
 

 

 

 

IMPACT OF DRIED DISTILLERS’ GRAINS WITH SOLUBLES 

SUPPLEMENTATION OF CATTLE WHILE GRAZING BERMUDAGRASS ON 

THE PLANT-ANIMAL INTERFACE 

 

 

A Dissertation 

by 

 WILLIAM BRANDON SMITH   

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Francis Marion Rouquette, Jr. 

Co-Chair of Committee, Luis Orlindo Tedeschi 

Committee Members, Jason Paul Banta 

 Jamie Lee Foster 

 Larry Allen Redmon 

Head of Department, David D. Baltensperger 

 

August 2017 

 

Major Subject: Agronomy 

 

Copyright 2017 William Brandon Smith



 

ii 

 

ABSTRACT 

 

Dried distillers’ grains with solubles (DDGS), a co-product of the fuel ethanol 

industry, has provided a source of supplement for livestock. This dissertation addressed 

the effects of DDGS supplementation with cattle grazing bermudagrass (Cynodon 

dactylon [L.] Pers.) pastures on performance, digestion, and digestive kinetics. The first 

objective of this study was to evaluate performance of stocker steers grazing ‘Tifton 85’ 

bermudagrass (TIF; Cynodon dactylon [L.] Pers. × C. nlemfuënsis Vanderyst) when 

supplemented daily with varying rates of a DDGS supplement (SUPP; 0, 0.25, 0.5, or 1% 

BW). Steer ADG increased linearly (P < 0.01) as SUPP increased (0.61, 0.89, 0.96, and 

1.10 kg/d for 0, 0.25, 0.5, and 1% BW SUPP). The second objective was to evaluate 

performance of steers grazing ‘Coastal’ bermudagrass (COS) with daily rates of SUPP (0, 

0.25, or 1% BW). Steer ADG increased linearly (P < 0.01) as SUPP increased (0.67, 0.70, 

and 1.02 kg/d for 0, 0.25, and 1% BW SUPP). The third objective was to measure the 

effect of SUPP on subsequent feedlot and carcass traits. Compensatory gains likely 

occurred in the finishing phase for SUPP, resulting in decreasing feedlot ADG with 

increasing SUPP. The fourth objective of this study was to evaluate the effect of SUPP on 

in vitro gas production, digestibility, and methane production. Results indicated that 

DDGS may be supplemented to cattle to increase diet digestibility with a potential benefit 

of reduced methane production. This effect was greater for COS than for TIF. The final 

objective of this study was to evaluate the ruminal digestion kinetics of TIF as affected by 

month of year and SUPP. Forage of TIF from later months (August and October) have 
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altered cell wall structural (increased cellulose and lignin) than early-season TIF (June). 

Increases in SUPP might have created an inhospitable rumen environment for fiber-

degrading bacteria. Overall, supplementation of steers with DDGS may be an effective 

management strategy when bermudagrass forage mass was more abundant to allow for 

increased selective grazing. Supplementation with DDGS may result in increased diet 

digestibility and decreased methane production.  

 



 

iv 

 

DEDICATION 

 

I dedicate this dissertation in three parts: 

• First, to my later grandfathers, Willie Frank Sellers and Rex Smith, each of whom 

inspired me to pursue my passions of academic excellence and agricultural science. 

• To my parents, William and Sharon Smith, who have served as my sounding board 

and support structure through this entire endeavor, and who convinced me not to 

quit along the way. 

• And to my fiancée (wife at the time of publication), Katie Williams, who has 

supported me in our time together and who will be my stability as I embark on my 

career in academia. 



 

v 

 

ACKNOWLEDGEMENTS 

 

The author would like to thank the committee co-chairs, Dr. Monte Rouquette and 

Dr. Luis Tedeschi, and the committee members, Dr. Banta, Dr. Foster, and Dr. Redmon, 

for their guidance and support throughout the course of this research. The author also 

extends thanks to additional collaborators to this research: Dr. Callaway, Dr. Machado, 

Dr. McCuistion, and Dr. van Santen.  

A special thank you is extended to the friends and colleagues for their support 

throughout this doctoral program. Most notably among these, the author appreciates the 

efforts of Mr. Joel Kerby and his unwavering support of the research and unconditional 

friendship throughout the program. Friends are too numerous to list, but a special 

acknowledgement is extended to Ms. Melanie Aiosa, Dr. Angie Boyer, Dr. Caitlyn 

Cooper, Mrs. Whitney Crossland, and Mr. Aaron Norris.  

As a humorous aside, the author would like to acknowledge the contributions of 

Dr. Pepper and Jalapeno Cheddar Cheetos (from the Kleberg vending machine), without 

which completion of this dissertation may not have been possible.  

  



 

vi 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

This work was supervised by a dissertation committee consisting of Dr. Francis 

Marion “Monte” Rouquette, Jr. [chair], Dr. Jamie Lee Foster, and Dr. Larry Allen Redmon 

of the Department of Soil and Crop Sciences and Dr. Luis Orlindo Tedeschi [co-chair] 

and Dr. Jason Paul Banta of the Department of Animal Science.  

All work for the dissertation was completed by the student, in collaboration with 

the dissertation committee named above. In addition to the committee,  

• Dr. Todd R. Callaway of the Food Safety Research Unit, Southern Plains 

Agricultural Center, Agricultural Research Service, United States Department of 

Agriculture, collaborated on CHAPTER V. 

• Dr. Tanner Joseph Machado of the Department of Animal Science, Texas A&M 

University – Kingsville, collaborated on CHAPTER III and CHAPTER IV. 

• Dr. Kimberly Candler McCuistion of the King Ranch® Institute for Ranch 

Management, Texas A&M University – Kingsville, collaborated on CHAPTER 

VI and CHAPTER VII. 

• Dr. Edzard van Santen of the Statistical Consulting Unit, Department of 

Agronomy, Institute of Food and Agricultural Sciences, University of Florida, 

collaborated on CHAPTER VII. 

 

 



 

vii 

 

Funding Sources 

Funding for this project was that of Texas A&M AgriLife Research at Overton for 

supplies and materials, infrastructure of pastures and corrals, and laboratory and sample 

preparation facilities. Partial funding was attributed to a Beef Competitiveness Research 

Initiative grant through Texas A&M AgriLife Research. 



 

viii 

 

NOMENCLATURE 

 

The author has made all efforts to observe the accepted abbreviations for 

Agronomy Journal, Crop Science, Journal of Animal Science, and The Professional 

Animal Scientist, as these are potential outlets for publication. The following list provides 

the abbreviations accepted by these journals as well as additional acronyms or 

abbreviations used throughout this document: 

 

Abbreviation †‡§ Definition 

ADF †‡ acid detergent fiber, expressed inclusive of residual ash and assayed 

sequentially to neutral detergent fiber unless otherwise noted 

ADG †‡ average daily gain 

ADL †‡ acid detergent lignin 

aexp asymptote of the exponential equation with discrete lag from the 

GasFit Model 

AIC Akaike information criterion 

AICC Akaike information criterion corrected for small sample sizes 

alog asymptote of the rapidly-fermentable substrate pool from the 2-

pool logistic equation from the GasFit model 

                                                 
† Abbreviation is approved for use in Journal of Animal Science. 
‡ Abbreviation is approved for use in The Professional Animal Scientist. 
§ Abbreviation is approved for use in journals published by the Alliance of Crop, Soil, and Environmental 

Science Societies (Agronomy Journal, Crop Science, etc.). 



 

ix 

 

ANOVA †‡§ analys(es) of variance 

AOAC ‡ Association of Official Analytical Chemists 

Aug. § August (for use in tables and figures) 

BCS †‡ body condition score 

bexp fractional rate of degradation of the exponential equation with 

discrete lag from the GasFit model 

BG bermudagrass cultivar 

blog fractional rate of degradation of the rapidly-fermentable substrate 

pool from the 2-pool logistic equation from the GasFit model 

BW †‡ body weight 

BW0.75 metabolic body weight 

°C †§ degree(s) Celsius 

C0 initial microbial concentration (standardized abbreviation for 

nonlinear digestive kinetics equations) 

c- †‡§ centi- (1 × 10-2; prefix for physical units) 

cexp discrete lag time of the exponential equation with discrete lag from 

the GasFit model 

Cl †‡§ chlorine/chloride 

clog discrete lag time from the 2-pool logistic equation from the GasFit 

model 

COS ‘Coastal’ bermudagrass 
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dlog asymptote of the slowly-fermentable substrate pool from the 2-pool 

logistic equation from the GasFit model 

DM †‡ dry matter 

DMI †‡ dry matter intake 

dNDFkp   digestible neutral detergent fiber at fractional rate of passage kp 

doi †§ digital object identifier (used with citations) 

EE ether extract 

elog fractional rate of degradation of the slowly-fermentable substrate 

pool from the 2-pool logistic equation from the GasFit model 

Eq.†§ equation 

F †§ F-distribution or ratio of variances (also identified as Snedecor’s F 

statistic) 

F:D forage:DDGS ratio 

g †‡§ gram(s) 
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h †‡§ hour(s) 

ha †§ hectare(s) 

HCW †‡ hot carcass weight 

hd head (count of animals) 

IU †‡ international unit(s) 

IVDMD †‡ in vitro dry matter digestibility 

IVGP in vitro gas production 

IVNDFD in vitro neutral detergent fiber digestibility 

IVTD in vitro true digestibility 

IVTDOM in vitro true digestibility, organic matter basis 

k- †‡§ kilo- (1 × 103; prefix for physical units) 

k1 rate constant of disappearance of the rapidly-digestible substrate 

pool (standardized abbreviation for nonlinear digestive kinetics 

equations) 

k2 rate constant of disappearance of the slowly-digestible substrate 

pool (standardized abbreviation for nonlinear digestive kinetics 

equations) 

kd fractional rate of digestion (traditionally used in description of 

digestive kinetics) 

kd rate constant of disappearance (standardized abbreviation for 

nonlinear digestive kinetics equations) 
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km rate constant of microbial growth (standardized abbreviation for 

nonlinear digestive kinetics equations) 

kp fractional rate of passage 

kτ rate constant of lag (standardized abbreviation for nonlinear 

digestive kinetics equations) 

L †‡§ liter(s) 

L linear orthogonal contrast 

L discrete lag time from the exponential decay equation of Mertens 

and Loften (1980) 

LM ‡ longissimus muscle 

M- †‡§ mega- (1 × 106; prefix for physical units) 

m †‡§ meter(s) 

m- †‡§ milli- (1 × 10-3; prefix for physical units) 

min †‡§ minute(s) 

mo †‡§ month(s) 

MOY month of year 

n †‡§ sample size 

NDF †‡ neutral detergent fiber, assayed inclusive of α-amylase (unless 

otherwise stated), exclusive of sodium sulfite (unless otherwise 

stated), and expressed inclusive of residual ash 

NE †‡ net energy 

NI no improvement in model fit 
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Oct. § October (for use in tables and figures) 

OM †‡ organic matter 

P †§ probability 

PDF portable document format (.pdf; used as a file type and extension) 

PEM polioencephalomalacia 

PI § Plant Introduction/Identification 

Q quadratic orthogonal contrast 

R undegraded residue from the exponential decay equation of 

 Mertens and Loften (1980) 

r †‡§ simple correlation coefficient 

r2 †§ simple coefficient of determination (regression) 

RL relative likelihood (normalized expression of the Akaike 

information criterion) 

RUP †‡ ruminally undegradable protein 

S0 potentially-degradable substrate (standardized abbreviation for 

nonlinear digestive kinetics equations) 

S1 rapidly-degradable substrate (standardized abbreviation for 

nonlinear digestive kinetics equations) 

S2 slowly-degradable substrate (standardized abbreviation for 

nonlinear digestive kinetics equations) 

SAS † SAS Institute, Inc. (formerly known as Statistical Analysis System) 

SEM †‡§ standard error of the mean 
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S:G supplemental feed to additional gain ratio 

SUPP rate of supplemental dried distillers’ grains with solubles, expressed 

as a percent of body weight 

t time point of incubation (when used in a nonlinear equation) 

t †§ t-distribution or Student distribution 

t* inflection point (standardized abbreviation for nonlinear digestive 

kinetics equations) 

t0.5 half-life of disappearance (standardized abbreviation for nonlinear 

digestive kinetics equations) 

TDN †‡ total digestible nutrients 

TIF ‘Tifton 85’ bermudagrass 

U indigestible fraction from the exponential decay model of Mertens 

and Loften (1980) 

U indigestible substrate (standardized abbreviation for nonlinear 

digestive kinetics equations) 

USDA †‡§ United States Department of Agriculture 

vs.†§ versus 

W immediately-soluble substrate or y-intercept (standardized 

abbreviation for nonlinear digestive kinetics equations) 

W Shapiro-Wilk’s W (a measure of normality) 

wi Akaike weight 

wk †‡§ week(s) 
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wt weight 

x0 x-intercept (standardized abbreviation for nonlinear digestive 

kinetics equations) 

yr †‡§ year(s) 

α †§ probability of Type I error 

Δi delta-i (scaled expression of the Akaike information criterion) 

η fractional rate of disappearance (standardized abbreviation for 

nonlinear digestive kinetics equations) 

η0.05 fractional rate of disappearance at half-life (standardized 

abbreviation for nonlinear digestive kinetics equations) 

λ fractional substrate availability (standardized abbreviation for 

nonlinear digestive kinetics equations) 

µ- †‡§ micro- (1 × 10-6; prefix for physical units) 

τ discrete lag time (standardized abbreviation for nonlinear digestive 

kinetics equations) 

Φ(t) model function of a given nonlinear equation (standardized 

abbreviation for nonlinear digestive kinetics equations) 
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CHAPTER I 

INTRODUCTION 

 

Background of the Study 

Supplementation of cattle on pasture is a well-known viable strategy for increased 

performance. Often, forage alone, especially in adverse seasons, does not meet the nutrient 

requirements of the animal to achieve maximum production efficiency (Huston et al., 

2002). Supplementation with various feedstuffs provides an opportunity to maximize 

efficiency in the context of feed and cattle price structures. Ethanol has been proclaimed 

as a sustainable alternative to fossil fuels (RFA, 2017b), and the vast supply of dried 

distillers’ grains with solubles (DDGS) generated from ethanol production (RFA, 2016, 

2017a) provides opportunities for addition to feedlot rations and supplementation of 

grazing cattle. Supplementation of grazing cattle with DDGS resulted in ADG up to 1.0 

kg/d in a summary of 14 experiments with 35 DDGS supplement treatments (Griffin et 

al., 2009). This level of stocker gain was a significant component in today’s economic 

market for the cattle industry.  

