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ABSTRACT

In the reliable message transmission problem (RMTP) processors communicate by

exchanging messages, but the channel that connects two processors is subject to mes-

sage loss, duplication, and reordering. Previous work focused on proposing protocols in

asynchronous systems, where message size is finite and sequence numbers are bounded.

However, if the channel can duplicate messages, lose messages, and arbitrarily reorder

the messages, the problem is unsolvable. In this thesis, we consider a strengthening of

the asynchronous model in which reordering of messages is bounded. In this model, we

develop two efficient protocols to solve the RMTP: (1) when messages may be duplicated

but not lost and (2) when messages may be duplicated and lost. This result is in contrast to

the impossibility of such an algorithm when reordering is unbounded. Our protocols have

the pleasing property that no messages need to be sent from the receiver to the sender.
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1. INTRODUCTION∗

1.1 Problem

Computer communication networks are typically organized as a series of layers to

overcome the engineering complexity involved. Each layer provides an interface to the

layer above that hides some of the difficulties of the lower layers. An important function

of higher layers such as TCP/UDP and data link layer is to mask faults exhibited by a less

reliable lower layer. Having reliable message transmission makes it much easier to design

correct distributed applications, but actual networks are subject to loss, duplication, and

reordering, especially in mobile networks. We call the problem of implementing a reliable

layer on top of an unreliable layer the reliable message transmission problem (RMTP).

Any practical solution to this problem should use bounded-length messages because

real-world communication networks use fixed size messages. In totally asynchronous

models, this problem has been shown to be expensive, if not impossible, to solve when

messages can be reordered. Historically, less attention has been paid to stronger timing

models. Therefore, this paper considers a strengthening of the asynchrony assumption,

specifically, bounded reordering, and shows that a bounded solution is now possible.

1.2 Contribution

We present two protocols: the KJ protocol and Extended KJ protocol that solve the

RMTP for two processors connected by a channel that is subject to bounded reordering

and duplication, and bounded reordering, bounded loss and duplication respectively. In

the model for the KJ protocol, which is inspired by that in [11], there is a parameter δ

∗2017 IEEE. Part of the material presented in this chapter is reprinted, with permission, from Keishla
D. Ortiz-Lopez and Jennifer L. Welch, “Bounded Reordering Allows Efficient Reliable Message Transmis-
sion”, in Proceedings 31st IEEE International Parallel & Distributed Processing Symposium (IPDPS), May
2017.
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which bounds how out of order messages can be delivered. Also in our model, messages

can experience unbounded but finite duplication. In our algorithm, the sender A appends

to each message a bounded counter that ranges from 0 to Mc − 1, where Mc = 2δ+1,

and sends each message to receiver B. The challenging part is for B to determine if

the message received is a new message, in which case the message is added to a local

data structure of B waiting to be delivered. One pleasing aspect of our protocol is that

the receiver B does not need to send acknowledgments to the sender A, i.e., it is a non

ACK-based protocol. In practice, such protocols are faster than ACK-based ones due to

less message and time overhead [17]. We present a correctness proof for the KJ protocol.

The model of the Extended KJ protocol also allows bounded reordering and duplication

with the addition of bounded loss of messages denoted with the parameter λ. In order to

tolerate the loss of messages, the sender A needs to send λ copies of each message since

the channel is allow to lose at most λ−1 consecutive messages. The Extended KJ protocol

is proved correct by showing that this protocol can be reduced to the KJ protocol.

1.3 Related Work

The reliable message transmission problem (RMTP) has been extensively studied over

the past years. The researchers in this area initially focused their work on asynchronous

systems, where message loss, duplication and reordering are considered. The three faults

together can be tolerated by using unbounded sequence numbers [12], but the use of un-

bounded sequence numbers is not desirable in practice. The existence of bounded solu-

tions to the RMTP depends on which combination of faults are to be tolerated. For the

case of both loss and duplication, there is a well-known protocol called the Alternating

Bit Protocol, introduced in Bartlett et al. [3], that also works when loss and duplication

are considered individually. The work by Engelhardt and Moses [6] presents a proof as-

suming both loss and duplication that shows that single-bit messages are insufficient once

2



channels potentially deliver duplicate messages in a implementation of a data-link layer;

thus the messages must have some additional control information such as headers or tags.

For the case of both loss and reordering, there are solutions given in [1, 7, 8, 13, 14, 16]

that consider bounded sequence numbers and present lower and upper bounds for commu-

nication and space complexity. However, according to the paper by Afek et al. [1] any

protocol tolerating both message loss and reordering either requires unbounded sequence

numbers or the sender has to send an unbounded number of messages until receiving an

acknowledgment from the receiver. For the case of both reordering and duplication, Wang

and Zuck [16] prove that no bounded solution can exist. In contrast to this work, which as-

sumes an asynchronous system subject to arbitrary reordering, we consider a system with

bounded reordering (duplication and loss) and present two algorithms that are efficient.

Other work that has considered strengthening of the purely asynchronous model in-

cludes [8] and [15]. The work in [8] introduces the notion of a probabilistic channel, in

which a message can be delayed with some probability. In contrast with [8], our model

allows adversarial reordering of messages within the limits of the bound δ. The authors of

[15] consider a model in which there is a real-time upper bound on message delay, within

which messages can be reordered; however, messages cannot be lost or duplicated. In

this model, they give tight bounds on the time complexity of both ACK-based and non

ACK-based protocols. In contrast with [15], our model has no real-time aspect and allows

unbounded but finite duplication and bounded message loss.

This thesis is organized as follows: Chapter 2 describes the model and defines the

problem in more detail. Chapter 3 presents the KJ protocol with algorithms for the sender

and receiver, and an algorithm that models and describes the behavior of the channel and

its correctness proof. Chapter 4 introduces the Extended KJ protocol that allows message

loss with a reduction proof. Finally, Chapter 5 concludes the thesis with further directions.

3



2. MODEL AND PROBLEM DEFINITION∗

2.1 Model

We consider a system consisting of a sender A, a receiver B, and a unidirectional chan-

nel C over which A can send messages to B. All three system components are modeled

as automata. Each automaton has a (possibly infinite) set of states, with a subset of initial

states. A transition from one state to another state is triggered by the occurrence of an

event. The possible events are:

1. SEND(m): A learns about message m which is to be sent to B; m is an element of a

set MH of messages, where the set MH contains the high-level messages.

2. send(m): A transfers message m to C; m is an element of a set ML of messages,

where the set ML contains the low-level messages.

3. receive(m): C transfers message m to B; m is an element of the set ML.

4. RECEIVE(m): B delivers m; m is an element of MH .

Events at an automaton are partitioned into input and output events. An event e is said

to be enabled in a state s of an automaton if the automaton has a transition from s labeled

with e. SEND is an input event of A, send is an output event of A and an input event of C,

receive is an output event of C and an input event of B, and RECEIVE is an output event

of B.

