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ABSTRACT

The primary motivation of this work is to simulate the complex behavior of oil,

gas and water as it flows through an unconventional reservoir. Unconventional reser-

voirs require hydraulic fracturing to provide the reservoir with conductive pathways

for fluid to flow. Without fracturing the rock, the oil and gas would remain trapped

in impermeable pore spaces. Unconventional reservoirs typically exhibit high het-

erogeneity in rock properties but also in fluid flow regimes. A simulation tool needs

to be able to capture small scale rock heterogeneities, multiple flow regimes, and

additional interaction physics between the rock and fluid.

In this dissertation, an alternative approach to modeling oil and gas reservoirs

at the field scale is presented. Instead of a ’top down’ paradigm, typical of classic

reservoir simulation techniques (finite element, finite volume and finite difference

methods), this work focuses on a ’bottom up’ paradigm called the lattice Boltzmann

method (LBM).

The LBM is a numerical discretization of the Boltzmann equation, in which a

fluid is described as a distribution of particles, each with a unique velocity. The

evolution of the distribution of particles is governed by a series of streaming and

collision operations. The streaming operation translates the particle distribution

through space. The collision operator describes how the particle distribution inter-

acts with other distributions - through collision and a transfer of momentum. The

collective behavior of small scale particle dynamics (streaming and collision steps)

yield macroscopic fluid behavior in the large space and time scale limit.
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1. INTRODUCTION: THE IMPORTANCE OF RESEARCH*

The shale revolution in the United States ushered in a new era of energy inde-

pendence. Horizontal drilling and hydraulic fracturing techniques enabled previously

uneconomical plays to be delivered at exceptional rates. However, one piece of the

unconventional technology mix has not yet reached the maturity of its counterparts -

unconventional reservoir simulation tools. Up until now, conventional techniques for

reservoir simulation were modified to account for the hyperbolic decline rates seen in

unconventional assets. These hyperbolic rates are the direct result of the relationship

between the completions process (e.g. hydraulic fracture treatments) and the com-

plex subsurface properties (e.g. fracture networks and nano-permeabilities). Decline

curve analysis (DCA) and analog reservoirs are still the only acceptable methods of

unconventional asset evaluation for the U.S. Securities and Exchange Commission [1].

Although DCA is a preferred method for oil and gas asset evaluations, the method

itself requires constant revision as the play is produced. Therefore the method is

susceptible to a large range of economic uncertainties. This underscores the under-

development of reservoir simulation tools towards the application of shale oil and gas

reservoirs and simultaneously the importance of finding alternative approaches.

The Holy Grail for the modern reservoir engineer is to develop a model that

accurately captures the complex nature of the unconventional reservoir to provide

accurate reserve estimates and production forecasts. The differences between con-

ventional and unconventional reservoirs are vast, as explained by [2] and [3]. Any

updates to reservoir simulation software must reflect this difference.

*Reprinted with permission from “Field-wide Flow Simulation in Fractured Porous Media
within Lattice Boltzmann Framework” by Z. Benamram, A. Tarakanov, H. Nasrabadi, and E.
Gildin, 2016. Advances in Water Resources, 96, 170-179, Copyright 2016 by Elsevier.
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Figure 1.1: An SEM image of a Devonian shale sample [5].

1.1 Description of the Industrial Problem

The fractured reservoir system (FRS), distinct from the porous rock matrix, pro-

vides high conductive pathways for fluid flow. The majority of fluid production

comes from these high conductive pathways and the neighboring porous matrix, and

so, the geometry of the FRS is a primary indicator of future fluid production [3, 4].

Fig. 1.1 is an image of a Devonian shale gas sample, highlighting the various scales

where hydrocarbons are stored [5].

The rate of production is also heavily dependent on the accelerating elements

within the flow field. In reservoirs where fluid flows only through the porous rock

matrix, Darcy flow is the primary flow regime [2]. However, in the FRS, inertial flows

and non-linear damping flows play a significant part in the evolution of the flow field

[6, 7, 8]. It is necessary, therefore, for a FRS simulation tool to address both the

2



complex boundary geometries and the multiple accelerating elements present in the

flow field.

1.2 Current Approaches to Problem

Fluid flow in porous media at the field scale is most popularly modeled through

finite element, finite volume, and finite difference methods [9].

To capture the cross flow between the porous rock matrix and the embedded frac-

ture network, these methods incorporate single-porosity, dual-porosity, and discrete

fracture models [10, 11, 12]. However, due to the challenges behind the implemen-

tation of these methods, and the high computational cost associated with capturing

the geometry of the FRS, many in practice choose to idealize the fracture geometry

[13, 14, 15].

1.3 The Approach to this Work

Instead of simulating the fractured reservoir system (FRS) within the finite ele-

ment/volume/difference framework, we propose a different simulation paradigm for

the FRS using the lattice Boltzmann method (LBM). The LBM has fundamental

properties, which make the method an attractive alternative - including the abil-

ity to capture multiple flow regimes [16] as well as fine grained system resolution,

while maintaining computational efficiency through simple parallelization procedures

[17, 18]. Originally developed from the Lattice Gas Automata, the LBM has been

successfully applied to fluid flow through porous medium at the pore scale [16]. How-

ever, sufficient pore geometry information is unavailable at the field scale, and so the

LBM was modified to simulate flow over the representative volume element (REV)

[19, 20, 21].

Most recently, Guo et al. [22] developed a generalized LBM (GLBM) for the

simulation of isothermal incompressible porous flows at the REV scale. In comparison

3



to previous REV scale LBM, the GLBM includes convective accelerating elements in

addition to linear and non-linear damping terms - perfect for the simulation of fluid

flow through a FRS.

In this work, we extend the Guo et al. model to the FRS. To fully integrate the

GLBM into a reservoir simulation tool, a GLBM FRS is proposed, which addresses

the development of boundary conditions along the interface of the fracture network

and the surrounding porous media. In addition, the GLBM FRS also provides a

derivation of the governing dimensionless equations and a comprehensive methodol-

ogy for the conversion between the lattice system and the physical system.

1.4 Scope of Research

The aim of this research is to develop a LBM computational framework to simu-

late fluid flow in unconventional reservoirs. This same framework should also be able

to model the correct physics within conventional reservoirs. Both two-dimensional

and three-dimensional simulations will be considered.

The scope can be broken down into three components.

1. Implement the lattice Boltzmann method for fluid flow in porous media at the

REV scale and validate performance against commercial reservoir simulation

software for homogenous reservoir case.

2. Incorporate rock heterogeneities and compare implemented model with SPE-

10, the collaborative solution project.

3. Develop local mesh refinement in LBM framework. Then investigate the effects

of local grid refinement on numerical instabilities and compressibility effects

inherent to the LBM.

4



1.5 Document Layout

The format of this paper is as follows: an overview of the LBM and the GLBM

at the REV scale is given. We then will present the GLBM FRS. All derivations can

be found in the appendices. Results for a homogenous and heterogenous reservoir

are presented and validated against commercial reservoir simulation software. This is

the first attempt to verify the GLBM in FRS against commercial reservoir simulation

software. Last, we present a methodology for grid refinement.

5



2. LATTICE BOLTZMANN METHOD FOR FLUID FLOWS*

Two approaches are employed in fluid simulations, commonly classified as bottom-

up and top-down. In the top-down approach, the governing macroscopic fluid equa-

tions are discretized in time and space - what we referred to as a conventional simu-

lation technique [9]. In the bottom-up approach, individual particles are tracked and

their sum behavior represents macroscopic fluid properties. The lattice Boltzmann

method is found to exist at a scale neatly between the two. The following section

will provide an overview of the LBM. We will begin with the kinetic description of a

fluid.

2.1 The Particle Velocity Distribution Function

A fluid is characterized as a collection of particles. The LBM treats this particle

ensemble as a distribution function. The distribution states the amount of particles

within the system associated with a specified velocity for all possible velocities. The

Maxwell Boltzmann distribution, given by Eq. 2.1, provides the velocity distribution

of a particle ensemble under the condition of point-like, structureless particles,

f(v) =

√(
m

(2πkT )

)3

4πv2e
−mv2

2kT (2.1)

where f is the particle distribution, v is the velocity, m is the particle mass, and KT

is the product of the Boltzmann constant and system temperature [16] .

The Maxwell-Boltzmann distribution is both a probability distribution and also

a density distribution. This difference in nomenclature arises from whether we apply

*Reprinted with permission from “Field-wide Flow Simulation in Fractured Porous Media
within Lattice Boltzmann Framework” by Z. Benamram, A. Tarakanov, H. Nasrabadi, and E.
Gildin, 2016. Advances in Water Resources, 96, 170-179, Copyright 2016 by Elsevier.
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Figure 2.1: The Maxwell Boltzmann Distribution, where T1 and T2 represent two
different system temperatures. The distribution indicates the most probable speed
of a particle. Another way to view the distribution is the average speed of a fluid
group. As the temperature of the system increases, the probability of higher particle
velocities increases.

the distribution to a single particle or a group. In the case of a single particle, the

Maxwell-Boltzmann distribution represents the most probable particle speed. For

the case of an ensemble, the integral of the distribution function will yield the fluid

density, shown in Fig. 2.1.

2.2 The Lattice Boltzmann Equation

The Boltzmann transport equation, shown in Eq. 2.2, is the time evolution of

the distribution function [23].

Dif =
[
∂t+

p

m
· ∂x+ F · ∂p

]
f(x, p, t) = Ω (2.2)

The evolution of the particle ensemble consists of streaming from one location to the

next and the collision between other particle ensembles. The left hand side of the

transport equation is the streaming step, or the spatial translation of the distribution

function, under the influence of an external body force F , where p is the particle

7



Figure 2.2: Two states of a system are pictured, before and after a collision event.
Top: In the initial state, two distribution functions are located a distance away, each
with a unique density distribution. Bottom: Once streaming has completed and the
particle ensembles arrive at the same position, collision occurs and the combined
distribution relaxes to a state of local equilibrium.

momentum. The right hand side shows the effect due to collision between particles,

Ω. Collision results in a transfer of momentum, also referred to as a relaxation to

local equilibrium [24]. Fig. 2.2 is a visual representation of these interactions.

The lattice Boltzmann equation (LBE), shown in Eq. 2.3 is the first order dis-

cretization of the continuous Boltzmann transport equation.

fi(x+ eiδx, t+ δt) = fi(x, t)−
fi(x, t)− f eqi (x, t)

τ
(2.3)

Here, the collision term Ω is approximated through a BGK operator [25]. This ap-

proximation states that the rate at which the streamed distribution function relaxes

towards local equilibrium is governed by the relaxation parameter τ . The subscript

i indicates the direction associated with the D2Q9 lattice [16].

