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ABSTRACT 

Advancements in horizontal drilling  and  hydraulic  fracturing  technologies  

and methods have resulted in tight shale formations becoming viable for oil and gas 

production. A necessary resource for any hydraulic fracturing project is fresh water to 

form the fracturing fluid. Most of the used water is discharged in the form of a flowback 

wastewater. In principle, the flowback wastewater can be treated and reused to reduce 

freshwater consumption. The objective of this research is to develop a framework for the 

logistics and scheduling of a mobile treatment system for multiple producing wells. 

Several treatment technologies were studied, including coagulation/ultrafiltration, lime 

softening, and membrane treatment. In order to perform a case study on Marcellus well 

data, thermal membrane distillation technology (TMD) was chosen due to its modularity 

and compatibility for use in a mobile rig. An optimization approach was used in order to 

determine the number of membrane units needed at each well for each of the twenty- 

eight days. Results show that the use of TMD for flowback treatment is economically 

competitive with conventional disposal methods. The application of this framework can 

be scaled to any number of wells, allowing for efficient and accurate allocation of  

mobile units to meet desired treatment thresholds. 
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1. INTRODUCTION

In recent years, advancements in horizontal drilling and hydraulic fracturing have 

resulted in rapid growth of fracking projects. New technologies have made previously 

inaccessible oil and gas plays exploitable, and companies have started to produce this 

available supply. One of the predominant resources needed in a fracking project is fresh 

water. It is utilized in large quantities to frack the formation, and is then returned to the 

surface as flowback and produced water. Most of this water ends up as waste, since there 

are few treatment options that can compete with the economic benefits of deep well 

injection. This mass wasting of fresh water not only creates environmental concerns, but 

also provides an opportunity for businesses to exercise greater economic efficiency and 

cut their costs. The primary objective of this project is to analyze treatment options for 

produced water in shale gas production, and provide cost-effective options for on-site 

water treatment and reuse. The aim of this project is to develop a water treatment option 

for shale gas production that is cost effective and viable in today’s fracking 

developments. 

1.1 Background 

Today’s oil and gas market has seen a rise in production that is due largely to 

advancements in horizontal drilling and hydraulic fracturing. Horizontal drilling differs 

from traditional vertical wells in the way that it turns the well laterally through the 

productive formation. This enables the well to be in contact with more of the formation 

and increases its effective producing area (Figure 1). 
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Figure 1: Horizontal and Vertical Wells (Keystone Exploration) 

Horizontal wells paired with hydraulic fracturing techniques enable economically 

viable production from tight shale formations. Fracturing fluid is created with a mixture 

of fresh water, chemicals, and proppant. After the horizontal well has been drilled, stages 

of fracturing produce a series of cracks in the shale formation. The fracking fluid leaves 

behind the proppant particles, most commonly sand grains, to keep these cracks open. 

This increases permeability and allows the oil or natural gas to flow into the fractures 

where it can be brought to the surface. By hydraulically fracturing along the lateral 

portion of a well, a large area of the formation can be accessed and produced from a 

single drilling project (Figure 2.) 
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Figure 2: Hydraulic Fracturing (Keystone Exploration) 

Following the completion of the fracking stages, water that was used during this 

process returns to the surface. The initial water that is recovered is referred to as 

flowback water, and once production begins on the well it is called produced water. The 

detailed compositions of this water are unique to each well, but the general makeup is a 

mixture between the fracturing fluid, minerals, and dissolved solids from the formation 

(Haluszczak, 2013). Produced water tends to have higher amounts of minerals and 

dissolved solids due to its longer residence time underground. The recovery rates for this 

fluid can vary greatly depending on the geologic structure of the formation. Studies 

within the Marcellus Shale have experienced anywhere from 10-40% recovery rates of 

the water used to fracture the well. Considering today’s fracturing wells require millions 

of barrels of water to complete, effective treatment of this flowback and produced water 

is increasingly important (Karapataki, 2010). 
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To recycle flowback water for use in subsequent fracking projects, the fluid must 

undergo some form of treatment. The various chemicals, particles and contaminants 

present in flowback water present an array of potential problems for equipment and 

environmental safety if they are not removed before reuse. Figure 3 illustrates several 

examples of these issues. 

