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ABSTRACT 

 

Magnetic resonance imaging and spectroscopy provide the potential for 

breakthroughs in the understanding of disease and evaluation of treatment outcomes in 

medical conditions such as muscular disorders, cancer, and mental illnesses. Compared 

to 
1
H nuclei, secondary (non-

1
H) nuclei such as 

13
C, 

31
P, and 

23
Na necessitate higher 

sensitivity detection methods due to smaller concentrations in vivo and intrinsically 

lower Larmor frequencies. Two ways to increase the sensitivity of experiments using 

radiofrequency coils are 1) through optimizing the coil size to fit the volume of interest, 

and 2) through increasing the number of coils over a defined field of view through 

phased arrays. Clinical scanners are often constrained in these two regards in that the 

radiofrequency coils available from the vendor are generally much larger than the 

volume of interest, and clinical scanners are typically equipped with a singular 

broadband channel. With these limitations, there is a need to extend the capabilities of 

existing magnetic resonance systems to increase sensitivity for secondary nuclei and for 

imaging experiments that fall outside the characteristics of a typical human clinical exam 

(i.e. small samples, animals, or targeted anatomies). 

This thesis describes a set of work to address these limitations in order to extend 

the capabilities of commercial scanners for custom applications. First, the functionality 

of an existing custom-built multi-channel, broadband receiver is improved through 

adding calibration capability on each individual channel and through the creation of a 

user interface that will result in a faster workflow which is critical for live animal 
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experiments. Second, a custom-built double-tuned coil is interfaced to a 3T clinical 

magnetic resonance imaging system through a custom built connector, increasing the 

signal-to-noise ratio for the given application in comparison to the currently available 

coil for the scanner. Both of these projects work towards integrating external hardware 

on existing systems to increase the sensitivity of multinuclear studies and customized 

experiments. 
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NOMENCLATURE 

 

1
H    Hydrogen Atom  

13
C    Carbon-13 Isotope  

31
P    Phosphorous-31 Isotope  

B0    Static Magnetic Flux Density  

B1    Radiofrequency Magnetic Flux Density  

DMD  Duchenne's Muscular Dystrophy 

GRMD  Golden Retriever Muscular Dystrophy  

GUI Graphical User Interface  

IF  Intermediate Frequency 

LO  Local Oscillator  

MRI    Magnetic Resonance Imaging  

MRS  Magnetic Resonance Spectroscopy 

NMR    Nuclear Magnetic Resonance  

PCr  Phosphocreatine 

Pi  Inorganic Phosphate 

RF    Radiofrequency 

TE  Echo Time 

TR  Repetition Time 

TIPS  Texas Institute for Pre-Clinical Studies 
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CHAPTER I: 

 

INTRODUCTION 

 

 

Magnetic resonance spectroscopy (MRS) has been performed for over 20 years, 

enabling noninvasive interrogation of ionic and metabolic activity [2]. Such experiments 

acquire data that would otherwise require invasive biopsy, thereby providing a means to 

diagnose disease and test treatment outcomes through quantitative measurements 

without physical discomfort to the patient. MRS has been utilized to better understand 

various medical conditions, including multiple sclerosis, muscular dystrophy, breast 

cancer, and cardiac failure [3-6]. The focus of this research specifically is to further the 

capabilities of acquiring MRS data for ultimate use in the study of Duchenne's Muscular 

Dystrophy (DMD), as this is the current focus of a set of collaborative studies at the 

Texas A&M Veterinary School [7].  

I.1 Motivation 

 

  DMD is a progressive disease that affects 1 in 3600–6000 live male births [8]. 

DMD's progression leads to widespread skeletal and muscle fiber destruction and 

connective tissue infiltration. Muscular tissue destruction leads to loss of ambulation as 

well as cardiac and respiratory complications, which ultimately results in patient's deaths 

often in their early 20's [8]. There is currently no treatment for the disease, however 

corticosteroids have proven to prolong the disease progression, and gene therapy is 

currently being researched as a cure [9].  
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In evaluating any possible treatment outcome of a disease, it is of extreme 

importance to provide feedback to the patient so it is known whether or not the treatment 

is efficacious or if another treatment should be sought. For DMD specially, the gold 

standard of evaluating treatment outcomes is currently through taking muscle biopsies 

from patients [8]. This is not ideal, as it puts the patient in discomfort, can be prone to 

measurement error, and is highly dependent on the disease progression of the muscle 

biopsied [10]. Clinical testing to evaluate treatment outcomes may be performed, such as 

having patients physically demonstrate strength and gait, but such tests are difficult to 

quantify and must be done over a time period of months to determine if disease 

progression is slowing. Connective tissue infiltration has been viewed through the ability 

of magnetic resonance imaging (MRI) to induce soft tissue contrast through techniques 

such as T1-weighted imaging in which fatty tissue appears bright in comparison to 

muscle tissue [11, 12]. While such imaging methods may provide a comprehensive 

"snapshot" of the disease severity as an indication of the fatty muscle infiltration, it is 

difficult to quantify [12]. By contrast, MRS can be utilized as a quantifiable measure of 

treatment outcomes through measuring the metabolic activity of a particular muscle over 

time. 

MRS studies are of particular interest to the treatment and diagnosis of muscular 

disorders such as DMD, as phosphorus (
31

P) can be used to quantify phosphorylated 

metabolites to gain insight into muscle bioenergetics, hydrogen (
1
H) to assess lipid 

content such as connective tissue infiltration, sodium (
23

Na) to evaluate cellular function, 

and carbon (
13

C) to examine glycogen concentrations indicating energy expenditures [2, 
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13-15]. These nuclei all contribute to form a comprehensive "tissue signature" and 

provide relevant information relating to the understanding of muscular dystrophy. 