Next, the equilibrium distribution function is discretized over velocity space, given

8



Figure 2.3: Top: The continuous Boltzmann distribution is discretized over a finite
set of particle velocities. The red lines are the distribution functions associated with
a discretized velocity. Bottom: The discretization process occurs over physical space.
The volume to be simulated is sectioned into nodes. Each node has a set of velocities,
pictured above as the discretized velocity space - D2Q9 (dimension 2, velocity 9).
The continuous particle distribution (red) is mapped over the 2-dimensional velocity
space to form a lattice distribution.

by Eq. 2.4.

f eqi = wiρ

[
1 +

ei · u
c2s

+
uu : (eiei − c2sI)

2c4s

]
(2.4)

where cs is the speed of sound of the lattice and defined as cs = δx
δt

1√
3
. Lattice

velocities ei and lattice weights wi are chosen in accordance with the D2Q9 model,

and given by Eq. 2.5 and 2.6.

ei =


0 i = 0

(cos(π
2
(i− 1)), sin(π

2
(i− 1))) i = 1...4

√
2 (cos(π

4
+ π

2
(i− 5)), sin(π

4
+ π

2
(i− 5))) i = 5...8

(2.5)
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Figure 2.4: Left: Distributions prior to streaming. Center: Distributions after
streaming. Right: Distributions after collision

wi =


4/9 i = 0

1/9 i = 1...4

1/36 i = 5...8

(2.6)

Fig. 2.4 attempts to show how the discretized distributions stream and collide.

In the left most image, only the distribution functions which interact with the center

node are shown. The black arrows are the discretized distribution functions of the

center node. The colored arrows represent the distribution functions of the imme-

diately neighboring nodes, which interact with the center node. The center image

shows the the location of the distribution functions after streaming. As pictured, the

distributions of the neighboring nodes (color) all meet at the center after translation,

while the center node distribution functions have radiated outward. The right image

represents the color distributions after collision has occurred. This collision shows the

relaxation to local equilibrium. After the collision event occurs, the process repeats.

In order to calculate the distribution functions after the collision step, the volume

averaged density and and velocity need to be calculated through Eq. 2.7.
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ρ =
∑

fi, and ρu =
∑

eifi (2.7)

Through the Chapman-Enskog expansion, an unmodified LBE retains the Navier-

Stokes Equation, given by Eq. 2.8, in the incompressible limit [26].

∂(ρu)

∂t
+∇ ·

(
ρuu

φ

)
= −∇P +∇ ·

(
ρνe
(
u∇+∇u

))
(2.8)

where P is the fluid pressure and νe is the effective kinematic viscosity corresponding

to the viscous stress that exists within the fluid itself (as opposed to kinematic

viscosity ν, which relates to the viscous stress near solid-liquid interfaces). We can

group this equation into accelerating elements. The left hand side of Eq. 2.8 is the

inertial element. The right hand side consists of the pressure and viscous elements.

In summary, fluid is treated as a statistical ensemble of point like particles, the

time evolution of which is governed by a series of streaming and collision steps.

Although many assumptions have been made in this kinetic description, it is proven

in the macroscopic incompressible limit that the LBE retains the incompressible

Navier-Stokes solution.
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3. A GENERALIZED LATTICE BOLTZMANN MODEL FOR FLUID FLOW

IN POROUS MEDIA AT THE REV SCALE*

Soon after its emergence, the LBE was successfully applied to fluid flow at

pore scales [27]. A primary advantage of the method is to simulate complex porous

geometries without generating a complex lattice mesh. By adding more nodes within

the same volume, the resolution of the boundary between solid and fluid nodes is

enhanced. This benefit, coupled with a simple parallelization procedure of the LB

algorithm, allows for the fast and accurate simulation of fluid flow through a complex

geometry [28].

However, a detailed description of the pore geometry is unavailable over a large

flow domain. Based on currently available measurement tools, only volume aver-

aged rock properties (permeability and porosity) are obtainable. The representative

volume element (REV) is the spatial extent over which this upscaling occurs [29].

Therefore, the Navier-Stokes equation is generalized to include empirically derived

damping forces, which are a function of these volume averaged rock properties. Eq.

3.1 and 3.2 reflect the resistance to flow due the presence of porous medium.

∂(ρu)

∂t
+∇ ·

(
ρuu

φ

)
= −∇P +∇ ·

(
ρνe
(
u∇+∇u

))
+ ρF (3.1)

F = −φν
K

u− φFe√
K
|u|u + φG (3.2)

where F is the damping term, k is the permeability, ν is the fluid viscosity due to

*Reprinted with permission from “Field-wide Flow Simulation in Fractured Porous Media
within Lattice Boltzmann Framework” by Z. Benamram, A. Tarakanov, H. Nasrabadi, and E.
Gildin, 2016. Advances in Water Resources, 96, 170-179, Copyright 2016 by Elsevier.
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sheer between fluid and solid boundaries. F includes the linear in velocity Darcy

term, the non-linear in velocity Forchheimer term and an external body force G. As

φ→ 1 in the absence of porous media, the generalized Navier-Stokes equation reverts

to the Navier-Stokes equation. At low flow velocities, the generalized Navier-Stokes

equation reduces to Darcy flow, shown in Eq. 3.3.

φν

K
u = −∇P (3.3)

Significant variations of permeability and porosity over small distances require

that the REV be treated as small as possible. Natural and induced fractures add

another layer of complexity in modeling flow. Fracture geometries require high spatial

resolution. For similar reasons why the LBM is preferable over finite difference

techniques in modeling fluid flow at the pore scale, a generalized LBM would be a

suitable solution to model the REV scale.

Several LB models have been developed to simulate fluid flow through porous

medium at the REV scale [19, 20, 21]. Selection of an optimal model should incorpo-

rate all relevant flow mechanisms, which govern fluid flow in a highly heterogeneous

medium.

Within the LB framework, Guo et al. [22] proved through the Champman-Enskog

expansion that the generalized Navier-Stokes equation can be obtained from a a

generalized lattice Boltzmann model (GLBM). To represent the presence of porous

medium at every lattice node, the LBE is expanded to include a damping term,

which is a function of the volume averaged permeability and porosity shown in Eq.

3.4 and 3.5.

fi(x+ eiδx, t+ δt) = fi(x, t)−
(fi(x, t)− f eqi (x, t))

τ
+ δtFi (3.4)
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Fi = wiρ

(
1− 1

2τ

)[
ei · F
c2s

+
uF : (eiei − c2sI)

φc4s

]
(3.5)

where the particle distribution functions fi are treated as equilibrium distribution

functions under the assumption of small deviation from local equilibrium [16]. F is

the hydrodynamic damping force shown in Eq. 3.2. The discretized density distri-

bution function is also altered to reflect the presence of a porous medium shown in

Eq. 3.6.

f eqi = wiρ

[
1 +

ei · u
c2s

+
uu : (eiei − c2sI)

2φc4s

]
(3.6)

The equilibrium distribution function and the forcing term within the generalized

LBE are both a function of the macroscopic fluid velocity. To solve for this unknown,

the fluid velocity is defined by Eq. 3.7.

ρu =
∑

eifi +
δt
2
ρF (3.7)

F is also a function of u and so Eq. 3.7 is non-linear with respect to velocity. Since

the macroscopic velocity is quadratic, Eq. 3.7 can be re-written as Eq. 3.8.

u =
v

c0 +
√
c20 + c1|v|

(3.8)

where v is termed the temporal velocity and defined in Eq. 3.9.

ρv =
∑

eifi +
δt
2
φρG (3.9)

c0 and c1 are shown in Eq. 3.10 and 3.11.
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c0 =
1

2

[
1 + φ

δt
2

ν

K

]
(3.10)

c1 = φ
δt
2

Fe√
K

(3.11)

The local density computation is identical to the unmodified LBM, where lattice

density is equivalent to the summation of individual density distribution functions.

In a supplementary article [30], Guo et al. shows how the governing macroscopic

equations are retained through the Chapman-Enskog expansion in the incompressible

limit. Through this analysis, equations of state are developed, shown in Eq. 3.12.

P =
c2sρ

φ
and νe = c2s(τ −

1

2
)δt (3.12)

15



4. BOUNDARY CONDITIONS*

4.1 Well Boundary Conditions

Although high variations in permeability and porosity require the node to node

length be minimized, the dimensions of the well and fracture are often smaller than

the imposed unit node length. Therefore, it is often necessary to treat system bound-

aries with as few lattice nodes as possible. However, to retain the governing macro-

scopic flow equations through the Chapman-Enskog expansion, there must be suffi-

cient node resolution to distinguish between the hydrodynamic and kinetic regimes

[26]. The Chapman-Enskog analysis depends on the expansion through the smallness

parameter, which is the ratio between the kinetic mean-free-path length and the hy-

drodynamic (smallest macroscopic) length. When the LBE simulates fluid flow over

a few lattice nodes, there is no separation between the kinetic and hydrodynamic

scales, calling the method’s validity into question [31].

A low resolution boundary of the well and fracture boundary is achievable, how-

ever, through a combination of the damping term inherent to the GLBM and a

modified Zou-He boundary condition applied to the well and fracture system. This

section will contain the derivation and the procedure to apply a modified Zou-He

boundary.

First, to establish the geometry of a constant pressure well and linear fracture, the

boundary nodes should be set upon the nearest neighboring nodes of the boundary. In

this way, the size of the well and the width of the fracture is incorporated. Pressure

is interpolated linearly between the boundary and the nearest neighboring nodes

*Reprinted with permission from “Field-wide Flow Simulation in Fractured Porous Media
within Lattice Boltzmann Framework” by Z. Benamram, A. Tarakanov, H. Nasrabadi, and E.
Gildin, 2016. Advances in Water Resources, 96, 170-179, Copyright 2016 by Elsevier.
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(a) Well Boundary (b) Fracture Boundary

Figure 4.1: Pressure is interpolated from the boundary (red) to the nearest neighbor-
ing lattice nodes (yellow) at each time step. At these neighboring nodes, the density
distribution functions are solved using a modified Zou-He Boundary Condition.

extending radially from the boundary, as shown in Fig. 4.1.

From the interpolated pressure, the lattice neighboring node density is calculated

through an equation of state, given by Eq. 3.12. The interpolated density is used to

solve for the unknown density distribution functions [32].

