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ABSTRACT 

 

SAFT-VR Mie is one of the most recent extensions of Statistical Associating Fluid 

Theory (SAFT).  It is based on the Mie potential, which is a generalized form of the 

Lennard-Jones potential in which the exponents of the repulsive and attractive terms are 

allowed to vary from 12 and 6, respectively.  In this thesis, the latest formulation of SAFT-

VR Mie is implemented to accurately calculate densities and phase equilibria of both 

associating and non-associating fluid mixtures.  The model is subsequently extended to 

mixtures with strongly dissociating electrolytes in water through the addition of a Born 

term to account for solvation effects and a Debye-Hückel term for long-range, electrostatic 

interactions.  A single adjustable parameter is assigned to each ionic species (the cross 

dispersion energy between the ion and solvent) and is optimized against experimental data 

for electrolyte solution densities and mean ionic activity coefficients using a sequential 

Nelder-Mead algorithm with a parallel objective function evaluation.      

Model correlations for the activity coefficients and liquid densities, as well as 

predictive calculations of vapor pressure, osmotic coefficients and mixed ion properties, 

show that the model’s performance is comparable to that of other recent formulations for 

electrolyte solutions.  Further improvement in a subsequent generation of the proposed 

equation of state will likely derive from a better description of dielectric phenomena, and 

adjustments to the parameter optimization strategy.  



 

iii 

 

DEDICATION 

 

To my parents for their unwavering and sincere concern for my well-being, the 

countless late-night conversations about work and spirituality and, like true software 

engineers, for always emphasizing the importance of backing up my files.        

 



 

iv 

 

ACKNOWLEDGEMENTS 

 

I am eminently grateful to Dr. Ioannis Economou and Dr. Marcelo Castier for 

granting me a Research Assistantship position – enabling me to complete both my 

Master’s thesis and coursework in a conducive atmosphere.  I am also thankful for their 

guidance, responsiveness and candid feedback throughout the course of my Master’s 

research project, without which its successful completion would not have been possible.  

I would like to thank Dr. Othmane Bouhali for his meaningful input at both the thesis 

proposal and final thesis stages. 

I am grateful to Dr. Othon Moultos for his very comprehensive, one-on-one 

FORTRAN tutorials during the first month of my work as a Research Assistant.  The depth 

and breadth of topics covered and the very thoughtfully developed mini-assignments 

adequately prepared me in a short period for all of the programming necessary for 

thermodynamic modeling. 

I would like to thank Dr. Luis Fernando Mercier Franco especially, with whom I 

communicated most frequently throughout the project. Often I would go to him with a 

single question, which would then rapidly evolve into a much deeper discussion – helping 

me better contextualize my work with broader discourse in applied thermodynamics.                

  



 

v 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

This work was supervised by a thesis committee consisting of Professor Ioannis 

Economou and Professor Marcelo Castier of the Chemical Engineering Program, and 

Professor Othmane Bouhali of the Science Program.  

The routines for SAFT-VR Mie for non-associating mixtures were developed by 

Dr. Luis Fernando Mercier Franco.  The parameter fitting routines used in the project were 

developed previously by Professor Marcelo Castier.  Dr. André Zuber provided 

experimental data files for parameter fitting.        

 All other work conducted for the thesis was completed by the student 

independently.  

Funding Sources 

This work was made possible by the National Priorities Research Program (NPRP) 

of Qatar National Research Fund under Grant Number 6-1157-2-471 and Texas A&M 

University at Qatar proof & seed program under Grant Number 482172-50580. The 

content of the work is solely the responsibility of the author and does not necessarily 

represent the official views of the Qatar National Research Fund (a member of Qatar 

Foundation). 

 



 

vi 

 

NOMENCLATURE 

 

A    Helmholtz free energy of system 

a  Reduced/specific Helmholtz free energy; Characteristic ionic 

diameter 

C     Mie potential pre-factor 

d     Segment hard-sphere diameter 

e    Elementary charge 

F     Mayer function 

f     Fugacity 

g    Molar Gibbs’ free energy; Kirkwood g-factor 

Mieg    Radial distribution function of reference Mie fluid 

I     Ionization potential; Association kernel 

k    Boltzmann constant 

M     Molar mass 

m     Molality 

sm    Number of spherical segment per molecule 

N    Number of molecules in system 

AN    Avogadro’s number 

sN    Number of spherical segments in system 

n    Number of moles  
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P    Pressure 

'P    Probability that a molecule is involved in hydrogen bond 

Q    Canonical partition function 

R     Ideal gas constant 

r      Intermolecular distance 

'r    Born cavity radius 

cr     Diameter of association site 

dr    Distance between molecule’s repulsive core and association site 

S    Entropy of system  

T    Absolute temperature 

u     Intermolecular potential 

V    Volume of system 

v      Molar volume 

X    Monomer fraction 

x    Mole fraction 

'x     Mole fraction on ion-free basis 

Z    Compressibility factor; Ion valence 

z  Global composition of multiphase system; Molecular coordination 

number 

Greek letters 

0     Polarizability 

    Activity coefficient; Angle between dipole moments 
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m     Activity coefficient – molality basis 

m 
    Mean ionic activity coefficient – molality basis 

AB    Association strength between generic sites A and B 

     Minimum of intermolecular potential 

0    Permittivity of free space 

r    Relative permittivity 

    Permittivity at infinite frequency 

    Bond angle 

    Inverse Debye screening length  

    de Broglie wavelength 

     Attractive/repulsive exponent in Mie potential 

    Chemical potential 

0    Vacuum dipole moment 

     Sum of ion valences in a given salt   

    Number density 

     Segment diameter (as in Mie potential) 

     Osmotic coefficient 

    Fugacity coefficient; Volume fraction 

     Fraction of total system moles in a given phase 

Abbreviations  

NC   Index denotes number of components 



 

ix 

 

NIONS  Index denotes number of ions 

NP   Index denotes number of experimental data points 

NSITES  Index denotes number of sites 

NSOLV            Index denotes number of solvents 
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1. INTRODUCTION   

 

1.1. Background 

Chemical Engineering design depends upon reliable property data.  A quantitative 

representation of the volumetric/calorimetric properties and phase stability of pure 

components and mixtures is vital to modelling the performance of unit operations.  Such 

a quantitative representation may take the form of tabulated data, diagrams, or 

mathematical models known as equations of state. 

 The prediction of fluid properties inductively using tabulated experimental data 

(or purely empirical models fitted against experimental data) may seem the most attractive 

and reliable. However, given the large number of multi-component mixtures that are of 

interest to engineering design, and the broad range of conditions at which they exist in 

various processes, the aspiration to rely solely on experimental data rapidly becomes 

impractical.  Dependence on exhaustive experimental data also goes against our intuitive 

expectation that there is a certain wholeness or interconnectedness in the way systems 

behave – an idea that motivates the Theory of Corresponding States [1]. 

 Thermodynamic properties may also be obtained from computer-based Molecular 

Dynamics Simulations – sometimes referred to as computer experiments – wherein 

molecular force-fields applied to an N-body system are integrated over time to calculate 

its trajectory [2].  While this can be a very useful tool in that it precludes the need for 

complex experimental setups, it also cannot be relied upon as our sole source of 

thermodynamic information because it is computationally expensive – often necessitating 
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the use of advanced computing resources.  Even when such resources are available, many 

systems remain beyond reach. 

Equations of state (EoS) are most often semi-empirical, incorporating insight 

gained from experimental data and molecular simulation to formulate a model 

fundamentally based in theory.  EoS developed from the Statistical Associating Fluid 

Theory (SAFT) belong to a relatively new generation of models derived from statistical 

mechanics [3-6], and it is specifically SAFT-VR Mie (VR ≡ Variable Range) which is 

implemented in this project, and extended to systems with electrolytes [7].  This EoS 

models dispersion interactions with the generic Mie potential, which treats the energy of 

short-range attractive and repulsive interactions as proportional to 1/ ar


and 1/ rr

respectively, where r is the intermolecular distance and a and r  are attractive and 

repulsive exponents which are allowed to be component-specific (hence, of variable 

range).  In the case of the conventional Lennard-Jones potential, the attractive and 

repulsive exponents are 6 and 12, respectively. 

Deriving an equation of state from statistical mechanics is essentially the process 

of arriving at a general expression for the canonical partition function of a fluid (Q), which 

is related to the Helmholtz free energy (A) as follows [8]: 

 ln , ,A kT Q T V n   (1.1) 

where k is the Boltzmann constant; T, V and n are the temperature, volume, and 

composition profile vector (in terms of number of moles of each component) respectively. 