Figure 3: Flowback Contaminants (Adapted from Acharya, 2011) 

Particulates include clays, silts, sand grains from proppant material, and other 

solid pieces that entered the flowback water in the well bore. This is a relatively simple 

contaminate to remove, and requires only sufficient filtration to separate it from the 

fluid. Hardness and the Total Dissolved Solids (TDS) are both indicators of mineral 

levels in the water. Hardness ions have the potential to cause scaling and include ions 

such as calcium and magnesium. TDS measures the level of all inorganic dissolved 

solids within the water, which include hardness ions as well as other ions such as silica 

and sodium. This value gives a more complete assessment of the total mineral content of 
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the fluid. 
There are numerous water treatment technologies that can be separated into three 

main categories: primary, secondary and tertiary treatment. Primary treatment focuses on 

the removal of particulate matter and suspended contaminants in the fluid. Secondary 

treatment serves to soften the water, namely removing ions like Ba2+, Sr2+, Ca2+, and 

others. Tertiary treatment involves desalination of the water, and can be implemented at 

various degrees of discretion, depending on the intended use of the treated fluid. Each 

level of technology is implemented to remove specific contaminants from the flowback 

fluid, and will create an end product that is suitable for reuse in various ways (Figure 4). 

Figure 4: Flowback Recovery Process.( Acharya, 2011)	
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What is done with the water after treatment is dependent on the level to which it 

has been purified. Certain shale plays, such as the Marcellus, have set standards of 

contaminant levels that must be reached to use a fluid for fracking. To achieve these set 

concentrations,  flowback/produced  waters  can  either  be  subjected  to  high  levels  of 

treatment, or companies can implement blending. Blending is simply mixing fresh water 

in with the partially treated flowback water to bring down the overall concentrations of 

contaminants to within acceptable levels. While either of these pathways can end with 

the same result, there are tradeoffs to be considered for each case. Blending requires 

additional fresh water to be brought in, which could be costly in a region that is 

challenging to transport water to. However, depending on the composition of the 

flowback/produced water, high level technologies may have to be utilized in order to 

clean the water to meet the standards. This obviously becomes more expensive as you  

use increasingly advanced treatment technologies. 
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2. TREATMENT TECHNOLOGIES

According to the case study performed by Acharya in 2011, on-site primary and 

secondary treatment of flowback water can be economically beneficial and cost effective 

when compared to deep well injection. Therefore, various treatment options of the 

primary and secondary levels are under consideration that could be implemented on-site, 

and if blended with a smaller amount of fresh water, could be reused in subsequent 

hydraulic fracturing projects. The following will provide a more robust discussion of 

several water treatment technologies, and their applications in the scope of this project. 
Within primary technologies, one potential technology option is a 

coagulation/ultrafiltration unit to serve as the clarification step. This is a method that 

utilizes a membrane to filter out total suspended solids (TSS) and free oil/grease from  

the well operations. It can also be utilized to remove iron from the solution, which if left 

untreated could result in fouling of subsequent treatment technologies. 

For secondary technologies, lime softening is implemented to treat the flowback 

water. Lime softening serves to remove hardness minerals such as calcium and 

magnesium. It is a cheap and robust technology that has lasted the test of time. It is 

necessary to soften the fluid as hardness ions can cause plugging of drilling equipment if 

present in the fracturing fluid during reuse in subsequent projects. These ions can also 

cause issues with membranes in later treatment steps, and thus need to be removed. 

Figure 5 illustrates various primary and secondary treatment technologies. 
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Figure 5: Primary and Secondary Treatment Technologies (Karapataki, 2012) 

For desalination, a membrane treatment unit is implemented. The membrane 

serves to remove NaCl ions from the fluid, and decrease salinity to a level appropriate 

for reuse. Acharya defined a TDS level of less than 20,000 ppm as the threshold for 

reuse in fracking projects. This level will also be upheld in this case study. 

