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ABSTRACT 

 

This dissertation consists of three studies that focus on applications of vine 

copulas, a relatively new class of multivariate copula approach, in commodity risk 

management and price analysis. The first study proposes a vine copula approach to 

estimate multiproduct hedge ratios that minimize the risk of refining margin erosion – 

the downside risk facing a typical oil refinery whose profit greatly depends on its 

refining margin or the difference between the prices of its refined products and the cost 

of crude oil. The out-of-sample hedging effectiveness of two popular classes of vine 

copula models – canonical (C-) and drawable (D-) vine copula models – are evaluated 

and compared with that of a widely used nonparametric method and three standard 

multivariate copula models. The empirical results reveal that the D-vine copula model 

seems to be a good and safe choice in managing the downside risk of the refinery.        

The second study explores the importance of modeling heterogeneous 

dependence structures between different pairs of energy commodity returns with vine 

copulas in improving one-step-ahead density forecasts of these returns. The value of 

modeling heterogeneous dependence structures is measured by comparing the 

performance of density forecasts based on vine copulas with density forecasts based on 

standard copulas that assume homogeneous dependence structures. The empirical results 

suggest that modeling heterogeneous dependence structures using vine copulas does not 

help improve quality of multivariate density forecasts of energy commodity returns.  
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The third study applies a vine copula approach to analyze the dependence 

structure and tail dependence patterns among daily prices of three agricultural 

commodities (corn, soybean, and wheat) and two energy commodities (ethanol and 

crude oil) from June 2006 to June 2016. Our findings suggest that the prices of corn and 

crude oil are linked through the ethanol market. We also find that crude oil and 

agricultural commodity prices are statistically dependent during the extreme market 

downturns but independent during the extreme market upturns. Moreover, the results 

from our sub-sample analysis show that both the upper and lower tail dependence 

between crude oil and other commodity markets become weaker in the recent years 

when the ethanol market became more mature.     
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CHAPTER I  

INTRODUCTION 

 

Accurate and realistic modeling of multivariate distributions is commonly 

perceived to be of great importance for reliable risk assessments and sound risk 

management strategies. For a long time, the modeling of high-dimensional joint 

distributions has been limited to the use of elliptical distributions (mainly multivariate 

normal and multivariate Student’s t distributions) due to the lack of suitable alternative 

multivariate distributions. However, these elliptical distributions are not able to capture 

features such as asymmetric and heterogeneous dependence among multiple risk factors. 

Over the last decade, vine copulas have been touted as the most promising and 

flexible tool for modeling multivariate distributions. This is particularly due to their 

ability to describe complex dependence relationships among multiple data series. Given 

the potentially complex (asymmetric and heterogeneous) dependence patterns among 

commodity markets, this dissertation considers the applications of vine copulas in the 

field of risk management. In particular, this dissertation consists of three stand-alone but 

related empirical studies on applications of vine copulas in the context of commodity 

risk management and price analysis.  

The first study (Chapter II), titled “Hedging Downside Risk of Oil Refineries 

with Vine Copulas,” examines the use canonical and drawable vine copulas in deriving 

optimal multiproduct hedge ratios for oil refineries in a downside risk framework. 

Focusing on the problem of hedging downside risk of oil refineries, we ask if the more 
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advanced vine copula models can produce better out-of-sample hedging outcomes than a 

widely used nonparametric method and three standard multivariate copula models. We 

answer this question by evaluating the hedging effectiveness of each model based on its 

ability to reduce downside risk over a number of out-of-sample test windows. To ensure 

the robustness of the results, four alternative measures of downside risk, including 

Semivariance, Lower Partial Moment, Value at Risk and Expected Shortfall, are 

considered.  

The second study (Chapter III), titled “Forecasting the Distributions of Energy 

Commodity Returns: An Importance of Modeling Heterogeneous Dependence 

Structures,” explores the potential of vine copulas in forecasting the distributions of 

multiple energy commodity returns. More specifically, this study analyzes the value of 

modeling heterogeneous dependence structures between different pairs of energy 

commodity returns using vine copulas in improving one-step-ahead density forecasts of 

these returns. The importance of heterogeneous dependence structures for density 

forecasting is then measured by comparing the performance of density forecasts based 

on three types of vine copulas – canonical, drawable, and regular vine copulas – with 

density forecasts based on two standard copulas that assume homogeneous dependence 

structures – Gaussian and Student’s t copulas. The forecast quality of the competing 

density models is assessed and compared based on both calibration and equal predictive 

accuracy tests.  

The third study (Chapter IV), titled “Measuring Tail Dependence between 

Agricultural and Energy Commodity Markets: A Regular Vine Copula Method,” uses a 
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regular vine copula method to analyze the price dependence patterns among agricultural 

and energy commodity markets. In particular, the regular vine copula method is used to 

study the dependence structure and tail dependence patterns of daily futures prices of 

three agricultural commodities – corn, soybean, and wheat – and two energy 

commodities – ethanol and crude oil from June 2, 2006 to June 30, 2016. This study also 

examines whether and how the dependence structure and degree of tail dependence 

evolve between the two periods of ethanol production: the rapid growth (June 2006 to 

June 2011) and slowing growth (June 2011 to June 2016). The findings from the three 

studies should provide valuable information for practitioners, academics, and policy 

makers regarding the use of vine copulas in commodity risk management and price 

analysis.  
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CHAPTER II 

HEDGING DOWNSIDE RISK OF OIL REFINERIES WITH VINE COPULAS 

 

2.1 Introduction 

A typical oil refinery purchases crude oil (the primary input in refinery 

operations) and sells refined products (e.g., gasoline and heating oil). Its refining margin 

(or the profit margin) is then related to the spread between the prices of refined products 

and the price of crude oil. There is, however, no clear relationship between the refining 

margin and the prices of petroleum. Rising crude oil price does not necessarily tighten 

the refining margin if the prices of refined products also increase proportionally to the 

rise in crude oil price. In such an environment, the refinery suffers from the increase in 

the crude oil price (downside risk) but at the same time benefits from the rise in refined 

product prices (upside risk). As a result, hedging does not seem to be necessary. 

Unfortunately, it is also possible that, for example, the prices of refined products 

remain static or (even worse) decline when the price of crude oil increases. In this case, 

the refinery faces significant downside risks in both crude oil and refined product 

markets. In particular, since late 2005, a large decline in the refining margin (due to the 

simultaneous adverse movements in the petroleum prices) has appeared to be more 

common (Figure 2.1). The risk of losses because of unfavorable petroleum price 

movements clearly signifies the importance of hedging the joint downside risks of input 

and output prices. Accordingly, the goal of this chapter is to develop a multiproduct 
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futures hedging model that minimizes the downside risk of the refinery (or the risk of 

profit margin erosion)1. 

 

 

Figure 2.1. Weekly crude oil spot prices, gasoline spot prices, heating oil spot 
prices, and 3:2:1 refining margin (unhedged)   
 

                                                

1 Multiproduct hedging involves the use of multiple futures contracts to hedge exposures to price risks in 
multiple commodities. In this study, crude oil, gasoline, and heating oil futures are used simultaneously to 
hedge the refining company's exposures to adverse price movements in the crude oil, gasoline, and heating 
oil spot markets. In contrast, single-product hedging uses a single futures contract to hedge a spot position 
in a particular commodity market. 



 

 6 

 Solving for the minimum-downside risk hedge ratios requires the estimation of 

the entire joint distribution of spot and futures price changes (or returns). For single-

product hedging, the standard practice is to rely on a nonparametric method – in 

particular, the empirical distribution or historical simulation method (Lien and Tse 2000, 

2001; Demirer and Lien 2003; Harris and Shen 2006). This approach is very flexible and 

could be easily extended to the case of multiproduct hedging2. However, it often 

produces inaccurate estimates of extreme quantiles due to its heavy dependence on 

historical data (McNeil and Frey 2000; Pritsker 2006; Cao, Harris, and Shen 2010). 

Recently, Barbi and Romagnoli (2014) propose a standard bivariate Archimedean copula 

model for estimating downside-risk hedge ratios in a single-product setting. They show 

that their proposed method produces superior hedging performance to the nonparametric 

approach. The superior performance of the Archimedean copula model may be attributed 

to its ability to capture both univariate and dependence asymmetries typically found in 

the asset returns3. Such asymmetries are also found in crude oil and refined product 

markets (Hammoudeh, Li, and Jeon 2003; Grégoire, Genest, and Gendron 2008; Chang, 

McAleer, and Tansuchat 2010; Ji and Fan 2011; Serra and Gil 2012; Aloui et al. 2014). 

 Against this background, we believe that modeling the joint distribution more 

realistically is crucial for hedging the downside risk of the refinery. As such, we propose 

to combine a vine copula model with Monte Carlo simulation to construct the joint 

                                                

2 See, for example, Harlow (1991), Agarwal and Naik (2004), Gaivoronski and Pflug (2005), Adam, 
Houkari and Laurent (2008), and Quaranta and Zaffaroni (2008) for studies on portfolio optimization in a 
downside-risk framework that apply the nonparametric method. 
3 The evidence of asymmetries in asset returns has been well documented in many studies, including Ang 
and Chen (2002), Patton (2006), Ammann and Süss (2009), and Reboredo (2012b). 
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distribution of spot and futures price changes4. The vine copula model, initially 

introduced by Joe (1996) and first estimated by Kurowicka and Cooke (2006), is a 

relatively new class of multivariate copula models. Similar to the standard multivariate 

copula models (e.g., the standard Gaussian, Student's t, and Archimedean copula 

models), the vine copula model is able to account for the asymmetry in the univariate 

distributions. This is because the model allows one to separate the modeling of the 

marginal distributions from the dependence structure that links these marginal 

distributions to form a joint distribution. However, while the standard copula models 

require all pairs of variables to have the same dependence structure, the vine copula 

model permits different dependence specifications for different pairs of variables5. It 

thus provides greater flexibility in capturing the complex dependence structure in the 

petroleum markets6. 

 In particular, the proposed hedging model builds the joint distribution of multiple 

variables using an empirical distribution function for the marginal distributions and two 

different classes of vine copulas – the canonical (C-) and drawable (D-) vine copulas 

(Kurowicka and Cooke 2005) – for the dependence structure7. The C- and D-vine copula 

models are estimated using a sequential maximum likelihood procedure proposed by Aas 

                                                

4 Following Haigh and Holt (2002) and Alexander, Prokopczuk, and Sumawong (2013), our hedging 
analysis is based on the price changes instead of the log returns or percentage returns. The reasons for why 
the price changes should be used are discussed in Alexander, Prokopczuk, and Sumawong (2013). 
5 Details about the limitations of the standard multivariate copula models are discussed in Czado (2010) as 
well as Brechmann and Schepsmeier (2013). 
6 The advantages of the vine copula model for modeling complex dependence patterns have been 
emphasized by Aas et al. (2009), Czado (2010), and Kurowicka and Joe (2011). 
7 This study uses an empirical distribution function to estimate the marginal distribution of each price 
change series to allow for the univariate asymmetry while avoiding univariate distribution 
misspecification. 
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et al. (2009), and the joint distribution is generated using Monte Carlo simulation. The 

optimal hedge ratios are then derived through a numerical optimization method for four 

alternative downside-risk hedging objectives: the minimization of Semivariance (SV), 

Lower Partial Moment (LPM), Value at Risk (VaR), and Expected Shortfall (ES) of the 

refinery's hedged margin. 

 We examine the usefulness of the proposed model through out-of-sample 

hedging exercises. Specifically, a rolling window approach of Conlon and Cotter (2012, 

2013) and Barbi and Romagnoli (2014) is employed. This approach tests the model’s 

hedging effectiveness over a number of out-of-sample test windows, and also allows us 

to track the evolution of the hedging effectiveness of the proposed model over time. For 

each hedging objective, the model’s hedging effectiveness is defined as its ability to 

reduce the respective downside risk of the refinery with no-hedging strategy. Overall, 

both C- and D-vine copula models provide good out-of-sample hedging effectiveness 

across all hedging objectives, and the D-vine copula model is superior to the C-vine 

copula model. We also compare the out-of-sample hedging effectiveness of the vine 

copula models to that of the widely used nonparametric method and three standard 

multivariate copula models (namely, the standard Gaussian, Student's t, and Clayton 

copula models)8. As expected, the D-vine copula model, on average, provides the largest 

downside-risk reductions. This is possibly due to its ability to better capture complex 

(tail) dependence between different pairs of price changes than the other models.  

                                                

8 The standard Clayton copula model is a commonly used Archimedean copula model due to its ability to 
capture lower tail dependence among variables. 



 

 9 

 This chapter contributes to two main strands of literature. First, it contributes to 

the literature on multiproduct hedging by estimating multiproduct hedge ratios in a 

downside-risk framework. Most previous studies in this field have focused on deriving 

either minimum-variance or mean-variance hedge ratios9. However, it is well-known 

that the variance is not a proper risk measure when asset returns are non-normal because 

businesses and investors are only concerned with downside risks but not upside risks 

(Lien and Tse 1998; Unser 2000; Veld and Veld-Merkoulova 2008). Despite the 

widespread awareness of the non-normality of asset returns, the literature on downside 

risk hedging in a multiproduct setting is still scarce10. One of the few studies is Power 

and Vedenov (2010) who estimate the minimum-LPM hedge ratios for a feedlot operator 

(whose profit depends on the prices of corn, feeder cattle, and fed cattle) and compare 

them with the minimum-variance hedge ratios. Another is Awudu, Wilson, and Dahl 

(2016) who consider a hedging problem of a corn-based ethanol producer and derive the 

mean-VaR hedge ratios based on two distributional specifications: multivariate normal 

and Gaussian copula distributions. This study also develops a multiproduct hedging 

model in a downside-risk framework. However, we focus on the oil refining industry. 

Also, we consider four (not only one) alternative measures of downside risk. This allows 

us to examine the sensitivity of the results vis-à-vis the downside risk measures used. 

                                                

9 See, among many others, Leuthold and Peterson (1987), Noussinov and Leuthold (1999), and Tejeda and 
Feuz (2014) for multiproduct hedging of a cattle feeder; Tzang and Leuthold (1990), Collins (2000), and 
Tejeda and Goodwin (2014) for multiproduct hedging of a soybean processor; Haigh and Holt (2002), Ji 
and Fan (2011), and Alexander, Prokopczuk, and Sumawong (2013) for multiproduct hedging of an oil 
refinery; and Sarassoro and Leuthold (1991), Haigh and Holt (2000), and Wilson, Nganje, and Wagner 
(2006) for multiproduct hedging of other commodity-based businesses. 
10 Non-normality of petroleum prices and returns are documented in many studies such as Hammoudeh, 
Li, and Jeon (2003), Chang, McAleer, and Tansuchat (2010), Ji and Fan (2011). 
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Besides, while none of the two studies evaluate the out-of-sample hedging effectiveness 

of the methods used, this study analyzes the usefulness of the proposed model through 

out-of-sample hedging exercises. 

 Second, this chapter contributes to the growing literature on vine copula models 

by examining the use of these models in the context of downside-risk hedging. 

Heretofore, the vine copula methodology has been mostly applied to analyze the 

dependence structures of financial and commodity markets (e.g., Aas and Berg (2011), 

Allen et al. (2013), Zhang (2014); Loaiza Maya, Gomez-Gonzalez, and Melo Velandia 

(2015), and Zimmer (2015)), to forecast VaR and ES of financial portfolios (e.g., 

Hofmann and Czado (2010), Weiß and Supper (2013), Brechmann, Czado, and Paterlini 

(2014), Zhang et al. (2014), and Siburg, Stoimenov, and Weiß (2015)), and to analyze 

asset allocation problems (e.g., Grothe and Schnieders (2011), Low et al. (2013), 

Riccetti (2013), Wei et al. (2013), and Bekiros et al. (2015)). However, to our best 

knowledge, no study has examined the use of the vine copula approach in the context of 

hedging. We address this here. Our findings would benefit oil refineries (as well as other 

multiproduct hedgers), and provide a richer understanding of the usefulness of vine 

copulas in risk management. 

 The remainder of this chapter is organized as follows. Section 2.2.1 presents a 

hedging problem of an oil refinery. Section 2.2.2 describes the four downside risk 

measures employed in this study. Section 2.2.3 provides an overview of the empirical 

procedure. Section 2.3 presents data and preliminary analysis. Section 2.4 reports and 
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discusses the empirical results, including the model fit, estimated hedge ratios, and out-

of-sample hedging effectiveness. Section 2.5 concludes the chapter. 

 

2.2 Methodology 

2.2.1 Oil Refinery’s Hedging Problem 

 In the empirical analysis, the stylized problem of a typical oil refinery whose 

profit depends on the refining margin is considered. We focus on a 3:2:1 refining 

margin, which approximates the profitability of a typical U.S. refinery that converts 3 

barrels of crude oil to 2 barrels of gasoline and 1 barrel of heating oil. The refinery may 

hedge its exposures to downside risks in the three petroleum markets using crude oil, 

gasoline and heating oil futures. 

 Following Haigh and Holt (2002), we assume that the refinery takes futures 

positions in period ! − 1 (long crude oil futures, and short gasoline and heating oil 

futures) and liquidates all futures positions in period ! (when the purchase of crude oil 

and the sales of refined products occur). Accordingly, the refinery's hedged margin (or 

profit per barrel) at time ! is: 

(2.1) !! ! = −!!! + !
! !!

! + !
! !!

! + !!!!!! − !
! !!!!!

! − !
! !!!!!

! 

where superscripts and subscripts !, ! and ! refer to crude oil, gasoline and heating oil, 

respectively; !! and !! denote spot and futures prices at time !, respectively; Δ!! = !! −

!!!! denotes the changes in futures prices; and ! = !! , !! , !!  are hedge ratios 

determined at time ! − 1. For simplicity, we assume that other costs (e.g., transactions 
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costs) are deterministic and thus do not affect hedging decisions. Prices at time ! − 1 are 

known at time !, whereas prices at time ! are random (stochastic) variables.  

 The hedged margin in equation (2.1) can be rewritten in terms of spot and futures 

price changes:  

(2.2) !! ! = −Δ!!! + !
!Δ!!

! + !
!Δ!!

! + !!Δ!!! − !
! !!Δ!!

! − !
! !!Δ!!

! + !!!!!"  

where Δ!! = !! − !!!! denotes the changes in spot prices, and !!!!!" = −!!!!! + !
! !!!!

! +

!
! !!!!

! . The last term in equation (2.2), !!!!!" , is known at the time the hedge is initiated, 

and hence does not cause a variation in the refiner’s profit margin at time !. Therefore, 

similar to Haigh and Holt (2002) and Alexander, Prokopczuk, and Sumawong (2013), 

we base our hedging analysis on the changes in spot and futures prices. More 

specifically, we focus on hedging the risky portion of the hedged margin at time !, 

denoted by: 

(2.3) y! ! = −Δ!!! + !
!Δ!!

! + !
!Δ!!

! + !!Δ!!! − !
! !!Δ!!

! − !
! !!Δ!!

! 

where y! ! = !! ! − !!!!!" . In Alexander, Prokopczuk, and Sumawong (2013), y! !  

is known as the hedged (portfolio) profits and losses (P&Ls).   

 The refinery’s objective is then to select the optimal hedge ratios !∗ that 

minimize the downside risk of the hedged P&Ls. Mathematically, 

(2.4) !∗ = argmin! !"#$ !! !  

where !"#$ !! !  is the measure of downside risk defined on !! ! . In this study, we 

consider four standard measures of downside risk: the SV, LPM, VaR, and ES, which 

we describe in more detail in the next section.    
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2.2.2 Downside Risk Measures 

 The first downside risk measure considered is the Semivariance (SV). The SV, 

introduced in Roy (1952), measures the variability of P&Ls that fall below the target 

level. It is defined as: 

(2.5) !" = ! − !! !!"(!!)!
!!  

where ! is the target P&L; !! is the random P&L; and ! is the distribution function of 

!!. As the basic goal of hedging is to avoid loss (i.e., !! being less than zero), we select 

the target P&L equal to zero (that is, ! = 0). 

 The second measure is the !th-order lower partial moment (!"!!). The !"!!, 

proposed by Fishburn (1977), is a generalization of the SV, and is defined as: 

(2.6) !"!! = ! − !! !!"(!!)!
!!  

where ! is the target P&L; ! > 0 is the level of hedger’s risk tolerance; !! is the random 

P&L, and ! is the distribution function of !!. Fishburn (1977) shows that 0 < ! < 1 

reflects risk-seeking behavior, ! = 1 captures risk-neutral behavior, and ! > 1 

corresponds to risk-averse behavior. For the similar reason as above, we assume ! = 0. 

In addition, we consider ! = 3 to focus on a risk-averse hedger.   

The third measure is Value-at-Risk (VaR). The VaR measures the largest 

potential loss over a certain period of time (for this study, over one week) for a particular 

confidence level (!). More generally, VaR at the confidence level ! is given by: 

(2.7)  !"#! = −!!!(1− !) 

where ! is the distribution of !!. In this study, the VaR is calculated for three different 

confidence levels: ! = 0.90, 0.95 and 0.99. Two primary shortcomings of VaR are that it 
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does not account for losses beyond the VaR value, and that it does not have an additivity 

property, one of the desirable properties of a risk measure (Artzner et al. 1999). 

 The forth risk measure is Expected Shortfall (ES), which addresses the stated 

limitations of VaR. It measures the expected loss given that losses exceed the VaR. The 

ES at the confidence level ! is given as: 

(2.8) !"! = −! y!|!! ≤ −!"!!  

Similar to the VaR, the ES is calculated for ! = 0.90, 0.95 and 0.99. 

 

2.2.3 Empirical Procedure 

 Solving for the minimum-SV, minimum-LPM, minimum-VaR, and minimum-ES 

hedge ratios is technically very demanding. This is because the calculation of SV, LPM, 

VaR, and ES depends on the entire joint distribution of the six random variables in 

equation (2.3). In this study, we use a multivariate copula approach to model the joint 

distribution of random variables. 

 From Sklar’s theorem (Sklar 1959), any !-dimensional multivariate distribution 

can be constructed from ! marginal distributions and a copula that describes the 

dependence structure. More formally, 

(2.9) ! !!, !!… , !! = ! !! !! ,!! !! ,… ,!!(!!)  

where ! is a joint distribution of !!, !!,… , !! with marginal distributions !! = !!(!!) for 

! = 1,2,… ,!, and !: 0,1 ! → 0,1  is a copula function. Suppose that !! and ! are 

differentiable. Then, the joint density function is defined as: 

(2.10) ! !!, !!… , !! = !! !! !! !! ⋯ !!(!!) ! !! !! ,!! !! ,… ,!!(!!)  
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where !! = !!(!!) is the (unconditional) density of !! and ! is the density of the copula. 

