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ABSTRACT

Availability of interfaces such as WI-FI, Bluetooth and Cellular networks, software

components to control a vehicle’s functionality, and lack of security mechanisms in the

Controller Area Network (CAN) bus protocol make vehicles vulnerable to attacks. In the

recent past, researchers used internal and external attacks on automobiles to demonstrate

that it is feasible to compromise the vehicle through the transmission of malicious mes-

sages on the vehicle’s CAN bus.

To defend against such attacks, we propose three detection techniques. First, cross cor-

relating and validating sensor values across multiple sensors can improve the data integrity

of CAN bus messages. Second, the order of the messages from a single Electronic Con-

trol Unit (ECU) can be used to detect anomalies. CAN messages from the ECU should

always be seen in a specific order as they are transmitted one after the other based on

the priorities of messages. Fabrication and suspension attacks can be detected using such

schemes. Third, a timing based detector is proposed to observe and detect changes in the

timing behavior through deterministic and statistical techniques. An anomaly detection is

possible after one malicious message if the CAN bus utilization is less than 50% or after

at most three malicious messages if the CAN bus utilization is greater than 50% using a

deterministic detection technique. The detection of an attack is possible with good accu-

racy and low false positive rates using a statistical detection technique but at the cost of

longer detection latency.
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NOMENCLATURE

CAN Controller Area Network

ECU Electronic Control Unit

DLC Data Length Code

CRC Cyclic Redundancy Check

ACK Acknowledgment

EOF End Of Frame

RPM Rotation Per Minute

OBD On Board Diagnostics

WI-FI Wireless Fidelity

SOF Start Of Frame

RTR Remote Transmission Request

IDE Identifier Extension

DOS Denial Of Service
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1. INTRODUCTION

The security in automobiles is of paramount importance as it directly impacts property

and well-being of drivers, passengers and pedestrians. To control various features of an

automobile, many software components are added, and exposure to external interfaces

like Bluetooth [1], WI-FI [2] and Cellular networks [3] for vehicle-to-vehicle or vehicle-

to-infrastructure communication have made vehicles vulnerable to external and internal

attacks. Modern automobiles are equipped with dozens of Electronic Control Units (ECU),

which are interconnected via in-vehicle networks such as Controller Area Network (CAN)

bus [4], FlexRay [5] and Local Interconnect Network(LIN) [6]. ECUs are responsible for

the overall behavior of the automobile such as Lane Assist, Park Assist, Steering, Anti-lock

brake system, cruise control etc. The security of the automobile is dependent on the real-

time communication between these ECUs, which take data from sensors and accordingly

control actuators. The overall security of the automobile can be compromised if an attacker

sends fake messages with or without compromising any of the ECU’s behavior in the

automobile. A CAN data frame does not contain the identifier of the sender and hence

the messages cannot be easily authenticated. This allows injection of fake packets either

by directly connecting to the CAN bus or remotely through wireless interfaces. These

messages can behave like normal messages and perform actions as desired by the attacker.

The attacker can compromise an ECU and use it to send fake messages on the CAN bus

or suspend existing messages.

Techniques such as anomaly detection can be used to detect attacks. We consider the

following criteria to build an anomaly detector:

• The anomaly detector should be fully capable to be integrated in legacy systems,

either as a software update or as a separate device that can be inserted in the On-
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Board Diagnostics (OBD)-II port.

• The anomaly detector should be simple enough to be integrated within the CAN

subsystem.

• The anomaly detector should have a high accuracy and very low false alarm rates.

False alarms may cause user discomfort or panic and hence should be reduced to a

minimum.

To defend against attacks, there are two possible approaches: Authentication and

Anomaly detection. Due to the limited space in the CAN messsage, authentication is

not easily possible. Researchers explored anomaly detection techniques to detect attacks.

Muter et al. [7] introduce anomaly detection sensors, which allow attacks detection. This

approach requires extra hardware to be introduced in the automobiles. Hence, installing

this system into existing cars would be difficult. Artificial neural networks can help us

detect attacks, but the detection efficiency of such methods may not be high. Theissler [8]

proposes use of machine learning techniques such as a one-class support vector machine

to detect anomalous behavior, but this approach has false negatives. Hence, may not raise

an alarm when needed. Narayanan et al. [9] try to solve anomaly detection as a data ana-

lytic problem and applied machine learning techniques such as hidden Markov models to

predict if a car is in normal or abnormal mode. This approach is dependent on the model of

the car to differentiate between normal and abnormal modes. Clock-skew based detection

[10] can be used to fingerprint an ECU based on the periodicity of the in-vehicle messages.

This method has low false positive rates and hence is effective in detecting attacks, but it

is complex to implement.

We propose several techniques for detecting anomalies on the CAN bus. We propose

to cross-correlate and validate sensor values from multiple sensors. For example, wheel

speeds from the four wheels can be correlated with each other to detect anomalies. Simi-
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larly, other indicators such as steering angle, acceleration and Rotation Per Minute (RPM)

can be cross-correlated with each other. We need to be aware of the semantics of the pro-

tocol to decode these values to feed into such a detector. Other cross-correlations such as

the time when a door or a trunk can be opened with respect to speed of the car are also

considered to flag anomalous behavior.

We propose a timing based detector to observe and detect changes in the timing behav-

ior of messages through deterministic and statistical techniques. Attacks can be detected

either by comparing the change in the delay distribution of messages because of insertion

of attack or anomalous messages. The detection techniques can work by observing the

timing behavior of a single message or through the effect on other messages. This detec-

tor is independent of the semantics of the protocol as it only requires the arrival time of

messages instead of the decoded values of various fields to flag anomalous behavior.

