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ABSTRACT

Localization is a powerful tool to compute physical quantities such as partition func-

tions, free energies and expectation values of certain operators exactly at any coupling in

many supersymmetric theories. Due to this merit, the technique is able to provide highly

nontrivial tests of AdS/CFT correspondence. We apply localization procedure to the most

general three-dimensional N = 1 Chern-Simons matter theories, which are not studied

in the previous localization literature, and show that they can also be formally localized.

The other focus in this body of work is the study of an important aspect of high energy

physics, the higher spin theories, and their conjectured CFT duals. Higher spin theory is a

remarkable extension of Einstein gravity in which mass particles of all spin are described

by self-consistent and fully nonlinear field equations. We perform tests of the duality

between supersymmetric higher spin theories in AdS4 and the corresponding CFTs, by

comparisons of the one loop free energies on both sides. We show that the mismatch be-

tween the free energies in the duality between Type-B higher spin theory/fermionic vector

model cannot be solved by the introduction of supersymmetry. We then turn to another

test of the HS/CFT correspondence, by comparing the tree-level three-point functions on

both sides. We produce the full structures of three-point Witten diagrams for both parity-

preserving and parity-violating bosonic HS theories, and show that they match perfectly

with the corresponding ones on CFT side.
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1. INTRODUCTION

The AdS/CFT correspondence, also known as holography, represents a major advance

in understanding non-perturbative aspects of quantum gravity and string theory, as well as

quantum field theories by facilitating their studies in the corresponding weakly coupled

theory [1]. Remarkable examples are several newly discovered superconformal Chern-

Simons (CS) matter theories [2–4], which are conjectured to be dual toM -theory onAdS7

orbifold backgrounds. Among the possible checks of these dualities are the computations

of partition functions, free energies and expectation values of certain operators on both

sides of the dual theories and making comparisons. These are usually difficult to do pertur-

batively, as the perturbative region of one theory is the strongly coupled region of its dual.

However, the situation becomes much easier for theories with supersymmetry, thanks to

the technique called localization. It was demonstrated, using localization, that finding the

partition functions and expectation values of certain observables on CFT side reduces to

calculations in matrix models. In particular, this process is coupling constant independent.

In this spirit, localization has stimulated great amounts of studies in recent years [5–14],

since it is a powerful tool in obtaining exact results in certain supersymmetric theories at

any coupling and thus provides highly non-trivial tests of the conjectured dualities.

Under the theme of holography, another fascinating subject is the higher spin (HS)/CFT

duality. HS theories are expected to emerge from the tensionless limit of string theory, and

contain scalars, spin-1/2 fermions and an infinite tower of fields with spin s ≥ 1 [15].

Their conjectured duals are conformal field theories with matter in vector representation

of the gauge groups [16–19]. Notably, there are two types of parity invariant Vasiliev

HS gravities, known as Type-A and B [18]. In their simplest forms, they both contain an

infinite tower of massless even spin fields, each occurring once. They differ from each
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other in the parity of the spin-0 field, which is parity even (odd) in Type-A (B) theory. It

has been conjectured that Type-A theory with ∆ = 1 boundary condition imposed on the

scalar is dual to the O(N) singlet sector of N free real scalars [16], while Type-B theory

with ∆ = 2 boundary condition imposed on the pseudoscalar is dual to the O(N) singlet

sector of N free Majorana fermions [18] (for earlier work in which HS holography involv-

ing CFTs with matrix valued free fields, see [17]). These are HS symmetry preserving

boundary conditions, with standard boundary conditions imposed on all other fields un-

derstood. The dual CFT can be altered by changing the boundary conditions imposed on

the spin-0 field in such a way that they break HS symmetry. For instance, Type-A model

with ∆ = 2 boundary condition on the scalar is conjectured to be dual to the critical O(N)

vector model [16], while Type-B model with ∆ = 1 boundary condition imposed on the

pseudoscalar is conjectured to be dual to O(N) Gross-Neveu model [18].

It has been noted that the HS/CFT duality is expected to arise in weakly coupled

regimes of both bulk and boundary field theories. Therefore, one expects that higher spin

AdS/CFT correspondence should be amenable to test order by order in perturbation theory.

A highly non-trivial approach to test the conjectured duality is to match the one loop free

energies on both sides of the duality [20,21]. Indeed, the one loop test supports the duality

between Type-A model with the scalar field obeying ordinary boundary condition and the

free bosonic vector model well. However, for Type-B model in Euclidean AdS4 with the

alternate boundary condition imposed on the pseudoscalar, it is observed that there exists

a mismatch of its one loop free energy with the one of the conjectured dual theory, which

is a fermionic vector model living on the boundary S3.

As far as the checks of the HS/CFT duality are concerned, another important test com-

plementary to the one stated above is the comparison of the three-point functions on both

sides. Due to the non-localities in Vasiliev equations which describe the dynamics of HS

theories, the computation of three-point function can be done so far at tree-level with one
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scalar leg on the bulk side. In this context the first three-point functions were computed

in [22] in the parity even cases with spins s1 − s2 − 0, and they were found to match with

those of the dual theories. In particular in [22] it was assumed that the results would give

the correct CFT structures and it is possible to compare the leading coefficients only by

choosing certain special kinematics.

This dissertation consists of three parts as follows. (i) We first apply localization

to general N = 1 superconformal theories in three-dimension and compute the parti-

tion function [23]. (ii) We then move on to the study of HS/CFT dualities and extend

the previous one loop tests to a wider class of HS theories constructed by Konstein and

Vasiliev [24], which contains supersymmetric HS theories as special cases, and their con-

jectured duals [25]. We will show that the mentioned mismatch of one loop free energies

is also present in supersymmetric cases, and the problem remains to be an open one. The

connection between (i) and (ii) is that in the higher spin limit, the N = 1 superconfor-

mal theories we considered in the first part should be dual to N = 1 HS theories with

Chan-Paton factors in AdS4. We left the verification of this duality to future works. (iii)

We go beyond the previous one loop free energy computation, and compute the tree-level

three-point Witten diagrams of HS theories in AdS4, following [22]. In particular, we

provide simplifications in the computation on bulk side and produce the full structures of

the three-point functions for both parity-preserving and parity-violating HS theories, and

compare them with the three-point correlation functions from the dual CFTs [26]. This

will provide a novel approach to check the HS/CFT duality in addition to the one loop free

energy test.

The rest of the dissertation is organized as follows. In chapter 2, we review the local-

ization technique and describe our published results on the application of localization to

general three-dimensional N = 1 superconformal theories [23]. In chapter 3, we present

our work on the one loop tests to supersymmetric HS/CFT dualities [25]. In chapter 4 we

3



carry out the computation of three-point functions of both parity-preserving and parity-

violating HS theories in AdS4, and show that they match with the corresponding CFT

results exactly [26].
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2. N = 1 CHERN-SIMONS MATTER THEORY AND LOCALIZATION∗

The idea of localization was first introduced in [27] to great effect in computing ob-

servables in certain topologically twisted theories. More recently, initiated by the work

of Pestun [5], supersymmetric localization is shown to be a powerful tool for computing

exact results in supersymmetric quantum field theories at any coupling. Since then there

has been a wave of exact results for non-topological observables on compact manifolds

for theories in various dimensions and with various amounts of supersymmetry [6–14]. In

particular the localization method has been used to great extent to attack the problems of

various conjectured AdS/CFT dualities, as the perturbative region of one theory is dual

to the strongly coupled of the dual, and it is hard to perform the check using ordinary

perturbative methods.

This chapter is based on the work [23] in collaboration with Dr. Dimitrios Tsimpis.

2.1 The main idea

Consider a generic partition function with a deformation

∫
dϕeiS−t∆V , (2.1)

where
∫
dϕ stands for integrations over all fields in consideration, S is the original action,

t is a constant parameter and ∆V is the deformation. If the action is invariant under some

symmetry transformation α, and ∆V is α-exact, i.e. ∆V = δαṼ , then a derivative of the

∗Reprinted with permission from “N = 1 Chern-Simons-matter theory and localization” by Dimitrios
Tsimpis and Yaodong Zhu, 2016, Nuclear Physics B, Volume 911, Pages 355-387, Copyright [2016] by
Elsevier.
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partition function with respect to t would read

− t
∫
dϕ∆V eiS−t∆V

=− t
∫
dϕδαṼ e

iS−t∆V

=− tδα
∫
dϕṼ eiS−t∆V + tδα(

∫
dϕ)Ṽ eiS−t∆V + t

∫
dϕṼ δαe

iS−tδαṼ

=t

∫
dϕṼ eiSδαe

−tδαṼ ,

(2.2)

where we restrict the theory to the one with δα-invariant measure
∫
dϕ, and we have used

the fact δαS = 0. Interestingly, a closer observation of the last line indicates that, if δαṼ

is also δα-closed, then this t-derivative would be zero. As such, the partition function

(2.1) is independent of the deformation. An important consequence is that we can choose

deformation ∆V to have a positive definite bosonic sector and tune t to be large, then

the exponent would be dominated by the deformation and the integration would receive

contribution only from the saddle points of the deformation. This technique is so called

localization.

The crucial point in the above argument is that one needs to find a proper symmetry

α of the theory which is nilpotent, (δα)2 = 0, then δαṼ would automatically be closed.

This gets facilitated in supersymmetric theories, where one can choose a proper super-

symmetry transformation to be the α and have (δα)2 = 0 satisfied. For examply, in 3D

N = 2 supersymmetric field theories, it is shown in [6] that if one keeps only one of

the two supersymmetry parameters and set the other one to zero, then the supersymmetry

variation corresponding to this choice parameters would be nilpotent and thus can be used

in localization. However, it is not always true that there exists a nilpotent variation in all

supersymmetric theories, and in these cases one may need to opt to the variation which

squares to a transformation in the isometry group of the manifold, which in turn leads to

6



δ2
αṼ = 0 upon volume integration.

2.2 3D N = 1 Chern-Simons matter theory

Starting from this section we introduce a specific model, the general N = 1 Chern-

Simons matter theory, then carry out localization procedure to study its partition function.

2.2.1 On-Shell

The general component form of the on-shell N = 1 classically-superconformal CS

Lagrangian with Spin(5) ' Sp(2) global symmetry and gauge group U(N) × U(N) is

given in [28]

L = LCS + Lkin + L4 + L6 , (2.3)

where LCS is the pure CS Lagrangian, Lkin is the matter kinetic term, L4 is the quartic

interaction and L6 is the sextic potential. More specifically,†

LCS =
k1

2π
εµνρtr

{
1

2
Aµ∂νAρ +

i

3
AµAνAρ

}
− k2

2π
εµνρtr

{
1

2
Âµ∂νÂρ +

i

3
ÂµÂνÂρ

}
,

(2.4)

where the normalization above was chosen to facilitate the derivation of the superconfor-

mal invariance; Aµ, Âµ are gauge fields in the adjoint of U(N). The matter kinetic terms

read

Lkin =
1

2π
tr
{
−DµXADµXA + iΨ̃Aγ

µDµΨA
}
, (2.5)

where A = 1, . . . , 4 is an Sp(2) index; XA is in the bifundamental (N̄ ,N) while XA is

in the (N, N̄), and similarly for ΨA, ΨA. Also we adopt the following convention for the

spinors:

ψ̃ ≡ ψTC−1 . (2.6)
†We follow closely the notation of [28], to which the reader is referred for more details.

7



The most general quartic interaction terms can be written in the form L4 = L4a + L4b +

L4c + L′, where

L4a =
1

2π
itr{ᾱ1ε

ABCDΨ̃AXBΨCXD − α1εABCDΨ̃AXBΨCXD}

L4b =
1

2π
itr{α2,1Ψ̃AΨAXBX

B − α2,2Ψ̃AΨAXBXB}

L4c =
1

2π
2itr{α3,1Ψ̃AΨBXAXB − α3,2Ψ̃BΨAXBX

A}

L′ = 1

2π
tr{a1ΩADΩBCΨ̃AΨBXCXD + a2ΩADΩBCΨ̃AΨBXCX

D

+ a3ΩACΩBDΨ̃AXBΨCXD + ā3ΩACΩBDΨ̃AXBΨCXD

+ a4ΩABΩCDΨ̃AXBΨCXD + ā4ΩABΩCDΨ̃AXBΨCXD} .

(2.7)

The sextic potential consists of two terms L6 = Lpot + L′′, where

Lpot =
1

2π

1

3
tr{α4,1X

AXAX
BXBX

CXC + α4,2XAX
AXBX

BXCX
C

+ 4α4,3XAX
BXCX

AXBX
C − 6α4,4X

AXBX
BXAX

CXC}

L′′ = 1

2π
ΩBCΩDEtr{nXBX

AXCX
DXAX

E}

+
1

2π
ΩBCΩDEtr{mXBX

AXAX
DXCX

E}

+
1

2π
ΩBCΩDEtr{m̄XBXAX

AXDX
CXE} .

(2.8)

Here ΩAB is the Sp(2)-invariant antisymmetric tensor, which satisfies ΩABΩAC = δBC .

One can show that the theory is invariant under the following N = 1 Poincaré supersym-

8



metry

δXA =iΩAB ε̃Ψ
B

δXA =iΩAB ε̃ΨB

δΨA =ΩABγ
µεDµX

B + {ΩAB(α2,2X
CXCX

B

− α2,1X
BXCX

C)− 2α3ΩBCX
BXAX

C}ε

δΨA =ΩABγµεDµXB + {ΩAB(−α2,1XCX
CXB

+ α2,2XBX
CXC) + 2α3ΩBCXBX

AXC}ε

δAµ =
1

k1

[ΩAB ε̃γµΨAXB + ΩABXBΨ̃Aγµε]

δÂµ =
1

k2

[ΩABX
B ε̃γµΨA + ΩABΨ̃AγµεXB] ,

(2.9)

provided that the coefficients satisfy the relations

a1 = −2i(
1

k1

+ ᾱ1) , a2 = 2i(
1

k2

+ α1) ,

a3 = −ā3 − i(α1 − ᾱ1) , a4 = i(α1 − ᾱ1) ,

α2,1 = − 1

k1

− 2ᾱ1 , α2,2 = − 1

k2

− 2α1 , α3 = iā3 − α1 ,

α4,1 = −3α2
2,2 + 4α2,2α3 +m , α4,2 = −3α2

2,1 + 4α2,2α3 +m ,

α4,3 = α2,2α3 +
m

4
, α4,4 = −α2,1α2,2 + 2α2,2α3 +

m

2
,

m̄ = 4(α2,2 − α2,1)α3 +m , n = 4(α3 − α2,2)α3 −m .

(2.10)

In addition to the CS levels k1, k2, the theory has four independent parameters. One

can choose them to be α1, ᾱ1, ā3 and m.

2.2.2 Off-Shell

In the previous section we studied the on-shell formulation of the theory. However to

carry out the localization procedure one needs off-shell supersymmetry. For that purpose

9



we introduce the auxiliary scalar fields F and the gaugini λ, λ̂ in the scalar and gauge

multiplets, respectively. The off-shell action reads

L = LCS + Lkin + Lpotential , (2.11)

where

LCS =
k1

2π
tr

{
εµνρ(

1

2
Aµ∂νAρ +

i

3
AµAνAρ) +

i

2
λ̃λ

}
− k2

2π
tr

{
εµνρ(

1

2
Âµ∂νÂρ +

i

3
ÂµÂνÂρ) +

i

2
˜̂
λλ̂

}
,

(2.12)

Lkin =
1

2π
tr
{
−DµXADµXA + iΨ̃Aγ

µDµΨA − FAFA

}
, (2.13)

Lpotential =
1

2π
tr{i[(−α2,1XBX

BXA + α2,2XAX
BXB)− 2α3ΩABΩCDXCX

BXD]FA

+ iFA[(−α2,1X
AXBX

B + α2,2X
BXBX

A) + 2α3ΩABΩCDX
CXBX

D]}

+
1

2π
tr{ΩABλ̃ΨAXB − ΩABXBΨ̃Aλ− ΩABX

BΨ̃Aλ̂+ ΩAB ˜̂
λΨAXB}

+
1

2π
tr{iα2,1ΩADΩBCΨ̃AΨBXCXD − iα2,2ΩADΩBCΨ̃AΨBXCX

D

− i

2
α2,2ΩABΩCDΨ̃AXBΨCXD +

i

2
α2,1ΩABΩCDΨ̃AXBΨCXD

+ iα3ΩACΩBDΨ̃AXBΨCXD − iα3ΩACΩBDΨ̃AXBΨCXD

− i

2
α2,1ΩADΩBCΨ̃AXBΨCXD +

i

2
α2,2ΩADΩBCΨ̃AXBΨCXD}

+
1

2π
itr{α2,1Ψ̃AΨAXBX

B − α2,2Ψ̃AΨAXBXB}

+
1

2π
2itr{α3Ψ̃AΨBXAXB − α3Ψ̃BΨAXBX

A} .

(2.14)

This can be rewritten compactly in superspace formalism, see e.g. (3.8) of [29] which

10



we reproduce here

S =
k1

2π
SCS(A)− k2

2π
SCS(Â) +

1

2π

∫
d2θtr{DaΦ

†
AD

aΦA

+ (c1Φ†AΦAΦ†BΦB + c2Φ†AΦBΦ†BΦA + c3ΩABΩCDΦ†AΦCΦ†BΦD)} ,
(2.15)

where ΦA is a superfield, and the connection with the component formulation discussed

previously is provided by the relations

c1 = −iᾱ1 −
i

2k1

; c2 = iα1 +
i

2k2

; c3 = iα1 + ā3 . (2.16)

The action is invariant under the off-shell supersymmetry transformations

δXA = iΩAB ε̃Ψ
B

δXA = iΩAB ε̃ΨB

δΨA = ΩABγ
µεDµX

B − iΩABF
Bε

δΨA = ΩABγµεDµXB − iΩABFBε

δFA = −ΩAB ε̃γ
µDµΨB − iXA(ε̃λ̂) + i(ε̃λ)XA

δFA = −ΩAB ε̃γµDµΨB − iXA(ε̃λ) + i(ε̃λ̂)XA

δAµ = −iε̃γµλ

δÂµ = −iε̃γµλ̂

δλ = −1

2
γµνεFµν

δλ̂ = −1

2
γµνεF̂µν .

(2.17)

We note that besides k1, k2 the off-shell theory has only three free parameters, as

can be seen from (2.16). This is one fewer parameter than in the on-shell formulation.

Specifically, after replacing the auxiliary field F and gaugini λ, λ̂ by the solutions of
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their respective equations of motion, the Lagrangian (2.11) goes back to (2.3), but with

α4,3 = 0 in Lpot. In other words, for the on-shell theory obtained by starting from (2.11)

and then eliminating the auxiliary fields, m is not an independent parameter but is equal

to −4α2,2α3, which in its turn can be expressed in terms of α1, ᾱ1 and āi. This can be

understood from the fact that the sextic potential XAX
BXCX

AXBX
C in Lpot cannot be

obtained from the off-shell Lagrangian by replacing F by its solution.

In the following we will put the theory on a curved manifold. More specifically, to go

from flat to curved spacetime one needs to:

• covariantize all derivatives,

• introduce additional terms 1
3
ΩABX

Bγµ∇µε and 1
3
ΩABXBγ

µ∇µε in the transforma-

tions of ΨA and ΨA, respectively,

• have ε satisfy the conformal Killing spinor equation

∇µε = γµη , (2.18)

where η is some arbitrary spinor,

• add a scalar-curvature coupling term, −1
8
RXAXA, to the Lagrangian.

Explicitly:

δΨA → δΨA = ΩABγ
µεDµX

B +
1

3
ΩABX

Bγµ∇µε− iΩABF
Bε ,

δΨA → δΨA = ΩABγµεDµXB +
1

3
ΩABXBγ

µ∇µε− iΩABFBε ,

(2.19)

Lkin → Lkin =
1

2π
tr

{
−DµXADµXA −

1

8
RXAXA + iΨ̃Aγ

µDµΨA − FAFA

}
.

(2.20)

The resulting curved-space Lagrangian will be used in the next section.
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2.3 Localization

In order to apply the localization procedure, the theory must be invariant under the

action of a fermionic symmetry δ which is nilpotent, δ2 = 0, or more generally squares to

a symmetry of the theory. Deforming the action by a δ-exact term,

S −→ S + tδV , (2.21)

leaves invariant the expectation values of δ-closed operators. Hence we may take the limit

t → ∞, upon which the theory localizes to the set Σ of critical points of δV [27]. In this

limit the path integral can be performed by restricting S to Σ and computing a one-loop

determinant describing the fluctuations normal to Σ. This procedure was first carried out

in detail in [5] for the case of SYM on the round S4.

In order for the path integral to be well-defined, we will consider the theory in Eu-

clidean signature. All fields are then complexified, while the action becomes a holomor-

phic functional in the space of complexified fields. This procedure is known under the

name of “holomorphic complexification” and ensures that supersymmetry is preserved,

see e.g. [30]. Following [5] our strategy will be to choose a path-integration contour in the

space of fields, such that when restricted to that contour the deformation δV becomes a

sum of positive semi-definite terms. The locus Σ will then be determined by the condition

that each term in the sum vanishes.

2.3.1 Setup

As explained above, in order to apply the localization procedure we need to pass from

Lorentzian to Euclidean signature, where all fields become complex. Moreover εµνρ in the

CS piece of the Lagrangian becomes iεµνρ.

We then deform the action by adding a term tδV such that δ2V = 0. For theories with
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N > 2 supersymmetry, one can have δ2 = 0 on all fields of the theory. However, this is

not possible for theN = 1 superalgebra. Instead, as we will show later, forN = 1 we can

require that δ squares to a transformation in the isometry group of the manifold, which in

turn leads to δ2V = 0 upon volume integration.

Furthermore we must restrict the supersymmetry parameter ε to satisfy the Killing

spinor equation‡

∇µε = Sγµε , (2.22)

where S is in general a complex function. The reason for restricting to this Killing spinor

equation instead of the more general one (2.18) is the following. Equation (2.18) would in

general imply that δ2 induces not only a translation, a rotation and a gauge transformation

but also a dilatation, which would break the invariance of the deformation δV .

Under the assumption of smoothness, any solution to the Killing spinor equation which

is not identically zero is nowhere-vanishing on the manifold. This follows from the fact

that (2.22) is a first-order differential equation, hence if the Killing spinor vanishes at any

one point it must vanish everywhere.

Given a nowhere-vanishing Killing spinor ε, any spinor Ψ can be decomposed as fol-

lows

Ψ = Ψ+ε+ Ψ−ε
c , (2.23)

where Ψ± are anticommuting scalars, and in Euclidean signature we have defined εc ≡

Cε∗. From now on we require the supersymmetry parameters to be commuting. The

off-shell Lagrangian given in section 2 remains invariant under supersymmetry with these

commuting parameters. With the above definitions the supersymmetric transformations

‡A detailed analysis of this Killing spinor equation in Lorentzian signature is given in section 3 of [31].
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can be rewritten as

δXA =iaΩABΨB
−

δXA =iaΩABΨB−

δΨA− =
1

a
ΩABV

µDµX
B

δΨA+ =
1

a
ΩABU

µDµX
B + SΩABX

B − iΩABF
B

δΨA
− =

1

a
ΩABV µDµXB

δΨA
+ =

1

a
ΩABUµDµXB + SΩABXB − iΩABFB

δFA =− ΩABV
µDµΨB

+ + ΩABU
µDµΨB

−

+ 3S∗aΩABΨB
− − iaXAλ̂− + iaλ−XA

δFA =− ΩABV µDµΨB+ + ΩABUµDµΨB−

+ 3S∗aΩABΨB− − iaXAλ− + iaλ̂−X
A ,

(2.24)

and for the gauge multiplets

δAµ =− iVµλ+ + iUµλ−

δÂµ =− iVµλ̂+ + iUµλ̂−

δλ+ =− 1

2a
iεµνρUρFµν

δλ− =− 1

2a
iεµνρVρFµν

δλ̂+ =− 1

2a
iεµνρUρF̂µν

δλ̂− =− 1

2a
iεµνρVρF̂µν ,

(2.25)
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where

a ≡ ε†ε = ε̃εc = −ε̃cε , V µ ≡ ε̃γµε ,

Uµ ≡ ε†γµε = −ε̃γµεc , ∇µε
c = −S∗γµεc .