Therefore, through the application of multi-nuclear studies involving such nuclei, 

disease progression and treatment outcomes can be better understood without the need to 

extract muscle biopsies from patients. 

I.2 Thesis Chapters and Organization 

 This thesis is organized to first provide the clinical motivation behind performing 

this type of research, namely to contribute in ultimately finding a treatment that will cure 

those affected with muscular dystrophy. Given that MRS is non-invasive and 

quantifiable, it is viewed as the best option for indicating treatment outcomes. Therefore, 

the background of what MRS is and how it is performed is then provided. MRS of non-

1
H nuclei will need maximum sensitivity so that accurate diagnosis may be made, so 2 

different ways of increasing sensitivity are described which relate to this research. 

 The remaining chapters describe the research efforts of this thesis. Chapter III 

describes the efforts taken to improve the functionality of a custom-made 6-channel 

broadband receiver. The motivation and resultant graphical user interface are presented, 

along with the improved capability of being able to calibrate the receiver to maximize 

sensitivity. 

 Chapter IV presents the motivation and the design of a connector that interfaces a 

custom-made coil to a clinical MRI system.  

 Chapter V exemplifies experiments that were performed which prove the 

effectiveness of the research efforts presented in the previous 2 chapters. One 
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experiment performs imaging that previously has never been performed with the custom-

made receiver, and the other exemplifies that the connector and accompanying coil 

accomplish what was set out in designing them in the first place: increasing the signal-

to-noise ratio compared to the currently available option. 

Chapter VI concludes the thesis with a discussion of the implications that can be 

made given the research results, along with recommendations regarding future work.  
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CHAPTER II: 

BACKGROUND 

 

II.1 Duchenne's Muscular Dystrophy 

 

DMD is an X-linked inherited neuromuscular disorder due to mutations in the 

dystrophin gene [16]. It is thought that dystrophin plays an important role in providing 

mechanical reinforcement to muscle fibers, and therefore, dystrophin could help to 

protect muscle fibers from potentially damaging tissue stresses developed during muscle 

contraction [17]. Steroids have been shown to slow the disease progression, but there are 

currently no known treatments for the disease [18]. With the advent of genetic 

sequencing, research and clinical trials are currently being performed to test gene 

therapy as a viable treatment outcome [9].  

II.2 Golden Retriever Muscular Dystrophy Model 

To better study the progression of DMD and treatment outcomes, animal models 

have been explored for their similarities to humans both at the cellular level as well as 

anatomically. Canine X-linked muscular dystrophy shares genetic and morphological 

similarities to DMD and is considered to be the most useful animal model, with 

recommendation for it to be the model for future contributions to preclinical study of 

newly developed therapies [19]. The mouse model appears to be analogous to DMD at 

the molecular level, however may not be a satisfactory phenotypic model to compare 

against [20]. The current research of interest related to this project relates to the canine 

model of the disease, particularly a colony of Golden Retriever Muscular Dystrophy 
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(GRMD) models and their corresponding controls, of which are bred and cared for in a 

controlled environment at the Texas A&M Veterinary School under the direction of Dr. 

Joe Kornegay [21]. 

The current focus of this research is intended to further the understanding of 

DMD and treatment outcomes of the disease through examining GRMD canines in vivo. 

The research results of this thesis do not specifically include in vivo experiments, rather 

they demonstrate the ability to increase the sensitivity of such experiments as is 

necessitated.  As indicated in the future work section, in vivo experiments with the 

GRMD models is the next step of this research. 

The muscle of interest within the GRMD models which will be analyzed using 

MRS in the future work of this research is the rectus femoris, one of the four heads of 

the quadriceps in the pelvic limb of the canine. One of the reasons that the rectus femoris 

was chosen is that it has a circular shape in the transverse imaging plane, allowing for an 

attainable region of interest measurement. Additionally, this muscle is also one of the 

four quadriceps muscles of the human body, allowing for effective translation of these 

research efforts to similarly performed human studies. 

II.3 Continuation of Research to Human Testing 

 The MR system that was utilized for part this research and that will be utilized in 

the future of this research is a clinical 3T Siemens Verio scanner. It is capable of 

performing data acquisition with both canines and humans using the same hardware. 

Therefore, once proven to be able to accurately assess disease progression and/or 
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treatment outcomes within the GRMD models, the hardware built for this research may 

then be utilized for human studies. 

 Before human studies are performed, the hardware and the subsequent data 

acquired must prove capable of effectively evaluating disease progression and treatment 

outcomes on the GRMD models. This will involve comparing the results attained against 

the current methods of evaluating clinical outcomes within the GRMD canines, namely 

the six-minute walk test [22]. As the aim of MRS is to effectively provide objective 

feedback regarding the disease state, a biomarker is sought that will effectively track 

with the clinical course of the disease similar to the six-minute walk test. While not yet 

determined, this biomarker will likely involve data acquired from multi-nuclei MRS 

experiments such as 1H and 31P in order to form a "tissue signature" capable of assessing 

the disease state. 

II.4 Magnetic Resonance Spectroscopy 

 

MRI/MRS is made possible due to the phenomenon of nuclear magnetic 

resonance (NMR). NMR, discovered independently by Edward Purcell and Felix Bloch, 

led to their jointly receiving the Nobel Prize in 1952. Breaking the term down, "nuclear 

magnetic" refers to the intrinsic spin angular momentum of nuclei that contain an odd 

combined number of protons and neutrons. This property of spin angular momentum 

results in a moving charge, which creates a magnetic field. Therefore, nuclei that possess 

an intrinsic spin will act as tiny magnets, as visualized in Figure 1. 
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            Figure 1: Spin angular momentum results in the nuclei resembling a tiny magnet. 

