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ABSTRACT

Unmanned Aerial Vehicle (UAV) is an unmanned air vehicle which can be operated

by human or fly autonomously on the basis of flight plans. UAVs are usually utilized for

military purposes that are too tedious, dirty, risky, or hazardous for normal manned air

vehicles; however, they are also utilized for civil purposes like aerial photography or air

surveillance. There are two types of UAVs. One is the fixed-wing UAV, i.e. an airliner, the

other is the rotor-wing UAV, i.e. a helicopter. Rotor-wing UAVs have the weather gauge

of fixed-wing UAVs. Because they can perform Vertical Take-Off and Landing (VTOL); it

is able to hover at particular point. The advantages of the rotor-wing is as follows. First, it

is mechanically simple; it’s main components are n motors and n propellers. Second, they

do not require complex mechanical parts to control their flight; it can fly and maneuver

only by changing the speed of the motors. One of the successful design example is a four

rotor UAV, also known as quadrotor.

In this work, design and control of an omni-directional quadrotor model is developed

and simulated by using tilt-rotor mechanism. And also, a mathematical model of the

quadrotor’s dynamics is derived using Newton’s law and Euler’s law. In addition, lin-

earized models are obtained, and therefore a linear controller, the Linear Quadratic Reg-

ulator (LQR), is derived. After that, non-linear controller for the quadrotor is provided.

Finally, the behavior of the quadrotor under the proposed control strategies is observed in

simulation by using the MATLAB, Simulink and Simmechanics.
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NOMENCLATURE

UAV Unmanned Aerial Vehicle

UAVs Unmanned Aerial Vehicles

VTOL Vertical Take Off and Landing

MPC Model Predictive Control

LQR Linear Quadratic Regulator

CAD Computer Aided Design

MIMO Multiple Input Multiple Output

DOF Degree of Freedom
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1. INTRODUCTION

1.1 Motivation

UAVs are getting more ubiquitous or omnipresent in modern research areas or industry

fields [1]. Also, UAVs are utilized a wide range of applications including intelligence

gathering, surveillance [2], rescue [3], instantaneous response, urban combat, and wireless

sensor networks [4].

The helicopters and airplanes have become available in facilitating human life, and

providing a bunch of application areas with large scale productions. The low speed limit

points of airplanes and high speed limit points of helicopters have made their application

areas different. In spite of the fact that a lot of exertion has been spent to consolidate the

advantages of these aircraft into one with disposing of disadvantages such as tilt-wings

and tail-sitters and none has been sufficiently effective until tilt-rotors [5].

Omni-directional quadrotor can help people in many areas such as agriculture applica-

tions or air surveillance purposes.

1.2 Related works

The idea of a tilt-rotor UAV has been studied before in simulation and actualized phys-

ical systems. A. Sanchez et al.[6] could design and implement a tilt-rotor system with

dynamic equations and control laws. Also, Christos Papachristos et al.[7] researched the
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development of tilt-rotor UAV as a feasible platform for autonomous rescue actions. An-

other work into the development of a MPC scheme [8] and an open source platform [9]

provide a continued interest in tilt-rotor UAVs to consolidate the mobility of helicopters

with fixed wing UAV’s long distance flight. [10]. More recent work presented the design,

analysis, and implementation of a tilt-rotor UAV; and the work proposed two nacelle sys-

tems for changing thrust vectors. The UAV has the ability to tilt the thrust output using

dual-nacelle [11].

1.3 Research objective

My work presents the design and control of an omni-directional quadrotor with tilt-

rotor system, tiltable rotor mount. The proposed system utilizes four tiltable rotor mount

for tilt mechanism which is for changing the direction of thrust or thrust vectors.

1.4 Thesis contributions

The primary purpose of this thesis is the design & control of an omni-directional

quadrotor. These system concepts are provided for future research on the advanced con-

troller design for aggressive maneuvers of UAVs. Suggested are five hovering models

of the tiltrotor UAV. From the horizontal hovering model to vertical hovering model. To

achieve the desired thesis goal, the contributions of the thesis are as follows:

2



• A study on the possibility of the design and control of an omni-directional quadrotor

with tiltable rotor mount for stable maneuvering and hovering.