Additionally, we can detect attacks considering the order of messages from a single

ECU. CAN messages from the same ECU should always be seen in a specific order as

they will be transmitted one after the other based on the priorities of messages, and any

deviation from this order can be flagged. Message identifiers can be used to detect such

changes in the order. This detector is simple and fast to detect attacks as any change in

the order is immediately flagged. Observation of two successive messages from the same

ECU can enable the detection of a fake message.

The rest of the thesis is organized as follows: Section 2 provides an introduction to the

Controller Area Network protocol, and Section 3 provides the attack model we consider for

this thesis. Section 4 provides solution criteria we consider while developing an anomaly

detection module. Section 5 details the anomaly detection based on cross-correlation,

Section 6 details the anomaly detection based on the order of messages, and Section 7

details the anomaly detection based on the timing behavior. Section 8 concludes the thesis.
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2. CONTROLLER AREA NETWORK PROTOCOL

The Controller Area Network (CAN) protocol is a carrier sense multiple access proto-

col with collision detection. All CAN transmissions are broadcast in nature, which means

nodes receive all the transmissions on the CAN bus. Bus arbitration, i.e. the resolution

of which message gets transmitted next if a collision occurs, is decided by the message

priority. Priority is decided based on the so-called identifier field in the message header. A

lower identifier corresponds to a higher priority, which means messages with lower iden-

tifiers will be transmitted earlier than messages with higher identifiers if both are ready to

be transmitted in the transmission buffer or if arbitration is triggered by collision during

the transmission.

The structure of a CAN message is illustrated in Figure 2.1. It has the following

important fields:

• Identifier: It represents the priority of a message. A lower-value identifier indicates

higher priority on the CAN bus.

• Data Length Code(DLC): It represents the length of the data field in a CAN mes-

sage.

• Data: Data is the actual payload of the message. A total of 64 bits of data can be

transmitted in the message.

• Cyclic Redundancy Check(CRC): This field contains the checksum of the data

field for the error detection.

• Acknowledgment(ACK): The ACK bit is used to check the integrity of data. The

receiving node overwrites the recessive bit to the dominant bit for an error-free mes-
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sage. In the case of any error, the recessive bit is not overwritten, and the sending

node retransmits the message.

Figure 2.1: Standard CAN Packet Format

2.1 CAN Arbitration

A CAN message transmission is non-preemptive, which means that a message cur-

rently being transmitted cannot be preempted by other messages. When messages are

broadcast simultaneously on the bus, collisions occur. A priority driven arbitration proto-

col ensures that the highest priority message continues transmitting while the lower prior-

ity message transmission backs off, and its message gets transmitted later. Specifically, if

two nodes try to transmit at the same time during an idle state, both nodes need to compete

to get access to the bus. This conflict is resolved through the bit-wise arbitration as fol-

lows: the dominant bit always overwrites the recessive bit on the CAN bus, and the node

transmitting 0 retains control of the bus, while the node transmitting 1 stops transmitting

the message. Nodes transmitting a bit read the same bit on the bus, believing they win the

arbitration, and nodes reading a different bit switch to listening mode. In other words, a

lower identifier node continues its transmission, and all the higher identifier nodes switch

to listening mode. These higher identifier nodes will contend for the CAN bus in the next

available slot. In the absence of two similar identifier message competing to occupy the

CAN bus, only one message can occupy the bus.

Figure 2.2 shows CAN arbitration; two nodes compete to send messages on the CAN

5



Figure 2.2: CAN Bus Arbitration

bus. Node 1 and Node 2 send messages at the same time, and contention will start by the

SOF bit. Node 1 and Node 2 send bit 0 as a part of the arbitration; as a result the CAN

bus state will be shown as 0. Both nodes don’t see any difference between the CAN bus

state and the last transmitted bit, so they continue to send arbitration bits until any one of

them find differences between the transmitted bit and the current state of the bus. Node 1

transmits the third arbitration bit as 0, but Node 2 transmits bit as 1. When the bus state

is 0, Node 2 figures out that it lost arbitration and switches to listening mode. Node 1

will continue transmitting the CAN message. Node 2 will try again once Node 1 is done

transmitting the message, and this time as there is no node contending for the bus, it will

win the arbitration and send the whole message on the CAN bit by bit.

2.2 Message Transmission and Reception

The CAN controller is the hardware component responsible for physical access to the

CAN bus and has one or more registers responsible to store, transmit and receive messages.

These registers are called TxObjects and RxObjects respectively. When CAN transmis-

sions are broadcasted, all nodes will receive all the messages, but few messages go up in
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the software stack. Nodes need a mechanism to select few relevant messages. Filtering

can be applied to each register available to receive messages based on the identifier field

of a message.

The CAN driver is the software component which initializes the CAN controller and

perform transmission and reception of messages. It stores transmission messages in the

queue when the size of the hardware buffer is less than the total number of messages

queued for transmission. To receive new messages, the CAN driver can use polling to

look for the content of the hardware buffer and store the new message when it arrives.

Additionally, the CAN controller can send an interrupt signal to the CAN driver when it

receives a new message.

Lower identifier messages are selected out of all the messages queued for transmission

in the transmission buffer. The CAN controller can have the transmission buffer to accom-

modate all messages queued to be transmitted. In this case, we can have a priority queue

to arrange the messages in decreasing order of priority and choose the top element for

transmission when the bus is idle. When the transmission buffer is smaller than the total

number of messages available for transmission, extra messages can be accommodated in

the software queue, and when the transmission buffer is free, messages from the software

stack can be copied to the hardware buffer. When a new message arrives, and its priority

is higher than any message present in the hardware buffer [4], lowest priority element is

evicted from the hardware buffer, copied to the software queue, and the new message is

enqueued in its location. During such eviction process and when the hardware buffer size

is small, a low priority packet from another node can occupy the CAN bus while the higher

priority message is being copied to the transmission buffer of the CAN controller from the

software stack.
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2.3 System Model

We consider a flow mi with period Pi, priority τi, length Si and fi,j be its jth instance.