 Reprinted from [23]. 

 

  When not exposed to a uniform magnetic field, these spins are randomly oriented 

and cancel each other out. Once placed inside a uniform magnetic field (B0), such as 

within the bore of an MRI scanner, the spins will become cohesively aligned in differing 

states, with the states determined by the quantum nature of the respective nuclei. For 
1
H, 

which is the most commonly interrogated nuclei for MRI due to its abundance in water 

and fat, there are two different spin states with which the nuclei orient when exposed to a 

uniform magnetic field:  the for (parallel) or against (anti-parallel) state. The orientation 

parallel to the uniform magnetic field requires the least amount of energy, so there is a 

slight excess in this direction. This excess results in a net magnetization in the parallel 

direction, represented as vector �̅� in Figure 2 pointing in the z-direction. 

�̅� �̂� 
�̂� 

𝒙 

Figure 2: Uniform magnetic field forms a net magnetization vector 

     in the direction parallel to the field 
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With a slight excess of spins in the low-energy state, there is now an energy 

difference between the spins in the lower and the higher energy states, known as the 

Zeeman Effect. This splitting and associated energy difference is visualized in Figure 3, 

where it can be seen that the stronger the magnetic field strength B0, the larger the 

energy difference between energy states. 

 

Figure 3: Zeeman effect with spins in two different energy states. 

 Reprinted from [23]. 

 

The energy difference between spin states is given by: ∆𝑬 =  𝜸𝒉𝑩𝟎, where 𝛾 is 

the gyromagnetic ratio of the nuclei in 
𝑀𝐻𝑧.

𝑇
, 𝐵0 is the magnetic field strength in Teslas, 

and h is planck's constant (6.62607004 × 10
-34  𝑚

2𝑘𝑔

𝑠
 ). From this equation, Joseph 

Larmor was able to formulate his Larmor equation f = 𝜸𝑩𝟎, which describes the rate of 

precession of a nuclei possessing spin angular moment once exposed to a uniform 

magnetic field. Using the Larmor equation, the energy needed to excite the net 

magnetization vector can be calculated, dependent on the nuclei that are being 

interrogated and the magnetic field strength they are exposed to. This explains the third 

and final term within "nuclear magnetic resonance," with the "resonance" denoting the 
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absorption of energy at the Larmor frequency. This energy, termed B1, is produced by a 

radio frequency coil in an MR experiment and is applied perpendicular to the net 

magnetization vector, tipping the net magnetization vector into the x-y (transverse) 

plane. This tipping of the spins is visualized in Figure 4, with the spiral pattern 

representing the precessing of the net magnetization vector at the Larmor frequency as it 

is tipped into the transverse plane.  

 

Figure 4: Net magnetization vector tipped into the transverse plane. 

 Reprinted from [24]. 

 

Once B1 has been applied, the net magnetization vector will relax back to 

equilibrium while still precessing, and induce a voltage across the terminals of an RF 

coil due to Faraday's law if the coil is tuned to the same Larmor frequency in which the 

RF pulse was originally applied. This relaxation of the spins, produced by the dephasing 

of the individual spins between each other, will result in a free induction decay (FID) 

signal. The Fourier transform of the FID can then be taken, resulting in a spectrum 

which shows the frequencies the signal was composed of. This transformation may be 

viewed in Figure 5 below: 
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This "pulse and acquire" technique is commonly performed in MRS in which the 

spins of a specified nuclei are excited and then resulting spectra are then analyzed. 

Nuclei are influenced by their local environments, specifically the electron shells which 

surround them. Electrons oppose the magnetic field being applied, and therefore shield 

the nuclei, lowering the frequency at which they become resonant.  Electronegativity on 

the other hand has the opposite effect, increasing the absorption energy for respective 

nuclei. Shielding will shift the spectra upfield when looking at an NMR spectra, meaning 

to the right, while electronegativity will shift spectra downfield, meaning to the left [25]. 

II.5 Magnetic Resonance Imaging 

Paul Lauterbur along with Peter Mansfield won the Nobel Prize in 2003 for their 

discovery of MRI. Paul Lauterbur first applied magnetic field gradients in 1973, 

allowing for the spatial localization of signals and allowing for the advent of MRI as we 

know it today [26]. While the focus of this research is to increase the sensitivity for 

ultimate use in secondary (non-
1
H nuclei) applications, MRI is performed as part of the 

research results of this thesis through two different experiments. MRI is able to 

demonstrate the desired outcomes of this research with the next steps being MRS 

Figure 5: FID acquired and then Fourier Transformed into a spectrum. 

     Reprinted from [1]. 
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experiments. Within imaging experiments, the application of an RF pulse as previously 

described is still the basis for perturbing the spins, with the only difference in imaging 

experiments being the application of additional magnetic field gradients which may or 

may not be applied during pulse and acquire MRS experiments. Through manipulation 

of imaging parameters and their subsequent effects on the imaging gradients applied, 

MRI may be utilized to provide the contrast and resolution needed in a wide variety of 

applications. 

II.6 Multinuclear Studies of Muscular Dystrophy 

Due to 31P spectroscopy's ability to provide a noninvasive means of quantifying 

concentrations of key muscle metabolites such as phosphocreatine (PCr) and inorganic 

phosphate (Pi), phosphorus has been studied since the very earliest of in vivo 

spectroscopy studies [2]. Such studies have performed to gain insight into muscular 

dystrophy in humans and canines alike. In humans, 31P spectroscopy has been able to 

detect impaired muscle energy metabolism, as evident from the decrease in the ratio of 

PCr to adenosine triphosphate (ATP) [27]. Such a result is indicative of a loss in 

contractile tissue [28]. In canines, McCully noted that during stimulation, the Pi to Pcr 

ratio was normal compared to the control in diseased canines, but 2 to 3 days after 

stimulation, the ratios were significantly increased in the diseased canines compared 

with the controlled, non-diseased canines who showed no increase following rest [29]. 