The implementation of these technologies in conjunction with one another has 

been proven capable of obtaining water concentration levels that are suitable for reuse in 

fracking projects, as seen in the 2011 Acharya study. An example of Marcellus shale 

requirements is shown below (Figure 6). Tests have yielded costs of the above treatment 

unit to be less than $2/bbl of water in a 50 gallon/minute mobile treatment unit  

(Acharya, 2011). By utilizing primary and secondary treatment, 20% less makeup water 

is required to get back to proper levels of reuse. If this savings can be applied to each 

individual hydraulic fracturing project, the environmental and economic benefits will  

add up substantially. 
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Figure 6: TDS and Chloride Requirements (Karapataki, 2012)	

A membrane treatment option that has been researched for applications to 

flowback water is a thermal membrane distillation (TMD) system. This technology has 

been around since the 1960s, however it was not until recent years that it has been more 

extensively researched and developed. Advances in membrane materials, as well as 

lowered costs have made TMD systems economically competitive with reverse osmosis 

treatment options.  (Camacho, 2013) 

Numerous benefits exist by implementing a TMD unit. In theory, the design of a 

TMD system provides complete separation of non volatiles and ions. Physical systems 

operate near this level and are able to generate highly pure permeate end products. 

Another advantage of thermal membrane distillation is its capacity for high TDS level 

feedstock, as well as low pretreatment needs. These membrane units can treat a wide 

range of salinities which are found across shale plays, and experience very few issues 

with fouling. 

In addition to these advantages, TMD systems have qualities that make them well 

suited for applications in flowback water treatment. One advantage is the relatively low 

heating requirements to drive the process. Temperatures for water treatment need to be 

in the range of 325-360 K, which can be accounted for by utilizing process heat from on- 

site flaring. The size and modular capabilities of TMD units are also advantageous to 

water treatment applications, as unit sizes are small enough to be configured in a mobile 

treatment array. A system can also increase its capacity by adding additional membrane 

modules, and maintenance can be conducted without necessitating the shutdown of the 
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entire unit. 

Several configurations of TMD systems exist, including Direct Contact 

Membrane Distillation (DCMD) which will be expanded upon in this section. The direct 

contact system operates by utilizing the vapor pressure differential across the membrane. 

The feed is heated and enters the area containing the membrane. This contact between 

liquid and membrane is the reason for the name “direct contact.” Due to its hydrophobic 

nature, the water vapor passes through the membrane to the other side. This also helps 

prevent condensation inside the membrane structure. Then a sweeping stream of 

permeate is passed through, which condenses the vapor and flows out of the system. 

(Elsayed, 2015) 

The Acharya, 2011 study also examined membrane technologies for flowback 

water treatment and reuse. In their case study calculations it was found that not only is a 

mobile membrane unit able to produce treated water of suitable qualities for reuse, but at 

costs of approximately $2.00 per barrel of feed. This amount was set forth as the success 

criteria for system design in order to be considered economically viable in comparison to 

disposal methods such as injection. Additionally, in the breakdown of cost associated 

with the mobile treatment rig, 75% of operating costs are associated with fixed capital 

investment of the system (Figure 7). This means that after the investment is made to 

construct and purchase the mobile system, the actual operating costs are not very high. 