It might be perceived that, once one arrives at a reliable expression for the 

Helmholtz free energy as a function of temperature, volume and composition, all applied 
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thermodynamic calculations follow readily.  Challenges do arise at the stage of 

implementation and applied calculations, but it is fair to say that much of the enabling 

work has already been done.  This follows from the fact that the Helmholtz free energy 

function generates all other thermodynamic properties.  One may begin from the general 

expression for the Helmholtz free energy as a function of temperature, volume and 

composition: 

1

NC

i i

i

dA SdT PdV dn


    (1.2) 

where S and P are the entropy and pressure of the system, while µi is the chemical potential 

of component i. 

Given that the Helmholtz free energy function is an exact differential, visual 

inspection shows that the following relations hold true: 

,V n

A
S

T

 
  

 
(1.3) 

,T n

A
P

V

 
  

 
 (1.4) 

,V, j i

i

i T n

A

n




 
 

 
 (1.5) 

Having obtained expressions for pressure and chemical potential, one can already 

implement phase equilibrium calculations.  To calculate other thermodynamic properties, 

further derivatives (including those of higher order) can be arrived at after some 

mathematical manipulation and the application of Maxwell relations. 
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One immediately begins to see the advantage of Helmholtz free energy equations 

of state like those originating from SAFT.  All the thermodynamic information about a 

given system is implicit in its Helmholtz free energy function – allowing applied 

calculations to follow naturally.  This is a departure from empirical activity coefficient 

models, which can calculate phase equilibria and calorimetric properties, but contain no 

information about the volumetric behavior of the system.   

That is not to say that SAFT-VR Mie is purely theoretical.  Component-specific 

molecular parameters that factor into the Helmholtz free energy function are commonly 

regressed against experimental data.  Additionally, to ensure the accurate representation 

of mixture phase equilibria, empirically-determined cross-interaction parameters are 

introduced into the mixing rules for component parameters, and sometimes even made to 

be temperature-dependent (as in [9]).   

SAFT-VR Mie is thus a compromise between a rigorously theoretical model, and 

one that is suitable for real engineering applications.  The real advantage of SAFT lies in 

its versatility.  A single model can adequately predict properties of fluids of varying 

complexity.  Because the energy contributions of different classes of intermolecular 

interactions are treated as additive, the model can readily be extended to systems with 

electrolytes by adding a coulombic term.  The project seeks to extend the SAFT-VR Mie 

equation of state to electrolyte systems along these very lines. 

1.2. Engineering Motivation  

Electrolyte solutions tend to reside at the periphery of our conception of multi-

component mixtures which are relevant to industrial processes.  However, the 
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thermodynamics of electrolyte solutions is eminently applicable to hydrocarbon 

production in the context of, for example, modeling salt precipitation in drilling muds and 

the production of natural gas from aquifers where natural gas is in equilibrium with brines 

[10].     

An equation of state which can reliably predict properties of aqueous mixtures 

containing electrolytes is also essential to, most notably, the design of desalination plants 

where vapor-liquid equilibria (in the case of thermal desalination) and osmotic pressure 

(in the case of reverse osmosis) calculations are central to controlling the performance of 

the process.  Even more generally so, equipment sizing for such processes necessitates 

reliable data for calorimetric and volumetric properties.  In this sense, information about 

the phase equilibria of electrolyte solutions is critical to water security. 

1.3. Objectives  

The aim of this project is to develop an extension of the SAFT-VR Mie equation 

of state to systems with electrolytes, and implement it to calculate volumetric behavior 

and phase equilibria of systems consisting of water and strongly dissociating ions.  The 

various objectives associated with this aim are delineated below: 

1. Implement the SAFT-VR Mie equation of state for spherical, non-spherical, non-

associating and associating mixtures – verifying and reproducing vapor-liquid 

equilibrium and density data reported in the literature for the same model; 

2. Implement an ion-based (as opposed to salt-based) model for the Helmholtz free 

energy contribution due to solvation effects and electrostatic interactions between 

ions; 
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3. Implement a suitable optimization strategy for the evaluation of model parameters; 

4. Calculate densities, mean ionic activity coefficients, vapor pressures and osmotic 

coefficients for systems consisting of water and strongly dissociating salts. 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

2. LITERATURE REVIEW

2.1. Statistical Associating Fluid Theory (SAFT) 

All SAFT models are developed as perturbation expansions of the Helmholtz free 

energy.  This is also true for the Electrolattice [11] and Q-Electrolattice [12] models, which 

have been developed for systems with ionic interactions and also exist as expansions of 

Helmholtz free energy. 

The defining feature of SAFT equations of state is their treatment of intermolecular 

interactions involving molecular association – an example of which is hydrogen bonding 

[13].  The Helmholtz free energy contribution from association applied to SAFT equations 

of state originates from a model by Wertheim, known as Wertheim’s TPT1 (First Order 

Thermodynamic Perturbation Theory) which makes the following assumptions [3]: 

a) Only a single molecule may bond at a given site;

b) A site on a given molecule may bond only with another single site on another

molecule; 

c) Double bonding between molecules is impermissible.

The model was extended to hypothetical molecules with spherical cores and 

bonding sites of a specific geometry relative to the center – resulting in the following 

expression for Helmholtz free energy [3],  which is a summation over the total number of 

associating sites on the molecule: 

0 1
lnX

2 2

NSITES
i

i

i

A A X

NkT

  
   

 
  (2.1) 
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where Xi  is the fraction of molecules not bonded at site i, N is the number of molecules, 

and 0A is the Helmholtz free energy of the reference system.  The elegance of Wertheim’s 

theory is that it can be extended to non-spherical molecules (such as long-chain alkanes) 

by allowing site-site interactions to become very large [13] – resulting in a separate 

“chain” contribution to the Helmholtz free energy.  By including an additional term for 

weaker interactions between chains (
res

segA ), one obtains a complete equation for the 

residual Helmholtz free energy of the system [13]: 

res res res res

seg chain assocA A A A   (2.2) 

Weaker dispersive interactions between segments were first modeled using a square-well 

potential [3]. 

2.2. SAFT-VR Mie 

SAFT-VR Mie is a relatively recent equation of state, though it has many predecessors 

in the SAFT family [3-6].  It models dispersive interactions using the generic Mie 

potential, the parameters of which are allowed to be component-specific.  The expression 

for the Mie potential is as follows: 

( )
r a

Mieu r C
r r

 
 


    

     
     

(2.3) 

where 

a

r a
r r

r a a

C



  

  

 
  

  
(2.4) 
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In these expressions, a and r  are the attractive and repulsive exponents, respectively. 

 is referred to as the segment diameter, and is the intermolecular distance at which the 

Mie potential assumes a value of zero. The minimum value for the potential of interaction 

is   .  These four parameters are taken to be molecule (i.e. component) specific.  Figure 

1 provides a representative plot of this potential. 

Figure 1: Representative graph of Mie potential 

Much of the additional effort in developing this equation of state involves arriving 

at an approximation of the radial distribution function (RDF) which is consistent with the 

Mie potential.  This new RDF changes not only the evaluation of energy due to dispersive 
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interactions, but also the evaluation of the chain and association terms – ensuring that the 

equation of state is internally consistent. 

2.3. Non-Associating Pure Components 

According to the SAFT-VR Mie formalism, the reduced Helmholtz free energy 

per molecular segment for a pure component system a=(A/NskT) is given by [7]: 

IDEAL MONO CHAIN ASSOCa a a a a    (2.5) 

3ln( ) 1IDEALa     (2.6) 

where 3  is the de Broglie volume, and   is the number density.  Ns is the number of 

monomer segments, and is given by: 

s sN m N (2.7) 

where sm  is the molecular chain length, and is typically determined by the regression of 

experimental data. 

The monomer contribution, which represents dispersive interactions, is expressed 

as a perturbation expansion in temperature (with β=1/kT): 

2 3

1 2 3( )M HS

sa m a a a a       (2.8) 

This mathematical treatment, which is based on Barker-Henderson perturbation theory, 

expresses the dispersive contribution to the Helmholtz free energy as perturbations on a 

hard sphere reference system.  Intuitively, a system of hard spheres may be likened to 

billiard balls moving about on a table.  In this framework, the molecules do not interact 

with one another except at contact – where there is infinite repulsion.  The equation of 



11 

state used to describe this hard sphere reference was first proposed by Carnahan and 

Starling [14].  

The first two subsequent perturbation terms on the hard sphere reference are 

evaluated as integrals involving the Mie potential and hard sphere radial distribution 

function.  The methodology to evaluate these integrals (including assumptions and 

approximations), as well as their final expressions may be found in the work by Laffite et 

al. [7].  Finally, the third perturbation term was developed numerically (using Monte Carlo 

simulation data).  