Pictured in Fig. 4.2 is the area in which the well and fracture boundary lies. On

the face of these boundaries, a direct application of the Zo-He boundary condition

will yield all unknown distributions that are in the direction of fluid flux. At the

corner nodes of the fracture boundary, the flux is neither normal nor parallel to the

containing boundary surfaces and therefore the Zou-He boundary must be modified

to capture the distribution functions which are in the true direction of fluid flux.

As an example calculation, consider the bottom left corner node of the fracture

in Fig. 4.2b. The unknown distribution functions, f3, f4, and f7 are calculated in

Eqs. 4.1, 4.2, and 4.3:
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(a) Well Boundary (b) Fracture Boundary

Figure 4.2: The area pictured in red is the non-computational regime wherein the
boundary lies. The yellow nodes are the nearest neighboring nodes to the boundary.
The arrows represent the distribution components that stream from areas not within
the computational regime. These distributions are solved through a modified Zou-He
boundary condition.

f3 = f1 +
2

5

(
ρ− (f0 + f6 + f8 + 2(f1 + f2 + f5))

)
+ 2(f6 − f8) (4.1)

f4 = f2 +
2

5

(
ρ− (f0 + f6 + f8 + 2(f1 + f2 + f5))

)
+ 2(f8 − f6) (4.2)

f7 = f5 +
1

5

(
ρ− (f0 + f6 + f8 + 2(f1 + f2 + f5)

)
(4.3)

The full derivation of is found in Appendix B. We can apply the modified Zou-

He boundary to the well for a more robust treatment of the unknown distribution

functions of the well boundary.

To summarize, minimal node usage of the inner boundary is likely in the case

of a sparse grid lattice configuration. There have been concerns over low resolution

boundaries not respecting the Chapman-Enskog assumptions. In addition, low res-
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olution boundaries can pose problems including the development of lattice effects

(flow evolutions that are a result of the underlying grid geometry) [16]. A modified

Zou-He boundary condition is established to counteract unrealistic flow evolutions

and provide stable and accurate simulation results.

4.2 Reservoir Edge Boundary Conditions

Two outer boundary conditions are considered in reservoir simulation: the no-

flow boundary condition and the constant pressure boundary condition. The no-flow

boundary condition simulates a volumetric reservoir (no external sources of flow on

the outer boundary). The constant pressure boundary simulates a reservoir that is

bounded by another aquifer system.

Within the LB framework, a direct application of the Zou-He boundary condition

on these outer nodes is sufficient. For the simulations posed in this paper, a no-flow

boundary condition is used.
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5. GOVERNING EQUATIONS AND CONVERSION BETWEEN PHYSICAL

AND LATTICE SYSTEMS*

The following two sections will provide the reader with a comprehensive method-

ology for applying the GLBM [30] towards the fractured reservoir system (FRS).

Along with the GLBM itself, we must also consider the boundary conditions be-

tween the fracture network system and the porous media. In addition a consistent

method for converting between the lattice system and the physical system must be

established.

5.1 Lattice to Physical System Conversions: Dynamic Similarity

For two systems of different scales to exhibit identical flow evolutions, dynamic

similarity must exist. Dynamic similarity ensures that two systems have identical

length scale, time scale, and force scale ratios [33].

We will consider two geometries - the well and fracture. For the lattice system

and physical system to exhibit geometric similarity, all three spatial dimension ratios

of the reservoir as well as the ratio of well and fracture length to reservoir length

must be identical.

A means to measure time scale and force scale ratios is by the non-dimensionalization

of the generalized Navier-Stokes equation, through which the relative magnitudes

of each force are compared. To derive the non-dimensional form of the general-

ized Navier Stokes equation, all flow dependent variables are subsituted for a linear

combination of the associated non-dimensional variables and characteristic system

variables. A set of characteristic system parameters provide a constant measure of

*Reprinted with permission from “Field-wide Flow Simulation in Fractured Porous Media
within Lattice Boltzmann Framework” by Z. Benamram, A. Tarakanov, H. Nasrabadi, and E.
Gildin, 2016. Advances in Water Resources, 96, 170-179, Copyright 2016 by Elsevier.
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conversion between the physical and dimensionless systems. Typically, boundary

conditions inform which parameters are suitable.

The characteristic length r0,p is the physical distance from the inner boundary

(well and fracture) to the edge of the reservoir. A second choice for the characteristic

length is the node to node distance, or the resolution of the lattice, in physical

units. The characteristic time t0,p is chosen to be the fastest time scale for which

a fluid can travel the characteristic length. This time scale occurs when the well

is opened to production and exhibits the highest flow velocities, providing a bright

line measurement for the characteristic velocity u0,p. The characteristic time t0,p can

also be chosen for the time over which a boundary condition changes. The physical

variables, rp, tp, and up are listed in their dimensionless form as represented in Eq.

5.1.

rd = rp/r0,p, td = tp/t0,p, ud = up/u0,p (5.1)

Eq. 5.2 completes the set of dimensionless variables required for the nondimension-

alization of the generalized Navier-Stokes equation.

∇d = r0,p∇p, ∇2
d = r20,p∇2

p, Pd =
Pp

µe
u0,p
r0,p

(5.2)

where the physical pressure is nondimensionalized by a characteristic viscous sheer

stress. The governing flow equation to be made dimensionless is an alternate form

of the generalized Navier-Stokes equation, shown in Eq. 5.3, where only the Darcy

term within the damping force is considered.

∂u

∂t
+∇ ·

(
uu

φ

)
= −1

ρ
∇P + νe∇2u− φν

K
u (5.3)
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Eq. 5.3 shows five forcing elements: the time dependent term (variation), convection,

diffusion, pressure, and damping in the order that they appear. A dimensionless

form of the governing equation, shown in Eq. 5.4, is obtained by substituting the

dimensionless variables found in Eq. 5.1 and 5.2. The full derivation can be found

in Appendix A.1.

Re

St

∂ud
∂td

+Re∇d ·
udud
φ

= −∇dPd +∇2
dud −

φ

JDa
ud (5.4)

Re =
u0,pr0,p
νe

, J =
νe
ν
, Da =

K

r20,p
(5.5)

φ =
pore volume

total volume
, St =

t0,pu0,p
r0,p

(5.6)

The final non-dimensionalized formulation shows that the evolution of the flow

field is government by five dimensionless parameters - the Reynolds number Re, the

Viscosity Ratio J , the Darcy Number Da, porosity φ and the Strouhal number St.

In proposing the GLBM, Guo et al. mentioned only four non-dimensional param-

eters governing the evolution of the flow. Shown in the non-dimensional form of the

generalized Navier-Stokes equation above, the Strouhal number is also a necessary

component when considering the equivalency between physical and lattice systems.

The Strouhal number is the ratio of the characteristic flow time scale, r0,p/u0,p,

normalized by the reference time, t0,p. If boundary conditions are changing quickly

compared to the flow itself, which can be the case if the bottom-hole pressure rapidly

drops, then the Strouhal number will highlight the difference in magnitude between

the convective term and the temporal terms. For the purposes of the simulations

posed in this paper, the boundary conditions are constant. Therefore, the Strouhal
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number will be at unity.

To simulate Darcy flow, a choice in parameters must be made such that the

magnitude of the Reynolds number is negligible, the Strouhal number is at unity and

the combination of the Viscosity ratio and the Darcy number minimized. Under these

conditions, the non-dimensionalized governing equation given in Eq. 5.4 reduces to

the dimensionless Darcy equation, shown in Eq. 5.7.

φ

JDa
ud = −∇dPd (5.7)

We have determined a set of dimensionless parameters, which govern fluid flow

evolution by nondimensionalizing the momentum balance equation. Let us apply

the same technique to the continuity equation given by Eq. 5.8 for the case of an

incompressible fluid with no sinks or sources.

∂

∂t
(ρφ) = −∇ · (ρu) (5.8)

Eq. 5.9 is the dimensionless form of Eq. 5.8. The derivation can be found in

Appendix A.2.

∂

∂td
ρd = −1

φ
DaSt · ∇2(Pd) (5.9)

The rate at which density changes over the flow field is proportional to the com-

bined magnitude of the porosity, Darcy and the Strouhal number. This dimension-

less grouping allows for a scaling of the characteristic time step. Any scale up to the

characteristic time can be absorbed into the permeability term.

To conclude the discussion on dimensionless numbers, a mesoscopic description of

a fluid can simulate identical flow evolutions to a system several orders of magnitude
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in size larger by ensuring that the ratio of forces acting on a volume of fluid is

identical and dynamic similarity is maintained.
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6. HOMOGENOUS AND HETEROGENOUS WELL SIMULATION*

6.1 Homogenous Well Simulation Results

The homogenous simulation inputs for the well and the fracture for both the

LBM and commercial simulation are as follows: The reservoir is segmented into a

2D array of 200x200 nodes / grid blocks. The node to node distance (or length of

the grid block) is 1m.

The fluid is treated as incompressible and the reservoir is fully saturated. Rock

compressibility is omitted. The permeability k = 1 darcy and porosity φ is set at

20%.

The diameter of the well is 0.2m set directly upon the center node. The fracture is

treated as a line source positioned equidistantly from the surrounding nodes. Three

fracture lengths are considered for simulation - 80m, 120m, and 160m.

The initial pressure of the reservoir is 100 kPA and the bottomhole flowing pres-

sure is set to be 95% of the initial reservoir pressure. The inner boundary is treated

as a constant pressure boundary and the edge of the reservoir maintains a no flow

boundary condition. Refer to Section: Lattice to Physical System Conversions: Dy-

namic Similarity for converting physical parameters into lattice parameters.

Fig. 6.1 shows the simulation results for a constant pressure well producing

from a homogenous reservoir. These results are compared against the commercial

simulation runs. The results are in excellent agreement for the case of Darcy flow.

*Reprinted with permission from “Field-wide Flow Simulation in Fractured Porous Media
within Lattice Boltzmann Framework” by Z. Benamram, A. Tarakanov, H. Nasrabadi, and E.
Gildin, 2016. Advances in Water Resources, 96, 170-179, Copyright 2016 by Elsevier.
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(a) Homogenous well result comparisons

(b) Homogenous well pressure profile

Figure 6.1: Simulation of homogenous well reservoir in Darcy flow. Left: Com-
parison plot between generalized LBM (line) and commercial simulation software
(box). Right: Visualized pressure profile of well through production life of reservoir.
Pressure measured in lattice units.
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6.2 Heterogenous Well Simulation Results

The heterogenous simulation inputs for the well case for both the LBM and

commercial simulation are as follows: The reservoir is segmented into a 2D array of

220x60 nodes / grid blocks. The node to node distance (length of the grid block) is

3 m.