 

Statement of the Problem 

Gadberry et al. (2010) stated that little work had been done to address the use of 

DDGS in enhancing the nutritional benefits of stockers grazing actively-growing 

bermudagrasses (Cynodon dactylon [L.] Pers.). Since most of the cattle in the southern 
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USA graze bermudagrass pastures as the primary introduced forage species, this 

represents a significant and critical knowledge gap in the current standing of the industry. 

 

Research Objectives 

The following objectives were addressed in the doctoral research program: 

1. Determine the influence of varying daily rates of DDGS supplemented to stocker 

cattle grazing ‘Tifton 85’ (Cynodon dactylon [L.] Pers. × C. nlemfuënsis 

Vanderyst) or ‘Coastal’ bermudagrass pastures.  

2. Determine subsequent feedlot gains and carcass attributes from stocker cattle 

previously stocked on Tifton 85 or Coastal bermudagrass and supplemented daily 

with varying rates of DDGS. 

3. Determine the in vitro degradation kinetics and methane production from Coastal 

and Tifton 85 bermudagrass supplemented with varying rates of DDGS.  

4. Quantify the ruminal in situ digestion kinetics of Tifton 85 bermudagrass as 

affected by month of year and rate of supplementation with DDGS. 

5. Evaluate procedure for selection of various models for fit to in situ degradation 

patterns. 
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Style and Form 

This manuscript was prepared according to “Instructions to Authors (revised 

2017)” from Journal of Animal Science (ASAS, 2017). All attempts were made to adhere 

to this style, except in cases where divergence was needed to adhere to the policies of the 

Office of Graduate and Professional Studies of Texas A&M University or to increase 

clarity in the document.  
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CHAPTER II 

REVIEW OF LITERATURE 

 

Bermudagrass 

Bermudagrass is a C4 grass of family Poaceae that is widespread as both a turfgrass 

species and a highly productive and hardy species for forage. Bermudagrass is 

predominately adapted as a tropical and subtropical grass, and is divergent but able to 

interbreed with the similar stargrass (C. nlemfuënsis Vanderyst; Taliaferro et al., 2004). 

Bermudagrass is primarily of African and Mediterranean origin, though sources of genetic 

variability have been linked to various parts of Europe, Africa, and Asia, often resulting 

in different variants within C. dactylon (Harlan and de Wet, 1969). It is a staple throughout 

the humid southeastern United States, having been cited as a highly important crop in the 

region since the early 1800’s (Taliaferro et al., 2004).  

 

Introduction 

Bermudagrass introduction to the New World is vague, at best. Kneebone (1966) 

and Taliaferro et al. (2004) suggest it may have been introduced as early as the 15th century 

with the ships of Columbus, while the first official record credits the introduction to Henry 

Ellis, governor of Georgia, in 1751. An 1881 citation (Howard, 1881) in Taliaferro et al. 

(2004) notes that its fame spread quickly as highly important for livestock pasture. By 

1900, commercial seed was being imported from around the world (primarily Australia) 

in the United States (Kneebone, 1966; Taliaferro et al., 2004). 
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Improvement 

Advancement in the history of bermudagrass cultivar development is detailed in 

Table II-1. Until the 1940’s, advancement of forage bermudagrass was through the 

selection of superior, naturally-occurring ecotypes (Taliaferro et al., 2004), most 

commonly identified by the state or location in which the variant was isolated. Today, 

those ecotypes are generally referred to as common bermudagrass. While one cultivar 

from this era was widely distributed by the Oklahoma Agricultural Experiment Station 

(AES) to the South Central region, dubbed ‘Hardy’ (Moorhouse et al., 1909), it had 

essentially gone out of production by around 1917 (Elder, 1955). It would later be 

hypothesized to provide the base material for genetic section of a future cultivar (Elder, 

1955). Along the same lines of localized selection, the propagation of ‘Tift’ bermudagrass 

at the Coastal Plains Experiment Station in Tifton, GA (Stephens, 1941), would become 

the epicenter of genetic selection and cultivar development that would make bermudagrass 

the staple that it is today.  
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Table II-1 A timeline of bermudagrass breeding and improvement efforts. 

Cultivar Release† Registration Parental lineage Breeding goal Reference 

Hardy 1892 - local selection - Elder (1955) 

Tift 1929 - local selection yield Stephens (1941) 

Coastal 1943 1951 Tift × "South Africa" yield Burton (1948); Myers 

(1951); Burton (1954); 

Prine and Burton (1956); 

Alexander et al. (1961) 

Midland 1953 1953 Coastal × "Indiana" winter hardiness Hein (1953) 

Suwannee 1953 1962 Tift × PI 105935 yield Burton (1962) 

Greenfield 1954 - selection from ‘Hardy’ winter hardiness Elder (1955) 

NK-37 (Giant) 1957 - local selection yield Hanson (1972); Taliaferro et 

al. (2004) 

Alicia 1965 - selection yield, winter hardiness Hoveland and McCormick 

(1977); Taliaferro et al. 

(2004) 

Coastcross I 1967 1972 Coastal × PI 255445 yield, nutritive value Burton (1972) 

Callie 1974 1974 selection from PI 290814 yield, nutritive value Hoveland and McCormick 

(1977); Burton and Monson 

(1978) 

Hardie 1974 1980 PI 206427 × (8153 × 9953) yield, nutritive value Taliaferro and Richardson 

(1980) 

Tifton 44 1978 1978 Coastal × "Berlin" winter hardiness Burton and Monson (1978) 

Guymon 1982 1983 PI 253302 × 12156 winter hardiness Taliaferro et al. (1983) 

Brazos 1982 1984 selection nutritive value Eichhorn et al. (1984) 

Tifton 78 1984 1988 Tifton 44 × Callie yield, nutritive value Burton and Monson (1988) 

Grazer 1985 1986 PI 255450 × PI 320876 nutritive value Eichhorn et al. (1986) 

Gordon's Gift 1989 1989 selection from Alicia yield Gordon (1989a) 

World Feeder 1989 1989 selection from Alicia yield, winter hardiness Gordon (1989b) 
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Table II-1 continued 

Cultivar Release† Registration Parental lineage Breeding goal Reference 

Tifton 85 1992 1993 Tifton 68 (stargrass) × PI 

290884 (“Tifton 292”) 

yield, nutritive value Burton et al. (1993); Burton 

(2001) 

Vaughn's #1 1994 1994 local selection yield Vaughn (1994) 

Russell 1994 1996 selection from Callie yield Ball et al. (1996) 

Florakirk 1994 1999 Tifton 44 × Callie yield, nutritive value Mislevy et al. (1999) 

Wrangler 1999 - - winter hardiness Taliaferro et al. (2004) 

Midland 99 1999 2002 (PI 269370 × PI 292143) × 

(A12156 × A10978b-4) 

yield, nutritive value Taliaferro et al. (2002) 

Addis 2001 2001 selection from Callie winter hardiness Bristo (2001) 

Little Phillip No. 1 2003 2003 selection from Alicia yield Herrington and Sneed 

(2003) 

Macho World 

Feeder 

2003 2003 selection from World 

Feeder 

yield, nutritive value Davidson (2003) 

Ozark 2005 2005 Coastal × PI 253302 yield Richardson and Taliaferro 

(2005) 

Goodwell 2011 2011 (PI 253302 × ((PI 269370 × 

A10421) × PI 206427) × 

(((PI 269370 × A10421) × 

PI 251809) × "Colorado") 

yield Wu et al. (2011) 

†Taliaferro et al. (2004) 
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Dr. Glenn Burton started the first recognizable forage bermudagrass breeding 

program in 1937 in Tifton, GA (Taliaferro et al., 2004). At that time, three primary 

objectives were identified for the future of the program: 1) improve forage yield over an 

increased growing season, 2) increase nutritive value for southeastern livestock 

production, and 3) develop resistance to biotic (leaf spot [Helminthosporium spp.]) and 

abiotic (drought and frost) stresses (Burton, 1947; Taliaferro et al., 2004). The first release 

from this program, named Coastal, was an F1 hybrid of the Tift selection and a South 

African introduction (Burton, 1948, 1954). This was also the first cultivar of the species 

to be registered with the professional societies following the revised classification system 

(American Society of Agronomy, 1951). Coastal achieved the objective of yield 

improvement. Based on values published for Tift (Stephens, 1941) and Coastal (Prine and 

Burton, 1956), Coastal represented a 114% improvement in DM yield (Table II-2). It 

would be several years, however, before nutritive value or animal performance 

measurements were documented in the literature. Today’s cultivar developments are 

compared to Coastal as it represents the industry standard. 
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Table II-2 Relative yield and nutritive value of bermudagrass cultivars over the course of variety development. 

  Standardized responses‡ Relative improvement§  

Cultivar Release† DMY # IVDMD ǁ ADG ¶ DMY IVDMD ADG Reference 

Hardy 1892 - - - - - - Elder (1955) 

Tift 1929 5,489 - - 47 - - Stephens (1941) 

Coastal 1943 11,804 54.4 0.29 100 100 100 Burton (1948); Myers (1951); Burton 

(1954); Prine and Burton (1956); 

Alexander et al. (1961) 

Midland 1953 14,755 57.1 0.55 125 105 189 Hein (1953); Burton et al. (1967); 

Lippke (1980) 

Suwannee 1953 14,283 50.6 0.33 121 93 113 Burton (1962); Burton et al. (1967) 

Greenfield 1954 9,443 - - 80 - - Elder (1955) 

NK-37 (Giant) 1957 14,858 55.5 - 126 102 - Hanson (1972); George and Shock 

(1984); Taliaferro et al. (2004); 

Marsalis et al. (2007) 

Alicia 1965 12,866 52.2 - 109 96 - Hoveland and McCormick (1977); 

Taliaferro et al. (2004) 

Coastcross I 1967 15,699 60.7 0.38 133 112 130 Burton (1972) 

Callie 1974 14,991 58.8 0.34 127 108 116 Hoveland and McCormick (1977); 

Burton and Monson (1978); Utley et 

al. (1981) 

Hardie 1974 15,640 69.1 0.60 133 127 208 Horn and McMurphy (1980); 

Taliaferro and Richardson (1980); 

Taliaferro et al. (1987) 

Tifton 44 1978 12,512 57.1 0.35 106 105 119 Burton and Monson (1978) 

Guymon 1982 10,635 - - 90 - - Taliaferro et al. (1983) 

Brazos 1982 - - - - - - Eichhorn et al. (1984) 

Tifton 78 1984 14,755 58.4 0.33 125 107 116 Burton and Monson (1988) 

Grazer 1985 8,853 57.0 0.32 75 105 110 Eichhorn et al. (1986) 

Gordon's Gift 1989 - - - - - - Gordon (1989a) 
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Table II-2 continued 

  Standardized responses ‡ Relative improvement §  

Cultivar Release † DMY # IVDMD ǁ ADG ¶ DMY IVDMD ADG Reference 

World Feeder 1989 9,325 54.4 - 79 100 - Gordon (1989b); Marsalis et al. 

(2007) 

Tifton 85 1992 14,873 60.4 0.46 126 111 157 Burton et al. (1993) 

Vaughn's #1 1994 - - - - - - Vaughn (1994) 

Russell 1994 13,102 - - 111 - - Ball et al. (1996) 

Florakirk 1994 12,984 62.6 - 110 115 - Vendramini et al. (1995); Mislevy et 

al. (1999) 

Wrangler 1999 10,151 54.4 - 86 100 - Taliaferro et al. (2004); Marsalis et 

al. (2007) 

Midland 99 1999 10,269 55.5 - 87 102 - Taliaferro et al. (2002); Marsalis et 

al. (2007) 

Addis 2001 - - - - - - Bristo (2001) 

Little Phillip 

No. 1 

2003 21,172 59.8 - 179 110 - Herrington and Sneed (2003) 

Macho World 

Feeder 

2003 8,971 56.6 - 76 104 - Davidson (2003); Marsalis et al. 