A configuration C of the system consists of a state for each of A, B and C; in an initial

configuration, they are all initial states.
∗2017 IEEE. Part of the material presented in this chapter is reprinted, with permission, from Keishla

D. Ortiz-Lopez and Jennifer L. Welch, “Bounded Reordering Allows Efficient Reliable Message Transmis-
sion”, in Proceedings 31st IEEE International Parallel & Distributed Processing Symposium (IPDPS), May
2017.
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An execution E of the system is a sequence C 0e1C 1e2 . . . of alternating configurations

C i and events ei, beginning with an initial configuration and, if it is finite, ending with a

configuration such that:

• For each i ≥ 1, if ei is an event of T ∈ {A,B,C}, then the state of T in C i is the

result of T ’s transition function operating on the state of T in C i−1 and the state of

the other components is the same in C i as in C i−1.

An execution is fair if there is no output event for any component that is continually

enabled without occurring. Fairness ensures that if an event is waiting to happen, then

eventually it will happen. For example, if A wants to send a message to C, eventually

it will be allowed to do so. We will only require correct behavior in fair executions; if

an algorithm is prevented from taking its steps, we should not expect it to be able to

accomplish its task.

2.2 Problem Definition

We are interested in devising local algorithms for A and B that provide a solution to

the RMTP, when the channel C from A to B is subject to bounded out-of-order, loss and

duplication. This model is inspired by the Average Delayed or Dropped (ADD) system

model [11] that deals with message loss and reordering. In our model, the channel may

duplicate and lose each message a finite number of times and the degree of reordering is

limited by the parameter δ. In more detail, but still informally, the reordering in our model

is restricted as follows. Consider the sequence of messages appearing in send events in an

execution. Suppose m is the i-th in the sequence and m′ is the j-th, where j ≥ i+δ. Then

the first occurrence of receive(m′) must appear after the last occurrence of receive(m).

However, messages that are sent at most δ−1 after m are allowed to be received before m

is received. For the bounded message loss, denoted by the parameter λ, the channel can

lose at most λ-1 consecutive messages sent over it.
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We specify the behavior of C with two algorithms (see Algorithm 2 in Figure 3.1 and

Algorithm 6 in Figure 4.1). The behavior of C should be consistent with the behavior

of these algorithms, depending of the faults to be tolerated, although it does not need to

be implemented exactly like one of them. The specification of the first algorithm has the

channel keeping messages sent to it from A in a FIFO queue. Each message can be sent

to B any number of times. A message can arrive out of order as mentioned before. This is

modeled by keeping track of which messages have been sent to B at least once, and any

message already received by B that is at most δ from a message being currently received

is deleted from the channel C. The intuition behind this is to make sure that a message that

is too out of order to be received any more is deleted from the channel. The specification

of the second algorithm for C in order to allow message loss is similar to the first one with

the following addition: the channel needs to keep track of how many messages are lost in

a row. Therefore, if the channel loses λ−1 messages in a row, then the next message will

stay in the channel and then restarts counting lost messages in a row again.

The algorithms for A and B must satisfy the following in every fair execution:

Safety: In any prefix of the execution, the sequence of messages occurring in RECEIVE

events is a prefix of the sequence of message occurring in SEND events.

Liveness: The number of RECEIVE events in the execution equals the number of SEND

events. Thus, if there are an infinite number of SEND events, then there are an infinite

number of RECEIVE events.

We are interested in bounded solutions, which means that if MH is finite, then ML is

finite. This constraint rules out, for instance, having A tag each message it sends with a

counter that grows without bound. However, we use auxiliary variables in algorithm for

A and B to count the number of messages in MH sent and received with the purpose to

use them in the proofs. Typically, auxiliary variables are used in algorithms to capture

properties of execution history. Any operation performed on auxiliary variables must not

6



affect the values of variables that are part of the actual implementation of the algorithm

[9].
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3. KJ PROTOCOL∗

3.1 Algorithm

The algorithm for the KJ protocol for both the sender A and receiver B, and the be-

havior of the unreliable channel are shown in Figures 3.1 to 3.3. The main idea of the

algorithm is as follows. The sender A accepts a series of messages from its user that are to

be sent to the receiver B. As each message arrives, it is assigned a counter from a bounded

set of integers that wraps around and is stored in an array waiting for its turn to be sent

over the channel. The channel delivers each message sent on it to the receiver B at least

once and in roughly the correct order, where the reordering is bounded by δ. B keeps

two arrays of messages, one holding those that are waiting to be delivered to the user and

another holding the most recent δ messages that have already been delivered. Whenever B

receives a message from the channel, it checks whether the bounded counter of the mes-

sage occurs among the most recent δ messages in the concatenation of the two arrays. If

so, then it is a duplicate and is ignored. If not, then this is a new message and it is placed

in the proper location in the array of pending messages. The proper location is determined

by comparing the bounded counter of the new message with those of the messages already

in the array, where the comparison takes into account the fact that the counters are from a

set that wraps around.

For purposes of analysis of the algorithm, the algorithm description piggybacks an

unbounded counter on the messages as an auxiliary variable [9], but the algorithm never

takes an action that depends on the value of an auxiliary variable.

∗2017 IEEE. Reprinted, with permission, from Keishla D. Ortiz-Lopez and Jennifer L. Welch, “Bounded
Reordering Allows Efficient Reliable Message Transmission”, in Proceedings 31st IEEE International Par-
allel & Distributed Processing Symposium (IPDPS), May 2017.
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Algorithm 1: Algorithm for sender A.

1: counterA, an integer, initially 0
2: send_pending, a FIFO queue, ini-

tially empty
3: AuxA, an integer, initially 0

input:
4: event SEND(m)
5: effects:
6: send_pending.enq((m,

counterA, AuxA))
7: counterA := (counterA+1)

mod Mc

8: AuxA := AuxA + 1
9: end event

output:
10: event send(m, c, a)
11: preconditions:
12: (m, c, a) is at the head of

send_pending
13: effects:
14: remove (m, c, a) from

send_pending
15: end event

Algorithm 2: Algorithm to model behavior of C.

1: in_transit, array, initially empty
input:

2: event send(m, c, a)
3: effects:
4: insert (m, c, a, False) at the end of

in_transit
5: end event

output:
6: event receive(m, c, a)
7: preconditions:
8: (m, c, a, y) ∈ in_transit at some index

ℓ for some y

9: for all (m′, c′, a′, y′) ∈ in_transit
with index ≤ ℓ−δ, y′ = True

10: effects:
11: remove from in_transit all en-

tries with index ≤ ℓ−δ

12: y := True
13: end event

Figure 3.1: KJ protocol: Algorithm for the sender A and the behavior of the channel C
[10].

9



In more detail, the algorithm for A consists of three local variables: counterA, a

counter bounded by Mc, where Mc = 2δ+1, send_pending, a FIFO queue used to add

the sequence of messages from MH that need to be sent in order, and the auxiliary counter

AuxA, an unbounded counter. The algorithm that describes the behavior of C consists only

of one local variable in_transit, an array used to hold the messages from the set ML sent

by A. The algorithm for B consists of four variables: counterB, a counter bounded by Mc

used to determine which message needs to be delivered next to the user, receive_pending

contains all the messages from ML received that need to be delivered, delivered keeps

track of the messages delivered to the user and size is bounded by δ, and AuxB an un-

bounded auxiliary counter.