 This composition allows one to capture both the asymmetry in each individual 

marginal distribution and the complex (asymmetric) dependence structure of random 

variables. As for the choice of copula families, a natural starting point in the modeling of 

the joint distribution with asymmetric dependence might be any standard Archimedean 

copulas (typically, a standard Clayton copula). However, standard Archimedean copulas 

use only one or two parameters to describe the dependence structure among the ! 

random variables and thus may not be able to adequately capture the dependence 

structure when ! ≥ 3. As a result, a common approach, when dealing with a joint 

distribution of more than two variables, is to ignore the asymmetric dependence and 

restrict attention to the elliptical copulas such as Gaussian and Student's t copulas. 

Nevertheless, the Gaussian and Student's t copulas assume a symmetric dependence 

structure for all pairs of variables. We could, however, go beyond these standard 

multivariate copulas by using a vine copula approach, which is a more advanced and 

flexible alternative method of modeling the dependence structure (Joe 1996; Bedford 

and Cooke 2001, 2002; Aas et al. 2009). 

 A vine copula is a multivariate copula that is generated via a cascade of 

(conditional) bivariate copulas (called pair-copulas) and marginal distribution functions. 

The idea of the vine copula construction (also known as the pair-copula construction) 

can be easily illustrated using a three-dimensional case. Without loss of generality, the 

multivariate density of !!, !!, and !! can be decomposed into a product of unconditional 

and conditional densities: 



 

 16 

(2.11) ! !!, !!, !! = !! !! !!|! !!|!! !!|!,!(!!|!!, !!) 

where !!|!,! = !!|!,!(!!|!! , !!). Using the Sklar’s theorem, the first conditional density 

function in equation (2.11) can be written as: 

(2.12) !!|! !!|!! = !(!!,!!)
!!(!!)

= !!,! !! !! ,!! !! !!(!!) 

where !!,! is a copula function linking !! and !!. In a similar manner, the second 

conditional density can be written as: 

(2.13)  !!|!,!(!!|!!, !!) =
!!,!|! !!,!!|!!    

!!|! !! !!
= !!,!|! !!|! !! !! ,!!|! !! !! !!|!(!!|!!) 

where !!|! !! !! = !!,! !! !! ,!! !! !!(!!). Accordingly, the joint density function 

in equation (2.11) can be decomposed further as: 

(2.14) ! !!, !!, !! = !!!!!!!!,! !!,!! !!,! !!,!! !!,!|! !!|!,!!|!  

where the conditional distribution functions !!|! !!|!!  can be solved from:   

(2.15) ! !|! = !!!,!!|!!! ! ! !!! ,!(!!|!!!)
!" !!|!!!

 

where !!,!!|!!! is a conditional bivariate copula and !!! is the vector ! with the 

component !! removed (Joe 1997). 

As the decomposition in equation (2.14) is not unique, a difficulty lies in 

selecting a vine copula specification from a large number of possible vine copula 

constructions. In this study, we consider two popular classes of vine copula 

constructions: canonical (C-) and drawable (D-) vine (Kurowicka and Cooke 2005). An 

!-dimensional (C- or D-) vine is defined by a sequence of ! − 1 trees. The !th tree 

(! = 1,2,… ,! − 1), denoted as !!, has ! + 1− ! nodes and ! − ! edges. Edges in !! 
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become nodes in !!!!, and the two nodes in !!!! are joined by an edge only if their 

corresponding edges in !! share a common node. The last condition is known as the 

proximity condition (Bedford and Cooke 2001). C- and D-vines are different in how the 

density function is decomposed.  

 

 

Figure 2.2. Six-dimensional C-vine trees 
 

In this study, we consider the case when ! = 6. The joint density function of a 

six-dimensional C-vine copula is given by: 

1
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(2.16) ! !!, !!,… , !! = !!!!!!!!!!!!!!,!!!,!!!,!!!,!!!,!!!,!|!!!,!|!!!,!|!!!,!|!!!,!|!,! 

                                          !!,!|!,!!!,!|!,!!!,!|!,!,!!!,!|!,!,!!!,!|!,!,!,!  

whereas the joint density function of a six-dimensional D-vine copula is given by: 

(2.17) ! !!, !!,… , !! = !!!!!!!!!!!!!!,!!!,!!!,!!!,!!!,!!!,!|!!!,!|!!!,!|!!!,!|!!!,!|!,! 

                                          !!,!|!,!!!,!|!,!!!,!|!,!,!!!,!|!,!,!!!,!|!,!,!,! 

The structures of six-dimensional C- and D-vine copulas are depicted in Figure 2.2 and 

Figure 2.3, respectively. 

 

 

Figure 2.3. Six-dimensional D-vine trees 
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The procedure for fitting a joint distribution function using the C- or D-vine 

copula can be briefly summarized in four steps. The first step is to model the marginal 

distribution. For each price change series, we estimate its marginal distribution using an 

empirical distribution function and then transform the price change series into copula 

data (that is, a standard uniform variable)11. The second step is to select either the root 

nodes for each tree of the C-vine copula or the order of the variables in the first tree of 

the D-vine copula. Following Czado, Schepsmeier, and Min (2012), the root node of 

each C-vine tree is determined by first estimating all pairwise Kendall's tau coefficients, 

and then selecting the variable which maximizes the sum of the absolute values of its 

pairwise Kendall's tau coefficients. For the D-vine structure, we follow Dißmann et al. 

(2013) and order the variables in the first tree by identifying the shortest Hamiltonian 

path with one minus absolute value of pairwise Kendall's tau coefficient as a weight. 

The third step is to choose a bivariate copula for each pair-copula. This study 

uses a sequential estimation approach proposed by Aas et al. (2009) with the Akaike 

Information Criterion (AIC) as a selection criterion (Nikoloulopoulos, Joe, and Li 2012; 

Dißmann et al. 2013; Weiß and Supper 2013). We consider 31 different parametric 

                                                

11 It should be noted that the marginal distribution could also be estimated using a parametric estimation 
method. In this study, each marginal distribution is estimated nonparametrically in order to avoid the 
possible misspecification of parametric distributions (Charpentier, Fermanian, and Scaillet 2007). Similar 
to Bouyè and Salmon (2009), Power and Vedenov (2010), and Barbi and Romagnoli (2014), the marginal 
distributions are estimated using the unfiltered data. Other studies first apply a GARCH filter to the 
original data and then model the dependence structure of the filtered series (see, for example, Hsu, Tseng, 
and Wang (2008), Lee (2009), and Sukcharoen, Choi, and Leatham (2015) for studies on copula-based 
hedge ratios). An advantage of using the unfiltered data is that it allows us to avoid the first-stage 
estimation errors – the errors in the estimation of conditional mean and variance models, which could lead 
to the copula approach being inferior to the nonparametric approach that constructs the distribution 
functions of random variables directly from the unfiltered data. 
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bivariate copulas12. Then, the final step is to estimate all copula parameters. In particular, 

the parameters are estimated sequentially starting from the first tree, where the 

maximum pseudo likelihood method described in Genest, Ghoudi, and Rivest (1995) is 

employed.   

After obtaining the C- and D-vine copula structures and estimating all copula 

parameters, we compute the four downside risk measures using a Monte Carlo 

simulation method. More specifically, the estimated vine copula densities are used to 

generate 10,000 draws of the six standard uniform variables, !!,!,!!,!,… ,!!,! !!!
!",!!!

. 

For each variable !, these draws are converted to draws from the joint distribution of 

price changes using its inverse distribution function of the price change series. These 

simulated spot and futures price changes are then used to compute the refiner's hedged 

P&Ls in equation (2.3). For each hedging objective, the optimal hedge ratios are then 

derived by solving the minimization problems in equation (2.4) numerically using the 

Nelder-Mead direct search method (Nelder and Mead 1965). 

This study examines the usefulness of the C- and D-vine copula models in 

dealing with the downside risk in the refining industry based on their hedging 

effectiveness. For each hedging objective, the hedging effectiveness is measured as a 

                                                

12 This is the maximal list of the R package: CDVine (Brechmann and Schepsmeier 2013). The 31 
bivariate copulas include Gaussian, Student's t, Clayton, Gumbel, Frank, Joe, BB1 (Clayton-Gumbel), 
BB6 (Joe-Gumbel), BB7 (Joe-Clayton), BB8 (Joe-Frank) copulas and the rotated versions (90, 180 and 
270 degrees) of Clayton, Gumbel, Joe, BB1, BB6, BB7, and BB8 copulas. 
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percentage reduction in the downside risk of the hedged P&Ls relative to that of the 

unhedged P&Ls13: 

(2.18) HE = 1− !"#$ !! !∗
!"#$ !! !

×100 

where !! !∗  is the hedged P&L, !! !  is the unhedged P&L, and !"#$ ⋅  is SV, LPM, 

VaR, or ES, depending on the hedging objective. We also compare the hedging 

effectiveness of the vine copula models to that of the nonparametric method and three 

standard multivariate copula models: namely, the standard Gaussian, Student's t, and 

Clayton copula models14. 

 

2.3 Data and Preliminary Analysis 

 We use weekly Wednesday closing spot and futures prices for West Texas 

Intermediate (WTI) crude oil, unleaded gasoline, and number 2 heating oil. In the rare 

cases where Wednesday prices are missing, Tuesday prices are taken instead15. All 

prices are obtained from the Datastream database, and converted into dollars per barrel. 

The price data span from December 31, 1986 to December 30, 2015, from which a 

sample of weekly changes in spot and futures prices are constructed16. To calculate the 

                                                

13 This is a variant of the measure of hedging effectiveness proposed by Ederington (1979). 
14 The nonparametric method adopted here is similar to the nonparametric approach by Harlow (1991), 
Rockafellar and Uryasev (2002), and Lien and Tse (2000). This approach is also known as the historical 
simulation method or the empirical distribution method. 
15 In the extremely rare cases where both Wednesday and Tuesday prices are missing, Monday prices are 
taken instead. 
16 Similar to Alexander, Prokopczuk, and Sumawong (2013), prices during the period of abnormal market 
conditions caused by Hurricane Katrina – from August 29, 2005 to September 9, 2005 – are removed from 
the analysis. Excluding these data points when estimating optimal hedge ratios is justifiable because the 
probability of a Katrina-like event occurring in the near future is extremely low. Nevertheless, it is 
possible that the results regarding hedging effectiveness would change if these data points were included 
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changes in the futures prices, the closing prices for the nearest-to-expiration futures 

contracts are used with the rollover occurring on Wednesday a week before the expiry of 

the contract17. At the rollover date, care has been taken to ensure that the changes in 

futures prices are calculated using the same futures contract. Altogether, this results in a 

total of 1,511 weekly observations for the changes in spot and futures prices. 

 Figure 2.4 displays the time-series plots of the weekly changes in the spot and 

futures prices for the whole sample period. The spot and futures prices are fairly stable 

during the late 80s and 90s (apart from the 1990 oil price surge trigged by the Iraq’s 

invasion of Kuwait). After the period of relative stability, the volatility of petroleum 

prices has changed significantly, rising from the year 2000 onwards up until the end of 

the global financial crisis in 2009 and declining slightly thereafter until the start of the 

2014 oil price slump. Extreme fluctuations in crude oil, gasoline and heating oil prices 

during the last seven to ten years provide a good reason for the oil refineries to hedge 

adverse input and output price movements.  

                                                                                                                                           

in the evaluation of the hedging models. We therefore perform another analysis where these data points 
are included in the calculation of out-of-sample hedging effectiveness. We find that the main findings 
remain valid.  
17 Carchano and Pardo (2009) show that the choice of rollover date to construct the changes in the futures 
price series is not relevant. Also, the problem of thin market trading is of limited importance because for 
the commodities under consideration trading continues in high volumes right up to the futures expiration 
dates. 
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Figure 2.4. Weekly changes in petroleum spot and futures prices for the period 
January 7, 1987 to December 30, 2015 
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Table 2.1. Summary statistics and correlation analysis on weekly changes in spot 
and futures prices 

 ∆!!   ∆!!  ∆!! ∆!!  ∆!!  ∆!! 
Panel A: Summary statistics     
Mean 0.0142 0.0134 0.0117 -0.0025 0.1159 0.0176 
Min -14.5600 -15.4812 -14.7756 -14.4100 -13.8600 -14.7840 
Max 14.1300 14.3514 18.7320 14.0800 12.0120 18.0180 
SD 2.3867 3.1020 2.8298 2.3041 2.8122 2.6611 
Skew -0.1871 -0.3420 0.0723 -0.3192 -0.1731 -0.0245 
Ex. Kurt. 5.2186 2.9022 6.1381 5.4535 2.8083 5.6958 
J-B 1730.60* 562.64* 2382.80* 1905.80* 506.79* 2050.90* 
ADF -27.1233* -26.0688* -27.8727* -25.8060* -25.9627* -26.5328* 
Panel B: Correlation matrix     
∆!!  1.0000 0.6588 0.7706 0.9774 0.7542 0.8325 
∆!!   1.0000 0.6597 0.6733 0.9100 0.7015 
∆!!   1.0000 0.7876 0.7278 0.9479 
∆!!     1.0000 0.7700 0.8536 
∆!!      1.0000 0.7907 
∆!!      1.0000 
Notes: Summary statistics (Panel A) and correlation matrix (Panel B) are presented for the weekly changes 
in the spot and futures prices for the period January 7, 1987 to December 30, 2015. Prices during the 
weeks of August 29, 2005 and September 9, 2005 are removed from the analysis due to abnormal market 
conditions caused by Hurricane Katrina. The total number of observations is 1,511 for each price change 
series. ∆!! , ∆!! ,  ∆!!,  ∆!! , ∆!!  and ∆!! denote the changes in crude oil spot, gasoline spot, heating oil 
spot, crude oil futures, gasoline futures, and heating oil futures prices, respectively. SD, Skew, and Ex. 
Kurt. represent sample standard deviation, skewness, and excess kurtosis, respectively. J-B is the Jarque-
Bera test statistic, where * denotes the rejection of the null hypothesis of normality at the 1% significance 
level. ADF is the Augmented Dickey-Fuller test statistic, where * denotes the rejection of the null 
hypothesis that the respective price change series follows a unit root process at the 1% significance level. 
 

Table 2.1 reports summary statistics (Panel A) and correlation matrix (Panel B) 

for the weekly changes in the spot and futures prices for the entire sample period. For 

each price change series, the mean is very small relative to its standard deviation. The 

changes in spot and futures prices of refined products (both gasoline and heating oil) are 

more volatile than those of raw material (crude oil), and for each commodity the price 

changes in the spot market is more volatile than the futures market. Each price change 
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series, except the heating oil spot series, is slightly negatively skewed and exhibit high 

excess kurtosis, suggesting that the price changes are not normally distributed. The 

significant Jarque-Bera test statistics for all the price change series confirm that the 

changes in spot and futures prices do not follow a normal distribution. The Augmented 

Dicky-Fuller (ADF) tests suggest that all the price change series are stationary. The 

correlation coefficients of at least 0.6 for all series pairs indicate that, more than half of 

the time, all the price series move in the same direction. The price changes in the spot 

and its corresponding futures markets are highly correlated (the correlation coefficients 

exceed 0.9) indicating that, on average, they have the same change trend. To visualize 

the evolution of the degree of dependence between spot and futures price changes, time 

series plots of rolling Kendall's Tau (Kendall's rank correlation) between the weekly 

price changes in the spot and its corresponding futures markets are presented in Figure 

2.518. The plots clearly show that the degree of dependence between the spot and futures 

price changes varies over time. This indicates that the distributions of price changes are 

time-varying. 

 

                                                

18 The rolling Kendall's rank correlations are computed using a rolling window of 261 weeks (i.e., 5 
years). 
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Figure 2.5. Time-varying Kendall’s Tau (Kendall’s rank correlation) between 
weekly price changes in spot and its corresponding futures markets (estimated with 
261-week rolling window)   
 

Turning to the core of the empirical analysis, we evaluate the different hedging 

models based on their out-of-sample hedging effectiveness. In the out-of-sample 
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analysis, the following rolling window approach is followed19. First, we estimate the 

minimum-SV, minimum-LPM, minimum-VaR, and minimum-ES hedge ratios using the 

first 261 weekly observations. That is, our estimation window is approximately 5 

years20. Next, the estimated optimal hedge ratios are used to construct the hedged P&Ls 

for the following 130 weeks (i.e., 2.5 years) for each hedging objective21. Then, the 

estimation window is moved forward by 1 week, where the optimal hedge ratios and 

associated out-of-sample hedged P&Ls – the hedged P&Ls for the following 130 weeks 

– are recalculated22. This approach produces 1,121 out-of-sample test windows. Finally, 

within each test window, the out-of-sample hedging effectiveness for each hedging 

objective is computed for all the hedging models. The mean and median hedging 

effectiveness are then calculated across the 1,121 test windows23. 

 

2.4 Empirical Results 

 This section first presents evidence on the fit of the three standard multivariate 

copula models – the standard Gaussian copula (SGC), standard Student's t copula (SSC), 
                                                

19 Conlon and Cotter (2012, 2013) and Barbi and Romagnoli (2014) adopt a similar approach in their out-
of-sample analyses. This rolling window approach allows us to account for the time variation in the 
distribution of price changes as well as to test the model's hedging effectiveness over a number of test 
windows. 
20 Alexander, Prokopczuk and Sumawong (2013) and Barbi and Romagnoli (2014) also use a 5-year 
rolling window approach. However, studies regarding the optimal length of the moving window for 
multiproduct hedging are still needed. 
21 We follow a recommendation of Chen, Lee, and Shrestha (2004) that the size of the out-of-sample 
period should be about half the size of the estimation period.  
22 Here, both the marginal distributions and dependence structure (i.e., the copula parameters) are re-
estimated every week using the updated estimation window. Barbi and Romagnoli (2014) also re-estimate 
the marginal distributions each time the estimation window is moved forward. However, they assume that 
the dependence structure does not change frequently and only re-estimate the dependence structure 
periodically (every 5 years). We believe that our approach is more appropriate because the degree of 
dependence between the changes in spot and futures prices does vary over time (see Figure 2.5). 
23 All computations were performed using R (version 3.2.2). 
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and standard Clayton copula (SCC) models – and the two vine copula models – the C- 

and D-vine copula models. The section then proceeds to present our empirical findings 

for optimal crude oil, gasoline, and heating oil hedge ratios obtained using different 

hedging models (including the nonparametric (NP), SGC, SSC, SCC, C-vine copula and 

D-vine copula models). Then, comparisons of out-of-sample hedging effectiveness are 

made across different hedging models and hedging objectives. 

 

2.4.1 Model Fit  

 Table 2.2 provides some evidence on the fit of the five multivariate copula 

models: the SGC, SSC, SCC, C-vine copula, and D-vine copula models24. On average, 

the D-vine copula model yields the highest log-likelihood and lowest values of the AIC 

and Bayesian Information Criterion (BIC), whereas the SCC model provides the worst 

fit to the data25. More specifically, the D-vine copula model provides a better fit (based 

on both AIC and BIC values) than the SGC, SSC, and SCC models for all the 1,121 

estimation windows. Comparing to the C-vine copula model, the D-vine copula model 

produces lower AIC and BIC for about 90% of the cases26. 

The average number of parameters for each copula model is also listed in Table 

2.2. The SCC model has only one parameter to characterize the overall dependence 

                                                

24 For each copula model, the empirical distribution is used in the estimation of the marginal distributions 
of price changes. 
25 It should be noted that the main purpose of this study is not to select the best-fit copula model, but to 
compare the alternative copula models in term of out-of-sample hedging effectiveness. For a model 
selection purpose, the Vuong's (1989) and/or Clarke's (2007) tests could be employed to compare two 
nested/non-nested copula models. 
26 Detailed results regarding model fit for each rolling window are provided in Appendix A (Figures A.1-
A.3). 
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structure of the six random variables. It is very likely that this parameter restriction is a 

reason for the poor fit of the SCC model. The SGC model uses 15 pairwise correlation 

coefficients to capture the dependence structure of the random variables. However, it 

assumes no tail dependence, and could therefore underestimate the joint probability of 

extreme movements in all the petroleum prices. In addition to the 15 pairwise correlation 

coefficients, the SSC model adds one more parameter (a degree of freedom parameter) 

to characterize the tail dependence for all pairs of the random variables. However, using 

only one parameter to describe the overall tail dependence may be over-simplistic when 

dealing with more than two variables. These parameter restrictions are likely reasons for 

the superior fit of the vine copula models over the standard multivariate copula models.  

 

Table 2.2. Average log-likelihood (LLH), Akaike Information Criterion (AIC), and 
Bayesian Information Criterion (BIC), and number of parameters for the 
multivariate copula models   
  LLH AIC BIC Number of parameters 
SGC 1169.35 -2308.70 -2255.23 15 
SSC 1316.73 -2601.45 -2544.42 16 
SCC 591.43 -1180.85 -1177.29 1 
C-vine 1356.27 -2667.15 -2586.27 23 
D-vine 1373.50 -2701.54 -2620.52 23 

Notes: Each model is estimated using a rolling window approach with a window of approximately 5 years 
or 261 weeks. The total number of estimation windows is 1,121 windows. SGC is the standard Gaussian 
copula model. SSC is the standard Student's t copula model. SCC is the standard Clayton copula model. C-
vine is the canonical vine copula model. D-vine is the drawable vine copula model. 
 

Comparing the two vine copula models, the superiority of the D-vine copula 

model may be explained by the difference in the way that the two models decompose the 

joint density function (more specifically, the difference in the structure of the first tree). 
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Referring to Figure 2.2 and equation (2.16), the first tree of the C-vine copula model 

uses only one variable to link with the other five variables through different 

unconditional bivariate copulas. As a result, the first tree of the C-vine copula model can 

capture the high dependence between the spot and its corresponding futures price 

changes in only one petroleum market. On the other hand, the first tree of the D-vine 

copula model permits a direct link between the spot and its corresponding futures price 

changes for all petroleum markets (see Figure 2.3 and equation (2.17)). In other words, 

the variables in the first tree of the D-vine copula model for each estimation window can 

be ordered such that the spot and its corresponding futures variables are next (or linked) 

to each other. For example, the structure !!! − !!! − !!! − !!! − !!! − !!!  is selected for 

the first tree of the D-vine copula for the first estimation window. This feature is not 

allowed by the C-vie copula model and may be a reason why the D-vine copula model 

fits the data better than the C-vine copula model.  

  

2.4.2 Minimum-Downside Risk Hedge Ratios 

Table 2.3 reports the average minimum-SV, minimum-LPM, minimum-VaR, and 

minimum-ES hedge ratios (as well as their respective standard deviations) generated 

using different hedging models. On average, most hedging models (except the SCC 

model) recommend the hedge ratios of fairly similar magnitude for all hedging 

objectives. Depending on the hedging models and objectives, the average crude oil, 

gasoline, and heating oil hedge ratios are between 0.8 and 1.3. On the other hand, the 

SCC model yields the optimal gasoline and heating oil hedge ratios fairly close to 0 (no 
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hedge), and the optimal crude oil hedge ratios slightly smaller than 0 (recommending a 

speculative position in the crude oil futures market – shorting crude oil futures instead of 

longing). The huge difference between the hedge ratios generated from the SCC model 

and the other copula models is due to the fact that the SCC model uses only one 

parameter to capture the dependence patterns across all the six markets. The parameter 

restriction of the SCC model could lead to rather disappointing hedging performance (as 

will be shown in the next section).  