(2007) 

Ozark 2005 18,001 - - 153 - - Richardson and Taliaferro (2005) 

Goodwell 2011 14,639 62.3 - 124 114 - Wu et al. (2011) 
† Taliaferro et al. (2004) 
‡ Tift and Coastal yield obtained from Stephens (1941) and Prine and Burton (1956), respectively. Coastal IVDMD and ADG obtained from 

Alexander et al. (1961). Values were reported relative to Coastal from the earliest publication in which the cultivars were compared. When direct 

comparison with Coastal was unavailable, the earliest available cultivar comparison was used. 
§ Relative improvement reported assuming Coastal = 100.  
# DMY = dry matter yield, kg/ha. 
ǁ IVDMD = in vitro dry matter digestibility, %. 
¶ ADG = average daily gain, kg/d. 
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The Tifton research program once again generated an ideal improvement in terms 

of DM yield, IVDMD and ADG. Coastcross-1 was a genetic cross with Coastal that 

presented a 33% increase in DM yield, a 12% increase in IVDMD, and a 30% increase in 

ADG (Burton, 1972). While other cultivars would be released in the meantime with 

varying degrees of improvement (Callie from the Mississippi AES, ‘Hardie’ and 

‘Guymon’ from the Oklahoma AES, and ‘Brazos’ from the Texas, Louisiana and 

Oklahoma AES) (Taliaferro and Richardson, 1980; Taliaferro et al., 1983; Eichhorn et al., 

1984; Taliaferro et al., 2004), the trend of improvement at the Coastal Plans Experiment 

Station would continue with the release of ‘Tifton 44’ in 1978 and ‘Tifton 78’ in 1984 

(Burton and Monson, 1978, 1988). The release of Tifton 44 represented a regression in 

the progress in forage DM yield (only 6% improvement over Coastal), but it represented 

a major continuation in the advancement of animal performance (Burton and Monson, 

1978). Tifton 78 demonstrated an improvement in all three categories (Burton and 

Monson, 1988), but did not meet the advancement reported in the registration of 

Coastcross-1 (Burton, 1972). The most recent advance to see widespread release was the 

interspecific hybrid of bermudagrass and stargrass, Tifton 85, that was released in 1993 

(Burton et al., 1993). While the registration information only links this cultivar to a 26% 

increase in DM yield, Tifton 85 represents among the greatest increases in ADG (57%) to 

date (Burton et al., 1993).  

Several other cultivars have been developed in the interim between Tifton 78 and 

Tifton 85 as well as from the registration of Tifton 85 to as recently as 2011. These 

cultivars have primarily been patented selections, though some breeding programs have 
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also developed entries. Of particular interest were ‘Little Phillip No. 1’ (Herrington and 

Sneed, 2003) and ‘Ozark’ (Richardson and Taliaferro, 2005) which were showing great 

progress in comparative variety trials, with advancements in DM yield of 79 and 53%, 

respectively, when compared to Coastal.  

Besides the named registered, patented or released cultivars, there has also been a 

movement of private selection and release of various ecotypes. These cultivars include 

‘Jiggs,’ ‘Lagrange,’ ‘Lancaster,’ ‘Luling,’ ‘Naiser,’ ‘Rockdale-1’, ‘Rockdale-2’, 

‘Scheffield’, ‘Summeral’, ‘Wheelock-1’, ‘Wheelock-2’, ‘Wheelock-3’ and ‘Zimmerly 

Select’ (Bade, 2000; Hancock et al., 2007; Corriher-Olson and Redmon, 2015). While 

these are technically considered to be available cultivars that are actively marketed by 

various seed companies, there is little to no data available, apart from recent publications 

addressing Jiggs (Bade, 2000; Silva et al., 2015), to substantiate the progress that any of 

these cultivars may make in relation to those already in production.  

 

Coastal Bermudagrass 

 

Coastal bermudagrass response to defoliation 

Residual stubble following defoliation and defoliation frequency have been shown 

to influence productivity of Coastal bermudagrass. Prine and Burton (1956) evaluated the 

effects of clipping frequency on Coastal bermudagrass and found DM yield increases of 

17, 37, 72, and 85% when clipping frequency was altered from 2 wk to 3, 4, 6, and 8 wk, 

respectively. These same clipping intervals, however, resulted in 12, 20, 34, and 40% 
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reductions in CP concentration of the forage (Prine and Burton, 1956). Clipping intervals 

of Coastal bermudagrass hay in Georgia of 3, 4, 6, 8, 12, and 24 wk resulted in cellulose 

concentrations of 29, 30, 32, 32, 32, and 33%, CP concentrations of 17, 16, 12, 10, 8, and 

8%, and DM digestibility coefficients of 65, 64, 60, 57, 53, and 43%, respectively (Burton 

et al., 1963). Similarly, Holt and Conrad (1986) found that ages of Coastal bermudagrass 

at harvest of 14, 28, 42, or 56 d in Texas resulted in in vitro DM digestibility of 60, 55, 

53, and 51%, respectively. When Holt and Lancaster (1968) subjected Coastal 

bermudagrass to clipping at 10, 25, or 40 cm of height (with stubble or 5 or 13 cm), there 

was an increase in total DM yield with increasing height at harvest (or infrequent clipping), 

as well as an increase in total yield with a lower stubble height. These responses to 

defoliation contribute to decisions for management practices. Duble et al. (1971) found 

that, when available forage is not limiting, there is a strong relationship between in vitro 

DM digestibility and ADG of grazing cattle. Thus, increasing age of forage would result 

in decreased animal performance from grazing.  

 

Coastal bermudagrass response to nitrogen fertilization 

Bermudagrass has been documented to be very responsive to N. Prine and Burton 

(1956) found yield increases of 2,600, 5,600, 7,800, and 8,500 kg with N fertilization of 

112, 336, 672, and 1,008 kg/ha. Similarly, Burton et al. (1963) found CP increases of -2, 

11, 25, 59, and 75% (with concomitant yield increases) with N fertilization of 112, 224, 

336, 672, and 1,008 kg/ha. When Hallock et al. (1965) evaluated Coastal bermudagrass 

responses to 112, 224, 448, or 896 kg N/ha, there was a nearly linear increase in DM yield 
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up to 448 kg N/ha, while the response diminished (but still significant) at 896 kg N/ha. 

Corriher-Olson and Redmon (2015) stated the response of bermudagrass was between 25 

and 70 kg DM yield/kg N applied. However, DM yield exhibited diminishing returns at 

any application rate beyond 112 kg/ha. Rouquette and Florence (1985) observed a 

response of Coastal bermudagrass of approximately 55 kg DM/kg N. Similar responses 

were noted in Matocha and Anderson (1976).  

Source of N fertilizer also plays a role in the response of Coastal bermudagrass. 

Silveira et al. (2007) found that Coastal bermudagrass was most responsive to ammonium 

nitrate (NH4NO3) or ammonium sulfate ([NH4]2SO4) and least responsive to urea-

ammonium nitrate or urea ([NH2]2CO). This is in agreement with the findings of Burton 

and Jackson (1962). Evers (1998) found that application of 9.0 Mg broiler litter/ha yielded 

similar Coastal production as 224 kg inorganic N/ha, and that 17.9 Mg broiler litter/ha had 

similar DMY to 448 kg N/ha. When broiler litter was combined with inorganic N 

(NH4NO3), there was an average 23% increase in Coastal DMY over fertilizer alone, 

indicating that broiler litter filled a void in fertilization requirements (Read et al., 2006). 

Coastal bermudagrass demonstrated a quadratic response to the application of swine 

lagoon effluent, achieving a maximum yield at 1,310 kg N/ha application (Burns et al., 

1990). Lund et al. (1975) found that an application of at least 90 Mg dairy manure/ha was 

required to achieve similar Coastal DMY to 470 kg inorganic N/ha on Alabama soils.  
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Animal response to Coastal bermudagrass 

Oliver (1975) found that steers grazing Coastal bermudagrass for 140 d gained 

0.46 kg/d and 399 kg/ha. Similarly, Utley et al. (1974) noted gains of 0.49 kg/d (372 kg/ha) 

for steers grazing Coastal bermudagrass. Likewise, Chapman et al. (1972) observed ADG 

of 0.48 kg/d for steers grazing Coastal bermudagrass for 168 d. Conrad et al. (1981) found 

that, when grazed at 5.2 hd/ha, steers gained 0.63 kg/d, while steers gained 0.30 kg/d when 

stocked at 12.1 hd/ha. Steers grazing Coastal gained 0.67 kg/d in Georgia under a stocking 

rate of 6.2 hd/ha, and gain per hectare was 633 kg/ha (Utley et al., 1978). Interestingly, 

Utley et al. (1981) found similar ADG and gain per hectare from Coastal and Tifton 44 

bermudagrasses, though both were exceeded by Callie. 

When standing forage was segmented into 7- to 10-cm vertical layers, Wilkinson 

et al. (1970) found that layers nearest the soil surface generally had increased fractions of 

cell wall, ADF, and ADL, and there was decreased IVDMD. Coastal bermudagrass has 

been shown to have 52% IVDMD, which was generally less than all but the most mature 

Tifton 85 bermudagrass samples, and had a fractional rate of degradation of 3.2%/h 

(Mandebvu et al., 1998). When compared with tall fescue (Lolium arundinaceum 

[Schreb.] S. J. Darbyshire), the mesophyll was the only portion of Coastal bermudagrass 

that experience any degree of ruminal degradation by 6 h, and the inner bundle sheath was 

not degraded even at 72 h (Akin et al., 1973).  
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Tifton 85 Bermudagrass 

 

Differences in cell wall composition 

Mandebvu et al. (1999) released a critical manuscript detailing the characterization 

of Tifton 85 bermudagrass (Table II-3). Despite increased cell wall content, Tifton 85 

bermudagrass is generally characterized as a more digestible forage than Coastal 

(Mandebvu et al., 1999). In general, this has been linked to the decreased ether-linked 

ferulic acid lignin, increase ester-linked ferulic acid lignin, and increased concentrations 

of neutral sugars (Burton et al., 1993; Table II-3). When NDF was extracted from Coastal 

and Tifton 85 bermudagrass for use in an in vitro assay, however, hemicellulose was less 

from Tifton 85 than from Coastal (and decreased with increasing maturity), while 

cellulose was greater (and increased with increasing maturity; Mandebvu et al., 1998). 
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Table II-3 Comparison of chemical composition of cell walls from Coastal and Tifton 85 bermudagrass 

hay, adapted from Mandebvu et al. (1999).  

Component Coastal Tifton 85 SE 

In vitro dry matter (DM) digestibility, % 59.4 63.2 0.20 

    

Neutral detergent fiber, % DM 70.9 75.1 0.20 

Acid detergent fiber, % DM 30.6 32.8 0.20 

    

Total cell wall (CW), % DM 70.8 73.7 0.24 

     Glucose, % CW 43.6 44.4 0.09 

     Xylose, % CW 27.3 28.8 0.19 

     Arabinose, % CW 5.9 6.4 0.03 

     Galactose, % CW 2.1 2.1 0.04 

     Mannose, % CW 0.13 0.12 0.053 

     Fucose, % CW 0.05 0.06 0.02 

     Rhannose, % CW 0.06 < 0.01 0.027 

    

Lignins    

     Uronic acids, % CW 3.4 3.3 0.05 

     Ester-linked ferulic acid, % CW 1.3 1.4 0.02 

     Ester-linked p-coumaric acid, % CW 1.1 1.1 0.01 

     Ether-linked ferulic acid, % CW 0.81 0.69 0.035 

     Ether-linked p-coumaric acid, % CW < 0.01 0.02 0.010 

 

 

 

Tifton 85 bermudagrass response to defoliation 

There have been fewer experiments published evaluating the response of Tifton 85 

bermudagrass to clipping or regrowth intervals. This is due to the relative time since 

cultivar release and the change in research interests in those time periods. When Tifton 85 

bermudagrass was hand-clipped in Texas, DM yield increased with each 7-d increase in 

regrowth interval from 14 d (1,603 kg/ha) to 35 d (4,429 kg/ha; Bow and Muir, 2010). 

Increasing regrowth interval from 28 to 42 d resulted in no change in DM yield from 

rainfed Tifton 85 pastures in Brazil (Pequeno et al., 2015). Liu et al. (2011) observed a 
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linear decrease in total DM yield with increasing post-grazing stubble height (8 to 24 cm). 

These findings are consistent with the observations made with Coastal bermudagrass.  

 

Tifton 85 bermudagrass response to nitrogen fertilization 

Tifton 85 bermudagrass, like Coastal, has been shown to be responsive to N 

fertilization. When Alderman et al. (2011) fertilized Tifton 85 bermudagrass with 50, 230, 

410, or 590 kg N/ha, DM yields of 3,640, 8,185, 10,180, and 11,040 kg/ha were realized. 

These same fertilization rates resulted in concomitant increases in CP concentration 

(increased from 11 to 21% DM). Similarly, Agyin-Birikorang et al. (2012) found yield 

increases of 542, 750, 892, and 973% with N fertilization of 30, 50, 70, and 90 kg ha-1 

harvest-1. This also resulted in linear increases in CP concentration and N uptake with 

increasing N fertilization (Agyin-Birikorang et al., 2012).  

 

Animal response to Tifton 85 bermudagrass 

When stockers grazed Tifton 85 bermudagrass at the Texas A&M AgriLife 

Research and Extension Center at Overton in a summer backgrounding experiment, ADG 

of 0.84 and 0.77 kg/d were observed across two experiments (Rouquette et al., 2003). 

Steers (269 kg initial BW) grazing Tifton 85 bermudagrass in Georgia for approximately 

170 d gained 0.67 kg/d (Hill et al., 1993), while further research from Georgia has shown 

ADG of 0.72 kg/d (Hill et al., 1997; Hill et al., 2001). Corriher et al. (2007) found that 

cows grazing Tifton 85 gained more than similar cows grazing Coastal bermudagrass 

(0.94 vs. 0.79 kg/d). Vendramini et al. (2007), however, documented gains of only 0.42 
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kg/d and 700 kg/ha when early-weaned calves grazed Tifton 85 bermudagrass in south 

Florida. Burns and Fisher (2007) showed that DMI of Tifton 85 was similar that of Coastal, 

while DM, NDF, and ADF digestibility were generally increased.  

 

Distillers’ Grains 

 

Production 

Distillers’ grains, whether dry or wet, and without or with solubles, is a co-product 

of the production of ethanol. Commercial ethanol production for the beverage industry is 

achieved through fermentation of starch by yeast to produce alcohol, while production for 

fuel can be achieved through the fermentation of cellulose or starch (Stock et al., 2000). 