The chain contribution to the Helmholtz free energy is expressed as follows: 

( 1) ln ( )CHAIN Mie

sa m g    (2.9) 

where ( )Mieg   is the radial distribution function of the reference Mie fluid, which is a 

function of  , the inter-particle distance at which the Mie potential is zero.  This 

expression is based on the mathematical formulation for associating molecules – which 

models associating sites decorated on the molecule as square-well potentials, and are 

specified as non-zero in the range of   to   (in terms of intermolecular distance).  In 

the special case of chain-forming association, this square-well potential to describe this 

associating site is assigned an attractive potential ( )  of  , and a  value of 1.  The 

main challenge is generating an approximation for the radial distribution function of the 

reference Mie fluid.  This is discussed fully by Laffite et al. [7]. 

2.4. Non-Associating Mixtures 

An additional degree of complexity emerges when extending the model, up until 

now presented only for pure fluids, to non-associating mixtures.  This entails the 
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application mixing rules in order to calculate composition-based averages of each of the 

Helmholtz free energy contributions.  For example, the first order perturbation coefficient 

in equation (2.8) is now expressed as follows: 

1 , , 1,

1 1

NC NC

s i s j ij

i j

a x x a
 

 (2.10) 

where sx is the is the segment mole fraction; i  and j  are component indices.  The value 

for 1a  is calculated from 1,ija , which is a two-dimensional matrix.  This matrix is built by 

evaluating 1a  recursively for all combinations of pair-wise averaged equation of state 

parameters based on common combining rules.  These combining rules are presented 

below for each of the SAFT-VR Mie parameters: 
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, , , jj3 ( 3)( 3), ,k ij k ii k k a r       (2.12) 
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
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2.5. Associating Mixtures 

The expression for the association contribution to the Helmholtz free energy was 

presented for pure components.  For mixtures, it is as follows [3]: 

1 1
ln

2 2i i

i

ASSOC NC NSITES

i A A

i A

A
N X X

kT

 
   

 
  (2.14) 

where A is the bonding site index and i is a component index. Non-bonded site fractions 

can be found by solving a system of non-linear equations. 
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Again, A and B are site indices, while i and j are component indices. i jA B
  (association 

strength) is a function of the radial distribution function (RDF) of the Mie fluid and the 

depth of the association energy well.  For a pure fluid, it is expressed as follows: 

AB AB ABF K I  (2.16) 

Here, ABF  is the Mayer function which is expressed as: 

exp( / )AB

ABF kT  (2.17) 

AB  represents the depth of the square well potential used to describe the association site. 

ABK  is referred to as the bonding volume and is meant to account for the geometric nature 

of a molecule’s association site. In SAFT-VR Mie, it is treated as an adjustable parameter. 

Finally, I is referred to as the association kernel, and is evaluated as follows: 

2
2 2

2 3 2

4
( )(2 ) (2 2 )

24( )

d c

d c

r r
Mie d c c d

d r r
I g r r r r r r r rdr

r








     (2.18) 

where cr and dr  are geometric parameters which describe the association site. cr is the 

diameter of the association site and dr is the distance between the center of the spherical 

segment’s repulsive core and the center of the association site (these parameters can be 

visualized on Figure 2). The approach used by Dufal et al. [9] is to solve for the radial 

distribution function of the Mie fluid using a numerical solution of the Ornstein-Zernike 

equation with the Reduced Hypernetted Chain (RHNC) closure.  The association kernel is 

then evaluated numerically for various conditions and fitted to a polynomial function in 
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terms of reduced density, reduced temperature, and repulsive exponent in the Mie 

potential.  Figure 2 presents a visual representation of the 4-site model used for water in 

SAFT-VR Mie, reproduced from [9]. 

Figure 2: 4-site association model for water [9] 

To calculate the association contribution to pressure and chemical potential, one 

can use the expression derived by Michelsen and Hendriks [15], which precludes the need 

to calculate derivatives of the monomer fraction.  However, for properties involving higher 

order derivatives of the Helmholtz free energy (such as isothermal compressibility), higher 

order derivatives of the monomer fractions with volume and number of moles are 

evaluated as an iterative solution to the system of non-linear equations which emerge from 

taking the derivative of (2.15). 
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2.6. Contribution of Solvation Effects and Electrostatic Interactions to the 

Helmholtz Free Energy 

Solvation Effects 

Explicitly accounting for solvation effects using the Born equation ensures that the 

model can reliably calculate energies of solvation.  The Born equation follows from 

integrating the electrostatic interactions between ion and the solvent from the surface of 

the ion to infinity [16].  The expression for the Helmholtz free energy contribution due to 

the solvation of one mole of ions is [16]: 

2 2

0

1
Δ   1

8 '

Born i A

i r

Z e N
A

r 

 
  

 
(2.19) 

In this equation, iZ  is the charge on ion i, e  is the elementary charge constant, AN  is 

Avogadro’s number, 0  is the permittivity of free space, r is the relative permittivity of 

the solvent and '

ir  is the radius of the cavity occupied by ion i in the solvent. 

Electrostatic Interactions 

The contribution to the Helmholtz free energy due to electrostatic interactions can 

be modeled using the Debye-Hückel model or, alternatively, an expression based on the 

Mean Spherical Approximation (MSA) [16].  Maribo-Mogensen et al. [17] conducted a 

comparative study on the two models and concluded that the numerical complexity of the 

MSA expression was not justified by any improved performance; rather, the reliability of 

results is much more sensitive to the dielectric constant.  They then opt to implement the 

Debye-Hückel model in conjunction with the Cubic Plus Association (CPA) equation of 
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state, with dielectric constants calculated using the method presented in [18, 19].  Details 

of both the MSA expression and Debye-Hückel model are presented below. 

Mean Spherical Approximation (MSA) 

The Mean Spherical Approximation (MSA) is a closure for the Ornstein-Zernike 

integral equation, which once applied in conjunction with a function for the intermolecular 

interactions of interest (in this case, Coulombic interactions), yields an expression for the 

radial distribution function (RDF) [8] which can subsequently be used to derive the 

expression for the canonical partition function and, by extension, the Helmholtz free 

energy of the system.  The expression for the electrostatic contribution to the Helmholtz 

free energy from MSA is as follows [16]: 
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Here, i  is the number density of component i and ia  is the hard sphere diameter of ion 

i. The terms in the equation are further expanded below:
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Equations (2.21) and (2.22) couple ion charge with ion size, equation (2.23) relates the 

ion packing fraction, and equation (2.24) is the MSA screening parameter and is implicit 

(and therefore must be evaluated iteratively) [20]. 

The Debye-Hückel Equation 

In order to calculate the radial distribution function (RDF) of ions in a dielectric 

medium, the Debye-Hückel approach solves Poisson’s equation (for the charge density 

around an ion) while simultaneously  assuming that the distribution of ions follows the 

Boltzmann distribution [16].  The expression for the Helmholtz free energy contribution 

due to electrostatic interactions is as follows [16]: 

 21
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     (2.25) 

where ix  is the mole fraction of ion i,   is the inverse Debye screening length and ia  is 

its characteristic diameter.   The terms in the equation are further expanded below: 
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ix a (2.28) 
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2.7. Estimation of Solvent Dielectric Constant 

The dielectric constant (or relative permittivity) is a measure of the polarizability 

of a given solvent; solvents with higher relative permittivity reduce electrostatic 

interactions between ions to a greater extent [16] – thereby “shielding” free ions from 

other ions in solution.  This explains why salts require a polar solvent in order to dissociate 

– overcoming the strong electrostatic forces between cations and anions [16].

Relative permittivity (εr) is dimensionless and is defined as follows [16]: 

0

r





 (2.30) 

where   is the permittivity of the solvent medium and 0  is the permittivity of free space.  

Reliable data for the relative permittivity is essential to model electrostatic interactions.  

Since the Born contribution is essentially a measure of energy due to the effect of 

solvation, it is unsurprising that the relative permittivity factors into the Born equation.  

Relative permittivity also factors into the Coulomb’s law equation for electrostatic force 

because it has an attenuating effect on electrostatic interactions, and, by extension, the 

Debye-Hückel/MSA contribution to the Helmholtz free energy.  

In the most general case, the dielectric constant of a solvent depends on 

temperature, volume, and ion concentration in the solvent.  This suggests that the equation 

of state will be most successful at calculating properties over a broad range of conditions 

(including high salt concentrations) if the model for the dielectric constant makes 

allowance for such dependencies.  
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In a recent version of SAFT-VR Mie to which an MSA term has been added to 

model electrolytes [21], the dielectric constant is calculated from an empirical correlation 

previously proposed by the same group in conjunction with a SAFT-VR + MSA model 

[20].  The correlation is as follows: 

1r solvd     (2.31) 

where r  is the dielectric constant, solv  is the number density of the solvent, and d  is a 

temperature-dependent solvent parameter evaluated as follows: 

1t
v

d
d d
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 
  

 
 (2.32) 

in which vd  and td  are solvent-dependent empirical parameters.  In this formulation, the 

dielectric constant depends on temperature and solvent volume, but not on composition.  