Examining the standard deviations of the optimal hedge ratios for the three 

petroleum commodities, the heating oil hedge ratios are found to be more volatile than 

the crude oil and gasoline hedge ratios (Table 2.3). This corresponds to the relatively 

high level of excess kurtosis in the heating oil price changes, which implies that the 

extreme price changes observed more often in the heating oil market than in the other 

two markets. This means that the optimal tail risk-minimizing hedge ratios are sensitive 

to the extreme price changes. In addition, we find that the NP method generates the most 

volatile hedge ratios for all the three petroleum commodities, except for the case of 

minimum-SV hedge ratio for gasoline (where the D-vine copula model produces slightly 

more volatile hedge ratios). This may be because the NP approach is very sensitive to 

new information from the data (especially when only 261 observations are used in the 

estimation of the nonparametric or empirical distribution). Further, the minimum-VaR 

and minimum-ES hedge ratios at the 99% confidence level are generally more dispersed 

than the other hedging objectives, which may be explained by the greater level of 

difficulty in estimating the extreme tails of the true distribution of the hedged P&Ls.  
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Table 2.3. Average optimal hedge ratios (with standard deviations in parentheses) of different hedging models and 
hedging objectives  

Model 
Hedging objective 

Semivariance Lower Partial Value at Risk (VaR) Expected Shortfall (ES) 
(SV) Moment (LPM) 90% 95% 99% 90% 95% 99% 

Panel A: Crude oil hedge ratio 
NP 
SGC 
SSC 
SCC 
C-vine 
D-vine 

1.150 (0.225) 
1.023 (0.133) 
1.038 (0.093) 
-0.090 (0.068) 
1.078 (0.148) 
1.087 (0.113) 

1.201 (0.251) 
0.998 (0.159) 
1.006 (0.115) 
-0.093 (0.079) 
1.047 (0.172) 
1.063 (0.128) 

0.910 (0.253) 
1.092 (0.118) 
1.095 (0.112) 
-0.064 (0.055) 
1.106 (0.177) 
1.108 (0.157) 

0.995 (0.300) 
1.053 (0.127) 
1.063 (0.112) 
-0.091 (0.067) 
1.094 (0.167) 
1.099 (0.145) 

1.156 (0.433) 
0.951 (0.186) 
0.949 (0.187) 
-0.053 (0.141) 
1.012 (0.256) 
1.042 (0.219) 

1.207 (0.219) 
1.032 (0.131) 
1.044 (0.092) 
-0.086 (0.055) 
1.086 (0.167) 
1.093 (0.134) 

1.249 (0.300) 
1.007 (0.152) 
1.022 (0.101) 
-0.089 (0.076) 
1.069 (0.181) 
1.082 (0.138) 

1.256 (0.407) 
0.955 (0.223) 
0.981 (0.141) 
-0.120 (0.126) 
1.006 (0.228) 
1.044 (0.185) 

Panel B: Gasoline hedge ratio 
NP 
SGC 
SSC 
SCC 
C-vine 
D-vine 

1.155 (0.100) 
1.077 (0.087) 
1.106 (0.078) 
0.048 (0.063) 
1.094 (0.100) 
1.138 (0.108) 

1.189 (0.125) 
1.078 (0.086) 
1.091 (0.085) 
0.048 (0.079) 
1.063 (0.105) 
1.131 (0.117) 

0.970 (0.171) 
1.063 (0.094) 
1.088 (0.096) 
0.020 (0.072) 
1.085 (0.130) 
1.116 (0.131) 

1.112 (0.283) 
1.055 (0.115) 
1.090 (0.105) 
0.049 (0.078) 
1.103 (0.117) 
1.140 (0.124) 

1.054 (0.340) 
1.054 (0.097) 
1.083 (0.117) 
-0.010 (0.180) 
1.043 (0.128) 
1.136 (0.145) 

1.171 (0.172) 
1.052 (0.096) 
1.081 (0.084) 
0.032 (0.074) 
1.077 (0.108) 
1.126 (0.118) 

1.196 (0.164) 
1.048 (0.102) 
1.081 (0.086) 
0.024 (0.104) 
1.063 (0.110) 
1.124 (0.120) 

1.232 (0.221) 
1.067 (0.102) 
1.061 (0.094) 
-0.015 (0.167) 
0.970 (0.150) 
1.085 (0.165) 

Panel C: Heating oil hedge ratio 
NP 
SGC 
SSC 
SCC 
C-vine 
D-vine 

1.054 (0.585) 
1.024 (0.300) 
1.010 (0.249) 
0.236 (0.145) 
1.156 (0.327) 
1.087 (0.244) 

1.024 (0.737) 
1.032 (0.340) 
1.025 (0.293) 
0.228 (0.158) 
1.216 (0.387) 
1.046 (0.298) 

0.858 (0.600) 
1.063 (0.264) 
1.035 (0.247) 
0.303 (0.191) 
1.082 (0.320) 
1.093 (0.302) 

0.805 (0.649) 
1.010 (0.331) 
0.999 (0.275) 
0.197 (0.165) 
1.096 (0.355) 
1.050 (0.295) 

1.266 (0.816) 
0.976 (0.405) 
0.863 (0.418) 
0.249 (0.261) 
1.153 (0.496) 
0.946 (0.439) 

1.186 (0.548) 
1.068 (0.300) 
1.040 (0.239) 
0.240 (0.147) 
1.188 (0.339) 
1.098 (0.265) 

1.186 (0.651) 
1.055 (0.326) 
1.037 (0.253) 
0.220 (0.146) 
1.225 (0.367) 
1.082 (0.286) 

0.899 (1.021) 
1.038 (0.430) 
1.069 (0.336) 
0.157 (0.174) 
1.340 (0.471) 
0.995 (0.393) 

Notes: The optimal hedge ratios for different hedging objectives are estimated using a rolling window approach with a window of approximately 5 years 
or 261 weeks. The total number of estimation windows is 1,121 windows. NP is the nonparametric method. SGC is the standard Gaussian copula model. 
SSC is the standard Student's t copula model. SCC is the standard Clayton copula model. C-vine is the canonical vine copula model. D-vine is the 
drawable vine copula model. 
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Table 2.4. Out-of-sample hedging effectiveness of different hedging models and hedging objectives 

Model 
Hedging objective 

SV LPM VaR reduction (%) ES reduction (%) 
reduction (%) reduction (%)) 90% 95% 99% 90% 95% 99% 

NP 
SGC 
SSC 
SCC 
C-vine 
D-vine 

61.65 (64.89) 
62.62 (64.17) 
63.09 (64.82) 

-3.75 (1.06) 
63.04 (65.81) 
63.61 (65.95) 

70.00 (75.26) 
71.75 (77.60) 
72.70 (77.20) 

-5.49 (0.45) 
72.92 (77.26) 
73.80 (78.09) 

34.88 (35.31) 
41.61 (41.74) 
41.29 (41.38) 
-3.58 (-1.75) 

40.00 (40.03) 
39.86 (39.84) 

37.50 (37.73) 
40.26 (40.91) 
41.11 (41.88) 

1.29 (0.81) 
41.06 (42.74) 
42.33 (43.51) 

31.84 (33.23) 
33.48 (38.47) 
33.87 (38.70) 

-2.20 (0.00) 
34.49 (38.10) 
36.36 (38.94) 

37.89 (39.93) 
37.84 (37.83) 
38.33 (38.52) 

-0.47 (0.00) 
38.32 (40.32) 
39.15 (40.80) 

35.44 (37.06) 
35.22 (36.13) 
36.04 (37.22) 
-0.60 (-0.33) 

36.29 (37.47) 
37.41 (38.83) 

26.81 (28.39) 
28.82 (32.40) 
30.27 (32.96) 
-4.47 (-2.07) 

30.03 (32.09) 
32.43 (32.77) 

Notes: The table reports the mean (median) out-of-sample hedging effectiveness for different hedging methods and hedging objectives. The mean and 
median hedging effectiveness are calculated across 1121 out-of-sample test windows. The best performing hedging method for each hedging objective 
is highlighted in bold type. NP is the nonparametric method. SGC is the standard Gaussian copula model. SSC is the standard Student's t copula model. 
SCC is the standard Clayton copula model. C-vine is the canonical vine copula model. D-vine is the drawable vine copula model. SV denotes 
Semivariance; LPM denotes Lower Partial Moment; VaR denotes Value at Risk; and ES denotes Expected Shortfall. 
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2.4.3 Out-of-Sample Hedging Effectiveness 

 Table 2.4 presents the out-of-sample hedging effectiveness of the minimum-SV, 

minimum-LPM, minimum-VaR, and minimum-ES objectives for the six hedging models 

– the NP, SGC, SSC, SCC, C-vine copula, and D-vine copula models. For each hedging 

objective and model, the table gives the mean and median percentage reductions in the 

respective downside risk of the hedged P&Ls relative to the unhedged P&Ls. The mean 

and median values are calculated across the 1,121 out-of-sample test windows. The best 

performing hedging model for each hedging objective is highlighted in bold type. 

 

2.4.3.1 Minimum-SV Objective 

 Considering first the minimum-SV objective, all models (except the SCC model) 

produce, on average, at least 60% SV reductions. The D-vine copula model is the most 

effective model, with a mean (median) SV reduction of 63.61% (65.95%). Figure 2.6 

shows that the hedging the hedging effectiveness of the D-vine copula model varies over 

time, ranging between 31.98% and 81.17%. The SCC model performs extremely poorly 

with the mean SV reduction of -3.75% (i.e., increasing risk) and median SV reduction of 

1.06%. Recall from Table 2.3, the SCC model recommends the gasoline and heating oil 

hedge ratios fairly close to 0, and thus fails to protect against adverse price movements 

in the gasoline and heating oil markets. In addition, it supports a speculative position in 

the crude oil futures market (i.e., the crude oil hedge ratios being less than 0), which 

could end up adding more risk to the unhedged position. In particular, this disappointing 

performance may be explained by the very poor fit of the SCC model (see Table 2.2). 
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Figure 2.6. Out-of-sample hedging effectiveness: percentage reductions in Semivariance  
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Comparing with the widely used NP method, the D-vine copula model leads to a 

larger mean (median) SV reduction of about 1.96% (1.06%) points. It is evidence from 

Figure 2.6 that the D-vine copula model is superior to the NP method for most out-of-

sample test windows (more specifically, about 61.11% of the cases). The maximum 

improvement of the D-vine copula model over the NP model is 26.48% points for the 

March-2007-to-September-2009 test window, which covers the period of extreme 

fluctuations in crude oil prices. In fact, the D-vine copula model performs much better 

than the NP method for most test windows covering the years 2007 to 2010. On the other 

hand, the greatest improvement of the NP method over the D-vine copula model is only 

8.99% points for the October-2001-to-April-2004 test window. Nevertheless, this 

suggests that the NP method may outperform the D-vine copula model when prices are 

relatively stable.  

The D-vine copula model also produces better outcomes than the other copula 

models both in mean and median terms. The D-vine copula model clearly outperforms 

the SCC model. The mean (median) improvement of the D-vine copula model over the 

SGC, SSC and C-vine copula models ranges between 0.52% (0.14%) point and 0.99% 

(1.78%) point. Overall, under the minimum-SV framework, the D-vine copula model is 

on average able to improve upon the NP method, the three standard copula models, and 

the C-vine copula model. However, except for the case of the SCC model, the mean and 

median improvement offered by the D-vine copula model is only moderate. This is not 

totally unexpected because these models recommend the hedge ratios of fairly similar 

magnitude (see Table 2.3). 
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Figure 2.7. Out-of-sample hedging effectiveness: percentage reductions in Lower Partial Moment 
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2.4.3.2 Minimum-LPM Objective 

We next consider the minimum-LPM objective. Similar to the minimum-SV 

objective, the D-vine copula model performs better than the other models both in mean 

and median terms (Table 2.4). In particular, it leads to a mean (median) LPM reduction 

of 73.80% (78.09%). As can be seen from Figure 2.7, the LPM reductions offered by the 

D-vine copula model vary across the out-of-sample test windows in a very similar 

pattern to the case of SV reductions (Figure 2.6). The LPM reductions of the D-vine 

copula model range from 5.47% (for the November-2002-to-May-2005 test window) to 

91.62% (for the April-1996-to-September-1998 test window). Again, the SCC model 

performs the worst with the mean (median) hedging effectiveness of -5.49% (0.45%), 

confirming that using only one parameter is not enough to capture the dependence 

structure of the six-dimensional data. 

Comparing with the NP method, the D-vine copula model leads to a 3.80% 

(2.83%) point increase in the mean (median) LPM reduction. Figure 2.7 shows that the 

D-vine copula model offers higher levels of LPM reductions for most out-of-sample test 

windows. More specifically, the D-vine copula model produces greater LPM reductions 

than the NP method about 67.62% of the cases, with the maximum improvement of 

59.89% points for the March-2000-to-August-2002 test window. It is also worth 

mentioning that the greatest improvement of the NP method over the D-vine copula 

model is only about 11.58% points. Besides, the NP method yields negative LPM 

reductions (i.e., increases risk of the unhedged position) during the test windows 

November-2002-to-April-2005 to March-2003-to-August-2005 (a total of 18 out-of-
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sample test windows). Again, the mean (median) LPM improvement of the D-vine 

copula model over the SGC, SSC, and C-vine copula models is quite modest, ranging 

between 0.88% (0.45%) and 2.05% (0.89%) points. 

 

2.4.3.3 Minimum-VaR Objective 

 For the minimum-VaR objective, all hedging models (except the SCC model) 

provide a VaR reduction of at least 30% (35%) in mean (median) term (Table 2.4). The 

D-vine copula model performs the best at the 95% and 99% confidence levels, but not at 

the 90% confidence level. As expected, the SCC model performs the worst at all 

confidence levels. The hedging effectiveness of all hedging models is found to be lowest 

at the 99% confidence level, indicating that it is hard to hedge against a very extreme 

risk. 

 At the 90% confidence level, the mean and median reductions of VaR are 

greatest for the SGC model with a mean reduction of 41.61% and a median reduction of 

41.74%. In particular, the SGC model leads to a higher mean (median) VaR reduction of 

1.75% (1.90%) points relative to the D-vine copula model. At the 90% confidence level, 

the D-vine copula model also performs slightly worse than the SSC and C-vine copula 

models. However, the D-vine copula model is still able to improve upon the NP method 

with a larger mean (median) VaR reduction of about 4.98% (4.53%) points. It is evident 

from Figure 2.8 that the D-vine copula model results in positive VaR reductions across 

all test windows, and clearly outperforms the NP method for most test windows. 
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Figure 2.8. Out-of-sample hedging effectiveness: percentage reductions in Value at Risk at the 90% confidence level 
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Figure 2.9. Out-of-sample hedging effectiveness: percentage reductions in Value at Risk at the 95% confidence level 
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 At the 95% confidence level, the D-vine copula model yields a mean (median) 

VaR reduction of 42.33% (43.51%), which is about 4.83% (5.78%) points higher than 

the NP method. Figure 2.9 shows that the D-vine copula model always yields positive 

VaR reduction (ranging from 12.13% to 64.59%), and offers significant improvements 

over the NP method in many out-of-sample test windows. Comparing with the SGC, 

SSC and C-vine copula models, the D-vine copula model leads to a larger mean 

(median) VaR reduction of at least 1.22% (0.77%) points.  

 At the 99% confidence level, the best performing hedging model is also the D-

vine copula model. If offers a mean (median) VaR reduction of 36.36% (38.94%). 

Figure 2.10 reveals that the hedging effectiveness of the D-vine copula model fluctuates 

greatly with the minimum VaR reduction of -4.41% and maximum VaR reduction of 

64.37%. This means that the D-vine copula model yields negative VaR reductions for a 

few out-of-sample windows. Nevertheless, the D-vine copula model still performs better 

than the NP method with an increase in the mean (median) VaR reduction of 4.52% 

(5.71%) points. In addition, the negative VaR reductions are found in 34 test windows 

for the NP method but in only 6 test windows for the D-vine copula model. Again, the 

mean (median) VaR improvement of the D-vine copula model over the SGC, SSC and 

C-vine copula models is quite modest, ranging between 1.87% (0.24%) and 2.88% 

(0.84%) points. However, I find that the SGC, SSC and C-vine copula models produce 

negative VaR reductions (i.e., increase the VaR of the unhedged position) at least 6.5 

times more often than the D-vine copula model. Thus, the D-vine copula model is a safer 

choice for hedging the VaR of the refinery than the other models.   
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Figure 2.10. Out-of-sample hedging effectiveness: percentage reductions in Value at Risk at the 99% confidence level 
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Figure 2.11. Out-of-sample hedging effectiveness: percentage reductions in Expected Shortfall at the 90% confidence 
level 
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2.4.3.4 Minimum-ES Objective 

 As can be seen from Table 2.4, in terms of ES reduction, the hedging 

effectiveness of all hedging models is found to be largest at the lowest confidence (90% 

confidence level) and smallest at the largest confidence level (99% confidence level). In 

other words, the hedging effectiveness decreases as the confidence level increases. This 

indicates a greater difficulty in hedging a more extreme (tail) risk. Focusing on the mean 

hedging effectiveness, the D-vine copula model leads to the greatest ES reductions at all 

confidence levels. When we consider the median hedging effectiveness, the D-vine 

copula model performs the best for the 90% and 95% confidence levels, but not the 99% 

confidence level for which the SSC model is preferred. As before, the SCC model 

performs extremely poorly at all confidence levels. 

 As can be seen from Figures 2.11-2.13, the D-vine copula model generally 

provides good hedging effectiveness at all the confidence levels. The mean (median) ES 

reductions offered by the D-vine copula model are 39.15% (40.80%), 37.41% (38.83%), 

and 32.43% (32.77%) for the 90%, 95%, and 99% confidence levels, respectively (Table 

2.4). In particular, the ES reductions of the D-vine copula model range from 20.87% to 

55.33% for the 90% confidence level, from 13.12% to 53.94% for the 95% confidence 

level, and from -30.77% to 66.80% for the 99% confidence level. Unlike at the 90% and 

95% confidence levels, it is evidence from Figure 2.13 that the D-vine copula model 

produces negative reductions in ES at the 99% confidence level for several out-of-

sample test windows (more specifically, for a total of 28 test windows). 
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Figure 2.12. Out-of-sample hedging effectiveness: percentage reductions in Expected Shortfall at the 95% confidence 
level 
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Figure 2.13. Out-of-sample hedging effectiveness: percentage reductions in Expected Shortfall at the 99% confidence 
level 
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 To find a possible reason for the occasional poor performance of the D-vine 

copula model, we investigate these 28 out-of-sample test windows more closely. Given 

the rolling window approach, the 28 test windows correspond to two periods of bad 

performance: (1) during the test windows (October-2002-to-March-2005) to (March-

2003-to-August-2005) and (2) during the test windows (May-2013-to-October-2015) to 

(July-2013-to-December-2015). For the first period, the negative reductions in ES at the 

99% confidence level are due to an additional loss to the unhedged P&Ls on March 30, 

2005 (when the unhedged P&L has already fallen by 4.26 dollars per barrel). The extra 

loss on March 30, 2005 is particularly as a result of (1) the gasoline futures price moving 

in the opposite directions from the gasoline spot price, and (2) the heating oil futures 

price advancing more than the heating oil spot price27. For the second period, the 

negative ES reductions (at the 99% confidence level) occurs particularly because of a 

large magnitude of basis risk in the gasoline market on October 21, 2015, when the 

gasoline spot and futures prices move in the opposite directions28. These two events 

                                                

27 This is known as basis risk – risk that the changes in the futures prices deviate from the changes in the 
spot prices. On March 30, 2005, the weekly changes in the spot (futures) prices of crude oil, gasoline, and 
heating oil are 4.53 (0.18), -0.71 (0.88), and 2.22 (3.07) dollars per barrel. This corresponds to the 
unhedged P&L of -4.26 dollars per barrel, and the hedged P&L of −4.26 + !! 0.18 − (2/3)!! 0.88 −
(1/3)!!(3.07) (see equation (2.3)). Thus, any positive gasoline and heating oil hedge ratios would tighten 
the refining margin. In particular, depending on the estimation windows, the D-vine copula model results 
in an additional loss ranging from 1.05 to 1.81 dollars per barrel (with an average extra loss of 1.34 dollars 
per barrel). It is interesting to note that this sizable basis risk may be explained by fears of gasoline and 
heating oil supply disruptions caused by the BP Texas City Refinery Explosion (which occurred on the 
afternoon of March 23, 2005). 
28 On October 21, 2015, the weekly changes in the spot (futures) prices of crude oil, gasoline, and heating 
oil are -1.41 (-1.96), -1.64 (8.78), and -0.97 (-1.39) dollars per barrel. This corresponds to an unhedged 
P&L of about -0.01 dollar per barrel, and the hedge ratio (even a small number) would lead to a large 
decline in the refining margin. Depending on the estimation windows, the D-vine copula model results in 
an additional loss ranging from 6.32 to 6.90 dollars per barrel (with an average extra loss of 6.58 dollars 
per barrel). In this case, the adverse price movements in the gasoline futures market are likely caused by 
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suggest that the ability to hedge the extreme downside risk could decline considerably 

when the unhedged refining margin falls at the same time that the refining margin based 

on futures prices rises (presuming no speculation positions). In addition, it is worth 

noting that hedging may also increase the extreme risk if the refining margin based on 

futures prices rises (declines) more (less) than an increase (a decrease) in the unhedged 

refining margin. In other words, the occasional poor performance of the D-vine copula 

model is likely explained by a sizable basis risk. 

 Despite its occasional poor performance, comparing with the NP method, the D-

vine copula model yields larger mean (median) ES reductions of about 1.26% (0.87%), 

1.97% (1.77%), and 5.62% (4.38%) points for the 90%, 95%, and 99% confidence 

levels, respectively. As expected, the D-vine copula model offers a larger improvement 

over the NP method as the confidence level becomes larger. This is because the NP 

method is based on the empirical distribution of the price changes and is therefore likely 

to provide poor estimates of the very extreme quantiles of the distribution (Danielsson 

and De Vries 2000; Bekiros and Georgoutsos 2005; Pritsker 2006). It is also evident 

from Figures 2.11-2.13 that the D-vine copula model outperforms the NP method for 

most out-of-sample test windows at all confidence levels. In addition, the NP method 

produces negative ES reduction at the 99% confidence level much more often than the 

D-vine copula model (127 versus 28 test windows). 

                                                                                                                                           

fears that Hurricane Patricia (which were predicted to devastate Mexico on October 23, 2015) would 
disrupt the gasoline supply.  
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 The D-vine copula model is also preferred to the SGC, SSC, and C-vine copula 

models at all confidence levels, except at the 99% confidence level when the median 

hedging effectiveness is considered. In this case, the SSC model produces a slightly 

greater reduction in the ES of about 0.19% point. Overall, the mean (median) ES 

improvement of the D-vine copula model over these models is quite modest. 