• A multi-body dynamic model of an omni-directional quadrotor was suggested based

on the Newton-Euler method for control and simulation.

• A simplified dynamic model of the UAV was also provided for the vehicle system

using a single body approach to simplify the control implementation.

• A MATLAB Simulink and Simmechanics block was implemented based on the dy-

namic model of the tilt-rotor UAV.

• The Simulink and Simmechanics block was used to simulate the UAV, verify hover-

ing conditions, and control strategies.

3



2. MATHEMATICAL MODEL OF THE UAV

2.1 Primary notations

The quadrotor, an aircraft made up of four rotors, holds the electronic board in the mid-

dle and the engines at four ends. Before describing the mathematical model of a quadrotor,

it is necessary to introduce the reference coordinates in which we describe the structure

and the position. For the quadrotor, it is possible to use two reference systems. The first

is fixed and the second is mobile. The fixed coordinate system, called also inertial, is a

system where the first Newton’s law is considered valid.

Figure 2.1: The NED fixed reference frame

4



As fixed coordinate system, we use the ONED systems, where NED is for North-East-

Down. As we can observe from the above Figure 2.1, its vectors are directed to North,

East and to the center of the Earth.

The mobile reference system, called also body-fixed that we have previously men-

tioned is united with the barycenter of the quadrotor. In the scientific literature it is called

OABC system, where ABC is for Aircraft Body Center. In the below Figure 2.2, it presents

underlines the two coordinate systems.

Figure 2.2: The earth-fixed reference frame and the body fixed reference frame

5



The earth-fixed inertial reference frame (0e Xe Ye Ze) is a right-handed orthogonal

axis-system with the origin at the quadrotor’s centre of gravity at the beginning of the

considered motion. This reference frame is fixed to the earth and is considered as the

inertial frame of reference under simplifying conditions.

The body-fixed reference frame (0b Xb Yb Zb) is a right-handed orthogonal axis-system

with the origin at the quadrotor’s centre of gravity. The reference frame remains fixed to

the quadrotor even in perturbed motion.

The absolute position of the quadrotor is described by the three coordinates (x,y,z) of

the centre of mass with respect to the earth reference frame.

The absolute attitude of quadrotor is described by the three Euler’s angles (ψ,θ,φ).

These three angles are respectively called yaw angle (−π ≤ ψ < π), pitch angle (−π/2 <

θ < π/2) and roll angle (−π/2 < φ < π/2).

6



2.2 Quadrotor dynamics

Figure 2.3: Main forces

ω1 ω2 ω3 ω4 : angular velocity of the propellers

T1 T2 T3 T4 : forces generated by the propellers

M1 M2 M3 M4 : moments generated by the propellers

m : mass of the quadrotor

mg : gravity force (weight of the quadrotor)

Equilibrium of forces :
∑4

i=1 Ti = −mg

Equilibrium directions : T1, T2, T3, T4 || g

Equilibrium moments :
∑4

i=1Mi = 0

Equilibrium rotation speeds : (ω2 + ω3)− (ω1 + ω4) = 0

7



2.3 Quadrotor dynamics modeling

The represented position( p = [x y z]T ) of the UAV in the inertia frame and the euler’s

angle( η = [φ θ ψ]T ) are related with the linear velocity( v = [vx vy vz]T ) and angular

velocity( ω = [ωx ωy ωz]T ) in the body-fixed frame.

Ṗ = Rv

ω = Cη̇

(2.1)

R is the body-fixed frame rotation matrix about inertial frame.

R = Rz(ψ)Ry(θ)Rx(φ) (2.2)

R =


R11 R12 R31

R21 R22 R32

R31 R32 R33



8



C is the matrix represent the relationship between the velocity component of euler’s

angle in the inertial frame and angular velocity vector of body-fixed frame.