The fluid is treated as incompressible and the reservoir is fully saturated. Rock

compressibility is omitted. The permeability and porosity arrays are taken from

the 10th layer of the SPE-10 collaborative solution project, shown in Fig. C.0.1 in

the Appendix [34]. The largest permeability value in the array is 2 Darcy and the

minimum is 3.8 ·10−6 Darcy. The maximum porosity value is 48% and the minimum

is 0%. However, the generalized equilibrium distribution function, given in Eq. 3.6,

cannot take values porosity values of 0%. Therefore, all null values of porosity are

treated as 10−6%.

For well simulations, the diameter of the well is 0.2 m set in the center of the

reservoir. The initial pressure of the reservoir is 100 kPA and the bottomhole flowing

pressure is set to be 95% of the initial reservoir pressure. The inner boundary is

treated as a constant pressure boundary and the edge of the reservoir maintains a

no flow boundary condition. Refer to the methodology section for physical to lattice

conversion methodology.

Fig. 6.2 shows the results for the simulation of fluid flow in a heterogenous porous

material under production from a constant pressure well. The LBM results are

compared against the commercial simulation results and show excellent agreement.

An interesting note: one of my concerns when developing the heterogenous model

was implementing variations in permeability and porosity at the node level. The

generalized naiver-stokes equation is only valid in the long wavelength long time limit.
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(a) Heterogenous well result comparison

(b) Heterogenous well pressure profile

Figure 6.2: Simulation of heterogenous well reservoir in Darcy flow. Left: Com-
parison plot between generalized LBM (line) and commercial simulation software
(box). Right: Visualized pressure profile of well in heterogenous medium through
production life of reservoir. Pressure measured in lattice units.
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What this means is that the generalized Navier-Stokes equation is not retained over

a small domain of lattice nodes. We questioned whether variation in rock property

at the node level would yield a deviating result from expected Darcy flow. What the

results showed us was that this was not the case.
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7. LOCAL GRID REFINEMENT

7.1 Motivation: Grid Refinement for Fracture Modeling

A constant pressure boundary condition along the surfaces of a fracture network

is a common technique for modeling flows between a fracture network and the sur-

rounding porous media [35, 36] . However, the use of a constant pressure boundary

condition throughout the entirety of the fractured system is unphysical. The pressure

response in the fracture is not instantaneous when the well is opened for production

(i.e. the pressure response along a fracture is time dependent) [37]. This is why

previous finite difference/volume/element and analytical models employ the concept

of alternate permeability / porosity to simulate flow within a fracture [38, 39].

Refining the lattice mesh around the fracture zones into a high permeability

fracture space is a useful technique. A locally mesh refined GLBM could simulate

high Reynolds number and Forchheimer flows, while also capturing complex fracture

geometry [22].

In addition, grid coarsening for the lattice Boltzmann method would improve the

computational cost for simulation on a potentially dense lattice space [40, 41, 42].

For regions at the edge of the reservoir, where increasing reservoir resolution has

a negligible effect on production rates / simulation results, grid coarsening reduces

computational cost, while maintaining accuracy [43].

7.2 Grid Refinement Overview

There are two methods for local grid refinement: the multi-grid technique and

the multi-domain technique [44, 45]. In the multi-grid technique, the coarse lattice

mesh is present over the entire simulation domain, shown in Fig. 7.1.

The second method is the multi-domain technique. In the multi-domain ap-
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Figure 7.1: A multi-grid technique for local grid refinement. Finer meshes are over-
laid on top of coarser meshes. Streaming and collision step occur over both the coarse
and fine meshes even in areas of overlap [44].

proach, there is minimal overlap between coarse and fine meshes. Shown in Fig. 7.2,

regions are not duplicated. The benefit is lower computational cost and memory

usage at the expense of simplicity. One original motivation of using the LBM was

efficiency and so a multi-domain approach aligns with this goal.

For this research, a local grid refinement scheme, developed by Lagrava et al.

[44], is modified towards reservoir simulation at the field scale. The original Lagrava

grid refinement scheme was for an unmodified lattice Boltzmann method, which

simulated the Navier-Stokes equation. Because the GLBM is an extension of the

LBM, modification is required to ensure dynamic similarity across transition zones.

7.3 Grid and Temporal Refinement

The choice in the level of grid refinement is application dependent but subject

to increasing error as the ratio between successive grid refinement spacings increases

[46]. For this discussion, the difference in scales between the coarse lattice mesh and

fine lattice mesh is by a factor of 2.

δxf = δxc/2 (7.1)
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Figure 7.2: A multi-domain technique for local grid refinement. Finer meshes are
overlaid on top of coarser meshes. Streaming and collision step occur over both the
coarse and fine meshes even in areas of overlap [44].

where δx is the spacing between lattice sites.

The choice in temporal refinement is dependent on what are the dominating

forcing elements within the flow field. Convective scaling and diffusive scaling are

the most common temporal scaling operations. In convective scaling, the temporal

scale is proportional to the spatial scale δt ∝ δx. In diffusive scaling, the temporal

scale is proportional to the square of the spatial scale, δt ∝ δx2 [47].

If we inspect Eq. 2.8, we see that amongst the terms, there are differing rela-

tionships between the spatial and temporal scales. The advection terms exhibit a

convective relation, while the viscous terms show a diffusive relation. And so de-

pending on the flow regime of interest, the method by which the time step scales

varies.

Since we simulate a mixed equation, in which diffusive, advective, and damping
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forces are all present, a choice in either convective refinement or diffusive refinement

wont work perfectly. In the sections following, a method for convective scaling in

a multi-domain mesh is developed. We then explore how a convective refinement

technique tests against a 2D channel flow and a 2D point source geometry. After,

we discuss our work with diffusive grid refinement.

7.4 Convective Refinement for Flows in Porous Media

For two systems of differing dimensions to exhibit similar flow evolutions, dy-

namic similarity must be achieved. Mentioned previously in the discussion about

dimensionless numbers, if two systems have similar geometries and the various forc-

ing elements are in constant proportion to one another, both systems will exhibit

similar flow evolution. This concept drives the development of a local refinement

technique.

7.4.1 Rescaling Physical Properties

To understand how a scaling procedure of the LB equation is performed, we must

identify how the particle distribution function and the forcing terms are spatially and

temporally dependent. To ensure dynamic similarity, we must scale the distribution

function and the magnitudes of the prevailing forces. Let us first consider how to

scale the forcing terms, and then how to treat the distribution function itself.

7.4.1.1 Rescaling Forcing Terms

Mentioned in previous sections, the governing parameters of a generalized Naiver-

Stokes equation are the Reynolds number, the Viscous number, the Darcy number,

porosity, and the Strouhal number. To ensure dynamic similarity, these dimensionless

quantities must be equivalent regardless of scale [33].

Let us first consider how scaling effects the viscous forces through examination
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of the Reynolds number.

Re =
UnLn
νen

(7.2)

where the subscript n represents either a coarse or fine grid, and Un and Ln are char-

acteristic velocities and lengths of the system. The dimensionless numbers remain

the same regardless of scale. Therefore, a relation can be made between the fine and

coarse systems, shown in Eq. 7.3

Rec = Ref =
ULδtc
δx2cνec

=
ULδtf
δx2fνef

(7.3)

νef =
δxc
δxf

νec (7.4)

Given the equation above, we can now rescale the collision term, τ :

τc =
1

c2s

δxf
δxc

νef +
1

2
(7.5)

or the converse:

τf =
1

c2s

δxc
δxf

νec +
1

2
(7.6)

Next, let us consider how scaling affects the damping effects due the presence

of porous media. The Darcy number is defined and permeability is scaled in the

following set of equations:

Da = Kn/L
2
n (7.7)
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Dac = Daf =
Kc

L2/δx2c
=

Kf

L2/δx2f
(7.8)

Kf = Kc
δx2c
δx2f

(7.9)

The Viscous number is defined and viscosity is scaled using the scaling informa-

tion provided by τ scaling procedure in the Reynolds number section.

J =
νen
νn

(7.10)

Jc = Jf =
νec
νc

=
νef
νf

(7.11)

νf =
νef
νec

νc =
δxc
δxf

νc (7.12)

Last, porosity is scale independent and therefore does not change from the coarse

system to the fine nor does it impact how the distribution function itself is rescaled.

To summarize, dimensionless numbers provide a method of conversion between

coarse and fine system properties to ensure dynamic similarity.

7.4.2 Rescaling the Distribution Function

Now that the forces are acting in constant proportion between a fine and coarse

system, the next step is to develop a scheme for scaling the particle distribution

function as it transitions from one mesh to another. But before we begin scaling the

distribution function, let’s quickly review the LBE itself.

A particle distribution function can be approximated by a taylor expansion

through the smallness parameter ε, shown in Eq. 7.13 [16].
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fi = f eqi + εf 1
i +O(ε2) (7.13)

where ε is typically taken to be the ratio between mean free path of a particle and

the smallest macroscopic length realized in the simulation. All higher order terms

in Eq. 7.13 are small perturbations of the equilibrium distribution function, also

referred to as the non-equilibrium components.

An explicit representation of the distribution function is given by Eq. 7.14.

fi = wiρ

[
1 +

ei · u
c2s

+
uu : (eiei − c2sI)

2c4s

]
−wiρ
c2sω

Qi : S (7.14)

Qi = eiei − c2sI (7.15)

S =
1

2

[
∇u + (∇u)T

]
(7.16)

The above explicit representation of the distribution function includes the equilib-

rium and non-equilibrium portions of the distribution function. The non-equilibrium

portion is given by Eq. 7.15 and 7.16, which represents the shear strain rate of a fluid

element acting upon its surroundings. By altering the temporal and spatial scales,

we must consider how this changes the distribution function.

7.4.2.1 Rescaling the Equilibrium Distribution Function

First, let us consider the equilibrium portion of the distribution function. The

equilibrium portion of the distribution function in Eq. 7.14 is a function of lattice

constants, fluid density, and a damped velocity. Lattice weights are grid format

dependent (D2Q9 or D3Q19), and do not change under scaling. The speed of sound
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of the lattice, cs = δx/δt remains constant under convective scaling. Density is a

continuous field on the lattice and so no scaling is required there either.

In the unmodified lattice Boltzmann scheme, velocity, v ∝ δx/δt, goes unchanged

during refinement. However, in the presence of porous media, velocity is damped.