In the case of mixed solvents, the following combining rule is applied to the dielectric 

constants of unlike solvent species: 

2

ii jj

ij

d d
d


 (2.33) 

The dielectric constant for the mixed solvent is subsequently evaluated as a compositional 

average over all of the solvent species on an ion-free basis, according to the following 

mixing rule: 
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NSOLV NSOLV

i j ij

i j

d x x d
 

   (2.34) 

Here, 'x  refers to solvent mole fractions on an ion-free basis. Alternatively, a very 

rigorous model has been developed by Maribo-Mogensen et al. [18, 19] which utilizes an 
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equation of state to model the dielectric properties of a given solvent – from which the 

temperature, volume and composition dependence of the dielectric constant naturally 

emerge.  The operative equation is as follows [19]: 
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where  is the permittivity at infinite frequency, 0,i  is the vacuum dipole moment of 

component i, v  is the molar volume and ig  is the Kirkwood g-factor of component i.  It 

is essentially the calculation of this g-factor which is non-trivial, and the model proposed 

by Maribo-Mogensen et al. utilizes ideas from association theory to quantify it.  The final 

expression for the Kirkwood g-factor is: 
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where 
ijz , 

ij  and ij are parameters related to the geometry of the dipole interaction

between components i and j. 
'

ijP  and '

iP are related to the monomer fractions of the 

components in that they represent probabilities that a molecule is involved in a hydrogen 

bond.  Specifically: 
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Finally, it is worth discussing the empirical correlation proposed by Zuber at al. [22] which 

is temperature and composition dependent and, for mixed solvents, volume dependent as 

well.  The expression for the dielectric constant is as follows: 
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i i j ji j
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(2.39) 

where ix  is the mole fraction of ion i, 
,i j  is an ion-specific parameter for ion i in solvent 

j.  
j  is the volume fraction of solvent  j. mix

r  is the solvent mixture dielectric constant 

(ion-free basis) – having averaged each of the pure solvent dielectric constants over the 

volume fractions of each solvent.  

,

NSOLV
mix pure

r s r s

s

    (2.40) 

Pure solvent dielectric constants ( pure

r ) are treated as temperature-dependent only – 

evaluated using the following empirical correlation [23]: 

2 32
1 3 4 5

pure

r

d
d d T d T d T

T
       (2.41) 

where 1d - 5d are solvent-specific adjustable parameters. 

2.8. Existing Models for Electrolyte Solutions 

There are a number of existing models and equations of state in the literature which 

make use of the ideas already discussed to describe the thermodynamic behavior of 

solutions with electrolytes.  These models are outlined in Table 1. 
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Table 1: Existing models for electrolyte solutions 

 Model Description  Reference 

Peng-Robinson + Born term + MSA [24] 

PC-SAFT + Debye-Hückel (ePC-SAFT) [25] 

Mattedi-Tavares-Castier (MTC) + Born 

term + MSA (Electrolattice) 
[11, 12] 

Soave-Redlich-Kwong + TPT1 

Association + Born term + Debye-Hückel 

(e-CPA) 

[26] 

SAFT-VR Mie + Born Term + MSA 

(SAFT-VRE Mie) 
[21] 

  

 

These equations of state work by recognizing the dichotomy between short range 

(dispersive) and long-range (electrostatic) interactions and attempting to model the 

contributions of each separately. This is summarized by Prausnitz et al. [10].  Models for 

short-range interactions are based on the Lewis-Randall framework, in which the 

independent variables which describe the system are temperature T, volume V, and the 

mole numbers of all species ni.  On the other hand, models for the long-range, electrostatic 

contribution (such as MSA and Debye-Hückel) are derived from the McMillan-Mayer 

framework, where the independent variables are temperature T, volume V, the mole 



 

23 

 

number of solute species nk and the chemical potential of the solvent μs.  For ordinary 

electrolyte solutions with relatively low salt concentrations (such as those studied in this 

work), this inconsistency has a negligible effect, but must otherwise be resolved in the 

case of high salt molality and mixed solvent solutions.  This is accomplished through the 

mathematical conversion of thermodynamic variables from one framework to the other 

[10], as discussed by Friedman [27], for example.        

Excess Gibbs’ energy models (also referred to as activity coefficient models) are 

a widely used alternative to the Helmholtz free energy equations of state discussed so far.  

While such models can be used to calculate phase equilibria and calorimetric properties 

of electrolyte solutions, they do not provide any information about the volumetric behavior 

of the system.  These models treat the excess Gibbs’ energy as a sum of contributions from 

both short-range and long-range interactions, with the long-range contribution typically 

described by a Debye-Hückel-type term [10].  Examples of such models that are widely 

used include that of Pitzer [28, 29] and the NRTL-SAC (Nonrandom Two-Liquid Segment 

Activity Coefficient) model extended to electrolytes [30]. 
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3. METHODOLOGY

In order to accomplish the objectives delineated at the outset of this proposal, and 

taking into account our analysis of the relevant literature, the following decisions were 

made: 

 The algorithm developed by Iglesias-Silva et al. [31] is implemented and used for

multi-component phase equilibria calculations. 

 An empirical correlation (2.41) [23] is used to capture the temperature

dependence of the dielectric constant.  Composition and volume dependence of the 

dielectric constant is neglected.  

 The Debye-Hückel and Born equations are implemented to account for

electrostatic interactions and solvation effects, respectively. 

 We adopt the strategy of Eriksen et al. [21] for the evaluation of ion-specific

parameters in the equation of state, with some modifications. 

 We follow a parameter optimization strategy similar to that used by Zuber et al.

[12] in the context of the Q-Electrolattice equation of state. 

 Where appropriate, Mathematica® has been used to calculate derivatives, along

with the open source Thermath package, which converts Mathematica® output 

into FORTRAN code. 

The subsequent sections unpack these broad steps so as to trace the natural progression of 

project outcomes. 
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3.1. Implementation of SAFT-VR Mie for Associating and Non-Associating Pure 

Components 

SAFT-VR Mie was implemented in a FORTRAN code, in terms of the 

mathematical formulation presented by Laffite et al. [7] for pure, non-associating fluids 

and that by Dufal et al. [9] for associating mixtures.  One of the first challenges faced was 

the evaluation of the reference hard sphere diameter, expressed as follows: 

0

(1 exp( ( )))Mied u r dr



   (3.1) 

Because of the relative mathematical complexity of the Mie potential, this integral cannot 

be solved analytically.  This is the only instance in the entire SAFT-VR Mie equation of 

state where a numerical method must be applied at the level of the equation of state itself 

(all other integrals and derivatives are either evaluated analytically, or mapped onto a 

polynomial and then implemented as an analytical function in the EoS code).  

This integral was initially solved using a Monte Carlo integration technique, which 

was eventually replaced with a pre-existing routine using five-point Gaussian quadrature, 

which is computationally much more efficient for a large number of calls.  The resulting 

calculations of the monomer term perturbation coefficients were verified against literature 

results [7].  It was deduced that, in the context of pure fluids, derivatives of the Helmholtz 

free energy with volume would be sufficient for density and vapor pressure calculations.  

For the monomer term, these derivatives were evaluated using Mathematica®, the 

resulting expressions of which were converted to FORTRAN code using the relevant 

Thermath package.  These derivatives were verified numerically. 
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With respect to associating fluids, the formalism presented by Michelsen and 

Hendriks [15] precludes the need to evaluate derivatives of monomer fractions to calculate 

pressure, which instead is evaluated as follows: 
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The only derivative that must be explicitly taken with volume is that of the Δ function for 

association.  Based on the mathematical treatment of Dufal et al. [9], this function is 

evaluated as a polynomial in reduced density, making the derivative trivial. 

Locating Volume Roots and the Calculation of Vapor-Liquid Equilibria 

Since SAFT-VR Mie is an expansion in Helmholtz free energy, it is a natural 

function of temperature and volume.  This means that the equation of state is volume input 

– pressure output.  For many engineering applications, however, we require the model to

be pressure input – volume output.  A pressure input scheme is especially crucial to phase 

equilibria calculations, which involve optimization problems where one of the constraints 

is that the pressure in all the phases must be equal. 