(2.26)

Note that ΨA
−, ΨA

+, ΨA−, ΨA+, λ− and λ+ are anticommuting; so is the supersymmetry

transformation δ. With the above setup, we find

δ2XA = −iV µDµXA

δ2ΨA
− = −iV µDµΨA

−

δ2ΨA
+ = −iV µDµΨA

+ − 2ia(S − S∗)ΨA
−

δ2FA = −V µDµFA + V µ∂µSXA ,

(2.27)

and

δ2Aµ = −iV νFνµ

δ2Âµ = −iV νF̂νµ

δ2λ− = −iV µDµλ−

δ2λ+ = −iV µDµλ+ − 2ia(S − S∗)λ−

δ2λ̂− = −iV µDµλ̂−

δ2λ̂+ = −iV µDµλ̂+ − 2ia(S − S∗)λ̂− .

(2.28)

Equivalently, written in terms of the original fields, two supersymmetry transforma-
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tions give

δ2XA = −iV µDµXA

δ2ΨA = −iV µDµΨA − iSV µγµΨA

δ2FA = −iV µDµFA + V µ∂µSXA ,

(2.29)

and

δ2Aµ = −iV νFνµ

δ2Âµ = −iV νF̂νµ

δ2λ = −iV µDµλ− iSV µγµλ

δ2λ̂ = −iV µDµλ̂− iSV µγµλ̂ .

(2.30)

V µ can be identified as part of the orthonormal frame that trivializes the tangent bundle

of the manifold. Therefore, apart from additional terms which can be interpreted as gauge

transformations or rotations, δ2 acting on each field gives a translation along V µ.

In the next subsection we will ultimately set a = 1 and S = 0, upon which the above

equations simplify further.

2.3.2 Deformations

Matter Sector:

To localize the matter sector, we first consider the deformation,

δV =

∫
√
gd3xδ[(δΨA)†ΨA] , (2.31)

where we have defined

(δΨA)† ≡ ΩABε†γµDµXB + S∗ΩABXBε
† + iΩABFBε

† . (2.32)
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Note that at generic points in field space (δΨA)† is not the adjoint of δΨA, and δV as

defined in (2.31) is a holomorphic functional in the space of complexified fields.

As explained in the beginning of section 2.3, we will choose a path-integration contour

C in the space of fields such that when restricted to C the deformation δV becomes a sum

of positive semi-definite terms. This requirement selects C as the subspace where the fields

satisfy the reality condition

Contour C :
XA† = XA , FA† = FA ,

A†µ = Aµ , Â†µ = Âµ .
(2.33)

Moreover the integrand in (2.31) is given by

δ[(δΨA)†ΨA] = δ(δΨA)†ΨA + (δΨA)†δΨA . (2.34)

Recall that the supersymmetry transformation δ is anticommuting; the relative sign on

the right-hand side is positive since (δΨA)† is bosonic.

Let us now verify that the deformation is δ-closed. From (2.34) we obtain

δ2[(δΨA)†ΨA] =δ2(δΨA)†ΨA − δ(δΨA)†δΨA + δ(δΨA)†δΨA + (δΨA)†δ2ΨA

=δ2(δΨA)†ΨA + (δΨA)†δ2ΨA .

(2.35)

The second term in the second line can be read off from (2.29). One can obtain the

first term in the second line from (2.29) and (2.32)

δ2(δΨA)†ΨA =− iV µDµ[(δΨA)†]ΨA + iS∗V µ(δΨA)†γµΨA

+ 2iS∗ΩABVµDνXBε
†γµνΨA − 2iSΩABVµDνXBε

†γµνΨA ,

(2.36)
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where we used∇µε
c = −S∗γµεc and chose S to be a constant. Finally,

δ2[(δΨA)†ΨA] =− iV µ∂µ[(δΨA)†ΨA]

+ iS∗V µ(δΨA)†γµΨA − iSV µ(δΨA)†γµΨA

+ 2iS∗ΩABVµDνXBε
†γµνΨA − 2iSΩABVµDνXBε

†γµνΨA .

(2.37)

This vanishes under the volume integration if and only if S is real constant. On the

other hand the integrability condition of the Killing spinor (2.22) relates the constant S to

the curvature scalar of the manifold

R = −24S2 . (2.38)

If S is nonvanishing, this would allow hyperbolic space as a solution. In the following

we will discard this possibility and instead demand that the manifold should be compact,

in order to ensure that the partition function is well-defined.

On T 3, the curvature scalar vanishes and so does S. This implies that the Killing

spinor is constant and nowhere-vanishing. Moreover, in (2.29) and (2.30), with vanishing

S terms, δ2 gives a translation and a gauge transformation on all fields. δ-exactness and

δ-closedness of the deformation are thus guaranteed.

We will henceforth restrict the manifold to be T 3. We normalize the constant Killing

spinor such that ε̃εc = 1. The bosonic part of the deformation (2.34) is

(δΨA)†δΨA =DµXAD
µXA + iεµνρUρDµXADνX

A + FAF
A

+ iUµDµX
AFA − iUµDµXAF

A ,

(2.39)

where Uµ is a real unit vector, which we may choose to be along the third direction of T 3

without loss of generality. When restricted to the contour C, cf. (2.33), the bosonic part of
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the deformation is positive semi-definite, and the saddle points where it vanishes are given

by

D1XA + iD2XA = 0 , D3X − iF = 0 . (2.40)

Hence with this deformation alone the theory does not reduce to a matrix integral with

discrete saddle points: one can always choose some nontrivial functions for XA and F

so that (2.40) is satisfied. We therefore add another term δ[(δΨA)†ΨA] to the original

deformation

(δΨA)†δΨA + (δΨA)†δΨA =DµXAD
µXA + iεµνρUρDµXADνX

A + FAF
A

+ iUµDµX
AFA − iUµDµXAF

A

+DµXAD
µXA − iεµνρUρDµXADνX

A + FAF
A

− iUµDµX
AFA + iUµDµXAF

A

=2{DµXAD
µXA + FAF

A} .

(2.41)

When restricted to the contour C, the two terms in the last line are both positive semi-

definite, and the critical points are given by

DµXA = FA = 0 . (2.42)

Gauge Sector:

A δ-closed deformation for the gauge sector is

∫
d3x

{
δ[(δλ)†λ] + δ[(δλ̂)†λ̂]

}
, (2.43)
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where we have defined

(δλ)† ≡ −ε†γµνF µν ; (δλ̂)† ≡ −ε†γµνF̂ µν , (2.44)

so that the deformation (2.43) is a holomorphic functional of the complexified fields. Note

in particular that (δλ)† is not the adjoint of δλ at generic points in field space, but only

when restricted to the contour C, cf. (2.33).

The bosonic part of the deformation (2.43) is given by

(δλ)†δλ+ (δλ̂)†δλ̂ =
1

2
F µνFµν +

1

2
F̂ µνF̂µν . (2.45)

When restricted to the contour C this becomes a sum of positive semi-definite terms,

with critical points given by

Fµν = F̂µν = 0 . (2.46)

2.3.3 Gauge Fixing

We now introduce the usual ghost and anti-ghost action to fix the infinite degrees of

freedom of the gauge fields. The ghost term is not invariant under supersymmetry, so one

cannot immediately proceed to do localization. To deal with this, we follow [5, 6], and

introduce a new fermionic symmetry ∆

∆ ≡ δQ + δB , (2.47)

where δQ stands for supersymmetry and δB for BRST transformation.

Under a BRST transformation, we have

δBAµ = ∂µC + i[Aµ, C] , δBλ = −i{λ,C} . (2.48)
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and similarly for Â, λ̂. Here C is the usual anti-commuting ghost field. It transforms under

supersymmetry and BRST as

δQC = 0 , ∆C = δBC = a0 −
i

2
{C,C} , ∆a0 = 0 , (2.49)

where a0 is a constant ghost-for-ghost field that takes care of the zero mode of C. With

this combined transformation, one can verify that

∆2Aµ =− iV νFνµ + i[Aµ, a0] ,

∆2λ =− iV µDµλ+ i[λ, a0] ,

∆2C =i[C, a0] .

(2.50)

The rest of the ghost complex transforms under ∆ as

∆C̄ = b , ∆b = −iV ·DC̄ + i[C̄, a0] ,

∆ā0 = C̄0 , ∆C̄0 = i[ā0, a0] ,

∆b0 = C0 , ∆C0 = [V · A, b0] + [Aµ, ∂
µ(V · A)]− i2(V · A) + i[b0, a0] ,

(2.51)

where C̄ is the anti-ghost, and b is the Lagrangian multiplier; ā0,b0,C0 and C̄0 are constant

fields needed to fix the zero modes of the ghosts and b.

The gauge-fixing action is

i

∫
d3xtr{∆[C̄(∂µAµ + b0)− Cā0]}

=i

∫
d3xtr{b(∂µAµ + b0)− C̄(∂µDµC + ∂µδQAµ + C0)

− (a0 −
i

2
{C,C})ā0 + CC̄0} .

(2.52)

Note that the ghost, the anti-ghost and the transformation ∆ are all anti-commuting.
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It can be shown that the integration over all fields in the ghost complex gives the Lorentz

gauge. Now this action is invariant under ∆ transformation

∆2[C̄(∂µAµ + b0)− Cā0]

=∆2(C̄)(∂µAµ + b0) + C̄(∂µ∆2(Aµ) + ∆2(b0))

−∆2(C)ā0 − C∆2(ā0)

=∆2(C̄)(∂µAµ + b0) + C̄(∂µ∆2(Aµ) + ∆2(b0))

− i[C, a0]ā0 − iC[ā0, a0] .

(2.53)

The last two terms cancel under the trace. The first two can also be shown to cancel∫
d3xtr{∆2(C̄)(∂µAµ + b0) + C̄(∂µ∆2(Aµ) + ∆2(b0))}

=

∫
d3xtr{(−iV ·DC̄ + i[C̄, a0])(∂µAµ + b0)

+ C̄∂µ(−iV νFνµ + i[Aµ, a0])

+ C̄([V · A, b0] + [Aµ, ∂
µ(V · A)]− i2(V · A) + i[b0, a0])}

=

∫
d3xtr{i[C̄, a0](∂ · A+ b0) + iC̄([∂ · A+ b0, a0])

− iV · ∂[C̄(∂ · A+ b0)] + [V · A, C̄](∂ · A+ b0)

+ C̄[V · A, ∂ · A+ b0] + iC̄ 2(V · A)− iC̄ 2(V · A)

C̄[∂µ(V · A), Aµ] + C̄[Aµ, ∂
µ(V · A)]}

=0 .

(2.54)
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2.3.4 Saddle Points

For the gauge sector we replace δ by ∆ in (2.43) and modify the deformation as follows

∆Vgauge =

∫
dx3∆tr{1

2
ε†γµνFµνλ}

=

∫
dx3tr{1

2
FµνF

µν − iλ̃ /Dλ} ,
(2.55)

and similarly for the hatted fields. This deformation is ∆-exact and ∆-closed. For the

matter sector, ∆ is defined to be the same as δ, and the deformation is

∆Vmatter =

∫
dx3tr{∆[(∆ΨA)†ΨA + (∆ΨA)†ΨA]}

=2

∫
dx3tr{DµXAD

µXA + FAF
A − iΨ̃A /DΨA

+ ΩABλ̃XBΨA + ΩAB
˜̂
λXBΨA − ΩABXB

˜̂
λΨA − ΩABX

Bλ̃ΨA} .

(2.56)

The gauge sector localizes to

Fµν = 0 ; λ = 0 , (2.57)

where we have restricted to the contour C, cf. (2.33). In particular the saddle points of

the gauge field correspond to flat gauge connections over the Euclidean three-torus. For a

simply-connected gauge group π1(G) = 0, such as G = SU(N) × SU(N), this implies

that

Aµ = ciµHi , (2.58)

where ci’s are constants and {Hi}, i = 1, · · · , rank(G), is the Cartan subalgebra of G.

This can be seen as follows (see e.g. [32, 33]): Since Aµ is a flat connection there exists

a group element U ∈ G such that Aµ = −i∂µUU−1, at least locally. In other words U

needs not to be globally defined but is allowed to undergo G-valued jumps as we wind
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around each of the three circles of the torus. More explicitly, suppose we have a square

torus of radius L parameterized by {xµ ∈ [0, L]}. The group element U(x1, x2, x3) obeys

nontrivial, in general, boundary conditions which may be parameterized as follows,

U(x1 + L, x2, x3) = U(x1, x2, x3)Ω1 ;

U(x1, x2 + L, x3) = U(x1, x2, x3)Ω2 ;

U(x1, x2, x3 + L) = U(x1, x2, x3)Ω3 ,

(2.59)

for some constant Ωµ ∈ G. In addition, for consistency, Ωµ must mutally commute.

Indeed going once around the circle parameterized by xµ and then once around the circle

parameterized by xν must produce the same jump in U as when going first around the xν

direction and then along xµ. This implies, taking (2.59) into account,

[Ωµ,Ων ] = 0 . (2.60)

For a unitary group G, as is the case in the present work, this implies that Ωµ can be

put in the form

Ωµ = exp(iLcjµHj) , (2.61)

up to similarity transformation. Recalling the relation between Aµ and U we are thus led

to the result cited in (2.58), provided we can show that for any set of mutally commuting

Ωµ’s we can always construct a group element U ∼ exp(ixµcjµHj) obeying (2.59).

The proof of the last step proceeds by showing that there is no obstruction in construct-

ing an element U(x1x2, x3) on the edges of a cube of side L such that (2.59) is satisfied.

Then U can be continued on the faces of the cube provided π1(G) = 0, and finally in the

interior provided π2(G) = 0, which holds true for G = SU(N)× SU(N).

An important observation is that the constants ciµ should be understood as periodic

25



variables with periodic identification,

ciµ ∼ ciµ +
2π

L
. (2.62)

This can be seen by performing a gauge transformation generated byU = exp(2πi
L
xµHi),

which shifts Aµ in accordance with (2.62). On the other hand the element U thus defined

is periodic§, i.e. as we wind around the xµ direction of the torus it forms a closed loop in

group space. But since the group is simply connected U may be continuously deformed to

the identity, and the gauge transformation generated by U should act trivially on all fields

of the theory. We thus arrive at the identification (2.62).

It follows from the above that the ciµ’s can be constrained to take values in [0, 2π
L

]. In

particular taking the infinite-volume limit of the torus, L → ∞, we conclude that the

only solution to (2.57) is the trivial flat connection Aµ = 0. Of course on R3 there is no

obstruction to gauging away any flat connection of the form (2.58). The point is that we

can formally reproduce this result by considering R3 as the infinite-volume limit of T 3.

The case of G = U(N) × U(N) presents one crucial difference: π1(U(N)) ∼= Z and

thus G is not simply connected. By considering the decomposition of the algebra-valued

connection along the G-generators it is not very difficult to see that we may still put the

most general flat connection in the form (2.58),

Aµ = ciµHi + dµJ + eµK , (2.63)

where the first term on the right-hand side is as in the case of SU(N) × SU(N); dµ,

eµ are constants; J , K are the two additional u(1) Cartan generators coming from the

§We are adopting the normalization exp(2πiHi) = 1.
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decomposition

u(N)⊕ u(N) ∼= su(N)⊕ su(N)⊕ u(1)⊕ u(1) . (2.64)

Now the previous argument which allowed us to conclude that ciµ are periodic does not

go through for the variables dµ, eµ. The reason is that the gauge transformations generated

by U = exp(2πi
L
xµJ) and U = exp(2πi

L
xµK) form closed loops in the group space which

are not contractible to the identity. Hence the gauge transformations generated by U need

not act trivially on all fields of the theory.

In particular our argument that in the infinite-volume limit the only flat connection is

the trivial one, does not go through in this case without additional assumptions. If we

wish to recover A = 0 as the unique (up to gauge transformations) solution to (2.63)

in the infinite-volume limit, we must impose by hand that U = exp(2πi
L
xµJ) and U =

exp(2πi
L
xµK) act trivially on all fields of the theory.

Finally, the matter sector localizes to the following field configurations

FA = 0 ; ΨA = ΨA = 0 ; XA = const , (2.65)

where we have restricted to the contour C, cf. (2.33).

2.3.5 One-loop Determinant

We will now compute the one-loop determinant from the quadratic fluctuations around

the following saddle points,

Aµ = 0 ; λ = 0 ;

FA = 0 ; ΨA = ΨA = 0 ; XA = const ,
(2.66)
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and similarly for Â, λ̂, i.e. we will ignore the contributions from non-vanishing flat gauge

connections, as discussed in the previous section.

The full path integral is of the form

∫
dϕ exp{iS + iSg.f. − t(∆Vgauge +

1

2
∆Vmatter)} , (2.67)

where iSg.f. is the gauge-fixing action (2.52), and
∫
dϕ stands for integrations over all fields

and ghosts; ∆Vgauge contains deformations for both hatted and unhatted gauge multiplets.

Next we expand the fields around the saddle points

XA → X0
A +

1√
t
X ′A , φ→ 0 +

1√
t
φ . (2.68)

HereX0
A is a constant field andX ′A represents the nonzero mode ofXA; φ stands for all

fields other than XA. The path integral (2.67) is t-independent thanks to localization. On

the other hand, taking t→∞ allows us to keep only the quadratic terms in the deformation

t(∆Vgauge +
1

2
∆Vmatter)

=

∫
dx3tr{1

2
FA
µνF

Aµν − iλ̃/∂λ}+

∫
dx3tr{1

2
F̂A
µνF̂

Aµν − i˜̂λ/∂λ̂}

+

∫
dx3tr{∂µX ′A∂µX ′A +X0AAµA

µX0
A +X0

AÂµÂ
µX0A − 2X0

AÂµX
0AAµ

+ FAF
A − iΨ̃A/∂ΨA + ΩABλ̃X0

BΨA + ΩAB
˜̂
λX0BΨA − ΩABX0

B
˜̂
λΨA − ΩABX

0Bλ̃ΨA} ,

(2.69)

where FA
µν ≡ ∂µAν − ∂νAµ is the linearized field strength; some terms have been elimi-

nated using Lorentz gauge.

Determinant from Bosons:

We start with the calculation of the one-loop determinant of the bosonic part. Under
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Lorentz gauge, we have

∫
d3xtr{1

2
FA
µνF

Aµν}+

∫
dx3tr{1

2
F̂AµνF̂

Aµν}+

∫
d3xtr{∂µX ′A∂µX ′A

+XA0AµA
µX0

A +X0
AÂµÂ

µXA0 − 2X0
AÂµX

A0Aµ + FAF
A}

=

∫
d3xtr{−Aµ2Aµ}+

∫
dx3tr{−Âµ2Âµ}+

∫
d3xtr{−X ′A2X ′A

+XA0AµA
µX0

A +X0
AÂµÂ

µXA0 − 2X0
AÂµX

A0Aµ + FAF
A} .

(2.70)

On T 3 with periodic conditions, any field ϕ can be expanded in terms of Fourier modes

ϕ =
∑
~n

ϕ~n exp{i2π~n · ~x} , (2.71)

where ~n = (nx, ny, nz) and each nµ runs over all integers. In addition, for the gauge field

the Lorentz gauge implies that for each ~n,

nxAx,~n + nyAy,~n + nzAz,~n = 0 . (2.72)

Let us first assume nz 6= 0. (We will come back to the case nz = 0 in the following).

Then the previous equation can be used to eliminate Az,~n via

Az,~n = −nx
nz
Ax,~n −

ny
nz
Ay,~n . (2.73)

The gauge fields are in the adjoint representation, Aµ = Aaµta, where the generators ta
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are normalized so that tr{tatb} = δab. The gauge kinetic action becomes

∫
d3xtr{−Aµ2Aµ}

=

∫
d3x

∑
a

∑
~n,nz 6=0

4π2~n2{(n
2
x + n2

z

n2
z

)Aax,−~nA
a
x,~n + (

n2
y + n2

z

n2
z

)Aay,−~nA
a
y,~n

+
nxny
n2
z

Aax,−~nA
a
y,~n +

nxny
n2
z

Aay,−~nA
a
x,~n} .

(2.74)

By symmetrizing ~n and −~n, for each pair of (~n,−~n) and each a, this can be written in

matrix notation as follows

Aax,~n Aax,−~n Aay,~n Aay,−~n

Aax,~n

Aax,−~n

Aay,~n

Aay,−~n



0 n2
x+n2

z

n2
z

0 nxny
n2
z

n2
x+n2

z

n2
z

0 nxny
n2
z

0

0 nxny
n2
z

0
n2
y+n2

z

n2
z

nxny
n2
z

0
n2
yn

2
z

n2
z

0


× 4π2(~n · ~n) .

(2.75)

Similarly, for each (~n,−~n) and a, b, the potentials involving the gauge fields are

XA0Aa · AbtatbX0
A : Γ×XA0tatbX

0
A ,

X0
AÂ

a · Âbt̂at̂bXA0 : Γ×X0
At̂at̂bX

A0 ,

−2X0
AÂ

a
µt̂aX

A0Abµtb : Γ×−2X0
At̂aX

A0tb ,

(2.76)

where

Γ ≡



0 n2
x+n2

z

n2
z

0 nxny
n2
z

n2
x+n2

z

n2
z

0 nxny
n2
z

0

0 nxny
n2
z

0
n2
y+n2

z

n2
z

nxny
n2
z

0
n2
yn

2
z

n2
z

0


. (2.77)

The matter fields are in the bifundamental representation of the gauge group U(N) ×
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U(N). Moreover X =
∑

(ρ,ρ̂) X
(ρ,ρ̂) |ρ〉 ⊗ |ρ̂〉, where |ρ〉, |ρ̂〉 are representatives of the

weights in each weight space; we choose the normalization so that 〈ρ|ρ′〉 = δρ,ρ′ and

〈ρ̂|ρ̂′〉 = δρ̂,ρ̂′ , in some gauge-invariant contraction of the relevant color indices. We then

have

XA0tatbX
0
A =

∑
(ρ,ρ̂)

∑
(ρ′,ρ̂′)

XA0(ρ,ρ̂) 〈ρ̂| ⊗ 〈ρ| tatb |ρ′〉 |ρ̂′〉X0(ρ′,ρ̂′)
A

=
∑

ρ,ρ′,ρ̂,ρ′′

XA0(ρ,ρ̂) 〈ρ| ta |ρ′′〉 〈ρ′′| tb |ρ′〉X0(ρ′,ρ̂)
A

=
∑

ρ,ρ′,ρ̂,ρ′′

XA0(ρ,ρ̂)σ(ρ,ρ′′)
a σ

(ρ′′,ρ′)
b X

0(ρ′,ρ̂)
A ,

X0
At̂at̂bX

A0 =
∑

ρ̂,ρ̂′,ρ,ρ̂′′

X
0(ρ,ρ̂)
A σ̂(ρ̂,ρ̂′′)

a σ̂
(ρ̂′′,ρ̂′)
b XA0(ρ,ρ̂′) ,

X0
At̂aX

A0tb =
∑

ρ,ρ′,ρ̂,ρ̂′

X
0(ρ,ρ̂)
A σ̂(ρ̂,ρ̂′)

a XA0(ρ′,ρ̂′)σ
(ρ′,ρ)
b ,

(2.78)

where σ(ρ,ρ′)
a ≡ 〈ρ| ta |ρ′〉 and we used the fact that

∑
ρ |ρ〉 〈ρ| = 1. We then define the

following matrices

Bab = XA0t(atb)X
0
A ,

Cab = X0
At̂(at̂b)X

A0 ,

Dab = −X0
At̂aX

A0tb ,

(2.79)

and the deformations that are quadratic in gauge fields can be represented as

A Â

A

Â

B+ 4π2(~n · ~n)× 1 DTr

D C+ 4π2(~n · ~n)× 1

 ⊗ Γ .
(2.80)
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The determinant of the tensor product of two matrices A and B is given by

det(A⊗B) = (detA)dimB(detB)dimA . (2.81)

Therefore, when nz 6= 0, we have

det(A, Â)|nz 6=0 =
∏

(~n,−~n),nz 6=0

{(detA)4 × (
∏
a

det Γ)2}

=
∏

(~n,−~n),nz 6=0

{(detA)4 × (
∏
a

(~n · ~n)2

n4
z

)2}

=
∏

(~n,−~n),nz 6=0

{(det[
A

4π2(~n · ~n)
])4 × (

∏
a

(4π2)4(~n · ~n)6

n4
z

)2}

=
∏

~n,nz 6=0

{(det[
A

4π2(~n · ~n)
])2 × (

∏
a

16π4(~n · ~n)3

n2
z

)2} ,

(2.82)

where

A ≡

B+ 4π2(~n · ~n)× 1 DTr

D C+ 4π2(~n · ~n)× 1

 . (2.83)

For the case where nz = 0, but nx or ny are not equal to zero, the procedure is similar.

The determinant coming from integrating over Aµ reads

det(A, Â) =
∏
~n

(det(
A

4π2(~n · ~n)
))2
∏
a

{
∏

~n,nz 6=0

[16π4 (~n · ~n)3

n2
z

]2

×
∏

~n,nz=0,nx 6=0

[16π4 (~n · ~n)3

n2
x

]2
∏

~n,nz=nx=0,ny 6=0

[16π4 (~n · ~n)3

n2
y

]2} .
(2.84)

The contribution to the one-loop determinant coming from the terms involving gauge
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fields is thus

Z1−loop(A, Â) =

∏
a{
∏

~n,nz 6=0 n
2
z

∏
~n,nz=0,nx 6=0 n

2
x

∏
~n,nz=nx=0,ny 6=0 n

2
y}∏

a

∏
~n 16π4(~n · ~n)3

×
∏
~n

(det[
A

4π2(~n · ~n)
])−1 .

(2.85)

One may worry about regularizing the numerator. However, we note that the gauge-

fixing delta function also gives a Jacobian factor to the one-loop determinant. Indeed in

the ghost action we have

exp{i
∫
d3xtr(b∂µAµ)}

= exp{i2π
∑
~n

∑
a

ba−~n(~n · ~Aa~n)} .
(2.86)

After integrating out ba~n we obtain

∏
~n

∏
a

δ(~n · ~Aa~n) . (2.87)

This product of delta functions imposes the gauge-fixing Lorentz condition and, upon

integrating out Aµ, Âµ, gives a Jacobian factor which cancels the numerator of (2.85).

The integral over FA simply contributes an overall constant factor. Finally we are left
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with the integration over X ′A∫
d3xtr{−X ′A2X ′A}

=
∑
~n

4π2~n2tr{X ′A,−~nX ′A~n }

=
∑
~n

2π2~n2tr{X ′A,−~nX ′A~n +X ′A~n X
′
A,−~n}

=
∑

(~n,−~n)

2π2~n2tr{X ′A,−~nX ′A~n +X ′A,~nX
′A
−~n

+X ′A~n X
′
A,−~n +X ′A−~nX

′
A,~n} .

(2.88)

This integration is Gaussian, and the corresponding determinant is

detX ′A =
∏
A

∏
(ρ,ρ̂)

∏
~n

(2π2~n2)2 , (2.89)

where (ρ, ρ̂) runs over the weights of the bifundamental representation. Therefore, the

total contribution of the bosonic part to the one-loop determinant reads

Z1−loop(Boson) =
1

{
∏

a

∏
~n 16π4(~n2)3}|A,Â{

∏
A

∏
(ρ,ρ̂)

∏
~n 2π2~n2}|X′

×
∏
~n

(det[
A

4π2(~n · ~n)
])−1

=
1

{
∏

~n[16π4(~n2)3]d}{
∏

A

∏
~n(2π2~n2)w2}

×
∏
~n

(det[
A

4π2(~n · ~n)
])−1 .

(2.90)

Here d is the dimension of the gauge group and w is the dimension of its fundamental

representation. For U(N) in particular we have d = N2, w = N .

Determinant from Fermions:
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The fermionic part of the deformation is

∫
dx3tr{−iλ̃/∂λ}+

∫
dx3tr{−i˜̂λ/∂λ̂}+

∫
dx3tr{−iΨ̃A/∂ΨA

+ ΩABλ̃X0
BΨA + ΩAB

˜̂
λX0BΨA − ΩABX0

B
˜̂
λΨA − ΩABX

0Bλ̃ΨA} .
(2.91)

Using the expansion λ = λ+ε+ λ−ε
c for the gaugino kinetic term, we have

∫
dx3tr{−iλ̃/∂λ}

=

∫
dx3tr{−i(λ+V · ∂λ+ − λ−V̄ · ∂λ− − λ−U · ∂λ+ − λ+U · ∂λ−)}

=2π
∑
a

∑
~n

{V · ~nλa+,−~nλa+,~n − V̄ · ~nλa−,−~nλa−,~n − U · ~nλa−,−~nλa+,~n

− U · ~nλa+,−~nλa−,~n}

=2π
∑
a

∑
(~n,−~n)

{(V · ~nλa+,−~nλa+,~n − V̄ · ~nλa−,−~nλa−,~n − U · ~nλa−,−~nλa+,~n

− U · ~nλa+,−~nλa−,~n) + (−V · ~nλa+,~nλa+,−~n + V̄ · ~nλa−,~nλa−,−~n

+ U · ~nλa−,~nλa+,−~n + U · ~nλa+,~nλa−,−~n)} ,

(2.92)

where we symmetrized the indices +, − and ~n, −~n of the gaugini in the last equation. For

each pair of (~n,−~n) and each a, this can be written in matrix notation as

λa+,~n λa−,~n λa+,−~n λa−,−~n

λa+,~n

λa−,~n

λa+,−~n

λa−,−~n



0 0 −2πV · ~n 2πU · ~n

0 0 2πU · ~n 2πV̄ · ~n

2πV · ~n −2πU · ~n 0 0

−2πU · ~n −2πV̄ · ~n 0 0


.

(2.93)
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Similarly for the matter fermion kinetic term

2π
∑

(~n,−~n)

tr{(V · ~nΨA
+,−~nΨA+,~n − V̄ · ~nΨA

−,−~nΨA−,~n − U · ~nΨA
−,−~nΨA+,~n

− U · ~nΨA
+,−~nΨA−,~n) + (−V · ~nΨA

+,~nΨA+,−~n + V̄ · ~nΨA
−,~nΨA−,−~n

+ U · ~nΨA
−,~nΨA+,−~n + U · ~nΨA

+,~nΨA−,−~n)}

=π
∑

(~n,−~n)

tr{(V · ~nΨA
+,−~nΨA+,~n − V̄ · ~nΨA

−,−~nΨA−,~n − U · ~nΨA
−,−~nΨA+,~n

− U · ~nΨA
+,−~nΨA−,~n) + (−V · ~nΨA

+,~nΨA+,−~n + V̄ · ~nΨA
−,~nΨA−,−~n

+ U · ~nΨA
−,~nΨA+,−~n + U · ~nΨA

+,~nΨA−,−~n)}+ (−1)ΨA ↔ ΨA .

(2.94)

The last term arises due to the symmetrization of ΨA and ΨA. When decomposed into

the weight spaces, this becomes

π
∑
(ρ,ρ̂)

∑
(~n,−~n)

{(V · ~nΨ
A(ρ,ρ̂)
+,−~n Ψ

(ρ,ρ̂)
A+,~n − V̄ · ~nΨ

A(ρ,ρ̂)
−,−~n Ψ

(ρ,ρ̂)
A−,~n − U · ~nΨ

A(ρ,ρ̂)
−,−~n Ψ

(ρ,ρ̂)
A+,~n

− U · ~nΨ
A(ρ,ρ̂)
+,−~n Ψ

(ρ,ρ̂)
A−,~n) + (−V · ~nΨ

A(ρ,ρ̂)
+,~n Ψ

(ρ,ρ̂)
A+,−~n + V̄ · ~nΨ

A(ρ,ρ̂)
−,~n Ψ

(ρ,ρ̂)
A−,−~n

+ U · ~nΨ
A(ρ,ρ̂)
−,~n Ψ

(ρ,ρ̂)
A+,−~n + U · ~nΨ

A(ρ,ρ̂)
+,~n Ψ

(ρ,ρ̂)
A−,−~n)}+ (−1)ΨA ↔ ΨA .

(2.95)

For each pair of weights (ρ, ρ̂) and each pair of (~n,−~n), these terms can be written

with the help of two matrices

Ψ
(ρ,ρ̂)
A+,~n Ψ

(ρ,ρ̂)
A−,~n Ψ

(ρ,ρ̂)
A+,−~n Ψ

(ρ,ρ̂)
A−,−~n

Ψ
A(ρ,ρ̂)
+,~n

Ψ
A(ρ,ρ̂)
−,~n

Ψ
A(ρ,ρ̂)
+,−~n

Ψ
A(ρ,ρ̂)
−,−~n



0 0 −πV · ~n πU · ~n

0 0 πU · ~n πV̄ · ~n

πV · ~n −πU · ~n 0 0

−πU · ~n −πV̄ · ~n 0 0


,

(2.96)
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and

Ψ
A(ρ,ρ̂)
+,~n Ψ

A(ρ,ρ̂)
−,~n Ψ

A(ρ,ρ̂)
+,−~n Ψ

A(ρ,ρ̂)
−,−~n

Ψ
(ρ,ρ̂)
A+,~n

Ψ
(ρ,ρ̂)
A−,~n

Ψ
(ρ,ρ̂)
A+,−~n

Ψ
(ρ,ρ̂)
A−,−~n



0 0 −πV · ~n πU · ~n

0 0 −πV · ~n πU · ~n

πV · ~n −πU · ~n 0 0

−πU · ~n −πV̄ · ~n 0 0


.

(2.97)

Similarly, the Yukawa interactions can be written as

∫
dx3tr{ΩABλ̃X0

BΨA + ΩAB
˜̂
λX0BΨA − ΩABX0

B
˜̂
λΨA − ΩABX

0Bλ̃ΨA}

= a
∑
~n

tr{(ΨA+,−~nλ−,~n −ΨA−,−~nλ+,~n)ΩABX0
B + (ΨA

+,−~nλ̂−,~n −ΨA
−,−~nλ̂+,~n)ΩABX

0B

− ΩABX0
B(λ̂+,−~nΨA−,~n − λ̂−,−~nΨA+,~n)− ΩABX

0B(λ+,−~nΨA
−,~n − λ−,−~nΨA

+,~n)}

= a
∑

(~n,−~n)

tr{(ΨA+,−~nλ−,~n −ΨA−,−~nλ+,~n)ΩABX0
B + (ΨA

+,−~nλ̂−,~n −ΨA
−,−~nλ̂+,~n)ΩABX

0B

− ΩABX0
B(λ̂+,−~nΨA−,~n − λ̂−,−~nΨA+,~n)− ΩABX

0B(λ+,−~nΨA
−,~n − λ−,−~nΨA

+,~n)

+ (ΨA+,~nλ−,−~n −ΨA−,~nλ+,−~n)ΩABX0
B + (ΨA

+,~nλ̂−,−~n −ΨA
−,~nλ̂+,−~n)ΩABX

0B

− ΩABX0
B(λ̂+,~nΨA−,−~n − λ̂−,~nΨA+,−~n)− ΩABX

0B(λ+,~nΨA
−,−~n − λ−,~nΨA

+,−~n)} .

(2.98)

Each term, such as tr{ΨA+,−~nλ−,~nΩABX0
B} for example, can be written in terms of

the algebra representations as follows

∑
(ρ,ρ̂)

∑
(ρ′,ρ̂′)

∑
a

Ψ
(ρ,ρ̂)
A+,−~n 〈ρ̂| 〈ρ|λ

a
−,~nta |ρ′〉 |ρ̂′〉ΩABX

0(ρ′,ρ̂′)
B

=
∑
ρ,ρ′,ρ̂

∑
a

Ψ
(ρ,ρ̂)
A+,−~nλ

a
−,~nσ

(ρ,ρ′)
a ΩABX

0(ρ′,ρ̂)
B ,

(2.99)

where σ(ρ,ρ′)
a ≡ 〈ρ| ta |ρ′〉 (σ̂(ρ̂,ρ̂′)

a ≡ 〈ρ̂| t̂a |ρ̂′〉). Therefore the matrix elements for each
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Ψ
(ρ,ρ̂)
A and each λa are

λa+,~n λa−,~n λa+,−~n λa−,−~n

Ψ
(ρ,ρ̂)
A+,~n

Ψ
(ρ,ρ̂)
A−,~n

Ψ
(ρ,ρ̂)
A+,−~n

Ψ
(ρ,ρ̂)
A−,−~n



0 0 0 [σX]

0 0 −[σX] 0

0 [σX] 0 0

−[σX] 0 0 0


,

(2.100)

Ψ
(ρ,ρ̂)
A+,~n Ψ

(ρ,ρ̂)
A−,~n Ψ

(ρ,ρ̂)
A−,~n Ψ

(ρ,ρ̂)
A−,−~n

λa+,~n

λa−,~n

λa+,−~n

λa−,−~n



0 0 0 [σX]

0 0 −[σX] 0

0 [σX] 0 0

−[σX] 0 0 0


,

(2.101)

where [σX] ≡ 1
2
σ

(ρ,ρ′)
a ΩABX

0(ρ′,ρ̂)
B and λ, Ψ are symmetrized. This explains the factor 1

2

in each entry. A summation over ρ′ is understood in σ(ρ,ρ′)
a ΩABX

0(ρ′,ρ̂)
B .

The fermionic part of the deformation for each pair of (~n,−~n) can be written in matrix

notation as

λa λ̂a
′

ΨA(ρ,ρ̂) Ψ
(ρ,ρ̂)
A

λa

λ̂a
′

ΨA(ρ,ρ̂)

Ψ
(ρ,ρ̂)
A



M 0 (Xσ)A −(σX)A

0 M −(̂σX)A (̂Xσ)
A

(Xσ)A −(̂σX)A 0 N

−(σX)A (̂Xσ)
A

N 0


,

(2.102)
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where

M = 2N ≡



0 0 −2πV · ~n 2πU · ~n

0 0 2πU · ~n 2πV̄ · ~n

2πV · ~n −2πU · ~n 0 0

−2πU · ~n −2πV̄ · ~n 0 0


,

(σX)A ≡ 1

2
σ(ρ,ρ′)
a ΩABX

0(ρ′,ρ̂)
B × S ,

(Xσ)A ≡
1

2
ΩABX

B0(ρ′,ρ̂)σ(ρ′,ρ)
a × S ,

(̂σX)A ≡
1

2
σ̂(ρ̂,ρ̂′)
a ΩABX

B0(ρ,ρ̂′) × S ,

(̂Xσ)
A

≡ 1

2
ΩABX

0(ρ,ρ̂′)
B σ̂(ρ̂′,ρ̂)

a × S ,

(2.103)

and

S ≡



0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


. (2.104)

As before we have a, a′ = 1, . . . , d; ρ, ρ̂ = 1, . . . , w; A = 1, . . . , 4, where d is the

dimension of the gauge group and w is the dimension of its fundamental representation.

Therefore (2.102) is a 2d + 8w2 by 2d + 8w2 block matrix: each entry is given by one of

the above four by four matrices.
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The matrix (2.102) can be partitioned into four blocks

 A8d×8d B8d×32w2

C32w2×8d D32w2×32w2

 :=



M 0 (Xσ)A −(σX)A

0 M −(̂σX)A (̂Xσ)
A

(Xσ)A −(̂σX)A 0 N

−(σX)A (̂Xσ)
A

N 0


,

(2.105)

so that the determinant reads¶

det

A B

C D

 = detA detD det[1−D−1CA−1B] . (2.106)

The determinants detA and detD are straightforward to compute

detA = (detM)2d = [16π4(~n2)2]2d , (2.107)

detD =
∏
A

(detN)2w2

=
∏
A

[π4(~n2)2]2w
2

. (2.108)

Their combined contribution to the one-loop determinant is

∏
~n

{(4π2~n2)d
∏
A

(π2~n2)w
2} . (2.109)

Furthermore the integrations over the ghosts and anti-ghosts for the two gauge groups

contribute (det2)2 = {
∏

~n(4π2~n2)d}2. When combined with (2.109) this gives

∏
~n

{(4π2~n2)3d
∏
A

(π2~n2)w
2} . (2.110)

Up to a constant factor, this partially cancels the one-loop determinant from the boson

¶We use the notationA,B,C,D for the matrices in the bosonic sector, while the matricesA,B,C,D are
used for the fermion fields. We hope this doesn’t cause any confusion with the Sp(2) indices.
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sector, (2.90). We are thus left with onlyX0-dependent contributions from both boson and

fermion sectors.

Inserting the localization conditions (2.66) into the off-shell Lagrangian (2.11) gives

a vanishing classical contribution. Therefore the partition function is given purely by the

one-loop determinant

Z =

∫ ∏
A

∏
(ρ,ρ̂)

dX
0(ρ,ρ̂)
A

∏
B

∏
(ρ′,ρ̂′)

dXB0(ρ′,ρ̂′)

∏
(~n,−~n){det[1−D−1CA−1B]} 1

2∏
~n det[ A

4π2(~n·~n)
]

. (2.111)

We now make use of the Sylvester identity

det[1−D−1CA−1B] = det[1−BD−1CA−1] , (2.112)

where the matrix on the left-hand side above is 32w2 × 32w2, while the matrix on the

right-hand side is 8d× 8d. Using the definitions in (2.103) and (2.104), one can show that

det[1−BD−1CA−1]

= det[1+ CTrD−1CA−1]

= det[1+

B DTr

D C

⊗ SN−1SM−1

2
]

= det[1+

B DTr

D C

⊗ 14×4

4π2(~n · ~n)
]

={det[
A

4π2(~n · ~n)
]}4 .

(2.113)

Putting this back into the one-loop determinant, we see that the fermion and boson

determinants cancel exactly against each other.
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2.4 Discussion

We have partially carried out the localization procedure for the N = 1 Chern-Simons

matter theory on T 3 with periodic boundary conditions. In particular we computed the

contributions to the partition function from the locus of saddle points with vanishing gauge

connection. As expected, restricting to this locus gives a trivial contribution to the partition

function, i.e. the bosonic and fermionic contributions exactly cancel each other. Indeed

evaluating the partition function on the flat torus at the trivial vacuum (vanishing gauge

connection) simply counts the degrees of freedom of the theory, and for a supersymmetric

theory one expects a complete cancellation. Of course the full partition function should

receive contributions also from saddle points with nonvanishing flat gauge connections,

which we have not computed here. We hope to return to this in the future.

Another potentially interesting direction in which this work may be generalized is by

allowing for a more general Killing spinor equation than the eq. (2.18) which was used for

the present analysis. This may be achieved by coupling to a supergravity background and

could provide additional possibilities for spaces on which the theory localizes.

We then conclude this chapter. We will move on to a new topic, the study of HS/CFT

dualities, in the next chapter.
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3. ONE LOOP TESTS OF SUPERSYMMETRIC HIGHER SPIN AdS4/CFT3
∗

The problem of constructing field theories describing the consistent propagation and

interaction of HS fields has a long history and is a highly non-trivial one. Especially, in

the tensionless limit of string theory on flat background all the massive tower of states

gets squeezed to a common zero mass level and the free theory is described by an infinite

amount of massless free fields with arbitrary integer high spin [34]. Several years ago

the consistent cubic vertices of massless HS fields in (A)dS were explicitly constructed

by Fradkin and Vasiliev [15] and, remarkably, a fully non-linear theory of interacting

higher spins in (A)dS was found by Vasiliev [35–38]. In the context of AdS/CFT, the

HS theories have precisely the right structure to be dual to simple vector models at the

boundary [16, 18].

In the following we briefly introduce the general Konstein-Vasiliev theories, and then

proceed to the study of HS/CFT duality by carrying out the one loop tests of the free

energy.

This chapter is based on the work [25] in collaboration with Dr. Yi Pang and Dr. Ergin

Sezgin.

3.1 Main idea and General Konstein-Vasiliev HS theories

An important test of the HS/CFT holography is to match the free energy of the bulk

theory with that of the CFT on the boundary. Assuming the bulk HS theory possesses an

action formulation, the partition function evaluated on Euclidean AdS4 can be expanded

∗Reprinted with permission from “One Loop Tests of Supersymmetric Higher Spin AdS4/CFT3” by Yi
Pang, Ergin Segzin and Yaodong Zhu, 2017, Phys. Rev. D 95, 026008, Copyright [2017] by the American
Physical Society.
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in terms of the Newton’s constant GN as

Fbulk =
1

GN

F
(0)
bulk + F

(1)
bulk +GNF

(2)
bulk + · · · . (3.1)

When the bulk Euclidean AdS4 is the hyperbolic space H4 whose conformal boundary is

a round S3, the free energy of the bulk HS theory should match with that of a free CFT on

a round S3. The free energy of a free CFT on S3 takes the simple form [39]

FCFT = NF
(0)
CFT , (3.2)

where F (0)
CFT is the free energy of a single component in U(N) vector model. The zeroth-

order contribution F
(0)
bulk has not been computed so far due to the lack of an action for

Vasiliev theory with all the required properties. Matching Fbulk with FCFT necessarily

requires that Fbulk is proportional to F (0)
CFT at each order in the small GN expansion and

that GN is identified in terms of N as

G−1
N → γ(N + ∆N) , (3.3)

with γ and ∆N being constants, and ∆N should be a fixed integer for a given bulk/boundary

dual pair. Assuming Fronsdal type quadratic action for the massless HS fields, one loop

computations have shown that these requirements are fulfilled in the conjectured duality

between non-minimal and minimal Type-A theory and the bosonic U(N) and O(N) vec-

tor model [20]. In particular, for minimal Type-A model it is shown that F (1)
bulk = F

(0)
CFT,

and thus indicating ∆N = −1 [20]. However, for the conjectured duality between Type-

B theories in Euclidean AdS4 and the fermionic U(N) and O(N) vector models on the

boundary S3 [18], these requirements are not satisfied since F (1)
bulk and F (0)

CFT are not pro-

portional to each other. Driven by this mismatch, we extend the previous one loop tests to
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a wider class of Konstein-Vasiliev HS theories [24] and the corresponding free CFT duals.

In particular we study the consequences of supersymmetry which combine Type-A and

Type-B spectra with an infinite tower of massless HS fermions.

Spectra of Konstein-Vasiliev HS theories:

The building block for the construction of the physical spectra are the singleton repre-

sentations of SO(3, 2)

(Rac,m) , (Di, n) , (3.4)

wherem labels the fundamental representations of internal symmetry group u(m), usp(m)

or o(m) and same for n. It has been shown that the physical spectra of three types of

HS theories, based on HS algebras denoted by hu(m;n|4), ho(m;n|4), husp(m;n|4), are

obtained from the following tensor products of the singletons

hu(m;n|4) : S ⊗ S̄ (3.5)

ho(m;n|4) : (S ⊗ S)S (3.6)

husp(m;n|4) : (S ⊗ S)A (3.7)

where (·)S and (·)A stand for symmetric and antisymmetric tensor products, respectively,

and we defined

S := (Rac,m)⊕ (Di, n) . (3.8)
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The resulting spectra are as follows [24]

hu(m;n|4) : (m2 − 1, 1)⊕ (1, n2 − 1)⊕ (1, 1)⊕ (1, 1) s = 0, 1, 2, 3, . . .

(m, n̄)⊕ (m̄, n) s = 1
2
, 3

2
, 5

2
, . . .

ho(m;n|4) : (1
2
m(m− 1), 1)⊕ (1, 1

2
n(n− 1)) s = 1, 3, . . .

(1
2
m(m+ 1)− 1, 1)⊕ (1, 1

2
n(n+ 1)− 1)⊕ (1, 1)⊕ (1, 1) s = 0, 2, 4, . . .

(m,n) s = 1
2
, 3

2
, 5

2
, . . .

husp(m;n|4) : (1
2
m(m+ 1), 1)⊕ (1, 1

2
n(n+ 1)) s = 1, 3, . . .

(1
2
m(m− 1)− 1, 1)⊕ (1, 1

2
n(n− 1)− 1)⊕ (1, 1)⊕ (1, 1) s = 0, 2, 4, . . .

(m,n) s = 1
2
, 3

2
, 5

2
, . . . ,

(3.9)

These algebras contain finite dimensional superalgebras only when m = n = 2N/2−1 or

m = n = 2(N−1)/2 for N being even or odd. In these cases we have the isomorphisms

shsE(N|4) ∼=


hu
(

2
N
2
−1; 2

N
2
−1
∣∣∣4) N = 2 mod 4 ,

husp
(

2
N
2
−1; 2

N
2
−1
∣∣∣4) N = 4 mod 8 ,

ho
(

2
N
2
−1; 2

N
2
−1
∣∣∣4) N = 8 mod 8 .

(3.10)

and

shsE(N|4) ∼=


ho
(

2(N−1)/2; 2(N−1)/2
∣∣∣4) N = 1 mod 8 ,

husp
(

2(N−1)/2; 2(N−1)/2
∣∣∣4) N = 5 mod 8 .

(3.11)

As for the case ofN=3 mod 4, it has been shown in [40] that it is equivalent to the case of

N=4 mod 4.
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3.2 Free energies of Konstein-Vasiliev higher spin theories in AdS4 with S3 bound-

ary

In this section we shall compute the free energy of Konstein-Vasiliev HS theories in

AdS4 with S3 boundary, imposing the HS symmetry preserving boundary conditions. Free

energy of bosonic HS fields inAdS4 has been studied in [20,21,41,42]. The regularization

scheme that has been used in summing over infinite tower of HS fields, however, is very

complicated. Here, we employ a simpler alternate method which utilizes the character of

irreducible representation of SO(2, 3). As an important consequence, the regularized in-

dividual spin contributions are such that the subsequent sum over infinite tower of higher

spins is finite, thereby avoiding the need for additional regularization of this sum. This

method was introduced in [43] to compute the one loop free energy of massive HS fields,

but was not applied to the computation of the above free energies to exhibit the contribu-

tions of the infinite tower of odd and even spins separately. In what follows we shall use

the alternate method to compute these contributions separately. We then generalize the

method and apply it to the computation in bulk fermion sector in the subsequent subsec-

tion.

The one loop correction to the free energy is defined as F (1) = − logZ(1) where Z(1)

is the one loop partition function. For HS theory with nS real scalars, nP pseudoscalars,

n1 copies of fields with s = 1, 3, ...,∞, n2 copies of fields with s = 2, 4, ...,∞ fields and
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nF copies of spin 1/2, 3/2, ...,∞ fields, we have

F (1)(nS, nP , n1, n2, nF ) = 1
2
nS log det1DB(1, 0) + 1

2
nP log det2DB(2, 0)

+1
2
n1

∞∑
k=0

[
log det DB(2k + 2, 2k + 1)− log det DB(2k + 3, 2k)

]
(3.12)

+1
2
n2

∞∑
k=1

[
log det DB(2k + 1, 2k)− log det DB(2k + 2, 2k − 1)

]

−1
2
nF log det DF (3

2
, 1

2
)− 1

2
nF

∞∑
k=1

[
log det DF (k + 3

2
, k + 1

2
)− log det DF (k + 5

2
, k − 1

2
)
]
,

where we have defined

DB(∆, s) =
[
−∇2 + ∆(∆− 3)− s

]
,

DF (∆, s) =
[
− /∇2

+ ∆(∆− 3) + 9
4

]
. (3.13)

The negative contributions in the bosonic sector and the positive contributions in the

fermionic sector are due to ghosts. In computing det1 and det2, the irregular (∆− = 1)

and regular (∆+ = 2) boundary conditions are to be used.

For a differential operator of the form D = −∇2 +X , or D = − /∇2
+ Y , writing

− log detD =

∫ ∞
0

dt

t
KD(t) , KD(t) := Tr

[
e−tD

]
, (3.14)

and defining the spectral zeta function

ζD(z) :=
1

Γ(z)

∫ ∞
0

dt tz−1KD(t) , (3.15)

48



one finds the standard result [44]

− log detD = ζD(0) log(`2Λ2) + ζ ′D(0) , (3.16)

where ` is the AdS radius and Λ is the renormalization scale. For fields of aribrary spins

in hyperbolic spaceH4, the spectral zeta function technique has been developed in [45,46]

to compute their one loop effective potentials.

3.2.1 Bosons

Upon Euclideanization of AdS4 to H4, the boundary is S3 and in this setting various

free energies of the bosonic HS theory are given by

F
(1)
even 1 = −1

2

[
ζB(1,0)(0) +

∞∑
s=2,4,···

(
ζB(s+1,s)(0)− ζB(s+2,s−1)(0)

)]
log(`2Λ2)

−1

2

[
ζB′(1,0)(0) +

∞∑
s=2,4,···

(
ζB′(s+1,s)(0)− ζB′(s+2,s−1)(0)

)]
,

F
(1)
even 2 = −1

2

[
ζB(2,0)(0) +

∞∑
s=2,4,···

(
ζB(s+1,s)(0)− ζB(s+2,s−1)(0)

)]
log(`2Λ2)

−1

2

[
ζB′(2,0)(0) +

∞∑
s=2,4,···

(
ζB′(s+1,s)(0)− ζB′(s+2,s−1)(0)

)]
,

F
(1)
odd = −1

2

∞∑
s=1,3,···

(
ζB(s+1,s)(0)− ζB(s+2,s−1)(0)

)
log(`2Λ2)

−1

2

∞∑
s=1,3,···

(
ζB′(s+1,s)(0)− ζB′(s+2,s−1)(0)

)
, (3.17)

where F (1)
even 1 and F (1)

even 2 denote the total free energy of all even spin fields s = 0, 2, 4 · · · ,

in which the scalar satisfies ∆ = 1 and ∆ = 2 boundary conditions, respectively, and F (1)
odd

denotes the total free energy of all odd spin fields s = 1, 3, 5 · · · .

As stated earlier, we now employ a simpler method than those used previously, utiliz-
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ing the character of irreducible representation of SO(2, 3). The method is based on the

observation that the spectral zeta function of a bosonic spin-s field can be recast in the

form [43]

ζB(∆,s)(z) =
1

Γ(z)

∫ ∞
0

dβ
[
µ(z, β) + ν(z, β)

∂2

∂α2

]
χ∆,s(β, α)

∣∣∣
α=0

, (3.18)

in which

χ∆,s(β, α) =
e−β(∆−3

2
) sin[(s+ 1

2
)α]

4 sinh β
2

sin α
2
(cosh β − cosα)

,

µ(z, β) = 1
3

sinh β
2

[
f1(z, β)

(
− 6 + sinh2 β

2

)
+ 4f3(z, β) sinh2 β

2

]
,

ν(z, β) = −4f1(z, β) sinh3 β
2
,

fn(z, β) =
√
π

∫ ∞
0

duun tanh(πu)( β
2u

)z−
1
2Jz−1/2(uβ) , (3.19)

where χ∆,s(β, α) is the character of a representation of SO(3, 2) labeled by D(∆, s). Ow-

ing to the e−β(∆−3
2

) factor in the character,
∑

s ζ(∆,s)(z) is convergent. Therefore, no reg-

ularization is needed in performing the sum over infinitely many spins. This is the desired

feature for computing the one loop free energy of HS theory where the summation over

infinitely many spins is encountered. It was also noticed by [43] that since the one loop

free energy depends only on ζ(0) and ζ ′(0), an alternate zeta function ζ̃(z) is physically

equivalent to the original ζ(z), provided that ζ̃(0) = ζ(0), and ζ̃ ′(0) = ζ ′(0). Thus, for

the convenience of calculation, one can in fact utilize an alternate zeta function which is

physically equivalent to the original zeta function. For bosonic HS fields, one choice of

the alternate zeta function takes the form [43]

ζ̃B(∆,s)(z) =
1

Γ(2z)

∫ ∞
0

dβ β2z−1 coth β
2

[
1 +

(
sinh2 β

2

)
∂2
α

]
χ∆,s(β, α)

∣∣∣
α=0

. (3.20)
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The physical equivalence between the alternate spectral zeta function and the original one

(3.18) is shown in the appendix. The total character of all even spin fields and that of all

odd spin fields are computed as

χeven 1(β, α) = χ1,0(β, α) +
∑

s=2,4,···

(χs+1,s(β, α)− χs+2,s−1(β, α))

=
1 + cosα + cosh β + cosh 2β

4(cosα− cosh β)2(cosα + cosh β)
, (3.21)

χeven 2(β, α) = χ2,0(β, α) +
∑

s=2,4,···

(χs+1,s(β, α)− χs+2,s−1(β, α))

=
1 + cosα + cos 2α + cosh β

4(cosα− cosh β)2(cosα + cosh β)
, (3.22)

χodd(β, α) =
∑

s=1,3,···

(χs+1,s(β, α)− χs+2,s−1(β, α))

=
cosα + cosh β + 2 cosα cosh β

4(cosα− cosh β)2(cosα + cosh β)
. (3.23)

Substituting the results above into (3.20), we find

ζ̃Beven,1(z) =
1

Γ(2z)

∫ ∞
0

dββ2z−1 cosh2 β

4 sinh3 β
,

ζ̃Beven,2(z) = − 1

Γ(2z)

∫ ∞
0

dββ2z−1 1 + 2 cosh β

4 sinh3 β
,

ζ̃Bodd(z) = −ζ̃Beven 1(z) . (3.24)

With the help of the following identities

1

sinh3 β
2

=
2

β2

∂2

∂x2

1

sinh βx
2

|x=1 −
1

2 sinh β
2

,

4−zζ(2z,
a

2
) =

1

Γ(2z)

∫ ∞
0

dββ2z−1 e−aβ

1− e−2β
, (3.25)
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where ζ(a, b) is the Hurwitz zeta function, we finally obtain

ζ̃Beven 1(z) = 4−(2+z)
[
3ζ(2z,−1

2
) + 4ζ(2z − 2,−1

2
) + 8ζ(2z − 1,−1

2
)

+(4z − 1)ζ(2z) + 3(4z − 4)ζ(2z − 2)− 4(4z − 2)ζ(2z − 1)
]
,

ζ̃Beven 2(z) = 4−(1+z)
[
− 4ζ(2z − 2, 0)− 4ζ(2z − 1, 0) + (4z − 1)ζ(2z)

−4zζ(2z − 2) + 4ζ(2z − 1)
]
. (3.26)

By using the relation between F (1) and spectral zeta function, one arrives at the results

F
(1)
even 1 =

1

16

(
2 log 2− 3ζ(3)

π2

)
, F

(1)
even 2 =

1

16

(
2 log 2− 5ζ(3)

π2

)
,

F
(1)
odd = −F (1)

even 1 . (3.27)

Note that the potential logarithmic divergences in F (1)
even 1 and F (1)

even 2 have canceled out,

and the above finite results are from ζ̃B′(0) terms, in agreement with [20]. Furthermore,

these results can be used as building blocks for the computation of the free energies of the

Konstein-Vasiliev models we are interested in, thanks to the observation that for all those

models discussed in Section 3.1, it is always the case that

n2 = nS + nP , (3.28)

where we recall that n2 is number of copies of even fields with s = 2, 4, . . .∞, nS is the

number of scalars and nP is the number of pseudoscalars.
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3.2.2 Fermions

We now compute the one loop free energy of all fermionic HS fields. The spectral zeta

function of a spin-s fermionic fields is given by

ζF(∆,s)(z) =
1

Γ(z)

∫ ∞
0

dβ
[
µ(z, β) + ν(z, β)

∂2

∂α2

]
χ∆,s(β, α)

∣∣∣
α=0

, (3.29)

where

χ∆,s(β, α) =
e−β(∆−3

2
) sin[(s+ 1

2
)α]

4 sinh β
2

sin α
2
(cosh β − cosα)

,

µ(z, β) = 1
3

sinh β
2

[
f1(z, β)

(
− 6 + sinh2 β

2

)
+ 4f3(z, β) sinh2 β

2

]
,

ν(z, β) = −4f1(z, β) sinh3 β
2
,

fn(z, β) =
√
π

∫ ∞
0

duun coth(πu)( β
2u

)z−
1
2Jz−1/2(uβ) . (3.30)

To compute the one loop free energy of all fermionic HS fields, we propose the following

alternate spectral zeta function, which is much easier to use. The physical equivalence

between the alternate spectral zeta function (3.31) and the original one (3.29) is shown in

the appendix.

ζ̃F(∆,s)(z) =
1

Γ(2z)

∫ ∞
0

dββ2z−1
[

1
4

sinh β
2

+
1

sinh β
2

+ sinh β
2
∂2
α

]
χ∆,s(β, α)

∣∣∣
α=0

.(3.31)

The sum of characters of all fermionic HS fields is computed as

χ 3
2
, 1
2
(β, α) +

∞∑
s=3/2

[
χs+1,s(β, α)− χs+2,s−1(β, α)

]
=

cos α
2

cosh β
2

(cosα− cosh β)2
. (3.32)
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It is straightforward to check that

[
1
4

sinh β
2

+
1

sinh β
2

+
(
sinh β

2

)
∂2
α

]
×

(
χ 3

2
, 1
2
(β, α) +

∞∑
s=3/2

[
χs+1,s(β, α)− χs+2,s−1(β, α)

])∣∣∣
α=0

= 0 , (3.33)

which indicates that the total one loop free energy of fermionic HS fields in fact vanishes.

3.2.3 Summary

For a Konstein-Vasiliev higher theory consisting of nS real scalars, nP pseudoscalars,

n1 copies of fields with s = 1, 3, ...,∞, n2 = nS +nP copies of fields with s = 2, 4, ...,∞

fields and nF copies of spin 1/2, 3/2, ...,∞ fields, we have

F (1)(nS, nP , n1, n2, nF ) =
log 2

8
(nS + nP − n1)− ζ(3)

16π2
(3nS + 5nP − 3n1) , (3.34)

where we have used the relation n2 = nS + nP . The values of nS , nP and n1 can be read

off from (3.9) for various Konstein-Vasiliev models. Substituting them into the equation

above, we obtain

hu(m;n|4) : F
(1)
hu = −ζ(3)

8π2
n2 , (3.35)

ho(m;n|4) : F
(1)
ho =

log 2

8
(m+ n)− ζ(3)

16π2
(3m+ 4n+ n2) , (3.36)

husp(m;n|4) : F
(1)
husp = − log 2

8
(m+ n) +

ζ(3)

16π2
(3m+ 4n− n2) . (3.37)

The one loop free energy of husp(m;n|4) model is related to the one of ho(m;n|4) model

via m → −m, n → −n. The ordinary supersymmetric HS models correspond to the

cases m = n = 2
N
2
−1 for even N and m = n = 2(N−1)/2 for odd N .
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As for the ordinary supersymmetric HS models with internal symmetries, we recall

that their spectra can be obtained by assigning fundamental representations of the internal

symmetry group to the OSp(N|4) singletons, and working out the their two-fold tensor

products. The resulting spectra are provided in Table 5 of [40]. In particular, the number

of fermions with s = 1
2

mod 2 and s = 3
2

mod 2 are the same. As a consequence, the

contributions of the fermions to the one loop free energy will continue to vanish since in

(3.31) we found that fermions with each half integer spin occurring once give vanishing

contribution. Consequently, the bulk free energy becomes the sum of free energies of

Type-A and Type-B models with the desired internal symmetries, and both log 2 and ζ(3)

terms will show up in the one loop free energy. This information is sufficient to perform

the one loop test by means of comparing the bulk and boundary free energies, as we shall

see at the end of next section.

3.3 Free energies of free CFT’s on S3 and comparison

The free energies of free scalars and free fermions which are conformally coupled to

S3 have been studied in [39]. A conformally coupled free scalar and a free fermion on S3

are described by the following two actions respectively

SS =
1

2

∫
d3x
√
g
[
(∇φ)2 +

3

4L2
φ2
]
, SD =

1

2

∫
d3x
√
gψ†(i /Dψ) , (3.38)

where L is the radius of the round S3. Free energies of the above two theories are defined

as usual

FS = − logZS =
1

2
log det[Λ−2OS] , O = −∇2 +

3

4L2
,

FD = − logZD = − log det[Λ−1OD] , O = i /D . (3.39)
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Using zeta function, FS and FD can be computed straightforwardly and the results are [39]

FS =
1

16

(
2 log 2− 3ζ(3)

π2

)
, FD =

1

8

(
2 log 2 +

3ζ(3)

π2

)
. (3.40)

Notice that the free energy of a Majorana fermion on S3 is 1
2
FD.

A bulk HS theory is conjectured to be dual to a free vector model when the boundary

conditions of the bulk fields preserve the HS symmetry [16, 17], which is the case here.

Assuming the bulk HS theory possesses an action, its free energy associated with AdS4

should have the form displayed in (3.1) where GN is the Newton’s constant. In cases

where the boundary of AdS4 is S3, the bulk free energy should be compared with that

of a free vector model on S3 order by order in 1/N expansion. Hence the comparison

requires an identification between GN and N . It was suggested by [20] that in general the

relation between GN and N is of the form given in (3.3) where γ and ∆N are constants

and especially ∆N should be an integer. The basic fields in the vector model constitute

a vector in the fundamental representation of a classical Lie group, which can be U(N),

O(N) or USp(N) in our cases. The free energy of a free vector model can be computed

exactly and be put in the form†

FCFT = NF
(0)
CFT , (3.41)

where we use F (0)
CFT to denote the contribution of a single component in the vector. For

Fbulk to match with FCFT, it is clear that the bulk free energy at each order inGN expansion

should all be proportional to F (0)
CFT.

Various one loop tests of HS holography have been carried out in the literature [20,41].

†Strictly speaking, the bulk HS theory is dual to the U(N), O(N) or USp(N) singlet sector of a free
CFT. The partition function of a free CFT on S3 is evaluated in the vacuum which is already a singlet state
under the corresponding symmetry group in each case. Thus, imposing the singlet constraint should not
affect the free energy.
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For instance, the non-minimal Type-A model is conjectured to be dual to the U(N) singlet

sector of N complex scalars. When HS symmetry is preserved by the boundary condition,

F
(1)
bulk was found to be 0, indicating that G−1

N is identified with N at one loop order. For

minimal A model, the conjectured dual CFT is the O(N) singlet sector of N real scalars.

In this case, F (1)
bulk is equal to FS , the free energy of a real free scalar (3.40). Thus, matching

the bulk and boundary free energies at one loop order requires G−1
N being identified with

N − 1. The husp(2; 0|4) Vasiliev theory is conjectured to be dual to the USp(N) singlet

sector of N complex scalars and F (1)
bulk is equal to −FS . Therefore, for husp(2; 0|4) higher

spin theory, G−1
N is identified with N + 1 at one loop order.

In this section, we consider the cases in which the bulk HS symmetry is preserved

by the boundary condition, thus the CFT duals are certain singlet sectors of free CFTs

composed by free scalars and free fermions. For the hu(m;n|4) theory, the dual CFT

consists of Nm complex free scalars φia, i = 1, 2, ...N , a = 1, 2, ...m and Nn Dirac

fermions ψir, r = 1, 2, ...n. Them2 ∆ = 1 scalars and n2 ∆ = 2 pseudoscalars correspond

to the operators

φ̄iaφ
ib , ψ̃ciaψ

ib . (3.42)

Free energy of this theory is given by

FCFT = NF
(0)
CFT , F

(0)
CFT = 2mFS + nFD , (3.43)

where FS and FD are given in (3.40).

For the ho(m;n|4) theory, the dual CFT consists of Nm real free scalars φia, i =

1, 2, ...N , a = 1, 2, ...m and Nn majorana fermions ψir, r = 1, 2, ...n. The m2 ∆ = 1
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scalar fields and n2 ∆ = 2 pseudoscalars correspond to the operators

φiaφjbδij , ψ̃iaψjbδij . (3.44)

The free energy is given by

FCFT = NF
(0)
CFT , F

(0)
CFT = mFS + 1

2
nFD . (3.45)

For the husp(m;n|4) theory, the dual CFT consists of Nm complex free scalars φia,

i = 1, 2, ...N , a = 1, 2, ...m and Nn Dirac fermions ψir, r = 1, 2, ...n, subject to the

symplectic reality condition. The m2 ∆ = 1 scalar fields and n2 ∆ = 2 pseudoscalars

correspond to the operators

φiaφjbΩij , ψ̃iaψjbΩij , (3.46)

where Ωij is the USp(N) invariant tensor. Free energy of this theory is given by

FCFT = NF
(0)
CFT , F

(0)
CFT = mFS + 1

2
nFD . (3.47)

Since supersymmetric HS theories can be mapped to special cases of Konstein-Vasiliev

models, we will not give separate discussions on them.

As discussed before, duality between the bulk HS theory and boundary free CFT may

be achieved only if F (1)
bulk is proportional to F (0)

CFT. Using (3.34), (3.40), (3.43), (3.45) and

(3.47), we find that this requirement amounts to

(m+ n)(3nS + 5nP − 3n1) = 3(m− n)(nS + nP − n1) , (3.48)
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obtained by setting the ratios of log 2 and ξ(3) dependent terms equal to each other. Taking

the values of nS , nP and n1 from (3.9), these ratios for the bulk sides can be read off from

(3.35), (3.36) and (3.37) in terms of m and n. One can show that for all three Konstein-

Vasiliev models, the only solution to the equation above is given by n = 0, which implies

bosonic Type-A models. In this case the log 2 and ζ(3) dependent terms arise in the same

ratio as of a single real scalar field, and we have the result

F
(1)
hu(m;0|4) = 0 , F

(1)
ho(m;0|4) = mFS , F

(1)
ho(m;0|4) = −mFS . (3.49)

Therefore, assuming that F (0)
bulk = F

(0)
CFT, the bulk and boundary free energies match with

each other provided that

hu(m; 0|4) : G−1
N → N ,

ho(m; 0|4) : G−1
N → N − 1 ,

husp(m; 0|4) : G−1
N → N + 1 . (3.50)

The holographic dictionaries relating GN to N in various HS models have been put for-

ward in [20] via testing the holography of hu(1; 0|4), ho(1; 0|4) and husp(2; 0|4) models

at one loop level. Here, we have extended the validity of these holographic mappings to

hu(m; 0|4), ho(m; 0|4) and husp(m; 0|4) Konstein-Vasiliev models. We see that the in-

clusion of infinite tower of bulk fermions does not cure the problem with the mismatch of

the free energies in the Type-B model, which corresponds to the case in which m = 0 and

n 6= 0, and its conjectured dual.

Finally, we consider the ordinary supersymmetric models with internal symmetry dis-

cussed earlier, whose spectra are given in Table 5 of [40]. In Section 3 we found that the

contributions of the bulk fermions give vanishing contributions to one loop free energy
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and consequently the bulk one loop free energy becomes the sum of the ones of Type-A

and Type-B models with the desired internal symmetries. In particular, there is still a non-

vanishing ζ(3) term. On the other hand it is easy to show that the ζ(3) dependent terms

on the CFT side vanish. Therefore, we conclude the problem of free energy mismatch will

persist in ordinary supersymmetric HS theories with internal symmetry.

3.4 One loop free energies of supersymmetric higher spin theories in AdS4 with

S1
β × S2 boundary

In thermal AdS4, the one loop free energy of the bulk theory takes the form [21]

F
(1)
bulk = F (β)bulk + βEcbulk + abulk log Λ , (3.51)

where β is the period of the imaginary time, F (β)bulk is the thermal free energy which can

be computed by taking the log of the thermal partition function asF (β)bulk ≡ β−1 logZbulk

with Zbulk ≡ tr e−βHbulk , and abulk is the anomaly coefficient related to the Seeley coef-

ficient. The trace denotes the sum over all HS particle states. abulk is proportional to the

integral of local curvature invariants, and should be the same for AdS4 with S3 boundary

and for the thermal AdS4. Thus, after summing over spins the total abulk should vanish

as shown in previous sections. Ec bulk is the one loop contribution to the Casimir energy

which can be extracted from the thermal free energy in a standard way (cf. (3.55), (3.56)).

The free energy of the U(N), O(N) or USp(N) singlet sector of a free vectorial CFT

on S1
β × S2 takes similar form

FCFT = F singlet(β)CFT + βEcCFT + aCFT log Λ , (3.52)

in which F (β)CFT is the free energy of the subsector in Hilbert space consisting of only the

states that are invariant under the required symmetry group. The Casimir energy EcCFT is
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given by NE0, where E0 is the Casimir energy of a single conformally invariant free field

on S1
β × S2. The anomaly coefficient aCFT vanishes on S1

β × S2, which is conformally

flat and has vanishing Euler number. Therefore, there are no logarithmic divergent terms

on both the bulk and the boundary sides. There remains comparison of the thermal part

of the free energies and the Casimir energies on both sides. The thermal part of the free

energies are expected to match since, by definition, the bulk and boundary thermal partition

functions which give rise to the corresponding thermal free energies are both equal to the

character of the HS algebra associated with the spectrum of the HS theory. The comparison

between the bulk and boundary Casimir energies, however, is not straightforward, since

different from Ec bulk, the Casimir energy on the CFT side is not directly related to the

thermal free energy of the singlet sector through (3.55). Holographic matching of the free

energies at O(N0) demands that Ecbulk is an integer times the Casimir energy of a single

conformally invariant free field on S1
β × S2.

In this section, we first study the one loop free energy of Konstein-Vasiliev theory in

thermal AdS4 with S1
β × S2 boundary. We then compare the bulk result with the free

energy of the corresponding dual CFT atO(N0). Recall that there exist generalizations of

d > 4 Vasiliev theory which are dual to the U(N) or O(N) singlet sector of free scalars or

fermions [47]. Free energy of this type of HS theory in thermal AdSd has been calculated

in [21] and compared with O(N0) term in the free energy of the large N U(N) or O(N)

vectorial free CFT. It was found that the matching of free energy implies shifts in the

relation between G−1
N and N at leading order by an integer.

Different from [21] where the bulk theories are purely bosonic, in our case the bulk

theory includes also fermionic HS fields. Accordingly, the dual CFT consists of both

scalars and fermions. In particular, the fermionic HS fields are dual to the bilinear con-

served currents built out of both scalars and fermions. State operator correspondence then

implies the existence of scalar-fermion mixed states in the Hilbert space that are singlet
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under the required symmetry group. These scalar-fermion mixed states contribute to the

thermal free energy of the singlet sector nontrivially, which means that the F singlet(β) for

a CFT involving both scalars and fermions cannot be obtained by a simple sum of the

F singlet(β)’s of a pure-scalar CFT and of a pure-fermion CFT.

Below we start with the computation of the free energies in Konstein-Vasiliev models,

which include supersymmetric HS theories as special cases. The story is far more elaborate

in higher dimensions. In particular, we refer the readers to [48,49] and [50] for the case of

5D, and [51] for the case of 7D.

3.4.1 The bulk side

As stated earlier, the one loop free energy of a massless field in thermal AdS4 has

the structure displayed in (3.51) with the vanishing log divergence. F (β) can be obtained

from the grand canonical partition function as

For bosons: F (β)bulk = −
∞∑
m=1

1

m
Z(mβ) , (3.53)

For fermions: F (β)bulk =
∞∑
m=1

(−1)m

m
Z(mβ) . (3.54)

Here Z(β) is the one-particle canonical partition function. The Casimir energy Ecbulk can

be obtained from the energy ζ-function as

Ecbulk = ±1

2
ζE(−1) , (3.55)

where ± correspond to bosonic and fermionic cases respectively. The energy ζ-function

is related to the one-particle partition function by a Mellin transform

ζE(z) =
1

Γ(z)

∫ ∞
0

dββz−1Z(β) . (3.56)
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In D = 4, the thermal one-particle partition function for a scalar field is given by

Z(∆)
0 =

q∆

(1− q)3
∆ >

1

2
, (3.57)

where ∆ is the AdS energy and q = e−β [52]. Thermal one-particle partition function for

s ≥ 1
2

massless field takes the form

Zs(β) =
qs+1

(1− q)3

[
2s+ 1− (2s− 1)q

]
. (3.58)

From the results derived in [21], we deduce the useful formulae‡

F
(1)
even 1 = F (β)even 1 = −

∞∑
m=1

1

m
Zeven 1(mβ) ,

Zeven 1(β) = 1
2

q(1 + q)2

(1− q)4
+ 1

2

q(1 + q2)

(1− q2)2
= 1

2
[Z̃0(β)]2 + 1

2
Z̃0(2β) ,

F
(1)
even 2 = F (β)even 2 = −

∞∑
m=1

1

m
Zeven 2(mβ) ,

Zeven 2(β) =
2q2

(1− q)4
− q2

(1− q2)2
= 1

2
[Z̃ 1

2
(β)]2 − 1

2
Z̃ 1

2
(2β) ,

F
(1)
odd 1 = F (β)odd = −

∞∑
m=1

1

m
Zodd(mβ) ,

Zodd(β) = 1
2

q(1 + q)2

(1− q)4
− 1

2

q(1 + q2)

(1− q2)2
= 1

2
[Z̃0(β)]2 − 1

2
Z̃0(2β) , (3.59)

where for later convenience we express the results in terms of the characters Z̃0(β) and

Z̃1
2
(β) of the conformally coupled free scalar and the free real fermion which realize the

spin-0 and spin-1
2

singleton representations of the SO(3, 2), respectively

Z̃0(β) =
q

1
2 (1 + q)

(1− q)2
, Z̃1

2
(β) =

2q

(1− q)2
. (3.60)

‡In the rest of this subsection the thermal free energies and partition functions refer to those of the bulk
theory.
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By using (3.55) and (3.56), one can show that Zeven 1(β), Zeven 2(β) and Zodd(β) all lead

to vanishing Casimir energy [21]§. Therefore we simply dropped Ec term in (3.59). Also

one should note that

1
2
[Z̃ 1

2
(β)]2 + 1

2
Z̃ 1

2
(2β) = 1

2
[Z̃0(β)]2 − 1

2
Z̃0(2β) . (3.61)

For all the fermionic fields, we find that the total one-particle canonical partition function

is given by

ZF (β) =
∞∑
s= 1

2

qs+1

(1− q)3

[
2s+ 1− (2s− 1)q

]
=

2q
3
2 (1 + q)

(1− q)4
= Z̃0(β)Z̃ 1

2
(β) . (3.62)

Using the total one-particle canonical partition function, we can construct the energy ζ-

function for fermions

ζFE (z) =
1

Γ(z)

∫ ∞
0

dββz−1 2e−
3
2
β(1 + e−β)

(1− e−β)4

= 2
∞∑
n=1

(
n+ 2

3

)
[(n+ 1

2
)−z + (n+ 3

2
)−z]

= 1
8
ζ(z, 5

2
)− 1

12
ζ(z − 1, 5

2
)− 1

2
ζ(z − 2, 5

2
) + 1

3
ζ(z − 3, 5

2
)

−1
8
ζ(z, 3

2
)− 1

12
ζ(z − 1, 3

2
) + 1

2
ζ(z − 2, 3

2
) + 1

3
ζ(z − 3, 3

2
) . (3.63)

This vanishes at z = −1. Therefore, the total Casimir energy for fermionic HS fields

vanishes in thermal AdS4 as well, and the correspoding one loop free energy is simply

F (1)F = F (β)Fbulk =
∞∑
m=1

(−1)m

m
ZF (mβ) . (3.64)

§Similar technique using SO(3, 2) character has been applied to compute one-loop free energy of HS
theories constructed using higher-order singleton [53], where vanishing of Casimir energy was also observed.
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Summarizing the results above and using the spectra given in (3.9), we find that the one

loop free energies for generic Konstein-Vasiliev HS theories are given by

hu(m;n|4) : F
(1)
hu = −

∞∑
k=1

1

k

[
m Z̃0(kβ) + n (−)k+1 Z̃ 1

2
(kβ)

]2

, (3.65)

ho(m;n|4) : F
(1)
ho = −

∞∑
k=1

1

2k

([
m Z̃0(kβ) + n (−)k+1 Z̃ 1

2
(kβ)

]2

+m Z̃0(2kβ)− n Z̃ 1
2
(2kβ)

)
, (3.66)

husp(m;n|4) : F
(1)
husp = −

∞∑
k=1

1

2k

([
m Z̃0(kβ) + n (−)k+1 Z̃ 1

2
(kβ)

]2

−m Z̃0(2kβ) + n Z̃ 1
2
(2kβ)

)
. (3.67)

The free energy of husp(m;n|4) theory can be obtained from that of the ho(m;n|4) theory

by m→ −m,n→ −n.

3.4.2 The CFT side and comparison

In this section, we calculate the partition function of the singlet sector of free CFTs on

S1
β × S2. We closely follow the technique developed in [54, 55]. The partition function of

a CFT on S1
β×S2 is equal to the thermal partition function due to the vanishing of Casimir

energy and logarithmic divergence. Therefore, we have

Z(β) =
∑

i∈physical states

qEi , q = e−β , (3.68)

where the physical states are restricted to be the singlet states of U(N),O(N) or USp(N)

for our purpose. We have also used the fact that there is no non-trivial chemical potential

in the system. The thermal partition functions of the U(N) and O(N) singlet sectors of

free scalar and free fermion theories have been studied in [21, 56]. We generalize their
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results to the cases with both scalars and fermions. We first consider the U(N) singlet

sector of a free CFT with Nm complex free scalars and Nn Dirac fermions. As shown

in [21, 56], the thermal partition function can be expressed as a path integral localized on

the eigenvalues of U(N) matrix

ZU(N)(β) = e−F (β)U(N) =

∫ N∏
i=1

dαie
−S(α1,...αN ) ,

S(α1, ...αN) = −1
2

N∑
i 6=j=1

log sin2 αi − αj
2

+ 2
N∑
i=1

fβ(αi) ,

fβ(α) =
N∑
k=1

ck(β) cos(kα) , ck(β) = −1

k

[
m Z̃0(kβ) + n (−)k+1Z̃ 1

2
(kβ)

]
,(3.69)

where the matter contents affect the effective action through ck(β). In the large N limit,

the integral over αi can be replaced by the path integral over the eigenvalue density ρ(α),

α ∈ (−π, π). ρ(α) satisfies the standard normalization

∫ π

−π
dαρ(α) = 1 . (3.70)

The effective action in terms of ρ(α) takes the form

S(ρ) = N2

∫
dαdα′K(α− α′)ρ(α)ρ(α′) + 2N

∫
dαρ(α)fβ(α) ,

K(α− α′) = −1
2

log(2− 2 cosα) , fβ(α) =
N∑
k=1

ck(β) cos(kα) . (3.71)

Integrating out ρ, one obtains

F (β)U(N) = −
∞∑
k=1

k[ck(β)]2 = −
∞∑
k=1

1

k

[
m Z̃0(kβ) + n (−)k+1Z̃ 1

2
(kβ)

]2

, (3.72)

66



which coincides with one loop free energy for hu(m;n|4) higher spin theory (3.65). Next,

we study the O(N) singlet sector of a free CFT with Nm real free scalars and Nn Majo-

rana fermions. This is a generalization of the results in [21], where the free CFT consists

of only scalars or fermions. It is suggested in [21] that, one can choose N to be even,

namely N=2N for simplicity in the large N . The difference between even N and odd N

cases is at the next order in 1/N expansion. Free energy of the O(2N) singlet sector of a

free CFT with Nm real free scalars and Nn Majorana fermions can again be written as

a path integral over the eigenvalues of O(N) matrix. The effective potential of the O(N)

singlet sector is given by [21]

S(α1, ...αN) = −1
2

N∑
i 6=j=1

log sin2 αi − αj
2

− 1
2

N∑
i 6=j=1

log sin2 αi + αj
2

+ 2
N∑
i=1

fβ(αi) ,(3.73)

where fβ is the same as the one in (3.69). The effective potential for the O(N) singlet

sector differs from that of the U(N) by the log sin2 α terms which come from the Van der

Monde determinant or the Haar measure. In the large N limit, the path integral over αi

can again be recast into an integral over the eigenvalue density ρ(α). After integrating out

ρ, one obtains

F (β)O(N) = −
∞∑
k=1

k

2

(
[ck(β)]2 − 2

k
c2k(β)

)
(3.74)

= −
∞∑
k=1

1

2k

([
m Z̃0(kβ) + n (−)k+1 Z̃ 1

2
(kβ)

]2

+m Z̃0(2kβ)− n Z̃ 1
2
(2kβ)

)
,

which matches the one loop free energy of ho(m;n|4) HS theory in (3.66). In the last

case, we consider the USp(N) singlet sector of a free CFT with Nm complex free scalars

φia, i = 1, 2, ...N , a = 1, 2, ...m and Nn Dirac fermions subject to the symplectic real

condition. Since N is even in this case, we denote N by 2N. The effective potential of the
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USp(N) singlet sector takes the form

S(α1, ...αN) = −1
2

N∑
i 6=j=1

log sin2 αi − αj
2

− 1
2

N∑
i,j=1

log sin2 αi + αj
2

−1
2

N∑
i=1

log sin2 αi + 2
N∑
i=1

fβ(αi) . (3.75)

In the largeN limit, the path integral over αi can be evaluated by using the same technique

as before. The free energy of the USp(N) singlet sector of a free CFT is obtained as

F (β)USp(N) = −
∞∑
k=1

k

2

(
[ck(β)]2 + 2

k
c2k(β)

)
(3.76)

= −
∞∑
k=1

1

2k

([
m Z̃0(kβ) + n (−)k+1 Z̃ 1

2
(kβ)

]2

−m Z̃0(2kβ) + n Z̃ 1
2
(2kβ)

)
,

which matches one loop free energy of husp(m;n|4) HS theory in (3.67).

3.5 Mixed boundary conditions in bulk and interacting N = 1 SCFT

InN = 1 HS theory, the OSp(1|4) invariant boundary conditions are given in [18]. To

describe this, we write the boundary behavior (ρ→ 0) of the complex scalar φ = A+ iB

as

A = ρα+ + ρ2β+ , B = ρα− + ρ2β− , (3.77)

and define the 3D, N = 1 superfields

Φ− = α− + iθ̃η− −
θ̃θ

2i
β+ , Φ+ = α+ + iθ̃η+ +

θ̃θ

2i
β− . (3.78)

The boundary conditions preserving OSp(1|4) take the form

Φ− = λΦ+ , (3.79)
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where λ is an arbitrary real number. In terms of the new scalar fields we have

A′ = sinϑA− cosϑB , B′ = cosϑA+ sinϑB , (3.80)

where tanϑ = λ, and the boundary condition (3.79) is equivalent to

α′+ = 0 , β′− = 0 . (3.81)

The linearized bulk scalar field equations would remain the same form under the SO(2)

rotation, thus the newly defined scalar fields A′ and B′ possess the same Feffer-Graham

expansion as the original scalar fields A and B. The boundary condition (3.81) implies

that near the boundary

A′ = ρ2β′+ , B′ = ρα′− . (3.82)

Therefore, in computing the one loop free energy, A′ should have ∆ = 2, while B′ should

have ∆ = 1, which does not affect the N = 1 HS spectrum and the corresponding one

loop calculation. On the CFT side, the boundary condition (3.79) implies the N = 1 free

CFT being deformed by a supersymmetric double-trace term

∆S =
λ

2

∫
d3xd2θO2 , (3.83)

where O is given by

O =
1√
N
W 2 , W = ϕ+ iθ̃ψ +

θ̃θ

2i
f . (3.84)

We compute the difference between the free energy of the deformed CFT and that of the

free CFT, following the procedure adopted in [39, 57]. Denoting the partition function of

69



the free CFT by Z0, we calculate

∆F = − log
Z

Z0

. (3.85)

Using the Hubbard-Stratonovich transformation, we have

Z

Z0

=
1∫

DΣexp( 1
2λ

∫
dz′Σ2)

∫
DΣ
〈

exp
[ ∫

dz
( 1

2λ
Σ2 + ΣO

)]〉
0
, (3.86)

where Σ is an auxiliary superfield and z denotes the supercoordinate. In the large N limit,

the higher point functions of O are suppressed. This allows us to write

〈
exp
[ ∫

dzΣO
]〉

0
= exp

[1

2

〈(∫
dzΣO

)2〉
0

+ o(1/N)
]
. (3.87)

Note that Σ and O are single-trace operators of N = 1 superfields, say M and W respec-

tively, each with component fields Ai, λi, Bi and φi, ψi, f i, where B and f are auxiliary

fields, and the index i stands for the representation of O(N). The component fields obey

the following superconformal transformations

δA =
1

4
ξ̃λ δφ =

1

4
ξ̃ψ (3.88)

δλ = /∂Aξ − 1

4
Bξ + Aη δψ = /∂φξ − 1

4
fξ + φη (3.89)

δB = −ξ̃ /∇λ δf = −ξ̃ /∇ψ (3.90)

where ξ and η are spinors satisfying the conformal Killing spinor equation∇µξ = γµη.
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Integrating out the spinor coordinates θ and θ̃, we obtain

∫
dz

1

2λ
Σ2 =

1

λ

∫
dx3√g(BiAiAjAj +

1

2
λ̃iλiAjAj + λ̃iλjAiAj)

=
1

λ

∫
dx3√g(Σ2Σ1 + Σ3/2Σ3/2) ,

(3.91)

∫
dzΣO =

∫
dx3√g(f iφiAjAj +

1

2
ψ̃iψiAjAj +BiAiφjφj +

1

2
λ̃iλiφjφj + 2ψ̃iλjφiAj)

=

∫
dx3√g(O2Σ1 + Σ2O1 + 2O3/2Σ3/2) ,

(3.92)

where we defined

Σ1 = AiAi , O1 = φiφi, Σ3/2 = Aiλi , O3/2 = φiψi ,

Σ2 = BiAi +
1

2
λ̃iλi , O2 = f iφi +

1

2
ψ̃iψi ,

(3.93)

with the lower indices labeling the dimension of the single-trace operators.

With the above preparation the second factor of (3.86) at large N is

∫
DΣ exp

[ 1

2λ

∫
dzΣ2 +

1

2

〈(∫
dzΣO

)2〉
0

]
=

∫
DΣ exp

[1

λ

∫
dx3√g(Σ2Σ1 + Σ3/2Σ3/2)

+
1

2

〈(∫
dx3√g(O2Σ1 + Σ2O1 + 2O3/2Σ3/2)

)2〉
0

]
=

∫
DΣ exp

[1

λ

∫
dV (Σ2Σ1 + Σ3/2Σ3/2)

+
1

2

∫ ∫
dV dV ′

(
Σ1(x)Σ1(x′)

〈
O2(x)O2(x′)

〉
0

+ Σ2(x)Σ2(x′)
〈
O1(x)O1(x′)

〉
0

+ 4Σ3/2(x)Σ3/2(x′)
〈
O3/2(x)O3/2(x′)

〉
0

)]
,

(3.94)

where dV ≡ dx3√g, and we dropped vanishing terms in the two-point function to reach
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the last line.

The integral in (3.86) then becomes gaussian, which integrates to give

Z

Z0

=
det
(
1+ 2λ〈O3/2O3/2〉0

)
{

det
(
λ
2
〈O2O2〉0

)
det
(
λ
2
〈O1O1〉0

)
det
(
1− (λ

4
〈O2O2〉0)−1(λ

4
〈O1O1〉0)−1

)} 1
2

.

(3.95)

At λ→∞, the change of the free energy compared to the free theory is

∆F = − log
Z

Z0

=− tr log
(

2〈O3/2O3/2〉0
)

+
1

2
tr log

(1

2
〈O2O2〉0

)
+

1

2
tr log

(1

2
〈O1O1〉0

)
.

(3.96)

The two-point functions 〈O1O1〉0 and 〈O2O2〉0 can be expanded in terms of scalar har-

monics on S3 [57]

〈O∆(x)O∆(x′)〉0 =
∑
`m

g∆
` Y

∗
`m(x)Y`m(x′) , (3.97)

where g∆
` is given by

g∆
` = R3−2∆π

3
2 23−∆ Γ(3

2
−∆)

Γ(∆)

Γ(`+ ∆)

(3 + `−∆)
. (3.98)

Since the harmonics satisfy orthonormal relations, we have

∫
√
gd3y〈O2(x)O2(y)〉0〈O1(y)O1(x′)〉0 =

∑
`m

g∆=2
` g∆=1

` Y ∗`m(x)Y`m(x′) . (3.99)

It is straightforward to see that g∆=2
` g∆=1 is independent of `, and therefore according

to [57], tr log〈O2O2〉0 + tr log〈O1O1〉0 does not contribute to ∆F .

Similarly, for fermionic two-point function, it is shown in [39] that tr log〈O3/2O3/2〉0
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is also zero. Therefore, in the IR there is no modification to the free energy given by the

double-trace deformation.

When λ is small, one can apply perturbation theory to compute ∆F induced by the

deformation. As shown in [39] the change of free energy caused by the deformation is

proportional to the beta function of the deformation coupling. The deformation appearing

here is exactly marginal in the N → ∞ limit, which implies that the beta function of the

coupling constant is suppressed by 1/N . Thus, at small coupling it can also be seen that

the deformation does not affect the O(N0) free energy. In summary, although we have

not computed the free energy of the deformed theory for arbitrary λ, the vanishing of ∆F

at O(N0) in both the strong and weak coupling limits provides strong evidence that ∆F

does not receive O(N0) contribution from the supersymmetric double-trace deformation,

which is exactly marginal in the N →∞ limit.

3.6 Discussion

We have carried out one loop tests of the conjectured dualities between Konstein-

Vasiliev HS theories in AdS4 with S3 and S1
β × S2 boundaries. Our results for the free

energies extend previous ones [20, 21, 41] by inclusion of fermionic bulk degrees of free-

dom. In computing the one loop free energies of bosonic and fermionic HS fields in AdS4

with S3 boundary, we have adopted the modified spectral zeta function method suggested

by [43], thereby reproducing the one loop free energy for bosonic HS fields in a much

simpler way without the ambiguities encountered in [20, 41]. We also find that the total

one loop free energy of an infinite tower of bulk fermionic fields vanishes.

Matching the bulk fields with boundary operators suggests that the possible CFT du-

als of Konstein-Vasiliev theories based on hu(m;n|4), ho(m;n|4) and husp(m;n|4),

and subject to HS symmetry preserving boundary conditions, are respectively the U(N),

O(N) and USp(N) singlet sectors of free scalars and free fermions vector representa-
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tions of the bosonic subalgebras conformally coupled to S3. We find that the free energy

of the HS theory may match with that of the free CFT only when the bulk theories are

hu(m; 0|4), ho(m; 0|4), husp(m; 0|4) Konstein-Vasiliev theories, and with identifications

G−1
N = γ(N + ∆N) with suitable integers ∆N . These are generalized Type-A theories

with bosonic scalars on the boundary and bosonic bulk HS fields containing even parity

scalars. Thus, in particular, the free energies for generalized Type-B models with fermions

on the S3 boundary and bosonic HS fields including odd parity scalar fields do not match.

The mismatch in the case ofm = 0, n = 1 corresponding to the simplest Type-B model has

already been noted in [20] where the one loop free energy F (1) = −ζ(3)/(8π2) obtained

in the bulk does not agree with the free energy of Dirac fermions on S3 boundary. We have

also calculated the free energies of Konstein-Vasiliev theories inAdS4 with S1
β×S2 bound-

ary. In this case, we find that the free energies of all three families of Konstein-Vasiliev

theories match those of the conjectured dual free CFTs.

Turning to the problem of mismatch in free energies of Type-B model and its con-

jectured dual, one may have to take into account the issue of how to impose the O(N)

invariance condition on the CFT side. A natural way of implementing it is to gauge the

O(N) symmetry by means of vector gauge field with level k Chern-Simons kinetic term.

This term breaks parity but the result for the free energy of the parity invariant model can

be obtained in a limit in which the CS gauge field decouples. It has been suggested in [20]

that as the fermions coupled to CS on the boundary give rise to a shift in the level k, it may

not be justified to obtain the result for parity-preserving case by a naive subtraction of CS

contribution from the free energy on the CFT side. However, one expects that this effect

becomes irrelevant in the decoupling limit in which k → ∞. In fact, we have examined

the procedure of decoupling CS in the large k limit by evaluating the S3 free energies for

ABJ model based on U(N)k × U(1)−k [6, 58] and a few N = 3 CS matter theories in

which the matter sector consists of fundamental hypermultiplets [59–61]. After subtract-
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ing the contribution from pure CS term, we indeed obtain the free energies of free vector

models. Therefore, the puzzle of free energy mismatch in Type-B remains unresolved and

its solution requires deeper understanding of HS/vector model holography.

We conclude the chapter at this point. In next chapter we will focus on a parallel test

of the HS/CFT duality, by comparing the three-point functions on both sides.
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4. THREE-POINT FUNCTION TESTS OF HS/CFT DUALITIES

In this chapter we compute the tree-level three-point Witten diagrams of HS theories

in AdS4 without supersymmetry, and compare them with the known results on the CFT

side [62–64]. More specifically, due to the non-localities present in the HS theories, we

are only able to calculate the three-point functions with one scalar leg. In the pioneered

work [22] the authors have adopted certain special kinematics in the computation of the

three-point Witten diagrams with spins s1 − s2 − 0 for parity-preserving HS theories,

and have shown that the coefficients of the leading terms (which are functions of s1 and

s2 and thus nontrivial) match with the ones on CFT side. We will sharpen and expand

considerably this test. In particular, we provide simplifications of the computations, and

produce the full structures of the HS correlation functions. We also establish nontrivial

new tests of the holography for the parity-violating HS theories.

In the following we first give out our convention for AdS4 and review the structure of

the CFT correlators in Chern-Simons matter theories, and discuss the general structure of

HS interactions and relation to the Vasiliev equations. We then carry out the computation

of the cubic Witten diagrams and compare the results with the ones in CFTs.

This chapter is based on the work [26] in collaboration with Dr. Ergin Sezgin and Dr.

Evgeny Skvortsov.

4.1 Notation and Conventions in AdS4

We adopt the mostly plus convention for the metric ηm = (−+ ++), which makes the

Euclidean rotation easier to implement. Choosing xm = (~x, z) to be Poincare coordinates

with z being the radial coordinate and ~x the three coordinates along the boundary, the

AdS4-background can be described by vierbein hαα̇m and spin-connection that splits into
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(anti) self-dual parts ω(0)m
αβ and ω̄(0)m

α̇β̇:

hαα̇ =
1

2z
σαα̇m dxm , ωαβ(0) =

i

2z
~σαβ · d~x , ω̄α̇β̇(0) = − i

2z
~σαβ · d~x . (4.1)

The matrices σαα̇m are constant and in our convention they are given by σαβ̇m = (~σαβ, iεαβ).

We have the relations

xαβ = ~σαβ · ~x , x2 = −1
2
xαβxαβ , σαα̇m σnαα̇ = −2ηmn , (4.2)

xαα̇ = xαα̇ + izεαα̇ , x2 = x2 + z2 , xij = |xi − xj| . (4.3)

The inverse vierbein hmαα̇ = −zσmαα̇ obeys the relations

hαα̇m hnαα̇ = δnm , hαα̇m hm
ββ̇

= δαβ δ
α̇
β̇
, (4.4)

and the AdS4 metric tensor and spin connection are given by

gmn = −hαα̇m hnαα̇dx
mdxn =

1

2z2
ηmndx

mdxn , (4.5)

Ω =
1

4i

[
ω(0)αβy

αyβ + ω̄(0)α̇β̇ ȳ
α̇yβ̇ + 2hαβ̇y

αȳ β̇
]
. (4.6)

We use the raising and lowering conventions: Xα = εαβXβ and Xα = Xβεβα with

εαγε
βγ = δβα, and similar conventions for the dotted indices. We use the convention

ε12 = −ε21 = 1.

4.2 CFT

In this section we review the general structure of correlation function in three dimen-

sions and list the results available in the literature for free theories and, more generally, for

Chern-Simons matter theories. The advantage of three dimensions is that one can benefit
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from the fact that so(2, 1) ∼ sp(2).

4.2.1 General Structure of the Correlators

In three dimensions a traceless rank-s so(2, 1)-tensor is equivalent to a symmetric

rank-2s spin-tensor. It is convenient to contract the Lorentz indices of tensor operators

with auxiliary polarization vectors that are now replaced by polarization spinors, which

we denote by η ≡ ηα. Therefore, a weight-∆, rank-s tensor operator Oa1...as
∆ is replaced

by a generating function O∆(x, η):

Oa1...as
∆ (x) −→ Oα1...α2s

∆ (xβγ) −→ O∆(x, η) = Oα1...α2s
∆ (x)ηα1 ...ηα2s .

(4.7)

Suppose we are given a number of operators O(xi, ηi) that are inserted at points xi and

whose tensor indices are contracted with polarization spinors ηiα. The conformal group

acts in the usual way. In particular, Lorentz transformations correspond to an Sp(2) matrix

Aα
β that acts both on coordinates xi and polarization spinors ηi:

xβδ → Aα
β Aγ

δ xαγ , ηiα → Aα
β ηiβ . (4.8)

It is useful to define the inversion map as

R~x =
~x

x2
, Rηaα =

xα
βηaβ
x2

, Rxαα̇ =
xαα̇

x2
=

xαα̇ + izεαα̇

x2 + z2
, (4.9)

Then, it is not hard to see that the following structures are conformally invariant [63]:

Pij = ηiαR[xi − xj]
αβηjβ , RPij = Pij , (4.10)

Qi
jk = ηiα (R[xj − xi]−R[xk − xi])

αβ ηiβ , RQi
jk = Qi

jk . (4.11)
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There is also one more structure that is parity-odd:

Sijk =
ηkα(xki)

α
β (xij)

βγηjγ
xijxikxjk

, RSijk = −Sijk . (4.12)

Any three-point correlation function 〈O1(x1, η
1)O2(x2, η

2)O3(x3, η
3)〉 can be decomposed

into an obvious prefactor times a polynomial in Q,P, S structures:

〈O1(x1, η
1)O2(x2, η

2)O3(x3, η
3)〉 =

1

x∆1+∆2−∆3
12 x∆1+∆3−∆2

13 x∆2+∆3−∆1
23

f(P,Q, S) .

(4.13)

The function f must comply with the spin of the operators and also should not contain any

redundant structures that are possible due to not all of Q,P, S being independent. As we

will need only two- and three-point correlation functions, it is convenient to introduce the

following notation

Q1 ≡ Q1
32 , Q2 ≡ Q2

13 , Q3 ≡ Q3
21 , S3 ≡ S3

21 . (4.14)

The even power of any odd structure is even, which is manifested by [63]

S2
3 +Q1Q2 − P 2

12 ≡ 0 . (4.15)

This is the only relation we need for the s1 − s2 − 0 correlators. The even structures P,Q

can be identified as the building blocks of the simplest correlators that are completely fixed
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by conformal symmetry

〈js1(x1, η1)js2(x2, η2)〉 ∼ 1

x2
12

δs1,s2(P12)s1+s2 , (4.16)

〈js1(x1, η1)j0(x2)j0(x3)〉 ∼ 1

x12x23x31

(Q1)s1 , (4.17)

where we assumed that js is the spin-s conserved tensor and the weight of scalar operator

j0 is ∆ = 1. The conservation of currents can be imposed with the help of a simple third

order operator:

div =
∂2

∂ηα∂ηβ

∂

∂xαβ
. (4.18)

4.2.2 Free Boson

The simplest example of duality is between the (non)-minimal the Type-A HS gravity

and (U(N)) O(N) free scalars. Dropping the canonical normalization factors, the two-

point functions for the U(N) case are

U(N) : 〈φ̄a(x)φb(0)〉 = δba
1

|x|
, (4.19)

where a, b = 1, ..., N . As is well known [22, 65, 66], it is convenient to pack the HS

currents into generating functions

j(x, η) = f(u, v)φ̄a(x1)φa(x2)
∣∣∣
xi=x

, u = 1
2
ηαηβ∂1

αβ , v = 1
2
ηαηβ∂2

αβ . (4.20)

The conservation of the current implies a simple differential equation for f . The most

convenient formulae are obtained [66,67] with the help of an auxiliary generating function

Ca(η|x) for the derivatives of the scalar field. It obeys ∂αβCa = i
2
∂α∂βC

a, which is solved
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by Ca = cos
[
2eiπ/4

√
u
]
φa(x). The generating function of the HS currents then has a

simple factorized form:

j(x, η) = Ca(u)Ca(−v) = cos[2eiπ/4
√
u] cos[2eiπ/4

√
−v]φ̄a(x1)φa(x2)

∣∣∣
xi=x

. (4.21)

The two-point function of the currents is then

〈jsjs〉f.b. ≡ 〈j(x1, η1)j(x2, η2)〉 =
1

2

1

x2
12

cosh (2P12) , (4.22)

where we introduced a shorthand notation js for j(xi, ηi) and the arguments are in ac-

cordance with its position inside the brackets; f.b. refers to “free boson". Sometimes we

have to distinguish the first member of the family j0 ≡ φ̄a(x)φa(x) from the others. The

simplest three-point function, which is fixed by the symmetry, is

〈jsj0j0〉f.b. =
2

x12x13x23

cos
(

1
2
Q1

)
. (4.23)

The three-point functions with two HS currents are assembled into

〈jsjsj0〉f.b. =
2

x12x13x23

cos
(

1
2
Q1 + 1

2
Q2

)
cosP12 . (4.24)

The three-point functions of the three HS currents are [68] (see also [63, 67, 69–71]):

〈jsjsjs〉f.b. =
2

x12x23x31

cos
(

1
2
Q1 + 1

2
Q2 + 1

2
Q3

)
cos(P12) cos(P23) cos(P31) . (4.25)
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It is also useful to consider the case of U(N)-singlet constraint with leftover U(M) global

symmetry. The generating function is

〈jsjsj0〉f.b. =
2

x12x13x23

exp
[
− i

2
(Q1 +Q2)

]
cosP12 . (4.26)

This is the most general case, all others being simple truncations. Imposing the bose

symmetry we get (4.24). Truncation to even spins only gives the O(N) case.

4.2.3 Free Fermion

The second example is the duality of the Type-B theory and a theory of free U(N) or

USp(N) fermions, of which we consider the former. The two-point function is

U(N) : 〈ψ̃caα(x)ψbβ(0)〉 = δba
1

2

~x · ~σαβ
|x|3

= δba∂αβ|x2|−
1
2 . (4.27)

HS currents are constructed analogously

j(η, x) = f(u, v)ηαηβψaα(x1)ψaβ(x2)
∣∣∣
xi=x

, (4.28)

and again the useful trick is to pack the derivatives into Ca as follows

∂αβC
a = i

2
∂α∂βC

a , Ca = 1√
u

sin
[
2eiπ/4

√
u
]
ψaα(x)ηα . (4.29)

The generating function of the HS currents has the factorized form:

j(η, x) = Ca(u)Ca(−v) =
1√
−uv

sin
[
2eiπ/4

√
u
]

sin
[
2eiπ/4

√
−v
]
ψaα(x1)ψaβ(x2)

∣∣∣
xi=x

.

(4.30)
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The two-point function is normalized in the same way as that of the free boson:

〈jsjs〉f.f. =
1

2

1

x2
12

cosh (2P12) , 〈j̃0j̃0〉f.f. =
1

4x4
, (4.31)

where f.f. refers to “free fermion". Here the scalar singlet operator

j̃0 = ψ̃caψ
a (4.32)

has dimension 2 and is not captured by the generating function above. The three-point

function of j̃0 vanishes due to parity

〈j̃0j̃0j̃0〉f.f. = 0 . (4.33)

For the other cases we find (see also [63, 67, 69–71]):

〈jsjsj̃0〉f.f. =
2 cos(1

2
Q1 + 1

2
Q2)

x2
23x2

13

S3 sinP12 , (4.34)

〈jsj̃0j̃0〉f.f. =
2 sin 1

2
Q1

x12x3
23x31

Q1 , (4.35)

and

〈jsjsjs〉f.f. =
2

x12x23x31

sin(1
2
Q1 + 1

2
Q2 + 1

2
Q3) sin(P12) sin(P23) sin(P31) . (4.36)

Note that the expression for the correlators of js is valid for s ≥ 1 only, while any insertion

of j̃0 should be treated separately. Again, it is useful to work with the free fermion with

leftover U(M) global symmetry and the generating function is

〈jsjsj̃0〉f.f. =
2

x2
23x2

13

exp( i
2
Q1 + i

2
Q2)S3 sinP12 . (4.37)
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4.2.4 Critical Boson

Critical Boson theory is the IR fixed point under a double-trace deformation (φ2)2. The

regime that is relevant for AdS/CFT is the large-N , see e.g. [72,73] for the systematic 1/N

expansion. To the leading order in 1/N the correlation function of HS currents js, s > 0

stays the same as in the free boson theory, i.e. (4.25). The dimension of the lowest singlet

operator φ2, which is usually dubbed σ, jumps from 1 for free boson to 2 + O(1/N) for

critical one. Therefore, the spectrum of the singlet operators in the critical boson theory

looks like that of the free fermion in N = ∞ limit. For this reason the scalar singlet is

denoted as j̃0. Correlation functions with a number of j̃0 insertions are related to those

in the free boson theory by attaching propagators of the σ-field. In [64] the three-point

functions 〈js1js2 j̃0〉 were fixed by employing the non-conservation equation in the Chern-

Simons matter theories. The result is

〈js1js2 j̃0〉c.b. = fs1,s2
1

x2
13x2

23

(Q1)s1(Q2)s2
∑
k

Ak

(
P 2

12

Q1Q2

)k
, (4.38)

where c.b. refers to “critical boson", fs1,s2 is a overall spin-dependent factor and the coef-

ficients obey A−1 = 0, A0 = 1 and the rest are generated via

An =
An−1 (s1s2 + (2n− 1− s1)(2n− 1− s2)− 5n+ 4))− 2An−2(n− s1 − 2)(n− s2 − 2)

n(2n− 1)
.

The coefficients fs1,s2 depend on normalization of 〈jsjs〉c.b. two-point functions. We

choose the same normalization as in the free boson theory (4.22), which gives:

fs1,s2 = − is1+s22−s1−s2+2

Γ
(
s1 + 1

2

)
Γ
(
s2 + 1

2

) . (4.39)
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4.2.5 Critical Fermion

Critical fermion is the Gross-Neveu model, i.e. free fermion with (ψ̃cψ)2-deformation

added. The large-N expansion works fine despite the apparent non-renormalizability of

the interactions, see e.g. [74,75]. Again, the correlation functions of HS currents js, s > 0

are the same as in the free fermion theory (4.36) to the leading order in 1/N , while the

dimension of σ = ψ̄ψ jumps from 2 in the free theory to 1 +O(1/N) in the Gross-Neveu

one. Therefore, the spectrum of singlet operators looks like that of the free boson theory

in the N = ∞ limit and we use the same notation j0 for ψ̄ψ. The three-point functions

〈js1js2j0〉 were found in [64] to have the form:

〈js1js2j0〉c.f. = gs1,s2
1

x13x23x12

S3P12(Q1)s1−1(Q2)s2−1
∑
k

Ak

(
P 2

12

Q1Q2

)k
, (4.40)

where c.f. refers to “critical fermion", A−1 = 0, A0 = 1 and the rest of Ak is generated

via

An = −8An−2(−n+ s1 + 1)(−n+ s2 + 1)− 4An−1((2n− s1 − 1)(2n− s2 − 1) + n+ s1s2)

4n(2n+ 1)
.

The overall factor in our normalization is

gs1,s2 = − is1+s22−s1−s2+2

Γ
(
s1 + 1

2

)
Γ
(
s2 + 1

2

) . (4.41)

4.2.6 Chern-Simons Matter Theories

There are four theories that are obtained by coupling the free/critical boson/fermion

theories discussed above to Chern-Simons gauge field. The conjecture of three-dimensional

bosonization is that they are equivalent in pairs under an appropriate identification of pa-

rameters N and λ = N/k. We are interested in 〈js1js2j0〉 and 〈js1js2 j̃0〉 correlators, which
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are constrained to be [62]:

〈js1js2j0〉B. = Ñ [cos θ〈js1js2j0〉f.b. + sin θ〈js1js2j0〉odd] , (4.42a)

〈js1js2 j̃0〉F. = Ñ
[
cos θ〈js1js2 j̃0〉f.f. + sin θ〈js1js2 j̃0〉odd

]
, (4.42b)

where B. and F. refer to CS-boson and CS-fermion, respectively. Here Ñ and θ are two

macroscopical parameters and we recall that cos2 θ = 1/(1 + λ̃2). This result holds true to

the leading order in Ñ but to all orders in λ̃. The expressions in terms of the microscopical

parameters depend on type of theory and on N , λ = N/k. We can work with Ñ and θ

since their microscopical origin is invisible from the bulk. Note that the odd structures are

different in the two cases (they even have different conformal dimensions due to j0 and

j̃0). In fact the two odd structures can be found as the regular correlators on the opposite

side of the bosonization duality:

〈js1js2j0〉odd = 〈js1js2j0〉c.f. , 〈js1js2 j̃0〉odd = 〈js1js2 j̃0〉c.b. . (4.43)

As far as 〈js1js2 j̃0〉 correlators are concerned, all the results reviewed in the previous sec-

tions follow from (4.42) and this is the structure we would like to reproduce from the bulk

side, including the details of the correlators and normalization factors. Note that the term

‘parity odd correlator’ corresponding to the second part of (4.42) may not have anything to

do with parity, in view of (4.43). For example, the usual parity even correlator 〈jsjsj̃0〉c.b.

in the critical boson theory appears to be odd from the point of view of the dual fermionic

theory.

4.3 Higher Spin Interactions

We briefly review the structure of the equations that results from the Vasiliev equa-

tions [35]. For more detailed reviews, we refer to [38, 42, 76]. The corrections to the free
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equations that are bilinear in the fields were worked out in [22, 76–78]. The main conclu-

sion that is based on [22, 78] is that, up to quadratic order, the Klein-Gordon equation is

sourced by two type of terms. One part is fixed by the HS algebra and is local enough for

the computation of the correlation functions using field theory tools. A second part gives

rise to infinities, though a proposal has been made [79] on how to obtain finite results by

a set of field redefinitions. While our computations will mostly be based on the use of

the first part, we shall nonetheless test this proposal as well in Section 4.5, and comment

further about it in Section 4.7.

The convenient field variables that a HS theory can be built with are the Fronsdal fields.

The Vasiliev equations yield first order differential equations, which upon solving for the

auxiliary fields give equations in term of the Fronsdal fields and an infinitely many of

differential consequences of these equations, which we drop.

For the purpose of computing tree-level Witten diagrams it is sufficient to impose the

transverse and traceless gauge. Then the 4d free Fronsdal equations for spins s ≥ 1 read:

(�+ 2(s2 − 2s− 2))Φm1...ms
= 0 , Φn

nm3...ms
= 0 , ∇nΦnm2...ms

= 0 . (4.44)

To make a link to the frame-like and then to the unfolded formulation of the 4dHS theories

we replace a set of the traceless world tensors Φm1...ms
with the generating function in the

spinorial language as

Φ(y, ȳ|x) =
∑
s

1

s!s!
Φα1...αs,α̇1...α̇s(x) yα1 ...yαs ȳα̇1 ...ȳα̇s . (4.45)

Then the gauge-fixed Fronsdal equations, as recovered from the 4d HS theory, read:

(
�+ 2(N2 − 2N − 2)

)
Φ = 0 , (∂∇∂̄)Φ = 0 , (4.46)
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where N is the number operator N = yα∂α that counts spin (equivalently we can use

N̄ = ȳα̇∂α̇). The last equation manifests the transverse gauge.

In the unfolded approach [80], a specific multiplet of HS fields is packed into gen-

erating functions ω and C that take values in a HS algebra. In our case the relevant HS

algebra [81] is the even part of the Weyl algebra A2. It is convenient to split the four

generators of A2 into (anti)-fundamentals of sl(2,C)

[ŷα, ŷβ] = 2iεαβ , [ˆ̄yα̇, ˆ̄yβ̇] = 2iεα̇β̇ . (4.47)

In practice, non-commuting operators ŷα and ˆ̄yα̇ are replaced by commuting variables yα,

ȳα̇ while the product is replaced with the star product

(f ? g)(y, ȳ) = f(y, ȳ) exp i

[ ←−
∂

∂yα
εαβ
−→
∂

∂yβ
+

←−
∂

∂ȳα̇
εα̇β̇
−→
∂

∂ȳβ̇

]
g(y, ȳ) . (4.48)

The bosonic higher spin algebra is defined as the even subalgebra, i.e. f(y, ȳ) ∈ hs implies

f(y, ȳ) = f(−y,−ȳ). It is straightforward to tensor any higher spin algebra with matrix

algebra as to get U(N) extension, for example. The SUSY case are studied in [24].

The field content consists of one-form ω = ωm(y, ȳ|x) dxm and zero-form C =

C(y, ȳ|x). In free theory the Fronsdal fields can be identified with certain components

of ω, which in the traceless gauge is

hαα̇∂α∂α̇Φ(y, ȳ|x) ∈ ω(y, ȳ|x) (4.49)

ω and C obey the following linearized equations, known as the on mass-shell theorem
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(OMST) [80],

Dω = V(Ω,Ω, C) , D̃C = 0 , (4.50)

where V(Ω,Ω, C) is a star function quadratic in Ω and linear in C, and

Dω ≡ dω − Ω ? ω − ω ? Ω = ∇ω − hαα̇(yα∂̄α̇ + ȳα̇∂α)ω , (4.51)

D̃C ≡ dC − Ω ? C + C ? π(Ω) = ∇C + ihαα̇(yαȳα̇ − ∂α∂̄α̇)C . (4.52)

The AdS4 connection Ω is defined in section 4.1, and the Lorentz covariant derivative acts

in the same way on ω(y, ȳ|x) and C(y, ȳ|x) as

∇ ≡ d− ωαβ(0)yα∂β − ω̄
α̇β̇
(0)ȳα̇∂̄β̇ . (4.53)

The difference between D and D̃ is due to automorphism π: π(f)(y, ȳ) = f(y,−ȳ) =

f(−y, ȳ). The vertex that relates the order-s curl of the Fronsdal field to the HS Weyl

tensors reads

V(Ω,Ω, C) = A
[
Hαβ∂α∂βC(y, 0)e−iθ + H̄ α̇β̇∂̄α̇∂̄β̇C(0, ȳ)eiθ

]
, (4.54)

whereHαβ = hαγ ∧hβγ , and analogously for H̄ α̇β̇ . The constantA is an arbitrary normal-

ization factor that we choose to be A = i/4. The linearized equations (4.50) are invariant

under the linearized HS gauge transformations

δω = Dξ , δC = 0 . (4.55)

Equations (4.50) are equivalent to Fronsdal equations supplemented with differential con-
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sequences thereof. Up to the second order the unfolded equations should have the follow-

ing schematic form

dω = ω ? ω + V(ω, ω, C) + V2(ω, ω, C,C) +O(C3) , (4.56a)

dC = ω ? C − C ? π(ω) + U(ω,C,C) +O(C3) , (4.56b)

where the vertices V2 and U need to be specified. The free equations result upon substi-

tuting ω → Ω + ω and picking the terms that are linear in ω and C:

Dω(1) = V(Ω,Ω, C(1)) , D̃C(1) = 0 . (4.57)

At the second order the weak-field expansion over the AdS background leads to

Dω(2) − V(Ω,Ω, C(2)) = ω(1) ? ω(1) + V(Ω, ω(1), C(1)) + V(Ω,Ω, C(1), C(1)) , (4.58)

D̃C(2) = ω(1) ? C(1) − C(1) ? π(ω(1)) + V(Ω, C(1), C(1)) . (4.59)

We see that the second order fluctuations are sourced by the terms that are bilinear in the

first order fluctuations. The terms that are bilinear in the zero-forms, the CC-terms for

short, can be non-local. The part of the equations that does not have any problems with

locality comes from the commutator in the HS algebra

D̃C(2) = ω(1) ? C(1) − C(1) ? π(ω(1)) +O(C2) . (4.60)

For some values of spins we do not expect the CC-terms to contribute. Indeed, when one

of the legs is scalar, there is a unique (parity-preserving) coupling s1 − s2 − 0, [82]. It is

non-abelian whenever s1 6= s2 and is abelian for s1 = s2.

Let us note that the computation of correlators from the equations of motion that are not
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derived from an action principle does not guarantee the bose symmetry of the correlators

under the permutation of the points. The same correlator 〈js1js2j0〉 can be obtained in two

different ways: either by treating js1 , js2 as sources and then solving for the scalar field or

by treating js1 , j0 as sources and solving for the spin-s2 Weyl tensor. Both computations

are possible with (4.60). It was checked in [22] for the leading coefficients that the two

ways of getting the same correlator give a bose symmetric correlator.

Lastly, Eq.(4.60) remains consistent if the fields ω, C are extended to matrix-valued

fields. This way one can introduce Yang-Mills groups on top of the HS algebra. On the

CFT side this should correspond to leftover global symmetries, i.e. those symmetries that

remain after the singlet constraint is imposed.

4.4 Kinematics of the Boundary-to-Bulk Propagators

In this section we discuss the boundary-to-bulk propagators for HS fields. The problem

has been extensively studied starting from the lower spin fields, see e.g. [83]. Specifically,

we need the unfolded propagators, i.e. the propagators for the Fronsdal fields supple-

mented with derivatives thereof as to obey the free equations (4.50). In some form the

unfolded propagators were found in [22]. In [70] it was observed that the propagators are

simple functions that depend on a few universal geometrical data, which is the spinorial

analog of [84].

4.4.1 Definitions

One of the basic objects is the Witten bulk-to-boundary propagator for the scalar field

from the bulk point xm = (xi, z) to the boundary point xa

Ka =
z

(x− xa)2 + z2
. (4.61)

91



We often set xa = 0 in this section as the generic point can be recovered thanks to the three-

dimensional Poincaré invariance. The propagator is the boundary limit of the geodesic

distance, which the bulk-to-bulk propagator should depend on. It obeys the regular (∆ =

1) boundary condition. The propagatorK can be used to define a wave-vector, which turns

into bi-spinor Fαα̇ in the 4d spinorial language:

d lnK = Fαα̇h
αα̇ , (4.62)

where

Fαα̇ =

(
2z

x2 + z2
xαα̇ − x2 − z2

x2 + z2
iεαα̇

)
. (4.63)

It will play the same role as the on-shell momentum p plays for eipx and is the boundary

limit of the vector that is tangent to the geodesic connecting two bulk points. There also

exist the parallel-transport bi-spinors Παβ and Π̄α̇β given by

Παβ = K

(
1√
z

xαβ +
√
z iεαβ

)
, Π̄α̇β = K

(
1√
z

xα̇β −
√
z iεα̇β

)
= (Παβ)† , (4.64)

that allow one to propagate the boundary polarization spinors into the bulk:

ξα = Παβηβ e
+iπ

4 , ξ̄α̇ = (ξα)† = Π̄α̇βηβ e
−iπ

4 . (4.65)

This is the full set of the data that any propagator can depend on. The set is closed under

covariant derivatives:

∇Fαα̇ = hαα̇ + Fα
γ̇ h

δγ̇F δ
α̇ = 0 , (4.66)
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and the parallel transported spinors obey

∇ξα − Fα
γ̇ ξδh

δγ̇ = 0 , ∇ξα̇ − F δ
α̇ ξγ̇h

δγ̇ = 0 . (4.67)

In practice it is useful to rewrite the Lorentz-covariant derivatives with all indices being

explicit:

∇αα̇K = KFαα̇ , ∇αα̇ξβ = Fβα̇ξα , ∇αα̇ξ̄β̇ = Fαβ̇ξα̇ , ∇αα̇Fββ̇ = 2εαβεα̇β̇ + Fαα̇Fββ̇ .

(4.68)

As a consequence of the differential constraints above one also finds

(�− 4)K = 0 , (�− 6)Fαα̇ = 0 , (�− 4)ξα = 0 , (�− 4)ξ̄α̇ = 0 . (4.69)

4.4.2 Algebraic Identities

The quantities defined above obey several algebraic identities. The wave-vector satis-

fies

Fαα̇F β
α̇ = εαβ , Fαα̇Fα

β̇ = εα̇β̇ . (4.70)

It behaves in many respects as a ’symplectic’ structure that converts the dotted and undot-

ted indices to each other as follows

Fα
γ̇ Π̄γ̇β = iΠαβ , F γ

α̇ Πγβ = −iΠ̄α̇β , Πα
γ Π̄α̇γ = −iKFαα̇ , (4.71)

ξα = Fα
α̇ ξ̄

α̇ , ξ̄α̇ = ξαFα
α̇ . (4.72)

93



The parallel-transport bi-spinors Παβ and Π̄α̇β obey identities similar to (4.70):

ΠαβΠγ
β = Kεαγ , Π̄α̇βΠ̄γ̇

β = Kεα̇γ̇ , (4.73)

ΠβαΠβ
γ = Kεαγ , Π̄β̇αΠ̄β̇

γ = Kεαγ . (4.74)

There are also useful identities involving the one-form hαα̇ = dxmhαα̇m :

(F · h)Fαα̇ + hαα̇ = Fα
β̇ h

ββ̇F β
α̇ , (4.75)

(F · h)ξα + (Fα
γ̇ hβ

γ̇ − Fβγ̇hαγ̇)ξβ = 0 , (4.76)

which result from the fact that anti-symmetrization over any three spinorial indices van-

ishes identically.

4.4.3 Inversion Map

The basic computational tool we will employ is based on the inversion trick [85]. For

that reason it is important to know the transformation properties of the variables defined

above under the inversion isometry of AdS4. Since the boundary-to-bulk objects K, F ,

ξ and ξ̄ depend both on the bulk point, on the boundary point and polarization spinor η,

the inversion map on the AdS-side should be accompanied by the inversion map on the

boundary. Using the inversion map rules (4.9), we derive the following transformation
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properties:

K(R(x, z);Rxi) = x2
iK(x, z; xi) , (4.77a)

Παβ(R(x, z);R(xi)) = −Jαγ̇ Π̄γ̇
δ (x, z; xi)x

δβ
i , (4.77b)

ξα(R(x, z);R(xi, ηi)) = +iJαγ̇ ξ̄
γ̇(x, z; xi, ηi) , (4.77c)

ξ̄α̇(R(x, z);R(xi, ηi)) = −iJγα̇ ξγ(x, z; xi, ηi) , (4.77d)

Fαα̇(R(x, z);R(xi)) = Jαβ̇ Jβ
α̇ F ββ̇(x, z; xi) , (4.77e)

where we defined Jαα̇ as

Jαα̇ =
xαα̇√
x2

=
xαα̇ + izεαα̇√

x2 + z2
, Jαγ̇ J

βγ̇ = −εαβ . (4.78)

4.5 Vertices and Propagators

In this section we discuss the boundary-to-bulk propagators for HS fields and evaluate

the vertex (4.60) on the propagators.

4.5.1 Propagators

With the help of the geometric objects introduced in Section 4.4 it is very easy to

construct propagators. First of all, there is a unique expression for the Fronsdal field

propagator:

Φα(s),α̇(s) = −2σ2sA
Γ[s]Γ[s]

Γ[2s]

[
Kξα(s)ξ̄α̇(s)

]
, (4.79)

where A is the factor from the free unfolded equations (4.54), σ is a parameter that counts

spin, the Γ-functions will be explained later as the most convenient normalization.
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In practice we need the propagators for ω and C fields that enter the unfolded equa-

tions. These fields encode derivatives of the Fronsdal field. The propagators can be written

in a very compact form as†

ω = −2σ2AKhαα̇ξ
αξ̄α̇

∫ 1

0

dt exp i[σtyαξα − (1− t)σȳα̇ξ̄α̇] ,

C = K exp i[−yαFαα̇ȳα̇ + σyαξα + θ] +K exp i[−yαFαα̇ȳα̇ − σȳα̇ξ̄α − θ] , (4.80)

= K exp i[−yαFαα̇ȳα̇ + σyαξα + θ] + h.c. ,

where A is a constant that is related to the normalization of the free unfolded equations

(4.54). The h.c. operation is defined as

h.c.(ξ) = −ξ̄ , h.c.(θ) = −θ (4.81)

and σ is just a factor that counts spins, so can be put to one or any σ(s). We will fix this

normalization later.

4.5.2 Vertices

Let us remind that the equation we will extract the correlation function from is

D̃C(2) = ω ? C − C ? π(ω) +O(C2) , (4.82)

where we evaluate the r.h.s. on the propagators and then solve for the Klein-Gordon equa-

tion. Expanding the master zero-form C as

C(y, ȳ|x) = φ(x) + φαα̇(x)yαȳα̇ + · · · , (4.83)

†The unfolded propagators were first found in [22] in a different form, especially the ω propagator where
the gauge ambiguity is essential. TheC propagator was cast into the form below in [70], see also [68,69,71].
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the Klein-Gordon equation with a source is hidden in the first order form:

dφ− ihαα̇φαα̇ = hαα̇Pαα̇ , (4.84)

∇φαα̇ + hαα̇φ+ ... = hββ̇Pαα̇
ββ̇

, (4.85)

where the one-form P = hαα̇Pαα̇ denotes the source built out of the free fields:

P = ω ? C − C ? π(ω) (4.86)

and we need the first two Taylor coefficients only:

P = hαα̇
[
Pαα̇ + P ββ̇

αα̇ yβ ȳβ̇ + · · ·
]
. (4.87)

The first constraint can be solved for the auxiliary field φαα̇ and the result then plugged

into the second one to get the Klein-Gordon equation with a source [18]:

(�− 4)φ =
[
∇αα̇Pαα̇ + i∂α∂α̇Pαα̇

]∣∣∣
y,ȳ=0

. (4.88a)

Since the propagators are known, we can get the source explicitly as

(�− 4)φ = −4AK1K2

∫ 1

0

dt
[
(1 + h.c.)(1 + πξ1)

(
w + it(1− t)w2 + itwξ1ξ2

)
B
]
,

(4.88b)

B = exp i[t(1− t)w + tξ1ξ2 + θ] , (4.88c)

w = (ξ1F2ξ̄1) , (4.88d)
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where K1, ξ1 refer to ω and K2, ξ2, F2 to C, and

(ξ1ξ2) ≡ ξα1 ξ2α , (ξ1F2ξ̄1) ≡ ξ1αF
αα̇ξ2α̇ . (4.89)

Here πξ is the twist map that is now realized on ξ (or ξ̄ due to the bosonic projection),

π(ω) = ω(−ξ, ξ̄) = ω(ξ,−ξ̄). The appearance of πξ1 is responsible for the difference

between HS fields with and without additional Yang-Mills groups. If we keep πξ1 then in

the dual CFT the correlators 〈js1js2j0〉 will vanish for s1 + s2 odd. If we drop πξ1 then on

the CFT side 〈js1js2j0〉 does not vanish for s1 + s2 odd and therefore we have a leftover

global symmetry group. The latter case is more general and is easier to deal with.

On expanding the generating function (4.88b) and picking the terms of spins s1 from

ω and s2 from C we find the vertex evaluated on the propagators in a very simple form‡

(�− 4)φ = −4AK1K2

∑
s1,s2

Vs1,s2,0 , (4.90a)

Vs1,s2,0 = vs1,s2,0
[
(ξ1F2ξ̄1)s1−s2(ξ1ξ2)2s2eiθ + h.c.

]
, (4.90b)

vs1,s2,0 =
is1+s2−1Γ(s1 + s2 + 1)

Γ(2s1)Γ(2s2 + 1)
, (4.90c)

for s1 > s2. As we already commented in the Introduction, the vertex above can be used to

obtain 0− s1− s2 correlators for s1 6= s2, but extrapolation to s1 = s2 will give the correct

answer too since the correlation function depends smoothly on spins. Nevertheless, the

0 − s − s correlators should originate from the CC-terms in (4.56b), which previously

gave infinite result [22, 86]. Therefore, we would like to use the proposal of [79], where

‡This vertex is also present in [22], but it does not seem to have such a simple form as below, which
should be related to the ω propagator being in a different gauge.
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the new CC-terms are

U(h,C,C) =
1

4

∫ 1

0

dτ

∫
dūdv̄

(2π)2
eiūβ̇ v̄

β̇

hαα̇y
α [τ ū+ (1− τ)v̄]α̇ C(τy, ȳ + ū)C((1− τ)y, ȳ + v̄)

+ h.c . (4.91)

A simple computation along the lines above gives§

(�− 4)φ = −4AK1K2

∑
s

Vs,s,0 . (4.92)

Therefore, the 0− s− s vertex turns out to have the same form as the naive extrapolation

of (4.90) and will give the correct answer without any additional computation needed once

(4.90) is shown to be correct.

4.6 Computation of the Cubic Amplitude

From the bulk vertex (4.90b), the Witten diagram amplitude for 〈Js1Js2J0〉 for s1 > s2

is obtained as

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉h.s. = (−4A)cs1cs2c0 vs1,s2,0×

×
∫
d3x dz

z4
K1K2(K3)∆(ξ1F2ξ̄1)s1−s2 [(ξ1ξ2)2s2eiθ + (ξ̄1ξ̄2)2s2e−iθ] ,

(4.93)

where

Ki = K(x− xi, z) , Fαα̇
i = Fαα̇(x− xi, z) , ξαi = ξα(x− xi, z; ηi) , ξ̄α̇i = ξ̄α̇(x− xi, z; ηi) .

(4.94)

§The issue of θ-dependence is unclear to us since in [79] it was proposed to take the N = 2 supersym-
metric HS model and truncate it to the bosonic one using the boundary conditions that contain θ-dependence.
Nevertheless, our bosonic truncation which does not rely on imposition of θ-dependent boundary conditions
gives the right answer.
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The factor (−4A) in (4.93) does not have any physical meaning and is an arbitrary nor-

malization factor between ω and C in (4.54). For convenience, we reproduce the factor

vs1,s2,0 =
is1+s2−1Γ(s1 + s2 + 1)

Γ(2s1)Γ(2s2 + 1)
. (4.95)

Also, we introduced normalization factors cs for each of the three fields. These cannot

be fixed from the equations of motion and correspond to a freedom on the CFT side to

normalize at will the two-point functions 〈jsjs〉. Lastly, there are two options for boundary

conditions on the scalar fields: ∆ = 1 and ∆ = 2.

The three-point integrals are doable in principle due to the fact that one can always

‘scalarize’ the integrand by representing all xαα̇-factors as derivatives with respect to the

boundary points xi. The scalar three-point integral was done long ago in [85]. The problem

is to scalarize in the most efficient way as to break as less symmetries as possible. We

extend the inversion method of [85] to our case. Firstly, using the translation invariance

we can set x1 = 0. Then, we apply the inversion map both to the boundary and bulk data.

As a result the basic structures that enter the integrand drastically simplify:

d3xdz

z4
→ d3xdz

z4
, (4.96a)

K1 → z , (4.96b)

K2,3 → x2
2,3K2,3 , (4.96c)

(ξ1F2ξ̄1)→ 2zK2[η1(x− x2)η1] = −2zK2T11 , (4.96d)

(ξ2F1ξ̄2)→ 2K2
2 [η2(x− x2)η2] = −2K2

2T22 , (4.96e)

(ξ1ξ2) + (ξ̄1ξ̄2)→ −2zK2(η1η2) , (4.96f)

(ξ1ξ2)− (ξ̄1ξ̄2)→ 2iK2[η1(x− x2)η2] = −2iK2T12 , (4.96g)
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where we defined

Tij = −[ηiα(x− x2)αβηjβ] , (4.97)

and we will use the same notation for the variables after the inversion is applied. Our

strategy is to rewrite the integrand in terms of simple differential operators acting on a

scalar integrand

∫
d3xdz

z4
za(K2)b(K3)∆ = (x23)a−b−∆Ia,b,∆ , (4.98)

where

Ia,b,∆ =
π3/2Γ

(
1
2
(a+ b−∆)

)
Γ
(

1
2
(a− b+ ∆)

)
Γ
(

1
2
(−a+ b+ ∆)

)
Γ
(

1
2
(a+ b+ ∆− 3)

)
2Γ(a)Γ(b)Γ(∆)

.(4.99)

There are three operators that can be immediately observed to generate the same structures

that occur under the integral sign:

O11 = (η1∂2η1) ≡ ηα1
∂

∂xαβ2

ηβ1 , O12 = (η1∂2η2) , O22 = (η2∂2η2) . (4.100)

The operators act on K2 factors only and yield:

Oijf(K2) =
(K2)2

z

∂

∂K2

f(K2)Tij . (4.101)

There is one relation between Tij that is the bulk analog of the S2
3 + Q1Q2 − P 2

12 ≡ 0

relation:

(T12)2 = T11T22 + x2
23(η1η2)2 . (4.102)

101



The integrand can be represented as a function of Oij and (η1η2) acting on the scalar

integrand, and there is more than one way to do so due to the identity above. Then,

the integral can be done and one is left with the same functional acting on some powers

of |x23|, which clearly generates some function of the conformally invariant structures

resulting from setting x1 = 0 followed by the inversion map:

x2,3 →
1

x2,3

, (4.103a)

x23 →
x23

x2x3

, (4.103b)

P12 → (η1η2) , (4.103c)

Q1 → −[η1x23η1] , (4.103d)

Q2 → + [η2x23η2]
1

x2
23

, (4.103e)

S3 → + [η1x23η2]
1

x23

. (4.103f)

It is convenient to use the same notation Tij for the corresponding structures on the bound-

ary Tij = [ηix23ηj] since they arise under the action of Oij on x23 resulting from the

integral. In other words, if Oij applied to the l.h.s. (4.98), it generates bulk Tij defined in

(4.97), and if Oij acts on the r.h.s. of (4.98), it generates the boundary Tij .

4.6.1 Leading Coefficients

Our goal is to reproduce the full structure of the three-point functions. However, it is

useful to perform a few simple checks of the duality that do not require establishing a full

dictionary between bulk and boundary. It is clear thatOij operators when applied one after

another produce

On1
11O

n2
12O

n3
22 (K2)a =

Γ[a+ n]

znΓ[a]
(K2)a+nT n1

11 T
n2
12 T

n3
22 +O(η1η2) , (4.104)
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where n = n1 + n2 + n3. Therefore, up to P12-terms, which are represented by O(η1η2)

after the inversion, the bulk computation amounts to pulling out the Tij structures as pow-

ers of Oij , computing the scalar integral and then pushing the Oij factors in. In the last

step operators Oij act on x23 resulting from the bulk integral and generate Q1,2 modulo

Q1Q2 ∼ −S2
3 .

Type-A, ∆ = 1:

In the case of ∆ = 1 and θ = 0 a simple computation gives:

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉h.s. = (−4A)cs1cs2c0 vs1,s2,0I
∆=1
s1,s2,0

× [(Q1)s1(Q2)s2 +O(P12)] ,

(4.105)

where Is1,s2,0 is the factor that comes from the bulk

I∆=1
s1,s2,0

=
π3
(
−1

2

)s1+s2 (−)s1Γ
(
s1 + 1

2

)
s1Γ

(
1
2
− s2

)
Γ(s1 + s2 + 1)

. (4.106)

This should be compared with the generating function (4.24) in free boson theory:¶

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉f.b. =
2

x12x23x13

(
i

2

)s1+s2 1

s1!s2!
[(Q1)s1(Q2)s2 +O(P12)] .

(4.107)

Since the normalization of the boundary-to-bulk propagators is not yet fixed, we should

compare two function of s1, s2, the bulk result and the CFT result, up to a product of

functions of s1 and s2 separately. In doing so we can find that the normalization factor is

cs = −4s

π
. (4.108)

¶What we compute would correspond to the dual theory with U(M) global symmetry (4.26). The same
comment applies to all correlators below.
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With this normalization we have a perfect match up to the terms of order (η1η2) = P12,

namely

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉h.s. = 〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉f.b. +O(P12) .

(4.109)

Type-B, ∆ = 2:

The same computation but for ∆ = 2 and θ = π/2 leads to

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉h.s.

=(−4A)cs1cs2 c̃0 vs1,s2,0I
∆=2
s1,s2,0

[
(Q1)s1−1(Q2)s2−1P12S3 +O(P 2

12)
]
. (4.110)

Here we assumed that the normalization of the scalar field propagator c̃0 can be different

from c0 due to the change in boundary conditions. The bulk integral and other factors

combine into I∆=2
s1,s2,0

as follows

I∆=2
s1,s2,0

= −
π3s2

(
−1

2

)s1+s2−1
(−)s1Γ

(
s1 + 1

2

)
Γ
(

1
2
− s2

)
Γ(s1 + s2 + 1)

. (4.111)

We note that one factor of P12 jumps out of the integral and the subleading terms are

of order P 2
12. The result should be compared with the generating function (4.34) in free

fermion theory:

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉f.f.

=
is1+s2−2

x2
23x2

132s1+s2−2

2

(s1 − 1)!(s2 − 1)!