The magnitude of the damping is dependent on viscosity, time step, and the perme-

ability of the formation and so therefore it is scale dependent. Damped velocity is

given by Eq. 3.7 and the continuity of the damped velocity between fine and coarse

grids is given by Eq. 7.17.

uc

uf

= α (7.17)

where α is the factor to be determined to impose continuity on the damped velocity

field. If the terms in Eq. 7.17 are expanded using Eq. 3.7, we arrive at Eq. 7.18.

vc

1 + φ δtc
2

νc
Kc

= α
vf

1 + φ
δtf
2

νf
Kf

(7.18)

If the the temporal velocity terms are replaced with a characteristic velocity U ,

we get Eq. 7.19.

U δtc
δxc

1 + φ δtc
2

νc
Kc

= α
U

δtf
δxf

1 + φ
δtf
2

νf
Kf

(7.19)

Through some algebraic manipulation we arrive at Eq. 7.20.

α =
δxf
δxc

δtc
δtf

+
δxf
δxc

νf
νc

Kc

Kf

(7.20)

Through Eq. 7.20, an equivalency can be made between the equilibrium distri-

bution function of the coarse and fine meshes, shown in Eq. 7.21 and 7.22.
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f eqi,f = f eqi,c(ρc, αuc) (7.21)

f eqi,c = f eqi,f (ρf ,
1

α
uf ) (7.22)

7.4.2.2 Rescaling the Non-Equilibrium Distribution Function

In previous work by Lagrava et al. [44], the non-equilibrium distribution function

was scaled by creating an equivalency between the non-equilibrium portion of the

distribution function of the fine and coarse meshes, shown in Eq. 7.23.

fneqc = βfneqf (7.23)

Solving for β results in the following equations, shown in Eq. 7.24 and 7.25.

fneqi,f =
τf
2τc

fneqi,c (xc) (7.24)

fneqi,c =
2τc
τf
fneqi,f (xf ) (7.25)

Combining the equilibrium and non-equilibrium scalings gives Eq. 7.26 and 7.27.

fi,f = f eqi (ρ(xc), αu(xc)) +
τf
2τc

fneqi,c (xc) (7.26)

fi,c = f eqi (ρ(xf ),
1

α
u(xf )) +

2τc
τf
fneqi,f (xf ) (7.27)
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Figure 7.3: Transition zone between coarse and fine meshes in the convective flow
regime. The sites labeled ’copy from coarse to fine’ are the sites where information
from the coarse grid is rescaled to all fine sites in the marked zone. Sites labeled
’copy from fine to coarse’ are the sites where information is rescaled from the fine
sites located within the coarse sites. The transition zone is two coarse lattice sites
wide. This is due to the linear relation between time and lattice spacing. Twice the
resolution requires twice the time steps for convective flows.
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Figure 7.4: Above the dashed line is a 1 dimensional excerpt from Fig. 7.3. Below the
dashed line, the fine and coarse lattices are made distinct to highlight the unknown
distribution functions after each successive streaming step.

7.4.3 Coupling from Fine to Coarse Grid

The interface between the fine and coarse grids can be thought of conceptually as

a boundary. Consider each individual mesh as a separate entity, shown in Fig. 7.3. At

the edges of their domain, after the streaming step is completed, there are unknown

distribution functions that have streamed from outside of the computational domain.

The distribution functions from the adjacent meshes (fine or coarse) can be used to

solve for these unknown distributions.

Let us first consider a 1D example, shown in Fig. 7.4. This 1D example is

split into the coarse and fine components shown below the dashed line. The arrows

indicate the unknown distribution functions for the one dimensional case.

There is an overlap between the meshes. This is so that at the end of the streaming

step for each mesh, there will be unknown distribution functions to solve for at the

boundary between the fine and coarse domains. If all the density and flow information

is known at one scale, the scaling techniques shown previously can be applied to then

solve for the unknown distribution functions at the other scale.

A few methods to solve for the unknown distribution functions along the bound-

ary using scaled fluid and rock properties are shown in the subsequent sections.
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7.4.3.1 Schema 0: No scaling

What were to happen if no scaling was applied when solving for the unknown

distribution functions? A simple copy and paste operation is performed on the

distribution functions on the fine to the coarse site. This scheme is obviously incorrect

based on the theory provided in earlier sections. It will be useful to show how

drastically the effects of no scaling are on a final solution.

7.4.3.2 Schema 1: Scaling Non-Equilibrium and Equilibrium Distributions

For all distribution functions on coarse nodes along the boundary of the coarse

and fine domain, Eq. 7.27 is used. This method assumes that both the equilibrium

and non-equilibrium portions of the distribution function contribute significantly to

the evolution of the flow field.

7.4.3.3 Schema 2: Scaling Equilibrium Distribution Only

Eq. 7.28 is used to solve for all coarse distribution functions along the boundary.

This assumes that the non-equilibrium portion of the distribution function does not

contribute to the evolution of the flow field.

fi,c = f eqi,f (ρf ,
1

α
uf ) (7.28)

.

7.4.3.4 Schema 3: Zou-He Scaling

The last method for solving for unknown distribution functions is an extension of

the Zou-He boundary condition [32]. First, the velocity of fine grid nodes are scaled

using Eq. 7.17. Then using the known density from the fine grid and the scaled

damped velocity, all unknown distribution functions on the coarse grid can be solved
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for using the Zou-He methodology.

7.4.4 Coupling from Coarse to Fine Grid

The coupling process from the coarse grid to the fine grid is somewhat more

complicated than rescaling from fine to coarse. Shown in Fig. 7.3, marked in the

’transition from coarse to fine’ zone, there are two types of fine lattice nodes. The

first type exist concurrently with the coarse nodes. The second type are adjacent to

coarse nodes.

First, consider the fine lattice nodes that exist upon the coarse lattice nodes

within the transition zone. Mentioned previously, two time steps occur in the fine

mesh for every one time step in the coarse mesh in a convective refinement scheme.

At time step t+ δtf on the fine mesh, a temporal interpolation is performed to solve

for the density and velocity of the coarse mesh. For the fine sites that are not on

coarse sites, a spatial interpolation step is also required. The damped velocity of the

coarse mesh is rescaled using Eq. 7.17. Once the density and the damped velocity

are known on the fine sites, we can employ any scheme shown in the previous section

depending on the requirements of the application.

At time step t + 2δtf , a temporal interpolation is not needed, since the nodal

information is available from the coarse nodes sites. A spatial interpolation is still

required for fine nodes not align with coarse nodes. Once the damped velocity is

scaled, any scheme appropriate to the application can be used.

7.4.5 Grid Coupling Algorithm

The Lagrava et al. [44] grid coupling algorithm is used for GLBM multi-domain

meshes. Below are the steps required to pass information between meshes using the

theory provided in previous sections.

1. A collide and stream operation is performed on the coarse grid, bringing the
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time to t+ δtc. At this time, distributions at coarse nodes that were supposed

to stream from the fine grid are unknown.

2. A collide and stream operation is performed on the fine grid, bringing the time

to t + δtc/2. The grid lacks information at the transition sites from coarse to

fine. A double interpolation is performed (time and space). First uc is scaled

using 7.17. Then the values of ρc and uf of the coarse sites are interpolated at

time t+ δtc/2. Then the time interpolated values, are interpolated in space to

fine nodes that are not overlaid on coarse node sites. All distribution functions

are solved using a schema appropriate to the application.

3. On the next collide and stream operation, the time is brought to t + δtc. No

time interpolation is required during this step. Values for density and velocity

are taken from step 1 and the velocity is scaled. A spatial interpolation is still

required for off-coarse-node fine node lattice sites.

4. All populations of the coarse grid are updated using the schema of choice.

7.5 Convective Grid Refinement Results

7.5.1 Convergence Analysis of a 2D Channel Steady State Flow

We test for convergence of the solution by comparing the evolution of the flow field

at successive levels of grid refinement. Increasing the resolution of the lattice reduces

discretization errors. However, reducing the lattice size also has the consequence

of increasing the compressibility error of the lattice Boltzmann method [16]. The

compressibility error stems from the flow velocity approaching the speed of sound of

the lattice. This is common in regions of high pressure differentials.

Flow parameters used are a relaxation factor used for the coarse grid was τc = 2,

the viscous number J = 1, the darcy number Da = 1 and φ = 1/4. The inlet is held
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Figure 7.5: 2D Channel Geometry. Grid is discretized into either a fine domain 200
x 100 lattice units or a coarse domain of 100 x 50 lattice units. The domain inlet is
held at initial reservoir pressure and the outlet is held at 80% of the initial reservoir
pressure.

at 0.8 of the reservoir pressure and the outlet is held at the initial reservoir pressure.

The fine mesh is discretized into a 100 x 200 node domain. The coarse mesh is

discretized into a 50 x 100 node domain. The relative error is computed between the

coarse and the fine domains. The flow geometry is shown in Fig. 7.5.

Fig. 7.6 shows the results of a convergence test for a 2D channel under a con-

stant pressure differential at the inlet and outlet. The convergence tests show that

convective refinement yields a small error in the pressure profile along the channel.

Now that there is similarity between coarse and fine grid solutions, a multi-domain

scheme can be implemented for the 2D channel.

7.5.2 2D Channel Steady State Flow Results

To test the multi-domain grid refinement technique, a coarse and a fine domain

are established along the channel, similar to what is shown in Fig. 7.3. The total

distance along the channel is equivalent to 100 coarse lattice units long. A fine
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Figure 7.6: A convergence test between two mesh sizes, for a flow approaching a
steady state solution. The size of the two meshes differs by a factor of 2. The
relative error of the pressure profile along the channel is measured.

domain occupies the first half of the channel (100 fine lattice units) and a coarse

mesh occupies the second half of the channel (51 lattice units). An overlap of 1

coarse lattice unit is applied. The flow and boundary parameters are kept from the

convergence test.

The evolution of the pressure field in the multi-domain grid using Schema 0 is

presented in Fig. 7.7. The transition zone occurs at the 49th and 51st lattice node

along the channel.

As expected, when the simulation is allowed to run, a steady state condition

is reached, shown by the convergence of the pressure profiles in Fig. 7.7a. As

a consequence of Schema 0 not ensuring continuity, the pressure profile along the

channel does not become linear over time. Instead, a kink is formed in the pressure

profile. This is indicative of two flow regimes that are not in dynamic similarity.
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(a) Steady state pressure profile (b) Relative error of the pressure profile

Figure 7.7: Pressure profile and relative error plots of a transition mesh using Schema
0 are shown in Fig. (a) and (b). Each line represents the pressure profile at intervals
of 100 iteration steps.