The elevated Pi/PCr ratio reflects higher ADP levels at rest, which in turn reveals a 

dysregulation of the mitochondrial oxidative phosphorylation control and/or an abnormal 

energy demand to maintain ionic homeostasis despite leaky cell membranes [28]. Wary 
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et al. found a characteristic splitting of the Pi peak within the diseased spectra of canines, 

and reinforced the similarities found between the canine and human diseased spectra 

further verifying their comparison in the study of the disease [28]. 

Beyond 31P, there are also additional nuclei that have proven to be effective in 

quantifying diseases that affect the muscles, such as 1H, 23Na, and 13C. As muscular 

dystrophy is a disease characterized by the replacement of muscular tissue by fatty 

connective tissue, 1H MRS can be utilized to assess lipid content. For instance, 1H MRS 

has been proven to be useful as a method to quantify intramuscular lipid concentrations 

in muscular dystrophy patients [7]. Studies have also revealed that the 23Na 

concentration, meant to evaluate cellular function, is significantly higher than that of 

healthy subjects in the calf muscles of muscular dystrophy patients. Higher than normal 

sodium concentrations may be indicative of infiltration of the extracellular sodium and is 

able to determine disease severity [14]. While 13C MRS may be used to examine the 

glycogen concentrations in muscle, there is not a known MRS study has been done in 

order to analyze 13C in DMD patients. Regardless, in a study analyzing muscle glycogen 

metabolism invasively in mice, it was found that the absence of dystrophin leads to 

alterations in glucose metabolism in both skeletal muscle as well as liver tissue [15]. All 

of these nuclei are relevant to the study of DMD, and therefore each will be studied in 

the future work of this research in order to form a comprehensive view of the disease 

using MRI/MRS experiments. 
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MRS is often performed through a double-tuned coil with one of the two 

frequencies being 
1
H, allowing scout imaging to determine correct coil placement for

optimal anatomical spectroscopy acquisition, or when dealing with nuclei such as 
13

C,

allows for the decoupling of chemical bonds [30]. Therefore, an emphasis within the 

experiments performed for this research project will be double-resonant structures. For 

all of the experiments, surface coils are utilized as the receive elements, with coils 

placed adjacent to a region-of-interest (ROI) of a NMR-active sample. Surface coils 

were chosen as the receive elements due to the need to optimize the signal-to-noise ratio 

(SNR), with the form factor of the coils made to fit the ROI [31]. The coil, if much 

larger than the muscle of interest, introduces unnecessary noise, causing a decrease in 

SNR, motivating the need for coils customized to interrogate specific models. 

Radiofrequency excitation will utilize either volume coils, represented as birdcage or 

saddle coils, or surface coils which will then act as both the transmit and receive coils. 

Clinical imaging is primarily performed through interrogation of 
1
H, due to the

abundance of protons within a patient's body. The same abundance cannot be utilized for 

other secondary (non-
1
H) nuclei, with the sensitivity of secondary nuclei being much

lower. Shown below in Table 1 is a comparison between 
1
H and the secondary nuclei

which have been discussed as being of interest to muscular dystrophy studies thus far: 

31
P, 

23
Na, and 

13
C.

II.7 Second-Nuclei Sensitivity
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             Table 1: Sensitivity of secondary nuclei compared to hydrogen 

Nuclei 

 

Gyromagnetic Ratio 

(
𝑀𝐻𝑧.

𝑇
) 

 

𝛾𝑥

𝛾1𝐻
 Natural 

Abundance 

Relative 

Sensitivity 

1
H 42.57 1 99.9% 1 

23
Na 11.26 0.26 100% 1.8 

31
P 17.24 0.41 100% 6.9 

13
C 10.71 0.25 1.1% 1.6 

    

 

It can be seen that 
31

P has the highest sensitivity out of the three secondary-nuclei 

which are presented, however it is still much smaller than 
1
H. Beyond having coils better 

fit the region of interest to increase sensitivity as previously discussed, arrays of surface 

coils also provide the ability to increase sensitivity of experiments and are currently an 

active area of research focus in the field of MRI [5, 32, 33]. These two options: building 

coils that better fit the region of interest and utilizing array coils will be the focus of this 

work on increasing the sensitivity in second-nuclei applications. 
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CHAPTER III: 

INCREASING THE FUNCTIONALITY OF A  

CUSTOM-BUILT BROADBAND RECEIVER 

 

III.1 Custom-Built Receiver 

Arrays of receive coils may be utilized in order to increase the sensitivity of MRI 

and MRS acquisitions. For arrays of receive coils, the multiple coils must be combined 

onto a single channel or multiple independent receive channels are needed to account for 

each of the coils. Ideally, a channel per coil would be available to allow for independent 

gain adjustment between channels if needed. However, it is highly unusual for scanners 

to be equipped with broadband multi-channel receivers due to cost and complexity. For 

instance, the commercial scanner at the Texas Institute for Pre-Clinical Studies (TIPS) 

has 32 receiver channels for receiving 
1
H, but only a single broadband receiver channel 

capable of receiving data for non-
1
H experiments. A custom-built 6-channel broadband 

receiver has been constructed in order to extend number of broadband channels on such 

systems [33]. The purpose and utility of this multi-channel, multi-nuclear receiver is 

that, utilizing hardware that is both inexpensive and portable, it can acquire multiple 

channels of any frequency of interest up to a 7T. The system can then be utilized on 

systems such as the one at TIPS, providing tremendous potential for extending the 

capability of such imaging systems in allowing for multi-nuclear array coils to be 

utilized.  As is, the set-up and operation of the receiver is perplexing and requires 

expertise of the system. Such complexity increases the amount of time for each 
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experiment and decreases the receiver's workflow capability, which is of vital 

importance especially when imaging live animals. To aid in the workflow of the 

receiver, a graphical user interface (GUI) has been constructed that greatly simplifies the 

process of acquiring data. 