In fact, the membranes themselves are only 2% of the overall cost, which shows why 

they are desirable for applications in the field of flowback water treatment. 
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Figure 7: Cost Breakdown of Mobile Membrane Unit (Acharya, 2011)	
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3. ECONOMIC ANALYSIS

When looking at today’s shale gas industry, one of the most important deciding 

factors for choosing technology options is cost. In general, it is more expensive to treat 

water on site than dispose of it or ship is someplace else. For this reason, most  

companies elect to dispose of their flowback and produced water via deep-well injection 

or transport it to an offsite centralized water treatment facility rather than treat it 

themselves for reuse. The way prices have been aligned has made it more economical to 

bring in all new fresh water for continued fracking developments instead of attempting  

to treat flowback water to sufficient levels of cleanliness. Because oil and gas is a 

business, if there is to be any significant breakthrough in the area of water reuse, on-site 

treatment technology and methodology must reach a level that is economically 

competitive with the current practices. 
During literature research, several studies were examined that took an in depth 

look at numerous water treatment technologies. The MIT report by Karapataki will be 

the main reference for economic data presented in this section. 
When analyzing options for water reuse, the simplest path would be blending 

flowback water without any treatment and using this fluid in subsequent fracking. 
Although this would be the most cost effective option, it is not smart because all the 

contaminants within the flowback/produced water will damage the equipment it passes 

through. Therefore, this option will not be considered for cost analysis and comparison 

of treatment options. The focus of this research is the comparison of deep-well injection 

and primary/secondary treatment with blending for reuse. 
Deep-well injection is oftentimes the most cost effective option for 

flowback/produced water. However, there are many factors that affect the economics of 

injection, and the price of this process can vary considerably depending on the location 

of the hydraulic fracturing project. Distances from the well to the disposal facility, as 
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well  as disposal costs are highly  variable  factors  that can result  in a wide  spread of 

pricing ranges for injection. 

According to the economic analysis of the Karapataki study, primary/secondary 

treatment with blending for reuse has the potential to be competitive with injection costs 

(Figure 7). In areas that experience high costs for water transportation, this method is 

attractive because of the previously mentioned 20% reduction in necessary make up 

water. Savings on trucking, fresh water, and disposal fees enable this treatment option to 

be both economically advantageous, and environmentally friendly. 

Figure 8: Cost Analysis of Treatment Options (Karapataki, 2012)	
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4. METHODOLOGY

The aim of this project is to construct a framework that can be applied to solve a 

logistic/supply chain optimization problem when dealing with water treatment in 

hydraulic fracturing projects. For this study, the following scenario will be considered: 

Three different wells are operating fracking projects and want to implement 

treatment in order to reuse water in subsequent fracturing processes. At each well site, a 

water storage tank will be placed in order to house the flowback water during 

production. This study uses a 200,000 gal mobile storage tank, comparable to the 

HydroTec MB model produced by CST Storage. A fleet of water treatment trucks will 

be deployed in order to treat the flowback water from the storage tanks to levels 

appropriate for reuse. The overall objective is to determine the minimal number of 

treatment units needed daily at each well for a period of twenty-eight days. Cost 

estimations will also be performed on the treatment units. 

4.1 Case Study 

Well data was taken from the Hayes, 2009 study on water streams from the 

Marcellus Shale. Figures 9 and 10 show a map of the sampling locations in Pennsylvania 

and West Virginia. In this study, data from Wells C, E, and F were utilized. These 

specific wells were chosen for the case study for a few reasons. First, they are all 

horizontal, hydraulically fractured wells. They also represented a wide range in terms of 

total amount of fracturing fluid used and percentage of recovered fluid. By selecting 

these wells, a network can be created that provides a thorough representation of the 

variability that is present through wells in a shale play. Figure 11 is taken from the 

Hayes study, and contains measured data on all of the wells. 



15

Figure 9: Pennsylvania Sampling Locations (Hayes, 2009)	

Figure 10: West Virginia Sampling Locations (Hayes, 2009)
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Figure 11: Well Data (Hayes, 2009)	

After selecting C, E, and F as the wells to be used for this study, the flowback 

data was imported into Excel. Regression calculations were performed on this data in 

order to determine functions for each well, with t indicating the number of days that 

have passed since the hydraulic fracturing began: 