Corn grain is approximately 2/3 starch, and this grain is ground in a dry-milling process 

for fermentation through the distillation column (Stock et al., 2000). The particles 

recovered from the distillation process are, therefore, concentrated (3×) in nutritive 

components other than starch (Stock et al., 2000; Klopfenstein et al., 2008). Belyea et al. 

(2004) found only slight correlations between the nutritive value of corn and the resulting 

dried distillers’ grains with solubles (DDGS), with corn fat correlating positively with 

DDGS starch (r = 0.11) and ADF (r = 0.16) and negatively with DDGS fat (r = -0.15), 

corn protein correlating positively with DDGS starch (r = 0.15) and crude fiber (r = 0.12), 

and corn starch correlating negatively with DDGS starch (r = -0.21).  
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Composition 

The concentrated nutritive components of DDGS vary by production run and plant, 

but share a relationship with other components. It has been shown that fat is positively 

related to CP (r = 0.82) and ADF (r = 0.63) concentrations, but negatively correlated with 

crude fiber (r = -0.23) concentration (Belyea et al., 2004). Similarly, DDGS CP 

concentration is positively correlated with starch (r = 0.37) and ADF (r = 0.59) 

concentrations and negatively correlated with crude fiber (r = -0.24) concentration (Belyea 

et al., 2004).  

The primary component in the concentrated product is protein (Klopfenstein et al., 

2008). The primary protein in corn grain (and by extension, DDGS) is zein (Klopfenstein 

et al., 2008), and zein is mostly a rumen-escape protein (McDonald, 1954; Little et al., 

1968), comprising between 40 and 66% of abomasal N when fed to sheep (McDonald, 

1954). Crude protein in the corn grain averages 9% DM, while the CP concentration of 

the whole stillage (before centrifugation of solubles and drying of grains) is approximately 

27% DM (Stock et al., 2000). Klopfenstein et al. (2008) describes DDGS as a protein 

feedstuff for inclusion in ruminant diets with an ruminally-undegradable protein (RUP) 

value 260% greater than soybean meal, and Aines et al. (1987) notes that DDGS has 180% 

RUP versus soybean meal. Stock et al. (2000) stated that the increase in RUP is due to 

gluten not being removed in the processing of DDGS.  

Like most byproduct and co-product feedstuffs, DDGS has an increased 

concentration of fiber. Schingoethe et al. (2009) attributes the efficacy of DDGS as an 

energy feedstuff for ruminants to the increased concentration of highly-digestible NDF. 
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The concentration of fiber in DDGS is of great enough concentration that Singh et al. 

(2002) evaluated the removal of DDGS-fiber for use as a separate byproduct and/or 

marketing the resulting residual DDGS as a high-fat, high-protein concentrate for non-

ruminant species. Clark and Armentano (1993) found that when DDGS was used to 

replace a portion of dietary fiber (as alfalfa haylage), DMI, milk fat, and milk protein were 

increased relative to the control. When DDGS was used as a non-forage fiber replacement 

of starch in the diets of dairy cattle, there was a linear decrease in DMI, a trend toward 

increased feed efficiency (energy-corrected milk per DMI), and no alteration in milk 

composition (Ranathunga et al., 2010).  

 

Use as a Supplement 

A review of current publications regarding supplementation with DDGS and the 

associated additional gain from supplementation are presented in Table II-4. 

Supplementation with DDGS has been effective in increasing ADG and, by extension, 

additional gain from supplementation in grazing cattle. In a meta-analysis of DDGS 

supplementation, Griffin et al. (2012) documented additional gain from supplementation 

of 0.11 kg/d with 0.2% BW up to 0.36 kg/d with 1.2% BW DDGS. However, efficiency 

of supplemental feeding, evidenced through supplemental feed:additional gain (S:G), has 

been varied depending on the base forage used in the supplementation regime. McCollum 

and Horn (1990), citing Smith (1984), stated an S:G of 3:1 was considered to be the 

threshold at which a supplementation regime could be considered effective. At S:G greater 

than 3:1, Smith (1984) proposed that the supplemented animals would substitute the basal 
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forage. In a meta-analysis of DDGS supplementation experiments across Nebraska and 

Kansas, Griffin et al. (2012) noted S:G from 7.09:1 with 0.2% BW DDGS/d up to 13.63:1 

with 1.2% BW DDGS/d. These values tend to fall more in line with the S:G observations 

reported by Smith (1984) for energy supplements on pastures, which Allden (1982) states 

can range from 5:1 to 20:1. 

The additional gain from supplementation of animals grazing cool-season grasses 

and supplemented with DDGS ranged from a minimum of 0.20 kg/d (Beck et al., 2014) to 

a maximum of 0.58 kg/d (Watson et al., 2011). Supplementation of cattle grazing cool-

season forages has resulted in a mean S:G of 7.08:1. Steers and heifers grazing novel 

endophyte tall fescue and supplemented with 0.39% BW DDGS daily had S:G of 5:1, 

while increasing supplementation to 0.56% BW and supplementing on alternate days 

resulted in S:G of 4.17:1 (Beck et al., 2014). In most scenarios, an increase in 

supplementation has resulted in an increase in S:G and, therefore, a decrease in 

supplemental efficiency. Steers supplemented with 0.6% BW DDGS while grazing 

smooth bromegrass had S:G of 7.38:1 (Watson et al., 2011), while similar steers 

supplemented with 0.7% BW DDGS exhibited S:G of 9.58:1 (Greenquist et al., 2009).  

 

 

 

 

 



 

23 

 

Table II-4 Average daily gain (ADG; kg/d), additional gain from supplementation (AGS; kg/d), and 

supplemental feed to additional gain ratios (S:G; kg/kg BW) from published experiments in which dried 

distillers’ grains with solubles (DDGS) was supplemented to grazing cattle. 

Reference Base forage † Sex n 

Rate ‡, 

% BW 

ADG §, 

kg/d 

AGS #, 

kg/d 

S:G ǁ, 

kg/kg BW 

Griffin et al. (2012) meta-analysis -  0.20 0.78 0.11 7.09 

Griffin et al. (2012) meta-analysis -  0.40 0.86 0.19 8.46 

Griffin et al. (2012) meta-analysis -  0.60 0.93 0.26 9.44 

Griffin et al. (2012) meta-analysis -  0.80 0.89 0.22 15.02 

Griffin et al. (2012) meta-analysis -  1.00 1.01 0.34 12.15 

Griffin et al. (2012) meta-analysis -  1.20 1.03 0.36 13.63 

        

Cool-season grasses 

Beck et al. (2014), 

exp. 4 

NE tall fescue steers and 

heifers 

12 0.39 1.10 0.20 5.00 

Beck et al. (2014), 

exp. 4 

NE tall fescue steers and 

heifers 

12 0.56 1.14 0.24 4.17 

Greenquist et al. 

(2009) 

smooth 

bromegrass 

steers 15 0.70 0.92 0.24 9.58 

Watson et al. 

(2011) 

smooth 

bromegrass 

steers 75 0.60 2.11 0.58 7.38 

Mean ¶   114  1.75 0.46 7.08 

        

Dormant forages 

Murillo et al. 

(2016) 

shortgrass 

prairie 

steers 40 0.25 0.37 0.17 3.07 

Murillo et al. 

(2016) 

shortgrass 

prairie 

steers 40 0.50 0.36 0.16 6.25 

Mean   80  0.37 0.17 4.66 

        

Hay 

Gadberry et al. 

(2010) 

tall fescue steers 21 0.30 0.45 0.40 1.49 

Gadberry et al. 

(2010) 

tall fescue steers 21 0.60 0.59 0.54 2.27 

Gadberry et al. 

(2010) 

tall fescue steers 21 1.20 0.82 0.77 3.13 

Morris et al. (2005) alfalfa, 

sorghum 

heifers 9 0.24 1.71 0.30 3.77 

Morris et al. (2005) alfalfa, 

sorghum 

heifers 9 0.48 2.01 0.61 3.77 

Morris et al. (2005) alfalfa, 

sorghum 

heifers 9 0.71 2.32 0.91 3.77 

Morris et al. (2005) alfalfa, 

sorghum 

heifers 9 0.95 2.62 1.22 3.77 



 

24 

 

Table II-4 continued 

Reference Base forage † Sex n 

Rate ‡, 

% BW 

ADG §, 

kg/d 

AGS #, 

kg/d 

S:G ǁ, 

kg/kg BW 

Morris et al. (2005) smooth 

bromegrass 

heifers 9 0.24 0.82 0.40 4.94 

Morris et al. (2005) smooth 

bromegrass 

heifers 9 0.48 1.21 0.80 4.94 

Morris et al. (2005) smooth 

bromegrass 

heifers 9 0.71 1.61 1.19 4.94 

Morris et al. (2005) smooth 

bromegrass 

heifers 9 0.95 2.01 1.59 4.94 

Mean   135  1.24 0.73 3.39 

        

Native warm-season grasses 

Martínez-Pérez et 

al. (2013) 

sideoats 

grama, blue 

grama, big 

bluestem, 

galleta grass, 

buffalograss 

steers 18 0.20 0.75 0.11 4.52 

Martínez-Pérez et 

al. (2013) 

sideoats 

grama, blue 

grama, big 

bluestem, 

galleta grass, 

buffalograss 

steers 18 0.40 0.80 0.16 6.72 

Martínez-Pérez et 

al. (2013) 

sideoats 

grama, blue 

grama, big 

bluestem, 

galleta grass, 

buffalograss 

steers 18 0.60 0.86 0.22 6.03 

Morris et al. (2006) summer 

Sandhill 

rangeland 

steers 11 0.26 0.83 0.06 - 

Morris et al. (2006) summer 

Sandhill 

rangeland 

steers 11 0.51 0.89 0.12 - 

Morris et al. (2006) summer 

Sandhill 

rangeland 

steers 11 0.77 0.95 0.18 - 

Morris et al. (2006) summer 

Sandhill 

rangeland 

steers 11 1.03 1.00 0.23 - 
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Table II-4 continued 

Reference Base forage † Sex n 

Rate ‡, 

% BW 

ADG §, 

kg/d 

AGS #, 

kg/d 

S:G ǁ, 

kg/kg BW 

McMurphy et al. 

(2011) 

Old World 

bluestem 

steers 131 0.45 0.98 0.17 5.59 

Mean   229  0.93 0.16 5.64 

        

Warm-season grasses 

Beck et al. (2014), 

exp. 1 

bermudagrass, 

crabgrass, 

dallisgrass 

heifers 16 0.39 0.48 0.19 5.26 

Beck et al. (2014), 

exp. 1 

bermudagrass, 

crabgrass, 

dallisgrass 

heifers 16 0.56 0.49 0.20 5.00 

Beck et al. (2014), 

exp.2 

bermudagrass, 

crabgrass, 

dallisgrass 

heifers 16 0.39 0.81 0.18 5.56 

Beck et al. (2014), 

exp. 2 

bermudagrass, 

crabgrass, 

dallisgrass 

heifers 16 0.56 0.78 0.15 6.67 

Beck et al. (2014), 

exp.3 

bermudagrass, 

crabgrass, 

clover 

steers and 

heifers 

16 0.39 0.74 0.29 3.57 

Beck et al. (2014), 

exp. 3 

bermudagrass, 

crabgrass, 

clover 

steers and 

heifers 

16 0.56 0.67 0.22 4.55 

Gadberry et al. 

(2010) 

bermudagrass steers 12 0.34 1.00 0.21 3.70 

Gadberry et al. 

(2010) 

bermudagrass steers 12 0.69 1.05 0.26 5.88 

Mean   120  0.73 0.21 5.04 

Cumulative mean   678  1.03 0.33 5.18 
† alfalfa = Medicago sativa L.; bermudagrass = Cynodon dactylon (L.) Pers.; big bluestem = Andropogon 

gerardii Vitman; blue grama = Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths; buffalograss = 

Bouteloua dactyloides (Nutt.) J. T. Columbus; crabgrass = Digitaria ciliaris (Retz.) Koeler; dallisgrass = 

Paspalum dilatatum Poir.; galleta grass = Pleuraphis Torr.; NE = novel endophyte; Old World bluestem 

= Bothriochloa ischaemum (L.) Keng; sideoats grama = Bouteloua curtipendula (Michx.) Torr.; smooth 

bromegrass = Bromus inermis Leyss.; tall fescue = Lolium arundinaceum (Schreb.) S. J. Darbyshire. 
‡ Supplementation rate as % BW. 
§ ADG = average daily gain, kg/d. 
# AGS = additional gain from supplementation, kg/d. 
ǁ S:G = supplemental feed to additional gain ratio, kg DDGS/kg BW. 
¶ Means of ADG, AGS, and S:G were calculated for each group of base forages. Means were weighted 

based on the number of observations in each study.  
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Animal performance measures from DDGS supplementation of dormant rangeland 

and hays have been widely varied, though generally positive. In an experiment in which 

steers were grazing dormant shortgrass prairie in the Chihuahuan desert (rose Natal grass 

[Melinis repens (Willd.) Zizka], blue grama [Bouteloua gracilis (Willd. Ex Kunth) Lag ex 

Griffiths], mesquite [Prosopis juliflora (Sw.) DC.], pricklypear [Opuntia Mill.], and 

romerillo [Bidens alba (L.) DC.]), steers gained an additional 0.17 kg/d with 0.25% BW, 

while steers supplemented with 0.5% BW DDGS gained only an additional 0.16 kg/d 

(Murillo et al., 2016). When steers were offered 0.3, 0.6, or 1.2% BW DDGS while 

consuming tall fescue hay, additional gain from supplementation was observed at 0.4, 

0.54, and 0.77 kg/d, respectively (Gadberry et al., 2010). Moore et al. (1999) noted that 

supplemental feed was generally most beneficial in scenarios in which animals were 

grazing native forages or consuming hay.  

