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ABSTRACT

We study the problem of modeling coupled dynamics in transient processes that happen

in a network. The problem is considered at two levels. At the node level, the coupling

between underlying sub-processes of a node in a network is considered. At the network

level, the direct influence among the nodes is considered. After the model is constructed,

we develop a network-based approach for change detection in high dimension transient

processes. The overall contribution of our work is a more accurate model to describe the

underlying transient dynamics either for each individual node or for the whole network

and a new statistic for change detection in multi-dimensional time series. Specifically,

at the node level, we developed a model to represent the coupled dynamics between the

two processes. We provide closed form formulas on the conditions for the existence of

periodic trajectory and the stability of solutions. Numerical studies suggest that our model

can capture the nonlinear characteristics of empirical data while reducing computation

time by about 25% on average, compared to a benchmark modeling approach. In the last

two problems, we provide a closed form formula for the bound in the sparse regression

formulation, which helps to reduce the effort of trial and error to find an appropriate bound.

Compared to other benchmark methods in inferring network structure from time series,

our method reduces inference error by up to 5 orders of magnitudes and maintain better

sparsity. We also develop a new method to infer dynamic network structure from a single

time series. This method is the basis for introducing a new spectral graph statistic for

change detection. This statistic can detect changes in simulation scenario with modified

area under curve (mAUC) of 0.96. When applying to the problem of detecting seizure

from EEG signal, our statistic can capture the physiology of the process while maintaining

a detection rate of 40% by itself. Therefore, it can serve as an effective feature to detect
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change and can be added to the current set of features for detecting seizures from EEG

signal.

iii



DEDICATION

To my mum and dad

iv



ACKNOWLEDGMENTS

I acknowledge my advisor, Dr. Satish Bukkapatnam, for the guidance, support and

encouragement he has provided. This dissertation would not have been possible without

his support. I remain deeply indebted to him.

I also thank my committee members, Dr. Yu Ding, Dr. Sergiy Butenko and Dr. Jianhua

Huang. All of you have devoted valuable time to give me support and advice in writing

this dissertation and developing my career.

I acknowlege my past and current lab mates and friends at Texas A&M and Oklahoma

State University.

Last but not least, I owe my deepest gratitude to my family. My sincere thanks goes to

my wife, my sisters and brothers in-law for constant support and encouragement. I thank

my mum and dad for unconditional love, and always being my greatest source of strength

and inspiration.

v



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a dissertation committee consisting of Professor Satish

Bukkapatnam [advisor] of the Department of Industrial and Systems Engineering.

The algorithm for change detection in chapter 4 was implemented by Mridul Garg of

the Department of Industrial and Systems Engineering.

All other work conducted for the thesis (or) dissertation was completed by the student

independently.

Funding sources

This graduate study was supported by National Science Foundation grants CMMI -

1432914, IIP - 1355765, ECCS - 1547075, CMMI - 1538501, and the Graduate Teaching

fellowship from Texas A&M University.

vi



NOMENCLATURE

−α3 Maximum relaxing velocity of the recovery process

−K2 Maximum effective degradation rate

−K3 Maximum relaxation acceleration of the recovery process

α1 Maximum working performance of the machine

α2 Minimum working performance of the machine

α4 The machine condition at which the recovery effort is relaxed

α5 The machine condition at which the recovery effort is started

α6 Maximum velocity the recovery process

β Machine degradation condition

gi column i of matrix GT

si column i of matrix ST

s
(K)
i a vector formed by taking K highest magnitude coefficients of s0

i

s∗i solution of the l1-min problem

∆G noise/approximation error incurred when estimate G0 from data

∆S error when computing S0 from G

δK the restricted isometry constant [1] of a matrix Φ, the smallest number such that

(1 − δK) ‖x‖2
2 ≤ ‖Φx‖

2
2 ≤ (1 + δK) ‖x‖2

2, for all vector x that has at most K

nonzero coordinates
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‖S‖1 sum of absolute values of all elements of S

‖Y ‖2 spectral norm of matrix Y

‖Y ‖(K)
2 maximal spectral norm of all K - column sub-matrices of Y

Tkblock Set of machine blocking times

Tkrepair Set of machine breakdown and repair times

Tkstarve Set of machine starving times

µk(t) Processing rate during uptime of machine k

ν Perturbation parameter

Φ = GT + I

Φ0 = (G0)T + I

ρ Restoration effort

ε
(K)

Φ0 smallest number that is greater than ‖∆G‖
(K)
2

‖Φ0‖(K)
2

εi general constraint bound of l1-min problem in vector form for computing row i of

S

ε
(0)
i bound of the l1-min problem in vector form for computing row i of S0, assume S0

is given

ε
(1)
i bound of the l1-min problem in vector form for computing row i of S0, using our

formula

G observed total influence matrix
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G0 total influence matrix in noiseless condition

I identity matrix

K1 Maximum effective recovery rate

K4 Maximum acceleration of the recovery process

Lk, L
max
k Instantaneous and maximum buffer inventory level of machine k

S0 Direct influence matrix in noiseless condition

uk Throughput/processing velocity of machine k

HistTBF Histograms of TBF from the model

HistTBFa Histograms of TBF from the actual data

HistTTR Histograms of TTR from the model

HistTTRa Histograms of TTR from the actual data
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1. INTRODUCTION

1.1 Dynamics of complex systems and coupled dynamic modeling challenges

Real-world systems exhibit coupled dynamics. On large-scale, a process is directed

by other processes. On small-scale, a process is directed by many subprocesses, such as

regeneration and regeneration [3–5]. The coupled dynamics exists if the states of a process

and a subprocess affect the time-evolution of the others.

As the structure of the interconnection in a system defines its dynamics [6], the dy-

namic of a system could not be understood by superposing the decoupled dynamics of the

individuals or subsets of state variables [7]. To understand the evolution of such systems,

it is necessary to identify the existence or absence of a direct dynamic coupling among the

subsystems and among the involving sub-processes. This problem has been noted to be a

standing challenge of modern science [8] due to the following issues:

• High dimensionality: Real-world system such as a human brain contains millions

of neurons [9], thus require up to millions of variables to represent the system dy-

namics, causing computational issues.

• Interconnectivity: Most real-world systems exist in complicated interconnected

structures. In brain network, for example, each neuron has on average 7,000 synaptic

connections to other neurons, and the number of connections in the brain of a three-

year-old child is about 1015 [9].

• Transience: The structure of interconnectivity and the strength of couplings vary

over time, i.e., the coupling among the system state variables are not constant. In

general, it is associated with the transient property of a process. As an illustration,

the structure of a human brain network depends on the stage of human body. Ac-
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cording to [10], brain connectivity is strong during resting wakefulness, decreases

during stage N2 of NREM sleep, further decreases during stage N3 of NREM sleep

and possible increases during REM sleep.

• Nonlinear dynamics: The value of a state variable depends nonlinearly on the val-

ues of other state variables [11]. For example, in brain network, the response of a

given neuron to presynaptic input from a second neuron depends on multiplicative

interactions among the synaptic inputs from other neurons. This type of modulation

mechanism raises issues of how to define couplings locally in the state space, and

compactly captures the underlying relationships [12, 13].

Finding coupling structure in real world system is an important problem because solutions

to this problem are the foundation for other research. The temporal underlying coupling

structure if employed will improve available approaches for high dimension time series

analysis. The coupling structure might also help to find a better diagnostic strategy for

real-world applications such as detecting abnormalies in manufacturing and disease onset

detection in human health or developing effective system control mechanisms to maintain

desired system trajectory.

In this dissertation, the problem of modeling the coupled dynamics in transient process

is considered in the following perspectives (Fig. 1.1):

• At node level: modeling the coupled dynamics between underlying sub-processes

of a node in a network. The method is applied to model the dynamics of a manufac-

turing machine.

• At network level: modeling the direct influence among the nodes. For illustration,

we consider apply the method to infer genetic regulatory network from gene expres-

sion data.

2



• Application of the inferred direct influence network in the problem of change de-

tection. To solve this problem, we develop a spectral graph and apply it to detect

seizure using EEG signals.

Figure 1.1: Overall framework

1.2 Research Objectives

This study addresses the following three problems:

Problem 1. Modeling the coupled dynamics at the node/subsystem level: modeling the

coupled dynamics between underlying sub-processes. For application, we considered

modeling the coupled dynamics of degradation and repair processes. We also found the

constraints on system parameters to guarantee the system trajectory exhibits expected be-

3



havior such as periodic orbit and stability. Finally, the model was estimated using data on

time between failures and time to repair

Problem 2. Modeling coupled dynamics at the network/system level: developing a net-

work to model the interaction between identities based on their transient time series data.

This problem was formulated as an `1-min problem. Our main contributions were an ana-

lytical form for the bounds on the parameters, an averaging procedure, and a perturbation

procedure to improve estimation accuracy.

Problem 3. Developing a spectral graph statistic for detecting change in multivariate time

series. In this problem, the method developed in problem 2 was extended to apply to the

case when only one transient time series is available. The inferred network structure was

employed to propose a change detection statistic.

1.3 Organization of Dissertation

The remainder of this dissertation was organized as follows. Section 2 described the

first problem: modeling the coupled dynamics on small-scale which involves two pro-

cesses degeneration and regeneration. Here, we introduced a method to build a model in

form of stochastic piecewise differential equations for the breakdown and repair processes

of a manufacturing machine using the time between failures and time to repair. We also

proposed closed form formulas on system parameters for the stability and existence of

periodic solution, an expected behavior of manufacturing machines. Numerical study on

estimating system parameters from the observed time between failures and time to repair

shows that compared to exponential model, our method is faster while achieving better

prediction accuracy.

Section 3 described the second problem: inferring dynamic network model from mul-

tivariate transient time series. We proposed a closed form formula for the sparse regression

4



model for inferring network structure. We tested the method on both simulation data and

three benchmark empirical data sets on gene expression.

Section 4 described the third problem: detecting changes in transient complex systems

via dynamic network inference. In this section, we introduced a new method to infer di-

rect influence network structure from single multivariate time series. Then we formulated

a spectral statistic to detect change in system dynamic based on the inferred network struc-

ture. We also provided results on the distribution of the statistic. Numerical simulation on

data generated from a picewise linear system and empirical study on EEG signals shows

that our statistic can detect the changes while capturing the physiology of the underlying

process.

Section 5 summarized our findings and suggests future research directions.
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2. COUPLED DYNAMICS MODELING AT NODE LEVEL: MODELING AND

ANALYSIS OF THE COUPLED DYNAMICS OF MACHINE DEGRADATION

AND REPAIR PROCESSES USING PIECEWISE AFFINE STOCHASTIC

DIFFERENTIAL EQUATIONS1

In this chapter, we presented that the model with at most cubic constraint set on the

parameters can yield (steady state) periodic solutions that can mimic a source of large time-

scale breakdown and repair (equivalently, large TBF and TTR) processes (see Theorem 1

in Section 2.2), and closed form expressions for such large time-scale TBF and TTR can

be derived in terms of the model parameters (see Theorem 2 in Section 2.2). This ability to

capture dynamic behaviors allows the nature of the couplings between TTR and TBF to be

quantified. Short time-scale, frequent breakdown and repair processes can be captured by

introducing a class of stochastic extension (see Theorem 6) to model parameters. We also

investigate the local stability and the basin of attraction of these periodic orbits (Theorems

3-5). The theoretical results are validated using real-world data sets on TBF and TTR

acquired from an automotive manufacturing assembly line [14]. The result suggested that

the model can capture certain dynamical aspects of empirical data.

2.1 System description and problem formulation

The dynamic system considered for the present investigation is an assembly line seg-

ment from a leading automotive manufacturer. It consisted of 18 stations of which 16

are located in tandem. One pair of stations is located in a parallel arrangement in the

assembly line. This system is a type of simple N -stage manufacturing system and is de-

1Reprinted with permission from "Modeling and analysis of the coupled dynamics of machine degra-
dation and repair processes using piecewise affine stochastic differential equaitons” by Tran, Hoang M and
Bukkapatnam, Satish TS, 2015, International Journal of Non-Linear Mechanics 76, pp 87-99, Copyright
[2015] by Elsevier.
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scribed as follows. First, the change in the length of the buffer at the downstream of the

kth machine/operation is given by dLk/dt = uk−1(t)–uk(t) where uk(t) is the throughput

velocity of machine k and Lk is the buffer inventory level at time t. Conventionally, uk(t)

is modeled using random processes µk(t) and νk(t) as

uk(t) = µk(t)− νk(t)

where µk(t) is the processing rate (during the up time), νk(t) is the throughput rate loss

due to degradation/ breakdown and, typically, uk(t) = 0 during downtime. Downtime in

many manufacturing system operations may be attributed to the following three causes:

1. Machine breakdown and repair that takes place during times t ∈ Tkrepair ,

2. Starving (upstream buffer is empty) that takes place during times t ∈ Tkstarve and/or

3. Blocking (downstream buffer is full) that takes place during times t ∈ Tkblock , i.e.,

uk(t) = 0 if (Lk(t) = 0 or Lk+1 = Lmax
k+1 or t ∈ Tkrepair)

Our problem of interest is to model the operational dynamics of the status of each single

machine. This model is then integrated to the whole assembly line described above to

analyze the whole system. For a single manufacturing machine, there are two underlying

processes involve. The first process, the degradation process, in most of the automated as-

sembly systems manifests as long time-scale, fairly regular process (occurring as a result

of repeated, “cyclic” loading), as well as short time-scale degradations that occur in com-

ponents that have steep degradation and restoration rates (short degradation and restoration

cycles, such as human attention span, and component misfeeds). The second process, the

restoration process, can also be decomposed into a deterministic trend of regular check
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up or maintenance and random process involving factors such as irregular fixing when

random breakdown occurs. We noted that the deterministic breakdown and maintenance

often take much longer TBF and TTR than the random ones.

2.2 Deterministic model for coupled dynamics between degradation and restoration

processes of a manufacturing machine

2.2.1 Model description

To build the model for a single machine, we look at a sample path as shown in Fig.

2.1, which captures a representative long time-scale degradation-repair cycles of a manu-

facturing machine. Here, the restoration rate ρ̇ to improve the machine fluctuates around

a “nominal” baseline which specifies an average effort (e.g., workforce size) employed

for restoration. For simplicity of manipulation and without loss of generality, we choose

that “nominal” baseline for ρ̇ to be 0 and adjust cumulative restoration ρ as a fluctuation

about the linear trend determined by this average. The physical connotation of negative

ρ and ρ̇ is that their values before adjustment are below the “nominal” baseline linear

trend and that set level. The downtime due to machine breakdowns is simulated as re-

sulting from a dynamic interplay between the machine degradation condition β and the

cumulative restoration. We note that a degradation process is often attributed to certain

natural laws that have been commonly modeled as piecewise constant rate processes [15].

Real-world repair processes tend to be governed by several human-machine-interaction

considerations [16–20]. For instance, as the condition starts to deteriorate, some attention

and resources are expended towards maintaining and repairing the machine. The efforts

are significantly ramped up as the machine condition deteriorates further and are phased

out as the machine is restored (see Fig. 2.1). Specifically, upon restoration of machine

condition to β(t) = α1 at t = T0, where the machine condition is considered to have

reached its peak level, the machine gradually degrades at a constant rate of K2. As the
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Figure 2.1: Illustrative diagram of degradation and restoration variable dynamics
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condition degrades to β(t) = α5 at t = T2, the restoration rate increases. When t < T4,

the restoration is not enough to overcome the natural degradation effects, therefore the

machine condition continues to decrease and bottoms out to β(t) = α2. Thereafter, the

machine condition starts to improve gradually at a rate of K1 at t = T5. The restoration

rate reaches the maximum level ρ̇(t) = α6 at t = T3 and retains this value until the ma-

chine condition improves to α4 at t = T7. At t = T7, the restoration rate is reduced at a

rate of K3 until the restoration rate reaches its lowest level of a3 < 0 at t = T9. As the

restoration rates are phased out at t = T7, at first the machine condition continues to in-

crease to reach its peak level at t = T8 and retains that value till t = T10 when degradation

sets in to begin the next such cycle. This dynamic interplay can be captured in its simplest

form using the following piecewise constant (nonlinear) differential equations of the form:

dβ

dt
= K1H−(α1 − β)H+(ρ) +K2H+(−ρ)H−(β − α2) (2.1)

d2ρ

dt2
= K3H−(ρ̇− α3)H+(β − α4) +K4H+(α5 − β)H−(α6 − ρ̇) (2.2)

where α1−6 are the threshold values of the respective state variables that switch between

different regimes, K1−4 denote the rates of degradation and restoration as stated in the

foregoing, and H−,+(.) represent the switching dynamics, which are defined as follows:

H−(x) =


0 x ≤ 0

1 x > 0

, H+(x) =


0 x < 0

1 x ≥ 0

.

It may be noted that parameters such as K1, K2, α1,2 have a specific physical conno-

tation in terms of defining the degradation and restoration rates; the peak and breakdown

(degraded) conditions, which may be estimated from shop floor PFS data; and the speci-

fications of a machine operating range. For example, K2 is synonymous with the average
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rate of a specific (here, the long time-scale) degradation mode. It may also be noted that

higher order differential equations with more complex forms of non-linearity may be used

if the present model structures are found to be inadequate to capture the underlying dy-

namics. Pertinently, the foregoing affine differential equations (2.1,2.2) admit a periodic

solution as stated in the following theorem. That periodic solution can capture a recurring,

major (large time-scale) mode of breakdown-restoration cycles of real-world manufactur-

ing machine operations.

Theorem 1. If the following conditions hold:

K4(α5 − α2) +K2 (α6 − α3) ≥ 0, (2.3a)

α3(α1 − α5) + α6(α5 − α2) ≤ 0, (2.3b)

K3 (α1 − α4) +K1 (α6 − α3) ≥ 0, (2.3c)

2K3α6 (α2 − α4) +K1(α2
6 − α2

3) ≥ 0, (2.3d)

2K1 (−α1 + α2)α6 −K3 (α1 − α4) 2 < 0, (2.3e)

2 K4K1 (α1 − α5) +K2(α2
6 − α2

3) ≥ 0, (2.3f)

α3 < 0 < α2 < α6 < α5 < α4 < α1, (2.3g)

K1 > K4 > 0 > K2 > K3, α3 = −K1 (2.3h)

then the set of affine equations (2.1,2.2) allows a periodic solution denoted by x∗(t) com-

posed of I = 10 segments, with the period given by

T = (α6 − α3)

(
α6 − α3

2K4α6

+
α6 − α3

2(−K3)(−α3)

)
+ (α6 − α3)

(
α1 − α5

α6(−K2)
+

α4 − α2

K1(−α3)

)
(2.4)

Proof. The constraints in Theorem 1 are proposed to sufficiently guarantee that the system

11



follows the expected trajectory.

The transition state between consecutive segments j − 1 and j, j ∈ 1, 2, ..., 11 meets

at least one of the following eight switching conditions:

βj−1(t) = α1, ρj−1(t) = 0, −ρj−1(t) = 0, βj−1(t) = α2,

ρ̇j−1(t) = α3, βj−1(t) = α4, βj−1(t) = α5, ρ̇j−1(t) = α6.
(2.5)

The times associated with those switching conditions are denoted by t(i)j , i ∈ {1, 2, ..., 8},

j ∈ 1, 2, ..., 11. The switching time (time at which dynamics switches) from segment j−1

to j is given by

Tj = min
k∈Ij
{t(k)
j }

where

Ij = {k : t
(k)
j > Tj−1}.

The constraints stated in (2.3) are deemed to enforce a particular switching sequence as

detailed in the following exposition. Here, we detail the determination of Tj’s and the

resulting constraints at segments j = 1, and outline the procedure with which other con-

straints were obtained.

Segment 1: The trajectories in this segment follow transient dynamics until the next

switching condition is met. The trajectories are chosen to originate from the following

initial condition:

β(0) = α1, ρ(0) = 0, ρ̇(0) = −K1. (2.6)

Under these conditions, (2.1,2.2) reduce to

β̇(t) = K2, ρ̈(t) = 0. (2.7)
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And the system trajectories are defined by

β0(t) = α1 +K2t, ρ0(t) = K1(−t). (2.8)

Segment 2: Solving for t’s in (2.5) we have the following candidates for switching time

T1:

t
(1)
1 = t

(2)
1 = t

(3)
1 = 0,

t
(4)
1 =

−α1 + α2

K2

, t
(6)
1 =

−α1 + α4

K2

, t
(7)
1 =

−α1 + α5

K2

. (2.9)

Also, t(5)
1 , t

(8)
1 are not admissible, as the corresponding switching conditions violate the

dynamics at the boundary as specified in (2.12).

Segment 2 models the degradation of the machine from its peak condition, where when

β(t) decreases to a certain level α5, the restoration must increase. Therefore, we want the

event associated with t
(6)
1 precedes other t(i)1 ’s, i.e., T1 = min{t(4)

1 , t
(6)
1 , t

(7)
1 } = t

(6)
1 =

α4−α1

K2
. This condition could hold if (2.3g,2.3h) are met.

Consequently, the dynamics Eqs. (2.1,2.2) reduces to:

β̇(t) = K2, (2.10)

ρ̈(t) = 0. (2.11)

Also, for the trajectory within segment 2, the initial conditions are given by:

β(T1) = α4,

ρ(T1) =
K1

K2

(α1 − α4),

ρ̇(T1) = −K1.
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and the trajectory within this segment is given by:

β1(t) = α1 +K2t, (2.13a)

ρ1(t) = K1(−t). (2.13b)

Applying this procedure to all subsequent segments, the constraints in (2.3) sufficiently

allow a periodic solution with 10 switches.