Nevertheless, these models produce poor hedging performance much more often than 

the D-vine copula model. Specifically, at the 99% confidence level, the negative ES 

reductions are found in 190, 115, and 82 test windows for the SGC, SSC, and C-vine 

copula models, respectively. Given this result, the D-vine copula model seems to be a 

better and safer choice than the other hedging models in managing the ES of the 

refinery. 

 

2.5 Conclusions 

 Oil refineries face the risk of profit margin erosion, which is associated with an 

increase in input prices (crude oil prices), a decrease in output prices (gasoline and/or 

heating oil prices), or a combination of both. In other words, they are exposed to price 

risks in multiple petroleum markets (including crude oil, gasoline and heating oil 

markets). To prevent the narrowing of their refining margin, the refineries may hedge 

against the risks of adverse input and output price movements using crude oil, gasoline, 

and heating oil futures. This chapter proposes a multiproduct futures hedging model that 

minimizes the downside risk of the oil refineries, measured by Semivariance (SV), 

Lower Partial Moment (LPM), Value at Risk (VaR), or Expected Shortfall (ES). This is 
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of special interest for the refineries that are particularly concerned about the negative 

impacts of shrinking refining margins (e.g., reduced company's liquidity and increased 

likelihood of bankruptcy). 

 The empirical analysis is based on a stylized problem of a typical U.S. oil 

refinery that converts 3 barrels of crude oil to 2 barrels of gasoline and 1 barrel of 

heating oil. The proposed hedging model constructs a joint distribution of six variables 

(spot and futures price changes in crude oil, gasoline, and heating oil markets) using a 

vine copula methodology, and determines the minimum-downside risk hedge ratios 

using a Monte Carlo optimization technique. The vine copula methodology, which is a 

relatively new class of multivariate copula approaches, is chosen because it allows to 

capture important characteristics of petroleum price changes such as an asymmetry (or 

skewness) in the distribution of each individual variable and heterogeneous (tail) 

dependence between different pairs of variables. In this chapter, two popular classes of 

vine copulas – the canonical (C-) and drawable (D-) vine copulas – are considered in the 

modeling of the dependence structure in petroleum markets. We evaluate the suitability 

of the C- and D-vine copula models by examining their hedging effectiveness over a 

number of (rolling) out-of-sample test windows. In addition, we compare the out-of-

sample hedging effectiveness of the vine copula models to that of several common 

alternative approaches, including the nonparametric (NP), standard Gaussian copula 

(SGC), standard Student's t (SSC), and standard Clayton copula (SCC) models. 

The main findings are as follows. First, on average we find that both C- and D-

vine copula models are able to effectively reduce the risk of refining margin erosion, and 
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that the D-vine copula model provides better out-of-sample hedging effectiveness than 

the C-vine copula model. The results are consistent across all hedging objectives 

considered (namely, the minimum-SV, minimum-LPM, minimum-VaR, and minimum-

ES objectives). The superiority of the D-vine copula model may be explained by its 

ability to directly capture the high dependence between the spot and its corresponding 

futures price changes in all petroleum markets, which is a feature that is not allowed by 

the C-vine copula model. Depending on the hedging objective, the mean (median) 

downside risk reductions offered by the D-vine copula model between 32.43% (32.77%) 

to 73.80% (78.09%). Second, the D-vine copula model yields negative hedging 

effectiveness (that is, increases risk of the unhedged position) in some out-of-sample test 

windows for the minimum-VaR and minimum-ES objectives (both at the 99% 

confidence level). We find that the occasional poor performance of the D-vine copula 

model is likely due to a sizable basis risk (or the risk that futures prices do not move in 

line with the underlying spot prices). 

Third, the D-vine copula model is on average preferred to the widely used NP 

method regardless of which hedging objective is considered. While the superiority of the 

D-vine copula model over the NP method is generally seen across numerous out-of-

sample test windows, it is strongest for most hedging objectives during the years of 

extreme petroleum price fluctuations (e.g., the years 2007 to 2010). This result signals 

the relevance of explicit modeling of the extreme price dependence. Finally, the D-vine 

copula model on average leads to greater downside-risk reductions than the SGC, SSC, 

SCC, and C-vine copula models. As expected, the improvement over the SCC model, 
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which uses only one parameter to capture the dependence structure of six variables, is 

enormous. However, the improvement over the SGC, SSC, and C-vine copula models is 

quite modest. Nevertheless, we find that these models (as well as the NP method) 

produce negative hedging effectiveness much more often than the D-vine copula model. 

Given these results, the D-vine copula model seems to be a good and safe hedging model 

for the refinery that wants to minimize the risk of refining margin contraction. 

As indicated above, our analysis might be especially useful for petroleum (as 

well as non-petroleum) producers who seek to reduce the risks of adverse price 

movements in input and output markets. In addition, the findings reported in this chapter 

provide additional evidence that there is a benefit from modeling the joint distribution 

(more specifically, the dependence structure) more realistically. Nevertheless, this 

chapter leaves many interesting questions for future work. For example, we only 

consider the oil refinery business, and it would be interesting to compare the results 

obtained for other businesses (e.g. cattle feeders, soybean crushers, and international 

commodity traders). Further, it would be of great interest to investigate the impacts of 

estimation window sizes, of test window sizes, and of hedging horizons. Finally, it 

would also be interesting to compare the results of the models presented in this chapter 

with other classes of multivariate models such as a regime switching model of Ang and 

Bekaert (2002), a kernel copula model of Power and Vedenov (2010), and a regular vine 

copula model of Dißmann et al. (2013). 
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CHAPTER III  

FORECASTING THE DISTRIBUTIONS OF ENERGY COMMODITY 

RETURNS: THE IMPORTANCE OF MODELING HETEROGENEOUS 

DEPENDENCE STRUCTURES  

3.1 Introduction 

Energy traders (including energy commodity producers, suppliers, consumers, 

and financial institutions) are typically exposed to price risks in multiple energy 

commodities. Obviously, prices of related energy commodities are not independent. 

Accurate risk assessment and effective risk management therefore require knowledge of 

joint distributions for the changes in spot energy commodity prices. During the last 

decades, copulas have been increasingly used by both practitioners and researchers to 

model and forecast the joint distributions of correlated random variables. This is due to 

their flexibility in separately modeling the marginal distributions of individual variables 

and the dependence structure that links all these marginal distributions. Accordingly, the 

copula-based density models can capture the empirically observed skewness and heavy 

tails of energy commodity returns, as well as the presence of non-linear dependence 

between commodity returns (see, for example, Grégoire, Genest, and Gendron 2008; 

Tong, Wu, and Zhou 2013; Aloui et al. 2014).  

The main problem in practical applications of the copula technique is to identify 

the copula or the dependence structure. For the case of two random variables, a rich 

variety of copulas or types of dependence structure is available and well investigated. 
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However, the use of copulas is very challenging in higher dimensions because standard 

multivariate copulas (such as Gaussian, Student’s t, Frank, Clayton, and Gumbel 

copulas) force all pairs of variables to have the same type of dependence. Accordingly, 

most of previous empirical studies on copula-based models have been limited to 

bivariate or trivariate settings (see, for example, Patton 2004, 2012; Diks, Panchenko, 

and van Dijk 2010; Chu, 2011). Vine copulas (or pair-copula constructions), introduced 

by Aas et al. (2009), overcome such limitations. More specifically, they permit 

heterogeneous dependence structures for different pairs of variables by building up a 

higher-dimension copula from bivariate copulas (or pair-copulas). This presents an 

important opportunity for extending literature on time series forecasting further.  

  Heretofore, vine copulas have been applied to forecast downside risk of financial 

portfolios (Weiß and Supper 2013; Brechmann, Czado, and Paterlini 2014; Zhang et al. 

2014), to examine the dependence structures of financial and commodity markets 

(Chollete, Heinen, and Valdesogo 2009; Nikoloulopoulos, Joe, and Li 2012; Loaiza 

Maya, Gomez-Gonzalez, and Melo Velandia 2015), and to analyze portfolio 

management problems (Low et al. 2013; Harnandez 2014; Bekiros et al. 2015). 

However, to the best of our knowledge, there has been no study on the use of vine 

copulas in the context of out-of-sample multivariate density forecasting. The present 

study fills this gap by assessing and comparing quality of one-step-ahead density 

forecasts of returns produced by standard copula and more advanced vine copula 

models. In particular, we focus on analyzing the value of modeling heterogeneous 



 

 56 

dependence structures with vine copulas in improving density forecasts for multivariate 

energy commodity returns.  

 The contribution of this chapter is twofold. First, we use both standard copulas 

and more advanced vine copulas to model the dependence structures of seven related 

energy commodities: crude oil, diesel fuel, gasoline, heating oil, jet fuel, natural gas, and 

propane. The importance of heterogeneous dependence structures for density forecasting 

is then measured by comparing the performance of density forecasts based on three types 

of vine copulas – canonical, drawable, and regular vine copulas – with density forecasts 

based on two standard copulas – Gaussian and Student’s t copulas. To check whether the 

relative forecasting performance of different copula-based multivariate density models is 

robust to the choices of the marginal distributions, we model the marginal distribution of 

each return series using the four most popular choices for parametric marginal 

distributions (namely, the standard normal, skewed normal, Student’s t, and skewed 

Student’s t distributions). We assess the forecast accuracy of the competing density 

models using several calibration tests, and compare the predictive accuracy of competing 

models based on their out-of-sample likelihood (or Kullback-Leibler information 

criterion) scores.  

 Second, we contribute to the thin literature on density forecasting of energy 

commodity returns by estimating their joint density forecasts using various copula-based 

multivariate density models. Previous studies in this field have mainly focused on 

forecasting the distributions of oil prices (see, among several others, Morana 2001; 

Meade 2010; Høg and Tsiaras 2011). However, business and financial decision making 
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in the energy commodity markets involves more than one risky asset. Thus, knowledge 

of joint distributions of multiple energy commodity returns is especially crucial for 

energy risk management and portfolio allocation. Unfortunately, to our best knowledge, 

no study has examined forecasting accuracy of competing multivariate density models 

for related energy commodity returns. We address this here. Therefore, our findings 

would not only offer a richer understanding of applications of vine copulas in the context 

of forecasting multivariate time series, but also benefit energy risk managers as well as 

other energy market participants.  

The remainder of this chapter is structured as follows. Section 3.2 presents the 

data on energy commodity price returns together with the preliminary statistical analysis 

of the data. Section 3.3 describes the copula-based multivariate density models, 

construction of forecast densities, and methods for evaluating density forecasts. Section 

3.4 provides the empirical results, and Section 3.5 concludes the chapter.    

 

3.2 Data 

 The empirical analysis is based on weekly spot prices for crude oil (West Texas 

Intermediate – Cushing Oklahoma), diesel fuel (Los Angeles, California), gasoline (New 

York Harbor), heating oil (New York Harbor), jet fuel (U.S. Gulf Coast), natural gas 

(Henry Hub), and propane (Mont Belvieu, Texas). The data are obtained from the 

Energy Information Administration (EIA). The price data span from January 10, 1997 to 

May 27, 2016, from which a sample of weekly percentage returns are constructed. This 

results in 1,010 weekly observations for each series of energy commodity returns. The 
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first two years of data (104 observations) are set aside for the initial estimation of one-

step-ahead density forecasts for weekly energy commodity returns, while the out-of-

sample period consists of 906 observations from January 15, 1999 to May 27, 2016. 

 

Table 3.1. Summary statistics and correlation analysis on weekly spot returns for 
crude oil (CO), diesel fuel (DF), gasoline (GL), heating oil (HO), jet fuel (JF), 
natural gas (NG), and propane (PP)  
 CO DF GL HO JF NG PP 
Panel A: Summary Statistics 
Mean (%) 0.156 0.181 0.208 0.165 0.166 0.211 0.126 
SD (%) 4.365 4.712 5.001 4.490 4.483 7.678 5.095 
Skew 0.096 0.590 0.547 0.847 0.487 1.660 0.635 
Ex. Kurt. 3.053 3.463 6.808 10.890 4.484 20.221 13.793 
Min (%) -17.497 -16.418 -20.141 -25.280 -20.402 -35.577 -29.315 
Median 0.168 0.154 0.379 0.122 0.254 0.000 0.206 
Max (%) 28.563 31.178 45.293 43.571 34.445 90.047 52.276 
JB  396.94* 567.36* 2012.40* 5137.40* 891.58* 17751.0* 8112.6* 
ADF 
!(10) 
!!(10) 

-22.37* 
60.36* 

262.94* 

-21.26* 
111.61* 

70.63* 

-20.40* 
47.97* 
39.73* 

-22.75* 
93.64* 

173.58* 

-22.22* 
49.65* 

161.82* 

-22.02* 
28.12* 
29.68* 

-21.77* 
57.34* 

107.54* 
Panel B: Correlation Matrix 
CO 1.000 0.577 0.663 0.713 0.686 0.163 0.473 
DF  1.000 0.554 0.662 0.674 0.166 0.417 
GL   1.000 0.638 0.677 0.181 0.423 
HO    1.000 0.809 0.275 0.558 
JF     1.000 0.246 0.480 
NG      1.000 0.417 
PP       1.000 
Notes: Summary statistics (Panel A) and correlation matrix (Panel B) are presented for the seven weekly 
energy commodity returns for the period January 10, 1997 to May 27, 2016. The total number of 
observations is 1,010 for each return series. SD, Skew, and Ex. Kurt. represent sample standard deviation, 
skewness, and excess kurtosis, respectively. JB is the Jarque-Bera test statistic, where * denotes the 
rejection of the null hypothesis of normality at the 1% significance level. ADF is the Augmented Dickey-
Fuller test statistic, where * denotes the rejection of the null hypothesis that the respective return series 
follows a unit root process at the 1% significance level. !(10) is the Ljung-Box test statistic for the return 
series, where * denotes the rejection of the null hypothesis that there is no serial correlations in the return 
series up to order 10. !!(10) is the Ljung-Box test statistic for the squared return series, where * denotes 
the rejection of the null hypothesis that there is no ARCH effect in the return series up to order 10.  
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 Panel A of Table 3.1 reports summary statistics for the weekly energy 

commodity return series for the period January 10, 1997 to May 27, 2016 (the entire 

sample period). For all the return series, the means are rather small relative to the 

standard deviations. Based on weekly data, percentage changes in prices of natural gas 

are more volatile than those of crude oil and the five refined products. Also, natural gas 

returns exhibit the minimum (-35.58%) and maximum (90.05%) returns for our sample 

period. All return series are only slightly skewed to the right. However, they all have a 

high excess kurtosis, indicating that their distributions have thicker tails than a normal 

distribution. The significant Jarque-Bera test statistics confirm that all the return series 

are non-normally distributed. All the series reject the null hypothesis for the Augmented 

Dickey-Fuller (ADF) test of a unit root at 1% significance level, suggesting that all 

returns are stationary. In addition, the significant Ljung-Box statistics, !(10) and 

!!(10), indicate that there are serial correlations and ARCH effects in the energy 

commodity returns.   

Panel B of Table 3.1 presents sample correlations between weekly percentage 

returns for seven energy commodity markets over the full sample period. The highest 

correlation is found between heating oil and jet fuel returns (0.809) while the lowest 

correlation is found between crude oil and natural gas returns (0.163). To obtain more 

insights into the correlation and dependence structure of energy commodity markets, it is 

useful to visualize possible time-varying correlations between energy commodity 

returns. Figure 3.1 presents time series plots of rolling correlations between crude oil and 
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other energy commodity returns29. The plots clearly show that correlations are constantly 

changing. This indicates that it is important to update model parameters constantly to 

reflect current correlation and dependence structures.   

 

3.3 Methodology 

 In this section, we first briefly introduce copula-based multivariate density 

models. Both standard and more advanced multivariate copula (“vine copula”) models 

are discussed. We then proceed to describe the methods used to construct and evaluate 

the out-of-sample accuracy of competing density forecasts of energy commodity returns. 

 

3.3.1 Copula-Based Multivariate Density Models 

Let !! = (!!,! ,!!,! ,… ,!!,!) be a !-dimensional vector of stochastic variables. 

Sklar’s theorem (Sklar 1959) states that the !-dimensional multivariate distribution, 

!(!) of !!, can be expressed in terms of the marginal distributions !!,!!,… ,!! and a 

copula function that describes their dependence structure. More formally, 

(3.1)  ! ! = !(!! !! ,!! !! ,… ,!! !! ) 

where !! = !!(!!) for ! = 1,2,… ,! and . !: 0,1 ! → [0,1]. If !! and ! are 

differentiable, the joint density function, !(!) of !!, can then be described as:   

(3.2)  ! ! = !! !! !! !! ⋯ !!(!!) !(!!(!!),!!(!!),… ,!!(!!)  

where !! = !!(!!) is the density of !! and ! is the density of the copula.  

 
                                                

29 The rolling correlations are computed using a rolling window of 104 weeks.  
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Figure 3.1. Time-varying linear correlation between weekly crude oil and other energy commodity returns (estimated 
with a 104-week rolling window) 
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The decompositions in equations (3.1) and (3.2) suggest that the marginal 

distributions and their dependence structure can be modeled separately. Thus, one can 

generate a broad range of joint distributions simply by combining different marginal 

distributions with different copula functions. This is clearly an attractive feature for 

modeling multivariate distributions. In terms of practical applications, there is a wide 

range of well-studied bivariate copula functions available (see, for example, Joe (1997) 

and Nelson (2006)). Nevertheless, the choice of multivariate copulas is rather limited 

and less known.    

When modeling a joint distribution of more than two variables (i.e., when ! >

2), a common approach is to rely on either a standard Gaussian copula (SGC thereafter) 

model or a standard Student’s t copula (SSC thereafter) model. However, the SGC 

model assumes no tail dependence between each pair of !! !! ,!!(!!) . In other words, 

it assumes no extreme co-movements between random variables. While the SCC model 

allows for positive (symmetric) tail dependence, it forces every pair of !! !! ,!!(!!)  

to have the same degree of tail dependence. Accordingly, the SGC and SSC models may 

be too restrictive for estimating the joint density of multiple random variables. 

The vine copula or pair copula construction (PCC) model, first proposed by Joe 

(1996) and further extended by Bedford and Cooke (2001, 2002) and Kurowicka and 

Cooke (2006), has gained an increasing attention as an alternative and flexible way for 

building high-dimensional multivariate distributions. The modeling principle can be 

easily understood using a three-dimensional case (that is, ! = 3). Without loss of 
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generality, a joint density function of !!, !!, and !!, denoted as !!"#, can be expressed 

as: 

(3.3) !!"#  = !!!!|!!!|!,! = !! !!"!!
!!"|!
!!|!

 

where !!|!,! = !!|!,!(!!|!! , !!). The second expression in equation (3.3) is based on a 

definition of a conditional density function. Let !!"|! = !(!!|! ,!!|!) denote a conditional 

copula function of !!|! and !!|!. From the Sklar’s theorem, !!" = !!!!!!" and !!"|! =

!!|!!!|!!!"|!. We can also write !!|! as !!|! = !!"!!. Thus, the joint density function in 

equation (3.3) can be decomposed further as:  

(3.4) !!"#  = !!!!!!!!"!!"!!"|! 

where the conditional distribution function can be solved using: 

(3.5) ! ! ! = !!!,!!|!!! ! ! !!! ,!(!!|!!!)
!"(!!|!!!)

 

That is, the vine copula model allows one to construct a joint distribution using (1) a 

cascade of conditional and unconditional bivariate copulas (called pair-copulas) and (2) 

a collection of conditional and unconditional marginal distributions.   

 Apparently, the decomposition in equation (3.4) is not unique. This implies that 

there are a large number of possible vine copula constructions from which to choose. 

Bedford and Cooke (2001, 2002) introduce a regular vine copula (RVC thereafter) 

model. A !-dimensional RVC is defined by a sequence of ! − 1 trees, !!,… ,!!!!. !! 

has ! nodes and ! − 1 edges. Edges in !! then become nodes in !!, and the two nodes 

in !! are joined by an edge in !! only if they share a common node in !! (proximity 

condition). In general, for ! = 2,… ,! − 1, the !th tree, !!, has ! + 1− ! nodes that are 
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edges in !!!!. The two nodes in !! are joined by edge only if they share a common node 

in !!!!. The joint density function of a !-dimensional RVC is given by30: 

(3.6) !!⋯! = !! !! ! ,!(!)|!(!)(!! ! |!(!),!! ! |!(!))!∈!!
!!!
!!!

!
!!!  

where !! is a set of edges in !!, !(!) and !(!) are the two (conditional) nodes associated 

with each edge !, !(!) is the conditioning set associated with edge !. 

 The number of different RVC decompositions is still very large. Morales-

Nápoles, Cooke, and Kurowicka (2010) show that there are as many as !
2  × ! −

2 ! × 2
!!!
!  different decompositions for the !-dimensions. Two special cases of RVC 

decompositions are canonical vine copula (CVC thereafter) and drawable vine copula 

(DVC thereafter) decompositions (Kurowicka and Cooke 2006). In !-dimensions, the 

joint density function of a CVC is given by: 

(3.7) !!⋯! = !! !!,!!!|!,…,!!! !!|!,…,!!!,!!!!|!,…,!!!!!!
!!!

!!!
!!!

!
!!!  

whereas the joint density function of a DVC is given by: 

(3.8) !!⋯! = !! !!,!!!|!,…,!!! !!|!,…,!!!,!!!!|!,…,!!!!!!
!!!

!!!
!!!

!
!!!  

For the !-dimensional case, there exist !!/2 different decompositions for both CVC and 

DVC models (Morales-Nápoles, Cooke, and Kurowicka 2010). Examples of four-

dimensional CVC, DVC, and RVC trees are depicted respectively in Figures 3.2-3.4. 

 

 

 
                                                

30 The derivation of the joint density of RVC can be found in Kurowicka and Cooke (2006). 
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Figure 3.2. Four-dimensional canonical vine copula (CVC) 
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Figure 3.3. Four-dimensional drawable vine copula (DVC) 
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Figure 3.4. Four-dimensional regular vine copula (RVC) 
 
 

3.3.2 Construction of Forecast Densities 

 In this chapter, we examine if the quality of one-step-ahead density forecast can 

be improved by modeling potentially heterogeneous dependence structures of energy 
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commodity returns using the more advanced vine copula models (namely, the CVC, 

DVC, and RVC models). The two standard multivariate copula models, the SGC and 

SSC models, are used as benchmark models. Our competing copula-based forecast 

densities are constructed using the following procedure. 