9



After Differentiating equation (1),

P̈ = Rv̇ + Ṙv

ω̇ = Cη̈ + Ċη̇

(2.3)

After rearrange the above equations,

P̈ = R(v̇ + ω × v)

ω̇ = Cη̈ + Ċη̇

(2.4)

Because Ṙv = ω × (Rv)

Using Newton’s 2nd law,

mv̇ + ω × (mv) = F + Fg

Iω̇ + ω × (Iω) = Q−QG

(2.5)

10



where, m is the mass of the UAV, I is mass moment of inertia. mv̇ is the force generated

by acceleration, ω × (mv) is the centripetal force.

Since the UAV is designed line symmetry, the moments of inertia is like below.

Especially, Ixx = Iyy

I =


Ixx 0 0

0 Iyy 0

0 0 Izz


Fg is the gravity on the UAV. Since this gravity force should represent in the body-

fixed frame, we should rotate the gravity vector( g◦ = [0 0 -g]T ) in the inertial frame to

body-fixed frame.

Fg = mRTg◦ (2.6)

Because RT = R−1

QG is the gyro effect, this is defined from the angular velocities of four rotors.

QG = ω × IRΩG
(2.7)

11



where, IR is the moment of inertia, ΩG = [0 0 Ω1 − Ω2 + Ω3 − Ω4]
T .

F is the force and G is the moment to control the UAV, this is related with angular veloci-

ties of four rotors like below.

F = [0 0 F1 + F2 + F3 + F4]
T

G = [`(F4 − F2) `(F3 − F1) τ1 − τ2 + τ3 − τ4]T

where, Fi = KtΩ
2
i , τi = KdΩ

2
i , ` is the distance between rotors, Kt and Kd is coeffi-

cient of thrust and torque related with ith rotor’s angular velocity Ωi.

From equation (4) and (5),

mRT p̈ = F +mRTg◦

p̈ = g◦ +
1

m
RF

(2.8)

Also, the angular velocities of the UAV in the inertial frame is defined like below.

I(Cη̈ + Ċη̇) + Cη̇ × (ICη̇) = Q− Cη̇ × IRΩG

η̈ = (IC)−1(Q− IĊη̇ − Cη̇ × (ICη̇ + IRΩG))

(2.9)

12



3. VEHICLE MODELING

3.1 UAV model design

CAD software, Solidworks, was utilized during the vehicle model design process to 

build rigid-body model of the UAV as is shown below in Fig. 3.1.

Figure 3.1: CAD model for omni-directional UAV

This aircraft model has the ability to hover under any euler’s angle; therefore, by

changing thrust vector of the tilt-rotor UAV, the vehicle can change their body angle ac-

cording to the environments. The tiltable rotor mount can rotate their angle between -90◦

to 90◦. In the above figure, the left one is normal (horizontal) hovering model, which ro-

tor mount tilted angle is 0◦, and right one is vertical hovering model, which rotor mount

tilted angle is 90◦. In this UAV system, there are 8 inputs, which is torques and angles

of the each rotors and there are 13 outputs, which is I measured, position[x,y,z], linear

13



velocity[u,v,w], angular position is represented by quaternion [q1, q2, q3, q4], and angu-

lar velocity[p,q,r]. Euler angle can calculated from quaternion values. Therefore, this

tilt-rotor system is MIMO system.

Figure 3.2: Overview of simulink and simmechanics model

14



Figure 3.3: The simulink model for quadrotor rigid body

Figure 3.4: The simulink model for propeller dynamics

15



4. METHODOLOGY

4.1 Control design

This tilt-rotor UAV has the 4-rotors and in free flight 6-DOF; it is an under-actuated

and unstable dynamically. Therefore, the controller or regulator design is a difficult work.

Open-loop output of quadrotor is unstable; thus, feedback control is required to be able to

fly the UAV.

4.2 Linearization

The control vector u = [T1, T2, T3, T4]
T . The linearization process is developed at

certain equilibrium point x̄, which is for certain input ū.

f̂(x̄, ū) = 0. (4.1)

4.3 Linear Quadratic Regulator (LQR)

The objective of the optimal control is to determine control signal so that the system

to be controlled. The LQR is one of the optimal control method that minimize a certain

cost function. In other words, the optimization problem’s solution is supposed to bring the

state of system x(t) to the desired value xd minimizing some cost.

16



Figure 4.1: Linear Quadratic Regulator (LQR) control

Let’s consider a dynamic system and set x as state of the system ans set u as input of

the system.

˙x(t) = f [x(t), u(t), t] (4.2)

J = e[x(tf )] +

∫ tf

t0

w[x(t), u(t), t]dt (4.3)

wherew is the weight function and e is the final cost; both of them are non-negative fuction

such as w(0, 0, t) = 0, e(0) = 0.

The objective is minimizing J .


ẋ = A · x+B · u

y = C · x
(4.4)

J =

∫ ∞
t0

{u(t)T ·R · u(t) + [x(t)− xd(t)]T ·Q · [x(t)− xd(t)]}dt (4.5)

• R is the cost of the actuators (R = RT , positive definite matrix)

• Q is the cost of the states (Q = QT , positive semi-definite matrix)

u(t) = −K · [x(t)− xd(t)] (4.6)

17



where

K = R−1 ·BT · S (4.7)

The S is the Riccati’s algebraic equation’s solution matrix.

S · A+ AT · S − S ·B ·R−1 ·BT · S + CT ·Q · C = 0 (4.8)

where S is a positive definite matrix.

The Riccati’s algebraic equation can be solved by using MATLAB LQR fuction.

K = LQR(A,B,Q,R) (4.9)

we can get

• There exists one soution for positive sefinite S of the Riccati’s algebraic equation.

• The closed-loop system ẋ = (A−B ∗K) ∗ x is asymptotically stable with K

18



4.4 Controller application

In my model, there are 4 inputs and there are 13 outputs. Using this non-linear tilt-rotor

UAV model, doing linearization first, for obtaining linear model of both horizontal hover-

ing and vertical hovering. After get linear models, design and apply controller or regulator

for hovering using LQR. The result of closed-loop system should be asymptotically stable

with K.

4.5 Research issues

During last few decades, there are various way to design and control tilt-rotor UAVs

have been provided, we need to find a way to find optimal and robust method to design

and control the UAVs for various natural environments. In this thesis, using tiltable rotor

mount, UAV can change their thrust vectors easily; from this, the UAV can change their

body angle. Therefore, with this tilt mechanism, the UAV can fly under any arbitrary

angles, omni-directional. Therefore, in this thesis, two important following issues will be

focused:

• Tilt mechanism design for omni-directional UAV

• Control method for hovering under certain angles using the tilt mechanism
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5. RESEARCH RESULTS (HOVERING CONTROL OF THE UAV)

Figure 5.1: Five hovering modes

Figure 5.2: The relationship between euler angle and quaternion
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5.1 Horizontal hovering case (0deg rotation of rotor mount)

First, I did the linearizaion at the operating point 0deg. The linearization conditions as 

are shown below in Fig. 5.3.

Figure 5.3: Linearization condition for 0deg 1

Each propeller rotors have rotation angle and angular velocity. “Rz.q" means rota-

tion angle, “Rz.w" means angular velocity. I set initial minimum value for “rotor1" and

“rotor3" as “15" for initial linearizing condition.
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Figure 5.4: Linearization condition for 0deg 2

And then, the UAV has 6-DOF motions. For hovering, I set some values. “Px.p, Py.p,

Pz.p" means “x, y, z". I set this value as “0, 0, 1". “S.Q" means quaternion of UAV. I set

this value “1, 0, 0, 0" because “0deg" means “no rotatioin" at that time, the quaternion

value is “1, 0, 0, 0". “Px.v, Py.v, Pz.v" means “linear velocity of UAV (u, v, w)". I set this

value “0, 0, 0" because of hovering. “S.w" means angular velocity of UAV (p, q, r). I set

this value “0, 0, 0" for hovering motion.
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I got the results of linearizaion at the operating point 0deg. The results as are shown 

below in Fig. 5.5.

Figure 5.5: Linearization result for 0deg 1

As we can see in the above figure, the magnitude of angular velocities for 4 rotors are

same, this means the UAV is hovering properly. Let me explain and verify this hovering

motion using simulink and simmechanics later part.
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Figure 5.6: Linearization result for 0deg 2

As we can see in the above figure, the 6-DOF motion components match perfectly

with what I set in the linearization conditions. After I got this linearization results, I made

regulator for hovering at the operating point. Using full-state feedback, all states go to

desired states. The plant can be written in state-space form ẋ = Ax + Bu, and that all of

the n states x are available for the controller.
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As we can see in the below figure, the error increases initially in order to get stabilize

(The LQR regulator is meant to keep all the states near zero).

Figure 5.7: Regulator results for 0deg case
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5.2 Incline hovering case (30deg rotation of rotor mount)

Second, I did the linearizaion at the operating point 30deg. The linearization conditions 

as are shown below in Fig. 5.8.

Figure 5.8: Linearization condition for 30deg 1

Each propeller rotors have rotation angle and angular velocity. “Rz.q" means rotation

angle, “Rz.w" means angular velocity. I set initial minimum value for “rotor3" as “30" for

initial linearizing condition.
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Figure 5.9: Linearization condition for 30deg 2

And then, the UAV has 6-DOF motions. For hovering, I set some values. “Px.p, Py.p,

Pz.p" means “x, y, z". I set this value as “0, 0, 1". “S.Q" means quaternion of UAV. I set

this value “0.96593, 0, 0.25882, 0" because “30deg" means “ 30deg rotation" at that time,

the quaternion value is “0.96593, 0, 0.25882, 0". “Px.v, Py.v, Pz.v" means “linear velocity

of UAV (u, v, w)". I set this value “0, 0, 0" because of hovering. “S.w" means angular

velocity of UAV (p, q, r). I set this value “0, 0, 0" for hovering motion.
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I got the results of linearizaion at the operating point 30deg. The results as are shown 

below in Fig. 5.10.

Figure 5.10: Linearization result for 30deg 1

As we can see in the above figure, the magnitude of angular velocities for 2 rotors are

same, this means the UAV is hovering properly. Let me explain and verify this hovering

motion using simulink and simmechanics later part.
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Figure 5.11: Linearization result for 30deg 2

As we can see in the above figure, the 6-DOF motion components match perfectly

with what I set in the linearization conditions. After I got this linearization results, I made

regulator for hovering at the operating point. Using full-state feedback, all states go to

desired states. The plant can be written in state-space form ẋ = Ax + Bu, and that all of

the n states x are available for the controller.
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As we can see in the below figure, the error increases initially in order to get stabilize

(The LQR regulator is meant to keep all the states near zero).

Figure 5.12: Regulator results for 30deg case

30



5.3 Incline hovering case (45deg rotation of rotor mount)

Third, I did the linearizaion at the operating point 45deg. The linearization conditions 

as are shown below in Fig. 5.13.

Figure 5.13: Linearization condition for 45deg 1

Each propeller rotors have rotation angle and angular velocity. “Rz.q" means rotation

angle, “Rz.w" means angular velocity. I set initial minimum value for “rotor3" as “40" for

initial linearizing condition.
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Figure 5.14: Linearization condition for 45deg 2

And then, the UAV has 6-DOF motions. For hovering, I set some values. “Px.p, Py.p,

Pz.p" means “x, y, z". I set this value as “0, 0, 1". “S.Q" means quaternion of UAV. I set

this value “0.92388, 0, 0.38268, 0" because “45deg" means “ 45deg rotation" at that time,

the quaternion value is “0.92388, 0, 0.38268, 0". “Px.v, Py.v, Pz.v" means “linear velocity

of UAV (u, v, w)". I set this value “0, 0, 0" because of hovering. “S.w" means angular

velocity of UAV (p, q, r). I set this value “0, 0, 0" for hovering motion.
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I got the results of linearizaion at the operating point 45deg. The results as are shown 

below in Fig. 5.15.

Figure 5.15: Linearization result for 45deg 1

As we can see in the above figure, the magnitude of angular velocities for 2 rotors are

same, this means the UAV is hovering properly. Let me explain and verify this hovering

motion using simulink and simmechanics later part.
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Figure 5.16: Linearization result for 45deg 2

As we can see in the above figure, the 6-DOF motion components match perfectly

with what I set in the linearization conditions. After I got this linearization results, I made

regulator for hovering at the operating point. Using full-state feedback, all states go to

desired states. The plant can be written in state-space form ẋ = Ax + Bu, and that all of

the n states x are available for the controller.
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As we can see in the below figure, the error increases initially in order to get stabilize

(The LQR regulator is meant to keep all the states near zero).

Figure 5.17: Regulator results for 45deg case
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5.4 Incline hovering case (60deg rotation of rotor mount)

Third, I did the linearizaion at the operating point 60deg. The linearization conditions 

as are shown below in Fig. 5.18.

Figure 5.18: Linearization condition for 60deg 1

Each propeller rotors have rotation angle and angular velocity. “Rz.q" means rotation

angle, “Rz.w" means angular velocity. I set initial minimum value for “rotor3" as “50" for

initial linearizing condition.
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Figure 5.19: Linearization condition for 60deg 2

And then, the UAV has 6-DOF motions. For hovering, I set some values. “Px.p, Py.p,

Pz.p" means “x, y, z". I set this value as “0, 0, 1". “S.Q" means quaternion of UAV. I set

this value “0.86603, 0, 0.5, 0" because “60deg" means “ 60deg rotation" at that time, the

quaternion value is “0.86603, 0, 0.5, 0". “Px.v, Py.v, Pz.v" means “linear velocity of UAV

(u, v, w)". I set this value “0, 0, 0" because of hovering. “S.w" means angular velocity of

UAV (p, q, r). I set this value “0, 0, 0" for hovering motion.
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I got the results of linearizaion at the operating point 60deg. The results as are shown 

below in Fig. 5.20.

Figure 5.20: Linearization result for 60deg 1

As we can see in the above figure, the magnitude of angular velocities for 2 rotors are

same, this means the UAV is hovering properly. Let me explain and verify this hovering

motion using simulink and simmechanics later part.

38



Figure 5.21: Linearization result for 60deg 2

As we can see in the above figure, the 6-DOF motion components match perfectly

with what I set in the linearization conditions. After I got this linearization results, I made

regulator for hovering at the operating point. Using full-state feedback, all states go to

desired states. The plant can be written in state-space form ẋ = Ax + Bu, and that all of

the n states x are available for the controller.
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As we can see in the below figure, the error increases initially in order to get stabilize

(The LQR regulator is meant to keep all the states near zero).

Figure 5.22: Regulator results for 60deg case

40



5.5 Vertical hovering case (90deg rotation of rotor mount)

Third, I did the linearizaion at the operating point 90deg. The linearization conditions 

as are shown below in Fig. 5.23.

Figure 5.23: Linearization condition for 90deg 1

Each propeller rotors have rotation angle and angular velocity. “Rz.q" means rotation

angle, “Rz.w" means angular velocity. I set initial minimum value for “rotor3" as “60" for

initial linearizing condition.
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Figure 5.24: Linearization condition for 90deg 2

And then, the UAV has 6-DOF motions. For hovering, I set some values. “Px.p, Py.p,

Pz.p" means “x, y, z". I set this value as “0, 0, 1". “S.Q" means quaternion of UAV. I set

this value “0.70711, 0, 0.70711, 0" because “90deg" means “ 90deg rotation" at that time,

the quaternion value is “0.70711, 0, 0.70711, 0". “Px.v, Py.v, Pz.v" means “linear velocity

of UAV (u, v, w)". I set this value “0, 0, 0" because of hovering. “S.w" means angular

velocity of UAV (p, q, r). I set this value “0, 0, 0" for hovering motion.
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I got the results of linearizaion at the operating point 90deg. The results as are shown 

below in Fig. 5.25.

Figure 5.25: Linearization result for 90deg 1

As we can see in the above figure, the magnitude of angular velocities for 2 rotors are

same, this means the UAV is hovering properly. Let me explain and verify this hovering

motion using simulink and simmechanics video later part.
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Figure 5.26: Linearization result for 90deg 2

As we can see in the above figure, the 6-DOF motion components match perfectly

with what I set in the linearization conditions. After I got this linearization results, I made

regulator for hovering at the operating point. Using full-state feedback, all states go to

desired states. The plant can be written in state-space form ẋ = Ax + Bu, and that all of

the n states x are available for the controller.
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As we can see in the below figure, the error increases initially in order to get stabilize

(The LQR regulator is meant to keep all the states near zero).

Figure 5.27: Regulator results for 90deg case
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6. RESEARCH RESULTS (POSITION CONTROL OF THE UAV)

6.1 Control methods

Figure 6.1: Control concept

6.1.1 Euler transform

The relationship between the acceleration of the UAV ẍd, ÿd and φd, θd is like below.

Ṗ = Rv (6.1)

After differentiation,

P̈ = Rv̇ (6.2)

where, ignore Ṙv.

46



Figure 6.2: The euler transform

6.1.2 The τ transform

The relationship equation (Euler’s equation) between torque, angular velocity, and an-

gular acceleration is like below.

τ = Iω̇ + ω × Iω (6.3)

ω = Cη̇ (6.4)
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After differentiation,

ω̇ = Ċη̇ + Cη̈ (6.5)

From equation (6.3), (6.4), (6.5), we can rearrange like below.

τ = IĊη̇ + ICη̈ + Cη̇ × (ICη̇) (6.6)

where, the ignore disturbance IĊη̇, Cη̇ × (ICη̇). After then,

τd ≈ IC ¨ηref (6.7)

6.1.3 The f transform

Ṗ = Rv (6.8)

After differentiation,

P̈ = Ṙv +Rv̇

= ω ×Rv +Rv̇

(6.9)

After removing ω,

P̈ = Cη̇ ×Rv +Rv̇ (6.10)
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Rearranging about v̇ is like below,

v̇ = R−1(p̈− Cη̇ ×Rv) (6.11)

where, the ignore disturbance Cη̇ ×Rv. After then,

v̇d ≈ R−1 ¨pref (6.12)

6.1.4 Calculation of the T−1

The forces( f1, f2, f3, f4 ) generated from rotating motion of four rotors are related

with the rigid body like below.

Figure 6.3: The calculation for T−1
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where, m is the mass of the UAV, l is the distance between the face two rotors, r is the

coefficient between the force and moment.

u = Tf

f = T−1u

(6.13)

6.1.5 The position (x, y, z) control

The controller to control x, y, z is like below.

Figure 6.4: Controller concept to control x, y, z
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6.1.6 Simulink model to control x, y, z

Figure 6.5: Simulink model for quadrotor dynamics

Figure 6.6: Simulink model for position & heading control
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6.1.7 Simulink results

I set the position (5, 5, 10) and heading 1 rad, the results are like below.

Figure 6.7: The angle of the UAV

where, red line is ψ, the blue line is θ, the yellow line is φ.

As we can see in the above figure, the heading of the UAV( ψ ) go to the desired value

1 rad less than 0.5 second.
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Figure 6.8: The velocity of the UAV

where, red line is ż, the blue line is ẏ, the yellow line is ẋ. As we can see in the above

figure, the velocity of the UAV( ẋ, ẏ, ż ) go to the desired value 0.

Figure 6.9: The position of the UAV

where, red line is z, the blue line is y, the yellow line is x. As we can see in the above

figure, the position of the UAV( x, y, z ) go to the desired value (5, 5, 10).
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7. RESEARCH SUMMARY & FUTURE WORKS

7.1 Research summary

• The method of design and control of an omni-directional quadrotor with

tilt-rotor system is provided

• The behavior of quadrotor under suggested control strategies is observed in

MATLAB, Simulink, Simmechanics

7.2 Future works

• Output feedback controller

• Thrust coefficient experiment

I used full-state feedback control method; however, if I apply output-feedback con-

troller in the near future, I can reduce the number of sensors to measure outputs.
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