When fi,j is en-queued to be transmitted on the CAN bus, it can be delayed [4] due to the

blocking delay due to the transmission of lower priority flows or the interference delay due

to higher priority flows.
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3. ATTACK MODEL

ECUs can be compromised in a way that they are now allowed to send messages or

send fake messages. Fake messages can also be inserted physically or remotely on the

CAN bus. Recent studies by Miller and Valasek [11, 12] on Jeep Cherokee, Ford Es-

cape, Toyota Prius and researchers from Keen Security Lab on Tesla demonstrated that

it is possible to control brake, steering, speed, trunk, door, acceleration etc. physically

or remotely. [13] showed vulnerabilities in Telematics control unit (TCU) and showed

that these devices can be compromised by an attacker. [14, 15] show that ECUs can be

compromised using various interfaces. We need anomaly detection techniques to detect

attacks, and let passengers know about the intrusion by ringing an alarm. The attacker can

target many cars by remote attacks, and hence we need some measure to overcome such

attacks. We consider the following attacks in this thesis.

• Fabrication attack: The attacker can inject fake messages of different flows physi-

cally or remotely in the vehicle’s CAN bus

• Suspension attack: The attacker can compromise one or multiple ECUs, and re-

strict them from sending few or all messages.

• Denial Of Service (DOS) attack: The attacker can flood the CAN bus so that nodes

cannot transmit valid messages.

An adversary can attack the CAN bus in the following ways:

• Compromising an ECU.

• Addition of new ECU on the CAN bus.

• Remote attacks through interfaces such as WI-FI and Bluetooth.

9



4. SOLUTION CRITERIA

To build an anomaly detector, the following criteria are considered:

• We need some way to tackle anomalies in existing cars. The change of hardware or

addition of new hardware requires extra out-of-pocket cost.

• When possible, we will look for software solutions.

• The detector should be fast or have a small latency in detecting an attack. Detecting

anomalies after a long time is equivalent to not detecting at all. We need to warn

users quickly to limit the effect caused by the attack.

• We also need to use less resources to incorporate the detector to reduce cost and

overall load on the CAN bus.

4.1 Location of Anomaly Detection

The CAN protocol is broadcast in nature which means the CAN controller receives

all the messages, and based on the filtering decision at the CAN controller, few messages

will go up in the stack for further processing. An anomaly detector scheme in the CAN

subsystem can be located at various levels of the protocol stack as shown in Figure 4.1.

For instance, the anomaly detector can be located close enough to the physical layer of the

CAN bus or in the software stack of an ECU. Depending on the location, the anomaly de-

tector may or may not receive all the messages. We consider the following two deployment

scenarios:

4.1.1 Hardware Detector

In this deployment scenario, a detector is located close enough to the physical layer

of the CAN bus so that all broadcast messages can be monitored. The detector has the

10



Figure 4.1: Location of Anomaly Detection Module in CAN Subsystem

knowledge of all the messages transmitted on the CAN bus and can look for the behavior,

such as inter-arrival time, payload content etc. Any deviation from the normal behavior

can be flagged as an anomaly.

4.1.2 Software Detector

Alternatively, one way to locate a detector is close to the software stack of an ECU.

The detector has the knowledge of only few messages meant to be received by the ECU

and hence can only detect anomalies observed in those messages.
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5. ANOMALY DETECTION BASED ON CROSS-CORRELATION

A cross-correlation based anomaly detection approach can be applied to determine a

drastic change in the value of a field at a given time with respect to the value of another

field. For instance, all wheel speeds are correlated, which means any change in the value

of one wheel speed should result in a similar amount of change in the value of other wheel

speed. An anomaly can be flagged when one value at a given time changed too much,

while the other value didn’t change much. The wheel speeds can be correlated with the

steering angle. If the car is being steered straight, the wheel speeds should match. When

the steering angle indicates a turn, the wheel speeds can differ, but the differences can be

correlated against the steering angle.

The drastic change in a value at a given time can be affected by sending fake messages,

such an attack needs to be detected to prevent abnormal behavior. A strong correlation

between two values at a given point of time can allow us to design a mechanism for the

attack detection. To find fields that are correlated, CAN bus message trace is analyzed,

and we make the following observations:

• Wheel 1 & 2 speed are strongly correlated as shown in Figure 5.1 and Table 5.1

probably because two wheels are connected to the same axle.

• Wheel 3 & 4 speed and Wheel 1 & 3 speed are strongly correlated as shown in

Figure 5.2 and Figure 5.3 respectively. Similarly, any other combination of wheel

speeds are also correlated. Table 5.1 confirms such strong correlation. Attacks

compromising few but not all wheel speeds can easily be detected as all wheel speeds

are highly correlated.

• RPM & wheel speeds are strongly correlated until a brake is not applied, but not
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strongly correlated after the brake is applied. Figure 5.4a and Figure 5.4b show

scatter plots for both the scenarios. The cross-correlation between RPM & wheel

speed 1 for both the above scenarios are shown in Table 5.1. It is noted that this

correlation is dependent on the current gear and the driving behavior.

• RPM & acceleration are also correlated as shown in Table 5.1.