Well C: Cumulative Flowback Water (BBL) = 4729.9*ln(t) + 2952 

Well E: Cumulative Flowback Water (BBL) = 6190*ln(t) + 9067.3 

Well F: Cumulative Flowback Water (BBL) = 3543.7*ln(t) + 3792.5 
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With these equations, the daily amount of flowback water for each well was 

constructed over a period of twenty-eight days. The values are displayed in Table 1: 

Daily Flowback Calculations in BBL 

Day Well C Well E Well F 
1 2952 9067.3 3792.5 

2 3278.516849 4290.581048 2456.305664 

3 1917.809415 2509.829019 1436.846704 

4 1360.707434 1780.752028 1019.45896 

5 1055.446683 1381.258583 790.7538028 

6 862.3627315 1128.570437 646.0929008 

7 729.1173005 954.1927081 546.2637641 

8 631.590134 826.5593203 473.195196 

9 557.1019804 729.0769907 417.3877435 
10 498.344703 652.1815919 373.3660593 

11 450.8076195 589.970013 337.7506842 

12 411.555112 538.6004236 308.3422166 

13 378.594003 495.4643605 283.6473432 

14 350.5232975 458.7283476 262.6164209 
Table	1:	Daily	Flowback	Calculations	in	BBL	
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Day Well C Well E Well F 

15 326.3293828 244.4900387 427.0658745 

16 305.2607511 228.7051574 399.4934458 

17 286.7483987 214.8354723 375.266409 

18 270.3535816 202.5522711 353.8105817 

19 255.7325499 191.598012 334.6760997 

20 242.6121531 181.7680473 317.5054923 

21 230.7725975 172.8977048 302.0111162 

22 220.035022 164.8529794 287.9588968 

23 210.2523918 157.523711 275.1564103 

24 201.3027202 150.8185056 263.4440133 

25 193.0839519 144.660902 252.6881461 

26 185.5100511 138.9864412 242.7762144 

27 178.5079773 133.7404003 233.6126302 

28 172.0153202 128.8760206 225.1157174 
Table	1:	Continued	
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4.2 Treatment Calculations 

Once the daily flowback volumes were determined, the next step was to begin 

analysis of treatment requirements for these amounts of fluid. While many viable 

treatment options exist and were touched upon in this research, for the purpose of 

calculating treatment capacities and cost estimations, the selected technology was a 

direct contact thermal membrane distillation system. This method benefits from traits 

such as modular configuration and high selectivity, which make it well suited for 

applications in mobile rigs used in shale gas plays. 

The optimization of this system was based upon the methods presented in the 

Elsayed et al. 2015 paper. Key equations are well documented in this reference, and can 

be found in detail there. The differences in the scope of this project lie in the application 

of the methodologies. Where the Elsayed paper formulated an optimized pathway for an 

individual well, this project establishes a means to calculate the number of treatment 

units needed daily in a series of wells within a formation. 

For these calculations, four different flow rates were considered for the 

treatment units. These flow rates, in gallons per minute, were 5, 10, 15, and 20. A 

constraint was applied on the calculations to provide that at least fifty percent of the 

daily amount of flowback water produced would be treated by a mobile unit. This 

constraint ensures that the mobile units are being utilized efficiently, and the overall 

water treatment would be completed in a timely fashion. The equations were formatted 

in order to provide answers in terms of number of 180 m2 surface area membrane units 

necessary. The results of the daily number of membrane units needed at each well, for 

the four flow rates can be found in Tables 2-5. The numbers were rounded up to the 

next whole number, to represent the necessity of purchasing full membrane units. 
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Day Well C Well E Well F 

1 12	 36	 15	

2 13	 17	 10	

3 8	 10	 6	

4 6	 7	 4	

5 5	 6	 4	

6 4	 5	 3	

7 3	 4	 3	

8 3	 4	 2	

9 3	 3	 2	

10 2	 3	 2	

11 2	 3	 2	

12 2	 3	 2	

13 2	 2	 2	

14 2	 2	 2	

Table	2:	Number	of	Membranes	for	5	gpm	Unit
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Day Well C Well E Well F 