[
(Q1)s1−1(Q2)s2−1S3P12 +O(P 2

12)
]
. (4.112)
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We find the two results to agree, namely

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉h.s. = − c̃0

c0

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉f.f. +O(P12) .

(4.113)

Once the normalization factors cs are fixed by the Type-A duality the match just ob-

served is even more nontrivial because the only freedom that we have is an overall spin-

independent factor.‖ The canonical normalization of the scalar field propagators [85] is

such that c̃0/c0 = −2.

4.6.2 Complete Dictionary

We would like to reproduce the full structure of CFT correlators. The idea is to take the

subleading terms into account and express the bulk integrand as the action of a differential

operator in Oij on the scalar integrand. The operators Oij produce Tij and the subleading

terms are obtained due to

O11T22 = (η1η2)2 , O22T11 = (η1η2)2 , O12T12 = −1

2
(η1η2)2 . (4.114)

Operators Oij commute with each other. Moreover, O11 does not produce any subleading

terms at all. Then the action of any power of, say O12, can be evaluated starting from

(x ≡ x23)

O12f(x2, T12) =

(
−T12

∂

∂x2
− 1

2
(η1η2)2 ∂

∂T12

)
f(x2, T12) , (4.115)

‖The generating functions of the HS currents built out of free bosons and fermions, which were intro-
duced in Section 4.2, are components of the supermultiplet of HS currents. Therefore, the normalization of
the HS currents in free boson and free fermion are naturally related to each other.
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and exponentiating it as

exp[tO12] (x2)−a =

(
x2 − tT12 +

t2

4
(η1η2)2

)−a
, (4.116)

which leads to Gegenbauer polynomials:

(O12)n(x2)−a =
∑
k

Aa,nk (η1η2)2k(T12)n−2k(x2)−(a+n−k) , Aa,nk =
(−)k n!Γ(a− k + n)

4kk!Γ(a)(n− 2k)!
.

(4.117)

In particular, we find (4.104)

(O12)n(x2)−a =
Γ[a+ n]

Γ[a]
(x2)−(a+n)(T12)n +O(η1η2) . (4.118)

In fact, we will use the inversion formula:

∑
k=0

Ba,n
k (η1η2)2k(O12)n−2k(x2)−(a+k−n) = (x2)−a(T12)n , Ba,n

k =
Γ[a+ k − n]n!

Γ[a]4kk!(n− 2k)!
(η1η2)2k .

(4.119)

The same formula works in the bulk if we replace |x2|−1 by K2/z and Tij by the bulk

Tij (4.97) which we happen to denote by the same symbol, as explained below (4.103).

Therefore, any T12 structure can also be factored out.

4.6.3 Complete Three-Point Functions

We can now compute (4.93) for general θ. The choice ∆ = 1 should be compared with

CS-boson and ∆ = 2 with CS-fermion.

The computation is now reduced to the following simple steps: (i) express the integrand

in terms of (ξ1ξ2)± (ξ̄1ξ̄2); (ii) apply the inversion map and express the integrand in terms
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of Tij; (iii) T11 is factored out immediately, while T12 is pull out with the help of (4.119)

as certain polynomial in O12; (iv) the integral can be done; (v) the operators Oij should be

evaluated in terms of Tij , which is easy for O11 and we use (4.117) for O12; (vi) powers of

Tij should be replaced by Q1, Q2, P12, S3.

As the first step we need the following simple identity, which reveals the dependence

on θ of the final result as well as how it splits into parity-even and parity-odd structures:

[(ξ1ξ2)2s2eiθ + (ξ̄1ξ̄2)2s2e−iθ]

=
∑
k

2 cos θ

4s2
C2s2

2k [(ξ1ξ2) + (ξ̄1ξ̄2)]2s2−2k[(ξ1ξ2)− (ξ̄1ξ̄2)]2k

+
∑
k

2i sin θ

4s2
C2s2

2k+1[(ξ1ξ2) + (ξ̄1ξ̄2)]2s2−2k−1[(ξ1ξ2)− (ξ̄1ξ̄2)]2k+1 .

(4.120)

Since the θ-dependence is fixed, in computing the correlation functions it is sufficient to

choose either θ = 0 or θ = π/2 and for each of these cases to consider the ∆ = 1 and

∆ = 2 boundary conditions for the scalar field. Therefore, we need to compute four bulk

integrals. In fact, these terms can be computed in the parity even Type-A,B theories but

with different choice of boundary conditions for the scalar field, see also the end of Section

4.2.6.

The comment that applies to all the cases considered below is that the generating func-

tions of correlators depend smoothly on spins and therefore it should be possible to ex-

trapolate the result in the case of s1 > s2 to the case of s1 = s2, which is an argument used

in [22]. The assumption s1 > s2 was used to pick only ωs1Cs2 terms and for the opposite

situation we find contribution from ωs2Cs1 , which is the same. Therefore, the computation

below covers all possible s1 and s2.

Another comment is that the results we obtain in the bulk are valid for the case of U(N)

CFT’s that have HS currents with all integer spins (there are only HS currents with even
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spin in the O(N) case). Also, the bulk results are valid for the case of the leftover global

symmetry on the CFT side. The projection onto the singlet sector is trivial and can be

obtained by taking the bose symmetric part of the correlator, as discussed in Section 4.5.2.

It should be noted that the result of [64], which we will compare the AdS/CFT correlators

with, were obtained assuming that the prediction of the slightly broken HS symmetry [62]

extends to all integers spins and possibly to the case of leftover global symmetries.

Type-A, Free Boson:

The integral corresponding to ∆ = 1 and θ = 0 is given by

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉∆=1,θ=0
h.s. = (−4A)cs1cs2c0 vs1,s2,0

×
∫
d3xdz

z4
K1K2K3(ξ1F2ξ̄1)s1−s2

∑
k

2

4s2
C2s2

2k [(ξ1ξ2) + (ξ̄1ξ̄2)]2s2−2k[(ξ1ξ2)− (ξ̄1ξ̄2)]2k .

(4.121)

The final result for the right hand side of this equation is the following triple sum

s2∑
k=0

k∑
i=0

k−i∑
j=0

(−1)k−jis1+s22s1−s2+1Γ(2(−k + s1 + s2))Γ
(
−i+ k + s1 − s2 + 1

2

)
√
πi!j!(2s1 − 1)!(2s2 − 2k)!(−i+ 2s1)!(−i− j + k)!

× Qs1−s2
1 P

2(i+j−k+s2)
12 (P 2

12 −Q1Q2)
−i−j+k

x12x13x23

, (4.122)

where we undid the inversion map. This expression can be supplemented with the s2 > s1

contribution, extended to diagonal s1 = s2, as we explained above, then summed over

spins as to build a generating function. This gives the result:

2

x12x13x23

exp
(
i
2
Q1 + i

2
Q2

)
cosP12 . (4.123)
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This matches exactly the CFT three-point function:

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉∆=1,θ=0
h.s. = 〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉f.b. . (4.124)

This result is slightly new as we managed to reproduce the full structure of the CFT cor-

relators from the local HS equations where the field theory methods can be applied, and

we note that no regularization of infinities is required. The leading coefficients were found

in [22] and the same generating function resulted from the non-local CC-terms after some

regularization in [68].

Type-B, Free Fermion:

The integral corresponding to ∆ = 2 and θ = π/2 reads

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉
∆=2,θ=

π
2

h.s. = (−4A)cs1cs2 c̃0 vs1,s2,0

×
∫
d3xdz

z4
K1K2K

2
3(ξ1F2ξ̄1)s1−s2

∑
k

2i

4s2
C2s2

2k+1[(ξ1ξ2) + (ξ̄1ξ̄2)]2s2−2k−1[(ξ1ξ2)− (ξ̄1ξ̄2)]2k+1 .

(4.125)

The right hand side of this equation can be brought to the form

c̃0

c0

s2−1∑
k=0

k∑
i=0

k−i∑
j=0

(−1)j+k2s1−s2+1is1+s2Γ(−2k + 2s1 + 2s2 − 1)Γ
(
−i+ k + s1 − s2 + 3

2

)
√
πi!j!Γ(2s1)Γ(−i+ 2s1 + 1)Γ(2s2 − 2k)Γ(−i− j + k + 1)

× S3Q
s1−s2
1 P 2i+2j−2k+2s2−1

12 (P 2
12 −Q1Q2)

−i−j+k

x2
23x2

13

. (4.126)

As before, this expression can be supplemented with the s2 > s1 contribution, extended to

diagonal s1 = s2, then summed over spins as to build a generating function. The result is:

− c̃0

c0

exp( i
2
Q1 + i

2
Q2)

x2
23x2

13

S3 sinP12 , (4.127)
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and matches exactly the CFT three-point function (4.37):∗∗

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉
∆=2,θ=

π
2

h.s. = 〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉f.f. . (4.128)

where we recall that the prefactor accounts for the difference in the boundary conditions

for the scalar field and is equal to −2.

Type-A, Critical Boson:

We take the ∆ = 1 Type-A expression (4.121) and simply set ∆ = 2. This gives

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉∆=2,θ=0
h.s. = (−4A)cs1cs2 c̃0 vs1,s2,0

×
∫
d3xdz

z4
K1K2K

2
3(ξ1F2ξ̄1)s1−s2

∑
k

2

4s2
C2s2

2k [(ξ1ξ2) + (ξ̄1ξ̄2)]2s2−2k[(ξ1ξ2)− (ξ̄1ξ̄2)]2k .

(4.129)

The right hand side of this equation is evaluated to yield

c̃0

c0

s2∑
k=0

k∑
i=0

k−i∑
j=0

(−1)k−j2s1−s2+1is1+s2Γ(−2k + 2s1 + 2s2)Γ(−i+ k + s1 − s2 + 1)
√
πi!j!Γ(2s1)Γ(−i+ 2s1 + 1)Γ(−2k + 2s2 + 1)Γ

(
−i− j + k + 1

2

)
× Qs1−s2

1 P
2(i+j−k+s2)
12 (P 2

12 −Q1Q2)
−i−j+k

x2
23x2

13

. (4.130)

The three-point function in the CS-fermion theory was found in a form of recurrence

relations in [64] (see also Section 4.2.4). We find that the triple sum above is an explicit

solution to those recursion relations. The leading coefficient is

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉∆=2,θ=0
h.s. = −1

2

c̃0

c0

is1+s22−s1−s2+2

Γ
(
s1 + 1

2

)
Γ
(
s2 + 1

2

)Qs1
1 Q

s2
2

x2
23x2

13

+O(P12) .

(4.131)

∗∗We again note that the answer is formally for the free fermion with leftover U(M) global symmetry.
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The sum (4.130) can be evaluated explicitly:

c̃0

c0

s2∑
l=0

(−1)lis1+s221+s1−s2Γ(1 + l + s1 − s2)Γ (2(−l + s1 + s2))√
πΓ(1

2
+ l)Γ(2s1)Γ(1 + 2s1)Γ(1− 2l + 2s2)

× 2F1(l − s2,
1

2
+ l − s2,

1

2
+ l − s1 − s2, 1)

× (Q1)s1−s2(P12)2(s2−l)(S3)2l

x2
23x2

13

(Type-A, ∆ = 2) . (4.132)

The computation shows that it is more convenient to use the S3 variable. Indeed, the bulk

integral gives S3 after O12 is applied. We expect this to be the case for the most general

case of three non-zero spins too: it may be more convenient to express even structures in

terms of even functions of the odd S structures.

Type-B, Critical Fermion:

Using the same technique as before we can compute the parity odd integral for ∆ = 1,

which for ∆ = 2 reproduced the free fermion result, the only modification required being

K2
3 → K3:

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉
∆=1,θ=

π
2

h.s. = (−4A)cs1cs2c0 vs1,s2,0

×
∫
d3xdz

z4
K1K2K3(ξ1F2ξ̄1)s1−s2

∑
k

2i

4s2
C2s2

2k+1[(ξ1ξ2) + (ξ̄1ξ̄2)]2s2−2k−1[(ξ1ξ2)− (ξ̄1ξ̄2)]2k+1 .

(4.133)

As a result, the right hand side of this equation yields the following triple sum representa-

tion for the critical fermion:

s2−1∑
k=0

k∑
i=0

k−i∑
j=0

(−1)j+kis1+s22s1−s2+1Γ(−2k + 2s1 + 2s2 − 1)Γ(−i+ k + s1 − s2 + 1)
√
πi!j!Γ(2s1)(−2k + 2s2 − 1)!Γ(−i+ 2s1 + 1)Γ

(
−i− j + k + 3

2

)
× S3Q

s1−s2
1 P 2i+2j−2k+2s2−1

12 (P 2
12 −Q1Q2)

−i−j+k

x12x13x23

. (4.134)
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In [64], see also Section 4.2.5, the generating function of the correlators was found in CS-

boson theory in an implicit form of a recurrence relation. The triple sum above provides

an explicit solution to this system. The leading coefficient is easy to find, and gives

〈Js1(x1, η1)Js2(x2, η2)J0(x3)〉
∆=1,θ=

π
2

h.s. = − is1+s22−s1−s2+2

Γ
(
s1 + 1

2

)
Γ
(
s2 + 1

2

)Qs1−1
1 Qs2−1

2 S3P12

x12x23x13

+O(P 2
12) .

(4.135)

The sum (4.134) can be evaluated explicitly, giving:

s2−1∑
l=0

(−1)lis1+s22s1−s2+1Γ(1 + l + s1 − s2)Γ(2s1 + 2s2 − 2l − 1)√
πΓ(3

2
+ l)Γ(2s1)Γ(2s1 + 1)Γ(2s2 − 2l)

× 2F1(
1

2
+ l − s2, 1 + l − s2,

3

2
+ l − s1 − s2, 1)

)
× (Q1)s1−s2(P12)2(s2−l)−1(S3)2l+1

x12x13x23

(Type-B, ∆ = 1) . (4.136)

Summary:

Combining all the four cases together with the θ dependence (4.120) we have con-

firmed that the structure of 〈js1js2j0〉 is in accordance with the CFT result (4.42):

〈js1js2j0〉B. = Ñ [cos θ〈js1js2j0〉f.b. + sin θ〈js1js2j0〉odd] , (4.137a)

〈js1js2 j̃0〉F. = Ñ
[
cos θ〈js1js2 j̃0〉f.f. + sin θ〈js1js2 j̃0〉odd

]
. (4.137b)

Here we restored the bulk coupling constant G = 1/Ñ . The θ-dependence results from

the fact that the (anti)-selfdual HS Weyl tensors are identified with the order s-curls of the
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Fronsdal field with a phase shift (4.54)

Cα1...α2s = e+iθ∇α1

α̇1 ...∇αs
α̇s φαs+1...α2s,α̇1...α̇s , (4.138a)

Cα̇1...α̇2s = e−iθ∇α1
α̇1 ...∇αs

α̇s φα1...αs,α̇s+1...α̇2s . (4.138b)

Given the θ-dependence, the four structures in (4.137) can be found by evaluating the bulk

integral for ∆ = 1, 2 and θ = 0, π/2, as we did.

4.7 Discussion

By isolating the scalar field equation in the Vasiliev theory up to quadratic terms in

fields, we managed to extract the ωC-correction to the scalar field equation and produce

the full structure of the correlators. The perfect agreement with the CFT results is found,

including the θ-dependence and the parity-violating structures, which were recently de-

rived in [64] on the CFT side.

Notice that, different from the previous one loop test of the free energies, here we

found the perfect match between the tree-level three-point functions of Type-B model and

its corresponding dual. The latter result concretely supports the duality between Type-B

theory/fermionic vector model. We believe that the mismatch in the one loop test requires

deeper understanding of the structure of the free energy, and will propose a few possi-

ble solutions to this mismatch in the conclusion. We also address that in this work we

only obtained the cubic Witten diagrams involving one scalar field. The calculation of

the correlators with three general spins is obstructed by the non-localities present is HS

theories, and remains to be an open problem. We shall comment further on the issue of

non-localities in the conclusions below.
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5. CONCLUSIONS

In this dissertation we have mainly discussed two topics: application of localization to

N = 1 theory in 3D and the tests of HS/CFT dualities.

In the work on the first topic, we considered the most general N = 1 superconformal

Chern-Simons matter theory with global symmetry Sp(2) and gauge group U(N)×U(N).

We have shown that the Lagrangian in the on-shell formulation of the theory admits one

more free parameter as compared to the theory formulated in off-shellN = 1 superspace.

We found that the vanishing of the deformation under supersymmetry transformation re-

quires the curvature of the 3D space being zero or negative, therefore the theory on T 3 can

be formally localized. Localization procedure has then been partially carried out for the

theory on T 3 with periodic boundary conditions. In particular we have shown that restrict-

ing to the saddle points with vanishing gauge connection gives a trivial contribution to the

partition function, i.e. the bosonic and fermionic contributions exactly cancel each other.

Our results have the following implication for the partition function of the ABJM

model on T 3. Our analysis of the saddle points shows that the classical CS action van-

ishes on the locus of flat gauge connections on T 3. Since the one-loop determinant around

the saddle points does not introduce any dependence on the two CS levels, it follows by the

localization argument that the partition function is independent of the level k ≡ k1 = −k2.

Hence we may compute the partition function in the limit k → ∞ with N fixed, which

corresponds to vanishing ’t Hooft coupling. In this limit the matter sector becomes free

and decouples from the CS action. Therefore the resulting partition function factorizes

into a pure supersymmetric CS partition function and a free matter piece. The latter is

trivial, i.e. the bosonic and fermionic contributions exactly cancel each other. Moreover

our localization results can be applied to the pure CS partition function to show that the
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contribution from the saddle points with vanishing gauge connection is also trivial. As

mentioned above, this is consistent with what one expects for a supersymmetric theory.

Moving on to the second topic, we first computed the one loop free energy for 4D

Vasiliev higher spin gravities based on Konstein-Vasiliev algebras hu(m;n|4), ho(m;n|4)

or husp(m;n|4) and subject to higher spin preserving boundary conditions, which are

conjectured to be dual to the U(N), O(N) or USp(N) singlet sectors, respectively, of free

CFTs on the boundary of AdS4. Ordinary supersymmetric higher spin theories appear

as special cases of Konstein-Vasiliev theories, when the corresponding higher spin algebra

containsOSp(N|4) as subalgebra. InAdS4 with S3 boundary, we utilized a regularization

scheme for individual spins that employs their character such that the subsequent sum over

all spins is finite, thereby avoiding the need for additional regularization. Interestingly the

contribution of the infinite tower of bulk fermions vanishes, and as a result, the free energy

is the sum of those which arise in Type-A and Type-B models with internal symmetries.

Thus the known mismatch between the bulk and boundary free energies for Type-B model

persists, and ordinary supersymmetric higher spin theories exhibit the mismatch as well.

The only models that have a match are Type-A models with internal symmetries, corre-

sponding to n = 0. The matching requires identification of the inverse Newton’s constant

G−1
N with N plus a proper integer as was found previously for special cases. In AdS4 with

S1 × S2 boundary, the bulk one loop free energies match those of the dual free CFTs for

arbitrary m and n. We have also shown that a supersymmetric double-trace deformation

of free CFT based on OSp(1|4) does not contribute to theO(N0) free energy, as expected

from the bulk.

Turning to the problem of mismatch in free energies of Type-B model and its con-

jectured dual, one may have to take into account the issue of how to impose the O(N)

invariance condition on the CFT side. A natural way of implementing it is to gauge the

O(N) symmetry by means of vector gauge field with level k Chern-Simons kinetic term.
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This term breaks parity but the result for the free energy of the parity invariant model can

be obtained in a limit in which the CS gauge field decouples. It has been suggested in [20]

that as the fermions coupled to CS on the boundary give rise to a shift in the level k, it may

not be justified to obtain the result for parity-preserving case by a naive subtraction of CS

contribution from the free energy on the CFT side. However, one expects that this effect

becomes irrelevant in the decoupling limit in which k → ∞. In fact, we have examined

the procedure of decoupling CS in the large k limit by evaluating the S3 free energies for

ABJ model based on U(N)k × U(1)−k [6, 58] and a few N = 3 CS matter theories in

which the matter sector consists of fundamental hypermultiplets [59–61]. After subtract-

ing the contribution from pure CS term, we indeed obtain the free energies of free vector

models. Therefore, the puzzle of free energy mismatch in Type-B remains unresolved and

its solution requires deeper understanding of HS/vector model holography. In this context,

it has been suggested by [87] and explored further in [88] that the vector-like limit of ABJ

model based on U(N)k × U(M)−k is given by

N, k →∞ with λ ≡ N

k
and M finite . (5.1)

In this limit, the ABJ theory effectively behaves like a N = 6 CS gauged vector model

with U(M) flavor symmetry [87]. Its bulk dual is conjectured to be the parity violating

N = 6 U(M) gauged Vasiliev theory [87]. The parity violating angle θ0 is conjectured to

be related to the CFT ’t Hooft coupling by θ0 = πλ/2 [87]†.

Complementary to the one loop test of the free energy, we conducted another test of

†Besides the Newton constant which is small in the limit described above, there is also a bulk ’t Hooft
coupling g2bulkM ∼ M/N � 1. String theory emerges when M/N ∼ 1. Due to strong interactions, the
HS particles form U(M) singlet states which are described by the color neutral string states. Since the
M theory circle R11 ∼ (M/k5)1/6 shrinks and

√
α′/RAdS ∼ (k/M)1/4 → ∞, this is type IIA string

in the high energy limit. The N = 6 parity violating U(M) gauged Vasiliev theory can be perceived as
a deconfinement phase of type IIA string when M/N � 1, in which the string states fragment into HS
particles colored under U(M) [87].
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the HS/CFT duality by computing the parity-preserving and parity-violating three-point

amplitudes with one scalar leg in higher spin gravity and compare results with those of

Chern-Simons matter theories. The three-point correlators of the free boson, free fermion,

critical vector model and Gross-Neveu model are reproduced including the dependence on

the Chern-Simons coupling. We have also performed a simple test of the modified higher

spin equations proposed in [79] and found that the results are consistent with the AdS/CFT

correspondence.

In this work we could not extract the correlators for general three spins due to non-

localities present in the additional CC-terms [22, 68, 78] that need to be taken into ac-

count. These non-localities make the coefficient of the bulk vertex infinite, resulting in

infinite correlators. The infinity is due to the presence of infinitely many of higher deriva-

tive copies of the same vertex that are stacked in the CC-terms. The divergences at tree

level must not arise in any field theory, including HS theories.‡ Indeed, the correlation

functions on the CFT side are finite. Moreover, there is a one-to-one correspondence be-

tween all possible three-point correlators and cubic vertices in AdS, which allows one to

manufacture an action up to the cubic terms that will yield any given three-point correla-

tion functions and no infinities can arise. This was explicitly done for some of the cubic

vertices in [89–91] (full cubic action of Type-A in any dimension was obtained in [91]),

see also [92] for the quartic results. In the recent paper [79] it was conjectured how to

modify the CC-terms as to make them local. The field redefinition that does the job is

non-local and changes the coefficient of the correlator from an infinite number to a finite

one. Moreover, the CC-terms correspond to the abelian vertices at this order (in the sense

that are not fixed by the HS symmetry) and can in principle be arbitrary. Also, non-local

redefinitions can result in any given coefficient [78, 93–96]. Nonetheless, the proposal

‡There exist extremal correlators and the divergences observed in [22, 68, 78] have nothing to do with
those.
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of [79] involves a specific type of field redefinition, and as such it can be treated as a

conjecture. Taking this point of view, we have tested this redefinition, which involves

the CC terms, and we have found that it does produce an answer for the spin 0 − s − s

amplitude that agrees with the CFT result. Further tests of this conjecture will require

the study of more three-point functions, namely those involving three arbitrary spins, and

then of higher order amplitudes, which may possibly require higher order extension of the

proposed field redefinition as well.
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