The algorithm for the sender A (Algorithm 1 of Figure 3.1) consists of two events:

the input event SEND(m) and output event send(m, c, a). The input event SEND(m) (lines

4-9) takes the message m from the set MH and simply adds the message to the local

FIFO queue send_pending with the local bounded and auxiliary counters values counterA

and AuxA respectively. The output event send(m, c, a) (lines 10-15) takes the message

that is at the head of send_pending (if any) and sends the message to the channel and

(m, c, a) is removed from send_pending. The message (m, c, a) should be removed from

send_pending to allow A to send the next message in send_pending. Therefore, the task

of the sender A is to send each message once with the addition of the bounded counter and

auxiliary counter of that particular message.

Algorithm 2 of Figure 3.1 describes the behavior of the unreliable channel C that

connects the processors A and B. The channel C consists of two events: send(m, c, a)

and receive(m, c, a). The input event is send(m, c, a) (lines 2-5), which simply adds

(m, c, a, False) in in_transit, where the fourth component is only used by C to check

whether the message was received at least once by B. The output event receive(m, c, a)

(lines 6-13) decides what message should be delivered to B, where (m, c, a) cannot be

10



more than δ apart from the most recent entry in in_transit (call it (m′, ∗, ∗, y′)) that was

received at least once by B (i.e. fourth component y′ is equal to True). In addition, all

of the messages before (m′, ∗, ∗, y′) (if any) were also received by B at least once (see

precondition in line 9). Since the value of c is bounded by Mc, B could receive a different

message with counter value c and later on receive the same (m, c, a) again. In order to

avoid this confusion to B, the channel removes all of those messages mentioned above

(line 11), thus B never receives a message that is too out-of-order to be received again.

Note that if (m, c, a, y) is one of the oldest δ entries in in_transit then no message is

removed from the channel.

The algorithm for A and the description of the channel are simple. However, the al-

gorithm for the receiver B is more complex because it has to make sure that the message

received is not a duplicate. The algorithm for B consists of two events: receive(m, c, a)

and RECEIVE(m). The input event is receive(m, c, a) (lines 5-16 of Algorithm 3 of Figure

3.2) that checks if there is a message with counter value c (call it (m′, c, a′)) in total_msgs,

which is a concatenation of delivered and receive_pending. B decides whether proce-

dure ADDTORECEIVEPENDING should be invoked in order to add the message (m, c, a).

If (m′, c, a′) is (m, c, a) itself, then there should be at most δ−1 entries following (m′, c, a′)

in total_msgs. Recall that when a message (m′, c, a′) is received for the first time all

the messages that are at least δ apart from (m′, c, a′) in in_transit are removed, thus

(m′, c, a′) will be within the oldest δ entries in in_transit. Therefore, when another copy

of (m′, c, a′) (i.e. (m, c, a)) is received, then α, the variable used to determine if (m, c, a)

should be added to receive_pending, is set to at most δ−1 which causes that condition in

line 13 to evaluate to false and the message (m, c, a) is not added to receive_pending. If

(m′, c, a′) is not a duplicate of (m, c, a) or there is no such entry in total_msgs, then α is

set to at least δ (lines 9 and 11) and the message (m, c, a) is added to receive_pending.

Algorithm 4 of Figure 3.3 is the most important one because it ensures that the message

11



Algorithm 3: Algorithm for receiver B.

1: counterB, an integer, initially 0
2: receive_pending, array, initially empty
3: delivered, a FIFO queue, initially empty
4: AuxB, an integer, initially 0

input:
5: event receive(m, c, a)
6: effects:
7: total_msgs := delivered.receive_pending
8: if (∗, c, ∗) /∈ total_msgs then
9: α := δ

10: else
11: α := number of entries after most recent occurrence of (∗, c, ∗) in

total_msgs

12: end if
13: if α ≥ δ then
14: ADDTORECEIVEPENDING(m, c, a)
15: end if
16: end event
output:
17: event RECEIVE(m)
18: preconditions:
19: (m, c, a) is at the head of receive_pending ∧ c = counterB
20: effects:
21: remove (m, c, a) from receive_pending
22: counterB := (counterB + 1) mod Mc

23: AuxB := AuxB + 1
24: delivered.enq((m, c, a))
25: if | delivered | = δ+1 then
26: delivered.deq()
27: end if
28: end event

Figure 3.2: KJ protocol: Algorithm for the receiver B [10].
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Algorithm 4: Procedure used by receiver B in the receive event.

1: procedure ADDTORECEIVEPENDING(m, c, a)
2: if |receive_pending| = 0 then
3: insert (m, c, a) in receive_pending
4: return
5: end if
6: current := bounded counter of the most recent message in receive_pending
7: if MLT(current, c) then
8: insert (m, c, a) at the end of receive_pending
9: return

10: end if
11: for i := |receive_pending| − 1 down to 1 do
12: current := bounded counter of the message at index i in receive_pending
13: next := bounded counter of the message at index i− 1 in receive_pending
14: if MLT(next, c) ∧ MLT(c, current) then
15: insert (m, c, a) in receive_pending between the messages at in-

dices i− 1 and i

16: return
17: end if
18: end for
19: next := bounded counter of the message at index 0 in receive_pending
20: if MLT(c, next) then
21: insert (m, c, a) in receive_pending at index 0
22: return
23: end if
24: end procedure
25:
26: procedure MLT(c1, c2)
27: if c1 < c2 then
28: return c2 − c1 ≤ δ
29: end if
30: return c1 − c2 > δ
31: end procedure

Figure 3.3: KJ protocol: Algorithm for the procedure used by the receiver B [10].
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(m, c, a) is added to receive_pending in the correct order. The algorithm consists of two

procedures: ADDTORECEIVEPENDING (lines 1-24) and MLT (lines 26-31). The procedure

ADDTORECEIVEPENDING is the main one that adds the message to receive_pending.

The main procedure has four conditions (lines 2, 7, 14, and 20). When one of them is

evaluated to true, the message (m, c, a) is inserted in receive_pending once in a certain

order (depending on the condition). When receive_pending is empty, then (m, c, a) is the

only message in receive_pending (line 3). However, when there is at least one message

in receive_pending, the help of procedure MLT is needed. MLT takes as parameters two

bounded counter values and returns true if and only if the first parameter is less than the

second one, taking into account the wrap-around. Since the counters are bounded by Mc,

where Mc = 2δ+1, and by the behavior of the channel C, B will never receive an earlier

message that is more than δ apart from the most recent message in receive_pending.