Many algorithms exist to locate volume roots for a given pressure, the most robust 

being that developed by Topliss [32].  In this project, however, a makeshift routine was 

written and utilized for root location based on a simple Newton’s-type method – noting 

that the mechanism for root location in the Topliss routine ultimately uses a similar 
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technique to zero in on the root, but with a more robust algorithm to identify a viable initial 

guess. 

For a given objective pressure objP , one guesses the liquid and vapor densities. 

Using the equation of state, the model pressure and derivative of pressure with volume are 

calculated, which are then used to guide the subsequent guesses for densities until 

satisfactory convergence is achieved.  For both liquid and vapor phase roots, the operative 

equation to guide each subsequent guess is as follows: 
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Of course, some care must be taken with initial guesses to ensure that they are not in the 

metastable or unstable region of the isotherm, or that they are too far away from the 

vicinity of the root where the isotherm is too steep – prohibiting convergence of the 

Newton’s method. 

The key test to verify our implementation of SAFT-VR Mie for pure fluids is 

through vapor pressure calculations, for which the equation of state parameters have been 

originally optimized.  Good agreement with experimental data for vapor pressure indicates 

a correct implementation of the equation of state (though this is not the only method of 

verification employed in the project).  The conditions for vapor-liquid equilibrium are that 

the temperature, pressure and chemical potential of all components are equal in all of the 

phases: 

...T T T     (3.5) 

...P P P     (3.6) 
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... | 1,i i i i NC        (3.7) 

where π represents the total number of phases at equilibrium. 

Since the equation of state is temperature input, satisfying the first condition is 

trivial.  But the question arises as to how to satisfy the equality of pressures and chemical 

potentials.  Mathematical manipulations on the equality of chemical potentials condition 

gives us some insight as to how this may be achieved.  The chemical potential for a pure 

fluid (in terms of Helmholtz free energy) can be transformed as follows: 

 

, , ,

, ,

,

( )

1

T V T V T V

T

T V T VT T T
T V

A na a
a n

n n n

a a
da dT d

T

n
a a a aV

n n n V










  

       
        

       

   
    

    

                                         
 

T

a
a 



 
    

 
(3.8) 

The density derivative can subsequently be transformed into that of volume, through the 

following steps: 
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This is the well-known result that the chemical potential of a pure substance is equal to its 

specific Gibbs’ free energy.  This result can be substituted into the equality of chemical 

potential condition for phase equilibrium: 
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Further manipulations of equation (3.10) result in Maxwell’s equal area rule: 
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
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Since the integrals are over an isotherm, the second term vanishes and one is left with the 

mathematical expression for Maxwell’s equal area rule: 

( )

v

sat

v

Pdv P v v





    (3.11) 

An algorithm for the calculation of vapor pressures emerges naturally from (3.10).  This 

is delineated as follows: 

1. Guess a value for Psat

2. Calculated the liquid and vapor roots for this guess

3. Calculated the new guess for Psat from equation (3.10)

4. Repeat from (2) until sufficient convergence is achieved
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Again, care must be taken that the initial guess for Psat is such that it has both liquid and 

vapor roots with respect to the isotherm. 

3.2. Implementation of SAFT-VR Mie for Associating and Non-Associating 

Mixtures 

An existing implementation of SAFT-VR Mie for non-associating mixtures was 

extended to associating mixtures with a view to calculate densities and vapor-liquid 

equilibria for binary mixtures. 

Volume and Composition Derivatives for Association Term 

Central to the association term is the evaluation of the monomer fraction i.e. the 

fraction of segments of each species which do not participate in a hydrogen bond.  The 

expression for the monomer fraction is reproduced here: 

1

1 (1/ )
i

i j

j

j

A NC NSITES
A B

j B

j B

X

V N X



  
      (2.15) 

It was stated before that the Michelsen-Hendriks approach precludes the need to 

calculate derivatives of the monomer fraction with volume or composition to calculate 

pressure or chemical potential.  However, for the evaluation of higher order derivative 

properties (such as isothermal compressibility or the derivative of chemical potential with 

composition) one is compelled to evaluate these derivatives.  

Equation (2.15) results in a system of NC

 

NSITES non-linear equations which 

must be solved iteratively.  It then follows that, for the derivatives of X , one may 

differentiate equation (2.15) in its general form and solve for the system of derivatives as 

well.  In this fashion, one will solve a single system of NC NSITES equations to evaluate 
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the derivatives of all the monomer fractions with volume, and NC systems of 

NC NSITES equations to solve for the derivatives of all the monomer fractions with 

number of moles of each component. 

Here we show a representative formulation for the derivative of equation (2.15) 

with respect to the number of molecules of a single component (δij is the Kronecker delta). 
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Vapor-Liquid Equilibria 

To calculate the phase equilibria of binary mixtures, we employ the algebraic 

method developed by Iglesias-Silva et al. [31] for multi-component, multi-phase phase 

equilibria.  We present a derivation of the operating equations for the specific case of 

binary, two-phase equilibrium from the equality of chemical potentials (employing high-

level substitutions based on well-known thermodynamic relationships). 

Starting from the equality of chemical potentials condition: 

1 1

2 2

1 2 1 2
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 
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   

1 1, ,T P T P

dg dg
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 
   

    
   

(3.13) 
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This is identical to the limit of global phase stability for the two phase binary system, and 

is the first operating equation for the method proposed in reference [31].  For the second 

operating equation: 

1 1 2 2

1 1 1 2

1 2 1 2

1 2

1 ,

(1 )
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dg
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Also, by symmetry: 
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
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  
 

The final form of the second operating equation is attained by substituting for 2

 : 

1 1 1 1, ,T P T P

g g dg dg

x x dx dx

 
 

 

   
    

    
(3.14) 

This formulation for phase equilibria is mathematically analogous to that derived 

for the pure fluids in equation (3.10).  As result, the algorithm for calculating the 

equilibrium conditions follows a similar logic: 

1. Specify pressure and temperature at equilibrium condition

2. Guess value for 
1 ,T P

dg

dx

 
 
 

3. Find vapor and liquid composition roots for chosen 
1 ,T P

dg

dx

 
 
 
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- Find vapor and liquid volume root for given temperature, pressure and 

composition guess of each phase 

4. Using  equation (3.14), generate new guess for  
1 ,T P

dg

dx

 
 
 

5. Repeat from (3) until sufficient convergence is achieved

This can be generalized to multicomponent, multiphase system – in which case one would 

implement an iterative routine to solve the system of non-linear, algebraic equations that 

would emerge from the generalized operative equations derived by Iglesias et al. [31]: 
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i i
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z x i NC


     (3.17) 

The final expression is the overall component mass balance, where iz  is the global 

composition of component i  and k  is the fraction of moles in phase k . 

Verifying the Internal Consistency of the Equation of State Implementation 

A useful verification step for the implementation of SAFT-VR Mie is to ensure 

that Euler’s relation is satisfied, which would imply that the equation of state is internally 

consistent with respect to the calculation of pressures and chemical potentials.  This is 

especially useful in the process of debugging because it provides significant insight into 

where potential problems are.  Euler’s relation is as follows: 
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NC

i i

i

g a Pv x    (3.18) 

Figure 3 illustrates is the result for the verification of Euler’s relation for SAFT-VR Mie 

+ Debye-Hückel + Born equation for a solution of a hypothetical 1:2 salt and water, where 

the error plotted is the difference between the right and left hand sides of equation (3.18). 

Figure 3: Error in Euler's relation in calculation by SAFT-VR Mie + electrostatic terms 

The order of magnitude of this error reflects the allocated precision of the variables in the 

code.  This is further validated by the fact that this error is statistically random.  

A similar analysis was carried out for a representative associating mixture. The 
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left and right hand sides of equation (3.18) for various compositions of a water + methanol 

mixture. 

Figure 4: %ARD in Euler's relation as calculated by SAFT-VR Mie for a methanol + water mixture 

From this analysis, we conclude that our implementation of the equation of state is 

internally consistent and that the volume and compositional derivatives of the Helmholtz 

free energy have been correctly evaluated. 

3.3. Extension of SAFT-VR Mie to Electrolyte Solutions 
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the Helmholtz free energy contribution of these terms and their derivatives with volume 

and composition.  Here, we describe the methodology for ionic species parameter 

evaluation, and the formulae for thermodynamic property calculations for electrolyte 

solutions. 