Table 5.1: Cross-Correlation between Different Fields

Fields Cross-Correlation

Wheel 1 and 2 speed 1.0

Wheel 3 and 4 speed 0.994

Wheel 1 and 3 speed 0.998

Wheel 1 speed and RPM (before brake) 0.98

Wheel 1 speed and RPM (Overall) 0.84

Acceleration and RPM .786

Figure 5.1: Scatter Plot be-
tween Wheel 1 and 2 Speed

Figure 5.2: Scatter Plot be-
tween Wheel 3 and 4 Speed

Figure 5.3: Scatter Plot be-
tween Wheel 1 and 3 Speed
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(a) Before Applying Brake (b) During the Whole Trip

Figure 5.4: Scatter Plot between RPM and Speed

Several other cross validations can be applied to detect anomalies in a car based on the

normal behavior such as:

• The trunk should not be opened when speed of the car is greater than 0. The desired

behavior is closed trunk when the car is moving. Sudden opening of the trunk while

the car is moving should be flagged as an anomaly.

• The door should not be opened when speed of the car is greater than 0. The desired

behavior is closed door when the car is moving. Sudden opening of the door while

the car is moving should be flagged as an anomaly.

• Speed of the car should not be greater than 5 km/hr. during Park Assist as described

in [11] as it doesn’t make sense to have high speed while parking the car.

The drastic change in one value can be determined if other value is not changed for a

given time. Our detector works for both periodic and non-periodic traffic. All the fields

are decoded in vendor specific format, so we need to know the semantics of the messages

to decode the values. Such cross correlations or invariants across different sensors can

provide validation of data integrity.
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6. ANOMALY DETECTION BASED ON ORDER OF MESSAGES

An anomaly can be detected based on the order of messages transmitted by a single

ECU. CAN messages from the single ECU should always be seen in a specific order as

they are transmitted one after the other based on the priorities of messages. Any deviation

from this order should be flagged. This could enable the detection of insertion of fake

messages or suppression of valid messages.

6.1 Fabrication Attack

A fabrication attack can be detected as insertion of malicious messages change the

order of message identifiers. The ECU can be compromised to send fake messages.

In Figure 6.1, ECU-1 sends messages with identifier 0x301, 0x302, 0x303 and 0x304,

ECU-2 sends messages with identifier 0x13c, 0x158, 0x17c and 0x188, and ECU-3 is

compromised to send fake messages with identifier 0x302 and 0x17c, which are normally

sent by ECU-1 and ECU-2. In the normal case, messages transmitted from ECU-1 and

ECU-2 are always in order. When the fabrication attack is staged through ECU-3, the

order of messages may not be preserved enabling the detection of the attack. These attacks

can be detected immediately when the order is violated.

A detector considering the order of messages to flag anomalous behavior can look

for predefined patterns of message identifiers. Figure 6.2 shows the message identifiers

transmitted on the CAN bus at any given index. The deviation from the normal behavior

can be seen when a fake message with identifier 0x301, and a message with identifier

0x302 are inserted at index 9 and 10 after a bonafide message with identifier 0x304 is

transmitted. Ideally 0x301 precedes 0x304, but due to the fake insertion of 0x301 and

0x302 after 0x304, the detector fires an alarm. Figure 6.3 shows an anomaly when a fake

message with identifier 0x301 is inserted after a bonafide message with identifier 0x304.
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Figure 6.1: Detecting Fabrication Attacks Based on Order of Messages

Two 0x301 messages at index 9 and 10 can be seen. This will raise the alarm as another

message identifier like 0x302, 0x303 and 0x304 should be transmitted by an ECU after

transmitting 0x301.

Figure 6.2: Inserting Fake Messages with
Identifier 0x301 and 0x302

Figure 6.3: Inserting Fake Message with
Identifier 0x301 at index 9

6.2 Suspension Attack

Figure 6.4 shows ECU-1 sends messages with identifier 0x301, 0x302, 0x303 and

0x304, and a compromised version of ECU-1 does not send a message identifier 0x301,
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but sends messages with identifier 0x302, 0x303 and 0x304. A flag can be raised when a

message with identifier 0x302 comes after a message identifier 0x304 instead of a message

identifier 0x301. This happened because message identifier 0x301 is suspended in the

compromised ECU-1.

Figure 6.4: Detecting Suspension Attacks Based on Order of Messages

Few messages are not allowed to be transmitted by an attacker after compromising

an ECU. Figure 6.5 shows suspension of 0x301 at index 13. Ideally, 0x302 should be

preceded by 0x301, but 0x301 is suspended. Figure 6.6 shows the deviation from the

normal behavior when the attacker suspends certain messages entirely.

Figure 6.5: Suspension of 0x301 at Index
13

Figure 6.6: Suspension of 0x301 Mes-
sages after Index 13
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This detector is simple and fast as it requires keeping track of the order of messages

and raises an anomaly when the arrival pattern does not match the expected pattern. To

detect an attack using such a detector, each ECU should transmit at least two messages to

define the order.

An attacker could modify its behavior knowing the presence of such an anomaly detec-

tor. However, this requires that the attacker has to carefully monitor the arrival of messages

on the CAN bus to insert fake messages of another ECU. Second, a compromised ECU

has to continue sending all the packets of that ECU, that is suppression is not feasible.
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7. ANOMALY DETECTION BASED ON TIMING BEHAVIOR

The timing behavior of periodic CAN messages can be leveraged to detect anomalies.

Several approaches are possible to detect anomalies based on the timing behavior. They

differ in two main aspects:

1. Based on the types of anomaly bounds, we consider the two approaches Determin-

istic and Statistical Detection;

2. Based on the types of messages used in the detection, messages of a same or different

identifier than attacked messages can be used to detect an attack.