 For each week !, we use the data from week ! − 103 to ! (estimation window = 

104 weeks) to generate multivariate probability distributions at week ! + 1 from the 

competing multivariate copula models. Density forecasting based on multivariate copula 

models proceeds in three stages. In the first stage, we model a marginal distribution of 

each return series. Table 3.1 shows that all return series have a high excess kurtosis, but 

they are only slightly skewed (almost symmetric). Table 3.1 also indicates that there are 

serial correlations and ARCH effects in all energy commodity returns. To capture the 

heavy tails as well as the presence of heteroskedasticity, we model the marginal 

distribution of each return series using a GARCH model with Student’s t innovations. In 

addition, to examine the impacts of the choice of the marginal distributions, we also 

consider a GARCH model with normal, skewed normal, and skewed Student’s t 

innovations. More specifically, the conditional means and conditional variances for the 

seven return series are specified by an ARMA(1,1)-GARCH(1,1) model given by31:  

(3.9) !!,! = !! + !!!!,!!! + !!!!,!!! + !!,! 

(3.10) !!,!! = !! + !!!!,!!!! + !!!!,!!!!  

                                                

31 We also consider a GARCH(1,1) model with a constant mean, an AR(1)-GARCH(1,1) model, and an 
MA(1)-GARCH(1,1) model. These models are common univariate specifications for modeling the 
marginal distribution of asset returns. Nevertheless, we find that the ARMA(1,1)-GARCH(1,1) model 
does a better job than the other three models in removing autocorrelation in petroleum returns.    
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(3.11) !!,! = !!,!
!!,!
~!. !.!.!(0,1) 

where !(0,1) is a zero mean and unit variance probability distribution. We consider the 

four most popular choices for parametric marginal distributions in the literature: the 

standard normal, skewed normal, Student’s t, and skewed Student’s t distributions32. 

Although it is possible to use different univariate models for different return series, the 

same marginal processes are assumed for all return series. This allows us to investigate 

if the forecasting performance of each multivariate copula model is robust to possible 

misspecification of the marginal distributions. After fitting the ARMA(1,1)-

GARCH(1,1), each series of standardized residuals (or innovations), !!,! = !!,!/!!,!, are 

transformed into copula data (that is, a standard uniform variable) using either a normal, 

skewed normal, Student’s t, or skewed Student’s t distribution.  

 In the second stage, we fit the five multivariate copula models to the set of 

standard uniform variables, ! = (!!,! ,!!,! ,… ,!!,!), obtained from the previous stage. 

For the three vine copula models (CVC, DVC, and RVC models), the vine structures and 

bivariate copula parameters are estimated and selected using a sequential estimation 

procedure proposed by Aas et al. (2009) for the CVC and DVC models and by Dißmann 

et al. (2013) for the RVC model. In this study, the bivariate copula selection is based on 

the minimization of the Schwarz’s Bayesian Information Criterion (BIC)33. In other 

                                                

32 The method proposed by Fernandez and Steel (1998) is used to incorporate skewness into the standard 
normal and Student’s t distributions. 
33 A total of 31 different parametric bivariate copula functions – the maximal list of the R package: 
CDVine (Brechmann and Schepsmeier 2013) – are considered. These include Gaussian, Student’s t, 
Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, BB8, Rotated Clayton (90, 180, and 270 degrees), Rotated 
Gumbel (90, 180, and 270 degrees), Rotated Joe (90, 180, and 270 degrees), Rotated BB1 (90, 180, and 
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words, we allow for each pair-copula to come from different parametric copula families. 

For the SGC and SSC models, copula parameters are estimated through a Maximum 

Likelihood Estimation (MLE) method. 

 In the third stage, one-step-ahead density forecasts of energy commodity returns 

from the competing multivariate copula models are computed using a Monte Carlo 

simulation method. This is done by first generating 10,000 draws of the seven standard 

uniform variables, !!,!,!!,!,… ,!!,! !!!
!",!!!

 from each estimated copula model. These 

simulated data are converted to a set of standardized residuals, !!,!, !!,!,… , !!,! !!!
!",!!!

 

using the inverse of the corresponding marginal distribution function of each return 

series. For each draw !, the forecast of energy commodity return for week ! + 1, !!,!,!!!, 

is given by: 

(3.12) !!,!,!!! = !!,!!! + !!,!!!,!!! 

where !!,!!! is the mean forecast based on the estimated conditional mean in equation 

(3.9) and !!,!!!!  is the variance forecast based on the estimated conditional variance in 

equation (3.10)34. As in Høg and Tsiaras (2010), a Gaussian kernel density is applied to 

                                                                                                                                           

270 degrees), Rotated BB6 (90, 180, and 270 degrees), Rotated BB7 (90, 180, and 270 degrees) and 
Rotated BB8 (90, 180, and 270 degrees) copula functions.  
34 Following Diks, Panchenko, and van Dijk (2010), we ignore the presence of parameter estimation 
uncertainty and consider this as an integral part of each copula-based multivariate density model. 
Nonetheless, it would be useful to examine how the forecast results would change when the parameter 
estimation uncertainty is taken into account. See, for example, Kling and Bessler (1989), Garratt et al. 
(2003), and Reeves (2005) for how the uncertainty due to parameter estimation could be incorporate into 
the computation of density forecasts. 
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the 10,000 point forecasts of !!,!!! to generate a smooth estimate of the density of the 

forecast of energy commodity returns35.  

  

3.3.3 Evaluating Density Forecasts 

 We evaluate the out-of-sample performance of competing density forecasts of 

energy commodity returns using several evaluation methods. We begin by assessing 

whether a sequence of density forecasts produced by each multivariate copula model 

coincides with the true densities (that is, whether it is well calibrated). In doing so, we 

apply a nonparametric calibration method presented in Dawid (1984) and Kling and 

Bessler (1989). The method is briefly described below. 

 Let !!,!(!!) be a forecast density of time series ! produced by a particular 

multivariate copula model at time !, and !!,!!! be an actual realization of  the random 

variable ! at time ! + 1. The probability integral transform (PIT) value is defined as:  

(3.13) !!,! = !!,!(!!)!!,!!!
!! !!! 

If a sequence of density forecasts is well calibrated, then a sequence of !!,! is 

independently and uniformly distributed over [0,1] (Dawid 1984). Following Kling and 

Bessler (1989), uniformity is assessed by inspection of calibration plots and performing 

a chi-square test of good calibration. To obtain a nonparametric calibration function, the 

sequence of !!,! is first sorted in ascending order, !! 1 ,!! 2 ,… ,!!(!), where ! is the 
                                                

35 This study relies on the Silverman’s rule of thumb (Silverman 1986) to select a bandwidth for the kernel 
density estimation. In particular, the bandwidth is given by !! = 0.9!!!!/!, where ! is the minimum of 
the sample standard deviation and the sample interquartile range divided by 1.34, and ! is a sample size. 
We also consider an empirical distribution function for generating the density of the forecast of petroleum 
returns, and find that the main results still hold.  
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number of out-of-sample data points. The nonparametric calibration function, !(!!) for 

!!, is then calculated as:  

(3.14) ! !! ! = !/!,     ! = 1,2,… ,! 

This is simply an empirical (stepwise) cumulative distribution function (CDF). For a 

sequence of density forecasts to be well calibrated, the calibration function should be 

sufficiently close to a cumulative uniform distribution (or the 45° line). Nevertheless, 

expert judgment is needed in deciding whether the calibration function (or calibration 

plot) deviates sufficiently from the 45° line to reject a hypothesis of good calibration. 

A more formal test of good calibration – a Pearson’s chi-square test – can be 

used to further verify the uniformity. The idea of the test is to divide the unit interval 

(that is, the exhaustive range of observed fractiles or PITs) into ! non-overlapping 

subintervals of equal length (that is, of length 1/!), and compare the fraction of observed 

fractiles in each subinterval to the expected (or theoretical) fraction. For a uniform 

distribution, the expected fraction of outcome in any subinterval is equal to 1/!. 

Therefore, under the null hypothesis of good calibration or uniformity of PITs, the 

fraction of observed fractiles in each subinterval should be close to 1/!. To assess the 

closeness of the observed fractions to the expected fractions, a Pearson’s chi-square test 

statistic is computed as: 

(3.15) !! = !!!!/!
!

!/!
!
!!!  

where !! is the number of observed fractiles in the subinterval !, and ! is a number of 

density forecasts. Under very weak conditions (not requiring independence), the !! test 
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statistic follows, asymptotically, a chi-square distribution with ! − 1 degrees of freedom 

under the null hypothesis of good calibration (Seillier and Dawid 1993). 

 We further evaluate the goodness of the density forecasts using an inverse 

standard cumulative normal transform of the PIT sequence defined as: 

(3.16) !!,! = Φ!!(!!,!) 

where Φ!!(⋅) is an inverse cumulative normal distribution function. As discussed in 

Diebold, Gunther, and Tay (1998) and Berkowitz (2001), a series of !!,! should be 

independently, identically and normally distributed with zero mean and unit variance (or 

i.i.d. !(0,1)) if the density forecasts are correctly specified. Following Diebold, 

Gunther, and Tay (1998), we use separate tests for examining the normality and 

independence of !!,!. In particular, we test the hypothesis of normality using the 

Anderson-Darling (AD) test (Stephens 1974). The AD test statistic is computed as: 

(3.17) !" = −! − !
! 2! − 1 ln Φ !!(!) + ln 1−Φ !!(! − ! + 1)!

!!!  

where Φ ⋅  is the cumulative distribution function of the standard normal distribution; 

!!(!) is the !th smallest value of !!,!; ! is the number of out-of-sample data points; and 

ln(⋅) is the natural logarithm. As recommended by D’Agostino and Stephens (1986), the 

!-value for the AD test statistic is calculated from the modified statistic !!∗ =

!"(1.0+ 0.75/! + 2.25/!!)36. 

 As mentioned previously, a correctly specified density forecast model should 

produce a !!,! series (or, equivalently, a !!,! series) that is independently distributed. In 
                                                

36 The formulas for computing the !-value of the !!∗ statistic are given in Table 4.9 in D’Agostino and 
Stephens (1986). 
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testing the independence hypothesis, we follow Mitchell and Wallis (2011), and examine 

the independence hypothesis based on both the !!,! and !!,! series. For the !!,! series, we 

apply the Ljung-Box test for autocorrelation in the !!,! series up to lag four. For the !!,! 

series, we apply a likelihood ratio (!!!) test of Berkowitz (2001). In particular, 

Berkowitz (2001) suggests testing the null hypothesis of independence against an 

alternative hypothesis that the !!,! series follows a first-order autoregressive structure. In 

doing so, the following model is estimated via the MLE method:  

(3.18) !!,! − !! = !! !!,!!! − !! + !!",  

where !!", is i.i.d. !(0,!!!). The !!! test statistic is then computed as: 

(3.19) !!! = −2(! !! ,!!!, 0 − ! !! ,!!!,!! ) 

where !(!! ,!!!,!!) denotes a log likelihood function. The !!! statistic approximately 

follows a chi-square distribution with one degree of freedom under the null hypothesis of 

independence.   

 While the aforementioned statistical tests of calibration are useful for evaluating 

the overall forecasting performance of each density model, they do not allow us to 

directly compare the predictive accuracy of competing multivariate copula 

specifications. Toward this purpose, we employ a statistical test for equal predictive 

accuracy suggested by Diks, Panchenko, and van Dijk (2010). The proposed test 

compares the predictive accuracy of two candidate copula specifications, !!(!) and !!(!), 
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using their out-of-sample log-likelihood scores37. Let !!,!!! denote an ex-post realization 

of the return series !, !!,!!! denote its conditional mean forecast from equation (3.9), and 

!!,!!!!  denote its conditional variance forecast from equation (3.10). The standardized 

prediction error of the one-step-ahead forecast for each series ! can be calculated as:  

(3.20) !!,!!! = !!,!!!!!!,!!!
!!,!!!

 

Its corresponding PIT, denoted as !!,!!!, is given by !!,!!! =  !!,! !!,!!! , where  !!,!(⋅) 

is its associated conditional marginal density (either a normal, skewed normal, Student’s 

t or Skewed Student’s t distribution). 

 Let !!!! = !!,!!!,!!,!!!,… ,!!,!!! ′ denote a vector of PITs, and !! denote a 

multivariate copula density associated with the one-step-ahead density forecasts. The 

out-of-sample log-likelihood score is defined as:    

(3.21) !!!! = log  !!,! !!,!!!!
!!! + log !! !!!!  

The expression in equation (3.21) is derived from the fact that any joint log-likelihood 

can be decomposed into the log-likelihood of each marginal distribution, 

log  !!,! !!,!!! , and log-likelihood of a multivariate copula log !! !!!! . Because the 

two competing copula-based multivariate density models are constructed using the same 

marginal distributions, the difference in their out-of-sample likelihood scores, 

!!!! = !!!!! − !!!!! , is given by: 

(3.22) !!!! = log !!(!) !!!! − log !!(!) !!!!  

                                                

37 This is an extension of the in-sample pseudo-likelihood ratio testing approach of Chen and Fan (2006) 
and Patton (2006).  
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 To test the null hypothesis of equal out-of-sample likelihood scores (i.e., 

! !!!! = 0), the following test statistic is calculated38: 

(3.23) ! = !

!!!/!
 

where ! is the total number of out-of-sample forecasts, ! = (1/!) !!!
!!!  is the 

sample average of the score differences, !!! is a standard estimate of the 

heteroskedasticity and autocorrelation consistent (HAC) variance of  !!. More 

specifically, !!! is calculated as: !!! = !! + 2 !!!!!
!!! !!, where !! = !"#(!! ,!!!!) is 

the lag-! sample autocovariance of the sequence !! !!!
!  and !! = 1− (!/!) is the 

Bartlett weights (Bartlett 1950) with ! = !!/! .   

Giacomini and White (2006) show that ! has an asymptotic standard normal 

distribution under the null of equal predictive accuracy. A significantly positive 

(negative) average score difference suggests that the copula specification !!(!) performs 

significantly better (worse) than the copula specification !!(!). In addition, as discussed in 

Diks, Panchenko, and van Dijk (2010), the average of !!!! across the out-of-sample 

period can be interpreted as measuring the Kullback-Leibler divergence (Kullback and 

Leibler 1951) or the divergence between the true density and the candidate density. 

Therefore, the sign of ! also indicates which of the two copula specifications produces 

forecasts that are closer to the true density.  

 

                                                

38 This is a Diebold-Mariano type statistic (Diebold and Mariano 1995).   
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Table 3.2. Average log-likelihood (LLH), Akaike Information Criterion (AIC), 
Schwarz’s Bayesian Information Criterion (BIC), and number of parameters for 
the five multivariate copula models 
Model LLH AIC BIC 
Panel A: Normal marginal distributions 
CVC 307.26 -570.08 -511.3 
DVC 306.95 -569.33 -510.39 
RVC 307.93 -571.21 -512.17 
SGC 275.29 -508.59 -453.05 
SSC 287.60 -531.19 -473.02 
Panel B: Skewed normal marginal distributions 
CVC 304.03 -563.78 -505.25 
DVC 303.75 -563.19 -504.61 
RVC 304.52 -564.71 -506.09 
SGC 272.30 -502.61 -447.07 
SSC 283.05 -522.10 -463.93 
Panel C: Student's t marginal distributions 
CVC 311.12 -577.38 -518.05 
DVC 310.40 -575.85 -516.44 
RVC 311.06 -577.17 -517.73 
SGC 278.46 -514.92 -459.39 
SSC 292.91 -541.82 -483.64 
Panel D: Skewed Student's t marginal distributions 
CVC 306.16 -567.77 -508.85 
DVC 305.89 -567.16 -508.17 
RVC 306.49 -568.38 -509.41 
SGC 274.68 -507.36 -451.83 
SSC 287.18 -530.37 -472.19 

Notes: Each multivariate copula model is estimated using a rolling window approach with an estimation 
window of 104 weeks. The total number of estimation windows is 906 windows. Panels A, B, C, and D 
report the in-sample fit results for the five copula models with normal, skewed normal, Student’s t, and 
skewed Student’s t marginal distributions, respectively. CVC, DVC, RVC, SGC, and SSC denote the 
canonical vine copula, drawable vine copula, regular vine copula, standard Gaussian copula, and standard 
Student’s t copula models.  
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3.4 Empirical Results 

This section first reports the in-sample fit of the five multivariate copula models: 

the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 

(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) models. 

The marginal distributions are either modeled as a normal, skewed normal, Student’s t, 

or skewed Student’s t distribution. The section then proceeds to present our calibration 

test results. Then, comparisons of predictive accuracy are made across competing 

multivariate copula specifications.  

 

3.4.1 In-Sample Fit 

 Table 3.2 presents the average log-likelihood (LLH), Akaike Information 

Criterion (AIC), and BIC values of the three vine copula models – CVC, DVC, and RVC 

models – and the two standard multivariate copula models – SGC and SSC models. The 

average values of LLH, AIC, and BIC are calculated across the 906 estimation windows. 

Panels A, B, C, and D reports the results for the five multivariate copula models with 

normal, skewed normal, Student’s t, and skewed Student’s t marginal distributions, 

respectively. On average, the three vine copula models provide a better fit (based on 

LLH, AIC, and BIC values) than the two standard copula models regardless of the 

choices of marginal distributions. Thus, from an in-sample perspective, the vine copula 

models give a superior fit over the more restrictive standard copula models. Comparing 

across the four types of marginal distributions, both AIC and BIC favor the copula 

models with Student’s t marginal distributions. Among all considered models, the CVC 
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model with Student’s t marginal distributions has the highest average LLH value, and 

smallest average AIC and BIC values. Nevertheless, The CVC, DVC, and RVC models 

have roughly the same average AIC and BIC values. Therefore, we could not 

discriminate among the CVC, DVC, and RVC models based on their in-sample fit.   

 

3.4.2 Calibration Test Results 

 We next consider the calibration tests discussed in Section 3.3.3. We start by 

inspecting the closeness of the calibration plots of the five copula-based density forecast 

models to the 45° line. Figures 3.5-3.11 display the calibration plots for the density 

forecasts of the seven energy commodity returns based on CVC, DVC, RVC, SGC, and 

SCC models with Student’s t marginal distributions39. As can be observed from Figures 

3.5-3.11, the calibrations plots from the five copula models do not show any significant 

departure from the 45° line. This indicates that the density forecasts from these models 

seem to be well calibrated. More importantly, the density forecasts from the three vine 

copula models are very close in accuracy to the density forecasts from the two standard 

copula models. That is, based on the visual inspection of the calibration plots, the more 

advanced multivariate copula models do not help produce better one-step-ahead density 

forecasts of energy commodity returns than the standard multivariate copula models. 

Nevertheless, it is still too early to draw any solid conclusions on the importance of 

                                                

39 Calibration plots of the five copula-based models with normal, skewed normal, and skewed Student’s t 
marginal distributions are provided in Appendix B (Figures B.1-B.21). 
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modeling heterogeneous dependence structures in the context of forecasting the 

distributions of energy commodity returns. 

 

 

Figure 3.5. Calibration plots for the density forecasts of crude oil returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with Student's t marginal distributions 
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Figure 3.6. Calibration plots for the density forecasts of diesel fuel returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with Student's t marginal distributions 
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Figure 3.7. Calibration plots for the density forecasts of gasoline returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with Student's t marginal distributions 
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Figure 3.8. Calibration plots for the density forecasts of heating oil returns based 
on the canonical vine copula (CVC), drawable vine copula (DVC), regular vine 
copula (RVC), standard Gaussian copula (SGC), and standard Student’s t copula 
(SSC) models with Student's t marginal distributions 
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Figure 3.9. Calibration plots for the density forecasts of jet fuel returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with Student's t marginal distributions 
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Figure 3.10. Calibration plots for the density forecasts of natural gas returns based 
on the canonical vine copula (CVC), drawable vine copula (DVC), regular vine 
copula (RVC), standard Gaussian copula (SGC), and standard Student’s t copula 
(SSC) models with Student's t marginal distributions 
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Figure 3.11. Calibration plots for the density forecasts of propane returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with Student's t marginal distributions 
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Table 3.3. Pearson’s chi-square test statistic 
Model Crude Oil Diesel Fuel Gasoline Heating Oil Jet Fuel Natural Gas Propane 
Panel A: Normal marginal distributions 

   CVC 27.687 14.442 15.678 14.530 15.060 23.757 22.698 
DVC 30.291* 13.912 18.680 12.057 14.265 20.490 20.490 
RVC 31.616* 14.795 18.106 15.104 14.618 24.861 22.698 
SGC 27.201 7.996 16.826 11.660 13.868 24.905 26.274 
SSC 27.863 8.658 17.311 12.587 12.411 25.876 26.141 
Panel B: Skewed normal marginal distributions 

   CVC 18.724 10.336 26.715 17.091 27.068 46.904** 42.653** 
DVC 21.461 12.543 31.400* 17.576 27.157 55.810** 48.702** 
RVC 20.534 10.159 28.834 16.826 24.155 57.179** 41.196** 
SGC 15.898 10.777 26.406 14.353 24.905 45.258** 47.731** 
SSC 14.883 9.673 25.126 14.971 24.508 45.700** 44.066** 
Panel C: Student's t marginal distributions 

   CVC 35.634* 19.872 19.475 17.267 21.859 16.649 14.221 
DVC 27.951 16.737 22.698 15.854 20.446 14.486 20.137 
RVC 31.748* 22.653 25.611 16.252 20.358 20.976 19.960 
SGC 31.042* 14.132 24.331 15.854 24.287 22.124 20.402 
SSC 25.832 14.927 22.477 15.722 21.461 22.918 20.269 
Panel D: Skewed Student's t marginal distributions 

   CVC 22.962 21.152 22.389 19.431 19.960 26.494 33.559* 
DVC 20.137 16.561 23.536 15.545 21.064 29.232 34.088* 
RVC 20.490 16.384 23.757 16.737 23.713 28.613 33.249* 
SGC 12.278 16.201 24.817 18.768 20.799 24.155 36.737** 
SSC 12.057 16.958 27.863 17.841 21.638 23.448 28.525 

Notes: The number of subintervals for the Pearson’s chi-square test is 20. * and ** denote the rejection of 
the null hypothesis of good calibration (or uniformity) at the 5% and 1% significance levels. Panels A, B, 
C, and D report the Person’s chi-square test results for the five copula models with normal, skewed 
normal, Student’s t, and skewed Student’s t marginal distributions, respectively. CVC, DVC, RVC, SGC, 
and SSC denote the canonical vine copula, drawable vine copula, regular vine copula, standard Gaussian 
copula, and standard Student’s t copula models. 
 

 As discussed in Section 3.3.3, a correctly specified density forecast model should 

produce a PIT series (that is, a !!,! series) that is independently and uniformly distributed 

over the support of [0,1]. This also implies that a series of the inverse normal cumulative 

distribution function of the PITs (i.e., a !!,! series) generated by any correctly specified 

density forecast model should be i.i.d. !(0,1). In particular, a necessary condition for 

any multivariate density forecast model to be ideal requires that the seven !!,! series are 
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each uniformly distributed or, equivalently, the seven !!,! series are each normally 

distributed (Diebold, Hahn, and Tay 1999). The test statistics from the Pearson’s chi-

square test of uniformity of the !!,! series are given in Table 3.3, whereas the test 

statistics from the Anderson-Darling (AD) test of normality of the !!,! series are reported 

in Table 3.440.  