To measure the accuracy of the multi-domain technique, a comparison is made

between the pressure profiles of a fine only domain and a multi-domain. Fig. 7.7b

plots the relative error calculated by Eq. 7.29. The maximum error is nearly 5%.

This error will become worse in systems that are not symmetric perpendicular to the

direction of flow.

error =
Pmulti−domain − Pfine−domain

Pfine−domain
(7.29)

The second scheme to be tested, Schema 1, follows the theory established of

scaling the equilibrium and non-equilibrium distribution functions according to a

convective refinement scheme. Fig. 7.8a shows how treating the transition zone in

this manner produces the expected linear steady state solution along a channel.

The relative error for Schema 1 is shown in Fig. 7.8b. The error for a steady

state solution is bounded between -0.8% and 0.2%. Max error occurs during early
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(a) Steady state pressure profile (b) Relative error of the pressure profile

Figure 7.8: Pressure profile and relative error plots of a transition mesh using Schema
1 are shown in Fig.(a) and (b). Each line represents the pressure profile at intervals
of 100 iteration steps.

times when the pressure boundary front first advances through the domain. Once

the pressure front interacts with the constant pressure boundary held at the outlet,

the relative error begins to lessen.

Schema 2 is based on the assumption that diffusive terms do not contribute sig-

nificantly to the evolution of the flow field. Diffusive forces are essential in domains

where a significant number of nodes are not aligned with the source/sink bound-

ary. Diffusive forces allow for those nodes that are not aligned with the boundary

to receive contributions. Given the 2D channel geometry presented for this simula-

tion, where a periodic boundary condition is maintained along the top and bottom

boundaries, and the inlet boundary is in line with every node in the domain, it is

fair hypothesis to assume that diffusion does not play a signifiant role. Fig. 7.9 are

the results of that hypothesis.

Shown in Fig. 7.9a, a kink forms early in the pressure profile and becomes distinct

at later times. This shows that mass is not being conserved under Schema 2. As
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(a) Steady State Pressure Profile (b) Relative error of the pressure profile

Figure 7.9: Pressure profile and relative error plots of a transition mesh using Schema
2 are shown in Fig.(a) and (b). Each line represents the pressure profile at intervals
of 100 iteration steps.

a result of scaling only the equilibrium distribution function and assuming that the

non-equilibrium distribution function is negligible, significant error arises, shown in

Fig. 7.9b.

The last scheme to be tested for scaling distribution functions is Schema 3.

Schema 3 is an extension of the Zou-He boundary condition [32]. Shown in Fig.

7.10a, Schema 3 does not appear to conserve mass for this test case, as evidenced

by formation of a kink in the pressure profile. Fig.7.10b measures the extent of this

error.

A more robust test for correctness can be performed using the recovery factor

as a measure for comparison. While small deviations in pressure at a single node

may seem insignificant, the sum deviation across all nodes compounds errors. Fig.

7.11 shows the recovery factor for a variety of mesh types: fine, coarse, and the 3

multi-domain schemes.

For the steady state case, the current implementation of a multi-domain mesh
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(a) Steady State Pressure Profile (b) Relative error of the pressure profile

Figure 7.10: Pressure profile and relative error plots of a transition mesh using
Schema 3 are shown in Fig.(a) and (b). Each line represents the pressure profile at
intervals of 100 iteration steps.

Figure 7.11: Plot of recovery factors using a variety of mesh schemes. Schema 1
provides recovery factor results that are closest to expected result.
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(Schema 1) yields early time deviation in recovery factor from the fine mesh results.

As time progresses and the system approaches steady state condition, the deviation

in recovery factor minimizes, and approaches zero.

To conclude the 2D channel flow convective refinement results section, the results

show that scaling the equilibrium and the non-equilibrium functions provide the most

accurate result.

7.5.3 Convergence Analysis of a 2D Channel Pseudo Steady State Flow

A convergence test is required on the 2D Channel undergoing a pseudo steady

state flow before a multi-domain simulation is run. Once two successive levels of

refinement converge to a solution, those two levels can be used for multi-domain

griding. The flow parameters used are the same as the ones used for the steady state

tests, except at the outlet, where a no-flow boundary condition is imposed.

Fig. 7.12 are the convergence results. The relative error between the coarse

and fine grids are low. This is a close match and validates that the coarse and fine

simulation runs are near equivalent.

7.5.4 2D Channel Pseudo Steady State Flow Results

In the previous simulation, there are two main sources of error. The first is our

choice in how flow values are scaled. The second is from interpolation effects in

the grid coupling algorithm. To further test the multi-domain approach and possible

sources of error, the outlet boundary condition is changed to a no-flow boundary and

Schema 1 is used to transfer distribution function information across mesh domains.

A no-flow boundary condition is more common to reservoir simulation and a bet-

ter indicator of the accuracy of the Schema 1 method. Fig. 7.13a shows the evolution

of the pressure field over time as the 2D channel is drained. The various plots are

the pressure profile taken at every 100 iteration steps. An important characteristic
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Figure 7.12: A convergence test between two mesh sizes, for a flow approaching a
pseudo steady state solution. The size of the two meshes differs by a factor of 2. The
relative error of the pressure profile along the channel is measured

(a) Psuedo steady pressure profile (b) Relative error of pressure profile

Figure 7.13: Psuedo steady state 2D channel flow. Fig. (a) shows how the pressure
field of a multi-domain mesh reduces over time as the 2D channel is drained. Fig.
(b) is a plot of the relative error in the pressure field along the channel between the
multi-domain mesh and the coarse only mesh.
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of a multi-domain mesh is that the pressure appears continuous over the transition

boundary. By inspection, the pressure plot is smooth along the transition zone (oc-

curring at the 50 lattice unit mark). This suggests that our choice to convectively

scale the system, as well as the interpolation of pressure and velocity from the coarse

to the fine mesh is a valid approach.

Fig. 7.13b plots the relative error between the pressure profile of the Schema 1

multi-domain mesh and a coarse only mesh. The percent error as the simulation is

allowed to run appears to converge at later times. This is different from the results

of the steady state condition where the relative error converged and then minimized.

As stated earlier, this was due to the tight bounds provided by the constant pressure

condition at inlet and outlet. We would not expect the same for a psuedo steady state

model. Viewing the relative error plot also shows the location of the transition zone.

A small kink in the relative error plot reveals that some information is not properly

scaled from one system to another. This kink could also represent the introduction

of error due to the pressure and velocity interpolation.

7.5.5 Convergence Analysis of Homogenous Well Simulation Results

For the 2D channel flow example, all nodes were aligned with the boundary

and so a convective refinement scheme was sufficient. However, for radial flows

where a large number of lattice nodes are not in line with the pressure boundary, a

convective refinement technique will not be able to maintain simulation similarity.

The inaccuracy of convective refinement for point source geometries is explored in

this section.

The flow parameters for this study are Da = 0.00025, J = 1, φ = 0.25. τc = 5 is

set for the coarsest mesh and scaled according to convective scaling. Three levels of

refined meshes are compared. The fine mesh simulated is 251 by 251 lattice nodes,
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Figure 7.14: Geometry of a Homogenous Well Simulation. No flow boundaries along
the edge of the domain. Constant pressure sink of 80% the initial reservoir pressure.

one level up is a mesh of 125 by 125 lattice nodes, and the coarsest mesh is 63 by

63 lattice nodes. The well or point source is located at the center of the domain. A

constant pressure boundary condition is held at the source of 0.8 the initial reservoir

pressure. The edge of the inner boundary condition has a radius of 0.2m from the

center lattice point and so the pressure must be interpolated to that distance.The

outer boundaries are set to have a no flow boundary condition.

The recovery factor over time is measured for each grid size, shown in Fig. 7.15.

What this plot shows is that for successive levels of refinement, the recovery factor

begins to diverge from previous solutions. The divergence is a result of the explana-

tion given earlier: that we are using a convective refinement scheme where diffusive

elements play a significant role in the evolution of the flow field. By using a con-

vective refinement scheme, we are not properly scaling the diffusive elements at each
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Figure 7.15: A convergence test between three mesh sizes, for a point source geometry
approaching a pseudo steady state solution. The size of successively finer meshes
differs by a factor of 2. The recovery factor of each simulation is measured. A
divergence in expected solution results from a convective refinement scheme.

level of refinement. This divergence is a result of a constantly increasing diffusive

force between levels of refinement.
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7.6 Diffusive Refinement

Diffusive scaling was mentioned briefly in the discussion about temporal and

spatial refinement. The scaling relation between the time step and spatial step in a

diffusive refinement scheme is δt ∝ δx2. And so if we stick with the convention that

xf = xc/2, then tf = tc/4. Parameter scaling needs to be updated to reflect diffusive

scaling.

7.6.1 Rescaling Forcing Terms

Let us start with the Reynolds number. Using Eq. 7.3, a new scaling relation for

the kinetic viscosity is formed.

Rec = Ref =
ULδtc
δx2cνec

=
ULδtf
δx2fνef

(7.30)

νef = νec (7.31)

Next, using the viscous number and the scale independence of kinematic viscosity

terms, it can be shown that fluid viscosity is also scale independent, shown in Eq.

7.32 and 7.33.

J =
νef
νf

=
νec
νc

(7.32)

νf = νc (7.33)

Similarly, porosity is dimensionless and does not require scaling.

Lastly, since the permeability is only dependent on the level of spatial discretiza-

tion, the scaling relation for permeability from in the previous section also holds.
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7.6.2 Rescaling the Distribution Function

To scale the distribution function diffusively, let us first review the explicit version

of the distribution function and walk through how to scale each term.

fi = wiρ

[
1 +

ei · u
c2s

+
uu : (eiei − c2sI)

2c4s

]
−wiρ
c2sω

Qi : S (7.34)

Qi = eiei − c2sI (7.35)

S =
1

2

[
∇u + (∇u)T

]
(7.36)

7.6.2.1 Rescaling the Equilibrium Distribution Function

Shown again in Eq. 7.34, the equilibrium portion of the distribution function is

dependent on lattice weights, density, damped velocity and the speed of sound of the

lattice. The lattice weights are grid dependent and so for the D2Q9 grid scheme, the

lattice weights go unchanged. The density is still a continuous field and independent

of spatial and temporal discretization. The damped velocity and the speed of sound

of the lattice requires rescaling.