7.1 Analysis of Timing Behavior

To detect attacks on the vehicle’s CAN bus, a mechanism such as anomaly detection is

needed to find intrusions. For the anomaly detection based on the timing of messages, the

timing behavior of messages in the CAN subsystem need to be determined, i.e. whether

messages are periodic or not. In case messages are periodic, we need to find whether the

period remains constant. We need these answers to go forward with the timing analysis.

We analyzed the traces of Honda Civic and Toyota Camry from [16] to see the timing

behavior of messages. The traces contain information regarding CAN frames such as the

identifier, data and the arrival time of a message. After a detailed analysis of the data, we

make the following observations:

• Most of the CAN messages are periodic, which can be confirmed by observing the

auto-correlation in Figure 7.1 and data in Table 7.1;

• The fluctuation in the inter-arrival times of packets occur as shown in Figure 7.2,

which can be explained by the delay in transmitting a message by an ECU caused

19



by higher priority packets or the non-preemptive nature of the CAN bus.

Figure 7.1: Auto-Correlation of Message
with Identifier 0x17c

Figure 7.2: Inter-Arrival Times vs Message
Index for Message with Identifier 0x188

Table 7.1: Number of Periodic and Non-Periodic Messages in Honda Civic and Toyota
Camry

Model Periodic messages Non-Periodic messages

Honda Civic 100% 0%

Toyota Camry 93.1% 6.9%

7.2 Deterministic vs Statistical Detector

A workload on the CAN bus can be known at design time. In such cases, the worst-case

workload can be bounded. Any deviation in the bounds can be detected by a deterministic

anomaly detector. The insertion of a fake message changes the delay distribution of mes-

sages transmitted after the insertion of that fake message. The impact of such changes can

be measured over time by a statistical anomaly detector.
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7.3 Detection through Same vs Different Message Identifier

We consider how attacks can be detected through the timing behavior of different mes-

sages. In the first case, we consider attacks on the same message that is being analyzed or

observed. In the second case, we look at the possibility of detecting attacks on other mes-

sages through the observation and analysis of a single message identifier. The inter-arrival

time of a message changes when the same identifier message is attacked; such changes can

be detected by a deterministic detector. The insertion of a fake message changes the delay

distribution of messages with the same or different identifier than attacked messages over

time; such changes can be detected by a statistical detector.

7.4 Deterministic Detector

It is common in automotive applications that the communication workload on the CAN

bus is often known at design time. In such cases, the worst-case workload at any time can

be bounded. When such a bound is exceeded, this indicates a malfunction of a component

(example, a node may have turned into "babbling idiot") or the presence of additional

workload. The latter can be bonafide or malicious. This information can be leveraged

to design a deterministic anomaly detector. The bounded workload expresses itself as

a set of transmission delays for the messages on the CAN bus. The detection rationale

is that the additional workload naturally increases the transmission delay of messages or

decrease in the workload effects the inter-arrival times of messages. We use the real time

delay analysis to determine the worst-case delay to be experienced by the messages in the

system.

The queuing delay WCfi of a message is defined as the time interval from when the

message is en-queued until it is transmitted on the bus. The delay WCfi [4] consists of

two factors:

• Blocking delay due to the transmission of a lower priority message when a new mes-
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sage is en-queued for the transmission. Since these messages cannot be preempted,

the newly en-queued message must wait;

• Interference delay caused by the transmission of higher priority messages.

We can calculate the worst-case response timeWCfi to find out the maximum possible

time taken by fi,j once it is en-queued to be transmitted on the CAN bus.

In Figure 7.3, we denote ∆1, the inter-arrival time between fj and fj+1 when fj in-

stance is delayed and fj+1 instance is not delayed. We call ∆2, the inter-arrival time

between between fj+1 and fj+2 when neither instance is delayed. We call ∆3, the inter-

arrival between fj+2 and fj+3 when fj+2 instance is not delayed, but fj+3 instance is

delayed. We call ∆4, the inter-arrival time between fj+3 and fj+4 when both instances are

delayed. We call ∆i,j as the inter-arrival time between any consecutive instances of the

flow mi.

Equations 7.1, 7.2, 7.3 and 7.4 represent ∆1, ∆2, ∆3 and ∆4 respectively.

Figure 7.3: Inter-Arrival Times between Consecutive Message Instances
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∆1 > P −WCfi (7.1)

∆2 = P (7.2)

∆3 6 P +WCfi (7.3)

P −WCfi < ∆4 < P +WCfi (7.4)

P −WCfi 6 ∆i,j 6 P +WCfi (7.5)

We observe that the inter-arrival time between any two consecutive instances of the

flow mi should lie between P − WCfi and P + WCfi as shown in Equation 7.5. In

case the inter-arrival time of the consecutive instances exceeds these bounds, an anomaly

detector should raise an alarm.

7.4.1 Deterministic Same Message Identifier Detector

A deterministic detector can be used to detect an attack using a message with the

same identifier as the attacked message. The above bounds may be exceeded when the

message is inserted between normal messages. When the bounds are not exceeded, the

timing behavior of the next message enables the detection of the attack. Attacks such as

fabrication and suspension can be detected using this detector.

7.4.1.1 Detection of Fabrication Attack

Detecting an attack in a timely manner is important to raise an alarm as soon as some-

thing wrong happens in an automobile. Assuming we have at least one transmission of
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mi, and an attacker capable of inserting a fake message of same type as mi physically or

remotely at any given time. The fake message injection is typically detected as soon as

the fake message is transmitted on the CAN bus and the minimum inter-message bound

P −WCfi is exceeded. In case the bounds are not exceeded, we consider the detection

scenarios where an alarm can be triggered after one fake message or at-most three fake

messages depending on whether the bus utilization is below or above 50%:

Figure 7.4: Fake Message Inserted between Message Instances

• Detection with P −WCfi and P +WCfi bounds: The bounds in Equation 7.5 can

be used to detect an attack, but there are chances when the bounds are not exceeded.