The most efficient supplementation of grazing animals with DDGS has been 

observed with dormant forage (mean = 4.66:1) or hay (mean = 3.39:1) staple diets. 

Supplementation of steers grazing dormant shortgrass prairie and supplemented with 

DDGS at 0.25% BW have exhibited S:G of 3.07:1, and supplementation at 0.5% BW 

resulted in S:G of 6.25:1 (Murillo et al., 2016). When Gadberry et al. (2010) supplemented 

steers consuming tall fescue hay with 1.2% BW DDGS, an S:G of 3.13:1 was realized. In 

regression analyses, Morris et al. (2005) documented a mean S:G of 3.77:1 for heifers 

consuming alfalfa hay and sorghum silage and a mean S:G of 4.94:1 for heifers consuming 

smooth bromegrass hay.  
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Steer additional gain from supplementation from grazing studies involving native 

warm-season perennial grasses have generally been somewhat favorable. When 

supplemented with 0.2, 0.4, or 0.6% BW DDGS while grazing native warm-season 

pastures (sideoats grama [Bouteloua curtipendula (Michx.) Torr.], blue grama [Bouteloua 

gracilis (Willd. ex Kunth) Lag. ex Griffiths], big bluestem [Andropogon gerardii Vitman], 

galleta grass [Pleuraphis Torr.], and buffalograss [Bouteloua dactyloides (Nutt.) J. T. 

Columbus]), steers exhibited additional gain from supplementation ranging from 0.11 to 

0.22 kg/d (Martínez-Pérez et al., 2013). This is greater than the additional gain from 

supplementation exhibited by steers grazing summer Sandhill rangeland (Morris et al., 

2006), but similar to the values documented for steers grazing Old World bluestem 

(Bothriochloa ischaemum [L.] Keng) or a combination of big bluestem, little bluestem 

(Schizachyrium scoparium [Michx.] Nash), and indiangrass (Sorghastrum nutans [L.] 

Nash) (McMurphy et al., 2011). Steers supplemented with DDGS while grazing native 

warm-season perennial grasses had S:G of approximately half that of those observed with 

1% BW SUPP in the present study (McMurphy et al., 2011; Martínez-Pérez et al., 2013). 

In Gadberry et al. (2010), steers supplemented with DDGS at 0.34 or 0.69% BW DDGS 

had ADG of approximately 1 kg/d, similar to that with SUPP of 1% BW DDGS in the 

current study. However, the additional gain from supplementation in Gadberry et al. 

(2010) was less than that observed in Coastal pastures in 2014 and 2015. 

When supplemented with DDGS while grazing mixed bermudagrass pastures, 

cattle supplemented with 0.39% BW DDGS daily had S:G of 3.57:1 to 5.56:1, while cattle 

supplemented on alternate days with 0.56% BW DDGS had S:G of 4.55:1 to 6.67:1 (Beck 
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et al., 2014). Gadberry et al. (2010) documented S:G of 3.7:1 with 0.4% BW DDGS and 

5.88:1 with 0.69% BW DDGS for steers grazing bermudagrass pastures. In each of these 

cases, S:G in the literature were less than those observed in this study, indicating decreased 

efficiency in the Coastal pastures. 

 

Ruminal Fermentation 

 

Volatile fatty acids 

When cows were limit-fed DDGS as a forage replacement, ruminal pools of 

acetate and propionate tended to be lower than cows fed hay ad libitum (Smith, 2014). 

Both ruminal NH3 and volatile fatty acids were elevated, but acetate, propionate and 

butyrate concentrations were not affected in heifers supplemented daily or every other day 

with dry rolled corn or DDGS versus the smooth bromegrass hay control (Loy et al., 2007). 

 

Microbial community 

Several researchers have found that dietary feedstuff inclusion has a potential to 

change the rumen microbial population (Bryant and Burkey, 1953; Maki and Foster, 1957; 

Gouws and Kistner, 2009). In a study evaluating the impact of DDGS inclusion in the diet 

on ruminal microbial populations, the most common genera of bacteria in the rumen of 

cattle both before and after feeding DDGS were Prevotella and Succinovibrio (Callaway 

et al., 2010). There was a decrease in ruminal Succinovibrio (19.5, 12.7, and 4.8% of the 

population with 0, 25, and 50% dietary DDGS), an increase in ruminal Bacteroides (3.9, 
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9.5, and 10.1% of the population with 0, 25, and 50% dietary DDGS), and an increase in 

fecal Acinetobacter (2.8, 10.7, and 10.4% of the population with 0, 25, and 50% dietary 

DDGS) with the inclusion of DDGS in the concentrate portion of the diet (Callaway et al., 

2010). 

 

Methane 

High-fat feedstuffs have been shown to decrease enteric methane production 

(McGinn et al., 2004; Beauchemin et al., 2007; Beauchemin et al., 2009; McGinn et al., 

2009). When DDGS was included in the diet of dairy cows at rates up to 30%, there was 

a linear decrease in CH4 production relative to DM, gross energy, and digestible energy 

intake (Benchaar et al., 2013). When beef heifers were fed corn-based DDGS at 40% of a 

barley silage diet, there was a decrease in methane relative to DM (-15%), gross energy (-

15%), and digestible energy intake (-10%), though the same response was not seen for 

wheat-based DDGS (Hünerberg et al., 2013b). Likewise, Hünerberg et al. (2013a) found 

that 40% corn-based DDGS inclusion in a finishing diet reduced methane relative to DM 

(-18%), gross energy (-20%), and digestible energy intake (-16%).  

 

Health Effects 

 

Excess sulfur 

Though the feeding value and economic potential of using DDGS for cattle 

supplementation may be high, there are also possible adverse health effects associated 
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with its use. Loy et al. (2008) noted that sulfur levels in DDGS can be as high as 1% DM 

due to the use of sulfuric acid to stabilize pH in the production process. The recommended 

dietary limit in cattle has been listed between 0.15 and 0.5% DM (NRC, 2005), while the 

Nutrient Requirements of Beef Cattle sets the limit at 0.4% DM (NRC, 2000). This 

additional S has a potential to result in reduced liver Cu stores as well as 

polioencephalomalacia (PEM; Loy et al., 2008). The rate of PEM occurrence in practice 

is not known, though there is direct evidence of PEM with experimental induction of sulfur 

supplementation (Pritchard, 2007). In an abnormal case study in which a producer 

supplemented feeder calves with highly excessive amounts of elemental S for the control 

of ringworm and lice, post-mortem analysis revealed darkened lungs with severe edema, 

spleens with detectable lesions, and livers with “a boiled appearance” (extreme lesions; 

Coghlin, 1944). Loneragan et al. (2001) found a quadratic decrease in water intake and no 

effect on DM intake with increasing dietary sulfur, resulting in a linear decrease in both 

ADG and feed efficiency. This relationship could not be directly related to the reduced 

gastrointestinal motility or hepatic oxidative overload as had been stated by others (Bird, 

1972; Beauchamp et al., 1984; Kandylis, 1984). Likewise, Smith (2014) found no signs 

of adverse health when DDGS was fed to ruminally-fistulated cows to meet maintenance 

requirements.  

 

Potential effects to the human food chain 

After inoculation with Escherichia coli O157, Holsteins fed a diet containing 25% 

DDGS had an increased incidence of fecal shedding, as well as increase E. coli 
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concentrations in the cecum, colon, and rectum at necropsy (Jacob et al., 2008c). Likewise, 

Jacob et al. (2008a) found an increase in pen-floor fecal E. coli in cattle fed a diet with 

25% DDGS inclusion and either 5% (7.3%) or 15% corn silage (9.0%) compared with the 

control diet (3.6%). In that study, there was also an increased prevalence of the stx2 gene 

for Shiga toxin production with DDGS inclusion (Jacob et al., 2008a). Mixed results were 

found by Jacob et al. (2008b), where individual animal fecal samples from cattle fed wet 

distillers’ grains were greater than those from cattle fed steam-flaked corn on one day, but 

not on another, and there was no difference observed in pen-pooled samples. However, 

Jacob et al. (2009) found no difference in prevalence of E. coli O157:H7 or Salmonella 

with 25% dietary DDGS inclusion.  

 

Supplementation on Pasture 

 

Energy Supplements 

According to Horn and McCollum (1987), energy supplementation of grazing 

ruminants is generally an effort to offset low availability of forage or forage with low 

energy content. Caton and Dhuyvetter (1997) agree that energy supplementation has a 

place in dormant summer forages or during limiting portions of the winter months, much 

as mentioned before, but they also point out that energy supplementation generally triggers 

a substitution of forage consumption. When beef cows were supplemented with 0, 0.25, 

0.51, or 0.76% BW corn while consuming native grass hay, hay intake was decreased by 

7, 28, and 43% (Chase and Hibberd, 1987). Caton and Dhuyvetter (1997) summarized 
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many studies and found that when forage CP was less than 7%, energy supplementation 

resulted in a substitution coefficient (kg forage intake reduction/kg supplement consumed) 

of 0.27, when forage CP was between 7 and 14%, there was a substitution coefficient of 

0.44, and a substitution coefficient of 0.51 was realized with forage CP greater than 14%. 

At the extreme, Minson (1990) noted a mean forage substitution coefficient of 0.69 with 

energy supplementation. Horn and McCollum (1987), however, hypothesized that energy 

may be supplemented at low levels for animals grazing forages of high nutritive value 

without impact on intake, mainly by elevating the TDN:CP ratio to a more appropriate 

balance (approx. 8:1). 

The effect of energy supplementation on diet digestibility has been varied. Mertens 

and Loften (1980) found that starch inclusion in the diet tended to decrease digestibility, 

primarily by increasing the discrete lag time of digestion. Rittenhouse et al. (1970) fed 

supplements up to 0.8 Mcal DE/kg BW0.75 and up to 2.45% BW0.75 and found no alteration 

in diet digestibility of the basal diet of native prairie grasses. However, when steers grazing 

blue grama, buffalograss, and tobosagrass (Pleuraphis mutica Buckley) were 

supplemented with up to 0.6% BW corn, there was up to a 2.5% decrease in the in vitro 

OM digestibility, while no reduction was observed with 0.2% BW supplementation 

(Pordomingo et al., 1991). 

 

Protein Supplements 

McCollum and Horn (1990) stated that when forage quantity was not limiting, 

protein supplementation of grazing livestock could improve the energy status of the animal 
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by influencing energy intake and enhancing energy utilization. Unlike the effect of energy 

supplementation, which is generally used to stymie decreased performance and dietary 

limitations, the efficacy of protein supplementation is generally measured through 

supplement conversion ratios. Smith (1984) proposed that a S:G of 3:1 was an effective 

threshold, while McCollum and Horn (1990) stated that, when additional weight gain was 

estimated from the dietary NE, this ratio could be up to 5:1. Petersen (1987) stated that 

the effect of CP supplementation is related to the provision of N to the rumen 

microorganisms to make use of fermentable carbohydrates. Blaxter and Wilson (1963) 

found 8.5% forage CP was a critical threshold below which CP supplementation may be 

effective.  

 

Associative versus Substitutive Effects 

Multiple cases have been presented for the possible effects of providing 

supplemental energy or protein to cattle grazing pasture. Substitution occurs when animals 

voluntarily decrease forage intake in favor of supplemental feedstuffs. In contrast, a 

positive associative effect is observed when supplemental feed stimulates an increase in 

voluntary forage consumption.  

It is likely that animals will either substitute the supplemental feed for forage in a 

negative associative (or substitution) effect, or the increasing amount of supplement 

provided will stimulate voluntary forage consumption in a positive associative effect 

(Huston et al., 2002). The specific biological mechanism behind the associative effects of 

supplementation has not been elucidated (Huston et al., 2002). It is believed that the energy 
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to protein ratio of the forage may play a role in effective supplementation. Moore et al. 

(1991) described a study in which soybean meal supplementation at 0.12% BW was 

effective in increasing voluntary intake of ‘Pensacola’ bahiagrass (Paspalum notatum 

Flueggé) when the TDN:CP ratio exceeded 8, but had no effect on forage intake when the 

ratio was less than 8. Similarly, no effects of supplemental protein were realized for 

bermudagrass hay intake with TDN:CP below 8.5 (Moore et al., 1991). When 

supplemented with approximately 0.17% BW as soybean meal, wethers consumed less 

immature hay (TDN:CP = 3.5), but mature hay with TDN:CP of 9 was consumed at a 

greater rate (Ventura et al., 1975). This was thought to also be explained by the increase 

in NDF digestibility with supplementation of mature hay (Ventura et al., 1975). Moore 

and Kunkle (1995) determined that when digestible OM:CP of forage was less than 7, 

there was usually a substitution effect, while a positive associative effect was realized for 

all instances of digestible OM:CP of 7 or greater (Moore and Kunkle, 1995).  

Substitution effects are not well understood. When ‘Suwannee’ bermudagrass hay 

of varying maturity was offered to wethers with and without a supplement of corn and 

soybean meals, hay intake was decreased by 0.75 kcal hay DE/kcal grain DE consumption 

from the most immature hay (Golding et al., 1976). This effect was lessened as hay 

maturity increased. Additionally, corn and soybean meal supplementation was able to 

cease the decrease in GE digestibility with increasing bermudagrass hay maturity, 

resulting in similar digestibility from both 56-d and 70-d cuttings (Golding et al., 1976). 