Both Pearson’s chi-square and AD tests reveal that the forecast accuracy largely 

based on the choices of marginal distributions. For copula models with normal marginal 

distributions, the CVC, SGC and SSC models pass the Pearson’s chi-square test of good 

calibration at the 5% significance level (Table 3.3, Panel A). Nevertheless, none of these 

models pass the AD test of normality at any conventional significance level (Table 3.4, 

Panel A). In addition, incorporating skewness within the normal marginal distributions 

seems to be unproductive. As can be seen from Table 3.3 (Panel B) and Table 3.4 (Panel 

B), all the five copula models deliver unsatisfactory results. More specifically, the null 

hypothesis of uniformity is rejected at the 1% significance level for natural gas and 

propane return series, and the null of normality is rejected at the 5% significance level 

for all energy commodity return series. This is not totally surprising because each return 

series is only slightly skewed (see Table 3.1, Panel A).  

 

                                                

40D’Agostino and Stephens (1986) suggest the number of subintervals to be around 1.88!!/!, where ! is 
the number of data points. In this study, the number of subintervals used for calculating the Pearson’s chi-
square test statistics is 20.  
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Table 3.4. Anderson-Darling (AD) test of normality 
Model Crude Oil Diesel Fuel Gasoline Heating Oil Jet Fuel Natural Gas Propane 
Panel A: Normal marginal distributions 

   CVC 1.709** 0.892* 1.329** 0.556 1.324** 3.391** 2.846** 
DVC 1.727** 0.937* 1.540** 0.539 1.278** 3.514** 3.061** 
RVC 1.664** 0.871* 1.417** 0.513 1.283** 3.309** 3.139** 
SGC 1.790** 1.121** 1.409** 0.572 1.498** 3.438** 3.124** 
SSC 1.707** 1.031* 1.394** 0.559 1.477** 3.394** 3.026** 
Panel B: Skewed normal marginal distributions 

   CVC 2.015** 1.077** 1.416** 0.844* 1.961** 2.600** 4.076** 
DVC 2.010** 1.103** 1.609** 0.805* 1.773** 2.808** 4.364** 
RVC 1.898** 1.089** 1.545** 0.765* 1.810** 2.703** 4.473** 
SGC 2.082** 1.277** 1.554** 0.767* 2.102** 2.803** 4.502** 
SSC 2.160** 1.191** 1.611** 0.760* 2.037** 2.755** 4.227** 
Panel C: Student's t marginal distributions 

   CVC 1.042* 0.170 0.505 0.191 0.356 0.639 0.503 
DVC 1.060** 0.190 0.765 0.208 0.370 0.619 0.498 
RVC 1.022* 0.178 0.531 0.216 0.376 0.510 0.419 
SGC 0.857* 0.205 0.472 0.228 0.412 0.521 0.404 
SSC 0.851* 0.167 0.478 0.208 0.382 0.530 0.384 
Panel D: Skewed Student's t marginal distributions 

   CVC 0.605 0.211 0.459 0.324 0.713 1.002* 0.794* 
DVC 0.818* 0.191 0.574 0.283 0.710 1.478** 0.943* 
RVC 0.662 0.170 0.519 0.296 0.721 1.057** 0.776* 
SGC 0.712 0.240 0.518 0.303 0.812* 1.083** 0.703 
SSC 0.735 0.182 0.534 0.300 0.787* 1.174** 0.662 

Notes: This table presents the test statistics from the Anderson-Darling (AD) tests of normality of the 
inverse normal cumulative distribution function of probability integral transforms (PITs) for the seven 
weekly energy commodity returns. * and ** denote the rejection of the null hypothesis of normality at the 
5% and 1% significance levels. Panels A, B, C, and D report the test results for the five copula models 
with normal, skewed normal, Student’s t, and skewed Student’s t marginal distributions, respectively. 
CVC, DVC, RVC, SGC, and SSC denote the canonical vine copula, drawable vine copula, regular vine 
copula, standard Gaussian copula, and standard Student’s t copula models. 
 

 For copula models with Student’s t marginal distributions, only the DVC and 

SSC models pass the Pearson’s chi-square test at the 5% significance level (Table 3.3, 

Panel C). Similar to the case of normal marginal distributions, none of these models pass 

the AD test of normality at the 5% significance level (Table 3.4, Panel C). Nevertheless, 

for the case of Student’s t marginal distributions, the null hypothesis of normality is 

rejected only for crude oil return series. In addition, all models, but the DVC model, 
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marginally pass the AD test at the 1% significance level. Therefore, allowing for heavy 

tails in the marginal distributions seems to help improve forecast accuracy. For copula 

models with skewed Student’s t marginal distributions, the Pearson’s chi-square test 

suggests that only the SSC model delivers satisfactory density forecasts, and the AD test 

reveals that none of the models produce correct multivariate density forecasts (Tables 

3.3 and 3.4, Panel D). This confirms the previous result that incorporating asymmetric 

marginal distributions (when unnecessary) can lead to less reliable density forecasts. 

Overall, based on the Pearson’s chi-square and AD tests, the SSC model with Student’s t 

marginal distributions performs relatively better than all other models under 

consideration. Moreover, it seems that forecast quality of each copula model depends 

largely upon the choices of marginal specifications.  

 We then turn to the tests of independence. Table 3.5 presents the results of the 

Ljung-Box test for autocorrelation in the !!,! series up to lag four. Except for copula 

models with skewed normal distributions, all copula models pass the Ljung-Box test of 

independence at the 5% significance level. Table 3.6 displays the results of the 

Berkowitz (2001) test of independence of the !!,! series. The likelihood ratio statistics 

indicate that the copula models with normal and Student’s t marginal distributions 

produce satisfactory multivariate density forecasts because the null hypothesis of 

independence cannot be rejected at any conventional significance level. Putting this 

together with our previous results on uniformity of !!,! series (or normality of !!,! 

series), the SSC model with Student’s t marginal distributions is superior to the other 

copula models under consideration.  
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Table 3.5. Test of independence of the probability integral transform (PIT) series 
Model Crude Oil Diesel Fuel Gasoline Heating Oil Jet Fuel Natural Gas Propane 

Panel A: Normal marginal distributions 
   CVC 3.022 3.438 1.488 0.711 0.281 6.880 7.262 

DVC 3.069 3.379 1.531 0.719 0.273 6.918 7.381 
RVC 2.953 3.388 1.463 0.702 0.269 6.903 7.335 
SGC 3.134 3.434 1.511 0.711 0.285 6.838 7.433 
SSC 3.131 3.418 1.517 0.704 0.278 6.853 7.419 
Panel B: Skewed normal marginal distributions 

   CVC 2.008 3.206 2.694 0.521 0.710 14.315** 7.724 
DVC 2.043 3.174 2.684 0.512 0.699 14.232** 7.737 
RVC 2.045 3.241 2.607 0.517 0.704 14.282** 7.789 
SGC 2.106 3.257 2.706 0.528 0.733 14.988** 7.849 
SSC 2.099 3.255 2.730 0.531 0.741 15.083** 7.845 
Panel C: Student's t marginal distributions 

   CVC 2.201 2.510 1.867 0.310 0.144 4.557 5.323 
DVC 1.075 2.759 2.072 0.349 0.207 5.388 6.088 
RVC 2.013 2.409 1.871 0.332 0.143 5.596 6.525 
SGC 2.096 2.519 1.840 0.323 0.151 5.534 6.581 
SSC 2.077 2.538 1.829 0.338 0.149 5.579 6.611 
Panel D: Skewed Student's t marginal distributions 

   CVC 2.761 3.167 2.074 0.448 0.261 5.261 6.641 
DVC 1.918 2.506 2.447 0.510 0.468 5.222 6.920 
RVC 2.640 2.720 2.080 0.450 0.246 5.934 6.764 
SGC 2.795 2.732 2.069 0.465 0.263 6.024 6.821 
SSC 2.778 2.722 2.078 0.461 0.259 6.042 6.772 

Notes: This table presents the test statistics from the Ljung-Box test for autocorrelation in the PIT series 
up to lag four. ** denotes the rejection of the null hypothesis of no autocorrelation at the 1% significance 
level. Panels A, B, C, and D report the test results for the five copula models with normal, skewed normal, 
Student’s t, and skewed Student’s t marginal distributions, respectively. CVC, DVC, RVC, SGC, and SSC 
denote the canonical vine copula, drawable vine copula, regular vine copula, standard Gaussian copula, 
and standard Student’s t copula models. 
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Table 3.6. Berkowitz (2001) likelihood ratio (!!!) test of independence 
Model Crude Oil Diesel Fuel Gasoline Heating Oil Jet Fuel Natural Gas Propane 

Panel A: Normal marginal distributions 
   CVC 0.539 0.034 0.109 0.565 0.117 0.366 0.430 

DVC 0.536 0.019 0.093 0.515 0.132 0.386 0.386 
RVC 0.524 0.026 0.060 0.529 0.100 0.418 0.399 
SGC 0.524 0.040 0.088 0.509 0.106 0.374 0.422 
SSC 0.560 0.037 0.081 0.541 0.100 0.383 0.457 
Panel B: Skewed normal marginal distributions 

   CVC 0.103 0.410 0.000 0.854 0.342 5.693* 1.624 
DVC 0.082 0.310 0.000 0.811 0.318 5.858* 1.772 
RVC 0.080 0.312 0.002 0.810 0.343 6.067* 1.775 
SGC 0.103 0.361 0.000 0.772 0.336 6.000* 1.631 
SSC 0.088 0.364 0.001 0.786 0.365 6.165* 1.685 
Panel C: Student's t marginal distributions 

   CVC 0.355 0.339 0.205 0.982 0.139 0.373 0.858 
DVC 0.204 0.355 0.369 0.834 0.274 0.456 1.246 
RVC 0.380 0.274 0.190 0.949 0.078 0.560 1.205 
SGC 0.367 0.258 0.187 0.897 0.062 0.560 1.244 
SSC 0.301 0.277 0.169 0.884 0.050 0.538 1.214 
Panel D: Skewed Student's t marginal distributions 

   CVC 0.099 0.170 0.584 0.958 0.142 2.904 1.122 
DVC 0.074 0.126 0.578 0.972 0.408 5.300* 1.590 
RVC 0.063 0.116 0.474 0.906 0.089 5.348* 1.367 
SGC 0.089 0.110 0.492 0.914 0.083 5.431* 1.361 
SSC 0.068 0.129 0.492 0.985 0.111 5.575* 1.393 

Notes: This table presents the likelihood ratio (!!!) statistics from the Berkowitz (2001) test of 
independence against a first-order autoregression structure for the seven weekly energy commodity 
returns. * denotes the rejection of the null hypothesis of independence at the 5% and 1% significance 
levels. Panels A, B, C, and D report the test results for the five copula models with normal, skewed 
normal, Student’s t, and skewed Student’s t marginal distributions, respectively. CVC, DVC, RVC, SGC, 
and SSC denote the canonical vine copula, drawable vine copula, regular vine copula, standard Gaussian 
copula, and standard Student’s t copula models. 
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Table 3.7. Tests of equal predictive accuracy between two copula models 
Model DVC RVC SGC SSC 
Panel A: Normal marginal distributions 
CVC 0.193 -1.396 0.368 -3.393** 

DVC  -1.405 0.374 -3.592** 

RVC   0.854 -3.211** 

SGC    -3.407** 

Panel B: Skewed normal marginal distributions 
CVC 1.058 -1.366 1.211 -2.977** 

DVC  -2.180* 0.670 -3.324** 

RVC   1.702 -2.726** 

SGC    -3.301** 

Panel C: Student's t marginal distributions 
CVC 0.032 0.183 0.223 -3.256** 

DVC  0.107 0.271 -3.398** 

RVC   0.163 -3.555** 

SGC    -3.260** 

Panel D: Skewed Student's t marginal distributions 
CVC 0.840 -0.667 1.024 -2.776** 

DVC  -1.142 0.673 -3.114** 

RVC   1.130 -2.639** 

SGC       -3.134** 
Notes: This table presents the test statistics from the test of equal predictive accuracy between two 
competing copula models. A positive (negative) value indicates that the model to the left (above) is better 
than the model above (to the left). * and ** denote the rejection of the null hypothesis of equal predictive 
accuracy at the 5% and 1% significance levels. Panels A, B, C, and D report the test results for the five 
copula models with normal, skewed normal, Student’s t, and skewed Student’s t marginal distributions, 
respectively. CVC, DVC, RVC, SGC, and SSC denote the canonical vine copula, drawable vine copula, 
regular vine copula, standard Gaussian copula, and standard Student’s t copula models. 
 

3.4.3 Equal Predictive Accuracy Test Results 

We now consider out-of-sample comparisons of the five multivariate copula 

models. Table 3.7 presents the test statistics from the test of equal predictive accuracy 

between two competing copula models with the same marginal distributions. Based on 

the sign of the test statistics, the three vine copula models produce forecasts that are 
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closer to the true density than the standard Gaussian copula or SGC model. However, 

there is insufficient evidence to reject the null hypothesis of equal predictive accuracy 

between the SGC model and any vine copula model. Consistent with the calibration test 

results, the standard Student’s t copula or SSC model performs significantly better than 

all other copula specifications since the null hypothesis of equal predictive accuracy is 

rejected at the 1% significance level. It is also worth noting that these results are quite 

robust to marginal distribution assumptions. 

 

Table 3.8. Tests of equal predictive accuracy between two copula models for two 
sub-periods 
Model DVC RVC SGC SSC 
Panel A: First sub-period (January 15, 1999 to September 21, 2007) 
CVC -1.456 -0.431 -1.606 -2.338* 

DVC  1.011 -0.007 -2.026* 

RVC   -0.951 -2.389* 

SGC    -2.113* 

Panel B: Second sub-period (September 28, 2007 to May 27, 2016) 
CVC 1.358 0.778 0.725 -2.928** 

DVC  -0.916 0.295 -3.785** 

RVC   0.566 -3.251** 

SGC    -2.729** 
Notes: This table presents the test statistics from the test of equal predictive accuracy between two 
competing copula models. A positive (negative) value indicates that the model to the left (above) is better 
than the model above (to the left). * and ** denote the rejection of the null hypothesis of equal predictive 
accuracy at the 5% and 1% significance levels. Panels A and B report the results from the first sub-period 
and second sub-period, respectively. CVC, DVC, RVC, SGC, and SSC denote the canonical vine copula, 
drawable vine copula, regular vine copula, standard Gaussian copula, and standard Student’s t copula 
models with Student’s t marginal distributions. 

 

To examine the robustness of the results, we partition our evaluation period into 

two equal parts and perform sub-period analysis. The first sub-period covers a sample 
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ranging from January 15, 1999 to September 21, 2007, and the second sub-period covers 

a sample ranging from September 28, 2007 to May 27, 2016. The equal predictive 

accuracy test results for the two sub-periods are reported in Table 3.8. For the sub-period 

analysis, we only consider the copula models with Student’s t marginal distributions. 

Similar to case of full sample, the test cannot discriminate the differences of overall 

forecasting accuracy between any vine copula model and the SGC model. Moreover, the 

results in Table 3.8 indicate that the SSC model significantly outperforms the SGC as 

well as the three vine copula models both during the first and second sub-periods. 

Therefore, overall we can conclude that the SSC model produces forecasts that are 

significantly closer to the true density than the other copula models. 

Indeed, the superior forecasting performance of the SSC model over the SGC 

model suggests that there is a statistically significant gain from allowing for the presence 

of lower and upper tail dependence among energy commodity returns. In addition, we 

find that modeling heterogeneous dependence structures between different pairs of 

energy commodity returns using vine copula models (with mixed pair-copulas) does not 

help improve quality of multivariate density forecasts of energy commodity returns. 

Nevertheless, it would be too premature to conclude that modeling heterogeneous 

dependence structures using vine copulas is not worth it when forecasting the 

multivariate density of energy commodity returns. In this study, we consider the vine 

copula models with mixed pair-copulas, and select a bivariate copula family for each 

pair of energy commodity returns according to the BIC values. Based on our pair-copula 

selection results, it turns out that one-parameter bivariate copula families are chosen for 
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almost all pair-copulas. Therefore, it is possible that the restrictive nature of the one-

parameter bivariate copulas (which impose zero dependence in either lower or upper 

tails) is indeed a reason for inferior forecasting performance of the vine copula models 

relative to the SSC copula model (which allows for non-zero, though homogeneous, 

dependence in the lower and upper tails of all pairs of returns). Thus, it would be 

interesting to also consider mixing only two-parameter bivariate copula families in the 

vine copula structure, and we leave this for future research. 

 

3.5 Conclusions 

 In this chapter, we consider the value of modeling heterogeneous dependence 

structures with vine copulas in improving one-step-ahead density forecasts for 

multivariate energy commodity returns. Specifically, we compare the forecasting 

accuracy of three vine copula models – the canonical vine copula (CVC), drawable vine 

copula (DVC), and regular vine copula (RVC) models – with the forecasting 

performance of two standard multivariate copula models – the standard Gaussian copula 

(SGC) and standard Student’s t copula (SSC) models. For all copula models, the 

marginal distribution of each return series is modeled using either a normal, skewed 

normal, Student’s t, or skewed Student’s t distribution. Our empirical analysis is based 

on weekly spot prices for seven energy commodities from January 10, 1997 to May 27, 

2016. The seven energy commodities include crude oil, diesel fuel, gasoline, heating oil, 

jet fuel, natural gas, and propane. We set aside the first 104 weeks of the data for the 

initial estimation of density forecasts, and use the last 906 weeks (the data from January 
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15, 1999 to May 27, 2016) for an out-of-sample evaluation of the competing multivariate 

copula models.  

  Our calibration test results reveal that forecast densities constructed from the 

SSC model with Student’s t marginal distributions provide a good description of the 

multivariate energy commodity returns. Moreover, this particular model is the only 

model that passes all the calibration tests (though only marginally pass the Anderson 

Darling test of normality at the 1% significance level). It is therefore superior to the 

other copula models under consideration. In addition, regardless of the marginal 

distribution assumptions, the SSC model delivers significantly higher out-of-sample 

likelihood scores than the other four multivariate copula models. In other words, the SSC 

model produces forecast densities that are significantly closer to the true density than the 

other copula models.  

We also conduct a sub-period analysis by splitting the out-of-sample period into 

two equal sub-periods. The sub-sample results confirm that the SSC model significantly 

outperforms the SGC and the three vine copula models for both sub-periods. Based on 

these results, we can conclude that there is a statistically significant gain from allowing 

for the presence of lower and upper tail dependence among energy commodity returns. 

However, modeling heterogeneous dependence structures between different pairs of 

energy commodity returns using vine copula models (with mixed pair-copulas) does not 

help improve quality of multivariate density forecasts of energy commodity returns. It 

should be noted that the inferior performance of the vine copula models might be 

explained by the fact that the one-parameter bivariate copulas are chosen by the 
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Bayesian Information Criterion for almost all pair-copulas. Therefore, it would be of 

great interest to investigate the impact of pair-copula choices in the vine copula structure 

on the forecasting performance, and we leave this for future research. 
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CHAPTER IV  

MEASURING TAIL DEPENDENCE BETWEEN AGRICULTURAL AND 

ENERGY COMMODITY MARKETS: A REGULAR VINE COPULA METHOD  

 

4.1 Introduction 

It is widely believed that the expansion of the ethanol production in the United 

States has reshaped the linkages between agricultural and energy commodity markets. 

Traditionally, agricultural and energy commodity markets have been linked through the 

input channel (in terms of production and transportation costs). Now, due primarily to 

the very rapid expansion of crop-based ethanol production in the United States, the 

agricultural and energy commodity markets are increasingly connected through the 

demand channel – mainly through the policy-driven demand for corn as an ethanol 

feedstock – rather than the input channel41. In particular, various studies have reported a 

tighter linkages between agricultural and energy commodity markets since the boom of 

the U.S. ethanol industry took off in 2006.  

For instance, Muhammad and Kebede (2009) found that from 2005 to 2008 oil 

price movements could explain more than 60 percent of the change in corn prices, 

whereas from 1990 to 2004 only about 2 percent of the change in corn prices could be 

                                                

41 Specifically, the Renewable Fuel Standard (RFS) program, created under the Energy Policy Act of 2005 
and later expanded under the Energy Independence and Security Act of 2007, is the root of cause of the 
rapid growth in corn-based ethanol production in the United States. Compared to 3.9 billion gallons of 
biofuel produced in 2005, the act requires that 36 billion gallons be produced in 2022. Of the 36 billion 
gallons of biofuels, at least 21 billion gallons must come from advanced biofuels and the remainder, at 
most 15 billion gallons, can come from conventional biofuels such as corn-based ethanol (Schnepf and 
Yacobucci 2013).  
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explained by oil prices. In addition, Tyner (2010) showed that, for the 1988-2005 period, 

the correlation between oil and corn prices was low and negative (-0.26). However, since 

2006 there appears to be a strong and positive correlation between the prices of oil and 

corn. Indeed, Tyner (2010) reported a 0.80 (0.95) correlation between oil and corn prices 

for the period 2006 to 2008 (2008 to 2009). Hertel and Beckman (2012) also 

documented a similar change in the correlation pattern between oil and corn prices.  

Increased connection between agricultural and energy commodity markets raises 

the need for deeper understanding of the links and comovements between agricultural 

and energy commodity price returns. Over the last decade, a number of empirical studies 

have examined the interrelationship between agricultural and energy commodity 

markets42. Motivated by concurrent swings in agricultural and energy commodity prices 

experienced after the change in U.S. biofuel policies in 2006, some of these studies focus 

on the question of whether the ethanol/biofuel boom has caused a stronger dependence 

between agricultural and energy commodity prices. However, the results from these 

studies are rather mixed.  

For example, Campiche et al. (2007) showed that the prices of corn and soybean 

– the key agricultural commodities used for ethanol/biofuel production – were 

cointegrated with crude oil prices over the period of 2006-2007 but not during the period 

2003-2005. Similarly, Du and McPhail (2012), Kristoufek, Janda, and Zilberman (2012), 

and Lucotte (2016) examined the connections among the prices of agricultural and 

                                                

42 See Serra and Zilberman (2013) and Zilberman et al. (2013) for a literature review on price linkages and 
transmission patterns in biofuel-related markets. 
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energy commodities before and after the food crisis of 2007/2008, and found that their 

prices were much more closely linked after the crisis. On the contrary, Gilbert (2010) 

reported that the 2007-2008 agricultural price spikes could mostly be explained by 

macroeconomic and monetary factors, and that the biofuel demand growth was not the 

main cause of the agricultural price booms. Consistent with Gilbert (2010), Reboredo 

(2012a) investigated extreme market dependence between oil and agricultural 

commodity prices using copulas, and found that price spikes in the corn and soybean 

markets during the period 2007 to 2011 were not caused by extreme upward oil price 

movements. In addition, Baumeister and Kilian (2014) showed that there was no 

compelling evidence that the change in U.S. biofuel policies in May 2006 had created a 

tight link between oil and agricultural commodity markets.  