We simulated the attack on a Honda Civic by constructing a trace of malicious mes-

sages. This trace contains information such as the arrival time of a malicious mes-

sage, the identifier etc. We merge this trace with the normal trace based on the arrival

time of messages and the priority, i.e. a higher priority message will be transmitted
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before a lower priority message. Attacks can be detected considering the bounds

in Equation 7.5. To calculate the effect on the detection rate with an increase in

the utilization, we change the transmission time of messages to 2 and 2.5 times the

original transmission time. Figure 7.5 shows a decrease in the detection rate with

the increase in the utilization. Such a behavior can be explained by the fact that the

increase in the utilization will increase the worst-case response time. The change

in the bounds in Equation 7.5 make attack hard to be detected by considering all

inter-arrival times and the bounds. This behavior is also explained later when the

utilization is low, the attack can be detected after a fake message insertion, but the

increase in the utilization makes the attack hard to be detected, and more malicious

messages can be inserted before the detection. We will also see later that when

we say the attack detection can be done after a fake message with low utilization,

the detection is based on ∆i,j between a fake transmission and the next bonafide

transmission but currently we are considering all inter-arrival times including ∆i,j

between a previous bonafide message and a fake message transmission which make

our detection rate less than 100%.

• Detection with smart adversary when WCfi < P/2 (Utilization is < 50%): An

adversary capable of sniffing the CAN bus physically or remotely and aware of the

bounds described in Equation 7.5 tries to make sure fake messages go undetected.

Consider an attack scenario as depicted in Figure 7.4. The adversary inserts a fake

message of typemi P−WCfi time units after the transmission of a bonafide instance

of mi. We assume the first bonafide message is not delayed as it would make the

attack more likely to be detected, the adversary will have sufficient time to be within

the bounds after inserting the fake message. We also assume WCfi delay in sending

the next bonafide message fi,j+1 to make sure our detection method works in the
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Figure 7.5: Detection Rate vs Utilization

worst-case as well. To detect the attack based on the bounds in equation 7.5, the

following condition should be met as depicted in Figure 7.4.

P −WCfi 6 2 ∗WCfi 6 P +WCfi (7.6)

We observe that two subsequent inter-arrival times cannot be equal to P −WCfi

because the only way to get the inter-arrival bound as P −WCfi is when an instance

is delayed by the worst-case delay and the next instance is not delayed. So, the next

inter-arrival time should be between P and P + WCfi as the last instance is not

delayed and the next instance can be delayed by the worst-case finish time or not

delayed as shown in Figure 7.4. In other words, P −WCfi in Equation 7.6 can be

replaced by P, and the new equation becomes:

P 6 2 ∗WCfi 6 P +WCfi (7.7)
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From Equation 7.7, we can infer that our anomaly detector can raise an alarm if

WCfi < P/2 (7.8)

We can also infer the condition when our anomaly detector will not be able to raise

the alarm:

P/2 6 WCfi 6 P (7.9)

At design time, we can set the worst-case response time for mi to be less than its

period P to make sure our detector can detect the anomaly even if only one fake

message is inserted.

• Detection with smart Adversary when P/2 6 WCfi 6 P (Utilization is > 50%):

When WCfi is less than P/2, the insertion of fake messages can still be detected if

we are willing to tolerate N fake messages to be transmitted before the alarm. We

are now interested in finding the maximum number of fake messages N that the

adversary can insert before our anomaly detector triggers.

Lemma 7.4.1. A deterministic anomaly detector can detect fake messages injection

after at most three fake messages.

Proof. To find N, we consider Ux to be the total number of bonafide instances of

the flow mi transmitted at any given point in time by an ECU, and Uy to be the total

number of instances (bonafide + fake) of the flow mi transmitted on the CAN bus at

any given point in time. Let T be the current local clock time at our detector, which

starts ticking after the first message instance of the flow mi is received. Based on

Figure 7.6, T is bounded by:

(Ux − 1)P −WCfi 6 T 6 (Ux − 1)P +WCfi (7.10)
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Figure 7.6: Legitimate and Fake Transmission of Instances

In an attack scenario, let the inter-arrival time between the first message instance and

any other message instance of the flow mi at any given point in time be δi,j . Based

on Figure 7.6, δi,j is bounded by:

(Uy − 1)P −WCfi 6 δi,j 6 (Uy − 1)P +WCfi (7.11)

From Equation 7.10 and 7.11, we can infer that the detector would raise an alarm if:

(Uy − 1)P −WCfi > (Ux − 1)P +WCfi (7.12)

Combining Equation 7.9 and 7.12 with some rearranging, we can infer the following

relationship:

Uy > Ux + 2 (7.13)

From Equation 7.13, we infer that the attack can be detected with 100 % confidence

after at-most three fake messages.
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The inter-arrival time of a message instance of the flowmi changes due to the insertion

of a fake message of the same flow. Considering the start time of the first instance of a

message and all the subsequent arrivals of fake and normal instances of that message, we

can detect the attack.

7.4.1.2 Detection of Suspension Attack

The effectiveness of a deterministic anomaly detection against suspension attacks fol-

lows as a corollary from the discussion of fabrication attacks.

Corollary 7.4.1.1. The deterministic anomaly detection approach detects a suspension

attack within P +WCfi time units.

Proof. We assume that a compromised ECU will not send any message of the flow mi

after the suspension attack. Due to the suspension attack, the ECU is compromised and no

longer allowed to send messages of the flow mi. In such a case, the bounds are exceeded

when ∆i,j > P + WCfi. Our detector fires an alarm within P + WCfi time units as

described in Equation 7.5.