The equation used in the convective scaling of the damped equation is still valid

since no relationship between δt and δx has been imposed. Restating Eq. 7.20 and

imposing the diffusive scaling between temporal and spatial discretization yields Eq.

7.37

α =
δxf
δxc

δtc
δtf

+
δxf
δxc

νf
νc

Kc

Kf

=
17

8
(7.37)

Now that there is a scaling relation set for damped velocity, let’s next check how
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the speed of sound of the lattice is scaled through inspection of the temporal velocity.

vf = αvc (7.38)

Converting to a characteristic temporal velocity gives:

V
δtf
δxf

= αV
δtc
δxc

(7.39)

And rearranging:

α =
δtc
δtf

δxf
δxc

= 2 (7.40)

Next, it is useful to introduce a new dimensionless number, called the Mach

number. The Mach number is the ratio between a characteristic flow velocity and

the speed of sound of the lattice, given by Eq. 7.41.

Ma =
vn
cs

(7.41)

Using the Mach number, we must redefine the speed of sound of the lattice cs

under the diffusive refinement scheme.

Ma =
vf
csf

=
vc
csc

(7.42)

csf = 2csc (7.43)

7.6.2.2 Rescaling the Non-Equilibrium Distribution Function

The explicit representation of the non-equilibrium portion of the distribution

function is composed of lattice weights, the density, the speed of sound of the lattice,
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the relaxation parameter tau, and the gradient of the damped fluid velocity.

Mentioned previously, the lattice weights, and density are scale independent.

The scaling for the speed of sound has already been defined. To scale the relaxation

parameter, we use the equation of state that relates the kinetic viscosity of the fluid to

the relaxation parameter. From the definition of kinematic viscosity under diffusive

scaling:

νf = νc (7.44)

cs2f (τf − 1/2) = cs2c(τc − 1/2) (7.45)

Using the scaling equation defined for the lattice speed of sound along withe Eq.

7.45 yields Eq. 7.46.

τf = 1/4τc − 3/2 (7.46)

To ensure continuity of the non-equilibrium portion of the distribution function

between mesh domains, we will modify Lagrava et al. [44] formulation to agree with

diffusive scaling.

fneqf = βfneqc (7.47)

wiρτc
cs2c

Qi : Sc = β
wiρτf
cs2f

Qi : Sf (7.48)

τc
cs2cδtc

Qi : S = β
τf

cs2fδtf
Qi : S (7.49)
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β =
τc
τf

cs2f
cs2c

δtf
δtc

(7.50)

7.6.2.3 Coupling from Fine to Coarse Grid

The coupling of the distribution function from the fine to coarse grid is similar

to that of the convective scheme. After the end of each coarse time step, there are

unknown distribution functions that have streamed from outside the computational

domain (from the fine domain). The unknown distribution functions can be solved

for in a variety of ways as shown in the previous section. But since this is a diffusive

grid refinement process, we need to properly scale higher order non-equilibrium terms

of the distribution function so that momentum and mass is conserved across the

transition zones.

To solve for the unknown distribution functions streaming into the coarse grid

from the multi-domain boundary, information from the fine sites that overlay the

coarse sites is needed. Using the methodology presented in the sections previous, the

distribution functions are scaled to the coarse grid.

7.6.2.4 Coupling form Coarse to Fine Grid

The method for transferring distribution information from the coarse to the fine

grid takes a similar form as in the convective refinement. The major difference

between the convective and diffusive technique for coupling the coarse to fine grid

is the number of fine time steps that take place between each coarse time step. To

temporally interpolate density and velocity values at fine time steps between time

step t and t + δtc, a linear interpolation is used. The unknown fine distribution

functions are then solved for using the temporally and spatially interpolated density

and velocity values of the coarse grid along with scaling techniques presented in
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Figure 7.16: The transition zone between coarse and fine meshes in the diffusive flow
regime. The sites labeled ’copy from coarse to fine’ are the sites where distribution
functions are scaled from the coarse grid to the fine grid. Sites labeled ’copy from fine
to coarse’ are the sites where information is scaled from the fine sites to coarse sites.
The transition zone is three coarse lattice units wide. This is due to the squared
relation in time and lattice spacing δt ∝ δx2. Twice the resolution requires four
times as many time steps for diffusive flows.

Figure 7.17: Above the dashed line is a 1D excerpt of a diffusive mesh. Below the
dashed line is the fine and coarse lattice sites are separated to highlight the unknown
distribution functions after each successive streaming step .
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previous sections.

7.6.2.5 Grid Coupling Algorithm

Again, we use the format presented by Lagrava et al. [44] to illustrate how a grid

coupling algorithm is used for GLBM multi-domain meshes. Below are the steps

required to pass information between meshes using the theory provided in previous

sections under a diffusive refinement scheme.

1. A collide and stream operation is performed on the coarse grid, bringing the

time to t+ δtc. At this time, distributions at coarse nodes that were supposed

to stream from the fine grid are unknown.

2. A collide and stream operation is performed on the fine grid, bringing the time

to t + δtc/4. The grid lacks information at the transition sites from coarse to

fine. A double interpolation is performed (time and space). First uc is scaled

using 7.17. Then the values of ρc and uf of the coarse sites are interpolated at

time t+ δtc/4. Then the time interpolated values, are interpolated in space to

fine nodes that are not overlaid on coarse node sites. All distribution functions

are solved using a schema appropriate to the application.

3. The previous set is repeated 2 more times.

4. On the last collide and stream operation, the time is brought to t + δtc. No

time interpolation is required during this step. Values for density and velocity

are taken from step 1 and the velocity is scaled. A spatial interpolation is still

required for off-coarse-node fine node lattice sites.

5. All populations of the coarse grid are updated using the schema of choice.
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Figure 7.18: A convergence test between three mesh sizes, for a point source geometry
approaching a pseudo steady state solution. The size of successively finer meshes
differs by a factor of 2. The recovery factor of each simulation is measured. A
constant offset in the expected solution forms as a result diffusive refinement.

7.7 Diffusive Grid Refinement Results

7.7.1 Convergence Analysis of Homogenous Well Simulation Results

To see the full effects of diffusive scaling, our first example is a point source

geometry with no flow boundary conditions. Mentioned previously, the effects of

diffusion are significant in systems where a large portion of the lattice nodes are not

aligned radially to the source.

The flow geometry and the dimensionless flow parameters used are the same from

the convective refinement results section of the same geometry.

Fig. 7.18 shows the recovery factor of three simulation runs at levels of refinement

of 63x63, 125x125, and 251x251. A constant offset exists in the recovery factor of

each run.
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A possible reason for non-convergence is compressibility errors becoming signifi-

cant. The choice in pressure differential from source to reservoir may approach the

speed of sound of the lattice at finer levels of refinement and so a constant error

forms.
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8. CONCLUSIONS AND FINAL REMARKS

We started this research with a question: is it possible to improve the risk inherent

to reservoir simulation? Through the development of alternative reservoir simulation

tools and uncertainty models, the risk associated with improperly predicting future

production can be mitigated. By looking at a problem through several lenses, the

potential range of outcomes becomes well defined.

What has been shown through this research is that a lattice Boltzmann model

for simulating flows through porous media at the REV scale produces results that

align with conventional techniques, but also reveals interesting deviations. When a

difference of 1% in production surmounts to a change in value on the order of millions

of dollars, deviations become especially important to identify and understand.

The simulation of flows in unconventional reservoirs is a challenging endeavor. We

began this work focusing on aspects we thought were most important. Capturing

various flow regimes as well as fine grained heterogeneities in the matrix and fracture

system were at the top of our list. Implementing a generalized lattice Boltzmann

model addressed these issues first. The GLBM simulated a generalized Navier-Stokes

equation, which included inertial, viscous and non-linear damping terms, necessary in

the simulation of high flow rates in the fracture system, while the potential for parallel

computation of the LBM lent itself to fine grained system resolution. Once these

topics were addressed, the research began to fill in other necessities that commercial

reservoir simulation tools offered. Local grid refinement and two phase flows were

next on that check-list.

Although the LBM has been used extensively to simulate flows at the pore scale,

application of the LBM to petroleum engineering problems is still in its infancy.
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8.1 Discussion of Results

The results in this paper have been split into two sections, results on the devel-

opment of the GLBM reservoir simulation tool, and results on the development of a

grid refinement technique applied to the GLBM reservoir simulation tool.

For a homogenous and heterogenous well, it has been shown that the GLBM

has recovered the macroscopic fluid equations (in this case the Darcy equation) in

the incompressible limit. When compared against finite difference simulations of the

same domain, the GLBM results are in great agreement. However, deviations occur

in the tail end of the simulation for both homogenous and heterogeneous cases. This

is the result of diffusive (viscous) forces becoming more significant at the end of the

simulations life time. As a result of diffusive forces, the simulation smooths out over

a longer period of time, thereby increasing the time for the reservoir to reach the

steady state condition.

The influence of viscous forces on our these results can be mitigated by dynami-

cally updating the relaxation parameter. When viscous forces are no longer needed

for stability during early, high pressure differential, times, they can be lessened,

resulting in a closer result to the expected Darcy solution.

For the case of local grid refinement, a convective scheme has been shown to

work for 1D porous media flows along a channel. However, when a convergence

analysis was performed prior to a convective grid refinement of a 2D homogenous

well, convergence was not reached. Using a diffusive scheme instead, the convergence

analysis was performed again. However, it has been shown that for the parameters

used, convergence was not achieved in this case either.

As explained previously, the lattice Boltzmann equation is a mixed equation,

where there is no set relation between time increment and spatial increment. There-
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fore, using dimensionless numbers and a temporal/spatial grid refinement scheme

does not yield the expected behavior for the 2D point source case. This issue in our

results serves as an introduction to future work.

8.2 Opportunities for Further Research

8.2.1 Grd Refinement

Notwithstanding the demonstrated potential of a local grid refinement technique

applied to the GLBM in 2D channel flows, issues with our results in the 2D point

source geometries for convective and diffusive scaling have been identified. Neither

convective nor diffusive scaling results in converged solutions.

Future work on grid refinement should start with identifying a relationship be-

tween spatial discretization and temporal discretization. This relationship can then

be extended towards 2D point source geometries using the framework provided in

the local grid refinement section.

8.2.2 Two and Three Phase Porous Media Flow

The lattice Boltzmann method has shown great potential in simulating multi-

phase flows. The Shan-Chen model has shown success in simulating semi-compressible

and incompressible two phase flows [48, 49, 50]. Using the Shan-Chen model as a

framework, the GLBM could potentially be extended to simulate water injection

schemes at the field scale.