Parameter Evaluation Strategy 

In an effort to minimize the number of adjustable parameters and to allow for the 

development of a meaningful, predictive equation of state, we adopt the methodology of 

Eriksen et al. [21] with respect to the specification of ion parameters.  For instance, it is 

assumed that the ions behave as Lennard-Jones spheres – thereby eliminating the need to 

optimize the repulsive exponent or chain length.  The Born cavity diameters are those 

reported by Rashin and Honig [33].  Segment diameters (σ) for each of the ionic species 

are taken to be the crystal radii (coordination VI) reported by Shannon [34]. We 

subsequently take the characteristic ionic diameter used in the Debye-Hückel expressions 

to be 5 6    of the hard sphere diameter calculated by equation (3.1) for each of the ionic 

species.  This accounts for effect of excluded volume, which is not treated explicitly by 

the Debye-Hückel formulation [17].  The ion-ion cross-dispersion energy parameters 

(both for identical and unlike ions) are calculated by equating the London dispersion 

interaction potential (explicit in terms of the electronic polarizability and ionization 

potential) with the attractive part of the Lennard-Jones potential. This is based on the 

approach for deriving the Hudson-McCoubrey combining rule, as presented by Haslam et 

al. [35].  We start from the operative expression for the London interaction potential: 
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where 
0,i  and iI  are the electronic polarizability and ionization potential of species i, 

respectively.  This is equated to the attractive term of the Lennard-Jones potential, shown 

below: 
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Having equated both expressions and solving for the dispersion energy parameters, one 

obtains the following expression: 

0, 0,
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(3.21)

This approach differs from that of Eriksen et al. [21], which solves for the ion-ion 

dispersion parameters by equating both the attractive and repulsive terms of the Mie 

potential with the London dispersion interaction potential. 

In this manner, the only adjustable parameter assigned to each ion is the cross 

dispersion energy parameter between the ion and the solvent.  This has been optimized 

using the parameter optimization routine developed by Castier et al. [36] and applied 

successfully to the development of the Q-Electrolattice equation of state [12].  The in-

house code uses a sequential Nelder-Mead algorithm with a parallel objective function  

evaluation – precluding the need to parallelize the code for the equation of state itself, 

while still allowing for the optimization program to be sped up with the help of parallel 
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computing resources.  The objective function to be minimized is based on deviations from 

experimental data of the mean ionic activity coefficients and liquid densities [12]:    

22
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Thermodynamic Property Calculations of Electrolyte Solutions 

Densities, mean ionic activity coefficients of ion pairs, osmotic coefficients, 

fugacity coefficients and vapor pressures were calculated for electrolyte solutions.  The 

root-finding method discussed earlier was carried forward to electrolyte solutions for the 

calculation of densities. 

Fugacity coefficients are obtained from the chemical potentials calculated by the 

equation of state as follows [24]: 

( , , ) ( , , )1
( , , ) exp

igm

i i
i

T P n T P n
T P n

Z RT

 


 
  

 
(3.23) 

where ( , , )igm

i T P n is the chemical potential of species i  in the ideal gas mixture.  The 

asymmetric activity coefficient of each ionic species on a molal basis can then be 

calculated as follows: 

( , , )1
( , , )

1 ( , , 0)

m i
i

solvent i

T P n
T P n

mM T P n




 

  
   

    
(3.24) 

where   is the sum of the valences of each of the ions in the salt, m is the salt molality, 

solventM  is the molar mass of the solvent, and  ( , , 0)i T P n  is the fugacity coefficient of 

species i  at infinite dilution.  The fugacity coefficient of the species at infinite dilution is 
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determined from the equation of state itself by determining the convergent fugacity 

coefficient at very low salt mole fractions.  The mean ionic activity coefficient is 

subsequently evaluated as: 

   
1/

m m m


 

  
 

  

 

  

(3.25) 

Finally, the osmotic coefficient is obtained from the following equation: 

ln( )solvent solvent

solvent

x

mM




   (3.26) 

To simplify the calculation of vapor pressure, it is assumed that ion species are 

non-volatile.  This means that it is sufficient for only the chemical potentials of water to 

be equal in the vapor and liquid phases.  Based on this assumption, we have developed a 

short routine to calculate the pressure at which the fugacities of water in the liquid and 

vapor phases are equal, using the following relationships. 

( , , ) ( , , )

v l

w w

v v v l l l l

w w w

f f

T P n P T P n P x 



 
(3.27) 

At vapor-liquid equilibrium v l satP P P  .  Starting from an initial guess for P , one can 

readily calculate satP  iteratively through successive substitution. 



 

40 

 

4. RESULTS AND DISCUSSION  

 

4.1. SAFT-VR Mie 

Having successfully implemented the SAFT-VR Mie equation of state for pure 

components (both associating and non-associating), as well as code developed for 

associating mixtures (which was incorporated to existing code for non-associating 

mixtures), we report here representative results for the phase equilibria of such systems 

and are compared with experimental data from the literature [37, 38], or model results 

generated by collaborators.  Tables for pure component parameters used in conjunction 

with SAFT-VR Mie (as well as for calculating electrostatic contributions) are presented 

in the appendix. 

 

 

 

Figure 5: Methane vapor pressure curve (spherical molecule) 
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Methane is a spherical molecule  1sm   and is non-associating.  Results shown 

in Figure 5 for the vapor pressure validate our implementation of the monomer term in 

SAFT-VR Mie.  For the temperature range examined (100.15 K – 180.15 K), the %AARD 

between the experimental and model vapor pressures was 0.65%.  

 

 

 

Figure 6: n-hexane vapor pressure curve (non-spherical molecule) 

 

 

The vapor pressure plot shown in Figure 6 for n-hexane, which is non-spherical

 2.1097sm   and non-associating, validates our implementation of the chain term in 

SAFT-VR Mie.  For the temperature range examined (360.15 K – 490.15 K), the %AARD 

between the experimental and model vapor pressure was 0.51%.   
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Figure 7: Water vapor pressure curve (associating, spherical molecule) 

 

 

Figure 7 shows the vapor pressure for water, which is treated by SAFT-VR Mie as 

spherical and associating (with four association sites). Results validate our implementation 

of the association term in SAFT-VR Mie for pure components.  For the temperature range 

presented (300.15 K – 640.15 K), the %AARD between experimental and model vapor 

pressure was 2.01%.  In Figure 8, saturated liquid and vapor water densities are shown. 
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Figure 8: Saturated liquid and vapor densities for water 

 

 

From this trend we infer that the equation of state over-predicts the critical temperature, 

which is the standard behavior of mean-field higher order EoS. 

The following results for mixture vapor-liquid equilibria validate our 
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equilibria. 

 

0

10

20

30

40

50

60

300 400 500 600

d
en

si
ty

/(
m

o
l/

l)

T/K

NIST SAFT-VR Mie



 

44 

 

 

Figure 9: Methane + ethane VLE at 199.92 K superimposed with experimental data [38] 

 

 

This VLE envelope for methane + ethane in Figure 9 was constructed without any 

binary interaction parameter.  However, the chosen VLE routine fails to converge at 
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algorithms were recently developed in our research group at Texas A&M University at 

Qatar.   

The subsequent VLE envelopes in Figure 10 for methanol + water (at 1 atm) show 

the results of a code-to-code comparison between the implementation of SAFT-VR Mie 
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Figure 10: Methanol + water VLE at 1 atm 

 

 

Both implementations use a non-zero binary interaction parameter (kij=0.04).  The minor 

discrepancies between the two sets of calculations can be attributed to variations in the 

degree of precision assigned to code variables. 

The good agreement between model predictions and experimental/literature results 

(including code-to-code comparison with Imperial College London) for each case allowed 

us to confidently proceed with the extension of the model to mixtures with electrolytes. 

4.2. Extension to Electrolyte Solutions  
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For each ion-solvent pair, the model has only one adjustable parameter – the cross-

dispersion energy parameter between the ion and the solvent (εi-solv) . This is the energy 

well depth in the equation for the Mie potential (2.3), as it pertains to the pair interaction 

between the ion and the solvent molecule.  These parameters were optimized sequentially 

using experimental data (mean ionic activity coefficients and liquid densities) [39] for sets 

of salt + water systems – each set consisting of a predetermined “group” of strongly 

dissociating ions.  These groups are illustrated as schematic diagram in Figure 11 – based 

on a similar scheme presented by Zuber et al. [12]. 

F- Cl- Br- I- 

Li+ 7 

Na+ 

9 

1 

K+ 

Rb+ 5 

Cs+ 8 

Mg2+ 3 

Ca2+ 2 

Sr2+ 4 

Ba2+ 6 

Figure 11: Schematic view of ion groups used in parameter fitting. The numbers correspond to the 

sequence of parameter optimization i.e. parameters for ions in group 1 were optimized first and so on. 
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 This process yielded the optimized model parameters tabulated in Table 2: 

 

 

Table 2: Ion-solvent cross dispersion parameters (εi-water) 

Ion εi-water/kB (K) 

Na+ 157.14 

K+ 64.45 

Li+ 834.39 

Rb+ 73.98 

Cs+ 114.27 

Mg2+ 1766.71 

Ca2+ 851.59 

Sr2+ 522.50 

Ba2+ 335.02 

Cl- 560.92 

Br- 539.08 

I- 511.86 

F- 1052.55 

 

 

Tables 3 and 4 report the absolute average relative deviation (% AARD) between 

properties calculated by the model and experimental data [40-43].  These are juxtaposed 

with the corresponding % AARD data for the model developed by Eriksen et al. [21].  