Figure 7.7 shows the suspension attack where fi,j+3 is not transmitted from the ECU.

The attack is detected after P +WCfi time units.

7.4.2 Deterministic Different Message Identifier Detector

When the anomaly detection module is located at the software layer, it only sees mes-

sages headed to and from the local ECU. The anomaly detection module thus does not see

all traffic, and the techniques described in section 7.3.1 fail to work. In this section, we

describe a deterministic anomaly detector that leverages local inter-message time informa-

tion.
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Figure 7.7: Detection Latency for Suspension Attacks

7.4.2.1 Detection of Fabrication Attack

A message instance of the flowmi can be delayed due to the fake insertion of messages

of flows( 6= mi). Each message instance of the flow mi is shifted to accommodate the fake

insertion of another message instance, especially if the fake messages have higher priority

than mi. In Figure 7.8, transmission of a message can be delayed by the transmission of

one or more instances. To detect an attack, Equation 7.5 can be used for the bounds, but

the detection is only possible in exceptional cases when the message instance of the flow

mi is delayed by WCfi due to the insertion of instances of other flows.

7.5 Statistical Detector

Attacks can be detected through a statistical analysis of delay distributions. Changes in

delay distributions can result through the insertion or deletion of messages. These changes

can be detected by other messages even if they are not subject to the attacks.
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Figure 7.8: Detection of Fabrication Attacks with Different Message Identifier

7.5.1 Statistical Anomaly Detector

This detector can detect changes in the delay distribution of local traffic due to the

insertion of instances of other traffic on the CAN bus. To evaluate the performance of

such a detector, attacks were manually simulated on Honda Civic and KIA traces collected

through the OBD-II port.

We simulated an attack by inserting one or two fake messages to determine if the

detection is possible. All the instances or few instances of a message can be delayed due

to the insertion of a message of a different identifier. Fake messages were added after

every X instance of a message that is targeted to be delayed due to such insertions.

7.5.1.1 Attack on Honda Civic

To simulate an attack on a Honda Civic, a malicious message of identifier 0x91 with

a transmission time of 200 µsec is inserted before a bonafide message of identifier 0x158.

The impact of such insertion is measured by comparing the delay distribution of 0x158

messages for both the normal and attacked cases as shown in Figure7.9.

To calculate the accuracy for our detector, Honda Civic traces are divided into 20
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(a) Delaying 33.33% Messages (b) Delaying 20% Messages (c) Delaying 10% Messages

Figure 7.9: Normal Distribution of Inter-Arrival Times for Normal vs Attacked Cases for
Message with Identifier 0x158

buckets of 200 messages each. We consider a hard classifier, which takes the threshold as

the maximum of 3σ in the training set to classify the testing set as anomalous or not. The

accuracy for insertion of one or two malicious messages is measured using the 10-fold

cross-validation as shown in Table 7.2 and Table 7.3 respectively.

Table 7.2: Efficiency Comparison Due to Insertion of One Fake Message with Identifier
0x91 before Message with Identifier 0x158

Number of Buckets Bucket size Instances effected Efficiency

20 200 33.33% 100

20 200 20% 65

20 200 10% 25

7.5.1.2 Attack on KIA-1

To simulate an attack on a KIA, a malicious message of identifier 0x161 with a trans-

mission time of 200 µsec is inserted before a bonafide message of identifier 0x357. The

impact of such insertion is measured by comparing the delay distributions of 0x357 mes-

sage for both the normal and attacked cases as shown in Figure7.10.
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Table 7.3: Efficiency Comparison Due to Insertion of Two Fake Messages with Identifier
0x91 before Message with Identifier 0x158

Number of Buckets Bucket size Instances effected Efficiency

20 200 33.33% 100

20 200 20% 100

20 200 10% 100

20 200 1% 10

(a) Delaying 25% Messages (b) Delaying 20% Messages (c) Delaying 10% Messages

Figure 7.10: Normal Distribution of Inter-Arrival Times for Normal vs Attacked Cases for
Message with Identifier 0x357 for KIA-1

To calculate the accuracy for our detector, KIA traces are divided into 10 buckets of 200

messages each. We consider a hard classifier, which takes the threshold as the maximum

of 3σ in the training set to classify the testing set as anomalous or not. The accuracy for

insertion of one or two malicious messages is measured using the 10-fold cross-validation

as shown in Table 7.4 and Table 7.5 respectively.

7.5.1.3 Attack on KIA-2

We simulated another attack on KIA traces collected at least 1 month after KIA-1 to

see the effect of the clock synchronization on the detector performance. Like in KIA-1,

Figure 7.11 shows the comparison of the delay distribution of normal and attack cases.
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Table 7.4: Efficiency Comparison Due to Insertion of One Fake Message with Identifier
0x161 before Message with Identifier 0x357 for KIA-1

Number of Buckets Bucket size Instances effected Efficiency

10 200 25% 100

10 200 20% 100

10 200 10% 60

Table 7.5: Efficiency Comparison Due to Insertion of Two Fake Messages with Identifier
0x161 before Message with Identifier 0x357 for KIA-1

Number of Buckets Bucket size Instances effected Efficiency

10 200 25% 100

10 200 20% 100

20 200 10% 100

20 200 1% 10

Table 7.6 and Table 7.7 show the detection accuracy after inserting one or two malicious

messages.

The threshold calculated using KIA-1 is used to classify the attacked KIA-2 as anoma-

lous or not as shown in Table 7.8

7.5.1.4 Detection Latency and False Positive Rates for KIA-1 And KIA-2

We measured the detection latency, which is defined as the time taken by the detector to

detect attacks on KIA-1 and KIA-2 due to the insertion of a malicious message of identifier

0x161 before a bonafide message of identifier 0x357 as shown in Table 7.9.