III.2 Building Graphical User Interface 

The current configuration of the receiver involves multiple programs, with some 

written in C and accessed through the command line interface and the rest separately 

accessed within MATLAB, with each requiring the separate input of similar variables. 

Figure 6 gives an overview of the files and their respective inputs that currently must be 

configured. This project involved taking these multiple computer programs, each of 

which currently requires inputs separately, and forming a Graphical User Interface 

(GUI) in which all available inputs will be aggregated within a single organized user 

interface. As part of the GUI and as an improvement to the project, a calibration option 

was also built into the GUI so that the user is able to account for the different loads that 

differing coils may experience within an experiment. Immediately upon scan 

completion, the user is able to be presented the images or spectra that have been 

acquired as they are processed from the raw data. Upon viewing these, the user may then 

either save or clear the data.  
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Figure 6: Overview of the previous input files needing configuring and how 

 they all will go into a user interface 

 

Seen below is a picture in Figure 7 of the portable receiver built by Dr. Edwin 

Eigenbrodt [33]. It can be seen that there is a large custom-built computer and 

corresponding monitor, a small laptop, and then the other parts of the receiver below 

those on the bottom of the cart. The top-most aluminum box on the bottom consists of 

the power supplies needed to power the electronics, the one below that contains the local 

oscillator generation board needed to drive the mixers for each of the 6 receive channels, 

and each of the three bottom silver boxes below that correspond to a single intermediate 

frequency (IF). Each channel uses a heterodyne-style circuit, which is dependent on the 

frequency being received as well the local oscillator (LO)  frequency for that channel 

which is set within the interface of a program on the small laptop. Once the receiving 

system has been powered, the first two software programs that are configured are on the 

small laptop to set the local oscillator frequencies. The small laptop is utilized, as the 
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desktop runs on a Linux operating system and the drivers for the boards needed to set the 

LO frequencies are only capable of being run on a Windows operating system. The first 

two of these programs is for a AD4351 clock frequency board (Analog Devices, 

Norwood, MA), and it is used to set a stable 500 Megahertz clock for the local oscillator 

board. Next is the program for the AD9959 local oscillator board (Analog Devices, 

Norwood, MA) which sets the local oscillator frequencies selected by the user. Once 

these are set, the ICS-1650A digitizer card (Abaco Systems, Huntsville, AL) must be 

configured, performed through the command line of the larger custom-built computer. 

Each experiment may be different, so variables within the adc_demo_test.c including the 

sampling rate, the decimation rate, the number of samples to take per acquisition, and the 

number of channels needed must be changed. Once configured, the adc_demo_test.c 

program is compiled, and the experiment can then be performed. The digitizer is 

triggered with each acquisition through specially run pulse sequences on the 

corresponding MRI system, with each acquisition corresponding to a line of k-space if it 

is an imaging experiment, or a single spectra if spectroscopy is being performed. Once 

the experiment is completed, MATLAB is opened, allowing for the data to be processed 

and viewed. Upon reviewing the data, if it is unsatisfactory for any reason, the 

experiment must be run again and the same process followed. 
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Figure 7: Portable Frequency-Agnostic Receiver  

A GUI was written to consolidate this process and the number of files that need 

manipulating prior to and during experimentation. Special thanks goes to undergraduates 

Austin Lu, Matthew Kuo, Benjamin Swain, and Victoria Nguyen who all contributed to 

the design and coding of this user interface. 

The GUI was chosen to be written within MATLAB, as MATLAB is already 

utilized on the computer for post-processing. Upon opening MATLAB and running the 

program containing the GUI, the first tab the user is presented with instructs the user 

how to set up the programs running on the small laptop as seen in Figure 8: 
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             Figure 8: First Tab of GUI - Explaining the Small Laptop Setup 

Upon the small laptop being set up, the user may then move on to the next tab, 

seen below in Figure 9, in which they will input the parameters for the adc_demo_test.c 

file. Hitting 'Submit Parameters,' MATLAB will find the file in respective directory it is 

assigned to, and the system will compile the code. This was a task that previously 

involved opening the program before each experiment and compiling the program each 

time on the command line. With the parameters entered, the experiment may then be run. 
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Figure 9: Second Tab of the GUI - Allowing for the Input of Parameters for the Digitizer 

 

 

The receiver, capable of acquiring data of nuclei at magnet field strengths up to 

7T, is also capable of receiving data at many different power levels. This allows for the 

receiver to obtain signals from coils that either do or do not have pre-amps attached to 

them. While the receiver does have amplifiers incorporated to increase the signal 

strength of the inherently low MR receive signals, if presented with data from coils that 

already have pre-amplifiers, the system will therefore be overloaded and data clipping 

will occur. The largest signal amplitudes in an MRI experiment occur at the center of k-

space which represents the low spatial frequency data, and data clipping will therefore 

interfere with image contrast. If the opposite occurs and if the receiver attenuation is set 

too high, then receiver gain will be insufficient, and the image noise will increase as a 

result of the lower SNR. The images below, obtained on the receiver through imaging 



 

 

23 

 

 

with Wen-Yang Chiang's 6-channel array mouse coil exemplifies the effect of having 

too low compared to the optimized attenuation level [32]. The images were acquired, 

taken axially with a homogenous circular phantom meant to imitate the loading that 

would be presented with a live mouse. Note that in Figure 10, signal can be seen outside 

of the phantom, representing an overflow "halo" artifact, while in Figure 11, all of the 

signal is contained within the phantom itself allowing for comparably deeper penetration 

of signal given the same transmit pulse strength. 