Instead of using the Shan-Chen model for simulating two phase fluids, an alternate

approach would be to use the concept of relative permeability to simulate the presence

of two phases. In order to implement such a model, a concept of saturation needs to

be defined for the lattice system. Once saturation has been defined using distribution

functions, we can then relate saturation to relative permeability in the same way

most black-oil models simulate multiple phases. This concept of calculating relative
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permeabilities based off of a lattice saturation can be further extended to include the

gas phase.

A departure from the relative permeability concept for simulating a gaseous

phase, Multi-Relaxation Time lattice Boltzmann models (MRT-LBM) have been

developed to simulate compressible fluids [51]. So far, the GLBM has only included

incompressible fluids. Using MRT-LBM as a starting point, we can include com-

pressible fluids into the reservoir simulation suite.

8.2.3 Parallelization of GLBM and Comparison with Finite Difference Run Times

One of the major draws of the lattice Boltzmann method is its simple paralleliza-

tion of the code base. The collision step, which includes the diffusivity and damping

terms, is a purely local function acting on a single lattice site. By parallelizing this

section of the code to be computed on its own processor, the speed of simulation

increases significantly. But by how much? There have been some studies that have

modeled run times against number of processors used [41], but this does not give a

comparative result to other more established reservoir simulation techniques.

A good step forward in validating the GLBM as a reservoir simulation tool would

be to streamline and parallelize the codebase, then compare the run times of the

GLBM to finite difference simulations using an increasing number of processors for

each comparative run.

In addition, memory allocation is a significant issue in developing a commercial

reservoir simulator. The GLBM requires that we store information about the dis-

tribution functions at each node. For a 2D simulation, this is a total of 9 pieces of

information, where for a 3D simulation it is 19 pieces of information. This does not

include permeability, porosity, or relaxation data. Compared against finite difference

techniques, only pressure and saturation data are kept, again not including rock and
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fluid data.

A robust analysis of run times and memory allocation would be a great exten-

sion to this current work, especially since the GLBM is in its infancy and requires

significant development.
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APPENDIX A

NON DIMENSIONALIZATION OF GOVERNING EQUATIONS

A.1 Non Dimensionalization of the Generalized Navier-Stokes Equation

Equations A.1.1 and A.1.2 represent the set of non-dimensional system parame-

ters used in the non-dimensionlization of the governing macroscopic fluid equation,

shown in Eq. A.1.3. The dimensionless variables are formed through the reference

of a characteristic system variable, which can be found in the text of this paper.

rd = rp/r0,p, td = tp/t0,p, ud = up/u0,p (A.1.1)

∇d = r0,p∇p, ∇2
d = r20,p∇2

p, Pd =
Pp

µe
u0,p
r0,p

(A.1.2)

∂u

∂t
+∇ ·

(
uu

φ

)
= −1

ρ
∇P + νe∇2u− φν

K
u (A.1.3)

After substitution of Eq. A.1.1 and A.1.2 into Eq. A.1.3:

u0,p
t0,p

∂ud
∂td

+
u20,p
r0,p
∇d ·

udud
φ

= −νeu0,p
r20,p
∇dPd +

νeu0,p
r20,p
∇2
dud −

νu0,p
K

φud (A.1.4)

Each accelerating element within Eq. A.1.4 is composed of a group of charac-

teristic system parameters and a non-dimensional group, which is of the order 1

everywhere within the flow field. The relative magnitudes of these forces (acceler-

ating elements) are dictated by the characteristic system parameter group. These
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coefficients have units of length / time2. We therefore can compare the relative

magnitudes of each forcing element to one another to determine the dominating flow

regime.

Let us compare the relative magnitude of the viscous force, given by νeu0,p/r
2
0,p

in Eq. A.1.4 to all other elements by dividing throughout by the viscous coefficient.

u0,pr0,p
νe

r0,p
u0,pt0,p

∂ud
∂td

+
u0,pr0,p
νe
∇d ·

udud
φ

= −∇dPd +∇2
dud − φ

ν

νe

r20,p
K

(A.1.5)

Re

St

∂ud
∂td

+Re∇d ·
udud
φ

= −∇dPd +∇2
dud −

φ

JDa
ud (A.1.6)

Re =
u0,pr0,p
νe

, J =
νe
ν
, Da =

K

r20,p
(A.1.7)

φ =
pore volume

total volume
, St =

t0,pu0,p
r0,p

(A.1.8)

A.2 Non Dimensionalization of the Continuity Equation

∂

∂t
(ρφ) = −∇ · (ρu) (A.2.1)

By substituting in the Darcy correlation for fluid velocity in porous media,

∂

∂t
(ρφ) = −∇ ·

(
K

ν
(∇P )

)
(A.2.2)

Using the variable assignments in A.1 and ρd=ρp/ρ0,p, where ρ0,p is a characteristic

system density, a simple substitution yeilds:
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ρ0,p
t0,p

∂

∂td
(φρd) = −K

ν

µu0,p
r0,p

1

r20,p
· ∇2(Pd) (A.2.3)

By dividing the above equation throughout by the coefficient of the time dependent

term, we arrive at the following:

∂

∂td
(φρd) = − K

r20,p

u0,pt0,p
r0,p

· ∇2(Pd) (A.2.4)

∂

∂td
ρd = −1

φ
DaSt · ∇2(Pd) (A.2.5)
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APPENDIX B

MODIFIED ZOU-HE BOUNDARY FORMULATION

We assume that the bounce-back condition is valid for the non-equilibrium part

of the distribution functions, given by Eqs. B.0.1 - B.0.3 [32].

f3 = f1 + f eq3 − f
eq
1 (B.0.1)

f4 = f2 + f eq4 − f
eq
2 (B.0.2)

f7 = f5 + f eq7 − f
eq
5 (B.0.3)

If we solve for the equilibrium contributions in Eqs. B.0.1 - B.0.3 using Eq. 3.6, Eqs.

B.0.4 - B.0.6 are formed.

f3 = f1 −
2

3
ρux (B.0.4)

f4 = f2 −
2

3
ρuy (B.0.5)

f7 = f5 −
1

6
(ρux + ρuy) (B.0.6)

By the definition of ρ we have:

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 (B.0.7)
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Further substitution of Eqs. B.0.4 - B.0.6 into Eq. B.0.7 leads to Eq. B.0.8:

ρux + ρuy = −6

5

(
ρ− (f0 + f6 + f8 + 2(f1 + f2 + f5))

)
(B.0.8)

Next, we will employ the definition of the temporal macroscopic velocity, given by

Eq. 3.9.

ρux = f1 − f3 + f5 − f7 + f8 − f6 (B.0.9)

Through the substitution of Eqs. B.0.4 - B.0.6 into Eq.B.0.9, we form Eq. B.0.10.

ρux − ρuy = 6(f8 − f6) (B.0.10)

Now, all the relevant information has been derived to solve for f3, f4, and f7. The

rearrangement and combination of Eqs. B.0.8 and B.0.10 yield:

f3 = f1 +
2

5

(
ρ− (f0 + f6 + f8 + 2(f1 + f2 + f5))

)
+ 2(f6 − f8) (B.0.11)

f4 = f2 +
2

5

(
ρ− (f0 + f6 + f8 + 2(f1 + f2 + f5))

)
+ 2(f8 − f6) (B.0.12)

f7 = f5 +
1

5

(
ρ− (f0 + f6 + f8 + 2(f1 + f2 + f5)

)
(B.0.13)
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APPENDIX C

SPE-10 PERMEABILITY AND POROSITY FIELD

Figure C.0.1: SPE-10 Permeability (top) and porosity (bottom) data. Permeabil-
ity values are scaled logarithmically for viewing. SPE-10 data is used to compare
the generalized LBM with commercial simulation software. The 10th layer of the
permeability and porosity field were used for simulation of 2D reservoir.
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APPENDIX D

MODIFIED ZOU-HE BOUNDARY FORMULATION EXTENDED

We assume that the bounce-back condition is valid for the non-equilibrium part

of the distribution functions, given by Eqs. B.0.1 - B.0.3 [32].

f3 = f1 + f eq3 − f
eq
1 (D.0.1)

f4 = f2 + f eq4 − f
eq
2 (D.0.2)

f7 = f5 + f eq7 − f
eq
5 (D.0.3)

If we solve for the equilibrium contributions in Eqs. D.0.1 - D.0.3 using Eq. 3.6,

Eqs. D.0.4 - D.0.6 are formed.

f3 = f1 −
2

3
ρux (D.0.4)

f4 = f2 −
2

3
ρuy (D.0.5)

f7 = f5 −
1

6
(ρux + ρuy) (D.0.6)

By the definition of ρ we have:

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 (D.0.7)
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Further substitution of Eqs. D.0.4 - D.0.6 into Eq. D.0.7 leads to Eq. D.0.8:

ρux + ρuy = −6

5

(
ρ− (f0 + f6 + f8 + 2(f1 + f2 + f5))

)
(D.0.8)

By substituting Eq. D.0.7 into Eq. D.0.8, we can solve for the unknown f7, given

in Eq. D.0.9

f7 = f5 +
1

5

(
ρ− (f0 + f6 + f8 + 2(f1 + f2 + f5))

)
(D.0.9)

Next, we will employ the definition of the damped macroscopic velocity, given by

Eq. D.0.10 to solve for the unknown f3.

ρux = C

(
f1 − f3 + f5 − f7 + f8 − f6

)
(D.0.10)

where C is the Darcy coefficient given in Eq. D.0.11

C =
1

1 + φδtν
2K

(D.0.11)

By substituting D.0.10 and Eq. D.0.9 into Eq. D.0.4, with some algebraic ma-

nipulation, we arrive at Eq. D.0.12

f3 =
1

1− 2/3C

(
f1 +

2C

15
(ρ− f0 − 2(f2 + f5)− 6f8 + 4f6 − 7f1)

)
(D.0.12)

Next, we can solve for the unknown f4, using the definition of damped velocity

in the y direction, given by Eq. D.0.13.

ρuy = C

(
f2 + f5 + f6 − f4 − f7 − f8

)
(D.0.13)
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By substituting Eq. D.0.13 and Eq. D.0.9 into Eq. D.0.5, we can solve for f4

through some algebraic manipulation, given by Eq.D.0.14.

f4 =
1

1− 2/3C

(
f2 +

2C

15
(ρ− f0 − 2(f1 + f5)− 6f6 − 4f8 − 7f2)

)
(D.0.14)
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