We calculated the false positive rates for KIA-1 and KIA-2 as shown in Table 7.10,

which means the detector is necessary but not sufficient to detect attacks.

We compared the false positive rates as shown in Figure 7.12 based on the training size
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(a) Delaying 25% Messages (b) Delaying 20% Messages (c) Delaying 10% Messages

Figure 7.11: Normal Distribution of Inter-Arrival Times for Normal vs Attacked Cases for
Message with Identifier 0x357 for KIA-2

Table 7.6: Efficiency Comparison Due to Insertion of One Fake Message with Identifier
0x161 before Message with Identifier 0x357 for KIA-2

Number of Buckets Bucket size Instances effected Efficiency

10 200 25% 100

10 200 20% 100

10 200 10% 80

and found that the increase in the training data reduces the false positive rate. It also shows

that the increase in the threshold value for the classification can reduce the false positive

rate to 0.

7.5.2 Self Statistical Anomaly Detector

This detector can detect the change in the delay distribution of traffic due to a malicious

insertion of a message of the same traffic. To evaluate the performance of such a detector,

we manually simulated an attack on a Honda Civic.

7.5.2.1 Attack on Honda Civic

The delay distribution of messages of the flow mi will change drastically due to mali-

cious insertion of a message of the same flow. Figure 7.13 shows the normal distribution
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Table 7.7: Efficiency Comparison Due to Insertion of Two Fake Messages with Identifier
0x161 before Message with Identifier 0x357 for KIA-2

Number of Buckets Bucket size Instances effected Efficiency

20 200 25% 100

20 200 20% 100

20 200 10% 100

20 200 1% 10

Table 7.8: Efficiency Comparison Due to Insertion of One Fake Message with Identifier
0x161 before Message with Identifier 0x357 Using Threshold Calculated from KIA-1

Number of Buckets Bucket size Instances effected Efficiency

10 200 25% 100

10 200 20% 100

10 200 10% 60

of messages with identifier 0x91 after a fake insertion of a message with identifier 0x91.

To calculate the accuracy for our detector, we divide CAN traces into 10 buckets of 10

messages each and see the value of µ ± σ for both the normal and attacked cases. Attacks

can easily be detected as there is a considerable difference in µ ± σ value between normal

and attacked cases based on the data in Table 7.11.

The semantics of the protocol are not needed to detect an attack using deterministic and

statistical detectors, but such a detection scheme does not work for non-periodic traffic.

The fake insertion can be detected after one message or after at most three fake messages

depending on the bus utilization for the deterministic detector. The detection of the attack

is possible with good accuracy and low false positive rates using the statistical detection

but with higher detection latency.
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Table 7.9: Detection Latency for KIA-1 and KIA-2

Model Instances effected Detection latency

KIA-1 25% 2 secs

KIA-1 20% 2 secs

KIA-2 25% 2 secs

KIA-2 20% 2 secs

Table 7.10: False Positive for KIA-1 and KIA-2

Model False Positive

KIA-1 .3%

KIA-2 1.8%

KIA-1 classifier on KIA-2 0%

KIA-2 classifier on KIA-1 3.5%

Figure 7.12: False Positive Rate vs Training Samples for KIA-1
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Figure 7.13: Normal Distribution of Inter-Arrival Times for Normal vs Attacked Cases for
Message with Identifier 0x91

Table 7.11: Comparison of Mean and Sigma for Normal and Attacked Cases

Bucket Number Bucket size Instances effected µ ± σ (Normal) µ ± σ (Attack)

1 10 10% 10.0 ± 0.24 8.97 ± 2.08

2 10 10% 10.0 ± 0.22 9.02 ± 1.98

3 10 10% 9.99 ± 0.24 8.97 ± 1.96

4 10 10% 10.0 ± 0.22 9.02 ± 1.98

5 10 10% 9.99 ± 0.24 8.97 ± 1.96

6 10 10% 10.0 ± 0.24 9.02 ± 1.99

7 10 10% 10.0 ± 0.22 8.97 ± 1.96

8 10 10% 9.99 ± 0.23 9.02 ± 1.98

9 10 10% 9.99 ± 0.24 8.97 ± 1.96

10 10 10% 10.0 ± 0.23 9.02 ± 1.99
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8. CONCLUSIONS

Three anomaly detection techniques are discussed to detect fabrication and suspension

attacks in a CAN. The cross-correlation of fields like wheel speeds, vehicle speed, accel-

eration and RPM at a given time can be used to detect an anomaly, but not all the fields are

strongly correlated. This technique works for the periodic and non-periodic traffic.

The order of messages transmitted from an ECU can be used for the anomaly detection.

CAN messages from the ECU should always be seen in a specific order as they will be

transmitted one after the other based on the priorities of messages, and any deviation from

this order can be flagged. This detector is simple and fast to detect attacks as any change

in the order is immediately flagged. The insertion of one malicious message and the ECU

transmitting at least two messages are needed to detect any intrusion.

A timing-based detector can be used to determine the impact of attacks on messages

of a same or different identifier than attacked messages. Detection on the same message

identifier can be possible after one malicious message if WCfi < P/2 or after at most

three malicious messages if P/2 6 WCfi 6 P using a deterministic detection. Statistical

detection techniques can detect the impact on the delay distribution over time on messages

of a same or different identifier than attacked messages. The detection of an attack is

possible with good accuracy and low false positive rates using the statistical detection but

with a compromise in the detection latency. This scheme works for the periodic traffic,

which includes most of the messages on the CAN bus.
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