 

 

         Figure 10: Receiver Overload Artifact - Exemplifying the Importance of Calibration 
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Figure 11: Image with the Artifact Gone - Following Proper Calibration 

To account for the large differences in signal strength that the receiver may be 

exposed to, each channel contains a ZX73-2500+ variable attenuator (Mini-Circuits, 

Brooklyn, NY). The control voltage of the attenuator was previously adjusted via a 

bulkhead mounted potentiometer that could vary the control voltage from 0-5 V. As will 

be discussed, this linear potentiometer was replaced by a logarithmic potentiometer due 

to the non-linear nature of the attenuator. 

Previously, whole experiments were run and the resultant data interrogated in 

order to check for saturation, but this is time consuming and cumbersome. Therefore, a 

calibration function has been built into the GUI, seen below in Figure 12. The setup for 

the calibration is the same as a normal experiment, except instead of going through all of 
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the lines of k-space and then producing an image, the system is continuously "pinged" 

through a pulse and acquire sequence implemented on the native console with no 

gradients applied, allowing for the maximum amount of signal to be received. An 

attachment has been added to the attenuation knob to represent the attenuation 

numerically through numbers that go from 1 to 10, with 1 being the highest amount of 

attenuation and 10 being the lowest. Note that the knob will need to be moved manually 

between data acquisitions. Seen below is an example of this application being applied as 

part of an experiment. In each of the respective acquisitions from 1 to 6 (representing 

each of the 6 receiver channels), the initial "block" of signal is the part of the transmit 

signal and can be ignored, as it is picked up in order to allow for phase correction in the 

post-processing step. Following the transmit pulse, it can be seen that the echoes 

continually increase until a maximum value is reached. The maximum value represents 

the point at which the receiver is overloaded. The discrepancy between the ranges given 

by the first 3 plots compared to those thereafter is attributed to the nonlinearity of the 

attenuator. A logarithmic potentiometer has therefore been added instead of the previous 

linear potentiometer in order to allow for an increase in linearity in attenuation, thereby 

allowing a better comparison and ultimate decision on attenuation level. This calibration 

procedure is performed on each of the channels that will be used for the respective 

experiment, allowing for the sensitivity of the coil presented by its current load to be 

accounted for and producing optimal results for each coil. It was found through trial and 

error that for optimal attenuation, that the echo amplitude must be approximately 70% of 
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the transmit signal represented by the first block of signal. All channels which are being 

utilized for an experiment should aim for this metric. 

 

Figure 12: Tab 3 of the GUI - Calibration Example 

Once calibrated, the user may then run their respective experiment. The scan 

must be initiated on the local console of the MR system being used, but through triggers 

that are connected to the local system which notify the digitizer when to start acquiring 

data, the process of acquisition requires no further user input. Once the experiment is 

complete, the user can go to the 'View Data' tab seen below in Figure 13 in order to view 

the data from each of the channels where acquisitions were acquired. The user enters the 

imaging parameters that were chosen into the inputs of the GUI at the very beginning. 

Before, this had to be done manually each time into the respective MATLAB processing 
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file. 

 

Figure 13: Tab Four of the GUI - Exemplifying Post-Processing 

If the user is satisfied with the data, they may then save the data within the 

'Analyze Data' tab through renaming the files, seen in Figure 14. If not satisfied, the user 

may then remove the data, clearing the memory for the next acquisition. 
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Figure 14: Tab Five of the GUI - Allowing for the user to Save or Remove the Data 

With the GUI complete and calibration implemented, it was then utilized in order 

to image a live mouse. While the receiver was capable of doing this before, the GUI and 

subsequent improved helped greatly in being able to image the mice. 
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CHAPTER IV: 

CUSTOM-BUILT CONNECTOR 

 

IV.1 
31

P/
1
H Butterfly/Loop Commercial Coil 

The Texas Institute for Preclinical Studies (TIPS), which works closely with the 

Texas A&M Veterinary school, owns a 3T Siemens Verio MRI system which is utilized 

for a variety of studies including those involving the GRMD canines previously 

discussed. The MRI system itself came equipped with a set of commercial coils, 

including a butterfly/loop coil which transmits and receives 
1
H with the butterfly coil 

and 
31

P with the smaller loop. This coil measures approximately 20x30 centimeters, as 

represented by the large blue coil to the left in Figure 15.  

 

Figure 15: Commercial Coil vs. Custom-Built Coil. 

               Reprinted from [34]. 

 

In order to maximize sensitivity, surface coils should be designed in order to fit 

the volume of interest as best as possible. Coils that exceed optimal size will acquire 

excess noise in addition to the signal, resulting in a lower SNR than if the coil was 
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optimized for the respective volume. It has been shown that for a loop coil to stay within 

90% of the optimum SNR, it should be designed such that 0.25 ≤  
𝑅

𝑦
 ≤  0.70, where R is 

the coil radius and y is the depth of the target region, both in centimeters [35]. The 

muscle of interest in the current study is the rectus femoris, located at a depth of 

approximately 2 centimeters on one of the four heads of the quadriceps in the pelvic 

limb of the canine. The size of the commercial coil is much too large for such an 

application, and therefore would contribute excess noise in comparison to a smaller coil 

designed to fit the volume of interest more precisely. As discussed previously, in dealing 

with 
31

P spectroscopy experiments, SNR must be maximized due to the inherently lower 

available signal of the 
31

P compared to 
1
H. Therefore, a smaller coil was built using the 

same 
31

P/
1
H butterfly/loop configuration specifically for the application of interrogating 

the GRMD canine models. This is the coil which can be seen in comparison to the larger 

commercial coil Figure 15 above.  