In fact, the loop in line 11 is never executed more than δ times. Therefore, if the most

recent message in receive_pending has an auxiliary counter a′ and bounded counter c′,

where a′ < a, then either c′ < c and the difference between them is at most δ or c′ > c

and the difference between them is greater than δ (there is a wrap-around exactly at c or

before c). In such case, the condition in line 7 evaluates to true (i.e. MLT returns true)

and (m, c, a) is inserted at the end of receive_pending (line 8). The other case is when

a < a′, then either c < c′ and the difference between them is at most δ or c > c′ and

the difference between them is greater than δ. Thus either condition in line 14 is true or

the condition in line 20 is true. Note that if condition in line 20 is true, then (m, c, a)

is inserted at index 0 in receive_pending (line 21), which implies that there were less

than δ entries in receive_pending. If condition in line 14 is true, then the first part of the

condition evaluates to true as well. In such case, there is another message (m′′, c′′, a′′),

where a′′ < a < a′, such that either c′′ < c and c − c′′ ≤ δ or c′′ > c and the difference

between them is greater than δ. Thus, (m, c, a) is inserted between those two entries in
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receive_pending (line 15). In sum, the procedure ADDTORECEIVEPENDING inserts a

message (m, c, a) exactly once and in the correct order by comparing the bounded counter

c with at most δ of the bounded counters of the most recent messages in receive_pending.

The output event RECEIVE(m) (lines 17-28 in Algorithm 3) delivers to the user the

message m that is at the head of receive_pending. The message is inserted into the queue

delivered, whose size is bounded by δ. If the size of delivered is equal to δ+1, then the

oldest message is removed from delivered. Thus, the event RECEIVE(m) delivers each

message in the same order that it was sent by checking the current value of counterB.

Note that this event is not enabled until there is a message at the head of receive_pending

with counter c equal to counterB.

3.2 Correctness Proof

The correctness of the KJ protocol is proved by showing that it satisfies the safety and

liveness properties defined in Chapter 2. The proof is organized as follows: Lemmas 1

and 2 state some basic properties relating the bounded and auxiliary counters of messages;

their proofs are simple inductive arguments and are omitted. Lemma 3 states the main

invariants on how messages flow from the sender to the receiver; it is proved by induction.

Lemma 4 shows that the protocol satisfies the safety property, whereas Lemmas 5 to 8

show that the protocol satisfies the liveness property.

Let e be any fair execution.

Lemma 1. In every configuration of e, (a) AuxA is the number of SEND events that have

occurred so far in the execution, (b) counterA = AuxA mod Mc, (c) AuxB is the number

of RECEIVE events that have occurred so far in the execution, and (d) counterB = AuxB

mod Mc.

Proof. Initially AuxA = 0 = counterA. The only change to AuxA is when SEND occurs,

and the change is to increment it by 1. The only change to counterA is when SEND occurs,
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and the change is to increment it by 1 mod Mc.

Similarly, initially AuxB = 0 = counterB. The only change to AuxB is when RE-

CEIVE occurs, and the change is to increment it by 1. The only change to counterB is

when RECEIVE occurs, and the change is to increment it by 1 mod Mc.

Lemma 2. In every configuration of e, if (m, c, a) or (m, c, a, y) is in send_pending,

in_transit, receive_pending, or delivered, then (a) c = a mod Mc, and (b) m is the

argument of the (a+ 1)-st SEND event that has occurred.

Proof. By induction on the configurations. In the initial configuration, send_pending,

in_transit, receive_pending and delivered are all empty, thus the lemma is vacuously

true.

Suppose the lemma is true in configuration C ; we show it is still true in configuration

C ’. We consider the possibilities for the i-th event.

• Case 1: The event is SEND(m).

(a) By the code, (m, c, a) is put in send_pending, with c = (counter′A − 1)

mod Mc, and a = Aux′
A − 1, where counter′A = (counterA + 1) mod Mc

and Aux′
A = AuxA+1 in C ’. By Lemma 1(b), counter′A = Aux′

A mod Mc.

(b) By Lemma 1(a), the number of SEND events that have occurred before this

event, is the value of AuxA in configuration C ; call this value a. This is the

value assigned to m, which is the argument of the (a+ 1)-st SEND event.

• Case 2: The event is send(m, c, a). The precondition is that (m, c, a) is at the head

of send_pending in C . By the inductive hypothesis, (a) c = a mod Mc and (b) m

is the argument of the (a+1)-st SEND event. By the code, (m, c, a) is removed from

send_pending and added to in_transit. Thus (a) and (b) are true in C ’.
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• Case 3: The event is receive(m, c, a). The preconditions are that (m, c, a, y) is in

in_transit at some index ℓ for some y and that all entries in in_transit with index

≤ ℓ−δ, y′ = True in C . By the inductive hypothesis, (a) c = a mod Mc and (b)

m is the argument of the (a + 1)-st SEND event. By the code, all entries with index

ℓ−δ are removed from in_transit and y is set to True. In addition, if (m, c, a) is a

new message is put into the array receive_pending, otherwise is rejected. Thus (a)

and (b) are true in C ’.

• Case 4: The event is RECEIVE(m). The precondition is that (m, c, a) is at the head

of receive_pending and c = counterB in C . By the inductive hypothesis, (a) c = a

mod Mc and (b) m is the argument of the (a + 1)-st SEND event. By the code,

(m, c, a) is removed from receive_pending, counterB and AuxB are updated to

counter′B = (counterB + 1) mod Mc and Aux′
B = AuxB + 1 respectively, and

(m, c, a) is put into the delivered queue. If the size of the queue is equal to δ+1,

then the oldest message is deleted. Thus (a) and (b) are true in C ’.

Lemma 3. In every configuration of e there exists integers u, v, and w such that,

(a) the sequence of auxiliary counters in the FIFO queue send_pending at A is: u, u +

1,...,AuxA − 1, where u ≤ AuxA; (u = AuxA means send_pending is empty)

(b) the sequence of auxiliary counters in the array in_transit in the channel is: v, v +

1,...,u− 2, u− 1, where v ≤ u; (v = u means in_transit is empty)

(c) If (m, c, a, True) is in in_transit, then a− v < δ;

(d) Suppose (m, c, a, y) is in in_transit. Then y = True if and only if (m, c, a) is in

total_msgs;
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(e) the sequence of auxiliary counters in the array receive_pending at B is: AuxB, AuxB+

1,...,v−1, µ, where µ is a (possibly empty) subsequence of v, v+1,...,v+δ−1 (AuxB ≥

v means the part of the sequence before µ is empty);

(f) the sequence of auxiliary counters in the delivered FIFO queue at B is: w, w +

1,...,AuxB − 2, AuxB − 1, where w = max{0, AuxB−δ}. (AuxB = 0 means

delivered is empty)

Proof. By induction on the configurations. In the initial configuration, we have that

counterA, counterB, AuxA and AuxB are set to 0, and send_pending, receive_pending,

in_transit, total_msgs, and delivered are set to ∅. Thus, properties (a) through (f) are

true in the initial configuration.

For the inductive step, assume in configuration C these properties are true. Then, we

need to consider all the possibilities for the event that leads to the configuration C ’.

• Case 1: The event SEND(m) occurs, i.e. lines 4-9 in Algorithm 1 are executed. In

configuration C ’, the message m is put into the send_pending FIFO queue with

counterA and AuxA, then counter′A = (counterA + 1) mod Mc and Aux′
A =

AuxA +1. Property (a) is satisfied because after the message (m, counterA, AuxA)

is put into the send_pending FIFO queue, the counter counterA and auxiliary

counter AuxA are updated as mentioned previously to counter′A and Aux′
A respec-

tively. Therefore, now the message m has an auxiliary counter a equal to Aux′
A− 1,

which is at the end of send_pending. Since properties (b)-(f) are true in C by the

inductive hypothesis, they are still true in C ’.