In an experiment in Florida, steers were offered isoenergetic equivalents of bermudagrass 

hay with or without a grain mixture at approximately 0.6% BW (Moore et al., 1991). In 
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this study, hay intake and ADG were directly related to the quality index value (Moore et 

al., 1990) of the forages. Grain supplementation decreased hay intake by 50%; thereby, 

decreasing the overall intake level to 0.3% BW (Moore et al., 1991). In a compiled dataset, 

researchers determined that supplementation more than 0.8% BW resulted in a consistent 

substitution effect in grazing animals (Moore and Kunkle, 1995). Interestingly, Moore et 

al. (1999) found that the substitution effect was also related to the level of voluntary forage 

intake. When animals consumed 1.75% BW or greater forage, supplementation induced a 

substitution effect (Moore et al., 1999).  

 

Digestive Kinetics 

Mertens and Loften (1980), in their in vitro experiments, demonstrated that the 

digestion of forage in the reticulorumen follows a first-order kinetics model and that the 

rate of such a pattern was heavily influenced by the addition of dietary starch. Lag time is 

associated with hydration of feedstuffs in the rumen and attachment of ruminal microbes 

to feed particles (Russell, 2002). In a whole animal digestive kinetics experiment, 

researchers found that lag times increased with increasing concentrate (corn) addition to 

the diet (Miller and Muntifering, 1985). This supported the hypothesis that rumen 

microbes follow the path of least resistance in feed fermentation, but that the rate of 

degradation was unaffected by supplementation (Miller and Muntifering, 1985). The 

potential extent of degradation was hampered by the addition of 80% concentrate feedstuff 

to a forage diet which indicated that the competition among feedstuffs lies in the passage 

rate instead of the rate of disappearance (Miller and Muntifering, 1985).  
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CHAPTER III 

PASTURE PERFORMANCE, SUBSEQUENT FEEDLOT PERFORMANCE, AND 

CARCASS CHARACTERISTICS OF STOCKER CATTLE GRAZING TIFTON 85 

BERMUDAGRASS SUPPLEMENTED WITH DRIED DISTILLERS’ GRAINS WITH 

SOLUBLES 

 

Synopsis 

Dried distillers’ grains with solubles (DDGS), a co-product of the fuel ethanol 

industry, has provided a source of supplement for livestock across production cycles. The 

objective of this study was to determine the influence of varying rates of DDGS 

supplemented daily to stocker cattle grazing ‘Tifton 85’ (Cynodon dactylon [L.] Pers. × 

C. nlemfuënsis Vanderyst) bermudagrass pastures. Steers (n = 112, 363 ± 3.7 kg BW) were 

stratified by BW and randomly allocated to 16 pastures (0.7 ± 0.01 ha) during each 

summer of two years (2014, 2015). Pastures were allocated randomly to 3 daily rates of a 

DDGS supplement (SUPP; 0.25, 0.5, or 1% BW) and a non-SUPP control for 110 d in 

2014 and 112 d in 2015. Steer ADG increased linearly (P < 0.01) as SUPP increased in 

both years, with 0.25% BW resulting in a 47% increase, 0.5% BW resulting in a 61% 

increase, and 1% BW SUPP resulting in an 84% increase in ADG compared to non-SUPP. 

This resulted in a 2-yr average supplemental feed:additional gain of 3.8:1 from 0.25% 

BW, 7.7:1 from 0.5% BW, and 9.1:1 from 1% BW SUPP. Gain per hectare was greatest 

(P < 0.05) at 1,859 kg/ha from 1% BW, followed by 1,332 kg/ha from 0.5% BW, and 

1,218 kg/ha from 0.25% BW SUPP. Pastures with non-SUPP steers gains of 841 kg/ha. 
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Increasing SUPP on pasture induced a compensatory gain effect in the feedlot, with feedlot 

ADG (P ≤ 0.07) of 1.87, 1.79, 1.75, and 1.62 kg/d from non-SUPP, 0.25, 0.5, and 1% BW 

SUPP, respectively. However, the effect of pasture SUPP on carcass characteristics was 

inconsistent across years. Supplementation of stockers with DDGS while grazing Tifton 

85 may be a viable management strategy to optimize gain per animal or per land area. 

 

Introduction 

Supplementation of stocker cattle has historically been implemented to offset 

deficits in forage mass attributed to overstocking and/or adverse climate or to enhance 

animal performance while grazing forages of low or medium nutritive value (Moore and 

Kunkle, 1995; Moore et al., 1999; Huston et al., 2002). The use of dried distillers’ grains 

with solubles (DDGS) as a supplemental feed source has been a topic of research when 

cattle were grazing native rangeland (Morris et al., 2006; McMurphy et al., 2011); cool-

season forages (Greenquist et al., 2009; Islas and Soto-Navarro, 2011; Watson et al., 

2011); dormant warm-season perennial forages (Murillo et al., 2016); or when cattle were 

provided hay (Morris et al., 2005; Loy et al., 2007; Leupp et al., 2009). An assessment of 

the effects of DDGS supplementation in relation to actively-growing, warm-season 

perennial grass pastures, however, has been relatively sparse in the literature. Gadberry et 

al. (2010) found that supplementing steers grazing bermudagrass (Cynodon dactylon [L.] 

Pers.) pastures daily with DDGS at 0.34 or 0.69% BW resulted in ADG increases of 27 

and 33%, respectively. Beck et al. (2014) found that heifers grazing mixed crabgrass 

(Digitaria ciliaris [Retz.] Koeler) and bermudagrass pastures and supplemented daily with 
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0.39% BW DDGS increased ADG by 60%, and with supplement conversion ratios 

(supplemental feed:additional gain) of 4.3:1. However, evaluations have yet to be 

conducted with DDGS supplementation for cattle grazing high-nutritive value 

bermudagrass hybrids such as ‘Tifton 85’ (Cynodon dactylon [L.] Pers. × C. nlemfuënsis 

Vanderyst). The objectives of this experiment were to determine the influence on ADG, 

efficiency of supplementation, and gain per land area using varying daily rates of DDGS 

supplemented to stocker cattle grazing actively-growing Tifton 85 bermudagrass pastures 

and to assess the impact of animal performance on pasture to subsequent feedlot gains and 

carcass characteristics. 

 

Materials and Methods 

All protocols and procedures for this experiment were approved by the Agriculture 

Animal Care and Use Committee of Texas A&M AgriLife under Animal Use Protocol 

#2014-013A. 

 

Pastures and Forages 

Sixteen replicate pastures (0.7 ± 0.01 ha) were used each year in this 2-yr 

experiment. Soil types represented in the research pastures were Darco loamy fine sand 

(loamy, siliceous, semiactive, thermic Grossarenic Paleudults; 36% of land area), Kirvin 

fine sandy loam (fine, mixed, semiactive, thermic Typic Hapludults; 27% of land area), 

Lilbert loamy fine sand (loamy, siliceous, semiactive, thermic Arenic Plinthic Paleudults; 

25% of land area), and Rentzel loamy fine sand (loamy, siliceous, semiactive, thermic 
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Arenic Plinthaquic Paleudults; 12% of land area). Prior to the initiation of stocking in 2014 

hay was harvested from each pasture on May 23 to stage pastures for similar stages of 

growth for the supplementation study. In 2015, pastures were in similar stages and did not 

require a preliminary harvest. Pastures were fertilized with 77 kg N (as ammonium 

nitrate), 29 kg P2O5, and 62 kg K2O/ha prior to initiation of the experiment in each year. 

At approximately 6-wk intervals, 76 kg N/ha was applied to pastures. This resulted in a 

total seasonal fertilization of 229 kg N, 29 kg P2O5, and 62 kg K2O/ha.  

At the initiation of stocking (June 13, 2014, and June 3, 2015), and at 21-d intervals 

thereafter, forage mass was assessed by harvesting (0.09 m2 quadrat) with hand clippers 

to the soil surface at four random locations within each pasture. Before clipping forage 

height (minimum, median [visual], and maximum) was recorded in each quadrat using a 

standard ruler. Forage samples were dried in a forced air oven at 50°C to constant weight.  

At the initiation of stocking, and at 14-d intervals thereafter, hand-plucked plant 

parts (Edlefsen et al., 1960; Roth et al., 1990; De Vries, 1995) in close proximity to and 

representative of forage grazed by cattle were collected from each pasture for subsequent 

nutritive value analyses. Samples were dried under forced air at 50°C to a constant weight 

and ground using a Wiley mill (Arthur H. Thomas Company, Philadelphia, PA) to pass 

through a 1-mm screen. Samples were analyzed for DM, CP, NDF, and ADF in both years. 

In 2014, samples were shipped to a commercial laboratory (Cumberland Valley Analytical 

Services, Maugansville, MD) for chemical analysis. Analyses included DM (Goering and 

Van Soest, 1970; Shreve et al., 2002), CP (Method 990.03; AOAC, 2000; Leco FP-528 

Nitrogen Combustion Analyzer, Leco Corporation, St. Joseph, MO), NDF (Van Soest et 
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al., 1991), and ADF (Method 973.18; AOAC, 2000). In 2015, analyses conducted at 

Overton included DM and sequential NDF and ADF (with the inclusion of heat-stable α-

amylase but without sodium sulfite; both were expressed inclusive of residual ash; Vogel 

et al., 1999). Analysis for CP was conducted at Stephen F. Austin University CP (Method 

990.03; AOAC, 2000). 

 

Weather Conditions 

Rainfall in 2014 was below the historic mean for June (75.7 mm), July (38.1 mm), 

August (2.5 mm), and September (0.76 mm; Figure III-1). Rainfall in 2015 was more 

varied, with July (3.3 mm) and September (14.7 mm) having below average rainfall, and 

June (118.9 mm) and August (122.2 mm) having above average precipitation. Mean daily 

temperature in June 2014 (26.0°C) and 2015 (26.2°C) were approximately equivalent to 

the historic average (26.0°C; Figure III-2). Likewise, July 2015 (28.6°C) and August 2015 

(27.6°C) were similar to historic recordings. However, July (17.5°C), August (21.4°C), 

and September 2014 (4.4°C) were well below normal temperatures for that period (27.7, 

27.7, and 24.0°C, respectively). Day length was similar within months across 2014 and 

2015, and was similar for June, July, and August (mean = 14.8 h; Figure III-3). Daylength 

shortened in September (13.1 h), as expected.  
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Figure III-1 Monthly precipitation at the Texas A&M AgriLife Research and Extension Center at 

Overton, TX, in 2014 and 2015 compared with long-term averages (1968-2015). 

 

 

 

 
Figure III-2 Mean daily temperature at the Texas A&M AgriLife Research and Extension Center at 

Overton, TX, in 2014 and 2015 compared with long-term averages (1975-2015). 
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Figure III-3 Monthly day length means at the Texas A&M AgriLife Research and Extension Center at 

Overton, TX, in 2014 and 2015. 

 

 

 

 

Animals 

Forty-eight steers (398 ± 4.4 kg initial BW) were obtained in 2014, and 64 steers 

(338 ± 2.0 kg initial BW) were obtained in 2015 from either the Texas A&M AgriLife 
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Systems Unit of the Department of Animal Science in College Station, TX (30.52° N, 

96.42° W) to be used as tester animals. Additional steers from the same sources were used 

as grazers to regulate forage mass. Steers were all sired by Bos taurus bulls, and dams 

were crossbred products of B. taurus and B. indicus origin, resulting in steers with at least 

25% B. indicus influence. All steers were approximately 15 mo of age at initiation of 

experiment. Prior to beginning the experiment, steers were treated with an anthelmintic 
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moxidectin/kg BW) for internal and external parasites and an insecticidal ear tag (GardStar 

Plus, Y-Tex, Cody, WY; 10% permethrin by wt), and implanted with 40 mg trenbolone 

acetate and 8 mg estradiol (Revalor-G, Merck Animal Health, Madison, NJ). Animals 

were weighed, unshrunk, and BCS (1-9; Whitman, 1975; Spitzer, 1986) was assessed by 

a single, trained observer at the initiation of the trial and at termination.  

 

Supplemental Feed 

Granular corn-based DDGS, with 2% added limestone, was sourced (pallets of 

22.7-kg bags; 2 shipments in each year) from Producers Cooperative Association, Bryan, 

TX. Limestone was added to the DDGS to balance Ca:P ratios due to the normally high 

concentrations of P. Samples of DDGS fed were collected weekly and composited for 

further chemical analysis. Samples of DDGS were dried under forced air at 50°C to 

constant weight and ground using a Wiley mill to pass through a 1-mm screen. Samples 

of the DDGS supplement in each year were shipped to a commercial laboratory 

(Cumberland Valley Analytical Services, Maugansville, MD) for chemical analysis. In 

2014, samples were analyzed for all the constituents mentioned above for forage samples 

as well as ether extract (EE; Method 2003.05; AOAC, 2000; Tecator Soxtec System HT 

1043 extraction unit, Tecator, Eden Prairie, MN), Ca and P (Method 985.01; AOAC, 2000; 

Perkin Elmer 5300 DV ICP, Perkin Elmer, Shelton, CT), and S (Leco Corporation, 2008; 

Leco S632 Sulfur Combustion Analyzer, Leco Corporation, St. Joseph, MO). In 2015, 

samples were analyzed only for DM, CP, NDF, ADF, and EE. Characterization of the 

DDGS supplement used in the stocking experiment is presented in Table III-1.  
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Table III-1 Composition and nutritive value of the dried distillers’ grains with solubles (DDGS) 

supplement provided to stocker cattle grazing Tifton 85 bermudagrass.  