IV.2 Custom-Built Connector 

With the coil built, a custom-built external connector is still needed in order to 

interface with the clinical system, as you cannot directly connect to the Siemens clinical 

scanner using a generic type of connection such as conventionally utilized for most MRI 

research scanners such as BNC or SMA. Rather, a specialty made connector is needed 

for the system. Along with the larger commercial coil, a corresponding interface box is 

also required in order to be able to transmit and receive for 
31

P and 
1
H independently, 

which can be seen in Figure 16. According to the Siemens documentation, the interface 

box contains a diplexer, transmit/receive (T/R) switches, and pre-amps to transmit and 
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receive both the 
31

P/
1
H signals separately from the respective coils. Options for 

connecting the custom-coil to the clinical system include either building another 

interface box which would be very similar to the commercial equivalent but with a 

different resistor values indicating a different coil to the system, or creating a connector 

that would allow for the custom coil to connector directly to the interface box. While the 

option of creating an interface box would allow for additional customization in that the 

coil files which set parameters such as the minimum and maximum transmit power 

requirements, as can be seen in Table 2, the cost would far exceed that of building a 

connector. Knowing that the larger commercial coil requires far more power than the 

smaller custom coil, the only concern in building a connector rather than a whole new 

interface box and corresponding coil files is whether or not the power could be 

manipulated to be low enough in order to receive data with over-tipping of the respective 

spins. 

 

    Figure 16: Interface box which corresponds with the 31P/1H commercial coil 
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Table 2: Price comparison between new interface box and new connector 

Interface Box Connector 

Parts Cost/Part Total Parts Cost/Part Total 

2 Cables $1,000 $2,000 4 Resistors $0.10 $0.40 

2 Pre-amps $100 $200 
2 BNC 

Connectors 
$5.00 $10.00 

2 T/R 

Switches 
$50 $100 3-D Printing $10.00 $10.00 

Miscellaneous $100 $100 
Male 

Connector 
$11.00 $11.00 

 Total $2,400  Total $31.40 

 

The connector was chosen due to the much lower cost and overall simplicity. In 

building the connector, the first consideration was how the system would actually 

recognize the coil. Provided within the Siemens documentation is information indicating 

that different values of resistors on a coil must be utilized across specific pins, whose 

values are then converted and read by the scanner has a hexadecimal "coil code."  Given 

that the custom coil was meant to be recognized by the system as the commercial coil 

but then with the intention to change the minimum power levels, the resistor network 

was made to match that as measured on the commercial coil. In designing the connector, 

it needed to be able to fit into the slot that the current connector fits into while also being 

able to hold the resistor values necessary for the coil to be recognized by the commercial 

system. The connector was designed in CAD software and then 3D-printed. The CAD 

designs and printed parts including the resistors can be seen below in Figure 17: 

 



 

 

33 

 

 

     

Figure 17: Connect designed in AutoCAD and then 3-D printed 

 

Lastly, seen below in Figure 18 is a picture of the connector that is used for the 

commercial coil (left) next to the completed custom-built connector (right). It can be 

seen that the connectors look very similar. 

 

   

Figure 18: Connector on commercial coil and corresponding 

               3-D printed connector meant to replicate it 

 

IV.3 Preliminary Testing 

Preliminary imaging and spectroscopy experiments were performed in vitro with 

a custom-built butterfly/loop coil by Jeremy Sia on a 4.7T Varian INOVA system of the 

same size as would be utilized at 3T. Experiments were performed on a physiologically 

modeled phantom of 20 mM Pi and on pectineus muscle samples of the GRMD canine 
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population at various stages of disease along with a controls of the same species [34]. 
31

P 

spectra obtained from all pectineus muscle samples are shown below in Figure 19, with 

the volume normalized by fluid displacement measurements. It can be seen that with the 

GRMD group (represented by red), as age increases, the amplitude of the 

phosphocreatine peak decreases. Additionally, the control (represented in blue), has a 

higher phosphocreatine amplitude than comparably aged GRMD samples. 

 

Figure 19: Preliminary Experiment performed at 4.7T on Canine Muscle Samples. 

    Reprinted from [34]. 

 

 

While only the phosphocreatine peak is visualized, these results, as expected, 

show similar results previous 
31

P studies on muscular dystrophy within the literature 

previously mentioned which indicate that PCr decreases with disease severity, in this 

case indicated by the age of the GRMD models [27]. With the connector complete and 

the coil proven to be effective at obtaining 
31

P spectra, it was then utilized in an 

experiment to prove its functionality through imaging a phantom on the 3T Siemens 

Verio scanner at TIPS. 
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CHAPTER V: 

MAGNETIC RESONANCE IMAGING EXPERIMENTS 

 

V.1 6-Channel Array Live Mouse Imaging Simultaneous Acquisition 

This first experiment demonstrates the increased workflow of the receiver, 

performing an imaging experiment on a live animal which had previously not been 

attempted with the receiver. The experiment involved the imaging of an anesthetized 

mice using a 6-channel surface coil array that is paired with a shielded birdcage for the 

transmit coil, built by Wen-Yang Chiang, as can be seen below in Figure 20 [32]. The 

handling of the mice was performed by approved students within Dr. Vincent Gresham's 

laboratory of the Texas A&M Veterinary School. Given that these are anesthetized 

animals, time is of utter importance in ensuring their safety. Therefore the calibration 

process built into the GUI proved extremely important in being able to quickly account 

for the sensitivity of each coil followed by using the GUI to aid in the workflow much 

better than previously be achieved. 