• Case 2: The event send(m, c, a) occurs, i.e. lines 10-15 in Algorithm 1 and lines

2-5 in Algorithm 2 are executed. In configuration C ’, this event is enabled by its

precondition that states that a message (m, c, a) is at the head of send_pending,
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thus the message is removed from the FIFO queue and inserted into the channel’s

array in_transit with a boolean value set to False.

Property (a) is satisfied because the message (m, c, a) is at the head of send_pending

in C with a = u. Note that this implies that in configuration C ’, u′ = u + 1 (i.e.

the next auxiliary counter in send_pending), a = u′ − 1 and (m, c, a, y) is inserted

at the end of the channel’s array in_transit with y set to False. Therefore, prop-

erty (b) is also satisfied. Since (m, c, a, False) is inserted in in_transit in C ’ with

a = u′ − 1, note that this does not affect properties (c)-(e) at all because y = False,

thus either a− v < δ or a− v′ ≥ δ and (m, c, a) is not in total_msgs in C ’ (i.e. is

not added to receive_pending or delivered).

Property (f) is true in C by the inductive hypothesis, so it is true in C ’.

• Case 3: A receive(m, c, a) event occurs, i.e. lines 6-14 in Algorithm 2, and lines

5-16 in Algorithm 3 are executed and Algorithm 4 is executed. Preconditions are

that (m, c, a, y) is in in_transit at some index ℓ, and all entries in in_transit with

index at most ℓ−δ have last component True. The effect on in_transit is that all

entries in in_transit with index at most ℓ−δ are removed and the last component

of the entry for (m, c, a, ∗) is set to True. The effect on receive_pending is that

(m, c, a) is inserted at a certain place if certain conditions are true.

By the inductive hypothesis for (b), in C , the array in_transit has auxiliary counters

v, v + 1, ..., u − 1. Since the change to in_transit is to remove zero or at most δ

entries from the older end, the condition is still true in C ’, with v′ equal to something

between v and v+δ, and u′ equal to something between v and u.

In order to prove property (c), we need to show that after (m, c, a) is received by B

its distance to v′ is less than δ in C ’. We need to consider two cases: 1) ℓ−δ< 0

and 2) ℓ−δ≥ 0. In case 1) no message is removed from in_transit in C ’, which
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implies that v′ ≤ a ≤ v′+δ−1, where v′ = v. Note that if either y is False or True

in C , the message (m, c, a, y) is within δ from the old end of in_transit in C ’ as

well (i.e. a − v′ < δ), thus property (c) is satisfied. In case 2) all of the messages

with indices of at most ℓ−δ should be removed from in_transit in C ’ because they

were already received by B. Therefore in C , v+δ≤ a ≤ v + 2δ−1. Due to the

fact that just messages with indices at most ℓ−δ are removed from in_transit, then

v′ = (a−δ) + 1 in C ’. To prove this, first assume that a = v+δ in C , then v′

should be at least v + 1 in C ’ because only one message is removed, thus v′ =

(a−δ) + 1 = ((v+δ−δ)) + 1 = v + 1. Now, assume that a = v + 2δ−1 in C ,

implying that δ messages are removed from in_transit. Then v′ is at most v+δ

in C ’, so v′ = (a−δ) + 1 = ((v + 2δ−1)−δ) + 1 = v+δ. Thus, it follows that

v′ ≤ a ≤ v′+δ−1, where v + 1 ≤ v′ ≤ v+δ. Since in C ’, the value of v changes

to v′, we have that in_transit consists of v′, v′ + 1, ..., u′ − 2, u′ − 1 and y is set

to True. In this scenario, the only possible value of y in C is False, so at least

one message is removed (i.e. a = v+δ) and at most δ messages are removed (i.e.

a = v + 2δ−1) from in_transit. Thus a − v′ = (v+δ) − (v + 1) =δ−1 < δ and

a− v′ = (v + 2δ−1)− (v+δ) =δ−1 < δ and property (c) is satisfied.

To prove property (d) for the case when y = False in C , we need to prove that

(m, c, a) is put in receive_pending. Note that procedure ADDTORECEIVEPEND-

ING is only invoked in line 13 of Algorithm 3 if the value of α is set to at least δ.

The easiest case is when there is no occurrence of (∗, c, ∗) in total_msgs, so α is

set to δ and the message (m, c, a) is added to receive_pending. The remaining case

is when there is a occurrence of (∗, c, ∗) in total_msgs and α is set to the number

of entries after most recent occurrence of such message in total_msgs. We need to

prove that in fact α is set to at least δ, such that (m, c, a) is put in receive_pending.
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Assume by contradiction that there are less than δ entries after the most recent oc-

currence of (∗, c, ∗), call it (m′, c, a′), in total_msgs and (m, c, a) is not added to

receive_pending in C ’. Furthermore, let this be the first receive with this property.

By the precondition of receive(m, c, a) all the entries in in_transit with indices at

most ℓ−δ have last component True. By Lemma 5, there is a previous receive event

for all those entries, and by the assumption that receive(m, c, a) is the first receive

whose message is not added to receive_pending, all those entries have already been

added to receive_pending. Since those messages are also deleted from in_transit,

then by property (c) the distance between a−v′ is less than δ. Therefore, the number

of auxiliary counters between a and a′ is less than 2δ, less than δ in in_transit and

less than δ in total_msgs). By Lemma 2, c = a mod Mc and c = a′ mod Mc,

which implies that a and a′ leave the same remainder when divided by Mc. Since

Mc = 2δ+1, then the difference between a and a′ is Mc, which is greater than 2δ.

Therefore, it is impossible that there are less than δ entries following (m′, c, a′) in

total_msgs, thus α is set to at least δ and (m, c, a) is added to receive_pending.

The changes that can affect the validity of property (e) are the possible removal of

messages from in_transit and the possible insertion of (m, c, a) in receive_pending.

Suppose v′ is the oldest auxiliary counter in in_transit in C ’, after the removal of

messages. If a message is removed from in_transit, then it has last component

True in C . By inductive hypothesis for property (d), for every removed message

there is a corresponding entry in total_msgs in C , including one for v′ − 1. Those

messages remain in total_msgs in C ’, so there is no gap in auxiliary counters

between receive_pending and in_transit. Now let’s show that if (m, c, a) is in-

serted into receive_pending, it goes in the correct order of the auxiliary counters.

Since (m, c, a) is inserted, it means that, in C , either there is no occurrence of c
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in total_msgs, or there are at least δ entries in total_msgs following the most re-

cent occurrence of c. By the precondition, in C all entries in in_transit that are

at least δ older than (m, c, a, y) have last component True. By inductive hypoth-

esis for property (d), in C there is an entry in total_msgs for each one of these

messages. By inductive hypothesis for properties (e) and (f), in C these messages

appear in total_msgs in sorted order of auxiliary counters. By Lemma 2(a), in

C the corresponding bounded counters of these messages appear in total_msgs in

sorted order (subject to wrap-around). Lines 7-24 in Algorithm 4 insert (m, c, a)

into receive_pending in correct sorted order with respect to the bounded counters.