15 2	 2	 1	

16 2	 2	 1	

17 2	 2	 1	

18 2	 2	 1	

19 1	 2	 1	

20 1	 2	 1	

21 1	 2	 1	

22 1	 2	 1	

23 1	 2	 1	

24 1	 2	 1	

25 1	 1	 1	

26 1	 1	 1	

27 1	 1	 1	

28 1	 1	 1	

Table	2:	Continued	
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Day Well C Well E Well F 

1 7	 18	 8	

2 7	 9	 5	

3 4	 5	 3	

4 3	 4	 2	

5 3	 3	 2	

6 2	 3	 2	

7 2	 2	 2	

8 2	 2	 1	

9 2	 2	 1	

10 1	 2	 1	

11 1	 2	 1	

12 1	 2	 1	

13 1	 1	 1	

14 1	 1	 1	

Table	3:	Number	of	Membranes	for	10	gpm	Unit	



23

Day Well C Well E Well F 

15 1	 1	 1	

16 1	 1	 1	

17 1	 1	 1	

18 1	 1	 1	

19 1	 1	 1	

20 1	 1	 1	

21 1	 1	 1	

22 1	 1	 1	

23 1	 1	 1	

24 1	 1	 1	

25 1	 1	 1	

26 1	 1	 1	

27 1	 1	 1	

28 1	 1	 1	

Table	3:	Continued
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Day Well C Well E Well F 

1 4	 12	 5	

2 5	 6	 4	

3 3	 4	 2	

4 2	 3	 2	

5 2	 2	 2	

6 2	 2	 1	

7 1	 2	 1	

8 1	 2	 1	

9 1	 1	 1	

10 1	 1	 1	

11 1	 1	 1	

12 1	 1	 1	

13 1	 1	 1	

14 1	 1	 1	

Table	4:	Number	of	Membranes	for	15	gpm	Unit	
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Day Well C Well E Well F 

15 1	 1	 1	

16 1	 1	 1	

17 1	 1	 1	

18 1	 1	 1	

19 1	 1	 1	

20 1	 1	 1	

21 1	 1	 1	

22 1	 1	 1	

23 1	 1	 1	

24 1	 1	 1	

25 1	 1	 1	

26 1	 1	 1	

27 1	 1	 1	

28 1	 1	 1	

Table	4:	Continued	
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Day Well C Well E Well F 

1 3	 9	 4	

2 4	 5	 3	

3 2	 3	 2	

4 2	 2	 1	

5 2	 2	 1	

6 1	 2	 1	

7 1	 1	 1	

8 1	 1	 1	

9 1	 1	 1	

10 1	 1	 1	

11 1	 1	 1	

12 1	 1	 1	

13 1	 1	 1	

14 1	 1	 1	

Table	5:	Number	of	Membranes	for	20	gpm	Unit	
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Day Well C Well E Well F 

15 1	 1	 1	

16 1	 1	 1	

17 1	 1	 1	

18 1	 1	 1	

19 1	 1	 1	

20 1	 1	 1	

21 1	 1	 1	

22 1	 1	 1	

23 1	 1	 1	

24 1	 1	 1	

25 1	 1	 1	

26 1	 1	 1	

27 1	 1	 1	

28 1	 1	 1	

Table	5:	Continued	
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5. COST ESTIMATION

The calculations performed in this study were based upon the TMD cost model 

presented in Elsayed et al. 2013. Some key equations are as follows: 

1.) 

2.) 

3.) 

4.) 

The annualized fixed cost of the treatment system, AFC is given by: 

AFC = 58.5*Am + 1,115*WFB

The membrane area in square meters is indicated by Am , while WFB represents 

the flow rate of water into the treatment unit. 

The annual operating cost of the treatment system, AOC is given by: 

AOC = 3438*WFB

Where AOC is in terms of dollars per year. 

The non-membrane fixed capital investment, NMFCI is given by: 

NMFCI = 11,150*WFB

Where NMFCI is in terms of dollars per year. 