Despite a number of empirical studies on the agriculture-energy nexus, relatively 

little attention has been paid to the dependence structure between agricultural and energy 

commodity prices and their extreme comovements. Reboredo (2012a) and Han, Zhou, 

and Yin (2015) are among the few recent authors who analyzed tail dependence patterns 

(or extreme comovements) between the prices of agricultural and energy commodities 

during the last decade. Considering weekly data from January 1998 to April 2011, 

Reboredo (2012a) employed several bivariate copulas to study the extreme market 

dependence between oil prices and agricultural commodity prices (namely, corn, 

soybean and wheat prices). The results from his study indicate that agricultural 

commodity prices were independent of extreme upward price movements in the oil 

market even in the last three years of the sampling period. Han, Zhou, and Yin (2015) 
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investigated tail dependence between the returns on agricultural and energy commodity 

indices using a time varying symmetrized Joe-Clayton copula. Using daily data from 

January 2000 to January 2014, their results suggest that both lower and upper tail 

dependence were strongest during the financial crisis of 2008. Similar to Reboredo 

(2012a), they found that lower tail dependence is in general stronger than upper tail 

dependence. While these studies provide useful information on the dependence structure 

as well as tail dependence between two commodity markets, little is still known on the 

multivariate dependence structure of agricultural and energy commodity markets.    

Accordingly, this chapter attempts to fill the gap in the literature by analyzing the 

dependence structure among daily prices of three agricultural commodities – corn, 

soybean, and wheat – and two energy commodities – ethanol and crude oil – using a 

regular vine (or R-vine) copula methodology. The major advantage of the R-vine copula 

approach is that it allows us to capture potentially complex dependence structure and tail 

dependence patterns in a multivariate framework. Therefore, it allows us to uncover not 

only information regarding the upper and lower tail dependence between any two 

commodity markets but also information regarding the overall connections among 

multiple commodity markets. Furthermore, we add to the literature by examining 

whether and how the dependence structure and the degree of tail dependence change 

between the two periods of ethanol production: rapid growth (June 2006 to June 2011) 

and slowing growth (June 2011 to June 2016). Our findings should provide valuable 

information for practitioners, academics and policy makers regarding the linkages 

between the agricultural and energy commodity markets. In addition, as agricultural 
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commodity markets are often thought of as an alternative market for risk diversification 

purposes, the results from this study should also provide useful information for investors 

about portfolio diversification and risk management. 

The remainder of this chapter is organized as follows. Section 4.2 describes the 

data used in our analysis. Section 4.3 is devoted to explaining the regular vine copula 

methodology. Section 4.4 presents the results of the empirical analysis, and Section 4.5 

concludes the chapter.  

 

4.2 Data 

Our empirical analysis is based on daily prices for three agricultural commodity 

futures: corn, soybean and wheat futures; and two energy commodity futures: ethanol 

and crude oil futures. All prices are obtained from the Datastream database. The price 

data span from June 1, 2006 to June 30, 2016, from which a sample of daily log return 

series are constructed using the nearest futures contracts. At the rollover date, care has 

been taken to ensure that the same futures contract is used to calculate the daily log 

returns. This yields a total of 2,536 observations for each return series. Apart from 

examining the dependence structure of the five commodity markets for the whole sample 

period, we also investigate how the dependence structure and the degree of tail 

dependence change over the two sub-periods: June 2, 2006 to June 16, 2011 and June 

17, 2011 to June 30, 2016. The first sub-period corresponds to the period of rapid 

expansion of ethanol production in the United States, whereas the second sub-period 
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corresponds to the period of slowing growth in ethanol production (U.S. Energy 

Information Administration 2011). Each sub-period has a total of 1,268 observations.  

 

Table 4.1. Summary statistics and correlation analysis on daily log returns on the 
futures contracts of corn, soybean, wheat, ethanol, and oil 
  Corn Soybean Wheat Ethanol Oil 
Panel A: Summary Statistics 
Mean (%) -0.003 0.062 -0.035 0.094 -0.051 
Standard Deviation (%) 1.974 1.654 2.191 1.874 2.390 
Skewness -0.102 0.385 -0.012 -0.561 0.082 
Excess Kurtosis 1.813 10.684 1.503 5.786 3.904 
Minimum (%) -10.409 -8.141 -9.973 -16.990 -13.065 
Maximum (%) 8.6618 20.3209 8.7943 9.7525 14.5464 
JB 353.30* 12149.00* 239.93* 3678.90* 1618.20* 
ADF -36.05* -36.11* -36.23* -33.283* -36.90* 
!(1) 0.019 0.010 0.000 0.129* -0.061* 
!(5) 4.98 3.65 3.22 49.66* 16.35* 
!!(5) 167.50* 50.79* 219.80* 285.40* 699.50* 
Panel B: Correlation Matrix 
Corn 1.000 

    Soybean 0.610 1.000 
   Wheat 0.647 0.469 1.000 

  Ethanol 0.546 0.406 0.413 1.000 
 Oil 0.291 0.342 0.247 0.308 1.000 

Notes: Summary statistics (Panel A) and correlation matrix (Panel B) are presented for daily log returns on 
the futures contracts of corn, soybean, wheat, ethanol, and oil for the period June 2, 2006 to June 30, 2016. 
The total number of observations is 2,536 for each return series. JB is the Jarque-Bera test statistic, where 
* denotes the rejection of the null hypothesis of normality at the 1% significance level. ADF is the 
Augmented Dickey-Fuller test statistic, where * denotes the rejection of the null hypothesis that the 
respective return series follows a unit root process at the 1% significance level. !(1) is the first-order 
autocorrelation, where * denotes the rejection of the null hypothesis that the first-autocorrelation of the 
respective return series is equal to zero at the 1% significance level. !(5) is the Ljung-Box test statistic for 
the return series, where * denotes the rejection of the null hypothesis that there is no serial correlations in 
the return series up to order 5. !!(5) is the Ljung-Box test statistic for the squared return series, where * 
denotes the rejection of the null hypothesis that there is no ARCH effect in the return series up to order 5.  

 

 Table 4.1 reports summary statistics (Panel A) and correlation matrix (Panel B) 

for the daily log returns on the futures contracts of corn, soybean, wheat, ethanol, and oil 

for the entire sample period. For each return series, the mean is very small relative to its 
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standard deviation. As expected, oil returns are the most volatile series among the five 

commodity returns. All returns series are only slightly skewed, but have a high excess 

kurtosis (especially for the soybean, ethanol, and oil return series). The significant 

Jarque-Bera (JB) test statistics indicate that all daily log returns are not normally 

distributed. The Augmented Dickey-Fuller tests show that all commodity returns are 

stationary.  

Both first-order autocorrelation (!(1)) and Ljung-Box (!(5)) tests indicate that 

there are serial correlations in the two energy commodity returns but not in the three 

agricultural commodity returns. In addition, the Ljung-Box test statistics for the squared 

return series (!!(5)) suggest that ARCH effects (or volatility clustering) are present in 

all return series. Unconditional correlations provide evidence of weak dependence 

between oil and other commodities. More specifically, the linear correlation coefficients 

between oil and other commodities range between 0.247 (for the pair of oil and wheat 

returns) and 0.342 (for the pair of oil and soybean returns). The highest linear correlation 

is found between corn and wheat returns (0.647).   

 

4.3 Methodology 

In this chapter, we apply the R-vine copula approach to study the dependence 

structure and tail dependence (or extreme comovements) among prices of three 

agricultural commodity futures (corn, soybean, and wheat futures), and two energy 

commodity futures (ethanol and crude oil futures). The approach consists of three stages. 

The first stage involves modeling the marginal distributions for the individual 
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commodity returns. In the second stage, the R-vine copula is estimated using the 

standardized residuals obtained from the first stage. The third stage involves calculating 

the upper and lower tail dependence coefficients.   

 

4.3.1 Modeling Marginal Distributions 

In the first stage, the marginal distributions for all commodity returns are 

modeled. To account for possible serial correlation and volatility clustering in 

commodity returns, we consider four alternative GARCH models: a GARCH(1,1) model 

with a constant unconditional mean, an AR(1)-GARCH(1,1) model, an MA(1)-

GARCH(1,1) model, and ARMA(1,1)-GARCH(1,1) model. Let !!,! denote the daily log 

return for commodity !. The ARMA(1,1)-GARCH(1,1) model is specified as follows: 

(4.1) !!,! = !! + !!!!,!!! + !!!!,!!! + !!,! 

(4.2) !!,!! = !! + !!!!,!!!! + !!!!,!!!!  

(4.3) !!,! = !!,!
!!,!
~!. !.!.!(0,1) 

where !(0,1) is a zero mean and unit variance probability distribution43. For each return 

series, the mean model with the lowest Bayesian Information Criterion (BIC) is chosen. 

The series of standardized residuals, !!,!, is then transformed into a standard uniform 

variable or copula data (denoted as !!,!) using an empirical distribution function (EDF). 

The series !!,! is also referred to as filtered returns. Several goodness-of-fit tests are 

performed to ensure that the marginal distributions are appropriately specified.   
                                                

43 For the GARCH(1,1) model with a constant unconditional mean, both !! and !! are set to zero. !! is set 
to zero for the AR(1)-GARCH(1,1) model, whereas !! is set to zero for the MA(1)-GARCH(1,1) model.  
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4.3.2 Selecting and Estimating Regular Vine Copula 

The second stage involves estimating the R-vine copula using the standard 

uniform variables obtained from the first stage. Simply put, an R-vine copula is a 

multivariate distribution for which the marginal distribution of each variable is standard 

uniform. Let ! = (!!, !!, !!, !!, !!) be a five-dimensional random vector of filtered 

commodity returns (or standardized residuals in equation (4.3)) with a joint distribution 

function !(!) and a joint density function !(!). According to the Sklar’s theorem (Sklar 

1959), the joint distribution of ! can be expressed as: 

(4.4) ! ! = !(!!,!!,!!,!!,!!) 

where !: 0,1 ! → [0,1] is a copula function, and !! = !!(!!) is the marginal distribution 

function of !! for ! = 1,2,… ,5. Suppose that ! and !! are differentiable. Then, the joint 

distribution function of ! can be written as:  

(4.5) ! ! = !! !! !! !! ⋯ !!(!!) !(!!(!!),!!(!!),… ,!!(!!)  

where ! is the density of the copula and !! = !!(!!) is the density of !! = !!(!!). 

In particular, the copula function represents the dependence structure of a 

multivariate random vector of filtered commodity returns. Thus, we can use multivariate 

copulas to analyze tail dependence among multiple commodity returns. Two most 

obvious choices of multivariate copulas are the Gaussian and Student’s t copulas. 

However, the Gaussian copula cannot capture non-linear dependence between random 

variables. In other words, it assumes that the dependence pattern between each pair of 

variables does not change with market conditions. In addition, it unrealistically imposes 

independence in the tails or during extreme market movements. On the other hand, the 
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Student’s t copula allows us to capture tail dependence. However, it requires all pairs of 

random variables to have exactly the same degree of tail dependence, which seem to be 

unrealistic. Therefore, both Gaussian and Student’s t copulas are too restrictive, 

especially when modeling the dependence structure of more than two random variables. 

This chapter exploits the more flexible multivariate copula construction method 

(“pair-copula construction (PCC) method”). The PCC method was first proposed by Joe 

(1996) and further extended by Bedford and Cooke (2001, 2002) and Kurowicka and 

Cooke (2006). The idea of the PPC method begins by factorizing a joint density function 

into marginal and conditional density functions. For example, a five-dimensional density 

function can be factorized as: 

(4.6) ! !  

 = !! !! !!|! !!|!! !!|!,! !! !!, !! !!|!,!,! !! !!, !!, !! !!|!,!,!,!(!!|!!, !!, !!, !!) 

Using the Sklar’s theorem, any conditional marginal distributions in the right hand of 

equation (4.6) can be expressed as: 

(4.7) ! !! ! = !!!,!!|!!! ! !! !!! ,! !! !!! !(!!|!!!) 

with 

(4.8) ! !! ! = !!!!,!!|!!! ! !! !!! ,!(!!|!!!)
!"(!!|!!!)

 

where ! is the conditioning set of marginal distribution of !!, !! is a variable in the set !, 

and !!! is the set of variables in ! excluding !!. For example, !!|! !!|!!  can be written 

as !!,! !!,!! !!, and !!|!,! !!|!!, !!  can be expressed as !!,!|! !!|!,!!|! !!|!. 
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Accordingly, the joint density function, ! ! , can be decomposed as products of 

bivariate copula densities and marginal density function of !!.  

Obviously, the factorization in equation (4.6) is not unique. This suggests that 

there are a large number of possible PCCs from which to choose. Bedford and Cooke 

(2001) introduce a graphical structure called regular vine (or R-vine) structure to help 

organize different decompositions. In particular, a five-dimensional R-vine structure is 

defined by a sequence of four trees: !!,!!,!!,!!. !! has five nodes and four edges. 

Edges in !! then become nodes in !!. The two nodes in !! are connected by an edge 

only if they share a common node in !! (proximity condition). Edges in !! then become 

nodes in !!. Again, the two nodes in !! are connected by an edge only if they share a 

common node in !! (proximity condition). Then, edges in !! become nodes in !!, and 

the two nodes in !! are connected by an edge only if they share a common node in !!.  

The joint density function of a five-dimensional R-vine copula is given by44: 

(4.9) ! ! = !! !! ! ,!(!)|!(!)(!! ! |!(!),!! ! |!(!))!∈!!
!
!!!

!
!!!  

where !! is a set of edges in !!, !(!) and !(!) are the two (conditional) nodes associated 

with each edge !, !(!) is the conditioning set associated with edge !. An example of a 

five-dimensional R-vine structure is illustrated in Figure 4.1, and its corresponding joint 

density function is: 

(4.10) ! ! = !!!!!!!!!!!!,!!!,!!!,!!!,!!!,!|!!!,!|!!!,!|!!!,!|!,!!!,!|!,!!!,!|!,!,! 

 

                                                

44 Kurowicka and Cooke (2006) provide the derivation of the joint density of a general R-vine copula.  
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Figure 4.1. Estimated R-vine copula structure with 1 = Ethanol, 2 = Corn, 3 = 
Soybean, 4 = Oil, and 5 = Wheat 
 

 According to Morales-Nápoles, Cooke, and Kurowicka (2010), there exist 

(!!/2)× 2
!!!
!  different R-vine decompositions for the !-dimensions. Thus, there are 

480 possible R-vine structures for a five-variate density. In this study, we employ a 
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sequential estimation procedure proposed by Dißmann et al. (2013) to select and 

estimate an R-vine structure as well as its corresponding bivariate copulas. This 

procedure begins in the first tree of the R-vine structure. The structure of the first tree is 

formed by maximizing the sum of the absolute values of pairwise Kendall’s tau 

coefficients. For the first tree, this is done using the standard uniform variables obtained 

from the first stage. Given the selected structure, the pair copulas are chosen from a 

range of 39 different parametric bivariate copula families by minimizing the BIC45. 

Copula parameters are estimated using the maximum likelihood estimation (MLE) 

method. Once the first tree is specified and the pair-copula families are chosen, the same 

is done for the second, the third, and forth trees using the transformed observations, 

! !! ! , calculated from equation (4.8). 

 

4.3.3 Measuring Tail Dependence Coefficients 

In the third stage, the upper and lower tail dependence coefficients are calculated 

to measure the degree of comovements between two commodity markets at the extreme 

events. The upper and lower tail dependence coefficients for commodities ! and ! are 

defined, respectively, as: 

(4.11) !! = lim!→!! Pr !! > !!!! ! !! > !!!! ! = lim!→!!
!!!!!!(!,!)

!!!  

(4.12) !! = lim!→!! Pr !! < !!!! ! !! < !!!! ! = lim!→!!
!(!,!)
!  

                                                

45 The 39 bivariate copula families include Gaussian, Student’s t, Clayton, Gumbel, Frank, Joe, BB1 
(Clayton-Gumbel), BB6 (Joe-Gumbel), BB7 (Joe-Clayton), BB8 (Joe-Frank), Tawn type 1, Tawn type 2, 
and the rotated versions (90, 180 and 270 degrees) of Clayton, Gumbel, Joe, BB1, BB6, BB7, BB8, Tawn 
type 1, and Tawn type 2 copulas.   
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In this study, we follow Loaiza Maya, Gomez-Gonzalez, and Velandia (2015) 

and calculate the non-parametric tail dependence coefficients for all pairs of 

commodities through a simulation exercise. Specifically, the estimated R-vine copula 

density obtained from the second stage is used to generate ! = 10,000 draws of the five 

standard uniform variables, {!!,!,!!,!,!!,!,!!,!,!!,!}!!!!!!",!!!. This simulation exercise is 

replicated ! = 1,000 times. For each replication !, the upper and lower tail dependence 

coefficients are respectively estimated using the following non-parametric estimators: 

(4.13) !!! = lim!!→!!
!!!!!! !!(

!!
! ,
!!
! )

!!!!!
 

(4.14) !!! = lim!!→!!
!(!!! ,

!!
! )

!!
!

 

where !!/! and !!/! are the thresholds used in the estimation of tail dependence 

coefficients.  

Similar to Loaiza Maya, Gomez-Gonzalez, and Velandia (2015), we set 

!!/! = 0.99 and !!/! = 0.01. !(!!/! , !!/! ) is the empirical copula, which can be 

estimated using: 

(4.15) ! !!
! ,

!!
! = !

! ! !! !!,! ≤ !!
! ,!! !!,! ≤ !!

!
!
!!!  

The upper and lower tail dependence coefficients for each pair of commodities are 

calculated as !! = (1/!) !!!!
!!!  and !! = (1/!) !!!!

!!! , respectively. Confidence 

intervals for !! and !! are then constructed by computing the associated percentiles of 

their empirical distributions.  
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Table 4.2. Results for the marginal distributions 
  Corn Soybean Wheat Ethanol Oil 
Panel A: June 2, 2006 to June 30, 2016 

!! -0.000081 0.000673 -0.000700 0.000899 0.000061 

 
(0.000346) (0.000268) (0.000472) (0.000354) (0.000346) 

!! 
   

0.122495 
 

    
(0.021330) 

 !! 0.000005 0.000003 0.000003 0.000010 0.000004 

 
(0.000004) (0.000002) (0.000012) (0.000001) (0.000003) 

!! 0.057551 0.069248 0.051514 0.097183 0.072531 

 
(0.008766) (0.012372) (0.056051) (0.007071) (0.016776) 

!! 0.929596 0.921669 0.943409 0.874143 0.923088 

 
(0.010211) (0.013564) (0.063835) (0.009700) (0.018226) 

Panel B: June 2, 2006 to June 16, 2011 
!! 0.000758 0.000999 -0.000272 0.001240 0.000634 

 
(0.000599) (0.000437) (0.000662) (0.000642) (0.000568) 

!! 
   

0.819652 
 

    
(0.095655) 

 !! 
   

-0.743033 
 

    
(0.111961) 

 !! 0.000018 0.000003 0.000030 0.000010 0.000010 

 
(0.000013) (0.000003) (0.000014) (0.000002) (0.000004) 

!! 0.052156 0.070081 0.067055 0.085517 0.069174 

 
(0.021722) (0.016065) (0.018115) (0.009920) (0.004581) 

!! 0.911599 0.923528 0.885697 0.886500 0.914133 

 
(0.044301) (0.017053) (0.036075) (0.013089) (0.011326) 

Panel C: June 17, 2011 to June 30, 2016 
!! -0.000574 0.000507 -0.001067 0.000579 -0.000287 

 
(0.000409) (0.000340) (0.000458) (0.000496) (0.000431) 

!! 
   

0.156408 
 

    
(0.029782) 

 !! 0.000009 0.000005 0.000004 0.000010 0.000003 

 
(0.000001) (0.000002) (0.000003) (0.000001) (0.000004) 

!! 0.079758 0.070717 0.059687 0.105519 0.082122 

 
(0.006739) (0.007999) (0.016452) (0.009609) (0.029272) 

!! 0.890516 0.901056 0.929859 0.864721 0.915080 
  (0.011189) (0.011742) (0.019396) (0.013999) (0.030061) 

Notes: !!, !!, !!, !!, !!, and !! are the parameters of an ARMA-GARCH model (refer to equations (4.1)-
(4.3) in Section 4.3.1). Figures in parentheses are standard errors of the coefficient estimates.  
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4.4 Empirical Results 

This section first reports the estimation results for the marginal distributions for 

the individual commodity returns. The section then proceeds to present the R-vine 

copula estimation results. Finally, we discuss the tail dependence results.   

 

4.4.1 Marginal Distribution Estimation 

Table 4.2 presents the parameter estimates and standard errors of the selected 

marginal distribution models for the whole sample period (Panel A), first sub-period 

(Panel B), and second sub-period (Panel C). For all sample periods, a GARCH(1,1) 

model with a constant unconditional mean is selected for all commodity return series 

except for the ethanol return series. In other words, the mean of these series is simply 

characterized by a constant. For the ethanol return series, the AR(1)-GARCH(1,1) model 

is chosen for both the whole sample period and the second sub-period, whereas the 

ARMA(1,1)-GARCH(1,1) model is selected for the first sub-period. This implies that it 

is necessary to include at least the autoregressive part to capture the strong serial 

correlation in ethanol return series (see Table 4.1). 

It is crucial that the marginal distribution models are well specified as marginal 

distribution misspecification can result in copula misspecification (Fermanian and 

Scaillet 2005; Patton 2006). Hence, we apply several goodness-of-fit tests to confirm the 

adequacy of the chosen marginal distribution models. These tests include the Ljung-Box 

tests of lack of autocorrelation in the standardized residuals and the squared standardized 

residuals, the Engle’s (1982) Lagrange Multiplier (LM) test of lack of the ARCH effect 
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in the standardized residuals, the LM tests of serial independence (Patton 2006) of the 

first four moments of transformed standardized residuals or copula data, and the 

Kolmogorov-Smirnov test of uniformity of the copula data. The !-values of these tests 

are reported in Table 4.3. All selected model pass all the tests at the 5% significance 

level, confirming that the marginal distribution models are appropriately specified.   