Note that the procedure MLT(c1, c2) returns whether or not bounded counter c1 is less

than bounded c2, when considering the wrap around. Thus, those facts imply that

(m, c, a) is in proper sorted order with respect to the auxiliary counters and property

(e) is true in C ’.

By inductive hypothesis, properties (a) and (f) are true in C , then they are still true

in C ’.

• Case 4: A RECEIVE(m) event occurs, i.e. lines 17-28 in Algorithm 3 are executed.

The preconditions are that (m, c, a) is at the head of receive_pending and c =

counterB. The message (m, c, a) is moved from receive_pending to delivered,

counterB and AuxB are updated to counter′B = (counterB + 1) mod Mc and

Aux′
B = AuxB + 1 respectively. This event may cause the drop of the oldest

element in delivered with auxiliary counter w if the size of delivered becomes δ+1

in C ’. These changes do not affect properties (a)-(c).

We can prove that property (d) remains true in C ’ even if the oldest message is

removed from delivered because there is no corresponding entry in in_transit.

Suppose in contradiction there is a corresponding entry in in_transit for the oldest
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entry in delivered with auxiliary counter w′. Since auxiliary counters in in_transit

are consecutive, there are entries in in_transit for all the δ elements of delivered

as well as for the message being transferred from receive_pending to delivered

(i.e. δ+1 messages). By the inductive hypothesis for property (d), all these entries

have last component True. However, this contradicts the inductive hypothesis for

property (c), which states there are at most δ−1 entries in in_transit following the

oldest one with last component True.

By inductive hypothesis for property (e), in C the auxiliary counters in receive_pending

are b, b+ 1, ..., v− 1, µ, where b is value of AuxB in C , and µ is a (possibly empty)

subsequence of v, v + 1, ..., v+δ−1, where v is the smallest auxiliary counter in

in_transit in C . Since the changes include removing the head of receive_pending,

in C ’ the auxiliary counters in receive_pending are b + 1, ..., v − 1, µ. Since the

changes include incrementing AuxB by one, in C ’ the value of AuxB is b+ 1. The

only other changes (incrementing counterB and changes to delivered) do not affect

the validity of property (e). Thus property (e) is true in C ’.

Property (f) is satisfied in C ’ because c = (counter′B − 1) mod Mc and a =

Aux′
B−1 and (m, c, a) is inserted at the end of delivered. As mentioned previously,

if the size of delivered is δ+1 in C ’, then only the oldest message with auxiliary

counter w is removed from the FIFO queue, thus |delivered| = δ at the end of C ’.

Since w′ = w + 1, then w′ = Aux′
B−δ if |delivered| = δ, otherwise w′ = 0 if

|delivered| < δ in C ’ because the message with auxiliary counter w′ is not removed

from delivered.

Lemma 4. In every configuration of e, the sequence of messages in the RECEIVE events

that have occurred so far is a prefix of the sequence of messages in the SEND events that
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have occurred so far.

Proof. Let m be the argument of the i-th RECEIVE event and show m is the argument of

the i-th SEND event. The precondition for the i-th RECEIVE event is that (m, c, a) is at the

head of receive_pending and c = counterB.

By Lemma 1(d), counterB = AuxB mod Mc and by the precondition c = counterB.

In addition, by Lemma 2, c = a mod Mc and m is the argument of the (a + 1)-st SEND

event.

Thus a mod Mc = c = counterB = AuxB mod Mc, i.e., a mod Mc = AuxB

mod Mc.

We have to show that a = AuxB. Suppose in contradiction a ̸= AuxB. By Lemma

3(e) (that auxiliary counters in receive_pending are increasing from AuxB) it must be

that a > AuxB, and in fact a ≥ AuxB +Mc. Since a is at the head of receive_pending,

it follows that receive_pending is missing entries with auxiliary counters between AuxB

and a− 1.

Lemma 3(e) states that receive_pending has this sequence of auxiliary counters: (re-

call that v is the smallest (oldest) auxiliary counter in in_transit) AuxB, AuxB+1, ..., v−

1, µ, where µ is a (possibly empty) subsequence of v, v+1, ..., v+δ−1. If AuxB ≥ v, this

means this part of the sequence is empty.

Thus it must be that AuxB ≥ v (otherwise AuxB, ... would be in receive_pending).

Thus a ≥ AuxB +Mc which implies a ≥ v +Mc, i.e., a− v ≥ Mc.

Since a > v and v is the oldest entry in in_transit, it cannot be that the entry for

(m, c, a, ∗) has already been removed from in_transit. Thus (m, c, a, y) is in in_transit.

By Lemma 3(d), y = True and by Lemma 3(c), a− v < δ. However, this contradicts the

fact above that a− v ≥ Mc, since Mc > δ.

By Lemma 1(c), AuxB is the number of RECEIVE events so far, therefore AuxB =
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i− 1. Since a = AuxB, it is also true that a = i− 1. Therefore, m is the argument of the

(a+ 1)-st = i-th SEND event.

Lemma 5. Let C be any configuration of e.

(a) Suppose (m, c, a, y) is in in_transit in C . Then, y = True if and only if there is a

previous receive(m, c, a) event in e.

(b) Suppose there is no entry with auxiliary counter a in in_transit in C . Then there

exists a previous receive(m, c, a) in e if and only if a < v, where v is the smallest auxiliary

counter in in_transit in C .

Proof. By induction on the configurations. In the initial configuration, we have that

in_transit is empty and thus the lemma follows. For the inductive step, assume in con-

figuration C the lemma is true, where property (a) is affected by events send and receive

and property (b) is only affected by the receive event. Then, we need to consider all the

possibilities for the event leading to the next configuration C ’ that can affect both proper-

ties.

• Case 1: A send(m, c, a) event occurs, lines 10-15 in Algorithm 1 and lines 1-5 of

Algorithm 2 are executed. This event affects property (a), so we need to show that

(a) still holds in C ’, as the validity of property (b) is unaffected.

The effect of the send event is that (m, c, a, False) is put in in_transit in C ’. We

must show that there is no previous (with respect to C ’) receive(m, c, a) event in

e. By Lemma 3, the auxiliary counters in send_pending and in_transit are con-

secutive and increasing in both C and C ’. Thus a cannot be less than v, and so by

inductive hypothesis for property (b), there is no previous receive(m, c, a) event in

e with respect to C . Thus the same is true for C ’.

• Case 2: A receive(m, c, a) event occurs, lines 6-13 of Algorithm 2 and lines 5-16

25



of Algorithm 3 are executed. Properties (a) and (b) are affected by this event, thus

we need to show that both properties hold in C ’.

The effect of the receive event is that the last component of the entry for (m, c, a) in

in_transit is set to True. Since obviously a receive(m, c, a) just occurred, prop-

erty (a) is true in C ’.