Remark 1. All the constraints are applied to guarantee the solution follows the desired

path, which is popular in practical manufacturing machine.

The constraints 2.3(a-d) may be interpreted as follows: Eqn. (2.3a) reduces to (α6−α3)
K4

≤
(α5−α2)
−K2

. This means that the time it takes restoration rate ρ̇ to reach its maximum value

must be smaller than the time for the system state β to degrade from its peak to the lowest

state. Similarly, Eqn. (2.3c) implies that the time it takes ρ̇ to relax to its lowest value from

its peak value should be longer than the time for the system state β to reach the maximum

state from the restoration relaxing state.

From (2.3b) it follows that the state at which the acceleration of the cumulative restora-

tion ρ(t) should be initiated is bounded as: α5 ≤ α6α2−α3α1

α6−α3
, from (2.3d) it follows that the

state at which the restoration should be reduced is bounded as α4 ≥ K1(α2
6−α2

3)

2(−K3)α6
+ α2, and

Eqn. (2.3h) defines the highest rate for relaxing the restoration rate ρ̇(t) in terms of the

highest effective restoration rate β̇(t).

Theorem 2. When the antecedents of Theorem 1 hold, time to failure (TTF), TTR, and

availability (A) are given by the following expressions:

TTF =
α2 − α1

K2

+ (1− α6

α3

)(
α4 − α2

K1

− α6 − α3

2K3

) (2.14)

TTR =
(α6 − α3)2

2K4α6

+
α5 − α2

K2

+
α3(α1 − α5)

K2α6

(2.15)
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A = [K4(K1

(
2K3 (α2 − α1)α3 +K2 (α3 − α6) 2

)
−2K2K3 (α2 − α4) (α3 − α6))α6]

[K3
1K2K3α3 − 2K2K3K4 (α2 − α4) (α3 − α6)α6

+2K2
1K3α3 (K4 (α5 − α1) +K2α6)

+K1α6(K2K4 (α3 − α6) 2

+K3α3 (2K4 (α5 − α1) +K2α6))]−1. (2.16)

Proof. Following Theorem 1, the time between failure (the period of the solution to (2.1,2.2)),

time to repair, time to failure and availability are given by: TBF=TBF = T11−T1, TTR =

T5 − T4, TTF = TBF − TTR,Λ = TTF
TBF

. By substituting formulas for T1, T4, T5, T11

derived from the proof of Theorem 1 we have (2.14,2.15,2.16).

Remark 2. The following interpretations may be forwarded on how the model parameters

influence machine performance characteristics: From (2.15) it follows that TTR will de-

crease if −α3, the limiting value of ρ̇, decreases (which causes (α6−α3)2

2K4α6
and −α3(α1−α5)

−K2α6

to decrease), or α5 − α2 increases (which causes α5−α2

−K2
to increase). Note that α5 − α2

increases if α5 increases (i.e, we start the restoration process sooner relative to the most

degraded state α2) or α2 decreases (i.e., the machine has a very low degraded state).

From (2.14) it follows that TTF will increase if any of the following conditions hold:

(i) the range of operating states of a machine α1 − α2 increases or the effective degra-

dation rate −K2 decreases; (ii) the state of the machine at which the restoration rate re-

duces, α4 increases or the maximum effective restoration rate, K1, decreases; (iii) the

range of restoration rate α6 − α3 increases, and the maximum restoration rateα6 and the

peak restoration reducing rate −α3 increases. Note that the last two situations imply that

( α6

−α3
+ 1)(α4−α2

K1
+ α6−α3

2(−K3)
) increases.

The availability, A, increases if TTR does not increase as TTF increases. For example,
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when−K3, the restoration acceleration decreases (with other parameters unchanged), and

TTF increases, with TTR remaining unchanged. This leads to an increase in A.

2.2.2 Stability characteristic

This section is devoted to studying the dynamics behavior including basin of attraction

and the stability condition of the solution [21]. Here, the stability of the periodic orbits

of such piecewise affine models is defined in terms of the eigenvalues of the Jacobian

matrix of a Poincare’s map, referred to as a trajectory sensitivity matrix [22]. Stability,

at least local, of the periodic solutions is necessary to ensure that the numerical solutions

converge over time, at a well-defined mixing rate, with the theoretical steady state periodic

orbits. We also provide an expression for the basin of attraction, which can help quantify

the robustness of the periodic solution to finite perturbations. The larger the basin of

attraction, the more robust are the steady simulation outputs to numerical imprecision and

other perturbations. To simplify the model and put it into the general setting of the control

theory, (2.1,2.2) can be written in the following piecewise affine form

ẋ = Aix+Bi (2.17)

where x , (β, ρ, ρ̇)T , Ai = A = (amn)3×3, i ∈ {1, ..., 10} such that

amn =


1 if (m,n) = (2, 3),

0 otherwise

and Bi = (b1i, 0, b3i)
T , with b1i ∈ {K1, K2, K1 + K2, 0}, b3i ∈ {K3, K4, K3 + K4, 0}.

The switching surfaces are 2-dimensional hyperplanes of the form Si = {x|Cix = di},
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i ∈ {1, ..., 10} with Ci’s given by

C1 = C2 = C4 = C6 = C7 = C8 = (1 0 0), (2.18a)

C3 = C9 = (0 0 1), C5 = C10 = (0 1 0). (2.18b)

The switching dynamics of the periodic solution (dotted line) stated in Theorem 1 is

Figure 2.2: (a) Switching dynamics of a periodic solution (b) Basin of attraction of a
periodic trajectory.

depicted in Fig. 2.2a. Let us denote by x∗i (t), i = 1..10, the segments of a periodic

trajectory that starts at x∗i (Ti) ∈ Si and ends at x∗i+1(Ti+1) ∈ Si+1, i = 1..9. Let us denote

by Λ the Poincare map of points in a small neighborhood B(x∗1) of x∗1(T1) in S1, i.e.,

Λ : B(x∗1) → S1. For such a class of hybrid systems, the Lyapunov theory or Poincare

maps [23] are the chief means to investigate stability. The following sufficient condition

for the local stability of the periodic solution (limit cycle) follows from this construct.
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Proposition 1. [22] The Jacobian W of the Poincare map Λ is given by

W = W10W9..W2W1,

where

Wi =

(
E − viCi+1

Ci+1vi

)
eAit

∗
i (2.19)

with vi = Aix
∗
i+1 + Bi, i ∈ {1, 2, 3, ..., 10} and E is the identity matrix. The periodic

solution of the system is (a) locally stable if all eigenvalues λwj of W lie strictly within the

unit disk, i.e., |λwj | < 1, j = 1..3, and (b) unstable if at least one of the eigenvalues of W

lies outside the unit disk.

Here W is referred to as the trajectory sensitivity matrix. Proposition 1 leads to the fol-

lowing result for the stability of periodic solution x∗(t) of (2.17).

Theorem 3. The periodic solution x∗(t) of (2.17) is locally stable.

Proof. We prove this Theorem based on Proposition 1. Here, Ai =


0 0 0

0 0 1

0 0 0

 =

0, and A2
i = 0.Therefore,

eAit
∗
i =

∞∑
k=0

1

k!
(Ait

∗
i )
k = E + Ait

∗
i (2.20)

where E is the identity matrix and t∗i = Ti+1 − Ti

Combining (2.19) and (2.20) we have Wi =
(
E − viCi+1

Ci+1vi

)
(E + Ait

∗
i ), and

W = Πi∈IWi, I = {1, ..., 10} − {6}. (2.21)

Note that matrix W6 is not included in (2.21), as the system dynamics does not change
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when the trajectory cuts plane S6.

From (2.18) and (2.21), it follows that W = 0, and all eigenvalues λwj are zero and thus

lie within the unit circle. Consequently, the periodic solution x∗(t) of (2.17) is locally

stable.

The basin of attraction of the locally stable periodic solutions emerging from an initial

condition x∗(0) = (β0, ρ0, ρ̇0) may be gathered from the following sufficient condition.

Theorem 4. The solution of (2.1,2.2) will converge to the periodic solution x∗(t) given in

Theorem 1 if

α5 ≤ β0 ≤ α4, ρ0 ≤ 0, α3 ≤ ρ̇0 < 0, (2.22a)

K2

(
−2ρ0K4 + (ρ̇0 − α6) 2

)
+

2K4 (β0ρ̇0 − α2α6 + α5 (−ρ̇0 + α6)) ≤ 0 (2.22b)

and the inequalities specified in (2.3) hold for the model parameters.

Proof. Similar to the method presented in Theorem 1, the constraints (2.23) are proposed

to sufficiently guarantee that the system follows the expected trajectory.

α2 ≤ β0 ≤ α4, ρ0 < 0, ρ̇0 ≥ α6 or β0 ≥ α5, (2.23a)

β0 ≤ α1,−
ρ0

ρ̇0

≤ 0, (2.23b)

ρ̇0K
2
2 +

√
K3

2

(
K2

(
ρ̇0

2 − 2ρ0K4

)
+ 2ρ̇0K4 (β0 − α5)

)
≥ 0, (2.23c)

α3 ≤ ρ̇0, K4 (α2 − α5) +K2 (ρ̇0 − α6) ≤ 0, (2.23d)

K2

(
−2ρ0K4 + (ρ̇0 − α6) 2

)
+2K4 (β0ρ̇0 − α2α6 + α5 (α6 − ρ̇0)) ≤ 0. (2.23e)

Because of (2.23a), (2.23b) is reduced to ρ̇0 < 0. As a consequence, (ρ̇0 ≥ α6 or β0 ≥ α5)
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in (2.23a) is reduced to β0 ≥ α5. Als

K4 (α2 − α5) +K2 (ρ̇0 − α6) ≤ 0⇔ ρ̇0 ≥
−K4 (α2 − α5)

K2

+ α6

On the other hand,

−K4(α2−α5)
K2

+ α6 − α3 = K4(α5−α2)+K2(α6−α3)
K2

≤ 0

because of (2.3a,2.3h). Therefore, −K4(α2−α5)
K2

+α6 ≤ α3. It follows that (2.23d) is satisfied

if α3 ≤ ρ̇0.

(2.23c) is equivalent to

√
K3

2

(
K2

(
ρ̇0

2 − 2ρ0K4

)
+ 2ρ̇0K4 (β0 − α5)

)
≥ −ρ̇0K

2
2

⇔ (−ρ0K2 + ρ̇0 (β0 − α5)) ≤ 0. (2.24)

(2.24) is satisfied as ρ0, ρ̇0 ≤ 0, K2 ≤ 0, β0 ≥ α5. Therefore, (2.23) is equivalent to

(2.22).

From the above proof, the constraints specified in (2.22) ensure that the system evolution

patterns shadow the periodic solution x∗(t); specifically, the system state converges to

(actually merges with) x∗5(T5), the initial state of the 5th segment on the trajectory of

x∗(t).

Remark 3. Eqn. (2.22) implies that initial degradation state β0 is bounded between starting

restoration state α5 and relaxing restoration state α4; the initial cumulative restoration ρ0

and the restoration rate ρ̇0 are negative, and ρ0 and ρ̇0 must fulfill the quadratic constraint

(2.22b).

The basin of attraction may also be derived from combining basins of attraction on all

switching surfaces [22]. The basin of attraction (composed of the 4 shaded regions and the

bold lines) specified in the following Theorem are depicted in Fig. 2.2b.
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Theorem 5. The trajectories that start from the following specified regions on the switching

surfaces converge to the limit cycle x∗(t) defined in Theorem 1

On S1: ρ̇0 = α3, ρ0 ≤ max{0, (α3(α4−α5)+(−α2+α5)α6)
K2

+ (α3−α6)2

2K4
}.

On S2: max{−K4(α2−α5)
K2

+ α6, α3} ≤ ρ̇0 < α6, ρ̇
2
0 ≥ α2

6 + 2K4ρ0, ρ0 ≤ 0, 2K4(α2 −

α5)α6 > K2((ρ̇0 − α6)2 − 2K4ρ0).

On S3: α2 < β0 ≤ α5, α6 (−α2 + β0) < K2ρ0.

On S4: {ρ0 < 0, ρ̇0 = α6} or {ρ0 < 0, ρ̇0 = −K3(α1−α4)
K1

+ α6}.

On S5: {ρ̇0 = α6,min{α5,
K3(α1−α4)2

2K1α6
+ α1,

K1(α2
3−α2

6)
2K3α6

+ α4} ≥ β0 ≥ α2} or {ρ̇0 =

−K3(α1−α4)
K1

+ α6,

min
{
α5,

K3(α1−α4)2

2K1α6
+ α1,

K1(α2
3−α2

6)
2K3α6

+ α4

}
≥ β0 ≥ α2}.

On S6: {ρ̇0 ≥ −K3(α1−α4)
K1

+ α6, ρ0 ≥ 0,K3 (α1 − α4) 2 + 2ρ̇0K1 (α1 − α5) + 2K2
1ρ0 > 0,

2ρ̇0K3 (α4 − α5) +K1 (−ρ̇2
0 + α2

3 + 2K3ρ0) < 0}.

On S7: {ρ0 ≥ 0, ρ̇0 = α6} or {ρ0 ≥ 0, ρ̇0 = −K3(α1−α4)
K1

+ α6}.

On S8: {ρ0 > 0, α3 < ρ̇0 ≤ α6, α
2
3 + 2K3ρ0 < ρ̇2

0}.

On S9: {β0 = α1, ρ0 > 0}.

On S10: {ρ0 > 0, ρ̇0 = α3, α1 ≥ β0 > max{α4,− K2

2K4α3
(α3 − α6) 2 + 1

α3
(α2α6 +α5(α3−

α6)),
K2(−α3

2+α2
6)+2α3K4α5

2α3K4
}}.

Proof. The regions defined in Theorem 5 are the basin of attraction on each of the surfaces

and are similar for each surface. The idea is to propose the constraints in the form of

sufficient conditions such that the system follows the expected trajectory. The method to

construct such conditions are similar to the ones presented in Theorem 1.

Let us consider the impact map from surface 6 to 7, the Lipschitz constant k, if it exists,
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is the smallest number k such that
√√√√

1 +

(
∆(ρ̇0)(α4−α5)

K1

)
2 + 2∆(ρ̇0)(α4−α5)

K1
∆ρ0

∆ (ρ̇0) 2 + ∆ρ2
0

 ≤ k. (2.25)

However, when ∆ (ρ̇0) = ∆ρ0, the left hand side of (2.25) is reduced to

√
1 +

(α4−α5

K1
)2 + 2 (α4−α5)

K1
)

2
> 1.

Therefore, the impact map is not contracting. As a consequence, the basin of attraction

formulated in Theorem 5 contain the basin of attraction derived using the method in [22].

Remark 4. Note that all the constraints used to bound the basin of attraction on each

switching surface are added to sufficiently guarantee that the switching order of the peri-

odic solution of Eqs. (2.1,2.2) is maintained. As a consequence, the system returns to a

point on x∗(t). Thus, the system is stable.

Remark 5. The basin of attraction formulated using the earlier method in [22] is con-

structed in 2 steps. The first step bounds a set in form of ellipsoids from which the impact

maps [22] are contracted. This set is then shrunk to maintain the switching order. For the

present system, some impact maps are not contracting. This leads to the following result.

Proposition 2. The basin of attraction formulated in Theorem 5 contains the basin of at-

traction derived using the method in [22].

This result is part of the proof represented in 5.
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2.3 Stochastic model for modeling short time breakdown and repair of a single ma-

chine and the multimodal distribution

In this Section, we will extend the model in (2.1,2.2) to include the effects of minor

breakdowns that happen in short time scale by introducing a stochastic form of α2 and K2.

As shown in Fig. 2.4b, data collected in this study exhibits a multimodal distribution. The

right mode presents major breakdowns that happen in long time-scale and can be modeled

by the deterministic model in Section 2.2. The left mode presents minor breakdowns

happen randomly in short time scale and will be considered in this Section.

Lemma 1: If γ(t) is mean square (ms) continuous process with |γ(t)| > a > 0 a.e.

(almost everywhere), then the integral

∫ t

T4+(tdivTBF )×TBF
K2H+(γ(τ))dτ (2.26)

exists and is differentiable.

Proof. Proof: Let us define ∆(x) = sgm(x, k) − H+(x), where sgm(x, k) = 1
1+e−kx

. It

may be noted that

∀x ∈ R, and|x| > a > 0, we have |∆(x)| → 0 uniformly as k →∞ (2.27)

This is because

∀x > a, |∆(x)| = | 1
1+e−kx

− 1| = | −e−kx
1+e−kx

| < e−kx < e−ka → 0 as k →∞.

∀x < −a, |∆(x)| = | 1
1+e−kx

− 0| < | 1
1+eka

| → 0 as k →∞.

Now, substituting x with γ(t) for some |γ(t)| > a > 0, a.e., in (2.27), it follows

that ∀ε > 0,∃K ∈ N such that |∆(γ(t))| < ε, ∀t > 0 and k > K. Consequently,

E[|∆(γ(t))|2] < E[ε2] = ε2 as k > K, ∀t > 0, or ∀t > 0, sgm(γ, k) converges uniformly

in the ms sense to H(γ) as k → ∞. Furthermore, sgm(γ, k) is ms continuous because
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sgm(.) is continuous, and γ(t) is ms continuous. Therefore, it follows that H(γ) is ms

continuous [24] (Theorem 3.3 p. 62). Consequently, the integral (2.26) exists and is

differentiable [24] (Corollary 2 p. 67).

For the following Theorem, we consider the system in one period, i.e., 0 ≤ t ≤ T .

Theorem 6. If antecedents of Theorem 1 hold and α2 and K2 are as follows:

α2(t) =


α0

2 − γ(t) +

∫ t

T4

K0
2H+(γ(τ))dτ if T4 ≤ t < T5 − ε (2.28a)

α0
2 − εK̃2 if T5 − ε ≤ t ≤ T5 (2.28b)

α0
2 otherwise (2.28c)

K̃2 = −1

ε

∫ T5−ε

T4

K0
2H+(γ(τ))dτ. (2.29)

K2(t) =

K̃2 if T5 − ε ≤ t < T5 (2.30a)

K0
2 otherwise (2.30b)

where 0 < ε < T5−T4, then TBF and TTR in this period exhibit right skewed distributions

with skewness in the range of 1.4–2. Here, γ(t) is a random process whose time intervals

between successive zero-crossings follow exponential distribution with rate ν; α0
2, K0

2 are

the values, respectively, of α2, and K2 in the deterministic model (2.1,2.2); and T4 =

(α1−α2

−K2
), T5 = (K1+α6)(2K4(α5−α1)+K2(K1+α6))

2K2K4α6
.

Proof. First, consider the random process γ(t) = (−1)N(t) [25] (p. 379), where N(t)

is a Poisson process with parameter λ, and N(0) is a Bernoulli binary random variable

with equal probability for outcomes 0,1. Evidently, Rγγ(t1, t2) = e−2λ|t1−t2|(t1, t2 ≥ 0) is

continuous at (t, t). Therefore, it follows from [24] (Theorem 3.2 p. 61) that γ(t) is an ms
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Figure 2.3: Diagram of proof of Theorem 6. Without any perturbation, the system evolves
as aAGBb. With perturbation to α2 and ε = 0, the system evolves as aADECc. With
perturbation to both α2 and K2, the system evolves as aADBb.

continuous process. Also, the time intervals between successive zero crossings of γ(t) are

the same as those between consecutive events of the Poisson process N(t), and hence they

follow an exponential distribution.

Without loss of generality, let us consider the perturbation for the first period, T1 ≤ t ≤

T +T1 of the periodic solution in Fig. 2.1 as in (2.28,2.29). Note that similar constructions
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follow for other periods. Let us consider β(t) defined as:

β(t) =


α0

2 +

∫ t

T4

K0
2H(γ(τ))dτ if T4 ≤ t < T5 − ε (2.31a)

α0
2 + K̃2[t− T5] if T5 − ε ≤ t < T5 (2.31b)

β0(t) otherwise, (2.31c)

where β0(t) is the solution of the unperturbed deterministic model in the corresponding

region, K̃2 is defined in Eqn. (2.29).

To show that ρ(t) satisfies (2.2), we note from (2.31) that β(t) ≤ α0
2 as K0

2 ≤ 0 when

T4 ≤ t < T5−ε in (2.31a) andK2[t−T5] ≤ 0 when T5−ε ≤ t < T5 in (2.31b). Therefore,

when T4 ≤ t ≤ T5, β(t) ≤ α0
2 < α5 < α4, i.e., ρ(t) satisfies (2.2). Outside this region,

ρ(t) automatically satisfies (2.2) because of its definition.

Let us now verify that β(t) defined in (2.31) satisfies (2.1). From (2.31a) and (2.28a)

we have

β(t)− α2(t) = γ(t). (2.32)

Applying Lemma 1 to (2.31a), we have:

dβ(t)

dt
= K0

2H(γ(t)). (2.33)

It follows from (2.32) and (2.33) that dβ(t)
dt

= K0
2H(β(t)− α2(t)) or β(t) satisfies (2.1).

Similarly, from (2.31b) and (2.28b) we have

β(t)− α2(t) = K̃2[t− (T5 − ε)] ≥ 0

and
dβ(t)

dt
= K̃2 = K̃2H(β(t)− α2(t))
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or β(t) satisfies (2.1).

At t = T5, α2(T5) = α0
2, β(T5) = α0

2, ρ(T5) = ρ5(T5), ρ
′
(T5) = ρ

′
5(T5). When

t → T+
5 , β ′(t) = β

′
5(t) and ρ′′(t) = ρ

′′
5(t). Therefore, the system dynamics does not

change outside [T4, T5).

Furthermore, as β(t) − α2(t) = γ(t) for T4 ≤ t < T5 − ε, it may be noted that the

zero crossing time-points of γ(t) and β(t) − α2(t) are identical. As as result, the interval

between the ith and (i+ 1)th zero crossing of β(t)− α2(t) denoted by τi are independent

and follows exponential distribution with mean interval length of 1
λ

.

Case 1: the first zero results from a down crossing and TTRs: τ1, τ3, . . . follow expo-

nential distribution.

Case 2: the first zero results from an up crossing and TTRs: τ2, τ4, . . . follow exponen-

tial distribution.

In both cases, TBF: τ1 + τ2, τ3 + τ4, . . . follow Erlang distribution with parameters

(2,λ) [26]. Thus, TTRs follow the exponential distribution with skewness of 2, and TBFs

follow the Erlang(2) distribution with skewness of 21/2.

Note that in this case, TTR is the time interval between a zero up-crossing and the

next zero down-crossing, and TBF is the time interval between 2 consecutive zero down

crossings of β(t) − α2(t). The following result shows that our model can capture the

multimodal characteristic of TBF.

Corollary 1. Model (2.1,2.2) with α2, K2 as proposed in (2.28,2.30) when t ≤ T and

α2(t) = α2(t mod T ) when t ≥ T can generate TBF that exhibit a multimodal distribution.

Proof. Note that the result in Theorem 6 is applied for each period of the periodical solu-

tion in Theorem 1. In each period, by replacing α2, K2 in the deterministic model (2.1,2.2)

with (2.28,2.30), there are multiple short TBF which exhibit right skewed distribution as
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shown in the Theorem 6. Together with long TBF from the deterministic model (2.1,2.2),

we have a multimodal distribution.

2.4 Numerical validation

In this section, we report 2 case studies. The data sets employed in these case studies

contain TBFs and TTRs collected from manufacturing machines of an assembly line of a

leading automobile manufacturer. The first study assesses how well the model parameters

estimated based on the foregoing theoretical results can capture the distribution of TBF

and TTR of each machine in an assembly line. The second case study evaluates the extent

to which the model, with parameters “optimally” estimated using a genetic algorithm [27],

can be used to simulate the dynamics of the whole assembly line.

2.4.1 Performance of the model when applying to a single machine

First, we investigated the distributions of TBF from real world data over short time

scales, i.e, TBF<10 min. As shown in Fig. 2.4a, the data exhibit a highly right skewed

distribution over the short time-scales. The estimated parameters (ν̂l) of the exponen-

tial distribution models of the short time-scale TBF distribution of various manufacturing

machines l = 1, 2, ..., 14, (see Table 1) suggest that for most machines, the R2 for the

exponential fit is high, around 90%, and the standard deviation is about 10% of the esti-

mates in many cases. This result implies that ln(1 − ˜F (TBF )) trends linearly with TBF

values, and short-term TBF and TTR can therefore be approximated using an exponential

distribution.

Second, we compared the distributions of short time-scale TBF and TTR from the

data vs. those generated from the model for the 14 machines of the assembly line. For

each machine, the model (2.1,2.2) was parametrized with the value estimated in Table 1,

and those values that meet the antecedents of Theorem 3 and the perturbations specified

in (2.28,2.29) to mimic the degradation dynamics (e.g., ν̂ = 0.276 for Machine 6) and
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Table 2.1: Summary of exponential fitting of short-term TBF samples from a real-world
manufacturing system.

MC ν̂ R2 σ(%ν̂) MC ν̂ R2 σ(%ν̂)
1 0.23 0.93 12.68 8 0.26 0.89 17.19
2 0.30 0.95 9.79 9 0.32 0.83 18.86
3 0.28 0.97 8.24 10 0.31 0.95 10.43
4 0.29 0.89 16.15 11 0.16 0.93 18.56
5 0.22 0.84 24.70 12 0.34 0.88 17.03
6 0.30 0.88 19.34 13 0.28 0.97 8.24
7 0.25 0.70 27.23 14 0.32 0.88 15.95

ε ≈ 0.001. The model with these parameter settings was used to simulate a 600 min long

operation of an assembly segment with step size set at 0.01 min. The simulations were

replicated 20 times. The closeness of the distributions of model-derived successive zero-

crossing (α2-crossing) intervals (mimicking TTR) to exponential distribution, exp(ν̂l), for

each machine was assessed using a Kolmogorov-Smirnov (KS) test. Parenthetically, the

KS statistic, κ, is the maximum difference between empirical cdf ˜F (TBF ) and the cdf of

exp(ν̂). The results suggest that the short time-scale TTR from simulations for Machine

k are statistically indistinguishable from an exponential distribution exp(ν̂k) (median p-

value of about 0.6).

Third, we ran simulations to verify the similarity of overall distributions of simulated

vs. actual TBF and TTR. We set the simulation time span to 6000 min and the step size

to 0.001 min. As evident from Fig. 2.4 and statistical tests, the histograms of model-

generated TBF and TTR for a machine hold a distinct similarity to those from real-world

data in that (a) both show a very similar right skewed distribution over short times and (b)

the second mode occurs in the same vicinity (here, TBF=1800 min), but the real-world

data shows larger dispersion compared to the model-derived distribution.
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(a)

(b)

Figure 2.4: Comparison of histograms of TBF data from a real-world manufacturing as-
sembly machine (station) (a) with that from simulations (b).

2.4.2 Performance of the model when integrating to whole assembly line

In this case study, we applied the foregoing modeling approach to capture the dynam-

ics of machine breakdowns as well as their effect on the throughput in an automotive

manufacturing assembly line segment.

As mentioned above, flow modeling approaches have traditionally been used for qual-

itative analysis of system dynamics and not for real-time performance estimation. Discon-
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tinuities in flow caused by blocking, starving, and breakdown events adversely affect the

performance of integration routines used to solve the model, and often cause the numer-

ical solution procedures to become unstable. To overcome this drawback, the Heaviside

function was replaced by sigmoid function theory [28, 29]. Note that the rationale for this

replacement is that sigmoidal functions sgm(wx) = 1
1+e−wx

can approximate the Heavi-

side functions H−,+(x) and improve the efficiency of numerical simulation. It may also

be noted that when w gets large enough, we have

lim
w→∞

sgm(wx) = H+,−(x)

Therefore, we can derive approximated vector flow fields that pose fewer numerical insta-

bility issues and to facilitate faster simulation of system dynamics. For example, the time

taken to generate the solutions shown in Fig. 2.1 for degradation dynamics decreased 2146

times with the use of sigmoidal functions. By using the sigmoidal function of the form

sgm(x) = (1+e−x)−1, the coupled dynamics of degradation and restoration (2.1,2.2) may

be rewritten as:

dβ/dt = K1sgm(w1(α1 − β))sgm(w2ρ)

+K2sgm(−w3ρ)sgm(w4(β − α2))

(d2ρ)/(dt2) = K3sgm(w5(ρ̇− α3))sgm(w6(β − α4))

+K4sgm(w7(α5 − β))sgm(w8(α6 − ρ̇))

and the throughput rate is adjusted to account for degradation and starve/block conditions

in each machine as

uk(t) = µk(t)sgm(Lk(t))sgm(Lmax
k+1 − Lk+1(t))sgm(βk(t)− β0

k) (2.34)
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As noted earlier, parametrization of the model using historical fault realizations, such as

historical records of TBF and TTR, can be significantly challenging. Instead of using a

feasible set based on theoretical results, we used a genetic algorithm (GA) to “optimally”

select the n-SDE models for each station (labeled Machine 1 through Machine 18) in the

real-world manufacturing assembly line segment. In essence, GA performs a stochastic

search to determine the model parameters so that the marginal distribution (histogram) of

TBF and TTR estimated from the simulation closely match with those from actual data.

Notably, the parameters are tuned to capture only the marginal distributions of TTR and

TBF. The structure of the differential equations essentially accounts for the TBF-TTR

dependencies. The fitness (or the objective) function, Op, of the GA is expressed in terms

of the empirical marginal distributions of TTR and TBF as follows

Op = ω1

(∑N0

j=1(HistTBF (j)−HistTBFa(j))2

N0

+

∑N1

j=1(HistTTR(j)−HistTTRa(j))2

N1

)

+ ω2

(∑N0+N2

j=N0+1(HistTBF (j)−HistTBFa(j))2

N2

+

∑N1+N3

j=N1+1(HistTTR(j)−HistTTRa(j))2

N3

)

+ ω3

(∑N0+N2+N4

j=N0+N2+1(HistTBF (j)−HistTBFa(j))2

N4

+

∑N1+N3+N5

j=N1+N3+1(HistTTR(j)−HistTTRa(j))2

N5

)

Here, the distributions of TBF and TTR estimated from the histogram transformations

(HistTBF and HistTTR) of the model solutions were compared with those from the actual

fault data (HistTBFa and HistTTRa), and j is the histogram bin index. The histogram

bins of TBF from the model (HistTBF) and the actual data (HistTBFa) were partitioned
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into the same three groups, each with N0, N2, N4 bins. The first N0 bins capture the

near-exponential distribution of the short TBFs, the next N2 bins capture the steady non-

exponential distribution of the intermediate values of TBF, and the last N4 bins capture

the second mode and beyond of the (large) TBF distribution. Similarly, N1, N3, N5 are

the corresponding bins used to compare histogram transformations of TTR distribution

from the model (HistTTR) with actual historic data (HistTTRa). The weights for the three

areas of the histogram, ω1, ω2, ω3, were assigned to be 100, 10, and 1, respectively, to

represent their relative importance from an operational standpoint. The simulated as well

as the actual TBF and TTR data were gathered over a two-month period. The decision

variables for GA optimization include the structural parameters of the model, namely,

α1−6, K1−4, w1,4,5,8, w2(= w3), and w6(= w7), and perturbation parameter ν. The GA

essentially tuned these 17 model parameters to reduce Op below a threshold (stopping

criterion). Each parameter was modeled as a 35-bit long string. Stochastic optimization

methods, such as GAs are known to locate the basin (trough/crest) of the global optimum

with a very high probability [30]. For the cases examined, the GA was found to converge

to a near-plateau in at most 50 iterations. A Nelder-Mead simplex (NM) method was

used to refine the fitness of the solutions because, once the fitness improvement rate drops

below a threshold, it is assumed that the parameter values lie in the basin of the global min-

imum. The resulting GA-parametrized model appears to adequately capture the dynamics

of machine degradation, as well as the distributions of TBF and TTR, better than conven-

tional exponential distribution models parametrized from actual data. For instance, Fig.

2.5 shows the marginal PDFs of TTR for a representative assembly station (Machine 2)

obtained from the actual historical data (solid blue line) vs. the distribution obtained from

the model (red dashed line) vs. the one obtained using the best fit exponential distribution

(green dashed dotted line).

It may be noted that the pattern observed for Machine 2 is representative of those from
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Figure 2.5: Comparison of marginal pdfs of TTR and TBF obtained from actual data
(blue), n-SDE model (red), and exponential distribution model (green) for the representa-
tive case of Machine 2

most of the other assembly stations barring the ones at either end and the parallel sta-

tions. The results suggest that the exponential model underestimates the left tails of TBF

and TTR densities by one order of magnitude compared to the actual for all 18 machines.

More specifically, the mean square error (MSE) of the distributions from the model is one

order in magnitude lower than those from the exponential model. This is likely because

the parametrized model can capture the distributions of TBF and TTR much better than

the exponential models for short times (i.e., the first minute) as shown in Fig. 2.5, as well

as times beyond 100 minutes. Pertinently, Inman’s work [31] suggests that exponential

distribution may be adequate to capture TTR and TBF distributions in many cases. Con-

sequently, the industry has been using exponential distribution in many of its simulations.

The current assembly line segment appears to be an exception to this earlier finding. For

example, we noticed significant cross-correlation (0.25-0.55 for large samples) between
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Table 2.2: Comparison of mean, standard deviation of TTR and TBF for Machine 2 esti-
mated from n-SDE model vs. actual data

Mean TTR Std Dev TTR Mean TBF Std Dev TBF
Actual Model Actual Model Actual Model Actual Model
9.41 9.24 13.59 15.11 27.35 24.71 29.42 25.28

% dev % dev % dev % dev
1.81% 10.1% 9.67% 14.05%

TTR and TBF for 6 out of 18 machines. TTR and TBF sequences also exhibited significant

auto-correlations and/or nonlinear dependencies [32]. The proposed modeling approach

may be a suitable means to capture the variations of TTR and TBF more accurately and to

model manufacturing systems with more generic failure distributions and coupled dynam-

ics. The improved model parametrization mentioned above leads to fairly close estimation

of the mean (i.e., MTBF, MTTR) and standard deviations of the respective distributions,

as shown in Table 2 for Machine 2.

Figs. 2.6a and 2.6b provide a comparison of MTBF and MTTR, respectively, for the 18

machines from the model vs. the actual data. The actual statistics are shown in light green

bars (lighter shade) and the model outputs are shown in dark brown (darker shade). The

results suggest that MTBF computed from the model lies within 3-10% of that computed

from the actual data for 10 of the 18 machines. The model-estimated MTBF values for

the remaining 8 machines vary on an average by 24% relative to those computed from

actual data. Such large discrepancies may be caused by the inadequacy of the model

structure, despite improvements over a simple exponential distribution model, to capture

all the salient features of the real-world TBF data. Similarly, the model-estimated MTTR

values for 10 machines vary between 2-10% of those computed from the actual data, and

vary by an average of 28% from those computed from the actual data for the remaining

8 machines. These results indicate that for 10 out of the 18 machines the parametrized
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(a)

(b)

Figure 2.6: Comparison of (a) mean TBF and (b) mean TTR from the n-SDE model with
those realized for various machines in an actual manufacturing system scenario
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Figure 2.7: (a) Time-Portrait of processing velocity for Machine 2. (b) Histogram of the
processing velocity for Machine 2

n-SDE model captures the traditional statistical quantifiers TBF and TTR. Interestingly,

the exponential model was also found to capture the means, but the errors in capturing the

standard deviations were > 50%. Although an average of 24% and 28% deviations may

appear high in comparison to the close agreement found for the other 10 machines, it may

be noted that the traditional statistical metrics alone are not sufficient to capture the entire

spectrum of dynamic behaviors; i.e., the effect of some of these deviations may not be

high in terms of affecting the dynamics of throughputs.

Next, we investigated the extent to which this improvement in capturing the distribu-

tions of TTR and TBF translates into capturing the throughputs (or processing velocity in

the case of fluid models). Fig. 2.7a shows the variations of processing velocity with time

for Machine 2. It indicates that the model is able to capture the aperiodic nature (see Fig.

2.7a), and multimodal distributions (see Fig. 2.7b) of the processing velocities. These

observations, shown in the context of Machine 2, are consistent across all the machines in

the investigated assembly line segment. The maximum processing velocity or throughput

rate for Machine 2 (obtained from the actual data) is 129 jobs/hr. This value is likely to

occur, as is evident from Eqn. (2.34), whenever the upstream buffer is stocked, the down-
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stream buffer is near-empty and the machine is up. Also, the machine was operating near

its peak velocity of 129 jobs/hr for < 2.5% of the two-month-long observation period and

at zero for roughly 28% of the time. The average jobs/hour (processing velocity) from the

actual and the model are 37.29 jobs/hour and 39.50 jobs/hour, respectively. The deviation

between the model and the actual is 5.59%, which makes them quite comparable. In con-

trast, the deviations with DES models that employ exponential TBF and TTR distributions

exceeded 20% for most machines.

We also compared the n-SDE model simulation time with that of a DES model with

exponential TBF and TTR distributions. Essentially, there is not much difference in com-

putational effort between DES and n-SDE for simulating short time-scale TBF and TTR.

However, for simulating large time-scale TBF and TTR, the fluid flow approximation of

parts movement can significantly reduce computation time. Although the coupled dynam-

ics of TTR and TBF considered in the n-SDE model can affect computation time, the

simulations are initiated with “good” initial conditions that are in the basin of attraction

(i.e., close to the steady state). The total computation time was reduced on average by

about 25% with the use of the sigmoidal function per simulation of 100 time units us-

ing MATLAB-Simulink for every run over the simplest of DES simulation conducted in

an efficient simulation environment (ARENA), with an added advantage of capturing the

dependencies and multimodal distributions. Also, many of the simulations happen near

the steady state, and the short-time events are separated out from the large time-scale,

steady state, near-periodic breakdowns and repairs. Therefore, the almost ergodicity of

the process was used to avoid a large number of replications.

38



Table 2.3: Comparison of recurrence quantifiers of TBF time-series realized in actual PFS
data loggers with that from n-SDE and exponential models, respectively

Metric
TTR TTR Error %

Actual Model Exp Model Exp
Recrate 39.94 24.7 0.04 38% 100%

Determinism 97.48 96.94 25.32 1% 74%
Laminarity 115 82 8 29% 90%

Entropy 5.55 4.89 1.84 12% 62%
Trend 0.04 0.02 0.01 50% 50%

Linemax 90.7 91.25 0 -1% 100%
Trap. time 30.72 25.73 NaN 16% �100%

Table 2.4: Comparison of Recurrence Quantifiers of TTR time-series realized actual PFS
data loggers with n-SDE and exponential models, respectively

Metric
TTR TTR Error %

Actual Model Exp Model Exp
Recrate 43.24 21.78 0.13 50% 99%

Determinism 97.84 97.9 51.31 0% 48%
Laminarity 115 102 30 11% 71%

Entropy 5.71 4.65 2.38 19% 49%
Trend 0.04 0.04 0.01 0% 75%

Linemax 92.08 95.32 0 -4% 100%
Trap. time 33.01 29.1 NaN 12% �100%

Additionally, the n-SDE model is more likely to capture the underlying nonlinear dy-

namic patterns such as recurrence [33] of actual operations. Tables 3 and 4 suggest that

most of the recurrence quantifiers [33], that measure the extent of dependencies among

TBF and TTR processes, estimated from n-SDE model are much closer to those estimated

from actual data compared to those from an exponential model. Further investigations are
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necessary to develop this approach for effective (faster and more accurate) fitting of the

downtime distributions and their interrelationships.

2.5 Concluding remarks

In this chapter, we have investigated the application of piecewise affine (constant) dif-

ferential equation models to capture the coupled dynamics of degradation and restoration

processes inherent to industrial machines and other real-world mechanical systems. The

piecewise affine structure and the order of the differential equations provide one of the

simplest means to capture the salient dynamic behaviors. The model admits a solution

that mimics the fairly regular (periodic) long-term breakdown and repair intervals and the

highly right skewed short-term breakdown repair intervals. We have provided results on

the local stability and the basin of attraction for a solution of this class of piecewise-affine

differential equation models. Under the conditions where periodic solutions are locally

stable, the trajectories are found to merge with the periodic orbits within five crossings

across the switching surfaces. Furthermore, the existence of a fairly broad basin of attrac-

tion enhances the tolerance for lower precision in numerical solvers used for integrating

affine equations, i.e., numerical solutions are less prone to finite precision errors and are ro-

bust to the tolerance specifications used in the integration routines, the specification of the

initial conditions, and finite perturbations to the model parameters. The numerical studies

conducted to verify these theoretical results indicate that the model, parametrized to meet

the stability and the perturbation criteria specified in the theoretical results, can capture

the multimodal behavior of data from a real-world manufacturing system. The short-time

TBF and TTR distributions exhibit right-skewed exponential-like characteristics with ν

values fairly consistent with theoretical results.

We have also conducted a case study to integrate the above model into an assembly

line segment. Sigmoidal function theory is used to remove discontinuities resulting from
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the onset and offset of breakdown-restored states. These discontinuities are known to in-

troduce instabilities in the numerical integration routines used to solve the model. The

n-SDE modeling approach was tested on an 18 station assembly line segment in Mat-

lab’s Simulink environment. The results were compared with those from a real-world

production line observed during a one-year period. The results indicate that the n-SDE

model can capture the marginal distributions of TBF and TTR better than commonly used

exponential distribution models. More pertinently, the model is also able to capture the

salient trends in the assembly line dynamics, including the relative throughput losses due

to blocking, starving, and machine breakdown, as well as TBF-TTR interactions. An

extensive set of metrics was used to compare the statistical and nonlinear dynamical be-

haviors gathered from the models vs. actual assembly line data. Collectively, these results

allude to a straightforward approach to parametrize piecewise affine differential equation

models with random perturbations to capture the complex degradation and repair dynam-

ics of real-world engineering systems. Our ongoing work is focused on deriving similar

results as in Theorems 1-6 for sigmoidal functions and using piecewise nonlinear models

with polynomial structures to capture additional nuances of degradation and restoration

dynamics in engineering systems.
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3. COUPLED DYNAMICS MODELING AT NETWORK LEVEL: INFERRING

SPARSE NETWORKS FOR NOISY TRANSIENT PROCESSES1

In this chapter, we are interested in modeling the coupled dynamics among different

processes using network representation. Our approach is based on modifying ND, silenc-

ing, and MRA methods to account for sparsity, transients, noise, and high dimensionality

issues. Specifically, we have investigated a sparse regression (henceforth referred to as the

`1-min) formulation to recover the structure of dynamic networks from noisy data gathered

under transient conditions. Our main contribution is in providing a theoretical bound on

the constraints of the `1-min formulation and providing stable numerical procedures that

overcome effects of nonlinear couplings in large interconnected processes, availability of

only a small sample of short time series ensembles, and inaccuracies in estimating noise

levels. These bounds mitigate tedious trial and error procedures employed customarily as

part of `1-min implementations [34–37]. The theoretical results and subsequent experi-

mental studies suggest that the present `1-min approach is more robust to noise compared

to the contemporary dynamic Bayesian network [38–43] as well as NDs [44–46]. It is

shown that up to 5 orders of magnitude reduction in the inference error are possible from

the present approach, leading to a more accurate inference of the network structure for

complex real world networks.
1Reprinted with permission "Inferring sparse networks for noisy transient processes" by Tran, Hoang M 
and Bukkapatnam, Satish TS, 2016, Scientific Reports 6 (2016), pp. 21963, Copyright [2016] by Macmillan 
Publishers Limited.
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3.1 Backgrounds

Towards a more formal treatment, we define a real world system as high dimensional

coupled differential equation of the form

dx

dt
= f(x,p), (3.1)

or

x(t) = Φ(t,x(τ)), (3.2)

where x ∈M ⊂ Rn is a state vector, p is the parameter vector, x(τ) is an initial condition.

As noted in the foregoing, such dynamics can also be represented in form of a network [47]

shown in Fig. 3.1a, where the node i represents the state variable xi and a directed arc

represents the existence and the strength of the coupling (direct influence) sij between

node i and node j. In this context, the direct influence sij(t) of node j on node i around a

certain point x in the state space defined in Eq. (3.1) can be expressed as

sij(t) ,
∂xi

∂xj(τ)
=
∂Φi(t,x(τ))

∂xj(τ)
. (3.3)

It may be noted that, a node j is connected to a node i at time t if sij(t) 6= 0. Hence,

x1 x2

x3 x4

s31

s21

s23 s42

(a) Dire
t in�uen
e

x1 x2

x3 x4

g31

g21

g23 g42
g41

g43

(b) Total in�uen
e

Figure 3.1: Illustration of direct and total influence. The total influences in b) are the
accumulation of the influences transited through all paths in a)
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S(t) = (sij(t)) captures the physical structure of the dynamical system (3.1) at time t.

In practice, S(t) needs to be inferred from the measurements of the total influence gij(t)

between every pair of nodes [44,45] or estimated from time series outputs of the dynamic

system gathered under transient conditions [2]. The total influence gij(t) is the sum of

the direct influence of node j on node i and all indirect influences from node j to node

i through other nodes connecting to both of them (see Fig. 3.1b). For example, total

influence from 1 → 4, g41(t) is the sum of indirect influences along the paths 1 → 3 →

2 → 4 and 1 → 2 → 4, or g41(t) = s31(t)s23(t)s42(t) + s21(t)s42(t). In other words, the

total influence that node j has on node i around a certain point x on the state space defined

in Eq. (3.1) is defined recursively as

gij(t) ,
dxi(t)

dxj(τ)
=
dΦi(t,x(τ))

dxj(τ)
(3.4)

=
∂Φi(t,x(τ))

∂xj(τ)
+
∑
k 6=j

∂Φi(t,x(τ))

∂xk(τ)

dxk(t)

dxj(τ)
(3.5)

= sij(t) +
∑
k 6=j

sik(t)gkj(t), (3.6)

which is similar to the expression noted in in Barzel and Barabási [45]. Conventionally,

under stationarity assumptions, gij(t) can be approximated using similarity measures, such

as correlation and mutual information [8] estimated from raw samples of time series. The

direct and total influence matrices are related at every time t by the following equation:

S(t)B(t)− C(t) = 0, (3.7)

whereB(t) andC(t) are functions (defined depending on the context) of S(t) andG(t), re-

spectively. Pertinently, when the underlying dynamical system is linear and time-invariant,

S(t) and G(t) do not depend on time. Eq. (3.7) generalizes previous network deconvo-
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lution formulations as follows: for Feizi et al. [44], B(t) = (I + G), C(t) = G, for

Barzel and Barabási [45] B(t) = G,C(t) = G − I + D(SG) , and for Sontag et al. [2],

B(t) = R(t), C(t) = Γ(t), where Rij(t) = ∂xi(t,p)/∂pj; Γij(t) = ∂Rij(t)/∂t. For sim-

plicity of expressions, we use henceforth S,B and C instead of S(t), B(t) and C(t) in this

subsection. The “true” network structure S0 can be estimated by solving the following

`1-min formulation:

S∗ = arg min
S
‖S‖1 s.t. ‖SB − C‖F ≤ E , (3.8)

where ‖S‖1 =
∑

i,j |sij|, and E is the allowable perturbation that captures the effects

of noise in the measured data. We note that in the absence of noise, this formulation is

equivalent to ND and MRA. In the following sections we present two alternative `1-min

formulations for direct influence inference. The first formulation presented in Eqs. (3.9,

3.10) addresses the estimation of sij for real world scenarios when the total influence gij

is directly measurable (e.g., based on the strengths of co-excitations), and the second for-

mulation Eqs. (3.33, 3.34) addresses the inference of the network structure (i.e., determine

all node pairs where sij(t) = 0 ∀t) under one of the most generic scenarios of using mul-

tiple ensembles of time series realizations of the state variables, collected under noisy and

transient conditions with different parameter settings. It may be noted that inferring the

network structure under such generic conditions has not been investigated to date.

3.2 Network inference when total influence matrix is available

For the case where the measurements of total influence matrixG are provided [44], the

relaxed `1-min formulation can be written as

min ||S||1 s.t. ||S(G+ I)−G||F ≤ E , (3.9)
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or in vector form as

min
si
||si||1 s.t. ||(G+ I)Tsi − gi||2 ≤ εi, ∀i, (3.10)

where gi is the ith column of G. In order to solve for an accurate estimate of S0 from

Eqs. (3.9) or (3.10) using standard solvers [48, 49], estimation of E and εi are crucial.

Specifically, when noisy measurements of the total influence matrix differ from the “true”

total influence as G = G0 + ∆G, the estimated direct influence matrix differs from the

true direct influence matrix as S = S0 + ∆S, and

(S0 + ∆S)(G+ I) = G (3.11)

⇒ S0(G+ I)−G = −∆SG−∆S. (3.12)

The quantity ||∆SG + ∆S||F is called total perturbation. In vector form, (||∆Gs0
i ||2 +

||gi−g0
i ||2) can represent the total perturbation for computing row i of S0. By establishing

strong lower bounds for total perturbation and/or ||∆S||F , we can set the values of E and

εi for effective network inference. The two results pertaining to the bound on ||∆S||F are

represented in the following lemma.

Lemma 1. ||∆S||F can be bounded as

||∆S||F ≤ γ +O(δ2 + γ2 + δγ), (3.13)

according to Feizi et al. [44] where γ and δ are the largest eigenvalues of ∆G and G,

respectively satisfy γ � 1, δ < 1 or

||∆S||F ≤
||∆G||F

(1− ||G||F − ||∆G||F )(1− ||G||F )
, (3.14)
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provided

1− ||G||F − ||∆G||F > 0. (3.15)

Proof. From (3.11), it follows that

G0 + ∆G = S0 + S0G0 + S0∆G

+∆S + ∆SG0 + ∆S∆G

⇔ ∆G = S0∆G+ ∆S + ∆SG0 + ∆S∆G

⇔ ∆G = G0(I +G0)−1∆G+ ∆S(I +G0 + ∆G)

⇒ ∆S = ((I +G0)(I +G0)−1 −G0(I +G0)−1)

∆G(I +G0 + ∆G)−1

⇒ ∆S = (I +G0)−1∆G(I +G0 + ∆G)−1

⇒ ||∆S||F = ||(I +G0)−1∆G(I +G)−1||F

= ||(I − (−G0))−1∆G(I − (−G))−1||F
a

≤ ||(I − (−G0))−1||F ||∆G||F ||(I − (−G))−1||F
b

≤ 1

1− ||(−G)||F
||∆G||F

1

1− ||G||F
c

≤ 1

1− ||G||F − ||∆G||F
||∆G||F

1

1− ||G||F

We have (a) because of the sub-multiplicative property ||AB||F ≤ ||A||F ||B||F . for (b) to

hold:

||G0||F < 1 (3.16)

|| −G||F < 1 (3.17)
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Because ||G0||F = ||G−∆G||F ≤ ||G||F + ||∆G||F , sufficient condition for (3.16,3.17)

to hold is ||G||F + ||∆G||F ≤ 1.

We have (c) because

1− ||G0||F ≥ 1− ||G||F − ||∆G||F > 0

⇒ 1

1− ||G0||F
≤ 1

1− ||G||F − ||∆G||F

Therefore, we have (3.14).

Note that the restriction (3.15) is reasonable as G can be linearly scaled [44] such that

||G||F is small enough to qualify Eq. (3.15). The following theorem provides bounds on

total perturbation based on this lemma.

Theorem 1. εi and E can be bounded as follows

εi = (||∆Gs0
i ||2 + ||gi − g0

i ||2)2 ≤ 2(||gi − g0
i ||22 + ||∆G||F

1√
1− δK

(||gi||2 + ||gi − g0
i ||2)2), (3.18)

E = ||∆SG+ ∆S||F ≈ E(1) = (1 + ||G||F )γ (3.19)

and

E = ||∆SG+ ∆S||F ≤ E (2) (3.20)

where E (2) = (1 + ||G||F ) ||∆G||F
(1−||G||F−||∆G||F )(1−||G||F )

.

Proof. Apply the Lemma 2 of Herman & Strohmer [50] to Φ0 = G0 + I and K - sparse

vector s0
i , we have

||(G0 + I)s0
i ||2 ≥

√
1− δK ||s0

i ||2.

Also, by applying the Cauchy Schwarz inequality, we have ||∆Gs0
i ||2 ≤ ||∆G||F ||s0

i ||2.
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Therefore,

||∆Gs0
i ||2

||(G0 + I)s0
i ||2

≤ ||∆G||F ||s0
i ||2√

1− δK ||s0
i ||2

⇒ ||∆Gs0
i ||2

||(G0 + I)s0
i ||2

≤ ||∆G||F√
1− δK

⇒ ||∆Gs0
i ||2 ≤

||∆G||F√
1− δK

||g0
i ||2

As a result,

2(||∆Gs0
i ||22 + ||gi − g0

i ||22) ≤ 2

((
||∆G||F√

1− δK
||g0

i ||2
)2

+ ||gi − g0
i ||22

)

≤ 2

((
||∆G||F√

1− δK
(||gi||2 + ||δgi||2

)2

+ ||gi − g0
i ||22

)

On the other hand,

2(||∆Gs0
i ||22 + ||gi − g0

i ||22) ≥ (||∆Gs0
i ||2 + ||gi − g0

i ||2)2

Therefore, we have (3.18).

Proof of (3.19):

||∆SG+ ∆S||F ≤ ||∆SG||F + ||∆S||F

≤ ||∆S||F ||G||F + ||∆S||F

≈ γ(1 + ||G||F )

as

||∆S||F ≈ γ, (3.21)

according to [45].
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Proof of (3.20):

||∆SG+ ∆S||F ≤ ||∆S||F ||G||F + ||∆S||F

≤ (1 + ||G||F )
||∆G||F

(1− ||G||F − ||∆G||F )(1− ||G||F )

Next we show that S∗ obtained based on the foregoing results is a good approximation of

S0.

Theorem 2. [50] Assume that s0
i is the sparsest solution of the Problem (3.10) and

δ2K <

√
2

(1 + ε
(2K)

Φ0 )2
− 1,

there exists positive constants C0, C1 such that

||s∗i − s0
i ||2 ≤

C0√
K
||s0

i − s
(K)
i ||2 + C1εi (3.22)

where s∗i is solution of the `1-min problem (3.10).

Proof. This is a direct application of Theorem 2 in Herman & Strohmer [50] with x =

s0
i , b̂ = gi, z

∗ = s∗i , Â = G+ I . Note that C0, C1 are constants depending on ε(2K)

Φ0 .

When the true solution s0
i has at most K nonzero elements, the result Eq. (3.22) can be

further simplified as follows.

Corollary 2. When s0
i has at most K nonzero elements,

||s∗i − s0
i ||2 ≤ C1εi. (3.23)

Proof. When s0
i is a K - sparse vector, s0

i = s
(K)
i . Eq. (3.22) becomes Eq. (3.23).
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The assumption in this corollary is reasonable since most of real world networks tend to

be sparse. The results in Eqs. (3.22,3.23) are formulated for each row of S0. In terms

of the whole matrix, the robustness of computing S0 can be guaranteed by the following

theorem.

Theorem 3. Let S∗ be the solution of the `1-min formulation (3.9). The error when ap-

proximating S0 by S∗ is bounded by

||S∗ − S0||2F ≤ C1E (3.24)

where E is bounded as E ≤2
(

1
1−δK
||G0||2F + 1

)
||∆G||2F .

Proof. Apply the Corollary 2 to the Problem 3.10 with εi = 2
(
||∆G||F 1√

1−δK
||g0

i ||2
)2

+

2||gi − g0
i ||22 we have

||s∗i − s0
i ||22 ≤ 2C1

(
||∆G||F

1√
1− δK

||g0
i ||2
)2

+ 2C1||gi − g0
i ||22

⇒
n∑
i=1

||s∗i − s0
i ||22 ≤ 2C1

n∑
i=1

(
||∆G||F

1√
1− δK

||g0
i ||2
)2

+ 2C1

n∑
i=1

||gi − g0
i ||22

= 2C1

(
||∆G||F

1√
1− δK

)2 n∑
i=1

(
||g0

i ||2
)2

+ 2C1

n∑
i=1

||gi − g0
i ||22

⇒ ||S∗ − S0||2F ≤ 2C1

(
||∆G||F

1√
1− δK

)2

||G0||2F + 2C1||∆G||2F .

Theorems 8, 3 and Corollary 2 taken together guarantee that inference error when estimat-

ing S0 by S∗ is at most linear with total perturbation noise. This observation is further

verified using numerical investigations presented in the first case study.
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The bounds on E and εi are as follows (See Theorem 1 in Supplementary Information):

E ≈ E (1) = (1 + ||G||F )γ, (3.25)

E ≤ E (2) = (1 + ||G||F )
||∆G||F

(1− ||G||F − ||∆G||F )(1− ||G||F )
, (3.26)

εi ≤ 2(||gi − g0
i ||22 + ||∆G||F

1√
1− δK

(||gi||2 + ||gi − g0
i ||2)2), (3.27)

where γ is the largest eigenvalue of ∆G, δK is the restricted isometry constant [50] and

||.||F is the Frobenius norm of a matrix. By employing these bounds, we can set the

values of E and εi for effective network inference. As subsequent numerical investigations

indicate, the performance of the method does not degrade significantly due to the presence

of noise, and this is the major advantage of the present approach. It may be noted that our

method is designed to provide the sparsest network structure that replicates the measured

total influence G within a bound (specified in terms of the allowable total perturbation).

This is very important because only a small set of noisy observations are available, for

most real world applications. For example, in the case of genetic regulatory networks,

only a subset of dynamic regimes (i.e. marked by the active degrees of freedom) of the

underlying process are captured. Therefore, identification of true network structure would

never be guaranteed by any approach, and among the network structures that can replicate

the observed total influence within a specified bound, the sparsest network would be of the

most interest. Although sparser than the network derived by ND, `1-min derived structure

might be adequate to uncover the total dynamic couplings of the process captured in the

observed data

In real world scenarios, ∆G is not always known. Overestimation of ∆G can lead to

network structures that are sparser than the original. However, we show that the effects of

under-estimation of noise can be alleviated to a great extent. When noise level is unknown
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but multiple realizations of the noisy measurements of G are available, it is possible to

further reduce the inference error by combining the estimates with different realizations of

G as S̄(N) = 1
N

∑N
r=1 Ŝ

(r)

Proposition 1. Let Ĝ(1), ..., Ĝ(N) be N different measurements or estimates of the total

influence matrix G0. Let Ŝ(r) be the direct influence matrix computed from Ĝ(r) using

different methods, including ND and `1-min approach with different bounds. If V ar(Ŝ(r))

are bounded then E||S̄(N) − S0||2 → 0 as N →∞, where S̄(N) = 1
N

∑N
r=1 Ŝ

(r).

Proof. Under perfect reconstruction per ND, Ŝ = S0 + ∆S∗ satisfies

Ŝ(G0 + ∆G+ I) = (G0 + ∆G)

For the rth realization of ∆G, we have

Ŝr(G
0 + ∆Gr + I) = (G0 + ∆Gr)

⇒ Ŝr = (G0 + ∆Gr)(G
0 + ∆Gr + I)−1

As ∆Gr are independent, Ŝr are independent.

V ar(S̄(N) − S0) = V ar(

∑N
r=1 Ŝr
N

− S0)

= V ar(

∑N
r=1(Ŝr − S0)

N
)

=
1

N2
V ar(

N∑
r=1

(Ŝr − S0))

=
1

N2

N∑
r=1

V ar(Ŝr − S0) (As Ŝr − S0 are independent)
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If V ar(Ŝr − S0) is bounded by some constant C for all r,

V ar(S̄(N) − S0) ≤ 1

N2

N∑
r=1

C =
C

N
→ 0 as N →∞

This result assumes that V ar(Ŝ(r)) is bounded. However, it may be noted that even if

V ar(Ŝ(r)) is arbitrarily large we find that S̄(N) is at least as good as Ŝ(r). This averaging

procedure allows us to improve the network inference accuracy when multiple measure-

ments of the total influence matrix are available. For example, when the network structure

does not change significantly as the system approaches a steady state, the total influence

matrices can be measured multiple times, each corresponds to one time window.

3.3 Network inference when the time series under transient conditions are available

(total influence matrix not given)

In practice, gij are often estimated using convenient similarity measures such as cor-

relation or mutual information between the time series xi(t) and xj(t) of the nodes i, j as

stated in the foregoing section. These estimations have a very low accuracy due to non-

stationaries (transient), low sampling rates and sample size limitation; and can not capture

the total influence in the system. Also, in most real world applications, only finite sam-

ples of time series x(t) are available, and the present NDs can not be employed in these

scenarios. To overcome these drawbacks, we have adapted an approach to estimate the di-

rect influence based on multiple time series ensembles obtained by perturbing parameters

of the dynamical system Eq. (3.1) [2]. We first modify the perturbation procedure pro-

posed by Sontag et al. [2] to make it more robust to numerical error then further improve

the accuracy of network inference by introducing a sparse regression formulation and the

averaging scheme.
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3.3.1 A robust perturbation procedure

According to Sontag et al. [2], sij(t) = [∂fi(x,p)
∂xj

]i,j=1..n can be derived from the fol-

lowing equation:

Γ(t) = S(t)R(t), (3.28)

where

Rij(t) =
∂xi
∂pj
≈ xi(t, pj + ∆pj)− xi(t, pj)

∆pj
,Γij(t) =

∂ẋi
∂pj
≈ Rij(t+ ∆t)−Rij(t)

∆t
, (3.29)

and

i = 1..n, pk ∈ Pi = {pk ∈ p : ∂fi/∂pk(x,p) = 0}. (3.30)

Note that Γ plays the role of the total influence matrix G in the previous section. To

compute the row i of the matrix S, the parameters pj to be perturbed are chosen such that

pj ∈ Pi [2]. As a consequence, changes in pj indirectly affect xi, and dxi
dpj

are much smaller

than dxk
dpj

, for k 6= i. As a result, the ith column
(
dxi
dpj

)
n×1

in the matrix
(
dxk
dpj

)
n×n

is much

smaller (2 orders of magnitude smaller as in the Table 3.1 for the network studied in case

study 1) compared to other columns when pj ∈ Pi. A numerical issue this poses can be

understood based on the following linear system of equations

Au = b.

Here, the sensitivity of solution u to the change in A can be quantified as follows [51]

∂ui
∂ajk

= −cij
∑
l

cklbl,

where C = A−1.Whenever A contains a j column such that ||a�j|| � ||a�k||, ∀k 6= j, C
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r.1 r.2 r.2 r.2 r.2 r.2 r.2 max |r.j |
r1. -2.868e-4 -7.284e-5 -3.106e-4 -1.578e-4 2.443-e4 -8.315e-5 -4.896e-4 0.0005
r2. 1.160e-4 0.1050 -4.261e-4 -1.803e-4 6.490e-4 2.261e-4 -2.379e-4 0.1050
r3. -1.136e-4 -2.658e-4 0.1179 -2.766e-4 1.370e-4 -2.524e-4 2.776e-4 0.1179
r4. -4.431e-4 -4.543e-4 -4.138e-4 0.0961 6.824e-4 6.710e-5 1.609e-4 0.0961
r5. -2.397e-4 -4.439e-4 -1.225e-4 -7.024e-4 0.1100 3.256e-4 2.069e-4 0.1100
r6. 4.053e-4 -3.773e-4 -2.577e-4 -5.065e-5 0.0012 0.1195 4.481e-4 0.1195
r7. -1.030e-4 3.312e-5 -2.900e-4 -5.258e-5 0.0100 -1.651e-4 0.0820 0.0820

Table 3.1: The matrix R for computing the first row of S is estimated using Sontag et
al. [2]’s perturbation procedure. The first row/column of R is two orders of magnitude
smaller than others, which presents major numerical issues for inferring structures of large
networks.

contains a row i such that ||ci�|| � ||cr�||,∀r 6= i. As a consequence, ∂ui
∂ajk

becomes several

magnitudes larger than other rows. Therefore, the perturbation procedure proposed by

Sontag et al. [2] is very unrobust to noise or numerical error in xis.

The following modification to the perturbation procedure addresses the aforemen-

tioned issue. Consider the case when ẋi depends linearly on xi as in the following sys-

tem [52]:

ẋi = pixi +
n∑

j=1,j 6=i

s0
ij

xj
1 + xj

.

This system describes popular biochemical reactions when the activity of a chemical

species is inhibited by its own concentration [53, 54]. To compute the ith row of the

Jacobian, the parameters pi is also perturbed. Note that

∂ẋi
∂pi

= xi + pi
∂xi
∂pi

+
n∑

j=1,j 6=i

∂fi(x,p)

∂xj

∂xj
∂pi

, (3.31)

or

∂ẋi
∂pi
− xi =

n∑
j=1,j 6=i

∂xj
∂pj

∂fi(x,pi)

∂xj
,
∂fi(x,pi)

∂xi
= pi. (3.32)
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The remaining parameters are perturbed as in Eqs. (3.29, 3.30). Therefore, to compute

∂fi(x,pi)
∂xk

, we can solve the system of equations (3.28) with

Pii(t) =
∂ẋi
∂pi
− xi, Rii(t) =

∂xi
∂pi

and other Pijs, Rijs are defined as in (3.29, 3.30).

3.3.2 A robust network identification approach

In addition to the perturbation procedure proposed in Eqs. (3.29-4.15), we present a

method to solve Eq. (3.28) that is more robust to the presence of noise. In the present

context, the `1-min formulation of Eq. (3.28) takes the following form:

min ||S||1 s.t ||Γ− SR||F ≤ E , (3.33)

or

min ||si||1 s.t ||Γik(t)−
n∑
l=1

Rlk(t)sil(t)|| ≤ εi,∀i, ∀k : pk ∈ Pi. (3.34)

As noted in the foregoing section, estimation of E and εi based on the noise levels when

measuring x(t) is essential to ensure that the solution to Eq. (3.33) serves as a viable

estimator of the “true” direct influence S0.

Lemma 2.

(∆R)ik(t) = (e
(1)
ik (t)− e(2)

ik (t))/∆pk

(∆Γ)ik(t) =
[(e

(1)
ik (t+ ∆t)− e(2)

ik (t+ ∆t))− (e
(1)
ik (t)− e(2)

ik (t))]

∆t∆pk
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where e(1)
ik (t), e

(2)
ik (t) are the errors incurred when measuring x0

i (t, pk), x
0
i (t, pk + ∆pk),

respectively.

Proof.

R0
ik(t) ≈ (x0

i (t, pk + ∆pk)− x0
i (t, pk))/∆pk (3.35)

Rik(t) ≈ ((x0
i (t, pk + ∆pk) + e

(2)
ik (t))− (x0

i (t, pk) + e
(1)
ik (t)))/∆pk

= ((x0
i (t, pk + ∆pk)− x0

i (t, pk)) + (e
(2)
ik (t)− e(1)

ik (t)))/∆pk

≈ R0
ik(t) + (e

(2)
ik (t)− e(1)

ik (t))/∆pk

∆Rik(t) = (e
(2)
ik (t)− e(1)

ik (t))/∆pk

Γik(t) ≈ (Rik(t+ ∆t)−Rik(t))/∆t

=
[
R0
ik(t+ ∆t) + (e

(2)
ik (t+ ∆t)− e(1)

ik (t+ ∆t))/∆pk

]
/∆t−[

R0
ik(t) + (e

(2)
ik (t)− e(1)

ik (t))/∆pk

]
/∆t

=
[
R0
ik(t+ ∆t)−R0

ik(t)
]
/∆t+[

(e
(2)
ik (t+ ∆t)− e(1)

ik (t+ ∆t))− (e
(2)
ik (t)− e(1)

ik (t))
]
/(∆t∆pk)

= Γ0
ik(t) +

[
(e

(2)
ik (t+ ∆t)− e(1)

ik (t+ ∆t))− (e
(2)
ik (t)− e(1)

ik (t))
]
/(∆t∆pk)

∆Γik(t) =
[
(e

(2)
ik (t+ ∆t)− e(1)

ik (t+ ∆t))− (e
(2)
ik (t)− e(1)

ik (t))
]
/(∆t∆pk)

Based on this lemma, the total perturbation can be estimated by the following theorem.

Theorem 4. The total perturbation for the problem (3.33) is Γ − S0R = (∆S)R and is
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bounded by the following quantity

(||Γ||F + ||∆Γ||F )
||R−1∆R||F

1− ||R−1∆R||F
+ ||∆Γ||F (3.36)

when ||R−1∆R||F < 1.

Proof.

Γ = SR

⇒ Γ = (S0 + ∆S)R

⇒ Γ− S0R = (∆S)R

(∆S)R is called total perturbation.

We have

A−1 − (A+ E)−1 =
∞∑
k=1

(−1)k+1(A−1E)kA−1 (3.37)

Apply (3.37) to A = R,E = ∆R = R0 −R, we have

R−1 − (R +R0 −R) =
∞∑
k=1

(−1)k+1(R−1∆R)kR−1

Also,

Γ0 = S0R0 (3.38)

⇒ S0 = Γ0(R0)−1 (3.39)

S = ΓR−1 (3.40)

⇒ ∆S = ΓR−1 − Γ0(R0)−1 (3.41)

= (Γ0 + ∆Γ)R−1 − Γ0(R0)−1 (3.42)
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= Γ0(R−1 − (R0)−1) + ∆ΓR−1 (3.43)

= (Γ−∆Γ)(R−1 − (R0)−1) + ∆ΓR−1 (3.44)

(∆S)R = ((Γ−∆Γ)(R−1 − (R0)−1) + ∆ΓR−1)R (3.45)

= (Γ−∆Γ)(R−1 − (R0)−1)R + ∆Γ (3.46)

Therefore,

(∆S)R = (Γ−∆Γ)(R−1 − (R0)−1)R + ∆Γ

= (Γ−∆Γ)(
∞∑
k=1

(−1)k+1(R−1∆R)kR−1)R + ∆Γ (if ||R−1∆R||F < 1)

||(∆S)R||F ≤ (||Γ||F + ||∆Γ||F )(
∞∑
k=1

(||R−1∆R||F )k) + ||∆Γ||F

= (||Γ||F + ||∆Γ||F )
||R−1∆R||F

1− ||R−1∆R||F
+ ||∆Γ||F

Similar to Theorem 4, the total perturbation εi for the problem (3.34) can be estimated by

Theorem 5.

εi = ||((∆S)R)′i|| ≤
||R−1∆R||F

1− ||R−1∆R||F
‖[(Γ−∆Γ)′]i‖+ ‖(∆Γ′)i‖ (3.47)

or

εi = ||((∆S)R)′i|| ≈ ||R−1∆R|| ‖[(Γ−∆Γ)′]i‖+ ‖(∆Γ′)i‖ (3.48)

The bounds and approximation allow the specification of E and εi can be summarized as

follows

E ≤ (||Γ||F + ||∆Γ||F )
||R−1∆R||F

1− ||R−1∆R||F
+ ||∆Γ||F , (3.49)
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εi ≤
||R−1∆R||F

1− ||R−1∆R||F
‖[(Γ−∆Γ)′]i‖+ ‖(∆Γ′)i‖ , (3.50)

εi ≈ ||R−1∆R|| ‖[(Γ−∆Γ)′]i‖+ ‖(∆Γ′)i‖ , (3.51)

where

(∆R)ik(t) = (e
(1)
ik (t)− e(2)

ik (t))/∆pk,

(∆Γ)ik(t) =
[(e

(1)
ik (t+ ∆t)− e(2)

ik (t+ ∆t))− (e
(1)
ik (t)− e(2)

ik (t))]

∆t∆pk
,

and e(1)
ik (t), e

(2)
ik (t) are the errors incurred when measuring x0

i (t, pk), x
0
i (t, pk + ∆pk), re-

spectively. As stated in the foregoing, noise level is not known a priori in most real world

systems. In this situation, the network structure is deduced based on the entries in the

estimated S0(t) that are equal to zero for all t and can be estimated by the entries in as

S̄(N) = 1
N

∑N
r=1 Ŝ(tr) that converge to zero, where Ŝ(tr) is the direct influence matrix

computed from Γ̂(tr), and Γ̂(tr), (r = 1..N) are measurements or approximations of the

total influence matrix Γ0(t) at time tr .

Proposition 2. Let Ĝ(tr), (r = 1..N) be a measurement or approximation of the total

influence matrix G0(t) at time tr. Let Ŝ(tr) be the direct influence matrix computed from

Ĝ(tr) using different methods, including ND or `1-min formulation with different bounds

and S̄(N) = 1
N

∑N
r=1 Ŝ(tr). Then ∀(i, j) satisfying S0

ij(t) = 0,∀t, E|S̄(N)
ij |2 → 0 as

N →∞.

Proof. Under perfect reconstruction per ND, Ŝ = S0 + ∆S satisfies

ŜR = Γ
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For the rth realization of ∆Γr, ∆Rr, we have

Ŝ(tr)(R
0 + ∆Rr) = Γ0

r + ∆Γr

⇒ Ŝ(tr) = (Γ0
r + ∆Γr)(R

0(tr) + ∆Rr)
−1 (3.52)

As (∆Γr1 ,∆Rr1) and (∆Γr2 ,∆Rr2) are independent if r1 6= r2, Ŝr1 and Ŝr2 are indepen-

dent. Therefore,

V ar((S̄(N))ij) =
1

N2
V ar(

N∑
r=1

(Ŝ(tr))ij) =
1

N2

N∑
r=1

V ar((Ŝ(tr))ij)

Assume that V ar((Ŝ(tr))ij) are bounded by a constant C, for all r,

V ar((S̄(N))ij) ≤ 1

N2
NC =

C

N

⇒ V ar((S̄(N))ij) → 0 as N →∞.

This averaging procedure allows us to improve the accuracy to predict the pair of nodes

that are not connected when the measurement noise level is not available. As a result,

our method ensures low false positive rates on the “arcs”. As noted in the context of

Proposition 1, network inference with S̄(N) tends to be at least as good as with Ŝ(tr) even

when V ar(Ŝ(tr)) is arbitrarily large.

3.4 Numerical case studies

We have considered two case studies to validate the theoretical results and evaluate

the performance of the `1-min approach. The first case study contains two simulation

scenarios. The first scenario simulates a scale-free network whose structure resembles

that of the genetic regulation process of E. Coli species [55]. Here, the challenge is to
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estimate the true network structure, i.e., the direct influence matrix S0 from a noisy total

influence matrix G. This scenario is optimal for assessing the closeness of the bounds

stated in Eqs. (3.18 - 3.20) relative to the true bounds on the constraints E (0) = ||(G +

I)TS0 − G||F , and comparing the performance of the `1-min formulation relative to the

recent ND methods in terms of inference error and sparsity. The next scenario simulates

a system of Hill-type differential equations modeling a gene interaction network. Here,

the challenge is to estimate the true network structure from noisy and transient time series

data. The second case study is an application of our method to infer genetic regulatory

networks (GRNs) from empirical data in the context of DREAM5 challenge [56]. This

challenge is a standard framework for evaluating GRN inference methods.

3.4.1 Case I: simulation studies

Inferring direct influence networks from total influence network

First, we adapted the procedure specified by Muchnik [57] to generate 500 random

realizations of scale-free networks consisting of n = 100 nodes, with a degree exponent

of 2.2. In each realization, the weights of the true direct influence network, s0
ij follow the

distribution N (µS0 , σ2
S0) with µS0 ∼ N (0, 0.04), and σS0 ∼ N (0, 0.04). The true total

influence matrix G0 was obtained as G0 = S0(I −S0)−1. The noisy total influence matrix

was generated as G = G0 + ∆G, where the contaminated noise ∆G was considered

in two cases: (1) proportional, i.e., (∆G)ij = αN (µS0 , σ2
S0) and (2) independent, i.e.,

(∆G)ij = N (0, σ2
S0). We considered cases where the measurement noise level ||∆G||F

is known as well as those where there is uncertainty in estimating the measurement noise

level.

We first compare the “true” bound E (0) (computed using S0) and the bounds for E

estimated based on Eqs. (3.19-3.20). In the presence of noise, the bounds appear to be

in the same order of magnitude for all simulated networks (Table 3.2). The results also
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Formula Mean
E (0) = ||(G+ I)TS0 −G||F 9.79× 10−3

E (1) (Eq. 3.19) 8.89× 10−3

E (2) (Eq. 3.20) 8.61× 10−2

Table 3.2: Comparison of bounds on total perturbation obtained using Eq. (3.19) and Eq.
(3.20) suggests that Eq. (3.19) provides a good approximation and Eq. (3.20) serves as an
upper bound of E (0).

suggest that the bound specified in Eq. (3.19) closely matches the “true” bound and can

be used to approximate the feasible region when E (0) is unknown with high accuracy.

Although the bound in Eq. (3.20) tends to be loose, it can be used as an upper bound for

E (0).

We next compared the performance of ND and `1-min approaches (using our bounds

Eq. (3.19) and Eq. (3.20)) in terms of inference error defined as ρ = ||Ŝ−S0||F
||S0||F

, where Ŝ is

computed using the different methods being compared. The `1-min approach with “true”

constraint bound εi = ε
(0)
i significantly improves the ND (the mean and the variance

of the estimated ρ were reduced by 45% and 99%, respectively) (Fig. 4.2). Employing

εi = ε
(1)
i = E (1)/

√
n (based on Eq. (3.19)), the `1-min approach performs much better

than ND (the mean and variance of ρ are reduced by 33.5% and 87.5%, respectively).

More importantly, the inference error of `1-min approaches were concentrated around of

0.15 within ±0.05, while those of ND were spread over a larger range, from 0.3 to 0.6.

This suggests that `1-min approach using our bound in Eq. (3.19) is more robust than ND

to noise and approximation error incurred when measuring the total influence matrix.

We also compared the sparsity of the recovered networks measured in terms of Hoyer

sparsity measure [58] defined as follows

Hoyer(S) =
n− (

∑n
i,j=1 |sij|)/

√∑n
i,j=1 s

2
ij

n− 1
.
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Figure 3.2: Histograms summarizing the relative performance of ND and `1-min ap-
proaches for the benchmark numerical case in terms of (a) inference error that quantifies
the accuracy and (b) Hoyer measure that quantifies the sparsity of the solution. The solu-
tion from the `1-min approach is more precise and sparser than ND: compared to NDs, the
mean and the variance of the inference error are reduced by 45% and 99%, respectively,
when using `1-min with εi = ε

(0)
i ; 33.5% and 87.5%, respectively when using `1-min with

εi = ε
(1)
i ; the mean of Hoyer measure is increased by 16.38% and variance reduced by

69% when using the `1-min with εi = ε
(0)
i , and is increased by 15.90% in mean, reduced

by 75.69% in variance when using εi = ε
(1)
i .

Note that Hoyer(S) ∈ [0, 1]. The closer it is to 1, the sparser S is. In terms of this

measure, the solution of the `1-min approach is much sparser (mean is 16.38% larger,

variance is 69% smaller when using the true bound εi = ε
(0)
i , and mean is 15.90% larger,

variance is 75.69% smaller when using the approximated bound εi = ε
(1)
i ) than solution

of ND (Fig. 4.2b). Also, the Hoyer measure of the `1-min approach is concentrated more

around a much higher value (sparse matrices) than that of ND indicating that the `1-min

approach using our bound gives a significantly sparser solution than ND. As a result, this

gives a more interpretable connection structure without the loss of performance.

We also studied the effects of the bounds of `1-min formulation on inference error to

verify Eq. (3.24) numerically. When εi/ε
(0)
i > 1, the inference error trends almost linearly

with εi (see Fig. 3.3). This confirms the conclusion of Theorem 3. Also, when εi/ε
(0)
i < 1

and tends toward 0, the inference error increases. This shows an evidence of over-fitting.

Subsequently, we studied the effect of averaging (Proposition 1) in the context of the `1-
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Figure 3.3: Variation of inference error with total perturbation bound εi. The inference
error attains a minimum near the true bound ε(0)

i , and it trends almost linearly with εi as it
is increased beyond ε(0)

i . As εi → 0, the inference error increases exponentially, which is
an evidence of over fitting.
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min and ND methods. We conducted N =40 simulations, in each of which, S0, G0 and

∆G were generated as stated in the foregoing . We used the inference error without ρ(N)

and with averaging ρ̄ as measures for comparison from each simulation defined as follows:

ρ(N) =
1

N

N∑
k=1

||(Ŝ(k) − S0)||F/||S0||F , (3.53)

ρ̄ = ||S̄(N) − S0||F/||S0||F , (3.54)

where S(k)(k = 1, ..., N) is the kth realization of S(k) and S̄(N) is estimated as stated

in Proposition 1. The results suggest that averaging reduces the inference error of both

methods by about 8 times in all cases, thus supporting the validity of Proposition 1 (Fig.

3.4). The inference errors were almost the same between ND and `1-min with εi = ε(1).

3.4.2 Inferring direct influence network structure from multiple time series under

transient conditions

In this section we represent the performance of `1-min approach in inferring network

structure from transient time series with an unknown noise level. In this study we used

Michaelis-Menten dynamic system given by [45]:

ẋi = pixi +
n∑

j=1,j 6=i

s0
ij

xj
1 + xj

, (3.55)

where the “true” network defined by (s0
ij) is a scale-free network [55] generated randomly

with degree exponent γ = 2.2 consisting of n = 40 nodes with about 70 edges, whose

weights s0
ij follow the distribution N (5, 0.25).

We obtained 30 different variants of this network. For each of these invariants (trials),

a perturbed network was obtained by changing (perturbing) the parameters according to

Eqs. (3.30 - 3.32). Every solution x(t), t ∈ [0, 1], obtained from an initial condition

67



0

0.5

1

1.5

2

Without Averaging       With Averaging

0

0.5

1

1.5

2

Without Averaging       With Averaging

Figure 3.4: Box plots summarizing the effects of averaging on (a) ND and (b) `1-min
with εi = ε(1). The inference errors were almost unchanged with `1-min compared to
ND. Averaging (light/red) reduced inference error further by about 8 times compared to
without averaging (dark/blue). The ρ̄ values were 0.1196 with ND and 0.0259 with `1-min
(p-values of the paired t-tests between the inference error without and with averaging were
≤ 10−5 in all cases).
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x(0) was contaminated with noise of the form N (0, σ2) to simulate a noisy measurement

x̂(t). Here σ2 was chosen to be 10−4. The direct influence matrix Ŝ(tk) were estimated

using Sontag et al.’s [2] method, as well as `1-min formulations, with different values of

bounds. Next, S̄(N) was estimated as in Proposition 2 by averaging over 30 time samples

tk ∈ [0, 1], k = 1..30 chosen randomly. For performance evaluation, we used the inference

error without ρ(N) and with averaging ρ̄, given by

ρ(N) =

√√√√ 1

N

N∑
k=1

∑
i,j

(1−H(|s0
ij|))(ŝij(tk))2, (3.56)

ρ̄ =

√∑
i,j

(1−H(|s0
ij|))(s̄

(N)
ij )2, (3.57)

where H(.) is Heaviside function. These error measures quantify the number of absent

links (s0
ij = 0) that are correctly identified.

As summarized in Fig. 3.5, the `1-min approach performs better than Sontag et al.’s [2]

method in all cases tested. In fact, ρ, ρ̄ were reduced by 105 times. The poor performance

of Sontag et al.’s [2] method is attributed to the numerical issues noted in the earlier sec-

tion. A further 30% reduction in inference error resulted from averaging for both cases.

Next, the cases (c) and (d) were designed to simulate the real situations where the noise

magnitude is unknown. We considered cases where the noise levels are under or overesti-

mated by 1 order of magnitude. While Sontag et al.’s [2] method would not be applicable

in such cases, `1-min without averaging was found to lead to suboptimal inference. Under

underestimation εi < ε
(0)
i /10, averaging was found to further reduce the inference error by

about 70%, and the inference error ρ̄s were of the same level as one would obtain when the

noise level is known. This result is consistent with and is a clear verification of Proposition

2. When the noise level is overestimated, the resulting network tends to be highly sparse,

offering excellent specificity in identifying the absence of direct coupling. The inference
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errors are therefore low even without averaging by default. In this case averaging reduces

the inference errors by 5%. The p-values of the paired t-tests between the inference error

with and without averaging were below 0.0282 in all cases suggesting that averaging helps

improve network inference.

Case II: Application to empirical genetic regulatory network inference

Next, we applied our method to infer real world GRNs and compare its performance

with other methods including ND [44], Bayesian network inference, Pearson and Spear-

man correlation networks [8] using the framework presented in DREAM5 challenge. Here,

the Pearson and Spearman correlations were considered as they are the most widely used

methods for network inference and can provide a reasonable estimation of the total in-

fluence matrix [44, 45]. In addition, ND has been most effective in inferring network

topology when the total influence matrix G is estimated using Person and Spearman corre-

lations. Therefore, these serve as the challenging test cases to evaluate the performance of

`1-min where ND is already effective. The DREAM5 challenge contains gene-expression

microarray data of three species including an in silico benchmark, a prokaryotic model

organism (E. coli) and a eukaryotic model organism (S. cerevisiae). Beside ρ and Hoyer

metrics, we employed the following score, which was used in earlier works [8] to assess

the performance of a network inference method for recovering the structure underlying

these data sets:

ξ = − log(p
ROC

) + log(p
PR

)

2
, (3.58)

where p
ROC

and p
PR

are p-values computed from AUROC (area under receiver operating

characteristic curve) and AUPR (area under precision-recall curve).

The results of the performance evaluation are summarized in Fig. 4.1. We note that

for computing the performance metrics we first generated 30 different G matrices with

Pearson correlation, 30 others with Spearman correlation and another 30 with Mutual In-
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Figure 3.5: Box plots summarizing the inference errors without (light/red) and with
(dark/blue) averaging for: (a) Sontag et al.’s [2] method (ρ = 7.58× 104, ρ̄ = 5.87× 104);
(b) `1-min with noise magnitude given (ρ = 7.11, ρ̄ = 5.32), (c) `1-min with noise mag-
nitude underestimated as 10% the actual (ρ = 52.50, ρ̄ = 13.40), and (d) `1-min with
noise magnitude overestimated as 10 times the actual (ρ = 0.80, ρ̄ = 0.60). The inference
error was reduced by 105 times with `1-min approach (3.33, 3.34), compared to Sontag et
al.’s [2] method. Averaging further reduced inference error by at least 30% in all cases
(p-values of the paired t-tests were consistently below 0.0282).
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Figure 3.6: Performance comparison of (1) original G matrix, (2) ND, (3) ND with aver-
aging, (4) `1-min and (5) `1-min with averaging for the DREAM5 challenge datasets. The
total influence G matrix is estimated by Pearson correlation (blue/dark) and Spearman
correlation (red/ dark light) and Mutual Information (green/light). Compared to ND, the
prediction scores with `1-min are increased by 23.94% (for G from Pearson correlation),
53.03% (for G from Spearman correlation) & 18.53% (for G from Mutual Information)
for E. coli, 89.09%, 249.7% & 116.74% for Cerevisiae, respectively; the inference errors
ρ (Eq. (3.56)) are reduced by 2 to 3 orders of magnitude in all cases; Hoyer measures
are increased by 34%, 36.41% & 322.91% for E. Coli, 18.85%, 19.59% & 96.65% for
Cerevisiae, respectively. For in silico data, ND gives a solution with 11% higher predic-
tion score but 33% less sparse than `1-min approach. Averaging slightly improves the
performance of all methods (< 10%).
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formation for each data set. The G matrix in each case was estimated using samples of

size 75% of the data set. The averaging procedure considers the S matrices estimated from

these G matrices using different methods. In terms of ξ-score (Eq. (3.58)), which quanti-

fies how well—in terms of having low false negative rates (FNR, related to sensitivity), and

low false positive rates (FRN, related to specificity), the true positive rate (TPR) and true

negative rate (TNR)—the estimated Ŝ captures S0, `1-min approach yields Ŝ with at least

18.53% higher than with ND in all cases tested except the in silico case (see Fig. 4.1).

Both ND and `1-min performed better than Bayesian network approach whose ξ-scores

were 14.891, 0.029, 0.0001, respectively, for the three data sets [8]. In terms of ρ-score

(Eq. (3.56)), which quantifies the false positive rates i. e., the specificity, `1-min approach

reduces ρ by 2-3 orders compared to ND in all cases. These results provide a strong evi-

dence for the relevance of the `1-min approach for network structure inference. In terms of

sparsity, `1-min approach increased the Hoyer measure by about 20% in most cases, and

were much closer to the Hoyer measures of the gold-standard network, compared to ND.

As noted earlier for in silico data, although the ρ-score with `1-min was at least 1160%

lower (i.e., higher specificity) and Hoyer was 33% higher (i.e., higher sparsity), the ξ-

score was slightly (~10%) lower than with ND. The lower ξ-score for `1-min is perhaps

a consequence of the method being susceptible to over-specification of the noise level. In

this context, it must be noted that the solutions from both ND and `1-min can replicate the

observed total influence G within a specified bound (as total perturbation). However, the

solutions from `1-min tend to be much sparser and have lower false positive rate. Given

that there were only 805 sample measurements to reconstructGmatrices for 1643 nodes in

the in silico network, it is highly likely that several dynamic modes (degree of freedom) are

not observable from the data. Therefore, `1-min generated a much sparser network which,

by formulation is guaranteed to be adequate to capture the observed modes of the dynamics

within the specified total perturbation limits. The ND derived networks for in silico and
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other cases that have higher ξ-score, intriguingly, were consistently found to have much

lower Hoyer score (hence sparsity) even compared to the specified total influence matrix.

Thus, `1-min-generated solutions provide significant improvement in specificity, although

the sensitivity at times were found to be slightly lower than with ND.

Averaging improves the ξ-scores (Eq. (3.58)) with all methods by at most 10%. This is

perhaps due to the near-stationarity of the total influence matrix G, when computed using

data over long time windows that smooths out various higher order transient effects. Also,

one may note that the averaging makes the network inferred from ND less sparse than

without averaging. This is because under noise, transients and data sparsity, ND yields

vastly different network topologies depending on the samples employed. Averaging over

these vastly different networks causes a reduction in sparsity. These results, taken together

suggest that the `1-min approach is perhaps the best known means to provide specificity

for network inference from transient and noisy data. The utility of the approach would be

to provide a minimal set of arcs (dynamic couplings or direct influences) to be considered

for further network dynamics reconstruction applications.

3.5 Discussion and Concluding remarks

In this chapter, we have investigated a method to robustly infer the structure of a net-

work representing a sparse dynamical system from noisy, transient time series data. When

the noise level is known, the `1-min formulation employing our theoretical formula for the

bound on total perturbation improves the recently reported NDs in terms of both accuracy

and sparsity. When the noise level is unknown, we have shown that by averaging the net-

works inferred from different time points or conditions, the inference of network structure

of real world processes becomes highly plausible.

Pertinently, for most real world processes, the total influence is not known a priori;

only the time series ensembles gathered under transient conditions are available (e.g., gene
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expression microarray data [8, 59], protein-protein interaction data [60] as in the case of

Michaelis-Menten dynamics). It has been noted that most of the earlier approaches present

severe accuracy, noise sensitivity and/or numerically stability issues for such realistic sce-

narios. To overcome these limitations, we have investigated the `1-min approach with a

novel perturbation procedure for time series based network inference. Averaging over the

solutions estimated at different time windows has been shown to allow inference of the

structure for complex real world networks, especially when the noise levels are unknown

or cannot be accurately estimated.

Next, we have applied our method to three benchmark systems: a sparse scale-free

network [61] with a specified noise level and the total influence between any two nodes

given, a genetic regulatory network model formulated in terms of a system of Hill-type

differential equations [45], and GRNs of DREAM5 challenge [56]. These analyses suggest

that our proposed bounds on the constraints for the `1-min formulation, extracted from a

few time series samples acquired under transient conditions, are of the same order (i.e.,

they closely envelop) with the constraints estimated based on the full knowledge of the

noise level. The `1-min formulation reduces the inference errors defined in (3.58) and

(3.56) by 18.53% and 2 to 3 orders of magnitude, respectively, and improves the sparsity

of the solution (measured in terms of Hoyer sparsity measure) by 15.9%, in comparison

with conventional approaches including various versions of dynamic Bayesian approaches

for network inference as well as ND. If instead of the total influence, only the time series

gathered under transient conditions is provided, such as in the case of Michaelis-Menten

dynamics, `1-min approach achieves a 4 order reduction in inference error compared to

MRA. These theoretical and and numerical studies suggest that our proposed method can

be employed to effectively infer the presence of dynamic coupling (i.e., arc set or the direct

influence in a dynamic network) based on sparse samples.

As with any network reconstruction approach, the method assumes that the time se-
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ries realizations taken together can adequately mirror the salient dynamic regimes of the

underlying process, and as noted earlier, the approach is restricted to ensuring high levels

of specificity and not sensitivity in identifying the direct influences. Additionally, while

the approach is fairly robust to the presence of noise, the estimates ŝij from the averaging

procedure for the arcs with s0
ij = 0 is guaranteed to converge to zero only in the pres-

ence of additive noise. More specifically, one of the following conditions need to hold

for the approach to be applicable: (1) the governing equation of the process dynamics is

specified, so that G(t) or R(t) can be constructed; (2) one or more realizations of G(t)

(based on ND or silencing method) or R(t) (based on MRA) are given. In our experi-

ence, 30 realizations ensured the convergence of the averaging method; (3) one realization

of a n−dimensional time series is available for estimating G(t) using various alternative

methods outlined in [44] or n2 time series realizations with the same initial condition are

available for estimating R(t) using Eq. (3.29). Note that Scenario 1 is useful only for

applications such as to investigate if there exists a more compact (sparser) network rep-

resentation to capture the specified process dynamics. In Scenarios 2 and 3, we assume

that the noise level or its lower limit is known, and adequate number of realizations are

available to ensure convergence of the averaging method. In scenario 3, Eq. (3.29) yields

a finite space-time approximation of the partial derivatives ∂xi
∂pj
, ∂ẋi
∂pj

. They are estimated

by perturbing the parameters pj and keeping the initial condition the same for two time

series signals. The length of the time series in this case can be really small, or it can

just be samples taken over multiple (roughly 30), short (can be even 2 samples) time win-

dows. However, the time steps (or sampling interval) in each time window must be small

enough to ensure that R(t) values locally converge. Sensitivity of the network inference

performance to time step size, however, needs further investigation.

Efforts are underway to address some of the `1-min aforementioned limitations. We

are investigating a two-stage approach to recover local nonlinear dynamics from sparse
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time series data. For future research, we will consider a more realistic scenario where

not all state variables can be measured. In GRN inference, for example, only the out-

puts/activations of only those genes that have been discovered are measured. However,

unknown genes might have significant influence on the network structure. Removing the

effects of unmeasured variables, when combined with the method proposed in this chapter,

will lead to a more advanced network inference method.
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4. DETECTING CHANGES IN TRANSIENT COMPLEX SYSTEMS VIA

DYNAMIC NETWORK INFERENCE

In this chapter, we present an approach based on spectral graph theory to detect changes

in complex dynamic systems using a single realization of time series data collected under

specific, common types of transient conditions, such as intermittency. We introduce a

statistic, γk, based on the spectral content of the inferred graph. We show that γk statistic

under high dimensional dynamics converges to a normal distribution, and employ the pa-

rameters of this distribution to construct a procedure to detect qualitative changes in the

coupling structure of a dynamical system. The method is applied to problem of seizure

detection using EEG signals.

4.1 Introduction

With recent growth in the Internet of Things (IoT) [62–64], wearable health sys-

tems/sensors technologies [65, 66], and social networks [67–69], detection of anomalies

in complex large dimensional systems is beginning to evoke keen interest [70]. Detecting

changes is essential to discerning the transition of a system into an anomalous state, such

as from an in-control to an undesirable out-of-control state in a manufacturing process, or

from a healthy to a pathological state in a human physiological process. Failure to detect

changes might lead to catastrophes. For example, in a human physiological process, fail-

ure to detect neurological disorders early, as in epileptic seizures, leads to about 189,000

lives lost each year [71]. In the automotive manufacturing industry, failure to detect faulty

components can be costly. For example, in 2014, General Motors incurred over $2.4 bil-

lion in costs of car recalls resulting from a faulty switch. This was 85% of the company’s

total income that year [72]. While human healthcare, manufacturing, and other industrial

environments have become data-rich, the following issues limit the applicability of current
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approaches to detecting changes in these complex systems:

• High dimensionality: A real-world system such as a human brain contains billions

of neurons, each executing its internal processes [9]. Therefore, specification of the

state of human brain physiology and of other real-world complex systems requires

a large set (from several hundreds to millions) of variables to capture the system

dynamics, incurring enormous computational and inference issues.

• Interconnectivity: Most real-world systems are known to manifest as complicated,

albeit sparse, interconnected structures [73, 74]. For example, the human brain has

about 1011 neurons, and each neuron has on an average 7,000 synaptic connections

to other neurons, which totals about 1015 connections [9]. As the structure of the

interconnection in a system defines its dynamics [6], the system dynamics cannot be

understood by superposing the decoupled dynamics of the individuals or subsets of

state variables [7].

• Transience: The structure of active interconnections and the strength of those cou-

plings vary over time, i.e., the coupling structure among the system state variables

is not constant. As an illustration, the functional structure of a human brain network

depends on the momentary mental condition. According to Picchioni et al. [10],

brain connectivity is strong during resting wakefulness, decreases during stage N2

of NREM sleep, further decreases during stage N3 of NREM sleep and possibly

increases during REM sleep. Thus, the dynamics are often transient.

• Nonlinearity: The evolution of a state variable depends nonlinearly on the values

of other state variables, i.e., the resulting behavior can not be expressed as a mere

linear combination (or superposition) of the state variables [11]. For example, in

a brain network, the response of a given neuron to presynaptic input from another
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neuron depends on multiplicative interactions among the synaptic inputs from sev-

eral other neurons. This type of multiplicative mechanism raises issues of how to

define couplings locally in the state space and compactly capture the underlying

relationships [12, 13].

Also, for real-world systems, the equations representing system dynamics are unknown.

What is available is a noisy multivariate time series output from state variables. Con-

ventionally, there are many methods for detecting changes in high-dimensional systems

from time series, including multivariate CUSUM charts [75, 76], multivariate EWMA

charts [77, 78], (multiscale) PCA [79–81], and multivariate control charts [82, 83]. How-

ever, these approaches suffer from the same drawback, i.e., the effects of changes in the

coupling structure of a system are not guaranteed to be directly identified with a high de-

gree of sensitivity and specificity. Therefore, one reasonable approach to addressing this

drawback and these challenges is to develop a change detection statistic based on the struc-

ture of the interactions of these systems. This approach is in its early stage [84–86]; most

of the studies reported in the literature have certain limitations, including that the distri-

bution of the statistic is unknown, high sensitivity to extraneous noise, and an inability to

capture qualitative structural instabilities.

In this chapter, we first introduce an approach to infering the temporal network struc-

ture from a single transient multivariate time series. The network inference approach we

developed here is suitable for studying many systems, such as brain networks (using data

collected from EEG electrodes or fMRI) and cyber-manufacturing systems (using data

collected from sensors embedded in the machines). Second, we present a novel spectral-

graph-based statistic to detect major changes in multidimensional time series. These con-

tributions together create a novel framework for change detection in multidimensional

transient processes. The rest of this chapter is organized as follows. In Section 4.2, we
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provide background and related literature on network inference and change detection. Sec-

tion 4.3 contains our approach to inferring the network structure from a single time series

realization and extracting the change detection statistic γk. Numerical and real world case

studies to validate the method are presented in Section 4.4. The chapter concludes in

Section 4.5.

4.2 Graph representation and change detection in complex systems

Directed graphs offer a convenient means to represent the dynamics of high-dimensional,

interconnected systems (see Fig. 4.1). Here, the nodes xi represent the state variables (and

capture the intrinsic dynamics) and arcs sij represent the (instantaneous) strengths of the

coupling, i.e., the influence of a state variable on the evolution of other state variables. In

many cases, the network needs to be inferred from the measured time series outputs of state

variables. The most common approach for inferring a network from a multivariate time

series is to use similarity quantifiers, such as correlation or mutual information [86–91].

However, networks inferred using the estimates of such conventional statistical depen-

dency measures often contain spurious links due to the transitivity of influences among

the nodes [44].

Several alternative approaches have been reported to address this issue [38–44, 52, 92,

92–97]. However, the current methods have certain limitations. For example, the global

silencing method [52] works only when the system operates close to a steady state and

assumes that such a state exists, and ignores the noise effects. The network deconvolution

method [44] requires the network to be linear time invariant. Bayesian methods [38–43]

require the directed graph to have no cycles. There are approaches to infer a directed

acyclic graph from data; however, they are often very computationally expensive. Methods

that are based on estimating partial correlation [92] or Granger causality [93–97] require

stationarity and linearity of the underlying dynamics and do not aim to recover the cou-
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plings that capture the physical causal chains. The molecular response analysis (MRA)

method [2] can address some of these drawbacks. However, it requires n2 realizations

of the time series. This requirement makes MRA impractical as collecting different time

series realizations is very expensive or impossible. MRA also suffers from numerical in-

stability issues and its performance degrades sharply in the presence of noise. Recently we

reported an approach [98] to solving these technical limitations by reducing the number

of perturbations required to be an order of n and introducing a perturbation procedure to

solve the numerical instability issue. This method was able to reduce inference error, often

by 5 orders of magnitude over the MRA method in numerical case studies. However, our

method needs to be further improved to be suitable for real world change detection appli-

cations, where only a single time series realization is available for inferring the network

and hence the coupling structure. Therefore, a new method to infer the network from a

single multivariate time series realization is necessary.

According to recent studies [6, 86, 99–103], qualitative changes that are known to cause

anomalous behaviors, such as crises [104, 105] and pathologies [84, 85, 106], are due to

major changes in the interconnectivity and not changes in the intrinsic dynamics of the

individual state variables [101–103]. Therefore, it is necessary to develop a statistic to

detect changes in the structure of the interactions of these systems. Graph representation

provides a convenient approach to detecting these structural changes in the dynamics of

complex real world systems. It provides not just the points in time where changes occur

but also insights into the causes and structural pathways of the changes.

Currently, detecting anomalies and changes in complex systems employing graph rep-

resentation is in the early stages [84–86]. Most related studies in the literature are based

on applying a control chart to the quantifiers of graph topology, such as centrality, clus-

tering coefficient, connectivity, density, scan statistics, degree distribution, and diame-

ter [107–111]. Algebraic approaches based on extracting the spectral quantifiers from
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an adjacency matrix of the graph by employing decomposition techniques such as singu-

lar value decomposition, compact matrix decomposition, and CUR matrix approximation

have also been investigated [88]. Recently, the inner product between major eigen direc-

tions of the adjacency matrix of the graph representations at different time points has been

used as a feature for detecting changes [69, 112].

However, these features have significant limitations: (a) the statistical distributions of

many of these features remain unknown, and hence change detection approaches based on

these features use arbitrary thresholds and limits that are not based on achieving specified

sensitivity (beta error) and specificity (alpha error) levels, (b) other features with specified

distributions tend to be highly sensitive to extraneous noise and hence do not serve as an

effective feature for change detection (as illustrated in the case study in Sec. 4.4.1), and

(c) more pertinently, they are not developed to capture qualitative structural instabilities

(i.e., a major change such as a drop in dimensionality of the coupling structure) in the dy-

namics underlying the specified graph representation. These methods literally breakdown

in detecting major events such as seizures which are characterized by a drop in the dimen-

sionality of the system. The present inference method as well as the γk statistic which is

based on capturing the active degrees of freedom based on the graph spectra aim to address

this current gap.

4.3 Methodology

In this section, we first address the challenge of reconstructing the network from a

single time series realization assuming completely deterministic dynamics (noise free) in

Sec 4.3.1 and discuss key numerical procedure in Sec 4.3.2. Next, we extend this approach

to noisy time series in Section 4.3.3. In Sec. 4.3.4, we introduce a statistic that captures

the spectral characteristics of the inferred network for change detection.
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4.3.1 Inferring the coupling structure based on perturbing initial conditions

In this section, we consider a noise-free case. In general, a real-world complex system

can be modeled by the following dynamical system

ẋi(t) = fi(x,pi, t), i = 1..n (4.1)

xi(0) = ai, (4.2)

where pi are system parameters, x is a state vector, a is the initial condition. This dynam-

ical system has the coupling structure, i.e., the direct influence network representation, as

in Fig. 4.1. Here a node i represents a state variable xi (i = 1, ..., n). The weight on an

edge (i, j) connecting nodes i and j is given by

sij(t) =
∂fj(x(t),pj, t)

∂xi
.

Intuitively, sij(t) quantifies how much node j changes in response to an infinitesimal

x1 x2

...

x4 x3

s12(t)

s13(t)

s43(t)

s41(t) s23(t)

Figure 4.1: Direct influence network representation

change in node i when keeping all other nodes unchanged, i.e., at the current state. There-

fore, it represents the direct influence from node i on node j. Note that sij(t) = 0 when
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there is no direct influence from node i on node j, i.e., there is no dynamic coupling be-

tween the current state of nodes i and j. Thus, S(t) = (sij(t))n×n captures the local

physical coupling structure of the system (4.1,4.2). In the following paragraphs, we ex-

plain how to estimate (sij(t))n×n from time series x(t). First, by taking partial derivative

on both sides of Eq. (4.1) w.r.t some parameter αk,we have:

∂ẋi(t)

∂αk
=

∂fi(x,pi)

∂αk

=
n∑
l=1

∂fi(x,pi)

∂xl

∂xl
∂αk

+

|pi|∑
l=1,pl∈pi

∂fi
∂pl

(x,pi)
∂pl
∂αk

, (4.3)

where |pi| is dimension of pi. Intuitively, ∂ẋi(t)
∂αk

quantifies how ẋi(t), the instantaneous

rate of change of node i with respect to time, responds to an infinitesimal change in the

system parameter αk. It follows from (4.3) that

∂ẋi(t)

∂αk
−

|pi|∑
l=1,pl∈pi

∂fi
∂pl

(x,pi)
∂pl
∂αk

=
n∑
l=1

∂fi(x,pi)

∂xl

∂xl
∂αk

.

In an earlier work, Sontag [2] used αk := pk ∈ pj , j 6= i. This setting necessitates

multiple time series, each at a different value of parameter pl ∈ pk (for some k ∈ {1..n}

and some l ∈ {1..|pk|}) while keeping all other parameters unchanged. This approach is

very restricted and is hard to implement in real practice for two reasons. First, for most real

world applications, the structure of f(.), and hence pk are not defined or known a priori.

Second, the procedures for keeping all other parameters unchanged are hard to execute.

To overcome the first critical gap, we investigate the setting αk := ak. The second gap is

addressed in Sec. 4.3.2. When αk := ak, we have

|pi|∑
l=1,pl∈pi

∂fi
∂pl

(x,pi)
∂pi
∂αk

= 0.
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As a result, (4.3) becomes

∂ẋi(t)

∂ak
=

∂fi(x,pi)

∂ak

=
n∑
l=1

∂fi(x,pi)

∂xl

∂xl
∂ak

. (4.4)

Note here that, intuitively, ∂fi(x,pi)
∂xl

quantifies the direct influence from node l on node i.

∂xl
∂ak

quantifies the response of node l with respect to changes. As a result, Eq. (4.4) can

be interpreted as follows. The response of the evolution rate of node i to change, ∂ẋi(t)
∂ak

, is

the sum of the responses of all other nodes l (l = 1..n) to change ∂xl
∂ak

through the direct

influence from other nodes on node i, ∂fi(x,pi)
∂xl

. Gathering all equations of type (4.4) with

i = 1..n, k = 1..n, we have:

(
∂ẋi
∂ak

)
n×n

=

(
∂xi
∂ak

)
n×n

(
∂fi(x,p)

∂xl

)
n×n

(4.5)

Remark 1. From Eq. (4.5), it follows that
(
∂fi(x,p)
∂xl

)
n×n

=

[(
∂xi
∂ak

)
n×n

]−1 (
∂ẋi
∂ak

)
n×n

,

or we can keep track of the system’s Jacobian matrix, which captures how the system

coupling structure evolves over time, if we can keep track of how the system responds

when the initial condition of each variable changes.

Remark 2. In most real-world complex systems, including both natural (biological and

biomedical) and engineering (manufacturing, enterprises, and social network) systems,

the perturbation procedure corresponding to Eq. (4.5) is easier to implement than the

procedure proposed by Sontag et. al. [2] because changing the initial concentration of a

state variable (e.g., chemical species, genes, buffer level) ak is much more tenable than

changing the reaction parameters, pk.

Remark 3. It is possible to employ the idea of compressed sensing [1] to reduce the num-
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ber of experiments required to solve for the Jacobian matrix when the underlying causal

structure is sparse. The authors are currently investigating this aspect, which promises to

further enhance the applicability of the proposed approach.

4.3.2 Estimating
(
∂xi
∂aj

)
n×n

,
(
∂ẋi
∂aj

)
n×n

x1

x2

a
δk

(a)

δ(k)
x

x1

x2

a

δk

δ(k)
x

(b)

Figure 4.2: Perturbation studies (a) δk = (δ
(1)
k , ..., δ

(n)
k ), (b) δk = x(t0 + k∆t)− x(t0)

In this subsection, we introduce a procedure to infer
(
∂xi
∂aj

)
n×n

,
(
∂ẋi
∂aj

)
n×n

and hence,(
∂fi(x,p)
∂xl

)
n×n

. We consider two approaches: (1) a general procedure to simultaneously

perturb multiple parameters in Theorem 6, and (2) a method to infer
(
∂fi(x,p)
∂xl

)
n×n

from a

single time series realization in Corollary 3. First, we write the solution to Eqs. (4.1,4.2)

and its derivative as xi(t,a) and ẋi(t,a), respectively. With this notation, we have the

following first order approximation:

xi(t,a+ δk)− xi(t,a) ≈
n∑
j=1

∂xi(t,a)

∂aj
δ

(j)
k (4.6)

ẋi(t,a+ δk)− ẋi(t,a) ≈
n∑
j=1

∂ẋi(t,a)

∂aj
δ

(j)
k , (4.7)
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for any perturbation vector δk = (δ
(1)
k , ..., δ

(n)
k ). The approximations (4.6,4.7) are illus-

trated in Fig. 4.2a. In this figure, the original trajectory x(t,a) is shown as the dark (blue)

line, the perturbed trajectory as a light (red) line; the perturbation vector δk and deviation

vector δ(k)
x = x(t,a + δk) − x(t,a + δk) are in green. Gathering all equations of type

(4.6) for k = 1..n, we have

xi(t,a+ δ1)− xi(t,a)

xi(t,a+ δ2)− xi(t,a)

...

xi(t,a+ δk)− xi(t,a)


= ∆



∂xi(t,a)
∂a1

∂xi(t,a)
∂a2

...

∂xi(t,a)
∂an


, (4.8)

where

∆ =



δ
(1)
1 δ

(2)
1 ... δ

(n)
1

δ
(1)
2 δ

(2)
2 ... δ

(n)
2

...
...

...
...

δ
(1)
n δ

(2)
n ... δ

(n)
n


Consequently,



x1(t,a+ δ1)− x1(t,a) ... xn(t,a+ δ1)− xn(t,a)

x1(t,a+ δ2)− x1(t,a) ... xn(t,a+ δ2)− xn(t,a)

...
...

x1(t,a+ δk)− x1(t,a) ... xn(t,a+ δk)− xn(t,a)


= ∆



∂x1(t,a)
∂a1

∂x2(t,a)
∂a1

...
∂xn(t,a)
∂a1

∂x1(t,a)
∂a2

∂x2(t,a)
∂a2

...
∂xn(t,a)
∂a2

...
... ...

...
∂x1(t,a)
∂an

∂x2(t,a)
∂an

...
∂xn(t,a)
∂an


. (4.9)

This leads to



∂x1(t,a)
∂a1

∂x2(t,a)
∂a1

...
∂xn(t,a)
∂a1

∂x1(t,a)
∂a2

∂x2(t,a)
∂a2

...
∂xn(t,a)
∂a2

.

.

.
.
.
. ...

.

.

.
∂x1(t,a)
∂an

∂x2(t,a)
∂an

...
∂xn(t,a)
∂an


= ∆

−1



x1(t,a + δ1)− x1(t,a) ... xn(t,a + δ1)− xn(t,a)

x1(t,a + δ2)− x1(t,a) ... xn(t,a + δ2)− xn(t,a)
.
.
.

.

.

.
.
.
.

x1(t,a + δk)− x1(t,a) ... xn(t,a + δk)− xn(t,a)


. (4.10)
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Similarly, we can derive from (4.7) that



∂ẋ1(t,a)
∂a1

∂ẋ2(t,a)
∂a1

...
∂ẋn(t,a)
∂a1

∂ẋ1(t,a)
∂a2

∂ẋ2(t,a)
∂a2

...
∂ẋn(t,a)
∂a2

.

.

.
.
.
. ...

.

.

.
∂ẋ1(t,a)
∂an

∂ẋ2(t,a)
∂an

...
∂ẋn(t,a)
∂an


= ∆

−1



ẋ1(t,a + δ1)− ẋ1(t,a) ... ẋn(t,a + δ1)− ẋn(t,a)

ẋ1(t,a + δ2)− ẋ1(t,a) ... ẋn(t,a + δ2)− ẋn(t,a)
.
.
.

.

.

.
.
.
.

ẋ1(t,a + δk)− ẋ1(t,a) ... ẋn(t,a + δk)− ẋn(t,a)


. (4.11)

Replacing Eqs. (4.11,4.10) with Eq. (4.5), we achieve the following theorem to estimate(
∂fi(x,p)
∂xl

)
n×n

:

Theorem 6.
(
∂fi(x,p)
∂xl

)
n×n

can be estimated by the following formula



ẋ1(t,a + δ1)− ẋ1(t,a) ... ẋn(t,a + δ1)− ẋn(t,a)

ẋ1(t,a + δ2)− ẋ1(t,a) ... ẋn(t,a + δ2)− ẋn(t,a)
.
.
.

.

.

.
.
.
.

ẋ1(t,a + δk)− ẋ1(t,a) ... ẋn(t,a + δk)− ẋn(t,a)


=



x1(t,a + δ1)− x1(t,a) ... xn(t,a + δ1)− xn(t,a)

x1(t,a + δ2)− x1(t,a) ... xn(t,a + δ2)− xn(t,a)
.
.
.

.

.

.
.
.
.

x1(t,a + δk)− x1(t,a) ... xn(t,a + δk)− xn(t,a)


(
∂fi(x,p)

∂xl

)
n×n

. (4.12)

Note that if we can collect multiple time series realizations of a process, each corresponds

to one initial condition a+ δk of x(0), and equation Eq. (4.12) can be established to solve

for
(
∂fi(x,p)
∂xl

)
n×n

. If we can collect only one single time series of the process, we can

choose δk = x(t0 + k∆t)− x(t0). The perturbed initial condition a+ δk = x(t0 + k∆t)

will lie on the system trajectory and the perturbed trajectory can be obtained by shifting

the original trajectory by k time steps (Fig. 4.2b). As a result, S(t) can be estimated from

a single time series x(t) as in the following corollary.

Corollary 3. When δk = x(t0 +k∆t)−x(t0), S(t) can be estimated from one time series

realization of x(t) based on Eq. (4.12).

Remark 4. It is more practical to conduct experiments when multiple parameters can be

perturbed together as in (4.64.7) than when all other parameters are controlled and only

one parameter is changed, as proposed by Sontag et. al. [2].
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4.3.3 Direct influence inference when the data contains noise

The foregoing formulations ignore the presence of noise in real world systems. Uncer-

tainties exist in both extraneous and intrinsic influences on the essential process dynamics,

and these are captured using additive and multiplicative noise terms in the governing equa-

tion (4.12). In addition to the presence of noise, the coupling structures of most real world

complex systems tend to be sparse, i.e., S(t) is a sparse matrix. Under this very realis-

tic condition, the method developed in our previous work [98] can be extended to infer

the network structure. Specifically, S(t) can be estimated by solving the following sparse

regression problem

min ||S(t)||1 s.t ||Γ(t)− S(t)R(t)||F ≤ E , (4.13)

where R(t) =
(
∂xi(t)
∂ak

)T
n×n

,Γ(t) =
(
∂ẋj(t)

∂ak

)T
n×n

, ||.||F is the Frobenius norm of a matrix

and E is bounded as follows

Theorem 7. [98]

E ≤ (||Γ||F + ||∆Γ||F )
||R−1∆R||F

1− ||R−1∆R||F
+ ||∆Γ||F , (4.14)

where

(∆R)ik(t) =
(eik(t)− eik(t+ ∆t))

δk
,

(∆Γ)ik(t) =
(eik(t+ ∆t)− eik(t+ 2∆t))

∆tδk
− (eik(t)− eik(t+ ∆t))

∆tδk

and eik(t) is the error incurred when measuring xi(t).

The formulation in Eq. (4.13) with E estimated as in Eq. (4.14) can be solved using stan-

dard optimization packages. Our approach was designed to optimize for sparsity, which

as noted earlier, is an essential characteristic of many natural and engineering systems
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such as brain physiology, genetic regulatory processes, manufacturing systems, and social

networks.

We compared the performance of this method using benchmark data sets from Marbach

et. al. [8] based on the following performance measures:

1. ρ-metric: it captures the number of absent links (s0
ij = 0) that are correctly identified

as follows

ρ =

√√√√ 1

n

n∑
k=1

∑
i,j

(1−H(|S0
ij|))(Ŝij(tk))2, (4.15)

whereH(.) is the Heaviside function defined as follows

H(θ) =


0 if θ ≤ 0

1 if θ > 0

.

The lower the value of ρ, the better.

2. ξ-metric: it captures the true predictive power of the inference scheme as

ξ = − log(p
ROC

) + log(p
PR

)

2
, (4.16)

where p
ROC

and p
PR

are p-values computed from the area under the reciever oper-

ating characteristics curve (AUROC) and the area under the precision-recall curve

(AUPR). The higher the value of ξ, the better.

3. Hoyer - metric: it captures the sparsity of the inferred network as follows

Hoyer(S) =
n− (

∑n
i,j=1 |sij|)/

√∑n
i,j=1 s

2
ij

n− 1
,

Note here that Hoyer(S) ∈ [0, 1]. A higher Hoyer(S) means a sparser S.
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Our benchmark tests suggest that our approach reduces ρ by 2 orders of magnitude when

the noise is underestimated as 10% of the actual, and by 5 orders of magnitude when the

noise is over estimated as 10 times the actual. When the underlying network is assumed to

be time invariant, compared to other network inference methods [44, 86, 90], ξ evaluated

on networks inferred using our approach are increased by 18.53% to 53.03% and 89.09%

to 249.7% for networks inferred from E. Coli and Cerevisiae data sets, respectively [98].

The inference error ρ (Eq. (4.15)) is reduced by 2 to 3 orders of magnitude in all cases

while the Hoyer measure is increased by 34% to 322.91% and 18.85% to 96.65% for

networks inferred from an E. coli data set and Cerevisiae data set, respectively. These

results suggest that from our method we are able to infer a sparser network structure with

smaller inference error.

4.3.4 Spectral statistic for change detection

As noted earlier, qualitative changes in the dynamics of a complex system are due to

structural instabilities. Such qualitative changes can be quantitatively characterized in

terms of bifurcations [21]. Mathematically speaking, for a complex system modeled by

Eqs. (4.1,4.2), bifurcations are known to take place at parameter setting pi if even a

small change (perturbation) in the parameter values leads to a qualitative change in the

system trajectories, such as a transition from a periodic to an aperiodic or chaotic behavior.

Many bifurcations are associated with significant changes in the system’s Jacobian matrix

(
∂fij
∂xj

)n×n, such as a drastic reduction in the rank and/or a major change/shift in the eigen

system of the matrix.

In this section, we develop a network-based statistic to detect the onset of a structural insta-

bility in a process. Most related works in the literature are based on applying control charts

to features extracted from the network such as centrality, clustering coefficient, connectiv-

ity, density, scan statistics, degree distribution, and diameter [107–111]. Other researchers
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extract features from an adjacency matrix by employing decomposition techniques such

as singular value decomposition, compact matrix decomposition, or CUR matrix approxi-

mation [88]. Recently, Idé et. al. [112] have introduced a quantifier for detecting changes

based on the inner product between major directions of the current matrix and of the matrix

in previous steps defined as follows:

ζ = 1− u(t)r(t− 1), (4.17)

where u(t) is the eigen vector with the largest eigenvalue of S(t) and r(t) = 1
w

∑t
τ=t−w+1u(τ).

According to Idé et. al. [112], ζ ∝ exp[− z
2Σ

]z
n−1
2
−1 where Σ is a constant parameter,

called the angular variance. Intuitively, ζ captures the change in the main direction of the

system trajectory. Here we note that if there is no transient and not much nonlinearity or

noise, u should not change over time and ζ ≈ 0. However, as noted in many earlier works,

e.g., [113], complex real-world systems, including the brain exhibit significant nonlin-

earity and are often transient even when no input or stimulus is present. Consequently, ζ

exhibits significant variation over time, even under “normal” conditions. Therefore, it fails

to differentiate between a normal variation (in the main direction) and a major event like

a change in system dimensions. The ζ statistic would identify many false alarms which

are not differentiable from major events such as seizures. However, none of the methods

employs the degrees of freedom of the system. For events such as seizures, the degree

of freedom, the number of independent vectors needed to represent the system, is an im-

portant feature because during a seizure, the neurons synchronize, resulting in a drop in

the degree of freedom. The degrees of freedom can be captured by a spectral-graph-based

statistic, γk, defined as follows:

γk := g(λ) =

∑n
i=k λi(t)∑n
i=1 λi(t)

, (4.18)
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where λ1(t) ≥ λ2(t) ≥ ... ≥ λn(t) are the singular values of S(t). The intuition as

to why this statistic captures the degree of freedom is as follows. If γk is close to 0,

the system trajectory can be captured using a vector space spanned by at most k − 1

principal components. When the size of the system trajectory is much larger compared

to the noise variance [114], γk values tend sharply to zero if the system dimensionality

decreases from k to below k − 1. This occurs because if the system trajectory can be

captured using at most k − 1 principal components, γk will be almost zero, and its value

becomes significantly larger when it takes at least k eigen directions to capture the system

dynamics. Therefore, γk intuitively captures the dimension of the system trajectory and

can be used as an indicator to capture the change in the effective degree of freedom of the

system dynamics.

As a dynamic coupling or a direct influence between a pair of nodes in a network

representation of a real-world system is often an aggregation of interactions between many

sub-processes within each node pair, it is reasonable to assume that each column of S

follows a multivariate normal distribution. Particularly, if one rescales the variables, one

can reduce each column of S to follow MVN(0,Σ0), as considered in earlier works [115,

116]. Consequently, the covariance matrix of S follows a Wishart distribution, Wn(Σ0, n)

[117].

Related results on the distribution of γk in the literature include the Tracy Wisdom dis-

tribution on the largest eigenvalue [118], distribution of the smallest eigenvalues [119],

and joint distribution of the eigenvalues [120, 121] of a random matrix. However, to the

best of our knowledge, there is no such result for the distribution of γk in finite cases. To

address this gap, we first derive supporting results in Lemmas 3 - 5. Lemma 3 provides

the basic structure of the distribution of a linear combination of eigenvalues needed to

derive the distribution of the various components that comprise γk in Eq. (4.18). Lem-

mas 4 and 5 provide the expression for the distribution of these components, namely,
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λi, i ≤ p − 2, βp−1 =
∑p

i=k λi, βp =
∑p

i=1 λi and (
∑n−1

i=k λi,
∑n

i=1 λi). Based on these

lemmas, we attempt to express the distribution of γk in terms of these elemental distribu-

tions.

Lemma 3. Let A(x) be a p × p matrix with the (i, j)th element denoted by ai(xj) is

xi−1
j and matrix A satisfies x = A−1y. |A(A−1y)| can be represented as the sum of the

products of terms of the form yαkk

Proof. According to [121],

|A(x)| =
p∑

n1=1

p∑
n2=1,n2 6=n1

sgn(n)(an2(xp−1)an1(xp))|sÃ(n)(2)(x)|, (4.19)

where n = (n1, n2), sgn(n) = sgn(n1, n2) = (−1)2+in1+in2 where inl is the position of

the element nl in the ordered set {1, ..., p}\nl−1, and Ã(n)(2)(x) is obtained from A(x) by

deleting the last 2 columns and the rows n1, n2. Applying Eq. (4.19) to x = (A−1y), we

have

|A(A−1y)| =
p∑

n1=1

p∑
n2=1,n2 6=n1

sgn(n)(an2(xp−1)an1(xp))|Ã(n)(2)(A−1y)|. (4.20)

Note that as x = A−1y and the element (i, j)th of A(x) has the form ai(xj),

Ã(n)(2)(A−1y) = Ã(n)(2)(y).

Therefore,

|A(A−1y)| =
p∑

n1=1

p∑
n2=1,n2 6=n1

sgn(n)(an2(xp−1)an1(xp))|Ã(n)(2)(y)|. (4.21)

Also, as ai(xj) = xi−1
j and xj is a linear combination of yks, an2(xp−1) and an1(xp) can
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be written as the sum of the products of terms of the form yαkk .

Lemma 4. The density distribution function fβ(y) of β, where βi = λi+1, i ≤ p −

2, βp−1 =
∑p

i=k λi, βp =
∑p

i=1 λi can be represented as follows:

fβ(y) =
1

det(A)
K|Φ(A−1y)|.|Ψ(A−1y)|Πp−2

l=1 ξ(yl)
(
eyp−1Πp−2

i=k e
−yieype−yp−1Πk−1

i=1 e
−yi
)
.

Proof. According to Chiani et. al. [120], the joint probability distribution function of the

ordered eigenvalues of a Wishart matrix can be written as

fλ(x) = K|Φ(x)|.|Ψ(x)|Πp
l=1ξ(xl), (4.22)

where Φ(x),Ψ(x), K and ξ(xl) are defined as in Table 4.1 and V1(x) denotes the Vander-

monde matrix whose (i, j)th element is xi−1
j . Consider the transformation βi = λi+1, i ≤

p− 2, βp−1 =
∑p

i=k λi, βp =
∑p

i=1 λi or β = Aλ, where

A =



0 1

0 0 1

0
. . . 1

1 1 1 . . . 1 1

1 1 1 1 . . . 1 1


.

By applying the theorem on the distribution of the function of a random vector [122],

fβ(y) can be written as follows:

fβ(y) =
1

det(A)
fλ(A−1y)
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=
1

det(A)
K|Φ(A−1y)|.|Ψ(A−1y)|Πp−2

l=1 ξ(yl)
(
eyp−1Πp−2

i=k e
−yieype−yp−1Πk−1

i=1 e
−yi
)
,

(4.23)

where x = A−1y.

K Φ(x) Ψ(x) ξ(x)

uncorrelated central Kuc =
[
Πq

i=1(p− i)!Πq
j=1(q − j)!

]−1
V1(x) V1(x) xp−qe−x

uncorrelated noncentral Kun =
Πqi=1e

−µi

[(p−q)!]q|V1(µ)| V1(x) F (x, µ) xp−qe−x

correlated central Kcc = KucΠ
q
i=1(i− 1)! |Σ|

−p

|V2(σ)| V1(x) E(x, σ) xp−q

Table 4.1: Constants and Matrices in Eq. (4.22) for Uncorrelated Central, Uncorrelated
Noncentral and Correlated Central Wishart

Lemma 5. (βp−1, βp) = (
∑n−1

i=k λi(t),
∑n

i=1 λi(t)) follows the distribution of the form

fβp−1,βp
(yp−1, yp) =

p∑
n1,n2,n3,n4=1,n1 6=n2,n3 6=n4

Hn1,n2,n3,n4
e
−yp−1ψn2

(yp−1)φn3
(yp−1)ξ(yp−1)e

ypψn1
(yp)φn4

(yp)ξ(yp)

(4.24)

Proof. The probability distribution function fβp−1,βp(yp−1, yp) can be computed as follows

fβp−1,βp(yp−1, yp) =

∫
1

det(A)
K|Φ(A−1y)|.|Ψ(A−1y)|Πp−2

l=1 ξ(yl)(
eyp−1Πp−2

i=k e
−yieype−yp−1Πk−1

i=1 e
−yi
)
dy1...dyp−2

=

∫
(ψn2(xp−1)ψn1(xp))|Ψ̃(n)(2)(y)|(φn3(xp−1)φn4(xp))|Φ̃(n)(2)(y)|

Πp−2
i=k e

−yieype−yp−1Πk−1
i=1 e

−yidy1...dyp−2. (4.25)

Using the representation ofψn2(xp−1), ψn1(xp), φn3(xp−1), φn4(xp) in Table 4.1, Eq. (4.25)

can be estimated in terms of the multiplication of integrations of the form

∫
φi(x)ψj(x)ξ̃(x)dx, (4.26)
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where ξ̃(x) is the modification of ξ(x) to accommodate the terms (−yi)αj . The multipli-
cation of these integrations is a factor Hn1,n2,n3,n4 or (4.25) become

fβp−1,βp
(yp−1, yp) = e

ype
−yp−1

p∑
n1,n2,n3,n4=1,n1 6=n2,n3 6=n4

Hn1,n2,n3,n4ψn2 (yp−1)ψn1 (yp)φn3 (yp−1)φn4 (yp)ξ(yp−1)ξ(yp)

=

p∑
n1,n2,n3,n4=1,n1 6=n2,n3 6=n4

Hn1,n2,n3,n4
e
−yp−1ψn2

(yp−1)φn3
(yp−1)ξ(yp−1)e

ypψn1
(yp)φn4

(yp)ξ(yp).

Theorem 8. γk follows the distribution of the form

fγk(x) = −x−2

∫
z1fβp−1,βp(z1, z1/x)dz1 (4.27)

where fβp−1,βp(x, y) is defined as in Eq. (4.24).

Proof. Consider the transformation z1 = y1, z2 = y1/y2. y1 = z1, y2 = z1/z2. J(z1, z2) =∣∣∣∣∣∣∣
1 0

1/z2 −z1/z
2
2

∣∣∣∣∣∣∣ = −z1/z
2
2 . The distribution function g(z1, z2) can be computed as

follows

g(z1, z2) = fβp−1,βp(z1, z1/z2)(−z1/z
2
2).

Therefore, f(y1/y2) or g(z2) can be estimated from f(y1, y1/y2) as follows:

g(z2) =

∫
g(z1, z2)dz1

=

∫
fβp−1,βp(z1, z1/z2)(−z1/z

2
2)dz1

= −z−2
2

∫
z1fβp−1,βp(z1, z1/z2)dz1.

The result in Eq. (4.27) guarantees that γk follows a distinct distribution, and can

therefore be employed to establish control charts to detect changes in the system dynamics.
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However, computing this function is not straightforward. It involves computing multiple

integrations of the form in Eq. (4.26). Therefore, an approximation expression will be

very useful in practice. In a finite case, Fig 4.3 shows the distribution of γk based on
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Figure 4.3: Distribution of γk using simulation (solid line) and using Theorem 9 for dif-
ferent values of n
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Figure 4.4: Distribution of p−value of χ2 normality test of γk

a simulation and as predicted by Theorem 9 when n = 10, 50 and 100, respectively.
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As shown in this figure, as n increases, the distribution of γk converges to the normal

distribution as predicted by Theorem 9. The corresponding p−values of the χ2 normality

test of γk for these cases, shown in Fig. 4.4, is about 0.4 on average when n is greater

than 50 and more than 0.2 when n = 10. More generally, when n is large, we have the

following result.

Theorem 9. When n is large enough, γk computed from the covariance matrix of Sn×n

follows the distribution N(µγk , σ
2
γk

) where σ2
γk

= 2Φ′Σ0Φ, Φ = ∂f(λ)
∂λ
|λ=l, and l1 ≥ l2 ≥

... ≥ ln are singular values of S.

Proof. According to Theorem 13.5.1 [122], when n is large,
√
n(λi − li) are independent

and
√
n(λi − li) ∼ N(0, 2l2i ). Applying Theorem 4.2.3 [122] to f(λ) =

∑n
i=k λi(t)∑n
i=1 λi(t)

, we

have
√
n(γk − f(l)) ∼ N(0, σ2

γk
), where σ2

γk
= 2Φ′Σ0Φ, Φ = ∂f(λ)

∂λ
|λ=l. Therefore,

γk ∼ N(f(l),
σ2
γk

n
),

From this result, it follows that the γk statistic can be employed in a change detection chart.

In this chapter, we used a Shewhart chart; however, other types of control charts such as

CUSUM and EWMA charts can also be employed.

4.4 Implementation details and results

In this section we report the results oftwo case studies. The first case study considers

detecting switches in a time series simulated from a piecewise linear system. In the second

case study, we apply our method to the problem of seizure detection using EEG signals.

The performance of our change detection statistic, γk, is compared with the benchmark

ζ-statistic [112] defined in Eq. (4.17).

4.4.1 Numerical case study

The aim of this case study is twofold: First, to evaluate the performance of our net-

work inference method in Eq. (4.12) when applied to the time series outputs of a known
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Figure 4.5: Network representation of Ais in the first 4 pieces

interconnected dynamic system and second, to assess the performance of γk in detecting

the switches. Here, we consider a network represented by a 10 - dimensional piecewise

linear system composed of 40 pieces, each of which has the following form:

ẋ = Aix, Ti ≤ t < Ti+1, i = {1, 2, ..., 40} (4.28)

Ti = 3(i− 1), (4.29)

where the initial condition x(0) = a is generated randomly fromN(0, 1) and the Jacobians

Ai are generated randomly with eigenvalues −2 + j,−2 − j , −3,−4, ...,−12, where

j2 = −1. Note here that if Eq. (4.28) is written in the form of Eq. (4.1), we have

S(t) = Ai when Ti ≤ t < Ti+1. The network representations of Ai in the first four

pieces (i = 1, 2, 3, 4, and t ≤ 12) are shown in Fig 4.5 (top row) and the color maps of

the corresponding adjacency matrix Ai are shown in the bottom row. The color in the

top row represents the weight on the edges where red is being the highest and blue is

being the lowest. The color in the bottom row represents the magnitude of the weights

on edges, where blue represents 0 and red represents the maximum value. As shown in

the bottom row of the figure, the blue color is dominant, as we focus on simulating a case

in which adjacency matrices are sparse, which is an expected characteristic of many real-
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Figure 4.6: Âi in the first 4 pieces

world systems [73, 74]. System (4.28) simulates a scenario where the network switches

connections every three time units.

In a noise free case, i.e., x̂(t) = x(t), by applying Eq. (4.12) to the time series output

x̂(t), Âi are computed with the error ||Ai − Âi|| in the order of 10−11. Fig. 4.6 shows the

networks reconstructed at different time points in the first 4 pieces (t ≤ 12). As shown in

this figure, the reconstructed networks are the same in each piece and are identical to the

ground truth networks in Fig. 4.5, verifying that our network inference method works well

in this case.

Next, we consider an additive noise case, x̂(t) = x(t) + ε(t) where ε(t) ∼ N(0, σ2)

and σ2 are set to be 0.1%, 1%, and 10% of the variance of x(t). We first reconstruct

network Âi from x̂(t), then compute γk to detect the switches. The performance of γk

in detecting the switches is evaluated using a modified receiver operating characteristic
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Figure 4.7: Modified ROC curves without measurement noise ( ), with simulated mea-
surement noise of 0.1%( ), 1% ( ) and 10% ( ) of the magnitude of the time series,
respectively.

curve (mROC) analysis [123] with a false positive rate (FPR) and true positive rate (TPR)

defined as follows:

FPR =
# alarms− # change points correctly detected

# alarms
, (4.30)

TPR =
# change points correctly detected

# change points
. (4.31)

Fig 4.7 shows the mROC curves of the γk statistic and the ζ statistic in detecting the

switches for different cases. As shown in this figure, the mROC curves of γk (blue) are

always above those of the ζ statistic (red). This suggests that γk performs better than ζ in

all cases. Here, we notice a “non-standard” trend in the mROC curves, which is due to

the fact that our switch detection problem is not a standard binary classification problem,

as pointed out in [123]. Quantitatively, the modified area under the curve (mAUC) values

for comparison are reported in Table 4.2. mAUC values for the γk statistic are close

to 1 in most cases, while those values for the ζ statistic are approximately zero. These

results indicate that the γk statistic works well while the ζ statistic is not able to detect the
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Figure 4.8: Columns of S(t) generated from data of patient 1 can be grouped into clusters
of similar patterns non-seizure (blue) and seizure (red).

switches.

``````````````̀Statistic
Noise level

No noise 0.1% 1% 10%

γk statistic 0.96 0.94 0.80 0.63
ζ statistic 0.15 0.071 0.070 0.068

Table 4.2: Modified AUC values

4.4.2 Graph-based seizure detection using EEG signals

Epilepsy is one of the most common neurological diseases, affecting about 50 mil-

lion people worldwide [124]. This disease, which is caused by excessive or synchronous

neuronal activities in the brain, often causes a patient to lose control and can lead to seri-

ous injuries or death. Early detection of epilepsy seizures using EEG signals is therefore

necessary for preventing these consequences. A challenging problem in this context is to

identify a sensitive, seizure detection statistic [125].

To demonstrate the effectiveness of our proposed spectral-based statistic in detecting

seizures, we use a data set of 21 EEG signals, sampled at 256 Hz [106, 126]. First, the

network capturing the influence of one channel on others, represented by the adjacency
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matrix S(t), is inferred using Eqs. (4.12 - 4.14). Here, a node represents an EEG channel

or the corresponding region of the brain where the electrode is placed. The weight on the

edge from node i to node j, given by Sij(t), quantifies the direct influence from channel

i to channel j. Second, γk is estimated from S(t), and the control chart is constructed at

confidence level α = 0.05.

The analysis of S(t) for a representative subject is reported in Figs 4.8-4.10. In each

figure, the plots are generated from consecutive samples immediately before and after a

seizure occurs. Specifically, Fig. 4.8 shows the hierarchical cluster tree of the influence of

one network node or EEG channel on others during non-seizure (blue) and during seizure

(red) conditions. In this tree, each leaf represents a node or an EEG channel. The influence

of one node on other nodes is quantified by its outgoing weight vector. The distance

measure to quantify the similarity of the influence of any two nodes is estimated by the

correlation between the corresponding outgoing weight vectors. As shown in this figure,

there are roughly two clusters of similar influence patterns for both seizure and non-seizure

stages. This indicates that on a large scale, different parts of the brain influence each

other in similar ways. The dynamics of the human brain is actually a low-dimensional

process and probably can be controlled by two degrees of freedom. Using a small distance

threshold (e.g. 0.1), the number of clusters of influence patterns drops from 5 during a non-

seizure to 2 during a seizure, suggesting that the number of influence patterns is smaller

during a seizure stage than during a non-seizure stage.

To further understand the dimension of the dynamics of brain activity, we analyze the

principal components of S(t). The results of this analysis are reported in Fig. 4.9. In each

plot, the horizontal axis, k, represents the index of principal components and the vertical

axis represents the percentage of variation in S(t) captured by the principal components.

As shown in the bottom plots of Fig. 4.9, during a seizure, the first principal component

of S(t) captures most of the variation in S(t) while during a non-seizure, more principal
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Figure 4.9: The trend of the percentage variance of S(t) captured by each principal com-
ponent during non-seizure (blue) and seizure (red).

components are required to represent S(t); that is, a higher dimension space is required

to represent S(t) during a non-seizure than during a seizure. This matches well with the

physiology of the process, as during a seizure, signals emitted from neurons are highly

synchronized [127, 128]. As a result, the degree of freedom of the system dynamics is

expected to decrease.

Fig. 4.10 shows the similarity in the influence of the nodes before a seizure occurs

(top row) and after a seizure occurs (bottom row). In each plot, the horizontal and vertical

axes represent the node index and the color represents the similarity between the outgoing

weight vectors of the nodes, with red representing maximal similarity. The similarity in

the influence of the nodes is more homogeneous (fewer colors) during a seizure than a non-

seizure. Hence, the influence of brain regions on each other is more homogeneous during

a seizure than a non-seizure. In addition, as shown in this figure, the network structure

changes slightly from one sample to another. This change might be due to the fact that

brain networks change topology during both seizures and non-seizures [129]. In other
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words, brain networks tend to switch connections while maintaining the total number of

connection patterns during a healthy stage.
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Figure 4.10: Similarity of influence of one channel to others during non-seizure (top row)
and seizure (bottom row).

Fig. 4.11 reports the seizure detection rate among all patients at α = 0.05 using γk

with k = 4 and using ζ statistics. γk can detect seizures with a detection rate of more than

60% in about 40% of the patients while ζ [112] does not detect any seizures. The overall

detection rate of the γk statistic is 37.59%, compared to 0% using the ζ statistic.

Last, we study the effect of the γk feature when employed with other seizure detection

methods in the literature. As a demonstration, we consider the random forest model with

the features including mean, variance, skewness, kurtosis, line length, and power spectrum

in the bands alpha, beta, and gamma and the power spectrum ratio extracted from each

EEG signal. Random forest was chosen as it has been shown to perform among the best

seizure detection methods [130] while these features were chosen because they capture
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Figure 4.11: Seizure detection rate using γk and ζ statistics

the physiology of the process. Specifically, for each patient, two types of random forests

are constructed: the orginal one [130] and the one augmented by the γk feature. All

random forests are composed of 1000 trees and were trained using 80% of the data and

tested using 20% of the data. Fig. 4.12 compares the testing error of the random forest

model employing the γk feature with the original random forest model. The horizontal

axis represents patient index and the vertical axis represent the seizure detection rate. As

shown in this figure,γk improves the testing error by more than 5% in 35% of the cases

while maintaining the detection accuracy in most other cases. On average, the detection

rate is improved by about 1%. Note that as the random forest model implemented in [130]

is among the best models in seizure detection, reducing its generalization error rate is a

challenging problem. In this context, the improvement of 5% that the γk feature provides

is very useful. Thus, the γk feature can be employed to improve the accuracy of seizure

detection methods such as the random forest.

This analysis suggests that the inferred network S(t) and the γk statistic can capture

the physiology of an EEG signal while maintaining a good seizure detection rate in many

cases. Therefore, γk can be used in addition to current statistics for seizure detection. The

advantage of this statistic is that it provides insights into causes due to structural changes,
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added

e.g., which neural connections change during a seizure.

4.5 Conclusions

In this chapter, we have addressed the problem of identifying a sensitive change de-

tection statistic in multivariate time series. Our contributions are twofold. First, we have

developed a method to infer a dynamic causal network from a single transient multivari-

ate time series. Second, we have introduced a spectral-graph-based statistic, γk, to detect

changes in system dynamics. We have also devised closed form and approximation for-

mulas for the distributions of γk, which are the foundation for developing quality control

charts. In a simulation, when there is no measurement noise, the AUCs are 0.96 and 0.15

for the γk statistic and the benchmark ζ statistic, respectively. AUCs when using γk for

the signal with 0.1%, 1%, and 10% noise are 0.94, 0.80, and 0.63, respectively while the

AUC when using the ζ statistic is about 0.07 in all cases. In detecting seizures using EEG

signals, the γk statistic by itself is able to detect seizure with detection rate of 38% while

the ζ statistic is not able to detect any seizures. These results together with the analysis

of the network structure S(t) inferred from data from a representative patient show that
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our method can capture the physiology of EEG signals while maintaining a good change

detection rate. They suggest that the γk statistic can be added to the current set of fea-

tures to improve the performance of current seizure detection methods. The γk statistic

can identify the time when the changes occur and can also specify the underlying coupling

structure that corresponds to the change.
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5. CONCLUSIONS

This dissertation studied the problem of modeling the coupling dynamics in real-world

systems from three different perspectives. On small-scale, we considered modeling the

coupling dynamics between degeneration and regeneration processes, which are the dy-

namics of an individual node in a network. On large-scale or network level, we considered

modeling the coupling dynamics exists in the form of direct influence from one node to

another. Finally, we developed a change detection statistic based on the inferred network

model. In the following subsections, we summarize our findings and suggest future re-

search directions.

5.1 Summary

The major contributions of this study are as follows:

• In the first problem, we introduced a model that captures the coupled dynamics

between regeneration and regeneration processes. Interactions between breakdown

and repair dynamics that influence downtime distributions in manufacturing systems

were explicitly considered, and dependencies beyond correlations between the time

between failures (TBF) and the time to repair (TTR) were captured. The periodic

solutions of the model capture the progressive evolution of long time-scale failure

and repair patterns. The distribution of short time-scale failure–repair cycles can

be captured by providing a class of random perturbations to certain model parame-

ters. We provided sufficient conditions for the existence and stability of the resulting

non-linear stochastic differential equation (n-SDE) model solutions that mimic the

breakdown and repair patterns observed in many real-world manufacturing systems,

namely, fairly regular (periodic) large breakdown and repair cycles, interspersed

with highly right skewed distributions of short cycles. We also defined the basin
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of attraction for the periodic orbit. The n-SDE model was parametrized using real-

world datasets acquired from an automotive manufacturing assembly line segment,

and the model solutions were compared with actual observations of TBF and TTR

patterns, as well as the performance of the process. Our approach reduced the com-

putation time by about 25% when compared to a discrete-event simulation model,

which uses conventional TBF and TTR distributions, implemented on a commercial

platform. Experimental investigations also suggested that the model can capture

the correlations and non-linear coupled dynamics that exist in real-world operations

among TBF and TTR, which are typically ignored in traditional approaches.

• In the second problem of modeling coupled dynamics at the network/system level,

we reported a sparse regression (referred to as the `1-min) approach with theoreti-

cal bounds on the constraints on the allowable perturbation to recover the network

structure that guarantees sparsity and robustness to noise. We also introduced aver-

aging and perturbation procedures to further enhance prediction scores (i.e., reduce

inference errors), and the numerical stability of `1-min approach. Extensive inves-

tigations have been conducted with multiple benchmark simulated genetic regula-

tory network and Michaelis-Menten dynamics, as well as real-world datasets from

DREAM5 challenge. These investigations suggested that our approach can signifi-

cantly improve, often times by 5 orders of magnitude over the methods reported pre-

viously for inferring the structure of dynamic networks, such as Bayesian network,

network deconvolution, silencing and modular response analysis methods based on

optimizing for sparsity, transients, noise and high dimensionality issues.

• In the third problem, we developed a network-based change detection method for

multivariate time series. In particularly, we presented an approach based on spec-

tral graph theory to detect changes in complex dynamic systems that are high di-
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mensional and noisy using a single realization of time series data collected under

specific types of common transient condition such as intermittency. In this prob-

lem, the method developed in problem 2 was extended to apply to the case when

only one time series is available. A spectral statisticγk was introduced to detect

change in system dynamics. We showed that under certain conditions, the statistic

follows a normal distribution and it can be employed to construct a change detection

procedure to detect qualitative changes in the coupling structure of the dynamic sys-

tem. Experimental investigations suggested that γk statistic by itself is able to detect

changes with modified area under curve (mAUC) equal to 0.96 (in simulation) and

detect seizures from EEG signal with detection rate of about 40%. Therefore, γk can

serve as an effective feature to detect change.

5.2 Future research

In the future, we planed to extend the research in the following directions:

1. In this problem, we are interested in controling the heat propagation process inside

a fuel cell. Fuel cell is an ideal source of energy. It is both environmental friendly

and efficient. The only by-product from combining hydrogen and oxygen in a fuel

cell is water, so fuel cells do not emit gas.They are also twice as efficient as internal

combustion engine. Fuel cells can be used to converts the chemical energy in the

fuel to electricity with efficiencies of up to 60%. In addition, fuel cells are quiet

when operating. However, the current issue with fuel cells is their high cost caused

by the total lost when a cell breaks down. The main reason why a fuel cell breaks

down is that certain internal regions of the cell is overheated. Developing a method

to monitor and control internal temperature of a fuel cell is therefore necessary in

manufacturing a cost effective fuel cell. Mathematically, the heat propagation pro-
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cess inside a fuel cell can be modeled by the following equation:

ẋi(t) = fi(x,pi,u, t), i = 1..n (5.1)

xi(0) = ai, (5.2)

where u is a control input. The challenge here is that f(x,pi,u, t) is unknown and

difficult to identify from data. Here, we propose a network-based method, which is

an extension of the method developed in Section 4, to model and control the heat

propagation process inside a fuel cell. A node in this network represents the position

of an in situ sensor located inside the cell. The weight on an edge represents the

rate at which the heat propagates from one node to another, defined as sij(t) =
∂fj
∂xi

.

Physically, (sij(t)) estimates the Jacobian of f(x,pi,u, t). The challenge here is that

(sij(t)) can not be inferred by directly applying the method developed in Section 4

because of the existence of control input u. In addition, we also need to estimate the

coeficients associated with the input vector u.

2. In the second project, we will apply the network inference method and the change

detection statistic introduced in Section 4 to fMRI dataset to develop a network rep-

resentation of human brain. According to the NSF BRAIN initiative, understanding

how individual cells or parts of human brains interact is the key in solving many

challenging problems, including treating and preventing brain disorders, and under-

standing the mechanism under which a human body record and process vast amount

of information in very short time. The network model developed from this research

direction can be used to detect onset of diseases such as brain cancer and other ner-

vous system disorders or traumatic brain injury. In addition, It can be used facilitate

other study on brain-inspired smart technologies to meet societal needs in the future.
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