 

Table 4.3. Tests of the marginal distribution specifications   
  Corn Soybean Wheat Ethanol Oil 
Panel A: June 2, 2006 to June 30, 2016 
!"#(10) on standardized residuals 0.4082 0.8349 0.6927 0.0743 0.8354 
!"#(10) on squared standardized residuals 0.4045 0.8970 0.7161 0.5112 0.4621 
LM on squared standardized residuals 0.4674 0.9999 0.9988 0.8637 0.9999 
1st moment LM test on copula data 0.9671 0.9985 0.9875 0.6815 0.9925 
2nd moment LM test on copula data 0.8132 0.9988 0.9906 0.9604 0.9992 
3rd moment LM test on copula data 0.9950 0.8702 0.9986 0.7620 0.9999 
4th moment LM test on copula data 0.8224 0.9999 0.9993 0.9801 0.9996 
Kolmogorov-Smirnov test 0.6822 0.7262 0.9980 0.7979 0.9999 
Panel B: June 2, 2006 to June 16, 2011 
!"#(10) on standardized residuals 0.6057 0.7866 0.8894 0.2533 0.9619 
!"#(10) on squared standardized residuals 0.9428 0.9389 0.6479 0.6073 0.9208 
LM on squared standardized residuals 0.9985 0.9999 0.8941 0.9715 0.9999 
1st moment LM test on copula data 0.9814 0.9999 0.9999 0.8763 0.9987 
2nd moment LM test on copula data 0.9996 0.9906 0.8359 0.9222 0.9831 
3rd moment LM test on copula data 0.9987 0.9933 0.9998 0.9801 0.9999 
4th moment LM test on copula data 0.9975 0.9979 0.9833 0.9001 0.9973 
Kolmogorov-Smirnov test 0.8678 0.9077 0.9999 0.9434 0.9999 
Panel C: June 17, 2011 to June 30, 2016 
!"#(10) on standardized residuals 0.6295 0.1879 0.6947 0.3067 0.2957 
!"#(10) on squared standardized residuals 0.6066 0.9984 0.9683 0.2099 0.3586 
LM on squared standardized residuals 0.7322 0.9999 0.9999 0.8232 0.9999 
1st moment LM test on copula data 0.9481 0.9080 0.9646 0.9073 0.9593 
2nd moment LM test on copula data 0.9506 0.9064 0.9868 0.8612 0.9985 
3rd moment LM test on copula data 0.9457 0.6591 0.9957 0.9543 0.9808 
4th moment LM test on copula data 0.9274 0.9978 0.9976 0.8337 0.9983 
Kolmogorov-Smirnov test 0.8678 0.9077 0.9999 0.9434 0.9999 

Notes: The table reports the !-values from the Ljung-Box (!"#) tests on standardized residuals and on 
squared standardized residuals, the Engle’s (1982) Lagrange Multiplier (LM) tests on squared 
standardized residuals, the LM tests of serial independence (Patton 2006) of the first four moments of 
copula data or transformed standardized residuals, and the Kolmogorov-Smirnov test of uniformity of the 
copula data.  
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Table 4.4. Results for the regular vine copula models 
  Pair-Copula Para1 SE1 Para2 SE2 
Panel A: June 2, 2006 to June 30, 2016 
(Corn, Soybean) t 0.601 0.013 7.035 1.150 
(Corn, Wheat) t 0.651 0.011 7.775 1.241 
(Corn, Ethanol) t 0.602 0.014 4.218 0.451 
(Corn, Oil|Ethanol) Gaussian 0.074 0.020 - - 
(Soybean, Wheat| Corn) Survival Gumbel 1.072 0.014 - - 
(Soybean, Ethanol| Corn) Frank 0.680 0.121 - - 
(Soybean, Oil| Corn, Ethanol) Clayton 0.222 0.027 - - 
(Wheat, Ethanol| Corn, Soybean) Survival Clayton 0.074 0.021 - - 
(Wheat, Oil| Corn, Soybean, Ethanol) Frank 0.064 0.119 - - 
(Ethanol, Oil) Gaussian 0.319 0.017 - - 
Panel B: June 2, 2006 to June 16, 2011 
(Corn, Soybean) t 0.649 0.017 5.991 1.240 
(Corn, Wheat) t 0.646 0.016 8.437 2.170 
(Corn, Ethanol) t 0.583 0.021 3.091 0.374 
(Corn, Oil|Ethanol) Gaussian 0.137 0.027 - - 
(Soybean, Wheat| Corn) Survival Gumbel 1.104 0.021 - - 
(Soybean, Ethanol| Corn) Gaussian 0.117 0.027 - - 
(Soybean, Oil| Corn, Ethanol) Frank 1.346 0.170 - - 
(Wheat, Ethanol| Corn, Soybean) Clayton 0.081 0.032 - - 
(Wheat, Oil| Corn, Soybean, Ethanol) Frank 0.371 0.168 - - 
(Ethanol, Oil) Survival Gumbel 1.351 0.029 - - 
Panel C: June 17, 2011 to June 30, 2016 
(Corn, Soybean) BB1 0.240 0.056 1.409 0.044 
(Corn, Wheat) t 0.663 0.015 8.410 1.958 
(Corn, Ethanol) Survival BB1 0.260 0.058 1.547 0.050 
(Corn, Oil|Ethanol) Gumbel 1.005 0.015 - - 
(Soybean, Wheat| Corn) Gaussian 0.080 0.028 - - 
(Soybean, Ethanol| Corn) Gumbel 1.054 0.017 - - 
(Soybean, Oil| Corn, Ethanol) Survival Gumbel 1.102 0.021 - - 
(Wheat, Ethanol| Corn, Soybean) Survival Clayton 0.098 0.031 - - 
(Wheat, Oil| Corn, Soybean, Ethanol) Rotated Gumbel (90º) -1.022 0.018 - - 
(Ethanol, Oil) Gaussian 0.220 0.026 - - 

 

4.4.2 Regular Vine Copula Estimation 

 The selected R-vine copula structure for the whole and two sub-sample periods is 

presented in Figure 4.1, and the estimated parameters of the corresponding bivariate 

copulas are given in Table 4.4. While different pair-copula families (i.e., dependence 

patterns) are chosen for the two sub-sample periods, the R-vine structure – the 
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connection structure between agricultural and energy commodity markets – remains the 

same during and after the period of rapid growth of U.S. ethanol production46. In 

particular, we find that the ethanol market has established a link between the corn and 

crude oil markets (see the first tree in Figure 4.1). This result is consistent with the 

findings of Tyner (2010) who uses price correlations between (1) corn and crude oil, and 

(2) corn and ethanol during different time periods to show that the prices of corn and 

crude oil are connected through the ethanol market. The interaction between corn and 

crude oil markets through the ethanol market is likely explained by the increased use of 

corn as ethanol feedstock induced by the Renewable Fuel Standard (RFS) mandate 

(Schnepf and Yacobucci 2013).  

As can be seen from Table 4.4, almost all the parameters of the conditional and 

unconditional bivariate copulas are statistically significant at the 5% level. The only 

exception is the parameter of the conditional pair-copula !Wheat, Oil| Corn, Soybean, Ethanol for 

the case of the whole sample period. Given the selected unconditional copulas, we find 

that dependence patterns between the returns of (1) corn and soybean, (2) corn and 

wheat, and (3) corn and ethanol are all captured by two-parameter copula families. 

These results indicate that there are strong co-movements between corn and these 

commodity markets during both extreme market downturns and upturns. In particular, 

the heavy-tailed Student’s t copula is chosen for the three pairs of commodity returns 

during the period of rapid growth in U.S. ethanol production (June 2, 2006 to June 16, 

                                                

46 Recall that the R-vine structure is selected based on maximum spanning trees with the absolute values of 
pairwise Kendall’s tau coefficients as weights.  
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2011). This implies that the degree of tail dependence is the same in both the upper and 

lower tails for these commodity pairs. During the period of slowing growth in ethanol 

production (June 17, 2011 to June 30, 2016), the dependence pattern between corn and 

wheat is still best characterized by the Student’s t copula. However, the BB1 and 

Rotated BB1 (180 degrees; “Survival BB1”) copulas are selected for the corn-soybean 

and corn-ethanol pairs, respectively. Given the estimated parameters, the upper (lower) 

tail appears to be somewhat heavier (lighter) than the lower (upper) tail for the corn-

soybean (corn-ethanol) pair during the second sub-period47.   

For the unconditional dependence patterns between ethanol and crude oil, the 

Rotated Gumbel (180 degrees; “Survival Gumbel”) copula is selected for the first sub-

period whereas the Gaussian copula is chosen for the second sub-period. This implies 

that, during the period of rapid expansion of ethanol production, ethanol and crude oil 

returns are more highly correlated in periods of market downturns than in periods of 

market upturns. Nonetheless, after the period of rapid growth of ethanol production, 

ethanol and crude oil returns seem to be somewhat independent during extreme market 

movements. For the other pairs of commodity returns, the (conditional) dependence 

patterns are all modeled with one-parameter copula families. Because the estimated 

parameters of these conditional bivariate copulas are difficult to interpret, we derive the 

easier-to-interpret unconditional estimates of tail dependence coefficients using the 

                                                

47 Refer to Example 5.1 in Joe and Hu (1996) for the relationship between copula parameters and tail 
dependence coefficients of two-parameter families of Archimedean copulas.  
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simulation-based method described in Section 4.3.3. The results from the simulation 

exercise are discussed in the next section.   

 

4.4.3 Tail Dependence Coefficients 

The upper (lower) tail dependence coefficients are reported in the upper (lower) 

triangular parts of the matrix in Table 4.5. The upper (lower) tail dependence coefficient 

measures the probability that we will observe a large price hike (decline) in one 

commodity market, given that the price of another commodity also has had increased 

(decreased) significantly. Based on the results for the whole sample period, we find that 

the upper tail dependence coefficients are statistically significant at the 5% level for only 

four pairs of commodities: corn-soybean, corn-wheat, corn-ethanol, and ethanol-oil. The 

lower tail dependence coefficients are all statistically significant at the 5% level. This 

indicates that all commodity markets are significantly correlated during extreme market 

downswings. During both extreme market upturns and downturns, the most highly 

correlated markets are the corn and ethanol markets (!! = 0.3435; !! = 0.3442), 

whereas the least highly correlated markets are the wheat and crude oil markets 

(!! = 0.0411; !! = 0.0466).   

 The results for the two sub-periods show that, during the market upturns, the corn 

market is significantly linked with the soybean, wheat, and ethanol markets. However, 

the upper tail dependence coefficients are insignificant for any other pairs of commodity 

markets. Comparing the upper tail dependent coefficients for the two sub-periods, we 

find that the degree of comovements between the returns of (1) corn and soybean and (2) 
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corn and wheat remain relatively stable. Nonetheless, the degree of upper tail 

dependence between corn and ethanol returns is stronger during the first sub-period than 

during the second sub-period (!! = 0.3728 versus !! = 0.2741). This indicates that the 

probability of simultaneous jumps in the prices of corn and ethanol has fallen as the 

ethanol market becomes more mature. While insignificant in both sub-periods, it is 

worth noting that the degree of upper tail dependence between crude oil and other 

commodity markets becomes even weaker during the period of slowing growth in U.S. 

ethanol production.   

 

Table 4.5. Upper and lower tail dependence coefficients  
  Corn Soybean Wheat Ethanol Oil 
Panel A: June 2, 2006 to June 30, 2016 
Corn 

 
0.2844* 0.3139* 0.3435* 0.0534 

Soybean 0.2877* 
 

0.1581 0.1704 0.0445 
Wheat 0.3128* 0.2175* 

 
0.1908 0.0411 

Ethanol 0.3442* 0.1737* 0.1722* 
 

0.0665* 
Oil 0.0487* 0.1150* 0.0466* 0.0600* 

 Panel B: June 2, 2006 to June 16, 2011 
Corn 

 
0.3358* 0.3035* 0.3728* 0.0520 

Soybean 0.3378* 
 

0.1840 0.2080 0.0573 
Wheat 0.3023* 0.2576* 

 
0.1764 0.0447 

Ethanol 0.3748* 0.2110* 0.2008* 
 

0.0504 
Oil 0.2093* 0.1615* 0.1350* 0.3326*   
Panel C: June 17, 2011 to June 30, 2016 
Corn 

 
0.3696* 0.3153* 0.2741* 0.0349 

Soybean 0.2288* 
 

0.1900 0.2063 0.0391 
Wheat 0.3176* 0.1383* 

 
0.1772 0.0243 

Ethanol 0.4393* 0.1633* 0.2123* 
 

0.0403 
Oil 0.0302 0.1111* 0.0222 0.0362   

Notes: Upper and lower tail dependence coefficients are respectively reported in the upper and lower 
triangular parts of the matrix, where * indicates the rejection of the null hypothesis that the respective tail 
dependence coefficient is equal to zero at the 5% significance level. 
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 In addition, the lower tail dependence results indicate that all pairs of commodity 

markets are significantly correlated during the market downturns for the first sub-period 

but not for the second sub-period. For the second sub-period, the lower tail dependence 

coefficients are significant at the 5% level for most commodity pairs, except for the oil-

corn, oil-wheat, and oil-ethanol pairs. While the lower tail dependence coefficients 

between oil and soybean markets are statistically significant for both sub-periods, the 

degree of dependence is weaker during the second sub-period than during the first sub-

period. Similar to the results for the upper tail dependence, these findings suggest that 

the lower tail dependence between crude oil and other commodity markets starts to 

disappear in the recent years. Furthermore, we find that crude oil and other commodity 

returns are more dependent during extreme market downturns than during extreme 

market upturns for the first sub-period. However, during the second sub-period, we find 

neither asymmetric nor tail dependence between crude oil and most commodity markets 

(namely, corn, wheat, and ethanol). This empirical evidence regarding the change in the 

link between crude oil and agricultural commodity markets may be explained by the 

recent stability and slight drawdowns in ethanol production in the United States.  

 

4.5 Conclusions 

In this chapter, we analyze the dependence structure and tail dependence patterns 

among prices of three agricultural commodity futures (corn, soybean, and wheat futures) 

and two energy commodity futures (ethanol and crude oil futures) from June 2, 2006 to 

June 30, 2016. Based on the results for the whole sample period, we find that the prices 
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of corn and crude oil are linked through the ethanol market, and this is likely explained 

by the increased demand for corn as an ethanol feedstock. In addition, our empirical 

results indicate that crude oil and agricultural commodity prices are statistically 

dependent during the extreme market downturns but independent during the extreme 

market upturns. This evidence is consistent with Reboredo (2012a) who reported that oil 

and agricultural commodity prices tend to move independently during market upswings.   

 We also examine whether and how the dependence structure and the degree of 

tail dependence evolve over the two periods of ethanol production: rapid growth (June 2, 

2006 to June 16, 2011) and slowing growth (June 17, 2011 to June 30, 2016). Based on 

our sub-sample analysis, we uncover several interesting results. First, crude oil and 

agricultural commodity markets are connected through the ethanol market during both 

sub-periods. Second, the connection between the corn and ethanol markets during the 

extreme market upturns is stronger in the period of rapid growth than the period of 

slowing growth. Third, during the extreme market upswings, the prices of crude oil and 

other four commodities tend to move more independently in the slowing growth period. 

Forth, all commodity prices are likely to move together when markets experience 

downward movements in the first sub-period, but not in the second sub-period. In 

particular, in the second sub-period, the lower tail dependence coefficients are 

statistically significant for most commodity pairs, except for the oil-corn, oil-wheat, and 

oil-ethanol pairs. Finally, the lower tail dependence between crude oil and other 

commodity markets starts to disappear in the recent years when the ethanol market 

became more mature. Our findings regarding the change in the degree of connectedness 
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between crude oil and agricultural commodity markets during the extreme market 

upturns and downturns should provide useful information for practitioners, academics 

and policy makers. 
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CHAPTER V  

SUMMARY  

 

This dissertation consists of three stand-alone but related empirical studies 

concerning applications of vine copulas – a very flexible tool for modeling complex 

dependence relationship among multiple data series – in commodity risk management 

and price analysis. The first study (Chapter II) examines the use of vine copulas in 

deriving optimal multiproduct hedge ratios for oil refineries in a downside risk 

framework. The second study (Chapter III) explores the potential of vine copulas in the 

context of forecasting the distributions of energy commodity returns. The third study 

(Chapter IV) analyzes the dependence patterns among prices of three agricultural 

commodity futures (corn, soybean, and wheat futures), and two energy commodity 

futures (ethanol and crude oil futures) using a regular vine copula approach. 

The first study, titled “Hedging Downside Risk of Oil Refineries with Vine 

Copulas,” focuses on the use of vine copulas in the context of hedging downside risk of 

oil refineries. As their financial health greatly depends on their refining margin (the 

difference between the selling prices of refined products – typically, gasoline and 

heating oil – and the purchasing price of crude oil), the refineries may hedge against the 

risk of refining margin erosion – the downside risk facing oil refineries – using crude oil, 

gasoline, and heating oil futures. This study purposes a vine copula approach, a 

relatively new class of multivariate copula approach, to estimate multiproduct hedge 

ratios that minimize the risk of refining margin erosion. The proposed approach allows 
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us to capture important characteristics of petroleum price changes such as an asymmetry 

in their marginal distributions and heterogeneous (tail) dependence between different 

pairs of price changes. Through an extensive out-of-sample hedging exercise, hedging 

effectiveness of two popular classes of vine copula models – canonical and drawable 

vine copula models – are evaluated and compared with that of a widely used 

nonparametric method and three standard multivariate copula models (namely, standard 

Gaussian, Student’s t, and Clayton copula models). The empirical findings reveal that 

the drawable vine copula model seems to be a good and safe choice in managing the 

downside risk of the refineries. The results are consistent across all downside risk 

measures considered: Semivariance, Lower Partial Moment, Value at Risk, and 

Expected Shortfall.   

The second study, titled “Forecasting the Distributions of Energy Commodity 

Returns: An Importance of Modeling Heterogeneous Dependence Structures,” considers 

the potential of vine copulas in forecasting the distributions of multiple energy 

commodity returns. Because energy traders typically involve exposure to price risks in 

multiple related energy commodities, they often need knowledge of joint density 

forecasts of price changes for the purpose of risk assessment and management. This 

study explores the importance of modeling heterogeneous dependence structures 

between different pairs of energy commodity returns using vine copulas in improving 

one-step-ahead density forecasts of these returns. In this study, three vine copula models 

– the canonical vine copula, drawable vine copula, and regular vine copula models – are 

considered. The value of modeling heterogeneous dependence structures is measured by 
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comparing the performance of density forecasts based on vine copulas with density 

forecasts based on standard copulas that assume homogeneous dependence structures. 

Calibration and equal predictive accuracy test results indicate that modeling 

heterogeneous dependence structures using vine copula models (with mixed pair-

copulas) does not help improve quality of multivariate density forecasts of energy 

commodity returns.     

The third study, titled “Measuring Tail Dependence between Agricultural and 

Energy Commodity Markets: A Regular Vine Copula Method,” employs a regular vine 

copula approach to investigate the multivariate dependence structure of agricultural and 

energy commodity markets. In particular, the regular vine copula method is used to 

analyze the dependence structure and tail dependence patterns of daily prices of three 

agricultural commodities – corn, soybean, and wheat – and two energy commodities – 

ethanol and crude oil from June 2, 2006 to June 30, 2016. The empirical results indicate 

that the corn and crude oil markets are connected through the ethanol market. This is 

consistent with the results from previous studies. The findings also show that crude oil 

and agricultural commodity prices are statistically dependent during the extreme market 

downswings but independent during the extreme market upswings. In addition, the 

results from the sub-sample analysis suggest that both the upper and lower tail 

dependence between crude oil and the other four commodity markets become weaker in 

the recent years when the ethanol market became more mature.   
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APPENDIX A 

SUPPLEMENTARY RESULTS FOR CHAPTER II 

 

 

Figure A.1. In-sample log-likelihood (LLH) across 1,121 estimation windows 
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Figure A.2. In-sample Akaike Information Criterion (AIC) across 1,121 estimation 
windows 
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Figure A.3. In-sample Bayesian Information Criterion (BIC) across 1,121 
estimation windows 
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APPENDIX B 

SUPPLEMENTARY RESULTS FOR CHAPTER III 

 

 

Figure B.1. Calibration plots for the density forecasts of crude oil returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with normal marginal distributions 
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Figure B.2. Calibration plots for the density forecasts of diesel fuel returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with normal marginal distributions 
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Figure B.3. Calibration plots for the density forecasts of gasoline returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with normal marginal distributions 
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Figure B.4. Calibration plots for the density forecasts of heating oil returns based 
on the canonical vine copula (CVC), drawable vine copula (DVC), regular vine 
copula (RVC), standard Gaussian copula (SGC), and standard Student’s t copula 
(SSC) models with normal marginal distributions 
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Figure B.5. Calibration plots for the density forecasts of jet fuel returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with normal marginal distributions 
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Figure B.6. Calibration plots for the density forecasts of natural gas returns based 
on the canonical vine copula (CVC), drawable vine copula (DVC), regular vine 
copula (RVC), standard Gaussian copula (SGC), and standard Student’s t copula 
(SSC) models with normal marginal distributions 
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Figure B.7. Calibration plots for the density forecasts of propane returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with normal marginal distributions 
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Figure B.8. Calibration plots for the density forecasts of crude oil returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with skewed normal marginal distributions 
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Figure B.9. Calibration plots for the density forecasts of diesel fuel returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with skewed normal marginal distributions 
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Figure B.10. Calibration plots for the density forecasts of gasoline returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with skewed normal marginal distributions 
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Figure B.11. Calibration plots for the density forecasts of heating oil returns based 
on the canonical vine copula (CVC), drawable vine copula (DVC), regular vine 
copula (RVC), standard Gaussian copula (SGC), and standard Student’s t copula 
(SSC) models with skewed normal marginal distributions 
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Figure B.12. Calibration plots for the density forecasts of jet fuel returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with skewed normal marginal distributions 
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Figure B.13. Calibration plots for the density forecasts of natural gas returns based 
on the canonical vine copula (CVC), drawable vine copula (DVC), regular vine 
copula (RVC), standard Gaussian copula (SGC), and standard Student’s t copula 
(SSC) models with skewed normal marginal distributions 
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Figure B.14. Calibration plots for the density forecasts of propane returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with skewed normal marginal distributions 
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Figure B.15. Calibration plots for the density forecasts of crude oil returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with skewed Student’s t marginal distributions 
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Figure B.16. Calibration plots for the density forecasts of diesel fuel returns based 
on the canonical vine copula (CVC), drawable vine copula (DVC), regular vine 
copula (RVC), standard Gaussian copula (SGC), and standard Student’s t copula 
(SSC) models with skewed Student’s t marginal distributions 
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Figure B.17. Calibration plots for the density forecasts of gasoline returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with skewed Student’s t marginal distributions 
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Figure B.18. Calibration plots for the density forecasts of heating oil returns based 
on the canonical vine copula (CVC), drawable vine copula (DVC), regular vine 
copula (RVC), standard Gaussian copula (SGC), and standard Student’s t copula 
(SSC) models with skewed Student’s t marginal distributions 
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Figure B.19. Calibration plots for the density forecasts of jet fuel returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with skewed Student’s t marginal distributions 
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Figure B.20. Calibration plots for the density forecasts of natural gas returns based 
on the canonical vine copula (CVC), drawable vine copula (DVC), regular vine 
copula (RVC), standard Gaussian copula (SGC), and standard Student’s t copula 
(SSC) models with skewed Student’s t marginal distributions 
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Figure B.21. Calibration plots for the density forecasts of propane returns based on 
the canonical vine copula (CVC), drawable vine copula (DVC), regular vine copula 
(RVC), standard Gaussian copula (SGC), and standard Student’s t copula (SSC) 
models with skewed Student’s t marginal distributions 