Both models use SAFT-VR Mie to quantify short-range interactions; this engenders a 

basis for meaningful comparison.  
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Table 3: % AARD in liquid density correlations using the EoS developed in this work and using the 

model developed by Eriksen et al. [21] at 1 atm for various aqueous electrolytes  
Salt New model Eriksen et al. [21] 

% AARD 
Temperature 

Range / K 

Max Molality 

(mol/kg-w) 

% 

AARD  

Temperature 

range / K 

Max Molality 

(mol/kg-w) 

NaCl 2.12 273.15-373.15 6.01 5.07 298-473 5.0 

NaBr 1.51 273.15-373.15 5.23 4.36 283-343 8.3 

NaI 1.15 283.15-373.15 4.45 10.10 298 1.7 

NaF 0.41 291.15 1.25 1.02 297-498 1.0 

KCl 1.78 273.15-373.15 3.78 7.03 298-353 4.0 

KBr 1.63 273.15-373.15 4.52 2.91 283-348 5.8 

KI 1.20 283.15-373.15 3.24 3.02 278-373 1.0 

KF 2.41 291.15 6.05 1.69 297-372 8.9 

LiCl 1.12 273.15-373.15 10.11 1.85 278-343 10.0 

LiBr 0.78 273.15-373.15 9.42 1.09 378-343 10.0 

LiI 0.87 273.15-373.15 11.21 2.18 298-373 4.9 

RbCl 2.14 273.15-323.15 8.27 0.76 298 5.0 

RbBr 1.73 273.15-323.15 7.39 4.56 298-323 6.8 

RbI 1.47 273.15-323.15 5.76 3.07 298-310 0.4 

RbF 1.73 291.15 4.50 7.11 298 0.5 

CsCl 5.93 298.15-343.34 7.52 - - - 

CsBr 4.01 298.15-343.34 4.19 - - - 

CsI 2.75 298.15-343.34 2.89 - - - 

CsF 14.73 273.15-323.15 4.67 - - - 

MgCl2 2.04 288.15-328.15 5.00 2.50 288-372 4.8 

MgBr2 1.34 273.15-373.15 4.44 0.74 298 3.7 

MgI2 1.13 273.15-373.15 2.40 - - - 

CaCl2 3.06 288.15-328.15 6.00 2.59 288-328 4.0 

CaBr2 2.31 273.15-373.15 5.00 1.98 298 3.4 

CaI2 1.72 273.15-373.15 2.27 - - - 

SrCl2 2.28 288.15-328.15 2.50 - - - 

SrBr2 2.16 273.15-373.15 4.04 1.51 298 2.4 

SrI2 1.84 273.15-373.15 2.40 - - - 

BaCl2 1.76 288.15-328.15 1.5 2.02 288-328 1.5 

BaBr2 1.56 273.15-373.15 2.24 2.92 298 1.6 

BaI2 2.38 273.15-373.15 3.83 - - - 
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Table 4: % AARD in mean ionic activity coefficient correlations of the EoS developed in this work and 

using the model of Eriksen et al. [21] at 1 atm and 298.15 K for various aqueous electrolytes.  

Salt 

New model Eriksen et al. [21] 

% AARD 
Max Molality 

(mol/kg-w)  

Number of Exptl. 

Data Points 
% AARD  

Max Molality 

(mol/kg-w) 

Number of Exptl. 

Data Points 

NaCl 3.39 6.0 35 20.43 6.1 30 

NaBr 3.91 4.0 19 7.92 8.2 47 

NaI 2.54 4.5 26 5.01 3.5 14 

NaF 5.20 1.0 10 8.40 1.0 6 

KCl 2.81 4.5 20 11.60 4.0 80 

KBr 2.76 4.5 20 1.73 5.5 36 

KI 2.63 3.5 18 11.73 4.0 35 

KF 4.46 4.0 19 8.02 4.0 15 

LiCl 11.50 4.5 19 16.79 10.0 48 

LiBr 4.26 4.5 20 14.22 9.0 34 

LiI 7.97 3.0 17 10.98 3.0 33 

RbCl 4.66 5.0 21 1.03 5.0 17 

RbBr 0.99 5.0 27 7.68 5.0 32 

RbI 2.10 5.0 27 26.51 5.0 34 

RbF 4.61 3.5 24 4.74 3.5 14 

CsCl 2.79 5.0 21 - - - 

CsBr 2.13 5.0 21 - - - 

CsI 4.84 3.0 17 - - - 

CsF 3.89 3.50 24 - - - 

MgCl2 30.23 3.0 17 16.49 5.9 53 

MgBr2 26.74 5.0 21 8.52 3.0 15 

MgI2 21.12 5.0 21 18.21 1.6 13 

CaCl2 8.88 2.5 31 8.31 3.0 67 

CaBr2 14.29 2.0 15 11.43 3.0 15 

CaI2 14.99 1.8 14 21.34 1.8 14 

SrCl2 13.06 1.3 14 5.87 4.0 78 

SrBr2 8.37 2.0 15 7.95 2.0 30 

SrI2 10.27 2.0 15 6.57 2.0 30 

BaCl2 9.45 1.8 19 10.61 1.4 14 

BaBr2 9.38 2.0 15 5.60 2.3 49 [278-318K] 

BaI2 10.91 2.0 15 7.62 2.0 30 
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In general, the new model is equally or more accurate than that of Eriksen et al. [21].  

Nevertheless, there is still room for improvement in order to attain the accuracy of models 

using different formulations for short-range interactions such as the Q-Electrolattice [12] 

and SAFT2-KMSA [44] equations of state – the latter of which is notable in its accurate 

representation of the temperature dependence of mean ionic activity coefficients. 

 Figures 12-17 provide representative results for the liquid density of various 1:1 

and 1:2 salts at 298.15 and 373.15 K. Overall, the model provides reasonably accurate 

correlation of the experimental data for all of the different mixtures examined. 

 

 

 

Figure 12: Liquid density of selected sodium salts at 298.15 K and 1 atm. Continuous lines are model 

correlations and points are experimental data from [43]. 
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Figure 13: Liquid density of selected sodium salts at 373.15 K and 1 atm. Continuous lines are model 

correlations and points are experimental data from [43]. 

 

 

 

Figure 14: Liquid density of selected lithium salts at 298.15 K and 1 atm. Continuous lines are model 

correlations and points are experimental data from [43]. 
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Figure 15: Liquid density of selected lithium salts at 373.15 K and 1 atm. Continuous lines are model 

correlations and points are experimental data from [43]. 

 

 

 

Figure 16: Liquid density of selected barium salts at 298.15 K and 1 atm. Continuous lines are model 

correlations and points are experimental data from [41, 43]. 
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Figure 17: Liquid density of selected barium salts at 373.15 K and 1 atm. Continuous lines are model 

correlations and points are experimental data from [41, 43]. 

 

 

Clearly, the model systematically under-predicts liquid densities as salt composition 

increases.  This can best be attributed to the use of crystal ionic radii to characterize the σ-

parameter for ionic species in the equation of state.  Indeed, the value of σ describing a 

species’ Mie potential does not necessarily correspond to its molecular/ionic diameter.  It 

is noteworthy that optimized ionic diameters evaluated for the Q-Electrolattice model are 

all smaller than the corresponding crystal diameters – allowing for better representation 

of the densities of concentrated solutions. 

 This behavior impairs the model’s ability to predict liquid densities of mixed ion 

solutions.  Figure 18 shows model predictions of liquid densities for representative mixed 

ion solutions (CaCl2 + KCl).     
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Figure 18: Liquid densities of aqueous solutions at 298.15 K and 1 atm containing CaCl2 + KCl at various 

ionic strengths. Continuous lines are model predictions and points are experimental data points               

[41, 43, 45]. 

 

 

 Figures 19-28 are plots of the developed model’s correlations for the mean ionic 

activity coefficient for various salt + water systems at 298.15 K and 1 atm.   
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Figure 19: Mean ionic activity coefficients of selected sodium salts at 273.15 K and 1 atm. Continuous 

lines are model correlations and points are experimental data from [41]. 

 

 

 

Figure 20: Mean ionic activity coefficients of selected potassium salts at 273.15 K and 1 atm. Continuous 

lines are model correlations and points are experimental data from [41]. 
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Figure 21: Mean ionic activity coefficients of selected lithium salts at 273.15 K and 1 atm. Continuous 

lines are model correlations and points are experimental data from [41]. 