Now we show that property (b) continues to be true in C ’. We must show that

for every entry that is removed from in_transit, call it (m′, c′, a′, T rue), there

is a previous receive(m′, c′, a′) and a′ < v′, where v′ is the smallest auxiliary

counter in in_transit in C ’. Inductive hypothesis for property (a) implies that, since

(m′, c′, a′, T rue) is in in_transit, there is a previous receive(m′, c′, a′) event. Thus

with respect to C ’ also, there is a previous receive(m′, c′, a′) event. By Lemma 3,

auxiliary counters in in_transit are consecutive and increasing, thus removing one

or more from the smaller end of in_transit does not affect the validity of a′ being

less than v′.

Lemma 6. For every send(m, c, a) event in e, there is at least one subsequent receive(m, c, a)

event.

Proof. Suppose in contradiction that not every send event has a subsequent receive event

with the same arguments. Let send(m, c, a) be the send event with the smallest value of a

without a matching receive event.

When send(m, c, a) occurs, (m, c, a, False) is put in in_transit. By the code, as long

as the fourth component is False, this entry stays in in_transit. Lemma 5 implies that

the fourth component for (m, c, a) stays False throughout the execution.

By the choice of (m, c, a), all entries in in_transit with smaller values of the auxiliary
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counter have a matching receive. Thus by Lemma 5 all those entries eventually have last

component equal to True.

Thus eventually receive(m, c, a) becomes enabled and stays enabled forever, without

ever occurring. This contradicts the assumed fairness of the execution.

Lemma 7. When receive(m, c, a) occurs for the first time, (m, c, a) is added to receive_pending.

Proof. Let C be the configuration just before the first occurrence of receive(m, c, a)

and C ’ be the following configuration. By Lemma 5, the entry in in_transit in C is

(m, c, a, False). Thus by Lemma 3(d), there is no (m, c, a) in total_msgs in C . By the

code, in C ’ the entry in in_transit becomes (m, c, a, True). Therefore, by Lemma 3(d),

there is an entry for (m, c, a) in total_msgs in C ’. By the code, the only way an entry can

be added to total_msgs is for it to be added to receive_pending.

Lemma 8. If there are at least i SEND events, then there are at least i RECEIVE events,

for all i ≥ 1.

Proof. Suppose in contradiction there exists an i such that there are at least i SEND events,

but only i− 1 RECEIVE events.

Let m be the argument of the i-th SEND event. By the code, when SEND(m) oc-

curs, (m, (i − 1) mod Mc, i − 1) is put in send_pending. By admissibility of the ex-

ecution, eventually send(m, (i − 1) mod Mc, i − 1) occurs. By Lemma 6, eventually

receive(m, (i− 1) mod Mc, i− 1) occurs at least once.

By Lemma 7, when receive(m, (i − 1) mod Mc, i − 1) occurs for the first time,

(m, (i− 1) mod Mc, i− 1) is put into receive_pending.

By the assumption that there are only i− 1 RECEIVE events and Lemma 4, (m, (i− 1)

mod Mc, i− 1) is never removed from receive_pending.

By Lemma 1(c) and the assumption that exactly i−1 RECEIVE events occur, eventually
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AuxB = i − 1 and never changes afterwards. By Lemma 1(d), eventually counterB =

(i− 1) mod Mc and never changes afterwards.

Therefore, eventually RECEIVE(m) is continuously enabled, but never occurs. This

contradicts the assumed admissibility of the execution.

Theorem 1. The Algorithm for unbounded but finite duplication and bounded reordering

is correct.

Proof. Follows from Lemmas 4 and 8.
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4. EXTENDED KJ PROTOCOL∗

4.1 Algorithm

As presented in Chapter 3, the KJ protocol only works when bounded message re-

ordering and duplication are allowed. However, the algorithm for the sender only sends

one copy of each message, thus if there is message loss in the channel, the protocol will

violate the safety and liveness properties. In order to model message loss, the bounded

parameter λ is used, which is defined in Chapter 2. Recall that the channel is allowed to

lose at most λ−1 consecutive messages sent over it and the bounded parameter λ is known

to the sender.

The algorithm for the Extended KJ protocol is shown in Figure 4.1. The algorithm for

the sender A is shown in Algorithm 5, where in the event SEND(m) (lines 4-11), the sender

adds λ copies of each message in the FIFO queue send_pending, instead of a single copy.

The event send(m, c, a) (lines 12-17) does not require any modification.

The algorithm to model the behavior of the channel C is shown in Algorithm 6. This

algorithm requires an additional local variable, loss_counter, which is used to keep track

of how many messages are lost in a row. When a send(m, c, a) event occurs (lines 3-

16), it checks the value of loss_counter to determine if the message (m, c, a) should be

inserted into in_transit or not. In more detail, if the value of loss_counter is equal

to λ−1, then the message is inserted into in_transit and the variable is reset to 0. If

the value of loss_counter is a number between 0 and λ−2 inclusive, then the channel

makes a non-deterministic choice to lose the message or not. If the decision is to lose

the message, then loss_counter is incremented by one, otherwise the message is inserted

∗2017 IEEE. Part of the material reported in this chapter is reprinted, with permission, from Keishla
D. Ortiz-Lopez and Jennifer L. Welch, “Bounded Reordering Allows Efficient Reliable Message Transmis-
sion”, in Proceedings 31st IEEE International Parallel & Distributed Processing Symposium (IPDPS), May
2017.
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into in_transit. The event receive(m, c, a) does not require any modification and the

algorithm for the receiver B is the same algorithm presented in Figures 3.2 and 3.3. Also

since the channel can lose at most λ−1 consecutive messages sent over it, the modified

behavior of A ensures that at least one copy of each high level message is received by B.

4.2 Reduction Proof

We will show that the Extended KJ protocol is correct by reducing it to the KJ protocol

which was proven to be correct in Chapter 3. The idea is to show that the sequence of

SEND and RECEIVE events in every execution of the Extended KJ protocol is the same as

the sequence of SEND and RECEIVE events in some execution of the KJ protocol.

Lemma 9. For every execution E of the Extended KJ protocol in a system with parameters

λ and δ, there exists an execution E ′ of the KJ protocol in a system with parameter δ, such

that E , restricted to events and removing duplicate send events is the same as E ′ restricted

to events.

Proof. Let E = C 0e1C 1... be an execution of the Extended KJ protocol with parameters

δ and λ. We will inductively construct an execution E ′ = f(E ) of the KJ protocol with

parameter δ as follows. Let Ei be the prefix of E up to C i and let τ ′ be the transition

function of the KJ protocol.

Basis: i = 0. f(E0) = f(C 0) is defined to be the (unique) initial configuration of the

KJ protocol.

Induction: Suppose that f(Ei−1) is defined and has been shown to be an execution of

the KJ protocol. We now define f(Ei) and show it is an execution of the KJ protocol. In

all the cases, let C ’ be the last configuration in f(Ei−1).

• Case 1: ei = SEND(m). Define f(Ei) to be f(Ei−1) SEND(m) C ′′, where C ′′ =

τ ′(C ′). Then we append SEND(m) to the execution of the KJ protocol that we are
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constructing and let the state change according to the KJ protocol code. Therefore,

f(Ei) is an execution of the KJ protocol because SEND(m) is an input event and

input events are always enabled.