               

Figure 20: 6-Channel Array and Transmit Coil - 

    a.) receive coils b.) phantom used previously c.) birdcage 
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        Figure 20 : Continued 

Seen below in Figures 21 and 22 are the resultant images from each of the 6 coils 

of a mouse brain along with the combined image, combined using the sum of squares 

method. These images were taken with an echo time (TE) of 20 msec. and a repetition 

time (TR) of 800 msec. using a spin echo pulse sequence.  

Figure 21: Images obtained of a live mouse brain from all 6 of the receive coils 
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     Figure 22: Combined image of mouse brain using sum of squares method 

 

V.2 
1
H Imaging of 20 mM Phosphoric Acid Muscle Phantom on 3T Clinical 

Scanner 

 Experiments with the custom-made coil and corresponding connector were 

performed on the 3T Siemens Verio scanner at TIPS. For feasibility, only images were 

acquired. A phantom was utilized which is meant to mimic the phosphocreatine levels 

that may be expected in human muscle tissue (20 mM). Seen below in Figure 23 is the 

phantom on top of the custom coil. The same phantom was utilized with the larger 

commercial coil as well. A large phantom was chosen to exemplify that the larger 

commercial coil would be able to penetrate deeper into the phantom as compared with 

the smaller custom-made coil. 
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Figure 23: Connector, custom coil, and phantom together as within the imaging bore 

 

Three images are shown below in Figure 24: the first (left) acquired using the 

commercial coil, the second (middle) using the custom coil but with no power 

adjustment, and the third (right) using the custom coil but with the power reduced: 

  

 

 

It can be seen that the larger coil is able to penetrate deeper into the phantom. 

This is due to the nature of the magnetic field produced by the butterfly coil. Since the 

coil is physically larger, the magnetic field that it produces will also be at a larger depth 

above the coil compared to the smaller custom coil. The custom coil will therefore 

Figure 24: Presentation of the images acquired with: the commercial coil on the left, 

    the custom coil with unchanged power requirements in the middle, 

    and the custom coil with adjusted power levels on the right 
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produce a magnetic field that does not penetrate as deeply as the larger coil. The striated 

bands seen in the middle photo represent over-tipping, which is occurring wherever the 

spins are being tipped 180 degrees, effectively nulling the signal from these areas.  

Next, the signal-to-noise ratio (SNR) was compared between the commercial coil 

and the custom coil through calculating the average signal level where the signal is most 

uniform near the coil and then dividing that by the standard deviation of the noise. 

Where exactly the signal and the noise measurements were extracted from can be seen 

by the rectangles within the images within Figure 25. The respective signal and noise 

values calculated are found in Table 3. 

 

 
Table 3: SNR comparison between commercial and custom coil 

Coil Signal Noise SNR 

Commercial 286.44 1.8782*10
-6

 1.5251*10
8
 

Custom 1794.45 1.6968*10
-6

 1.0575*10
9
 

𝑆𝑁𝑅𝐶𝑢𝑠𝑡𝑜𝑚

𝑆𝑁𝑅𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙
= 6.93 

          Figure 25: Demonstrating signal intensities and where the signal and noise regions are calculated 
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Note the unusually high SNR values obtained are thought to be due to additional 

post-processing that is being performed on the images by the Siemens system. While the 

values themselves are unreasonable, the SNR is still able to be compared between the 

two coils.  As discussed, the smaller coil does not pick up as much noise as the larger 

coil while imaging a region of interest similar in size to the smaller coil. The custom coil 

then has an SNR approximately 7 times that of the larger commercial coil. This confirms 

was what previously thought in that building the smaller coil would produce a higher 

SNR, which will be necessary once performing 
31

P spectroscopy. 
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CHAPTER VI: 

CONCLUSIONS AND FUTURE WORK 

DMD is a debilitating disease with no currently available cure, resulting in death 

of the males who have the disease occurring in their 20's due to respiratory and cardiac 

complications. A treatment therefore needs to be found. While there are a few different 

ways of evaluating treatment outcomes of the disease such as muscle biopsy, MRI, and 

MRS, MRS is thought to be the best option due to its non-invasiveness and its ability to 

quantify metabolites locally. 

While 
1
H spectroscopy may be performed in order detect lipid concentrations

within a muscle of interest, a full "tissue signature" regarding cellular and muscular 

activity is thought to be necessary to form a biomarker of the disease, requiring 

additional nuclei spectra such as  
31

P to be acquired. Such secondary-nuclei have lower 

sensitivities than 
1
H, and therefore require means of increasing the sensitivity. Two

methods are discussed within this research which lead to higher sensitivity: increasing 

the number of RF coils and optimizing the coil size to the region of interest. 

Both projects of this work integrate external hardware on existing systems with 

the intention of increasing the sensitivity of multinuclear studies to further the research 

capabilities of evaluating muscular dystrophy in vivo through MRS applications. While 

no MRS experiments were performed directly, the experiments and their results prove 

the effectiveness of this work with the intention that the future steps in these projects 

will involve the acquisition of spectra. 
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For the receiver, in future experiments the improved user interface and 

calibration capability will allow for spectra to be acquired much easier than previously 

possible, and the added calibration functionality will ensure that the maximum 

sensitivity is achieved. For the connector and subsequent custom coil, images were 

acquired proving the expected increase in SNR as compared to the larger commercial 

coil. The next step will involve acquiring 
31

P spectra on the 3T commercial scanner 

using the custom coil and connector.  

Both of these projects ultimately work towards finding a cure for DMD, and it is 

my sincere hope that they prove worthwhile in doing so for the benefit of all of those 

affected by this disease. 
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