 

 

 

Figure 22: Mean ionic activity coefficients of selected rubidium salts at 273.15 K and 1 atm. Continuous 

lines are model correlations and points are experimental data from [41]. 
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Figure 23: Mean ionic activity coefficients of selected cesium salts at 273.15 K and 1 atm. Continuous 

lines are model correlations and points are experimental data from [41]. 

 

 

 

Figure 24: Mean ionic activity coefficients of selected magnesium salts at 273.15 K and 1 atm. Continuous 

lines are model correlations and points are experimental data from [41]. 
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Figure 25: Mean ionic activity coefficients of selected calcium salts at 273.15 K and 1 atm. Continuous 

lines are model correlations and points are experimental data from [41]. 

 

 

 

Figure 26: Mean ionic activity coefficients of selected strontium salts at 273.15 K and 1 atm. Continuous 

lines are model correlations and points are experimental data from [41]. 
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Figure 27: Mean ionic activity coefficients of selected barium salts at 273.15 K and 1 atm. Continuous 

lines are model correlations and points are experimental data from [41]. 

 

 

 

Figure 28: Mean ionic activity coefficients of selected fluorides at 273.15 K and 1 atm. Continuous lines 

are model correlations and points are experimental data from [40, 42]. 
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The new model is able to capture the qualitative behavior of the compositional dependence 

of the mean ionic activity coefficient – notably the existence of minimum at relatively low 

salt compositions. Good quantitative agreement is achieved in most cases.  In systems 

where the model indicates a minimum, it consistently under-predicts its value.  This effect 

is more pronounced in systems containing divalent ions – implying an underlying 

deficiency in the model’s description of electrostatic phenomena.  

 Figure 29 shows the model’s predictions of the mean ionic activity coefficients for 

aqueous NaCl at various temperatures in the range 273.15-373.15 K. 

 

 

 

Figure 29: Mean ionic activity coefficient of aqueous NaCl at various temperatures at 1 bar. Continuous 

lines are model predictions and points are experimental data from [46]. 
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In practice, mean ionic activity coefficients of NaCl increase with temperature from 273 

K to approximately 323 K where they reach a maximum, and subsequently decrease with 

further increases in temperature.  The current formulation of the model predicts that the 

activity coefficients decreases monotonically with the temperature. This deficiency can be 

attributed both to failure of the model to predict the maximum density of pure water at 4 

oC and consequently aqueous mixture properties in this temperature region, as well as 

deficiencies in the salt + water model. Further investigation is needed.  

 Figure 30 shows predictions of osmotic coefficients for selected salt solutions. 

 

 

 

Figure 30: Osmotic coefficients for selected salt solutions at 298.15 K and 1 atm. Continuous lines are 

model predictions and points are experimental data from [42]. 
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Predictions of osmotic coefficients tend to be more accurate for salt solutions for which 

the model better correlates activity coefficients.  This is understandable, since the two 

quantities are interdependent as a consequence of the Gibbs-Duhem relation, and are 

related through the following equation [21]: 

 
,

0

1
ln 1

m

m dm
m

 


     (4.1) 

The model performs favorably for vapor pressure calculations for both single and 

mixed salt solutions.  Figure 31 illustrates model predictions of vapor pressures of aqueous 

NaCl solutions.  

Figure 31: Vapor pressure isotherms for NaCl + water solutions.  Continuous lines are model predictions 

and points are experimental data referenced in [21]. 
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The model’s predictions deteriorate somewhat for higher temperatures, but are generally 

reliable.  Figure 32 contains plots of vapor pressures of an aqueous NaBr + KBr solution 

at two different molality combinations. 

 

 

 

Figure 32: Model predictions for vapor pressures of mixed ion solvents.  Continuous lines are model 

predictions and points are experimental data from [47]. 
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5. CONCLUSIONS AND FUTURE WORK 

 

The SAFT-VR Mie EoS has successfully been extended to electrolyte solutions 

through the inclusion of additional terms to quantify energy contributions of long-range, 

electrostatic interactions.  Specifically, the Debye-Hückel and Born models were used to 

characterize ion-ion electrostatic interactions and ion solvation effects, respectively.  In 

the developed model, each ionic species has one adjustable parameter which characterizes 

the cross dispersion energy between the ion and the solvent (which, in this thesis, was 

always water).  This parameter was optimized against experimental data for mean ionic 

activity coefficients and liquid densities at various temperatures.  While the model 

performs well in comparison to another recent model based on the same SAFT-VR Mie 

framework for short-range interactions [21], further development of both the mathematical 

formulation and parameter optimization strategy could make it a more reliable tool for the 

prediction of thermodynamic properties across wider ranges of salt composition and 

temperature. 

It was noted that the developed model’s liquid density calculations deteriorate as 

salt concentration increases – systematically under-predicting density values.  One 

possible explanation for this is that the crystal diameters of ion species used in this model 

overstate the Mie potential’s “true” σ-value.  Alternatively, treating the σ of ionic species 

as an adjustable parameter (just as is the case for non-ionic species in SAFT-VR Mie) 

would allow for smaller σ-parameters to emerge, and consequently, a better representation 

of solution liquid densities.  
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The model consistently under predicts values of mean ionic activity coefficients at 

their compositional minimum.  This under prediction is more pronounced for systems 

containing divalent ions – indicating a deficiency in the mathematical description of the 

systems’ electrostatics.  One possible source of this deficiency is the model’s utilization 

of a composition and volume independent correlation for the dielectric constant – 

accounting only for temperature effects.  Integrating a more complete treatment of 

dielectric phenomena with the model may improve its quantitative performance. 

 A major challenge is capturing the temperature dependence of mean ionic activity 

coefficients in a predictive fashion (i.e. without resorting to the introduction of 

empiricisms which dictate the temperature dependence of equation of state parameters).  

For example, mean ionic activity coefficients of aqueous sodium chloride increase with 

temperature from 273 K to approximately 323 K where they reach a maximum, and 

subsequently decrease with further increases in temperature.  This implies competing 

temperature dependent effects.  Identifying these effects and incorporating them into the 

existing model is a multi-scale problem – involving both a mathematical analysis of the 

model itself and insight from a better understanding of fundamental physical phenomena 

at the molecular level. One source of deficiency may be the relatively inaccurate model 

for pure water at low temperatures.            

With respect to broadening the applicability of the model to engineering 

applications, future work should include its extension to mixed solvents.  Another useful 

task would be the implementation of a reactive scheme to model CO2 dissolution in salt + 
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hydrocarbon mixtures which accounts for the effect of pH changes on the thermodynamics 

of such solutions.  
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APPENDIX 

MODEL PARAMETERS 

Component-specific SAFT-VR Mie Parameters [7, 9] 

Component sm
o

/ A r a ( / ) / Kbk ( / ) / KHB

AB bk
3o

/ AABK

Methane 1.0000 3.7412 12.650 6 153.36 - - 

Ethane 1.4373 3.7257 12.400 6 206.12 - - 

n-Hexane 2.1097 4.4230 17.203 6 354.38 - - 

Water 1.0000 3.0555 35.823 6 418.00 1600.0 496.66 

Parameters for the Evaluation of the Pure Solvent Dielectric Constant [22] 

Parameters for Equation (2.41) [23] 

Solvent d1 d2 d3 d4 d5

Water -19.2905 29814.5 -0.019678 1.3189E-4 -3.1144E-7 
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Ion-specific Parameters [21] 

Ion 
o

/ Aii  
o

/ ABorn

ii  r  a  /iI eV 0, /i 10-24 cm3 

Na+ 2.3200 3.3600 12 6 47.2864 0.1790 

K+ 3.0400 4.3440 12 6 31.6300 0.8300 

Li+ 1.8000 2.6320 12 6 75.6400 0.0290 

Rb+ 3.3200 4.6220 12 6 27.2895 1.4000 

Cs+ 3.6200 5.0280 12 6 23.1575 2.4200 

Mg2+ 1.7200 2.9100 12 6 80.1483 0.0940 

Ca2+ 2.2800 3.7240 12 6 50.9131 0.4700 

Sr2+ 2.6400 4.1080 12 6 42.8900 0.8600 

Ba2+ 2.9800 4.2380 12 6 35.8400 1.5500 

Cl- 3.3400 3.8740 12 6 3.6127 3.6600 

Br- 3.6400 4.1740 12 6 3.3636 4.7700 

I- 4.1200 4.6860 12 6 3.0590 7.1000 

F- 2.3800 2.8460 12 6 3.4012 1.0400 

  

 

 

 