• Case 2: ei = send(m, c, a). If the effect of ei in Ei is to add (m, c, a) to in_transit,

and this is the first time that (m, c, a) is added to in_transit, then define f(Ei) to be

f(Ei−1)send(m, c, a) C ′′, where C ′′ = τ ′(C ′); otherwise define f(Ei) to be f(Ei−1).

That is, if this is the first time that send(m, c, a) succeeds, then reflect this send in

the execution of the KJ protocol being constructed, and otherwise ignore the event.

To show that send(m, c, a) is enabled in C ′, we note that in the KJ protocol exe-

cution being constructed, the previous SEND(m) event puts one copy of (m, c, a) in

send_pending. Since we only append send(m, c, a) to the KJ protocol execution

the first time that send(m, c, a) succeeds in the Extended KJ protocol execution, that

copy of (m, c, a) is at the head of send_pending in C ′.

• Case 3: ei = receive(m, c, a). Define f(Ei) to be f(Ei−1)receive(m, c, a)C ′′,

where C ′′ = τ ′(C ′′), i.e., append receive(m, c, a) to the execution of the KJ pro-

tocol that we are constructing and let the state change according to the KJ protocol

code. The precondition of this event is that all entries in in_transit with index

≤ ℓ−δ have been delivered at least once to B. This event is enabled because the du-

plicated messages put into in_transit in the Extended KJ protocol does not affect

the algorithm for the receiver V , as their delivery could just as well be explained

as duplicate delivery of a single message in the KJ protocol. In fact the level of

reordering in the Extended KJ protocol is never more than that in the KJ protocol

because of the duplicated messages that are sent consecutively. We now proceed in

more detail.

The following facts can be proved by induction:
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Fact 1. In C i, in_transit consists of the sequence ma1
1 ,ma2

2 , ...,m
ak−1

k−1 ,m
ak
k for

some k, where each mah
h indicates ah copies of the message mh, for some ah be-

tween 1 and λ (ignoring the values of the fourth component). Furthermore, if a

message has fourth component True, then it is at index at most δ−1.

Fact 2. In C ′, in_transit consists of the sequence m1,m2, ...,mk−1,mk (ignoring

the values of the fourth component), i.e., there is exactly one copy of each unique

message in C i. Furthermore, if a message has fourth component True, then it is at

index at most δ−1.

Since receive(m, c, a) is enabled in C i, the code of the Extended KJ protocol im-

plies that (m, c, a, y) is in in_transit at some index ℓ for some y, and every entry in

in_transit at index at most ℓ−δ has fourth component True.

By the facts above, the unique entry in in_transit in C ′ that corresponds to (m, c, a, y)

is at index at most ℓ, and every entry in in_transit at index at most ℓ−δ has fourth

component True. Therefore, receive(m, c, a) is enabled in C ′.

• Case 4: ei = RECEIVE(m). Define f(Ei) to be f(Ei−1)RECEIVE(m)C ′′, where C ′′

= τ ′(C ′′), i.e., append RECEIVE(m) to the execution of the KJ protocol that we

are constructing and let the state change according to the KJ protocol code. The

precondition of this event is that (m, c, a) is at the head of receive_pending and

c = counterB. Therefore, this event is enabled in C ′ because B’s code is the same

in the Extended KJ protocol as in the KJ protocol, and thus the evolution of the state

of B in E is the same as the evolution of the state of B in f(E ). Since RECEIVE(m)

is enabled in C i−1, it is also enabled in C ′.
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Theorem 2. The algorithm for unbounded but finite duplication, bounded reordering and

bounded loss is correct.

Proof. Follows from Lemma 9, since it was shown that E and f(E ) have the same se-

quence of SEND and RECEIVE events and since f(E ) is an execution of the KJ protocol

which we already proved was correct, it follows that E is also correct.
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Algorithm 5: Algorithm for sender A.

1: counterA, an integer, initially 0
2: send_pending, a FIFO queue, ini-

tially empty
3: AuxA, an integer, initially 0

input:
4: event SEND(m)
5: effects:
6: for i = 1 to λ do
7: send_pending.enq((m,

counterA, AuxA))
8: end for
9: counterA := (counterA+1)

mod Mc

10: AuxA := AuxA + 1
11: end event
output:
12: event send(m, c, a)
13: preconditions:
14: (m, c, a) is at the head of

send_pending
15: effects:
16: remove (m, c, a) from

send_pending
17: end event

Algorithm 6: Algorithm to model behavior
of C.

1: in_transit, array, initially empty
2: loss_counter, an integer, initially 0

input:
3: event send(m, c, a)
4: effects:
5: if loss_counter =λ−1 then
6: insert (m, c, a, False) at the end of

in_transit
7: loss_counter := 0
8: else
9: make a non-deterministic choice to

lose (m, c, a) or not
10: if lose then
11: loss_counter := loss_counter + 1
12: else
13: insert (m, c, a, False) at the end of

in_transit
14: end if
15: end if
16: end event
output:
17: event receive(m, c, a)
18: preconditions:
19: (m, c, a, y) ∈ in_transit at some

index ℓ for some y

20: for all (m′, c′, a′, y′) ∈ in_transit
with index ≤ ℓ−δ, y′ = True

21: effects:
22: remove from in_transit all entries

with index ≤ ℓ− δ

23: y := True
24: end event

Figure 4.1: Extended KJ Protocol: Algorithm for the sender A and the behavior of the
channel C.
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5. CONCLUSIONS AND FUTURE WORK∗

In this thesis, we have presented and proved the correctness of a non ACK-based proto-

col, called KJ protocol, to solve the RMTP when there is a single channel, from the sender

to the receiver, in which message reordering is bounded by a parameter δ and message

duplication is unbounded but finite. The KJ protocol relies on tagging each message sent

with a counter bounded by Mc, where Mc = 2δ+1. The receiver has the responsibility to

determine if a message received is new or old by ordering each message in the same order

they were sent with respect to the bounded counters and considering the cases when the

counters wrap around. We also provided another protocol, called the Extended KJ proto-

col, that allows bounded message loss λ and a reduction proof showing that the Extended

KJ protocol can be reduced to the KJ protocol, since the algorithm for the receiver does

not need any modification.

5.1 Future Work

Future work includes providing an algorithm or impossibility proof when the param-

eters δ and λ are unknown to the processors. Another interesting direction is to consider

extensions to multi-hop communication in a general network, including the possibility of

dynamic changes to the network topology. Prior work [2, 4, 5] has studied this problem in

the fully asynchronous case; improvements might be possible when there are bounds on

the amount of loss, duplication and reordering.

∗2017 IEEE. Part of the material presented in this chapter is reprinted, with permission, from Keishla
D. Ortiz-Lopez and Jennifer L. Welch, “Bounded Reordering Allows Efficient Reliable Message Transmis-
sion”, in Proceedings 31st IEEE International Parallel & Distributed Processing Symposium (IPDPS), May
2017.
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