Item 2014 2015 

----- Percent dietary composition, as-fed basis ----- 

Corn DDGS 98.0 98.0 

Calcitic limestone 2.0 2.0 

   

----- Nutritive value, % DM ----- 

Crude protein 29.9 29.3 

Neutral detergent fiber 31.9 31.3 

Acid detergent fiber 10.8 10.1 

Ether extract 5.8 6.9 

Calcium 0.94 - 

Phosphorus 0.97 - 

Sulfur 0.92 - 

 

 

 

Animal Procedures 

Steers (2014: n = 48, 398 ± 4.4 kg initial BW; 2015: n = 64, 338 ± 2.0 kg initial 

BW) were stratified by initial BW within sire breed type into 16 groups. Animal groups 

were randomly allocated to each of 16 pastures. Pastures were randomly allocated to each 

of 4 treatments including 3 rates of supplementation (SUPP; 0.25, 0.5, or 1% BW) and a 

non-SUPP control. Steers were group-fed SUPP daily at approximately 0800 h, and bunk 

space was maintained at a minimum of 38 cm/hd. Water and trace mineralized salt (Special 

Pasture Mineral, Producers Cooperative Association, Bryan, TX; 14% Ca, 12% NaCl, 7% 

P, 4.9% Mg, 0.1% K, 9,900 ppm Zn, 3,900 ppm Mn, 2,500 ppm Cu, 100 ppm I, 45 ppm 

Se, 440,000 IU vitamin A, 44,000 IU vitamin D, and 220 IU vitamin E) were provided for 

ad libitum access. Animals were weighed, unshrunk, every 21 d. Steer BCS was assessed 

by the same observer at the initiation and conclusion of stocking. Pastures were managed 

in a variable stocking method described by Mott and Lucas (1952). Grazer animals were 
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added to each pasture based on forage estimates to achieve a visual forage mass and a 

target forage allowance of approximately 1 kg DM/kg BW (Rouquette, 2016). At each 

weighing period, stocking rate was calculated assuming 1 head was equivalent to one 340-

kg steer. Amount of daily SUPP offered to each group was adjusted following each 21-d 

weigh period to represent a designated proportion of BW. Grazing was terminated on 

September 29, 2014, and September 23, 2015, for a total grazing period of 110 and 112 d, 

respectively, for the 2 years. 

 

Finishing Phase 

In both years, following stockering on bermudagrass, steers were co-mingled, 

sorted into groups of similar ranges in BW, and shipped 693 km to a commercial feedlot 

(King Ranch Feedyard, Kingsville, TX) for the finishing phase. Pasture treatments were 

not maintained through the finishing phase due to pen space and need to group cattle for 

estimated sale to packing plant. Cattle were weighed upon entry to the feedlot. Animals 

were pen-fed step-up rations on receipt, the finishing ration was a total mixed ration 

provided daily at a rate of approximately 10.4 kg/hd. Composition of the finishing ration 

is presented in Table III-2. Monensin was included as per label instructions. Finishing was 

terminated when subcutaneous fat depth (visually assessed) of each pen was deemed 

sufficient (1.25 cm on a pen average) for harvest. Animals were weighed prior to shipment 

to the abattoir. Feedlot ADG was calculated as final feedlot BW minus initial feedlot BW 

divided by days on feed. 
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Table III-2 Composition of the finishing ration provided to steers following summer grazing of Tifton 85 

bermudagrass pastures and supplementation with varying rates of dried distillers’ grains with solubles 

(DDGS).  

Item Percent, as-fed basis 

Roasted corn 63.6 

Sorghum silage 11.0 

Whole cottonseed 10.0 

Molasses 6.0 

Liquid supplement 5.4 

Dried distillers’ grains 4.0 

 

 

 

Carcass Measurements 

Following the feedlot phase, animals were transported 59 km to and harvested at a 

commercial abattoir (Sam Kane Beef Processors, Corpus Christi, TX). Hot carcass weight 

was recorded at the time of harvest. Dressing percent was calculated by dividing HCW by 

final feedlot BW and multiplying by 100. Lungs were scored by a trained observer using 

a previously unpublished scoring system. The system was based on the concepts of Elanco 

(2014), but modified by J. C. Paschal for use in lung evaluation and further developed by 

T. J. Machado (personal communication). While most lung scoring systems are based on 

Bryant et al. (1999) to describe degree and severity of lung lesions, the new system uses 

lung discoloration for indication of health status. A score of 1 indicated no discoloration, 

2 indicated up to 24% discoloration, 3 indicated 25 to 49% discoloration, 4 indicated 50 

to 74% discoloration, and 5 indicated discoloration more than 74%. Livers were scored by 

a trained observer according to the protocol of Elanco (2014). The score of 0 indicated a 

liver with no abscesses; an A score denoted a liver with 2 or fewer unorganized abscesses, 

4 or fewer organized abscesses, or presence of abscess scars; and an A+ score denoted a 
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liver with active abscesses. At 48-h post-harvest, carcasses were evaluated for 12th rib fat 

(cm), calculated yield grade, longissimus muscle (LM) area (cm2), marbling score (200 = 

traces; 300 = Select+; 400 = Choice-; 500 = Choice0; 600 = Choice+; 700 = Prime-; 800 = 

Prime0; 900 = Prime+; Guiroy et al., 2001), and USDA quality grade. Empty body fat was 

calculated according to the equation of Guiroy et al. (2001), given in Eq. [III-1], where 

EBF is empty body fat (%), FAT is 12th rib fat (cm), HCW is hot carcass weight (kg), 

MARB is marbling score, and LMA is LM area (cm2).  

 

       17.76 4.68 0.02 0.89 0.07EBF FAT HCW MARB LMA           [III-1] 

 

Statistical Analyses 

Data were analyzed using SAS 9.4 (SAS Institute Inc., Cary, NC). The design of 

the pasture × SUPP experiment was a completely randomized design (within year) with 4 

treatment levels (SUPP) and 4 replications of each treatment. Pastures were defined as the 

experimental unit, and means from each pasture were used for analysis. Prior to analysis, 

raw data were tested using the NORMAL option of PROC UNIVARIATE to ensure data 

normality. Normality was assumed when Shapiro-Wilk’s W met or exceeded 0.9 (Shapiro 

and Wilk, 1965; Royston, 1992).  

All responses were analyzed using PROC MIXED. Due to the innate differences 

in the two-year study, responses were analyzed independently by year. Denominator 

degrees of freedom were adjusted using the Satterthwaite approximation method. 
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Performance measures from the pasture and feedlot and carcass characteristics were 

analyzed with the fixed effect of SUPP and no random effects.  

Pasture nutritive value measures were analyzed with the fixed effects of day of 

study, SUPP, and their interaction. Denominator degrees of freedom were adjusted using 

the Kenward-Roger approximation method (Kenward and Roger, 1997). There were no 

random effects included in the model. Day was used as a repeated measurement on the 

subject of pasture. The compound symmetry variance/covariance structure was used for 

the repeated measurement. Data were also analyzed using PROC REG to help explain 

linear or quadratic effects of day over the supplementation period. 

Orthogonal polynomial contrasts were tested for linear and quadratic effects of 

SUPP. Coefficients for contrasts were determined using PROC IML. Linear coefficients 

were -0.59 for 0% BW, -0.25 for 0.25% BW, 0.08 for 0.5% BW, and 0.76 for 1% BW 

SUPP. Quadratic coefficients were 0.56 for 0% BW, -0.32 for 0.25% BW, -0.64 for 0.5% 

BW, and 0.40 for 1% BW SUPP. For responses in which there was no measurement of 

non-SUPP (such as additional gain from SUPP, supplemental feed:additional gain [S:G], 

and feed cost of SUPP), linear and quadratic coefficients were -0.62 and 0.53 for 0.25% 

BW, -0.15 and -0.80 for 0.5% BW, and 0.77 and 0.27 for 1% BW SUPP, respectively.  

Least squares means were computed for each main effect and interaction. The α-

level for mean differences was set at 0.05, and 0.10 was used for tendencies. When 

interactions had P < α, the interaction was discussed; otherwise, main effects were 

discussed. Means separations were performed based on F-protected t-tests using the 

%PDMIX800 macro (Saxton, 1998). 
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Categorical variables (liver and lung scores) were analyzed using PROC FREQ 

from individual animal data. Two-way frequency tables were generated for the response 

by SUPP. Means were tested using the χ2 statistic. 

 

Results and Discussion 

 

Forages and Stocking 

There was an interaction of days of supplementation and SUPP for CP in both 

years (P ≤ 0.03) as well as NDF and ADF in 2015 (P ≤ 0.04). Generally, observations in 

2014 and 2015 were inverse. There was a linear (P < 0.01; r2 = 0.61) decrease in CP with 

advancing time in 2014, while a quadratic effect (P < 0.01; r2 = 0.18) was observed with 

advancing time in 2015, resulting in a bimodal distribution over time (Figure III-4). 

However, there was no difference (P > 0.05) among SUPP on d 14, 28, 70, or 84 in 2014, 

or on d 42, 56, 70, or 112 in 2015. When CP differed among SUPP within a day in 2014, 

non-SUPP pastures were less (P < 0.05) than pastures in which SUPP was offered, while 

0.25 and 0.5% BW SUPP pastures were intermediate on d 56 and 110, respectively. In 

2015, there was no distinctive pattern for difference among SUPP within a day, though 

non-SUPP pastures were generally greater (P < 0.05) than pastures in which SUPP was 

offered. Rouquette et al. (2008) observed bimodal CP peaks in May (14.6 and 18.5% CP 

in 2006 and 2007, respectively) and August (13.5 and 17.6% CP in 2006 and 2007, 

respectively). The CP concentration of Tifton 85 bermudagrass in the current study was 
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similar to that documented by Corriher et al. (2007) and Rouquette et al. (2008), but 

greater than observations by Hill et al. (1993).  

 

 

 
Figure III-4 Forage nutritive value measurements from Tifton 85 bermudagrass pastures in which steers 

were supplemented with varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 

0.25, 0.5 or 1% body weight [BW]). 

 

 

 

 

There was an effect of days of supplementation (P < 0.01) on NDF in 2014. There 

was a linear increase (P < 0.01; r2 = 0.14) in NDF with advancing time, though a slight 

bimodal relationship may be viewed in which peaks may be observed around d 14 and d 

84 through 110. In 2015, the interaction of day and SUPP revealed that, when pastures 

differed (P < 0.05) among SUPP within a day, pastures in which steers were offered 

increased rates of SUPP resulted in decreased forage NDF concentrations. There was a 
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linear increase (P < 0.01; r2 = 0.65 and 0.15 in 2014 and 2015, respectively) in ADF 

concentration with advancing time in each year. In 2015, the interaction of day and SUPP 

indicated that ADF concentration was highly variable within a day, with increasing SUPP 

resulting in decreased ADF (P < 0.05) on d 70, and 112, but decreased ADF (P < 0.05) 

was observed from non-SUPP pastures on d 14, 42, 56, and 98. The main effect of SUPP 

for NDF and ADF in 2014 was not significant (P ≥ 0.11; Table III-3). All NDF and ADF 

values reported herein were greater than those stated by Mandebvu et al. (1999), but 

similar to or less than the values for Tifton 85 forage in Mandebvu et al. (1998). 

Forage mass was managed throughout the trial by means of variable (put-and-take) 

stocking (Mott and Lucas, 1952) to maintain pasture mass across for all treatment levels 

with target forage allowance of approximately 1 kg DM/kg BW (Rouquette, 2016). 

However, despite management, forage allowance decreased linearly (P = 0.03) to 0.90 kg 

DM/kg BW in 2014 and decreased quadratically (P = 0.05) to 0.68 kg DM/kg BW in 2015. 

This represents an intensive or aggressive grazing strategy that may affect other 

interpretations from experimental pastures. Thus, pastures were stocked at higher than 

desirable levels due to climatic conditions during the experiment. Others have documented 

the relationship in forage allowance and ADG, noting different thresholds for different 

forages (McCartor and Rouquette, 1977; Roth et al., 1990). 
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Table III-3 Forage and stocking parameters from Tifton 85 bermudagrass pastures in which steers were 

supplemented with varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, 

0.5 or 1% body weight [BW]). 

 Rate of DDGS supplementation, % BW   Contrasts § 

Item † 0% 0.25% 0.5% 1% SEM ‡ P-value L Q 

CP, % DM 

     2014 15.5c 16.4ab 15.7bc 16.7a 0.32 0.03 0.03 0.83 

     2015 14.5 14.0 14.3 13.7 0.69 0.24 0.11 0.80 

NDF, % DM 

     2014 71.4 72.1 72.6 72.1 0.52 0.47 0.38 0.18 

     2015 71.7 71.7 71.8 70.3 0.66 0.31 0.11 0.35 

ADF, % DM 

     2014 36.7 37.2 37.4 36.2 0.40 0.11 0.20 0.05 

     2015 35.1w 34.8wx 35.2w 34.2x 0.28 0.06 0.04 0.20 

Forage mass, kg DM/ha 

     2014 4,012 4,186 4,284 4,622 182.5 0.17 0.03 0.94 

     2015 3,376wx 2,784xy 2,628y 3,559w 263.1 0.08 0.41 0.01 

Forage height (median), cm 

     2014 27.7 31.0 29.9 31.4 1.11 0.13 0.07 0.39 

     2015 27.8a 22.5b 23.2b 27.9a 0.82 < 0.01 0.22 < 0.01 

Forage allowance, kg DM/kg BW 

     2014 1.02 1.04 1.00 0.90 0.043 0.15 0.04 0.36 

     2015 0.73 0.63 0.63 0.68 0.036 0.21 0.54 0.05 

Stocking rate#, hd/ha 

     2014 11.5c 11.8c 12.6b 15.1a 0.24 < 0.01 < 0.01 0.02 

     2015 13.6ab 12.9b 12.4b 15.4a 0.66 0.04 0.05 0.03 
† CP = crude protein (N × 6.25); DM = dry matter; NDF = neutral detergent fiber (assayed inclusive of 

α-amylase and expressed inclusive of residual ash); ADF = acid detergent fiber (expressed inclusive of 

residual ash); BW = body weight. 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported 
§ Orthogonal polynomial contrasts. L = linear; Q = quadratic.  
# 1 hd = 340 kg steer. 
a, b, c Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x, y Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 

 

 

 

The put-and-take stocking allowed for evaluation of substitutive and/or associative 

effects of SUPP through stocking rate. A positive associative effect is one in which forage 

intake is stimulated with the addition of supplement, resulting in increased ADG. A 
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substitutive effect is one in which animals will substitute the supplemented feedstuff for 

the grazed forage, either with or without increased ADG (Moore et al., 1991; Moore and 

Kunkle, 1995; Moore et al., 1999; Huston et al., 2002). Stocking rate increased linearly (P 

≤ 0.05) in both years with SUPP. The stocking rate of 1% BW SUPP pastures was greatest 

in both years (increases of 3.6 and 1.8 hd/ha in 2014 and 2015, respectively). The increase 

in SUPP allowed for an increase in forage mass (P = 0.08; 2015). This provided indication 

that a substitution effect was induced with 1% BW SUPP (Goetsch et al., 1991; 

Vendramini et al., 2007). Likewise, similar stocking rates for 0.25 and 0.5% BW SUPP 

with decreased forage mass in 2015 provides indication of a positive associative effect of 

supplementation.  

When Rouquette et al. (2010a) supplemented calves with 0.4% BW corn gluten 

feed, corn/soybean meal, or cracked corn, or 0.8% corn gluten feed or cracked corn, there 

was no observed difference in forage mass among pastures. Similarly, there was no 

difference among pastures when calves were supplemented with 0.4% BW corn/soybean 

meal (Rouquette et al., 2010b). Likewise, there was no difference in stocking rate when 

calves were supplemented with 0.2 kg/d of a cottonseed meal/soybean meal mixture while 

grazing bermudagrass pastures in Booneville, Arkansas (Aiken and Brown, 1996). 

However, similar to the observations in this experiment, Vendramini et al. (2007) 

observed a linear increase in stocking rate with 1, 1.5, or 2% BW of a commercial protein 

supplement (15% CP, 70% TDN), and these authors interpreted this to indicate a 

substitution effect.  
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Animal Performance on Pasture 

By design, BW at the initiation of the stocking experiment did not differ (P ≥ 0.97; 

mean = 399 and 339 kg in 2014 and 2015, respectively) among SUPP in either 

experimental year (Table III-4). Final BW, however, increased linearly (P < 0.01) with 

increasing SUPP. As a result, ADG increased linearly (P < 0.01), with increases of 47, 61, 

and 84% for 0.25, 0.5, and 1% BW SUPP. This also resulted in a linear increase (P ≤ 0.06) 

in additional gain from SUPP: 0.29, 0.35, and 0.50 for 0.25, 0.5, and 1% BW SUPP. When 

stockers grazed Tifton 85 bermudagrass at the Texas A&M AgriLife Research and 

Extension Center at Overton in a summer backgrounding experiment, ADG of 0.84 and 

0.77 kg/d were observed across two experiments with no supplemental feed (Rouquette et 

al., 2003). Steers (269 kg initial BW) grazing Tifton 85 bermudagrass in Georgia for 

approximately 170 d gained 0.67 kg/d (Hill et al., 1993), while further research from 

Georgia has shown non-supplemented ADG of 0.72 kg/d (Hill et al., 1997; Hill et al., 

2001). Non-supplemented ADG in the current experiment was intermediate to those 

previously documented because cattle used in the current experiment were heavier at the 

initiation of supplementation than those in previous studies. 
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Table III-4 Animal performance measures from steers grazing Tifton 85 bermudagrass and supplemented 

with varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, 0.5 or 1% body 

weight [BW]).  

 Rate of DDGS supplementation, % BW   Contrasts § 

Item † 0% 0.25% 0.5% 1% SEM ‡ P-value L Q 

Initial BW, kg 

     2014 399 398 397 400 2.2 0.76 0.59 0.38 

     2015 338 340 338 338 1.9 0.80 0.91 0.64 

Final BW, kg 

     2014 475c 508b 508b 527a 5.5 < 0.01 < 0.01 0.07 

     2015 396c 428b 440ab 456a 5.5 < 0.01 < 0.01 0.02 

Average daily gain, kg BW/d 

     2014 0.69b 1.00a 1.01a 1.15a 0.050 < 0.01 < 0.01 0.04 

     2015 0.52c 0.78b 0.91ab 1.05a 0.051 < 0.01 < 0.01 0.03 

Additional gain from supplementation, kg BW/d 

     2014 - 0.31 0.31 0.46 0.053 0.13 0.06 0.51 

     2015 - 0.26b 0.39ab 0.53a 0.053 0.02 < 0.01 0.54 

Average feed offered, kg/d 

     2014 - 1.1c 2.3b 4.6a 0.02 < 0.01 < 0.01 0.06 

     2015 - 1.0c 1.9b 4.0a 0.02 < 0.01 < 0.01 0.10 

Supplemental feed to additional gain ratio, kg feed/kg BW gain 

     2014 - 3.8x 9.3w 10.4w 1.99 0.09 0.06 0.21 

     2015 - 3.8x 6.0wx 7.7w 1.09 0.09 0.04 0.51 

Gain per hectare, kg BW/ha 

     2014 878c 1301b 1397b 1911a 75.0 < 0.01 < 0.01 0.48 

     2015 803c 1135b 1267b 1807a 101.4 < 0.01 < 0.01 0.99 

Initial BCS 

     2014 5.6 5.5 5.6 5.7 0.16 0.95 0.75 0.65 

     2015 5.3 5.4 5.3 5.3 0.08 0.74 0.92 0.67 

Final BCS 

     2014 5.3b 5.6b 5.8ab 6.1a 0.15 0.02 < 0.01 0.79 

     2015 5.0c 5.7b 6.1a 6.5a 0.14 < 0.01 < 0.01 0.02 

Change in BCS (initial to final) 

     2014 -0.2b 0.1ab 0.2a 0.5a 0.14 0.03 < 0.01 0.48 

     2015 -0.3c 0.4b 0.9a 1.1a 0.13 < 0.01 < 0.01 < 0.01 
† BW = body weight; DM = dry matter; BCS = body condition score (1 to 9). 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported 
§ Orthogonal polynomial contrasts. L = linear; Q = quadratic.  
a, b, c Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 
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Results from supplementation of cattle grazing Tifton 85 have generally been 

positive. Rouquette et al. (2008) supplemented Bonsmara crossbred steers in Overton with 

0.8% BW corn gluten pellets (23% CP, 75% TDN) and reported an ADG of 0.79 and 0.72 

kg/d in 2006 and 2007, respectively. This was an increase in ADG of 0.34 and 0.24 kg/d 

above the control in each year. In that same study, steers finished with a final BCS 0.7 to 

1.0 greater than non-supplemented animals.  

Supplemental feed:additional gain is an indicator of efficiency in a 

supplementation regime (Smith, 1984; McCollum and Horn, 1990), where lower values 

indicate more efficiency. In the current study, S:G increased linearly (P ≤ 0.06) with 

increasing SUPP. Values of S:G may be used as an evaluation metric for the potential 

profitability of supplementation strategy. The feed cost of additional gain is calculated as 

feed cost times feed offered divided by additional gain from SUPP. The observed S:G 

resulted in a linear increase (P ≤ 0.06) in feed cost of gain with increasing SUPP (Table 

III-5). When combined with the fertilizer cost of gain (linear decrease [P < 0.01] with 

increasing SUPP), this resulted in cost increases (P < 0.01) of $0.85, $1.36, and $2.06/kg 

BW gain with 0.25, 0.5, and 1% BW SUPP.  
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Table III-5 Feed and fertilizer costs of gain from steers grazing Tifton 85 bermudagrass and 

supplemented with varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, 

0.5 or 1% body weight [BW]). 

 Rate of DDGS supplementation, % BW   Contrasts ‡ 

Item † 0% 0.25% 0.5% 1% SEM † P-value L Q 

Feed cost of additional gain §#, $/kg 

     2014 - $0.91x $2.24w $2.51w $0.479 0.09 0.06 0.22 

     2015 - $0.92x $1.45wx $1.84w $0.262 0.09 0.04 0.52 

Fertilizer cost per hectare ǁ, $/ha 

     2014 $163.80 $163.80 $163.80 $163.80 - - - - 

     2015 $163.80 $163.80 $163.80 $163.80 - - - - 

Fertilizer cost of gain, $/kg 

     2014 $0.19a $0.13b $0.12b $0.09c $0.008 < 0.01 < 0.01 < 0.01 

     2015 $0.22a $0.15b $0.13bc $0.09c $0.017 < 0.01 < 0.01 0.17 

Total feed and fertilizer cost of gain, $/kg 

     2014 $0.19c $1.04b $2.36a $2.59a $0.419 < 0.01 < 0.01 0.12 

     2015 $0.22c $1.06b $1.58ab $1.93a $0.235 < 0.01 < 0.01 0.07 
† SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported 
‡ Orthogonal polynomial contrasts. L = linear; Q = quadratic.  
§ Cost of additional gain based on feed cost of DDGS at $0.24/kg. Prices obtained from the “Texas 

Border” delivered price of the USDA Market News Report, June 24, 2016. 
# Calculated as ($0.24/kg SUPP × feed offered, kg) / additional gain from SUPP, kg.  
ǁ Calculations based on fertilizer costs of $0.45/kg for 21-8-17 and $0.44/kg for 34-0-0. 
a, b, c Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 

 

 

 

Supplemental efficiency has varied based on supplement used and other 

experimental conditions. Calves supplemented with 0.4% BW cracked corn (8% CP) or 

0.4% BW corn/soybean meal (36% CP) while grazing Tifton 85 bermudagrass had similar 

S:G (3.6:1 and 4.2:1, respectively) as steers supplemented with 0.25% BW SUPP in the 

current study (Rouquette et al., 2010a). Similarly, when Gadberry et al. (2010) 

supplemented steers with 0.34% BW DDGS (32% CP, 16% EE), S:G of 3.7:1 were 

realized, while supplementation with 0.69% BW DDGS resulted in similar S:G to 0.5% 

BW SUPP in the present experiment (5.88:1). Supplementation in this experiment was 
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more effective than supplementation with a mixed corn/soybean meal supplement (36% 

CP) in Woods et al. (2004), where 0.2% BW supplementation resulted in S:G of 6.8:1 and 

0.8% BW supplementation resulted in S:G of 7.2:1. 

Gain per hectare increased linearly with increasing SUPP (P < 0.01), with 0.25 or 

0.5% BW SUPP resulting in an approximate increase of 432 kg/ha and 1% BW SUPP 

resulting in an approximate increase of 1,019 kg/ha over the control. Supplementation 

with 1% BW of a 15% CP, 70% TDN commercial supplement with stockers on Tifton 85 

bermudagrass resulted in an increase of 850 kg/ha in an experiment in Florida 

(Vendramini et al., 2007).  

Initial BCS did not differ (P ≥ 0.74) among SUPP. Final BCS increased linearly 

(P < 0.01) with increasing SUPP in both years, with 1% BW SUPP having a BCS 0.5 and 

1.1 greater than non-SUPP in 2014 and 2015, respectively. The change in BCS from 

initiation to conclusion of the experiment increased linearly (P < 0.01) with increasing 

SUPP. The change was negative for non-SUPP and was 0.5 in 2014 and 1.1 in 2015 for 

1% BW SUPP. 

 

Summary of pasture phase 

Stocking rate on pasture increased linearly with increasing SUPP. As a result, gain 

per hectare increased linearly. There was also a linear increase in ADG with increasing 

SUPP, resulting in 2-yr average S:G of 3.8:1, 7.7:1, and 9.1:1 from 0.25, 0.5, and 1% BW 

SUPP, respectively. There was a linear increase in BCS gain, with 1% BW SUPP gaining 

a 2-yr average 0.8. Total feed and fertilizer cost of gain was $0.21/kg for non-SUPP, 
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$1.05/kg for 0.25 BW SUPP, $1.84/kg for 0.5 BW SUPP, and $2.26/kg for 1% BW SUPP 

across the 2-yr experiment.  

 

Feedlot Performance 

Because of the ADG from SUPP during the stocking phase, BW at the initiation 

of the feedlot phase increased linearly (P < 0.01) with increasing SUPP on pasture (Table 

III-6). Steers with 1% BW SUPP entered the feedlot in 2014 and 2015, respectively, 67 

and 68 kg heavier, 0.5% BW SUPP steers were 47 and 50 kg heavier, and 0.25% BW 

SUPP steers were 43 and 37 kg heavier than non-SUPP cattle. Feedlot ADG tended to 

decrease linearly (P = 0.07) in 2014 and decreased (P < 0.01) in 2015 with increasing 

SUPP on pasture. There was no effect of SUPP on days on feed in 2014 (P = 0.70), but 

days on feed decreased with increasing SUPP in 2015 (P < 0.01). There was no difference, 

however, among SUPP (P ≥ 0.13) for final BW in the feedlot.  

Previous research has documented an effect of pasture treatment that impacts ADG 

on subsequent feedlot performance of cattle. Compensatory gain is defined as the more 

rapid and efficient growth of animals following a period of feed or nutrient restriction 

(Osborne and Mendel, 1915, 1916). Compensatory gain has been documented when cattle 

intake was previously restricted (Fox et al., 1972; Sainz et al., 1995) as well as when 

performance in the pasture phase is decreased through limitation of some nutrient 

(Bohman, 1955; Bohman and Torell, 1956; