Figure 18) where all sensing

coils go beyond the region of appreciable magnetic flux. This result highlights the

dependence of misalignment sensing on the misalignment direction and sensing coil

orientation. Recall that the sensing range extended to nearly 35 mm in the 1D case (Figure

 1

2

3 4

5

96

47). Furthermore, note that the alignment trajectory for some of the trials in Figure 53

were not straight. Scenario (c) in Figure 18 occurs in trials 1 and 4. In other trials, the

misalignment in one direction is reduced faster than the other, also resulting in a non-

straight alignment path. The alignment path does not affect the final position error and is

a consequence of using independent x and y controllers.

6.3 Mobile robot camera tracking

The third thesis experiment tests the application of automatic IPT alignment to the

mobile robot wireless charging scenario first presented in Figure 4. First, the mobile robot

was given the ability to detect a colored target that would mark the location of a Qi wireless

charger. The Pi camera and Raspberry Pi were installed on the mobile robot as prescribed

in Section 3.5. The Raspberry Pi was connected to the Arduino according to the schematic

of Figure 38. The image filtering is the first step of target-tracking algorithm that allows

for a calculation of distance and heading angle error to the target as seen by the mobile

robot.

To test the image filtering capability of the Pi Camera, the Python script presented

in Table 6 was loaded and executed in the Raspberry Pi. A pink Post-it note (paper size 3

in by 3 in) was used as the colored target. This color was chosen because it stands out

against most objects in common environments. With the Pi Camera facing the target and

a steady light source (room fluorescent lights and other ambient light), HSV thresholds

values were adjusted until everything but the target was filtered out of the live Pi Camera

images (Figure 54).

97

Figure 54. HSV filtering of camera image frame for target detection; (a) Original RGB

image (b) HSV image (c) HSV threshold value selection window (d) Filtered image

Figure 54 shows that in the filtered image only the colored target remains. Thus,

the target was successfully highlighted using the following HSV threshold values:

• Hue: 150 to 200

• Saturation: 130 to 230

• Value: 100 to 255

(a) (b)

(c) (d)

98

These threshold values allowed for successful image filtering even when the ambient

lighting conditions changed slightly. This result is important because it makes the camera

sensing more robust to environmental changes.

With suitable HSV threshold values for image filtering identified, the target-

tracking script of Table 4 was then executed on the Raspberry Pi to test the area and

position calculations of the script. For this test, no power was provided to the mobile robot

motors so that it did not move. The tracked image displayed as shown in Figure 55.

Figure 55. Tracked target display with polygon contour and center marked

The tracked image in Figure 55 demonstrates that the target color is successfully

found and outlined using the Raspberry Pi script in Table 4. Furthermore, the center of the

target is identified. The area of the target in Figure 55 is calculated to be about 60 by 60

pixels and the horizontal position of the target center is 157 pixels. These results make

sense since the image resolution is 320 by 120 pixels. To further demonstrate the ability

Colored target

Marked center

Best-fit polygon

99

of the Raspberry Pi script to locate the target in the image frame, a foreign object is

introduced into the field of view in Figure 56.

Figure 56. Foreign object interference in target detection

When a foreign object obstructs the camera view, the pink target no longer fits the

target profile specified in the image-processing script (the target must be a four-sided

polygon) and it is no longer identified as the target. This demonstrates that the target-

tracking python script detects the colored target faithfully.

To close the control loop in Figure 22, the Pi Camera and image-processing script

output a measure of distance and angle error to the target. The distance is calculated from

the size of the colored target in the image. The angle error is calculated from the horizontal

position of the target in the image.

A calibration procedure was performed to relate the distance to the target and the

target pixel area in the image. A plot of target pixel area for various measured distances is

shown in Figure 57. Also included in the plot is a line that fits the results.

Foreign object Colored target

100

Figure 57. Pixel area of target for known distances with line fit

As expected, larger distances correlate with smaller target pixel area. The fit line

can serve to model this result. The equation of the fir line is rearranged to solve for distance

and give the expression

𝐷ist =√
700

Apx

 , (20)

where

Dist: distance to target [m]

Apx: target area [pixel2].

Equation (20) is implemented in the camera sensor script (Table 4) to calculate

distance to the target. The heading angle error to the target is calculated similarly, but

based on the position of the target in the image. The total field of view for the Pi Camera

is 53° in the horizontal direction. The horizontal position of the target in the image can be

used to estimate the heading angle error using the equation

101

Heading angle error = (

53

2
−

53X

image width
) , (21)

where X is the horizontal pixel location of the target center. Equation (21) maps the

horizontal pixel location X of the target from 26.5° at the left edge of the image to −26.5°

on the right edge of the image. When the target is straight ahead of the robot, it lies at half

the image width and the heading angle error given by (21) is zero.

With (20) and (21) implemented in the image tracking script (Table 4) the camera

approximately performs the sensor functions given in Figure 24. The target-tracking script

captures images, process them, and calculates distance and heading angle errors at about

30 frames per second. The framerate was measured by adding a line of code to the python

script which output the time of each new frame capture.

6.4 Mobile robot performance simulation

The third experiment of this thesis tests the automatic control of a mobile robot to

align it with a wireless charger. This scenario is presented in Figure 4. Initially, the mobile

robot approaches the wireless charger location, which is marked by a colored target. In

this section, the mobile robot parameters are experimentally determined and the mobile

robot target approach is simulated with the control law presented in Section 5.2.

The dynamics of the differential drive mobile robot are presented in (16). Now,

the parameters in the dynamical equations are estimated. The mass and dimensions of the

mobile robot are measured directly. The robot moment of inertia, motor amplification

constants, and damping coefficients are estimated by matching the simulation results to

experimental observations.

102

First, a control signal of 78% duty cycle (Arduino PWM value of 200) was given

to each wheel motor for two seconds. The robot, which started at rest, traveled straight for

about 0.82 m (2.7 ft). The robot stopped almost immediately after the two-second interval

was over. In a second observation, the left wheel motor was given a control signal of 78%

duty cycle in one direction and the right wheel a control signal of 78% in the other

direction for two seconds. These control signals caused the robot to turn in place a total of

9/4 π rad. Once again, the robot stopped almost immediately after the two second interval.

The straight and turning motion observations, compared to simulation results from Matlab,

allowed for the robot parameters to be estimated. All of the parameter estimates and the

methods of estimation are summarized in Table 8. These estimates are intended only to

allow for basic controller validation using Matlab/Simulink.

Table 8. Mobile robot dynamic parameters used for simulation

Category Method Value

Measured

Ruler or scale measurement m = 0.6 kg

b = 0.15 m

w = 0.12 m

Estimated based

on experimental

observations

Rotational motion observation If = 0.02 kg·m2

Robot weight balance d = 0.07 m

Motor torque and PWM signal Km = 0.0255 N/% duty

Straight and rotational motion

observations

cm = 4.8 N·s/m

cr = 0.25 N·s/m

In Table 8, the motor gain Km was estimated by linearly mapping the duty cycle

signal (in percent) to the advertised motor torque capability. The robot center of mass

location (d) was estimated by finding i coordinate which would balance the robot.

103

Figure 58 shows the simulation results when the estimated robot parameters of

Table 8 are used in the dynamic equations. The plots represent the robot response of pure

rotation and pure straight motion—the same kinds of motions that were observed and

measured for parameter estimation. The simulation results of Figure 58 match closely with

the observed responses of the mobile robot, suggesting that the estimated robot parameters

are acceptable for simulation to some level.

Figure 58. Simulation of mobile robot response for pure straight motion (left) and pure

rotation (right) with two-second force inputs

With the robot parameters estimated, the mobile robot controller presented in

Section 5.2 were simulated using the Matlab/Simulink setup shown in Figure 22. From

controller analysis of Section 5.2, the proportional gains should not exceed 2021 PWM-

value per meter (793 % duty/m) for the drive controller or 58.8 PWM-value per rad (23 %

duty/rad) for turning to avoid overshoot. The values of 250 PWM-value per meter (98 %

duty/m) and 573 PWM-value per radian (225 % duty/rad) were selected for the drive and

steering controller, respectively, so that a pure distance error of 1 meter gives a motor

104

control signal of 98% duty and a pure angle error of 25° (0.44 rad) gives a motor control

signal of 99% duty. The maximum angle error which can be sensed by the Pi Camera is

about 26°. These P gains give bandwidths of 0.52 rad/s and 9.43 rad/s for the loops in

Figures 42 and 43, respectively. This means that the angle error response is much faster

than the distance error response. For controller simulation, the target position is set to 1 m

in the I direction and 0.3 m in the J direction and the mobile robot begins at the origin

facing the I direction. The distance offset is set to 0.5 m. The simulation with these

positons and controller gains gives the responses shown in Figure 59.

Figure 59. Proportional controller simulation response

Figure 59 shows that the P controllers allow the distance error to reach the offset

of 0.5 m in about 10 s. The heading angle error is brought to zero in about 3 s—much

faster than the distance error. Therefore, most the trajectory is straight motion and the

SISO approximations used in controller design are justified.

105

The controller gains used in simulation are satisfactory and were implemented in

the actual mobile robot system with the expectation of similar performance. However,

upon experimenting with the mobile robot, it was found that there is a dead band region

for control of the motors; motor drive signals with a magnitude lower than about 15 %

duty cycle produce no motion due to friction in the motor gearbox. To address this, all

signals that fell under 15 % duty cycle were rounded up to 15 %. The results of this are

described in the overall system performance discussion that follows.

6.5 Overall mobile robot system performance

The final thesis experiment replicates the mobile robot wireless charging scenario

presented in Figure 4. This experiment tests whether the mobile robot (Figure 34) can

approach and position itself above a Qi wireless charger precisely. To accomplish this, the

target-tracking script of Table 4 is executed on the Raspberry Pi, while the program in

Table 7 runs on the Arduino board. In the Arduino program, the distance set point of 0.5

m is defined, and the controller gains simulated in Section 6.4 are implemented.

First, the capability of the mobile robot to reach the colored target is tested.

According to the threshold values set in the Arduino code (Table 7), the mobile moves

until the angle error reaches zero and the distance error reaches less than 0.01 m. Figures

60 and 61 show the distance and heading angle error of the mobile robot as it approached

the target in five experimental trials. At the start of each trial, the mobile robot was placed

directly ahead of the target but not facing it directly. Varying the initial placement of the

robot gave a variety of initial distance and heading angle errors.

106

Figure 60. Distance error versus time for several experiment trials of the mobile robot

target approach

Figure 61. Heading angle error versus time for several experiment trials of the mobile

robot target approach

107

The distance and heading angle errors plotted in Figures 60 and 61 demonstrate

similar time responses as the simulations in Figure 59. Specifically, there is overshoot in

the heading angle error but it is eliminated much faster than the distance error. Therefore,

most the robot movement is straight motion. The angle and heading angle errors are

eventually brought within the accepted limits and the robot stops.

Given the possible errors in distance and angle calculations due to image noise,

pixel resolution, and random Pi Camera variations, the mobile robot is not precisely

aligned with the Qi charger at the end of the experimental trials presented in Figures 60

and 61. At the end the trials, the sensing coils give the voltage measurements shown in

Figure 62.

Figure 62. Initial sensing coil voltage difference upon completion of camera-assisted

target approach for mobile robot

108

The sensing coil voltages in Figure 62, along with the sensing coil voltage plots of

Section 6.1, show that there is IPT misalignment in the order of centimeters after the

mobile robot has reached the Qi wireless charger. In other words, the Pi Camera alone is

unable to position the mobile robot above the wireless charger precisely, and this will

result in wireless charging inefficiencies. However, the final misalignment of a few

centimeters allows the sensing coils to detect the wireless charger’s magnetic field. With

the mobile robot in proximity of the Qi charger, the voltage output from the sensing coils

can be used to precisely positon robot above the wireless charger without further relying

on the camera sensor. This control action is demonstrated in the voltage difference versus

time plot (Figure 63) for one of the experimental trials is presented in Figure 62. The

onboard positioner is used to reduce the x-direction error and the robot motor wheels are

used to reduce the y-direction error.

Figure 63. Sensing coil voltage difference in x and y directions through time with the use

of closed-loop coil positioning

Similar results as those in Figure 63 were obtained for the other robot experiment

trials. Much like the results when using a 2D coil positioner (Section 6.2), Figure 63 shows

109

that the mobile robot-mounted sensing coils and positioning system can reduce IPT

misalignments so that the voltage difference in the sensing coils falls to less than 0.1 V.

At this low voltage difference, the IPT system is aligned within a few millimeters (see

Figure 47). This precise alignment is more than could be offered using the Pi Camera

alone (see Figure 62). Without the control capability provided by the sensing coils and

mounted 1D positioner, the misalignment of a few centimeters would go uncorrected.

Misalignment of a few centimeters would either decrease wireless charging efficiency or

not allow wireless charging to take place at all.

The overall system performance is deemed satisfactory since the sensing coil and

positioning system were successful in correcting lateral misalignments in the mobile robot

wireless charging experiments. However, the Pi Camera was still required to bring the

mobile robot within centimeters of the wireless charger. This means that, although the

sensing coils are useful for small misalignment detection and correction—within

millimeters in the case of the Qi wireless phone charger—the additional Pi Camera was

required to bring the mobile robot close to the wireless charger in the first place.

110

CONCLUSIONS AND FUTURE WORK

Through electromagnetic principles, simulation, and experimentation, the idea of

using sensing coils for lateral misalignment reduction in an IPT system was demonstrated

to be successful. The sensing-coil configuration presented in this thesis is sufficient for

detecting misalignments in the two lateral directions, although the non-linear signal output

of the sensing coils is not quite useful for calculating the magnitudes of the misalignments.

The sensing coils presented provide the advantages of being non-intrusive to the wireless

charging system, occupying a small area, having a simple operating circuit, and being

contactless. One limitation for their usage is that at least one sensing coils must remain

within approximately the primary coil radius for misalignment detection to occur. This is

due to the magnetic-field distribution created by the circular primary coil and may warrant

the use of additional application-specific sensors to address larger misalignments.

The three tasks of determining sensing coil performance, demonstrating automatic

positioning on an experimental 2D positioning system, and evaluating performance on a

mobile robot wireless charging application were accomplished. With the Qi wireless

charging system used, the sensing coils could be used to detect misalignments as small as

1 mm or about 2% of the primary coil diameter. With this misalignment detection

capability, closed-loop control automatically reduced misalignment to less than 1 mm in

each lateral direction, which allowed efficient power transfer to occur. Similar results were

obtained when the sensing coils were implemented in the mobile robot wireless charging

experiment. Although the sensing coils are useful for precise misalignment detection, they

111

are unable to sense larger misalignments. In the case of the mobile robot, the limited

sensing coil range prompted the use of a Pi Camera that allowed the robot to approach the

wireless charger location autonomously.

A larger-scale IPT wireless charging system with an axisymmetric primary coil

can also benefit from the use of sensing coils for lateral misalignment detection and

automatic coil positioning since the working principle and analysis presented in this thesis

can also apply to that system. Future work that can be done in this area includes testing

sensing coils for misalignment detection on large-scale IPT systems, such as electric

vehicle chargers, or even in systems with different coil geometries. It may also be possible

to expand the use of sensing coils to detect other types of IPT misalignment, such as

angular misalignment, that also reduce charging efficiency. The work presented in this

thesis can serve as a foundation for modeling, simulating, and experimental design for

expanding the use of sensing coils for IPT misalignment detection in general. The mobile

robot analysis and experimentation in this thesis also contribute to the understanding of

vision-based autonomous navigation, which has applications outside of robotics—

including autonomous vehicle control. This area of study can further be complemented by

performing advanced controller design to increase the reliability, robustness, and

efficiency of autonomous vehicles in vision-based control.

112

REFERENCES

C. K. Lee, W. X. Zhong, and S. Y. R. Hui, “Recent progress in mid-range wireless

power transfer,” in Proceedings of 2012 IEEE Energy Conversion Congress and

Exposition (ECCE), Raleigh, NC, Sep. 2012, pp. 3819–3824.

F. T. Ulaby and U. Ravaioli, “Maxwell’s equations for time-varying fields,” in

Fundamentals of Applied Electromagnetics, 7th ed. Upper Saddle River, NJ: Pearson,

2015, ch. 6, sec. 1, pp. 282–283.

W. Stanley, “Alternating-current development in America,” Journal of the Franklin

Institute, vol. 173, no. 6, pp. 561–580, Jun. 1912.

Wireless Power Consortium. (2016, November 30). Get the Specs on Qi [Online].

Available: https://www.wirelesspowerconsortium.com/developers/specification.html.

C. R. Valenta and G. D. Durgin, “Harvesting wireless power: survey of energy-

harvester conversion efficiency in far-field, wireless power transfer systems,” IEEE

Microwave Magazine, vol. 15, no. 4, pp. 108–120, Jun. 2014.

M. Kline, I. Izyumin, B. Boser, and S. Sanders, “Capacitive power transfer for

contactless charging,” in Proceedings of 2011 Twenty-Sixth Annual IEEE Applied Power

Electronics Conference and Exposition (APEC), Fort Worth, TX, 2011, pp. 1398–1404.

M. G. L. Roes, J. L. Duarte, M. A. M. Hendrix, and E. A. Lomonova, “Acoustic

energy transfer: A review,” IEEE Transactions on Industrial Electronics, vol. 60, no. 1,

pp. 242–248, Jan. 2013.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

113

D. Mishra, S. De, and K. R. Chowdhury, “Charging time characterization for

wireless RF energy transfer,” IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 62, no. 4, pp. 362–366, Apr. 2015.

S. Y. R. Hui, W. Zhong, and C. K. Lee, “A critical review of recent progress in mid-

range wireless power transfer,” IEEE Transactions on Power Electronics, vol. 29, no. 9,

pp. 4500–4511, Sep. 2014.

X. d. T. García, J. Vázquez, and P. Roncero-Sánchez, “Design, implementation

issues and performance of an inductive power transfer system for electric vehicle chargers

with series–series compensation,” IET Power Electronics, vol. 8, no. 10, pp. 1920–1930,

Oct. 2015.

T. P. Duong and J. Lee, “A dynamically adaptable impedance-matching system for

midrange wireless power transfer with misalignment,” Energies, vol. 8, no. 8, pp. 7593–

7617, Jul. 2015.

Y. Gao, A. Ginart, K. B. Farley, and Z. T. H. Tse, “Misalignment effect on efficiency

of wireless power transfer for electric vehicles,” in Proceedings of IEEE Applied Power

Electronics Conference and Exposition (APEC), pp. 3526−3528, Mar. 2016.

R. W. Carlson and B. Normann, “Test results of the PLUGLESSTM inductive

charging system from Evatran Group, Inc.,” SAE International Journal of Alternative

Powertrains, vol. 3, no. 1, pp. 64−71, May 2014.

[8]

[9]

[10]

[11]

[12]

[13]

114

Z. Dang, Y. Cao, and J. A. A. Qahouq, “Reconfigurable magnetic resonance-

coupled wireless power transfer system,” IEEE Transactions on Power Electronics, vol.

30, no. 11, pp. 6057–6069, Nov. 2015.

B. H. Waters, B. J. Mahoney, G. Lee, and J. R. Smith, “Optimal coil size ratios for

wireless power transfer applications,” in Proceedings of 2014 IEEE International

Symposium on Circuits and Systems (ISCAS), Melbourne VIC, Jun. 2014, pp. 2045–2048.

K. Lee, Z. Pantic, and S. M. Lukic, “Reflexive field containment in dynamic

inductive power transfer systems,” IEEE Transactions on Power Electronics, vol. 29, no.

9, pp. 4592–4602, Sep. 2014.

S. A. Mirbozorgi, M. Sawan, and B. Gosselin, “Multicoil resonance-based parallel

array for smart wireless power delivery,” in Proceedings of 2013 35th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), Osaka, Japan, Jul. 2013, pp. 751–754.

S. A. Mirbozorgi, H. Bahrami, M. Sawan, and B. Gosselin, “A smart multicoil

inductively coupled array for wireless power transmission,” IEEE Transactions on

Industrial Electronics, vol. 61, no. 11, pp. 6061–6070, Nov. 2014.

W. X. Zhong, X. Liu, and S. Y. R. Hui, “A novel single-layer winding array and

receiver coil structure for contactless battery charging systems with free-positioning and

localized charging features,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9,

pp. 4136–4144, Sep. 2011.

[14]

[15]

[16]

[17]

[18]

[19]

115

J. P. W. Chow, N. Chen, H. S. H. Chung, and L. L. H. Chan, “An investigation into

the use of orthogonal winding in loosely coupled link for improving power transfer

efficiency under coil misalignment,” IEEE Transactions on Power Electronics, vol. 30,

no. 10, pp. 5632–5649, Oct. 2015.

I. Mayordomo, T. Dräger, P. Spies, J. Bernhard, and A. Pflaum, “An overview of

technical challenges and advances of inductive wireless power transmission,”

Proceedings of the IEEE, vol. 101, no. 6, pp. 1302–1311, Jun. 2013.

S. Lee, J. Huh, C. Park, N. S. Choi, G. H. Cho, and C. T. Rim, “On-line electric

vehicle using inductive power transfer system,” in Proceedings of 2010 IEEE Energy

Conversion Congress and Exposition, Atlanta, GA, Sep. 2010, pp. 1598–1601.

J. Juh and C. Rim, “KAIST wireless electric vehicles - OLEV,” in Proceedings of

the 1st International Electric Vehicle Technology Conference, May 2011 ©SAE

International and ©Society of Automotive Engineering of Japan, inc.

K. Hwang, J. Park, D. Kim, H. H. Park, J.H. Kwon, S. I. Kwak, and S. Ahn,

“Autonomous coil alignment system using fuzzy steering control for electric vehicles with

dynamic wireless charging,” Mathematical Problems in Engineering, vol. 2015, Nov.

2015.

Y. Gao, A. A. Oliveira, K. B. Farley, and Z. T. H. Tse, “Magnetic alignment using

existing charging facility in wireless EV chargers,” Journal of Sensors, vol. 2016, Dec.

2015.

[20]

[21]

[22]

[23]

[24]

[25]

116

Evatran Group Inc. (2016, November 30). Meet the PLUGLESS L2 [Online].

Available: https://www.pluglesspower.com/.

S. A. Mirbozorgi, H. Bahrami, M. Sawan, and B. Gosselin, “A smart cage with

uniform wireless power distribution in 3D for enabling long-term experiments with freely

moving animals,” IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 2,

pp. 424–434, Apr. 2016.

K. Eom, J. Jeong, T. H. Lee, J. Kim, J. Kim, S. E. Lee, and S. J. Kim, “A wireless

power transmission system for implantable devices in freely moving rodents,” Medical &

Biological Engineering & Computing, vol. 52, no. 8, pp. 639–651, Jun. 2014.

A. E. Rendon-Nava, J. A. Diaz-Mendez, L. Nino-de-Rivera, W. Calleja-Arriaga, F.

Gil-Carrasco, and D. Diaz-Carrasco, “Study of the effect of distance and misalignment

between magnetically coupled coils for wireless power transfer in intraocular pressure

measurement,” The Scientific World Journal, vol. 2014, Jul. 2014.

C. Hofner and G. Schmidt, “Path planning and guidance techniques for an

autonomous mobile cleaning robot,” in Proceedings of Intelligent Robots and Systems '94.

'Advanced Robotic Systems and the Real World', Munich, Germany, Sep. 1994, pp. 610–

617, vol.1.

K. Sato, M. Ishii, and H. Madokoro, “Testing and evaluation of a patrol robot system

for hospitals,” Electronics & Communications in Japan, vol. 86, no. 12, pp. 14–26, Dec.

2003.

[26]

[27]

[28]

[29]

[30]

[31]

117

A. Sgorbissa and R. Zaccaria, “Planning and obstacle avoidance in mobile robotics,”

Robotics and Autonomous Systems, vol. 60, no. 4, pp. 628–638, Apr. 2012.

Yootech Technology. (2017, March 31). Wireless Charger, Yootech Qi Wireless

Charging Pad [Online]. Available: http://www.yootech.net/00019.html.

Adafruit. (2017, March 31). Universal Qi Wireless Receiver Module [Online].

Available: https://www.adafruit.com/product/1901.

Arduino. (2017, March 31). Arduino UNO & Genuino UNO [Online]. Available:

https://www.arduino.cc/en/Main/ArduinoBoardUno.

Raspberry Pi Foundation. (2017, March 31). Raspberry Pi 2 Model B [Online].

Available: https://www.raspberrypi.org/products/raspberry-pi-2-model-b/.

Amazon Inc. (2017, March 31). Raspberry Pi 5MP Camera Board Module [Online].

Available: https://www.amazon.com/Raspberry-5MP-Camera-Board-Module/dp/ B00E1

GGE40/ref=sr_1_fkmr3_4?ie=UTF8&qid=1490985717&sr=8-4-fkmr3&keywords=

raspberry+pi+camera+1.3.

SparkFun Electronics. (2017, March 31). Sparkfun Logic Level Converter – Bi-

Directional [Online]. Available: https://www.sparkfun.com/products/12009.

Raspberry Pi Foundation. (2017, March 31). Help Videos [Online]. Available:

https://www.raspberrypi.org/help/videos/#getting-started-with-raspberry-pi.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

118

Raspberry Pi Foundation. (2017, March 31). SSH Using Windows [Online].

Available: https://www.raspberrypi.org/documentation/remote-access/ssh/windows.md.

PyImageSearch. (2017, March 31). Installing OpenCV 3.0 for both Python 2.7 and

Python 3+ on your Raspberry Pi 2 [Online]. Available: http://www.pyimagesearch.com/

2015/07/27/installing-opencv-3-0-for-both-python-2-7-and-python-3-on-your-raspberry-

pi-2/.

[40]

[41]

119

APPENDIX A: SENSING COIL SIMULATION—MATLAB CODE

% This function returns the magnetic flux density vector at a point due

to a circular loop of wire with one turn. It uses the Biot-Savart law.
% Inputs are in SI units:
% I = current in the loop of wire, runs counter clockwise about z

axis
% R = radius of loop
% x,y,z = coordinate in space to calculate magnetic flux density
% The origin is at the center of the wire loop

function [B] = coilMagField(I, R, x, y, z)
 syms theta; %Initialize symbolic variable for integration
 r = [x-R*cos(theta) y-R*sin(theta) z]; %Construct location vector
 r_mag = norm(r); % Location vector magintude
 r_hat = r/r_mag; % Location unit vector
 dl = R*[-sin(theta) cos(theta) 0]; % Loop wire segment
 f = cross(dl, r_hat)/r_mag^2; % Integrand of Biot-Savart law
 % Following lines calculate integral in x,y, and z directions
 % If statements are to avoid integrating empty functions
 if(f(1) == 0)
 x = 0;
 else
 x = integral(matlabFunction(f(1)), 0, 2*pi());
 end
 if(f(2) == 0)
 y = 0;
 else
 y = integral(matlabFunction(f(2)), 0, 2*pi());
 end
 if(f(3) == 0)
 z = 0;
 else
 z = integral(matlabFunction(f(3)), 0, 2*pi());
 end
 B = (10^-7)*I*[x y z]; % Multiply by constants of integration
end

%% This script finds the zero crossing of Bz (the z component
% of the magnetic flux density) due to a circular loop of wire.
% This calculation is done at different heights.
% The zero crossing is found using a bisection method with the
% tolerance specified in the code.

% This script makes use of the coilMagField() function

close; clear; clc;
% Select coil parameters
R = 1; % Radius of wire loop in meters
I = 1; % Current running through loop of wire

120

samples = 20; % Number of heights to calculate and plot
delta = R/(samples-1); % Space between heights in meters

% The following lines find the zero crossing at each height
for(i = 1:1:samples)
 h = (i-1)*delta;
 lb = 0; % Initial left bound for bisection method
 rb = 4*R; % Initial right bound for bisection method
 dx = 1;
 x0 = 0;
 % Bisection method with stopping critera
 while(abs(dx)>0.001)
 x = (lb+rb)/2;
 B = coilMagField(I, R, x, 0, h);
 if(B(3)<0)
 rb = x;
 elseif(B(3)>0)
 lb = x;
 end
 dx = x-x0;
 x0 = x;
 end
 Bz(i) = B(3);
 H(i) = h;
 Z(i) = x;
end

plot(Z,H,'k-o');
ylabel('Height from primary coil in primary coil radii');
xlabel('Zero-crossing location in primary coil radii');
xlim([0 1.8])
grid on;

%% This script calculates and plots the induced voltage in a coil

% parallel to a circular loop of wire. This calculation is performed

% for several misalignment distances.
% The height and diameter of the secondary coil are specified below and

kept constant.

% This script makes use of the coilMagField() function

close; clear; clc;

% Select primary coil parameters
R = 1; % Radius of primary coil in meters
I = 1; % Current running through primary coil

% Select secondary coil parameters
d = 3*R/4; % Secondary coil diameter in terms of primary coil radius
h = 8/8; % Height of the secondary

121

% Select sampling resolution for flux calculation
n = 10; % Even number, higher number yields higher resolution
delta = d/n; % Space between sampled points
points = 60; % Number of dislocation values to plot

% Sample and plot calculated fluxes at different dislocations
for(k = 1:1:points+1)
 cx = (k-1)*3*R/(points);
 Bz_sum = 0;
 for(i = 1:1:n)
 x = cx-d/2+delta+(i-1)*delta;
 y = delta/2;
 rightBound = sqrt((d/2)^2-(cx-x)^2);
 while y < rightBound
 B = coilMagField(I, R, x, y, h);
 Bz_sum = Bz_sum+B(3);
 y = y + delta;
 end
 end
 X(k) = cx;
 flux(k) = abs(Bz_sum*2*delta*delta);
end

plot(X, flux, '-o')
grid on
xlabel('Distance away from primary coil center in primary coil radii')
ylabel('Flux through sensing coil [Wb]')

	Abstract
	Dedication
	Acknowledgments
	Contributors and funding sources
	Nomenclature
	Table of Contents
	List of Figures
	List of Tables
	CHAPTER I Introduction
	1.1 Origin of inductive power transfer
	1.2 Inductive wireless power transfer
	1.3 Limitations of inductive wireless charging
	1.4 Misalignment detection and coil positioning for IPT systems
	1.5 Applications of inductive wireless charging
	1.6 Contributions of this thesis
	1.7 Methods

	CHAPTER II Analysis
	2.1 Analysis of IPT system
	2.2 Misalignment-sensing coils
	2.3 Expected results for sensing coils
	2.4 Dual sensing coils in general
	2.5 Automatic 2D IPT positioner
	2.6 Mobile robot dynamics and control

	CHAPTER III Hardware
	3.1 Experimental IPT System
	3.2 Sensing coils
	3.3 2D positioner
	3.4 Mobile robot
	3.5 Target-tracking camera
	3.6 Raspberry Pi and Arduino UNO communication

	CHAPTER IV Software
	4.1 Sensing-coil voltage measurement
	4.2 2D positioner driver
	4.3 Target-tracking camera
	4.4 Mobile robot driver

	CHAPTER V Controller Design
	5.1 2D positioner controller
	5.2 Mobile robot controller

	CHAPTER VI Experimental Results
	6.1 Sensing-coil voltage measurements
	6.2 Automatic 2D positioner performance
	6.3 Mobile robot camera tracking
	6.4 Mobile robot performance simulation
	6.5 Overall mobile robot system performance

	CHAPTER VII Conclusions and future work
	References
	Appendix A: Sensing coil Simulation—matlab code