The membrane fixed capital investment, FCI is given by: 

FCI = 450*Am
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6. RESULTS AND DISCUSSION

The motivation behind this research project was to examine the status of water 

use in shale gas hydraulic fracturing wells, in hopes of proposing an economically viable 

method for treatment and reuse of fracking fluid. During a ten month timeframe, 

literature review, case study, cost estimation, and calculations were performed. Results 

from these procedures indicate that with today’s technology and available treatment 

methods, it is possible to treat flowback water in a manner that is economically 

competitive with established disposal or injection methods. 

Several projects have been conducted that examined membrane treatment in the 

context of flowback water treatment. Results in the literature suggest that this method is 

economically viable and competitive with conventional wastewater disposal. This is 

especially true in areas that are farther away from disposal sites and would incur high 

costs for water transportation. The Elsayed et al, 2015 study showed that a thermal 

membrane distillation system could effectively serve as the treatment technology in a 

mobile treatment rig, resulting in a cost of $2.60 per cubic meter of permeate. This study 

utilized their contributions in order to apply the system to a series of producing wells in 

different geographic locations. 

Analysis of the treatment results indicate that TMD systems, arranged in a fleet  

of mobile treatment trucks, are a viable way to achieve the reuse of flowback water in 

shale gas production. The fact that TMD systems can be suited for various flow rates 

means that they can be adaptable to meet the specific needs of a certain well or company 

desires for treatment scheduling. This study analyzed relatively low throughput 

membrane systems in use at three different wells that represented low, medium and high 

amounts of recovered fracturing fluid. 

The results of this project provide a means of creating an optimized design for a 

TMD treatment network for flowback water. Additionally, a methodology has been 

constructed in order to expand the scope of the network to multiple, simultaneously 

producing wells. This approach is scalable, and can be applied to any number of wells 
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that fall within the scope of a given treatment objective. By utilizing this framework, 

companies would be able to calculate and visualize their own needs in terms of number 

of treatment trucks and overall cost, as well as schedule how many membrane units are 

necessary at each well for each day over the time period that operations are taking place. 

6.1 Future Works 

There are a few suggested pathways to take in order to expand upon the 

framework presented in this research. One is to adapt the formulation in such a way as to 

allow for the mixed usage of treatment units with different flow rate capacities. This 

project was designed to deal with a treatment network that utilized mobile treatment 

units that all had the same capacity. While this is a viable approach, and allows for some 

simplification in the process, it can also result in a loss of efficiency for certain wells. If 

additional work was directed towards this topic and enabled an optimal design for any 

given flow rate, a treatment network could be constructed that would more accurately 

account for the wide variation found in the flowback characteristics of shale gas 

production. 

Another area of study that could build upon this research would be addressing the 

concept of the Energy-Water-Food Nexus. The consumption of water in efforts to 

produce energy is one of the most important relationships to consider as society 

continues to progress. It is vitally important that we find a sustainable way to have these 

three elements interact and coexist. Further study of flowback water treatment and reuse 

could focus on Nexus thinking, and provide quantitative results for how the adoption of 

this treatment practice could have positive impacts on the energy sector. 
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7. CONCLUSIONS

This study has implications both in the oil and gas industry, and environmental 

sector. Businesses that are engaged in shale gas production would be able to utilize the 

design of this mobile treatment network to drive the costs down on their fracking 

projects. This would benefit both profit margins and efficiency of the oil and gas 

companies that use this unit. 

From an environmental viewpoint, the results of this project also have major 

benefits. By making treatment and reuse economically viable, less fresh water is needed 

to pump into the well site. Additionally, there would be less of a need for deep-well 

injection practices which are concerning to many environmental groups. More 

widespread utilization of water treatment units in shale plays would create a significant 

drop in the amount of fresh water usage in the development of new fracking wells. This 

would be a major step forward in the area of thinking known as the Energy-Water-Food 

Nexus, as it would help reduce the amount of water that is needed for energy production 

from shale formations. 
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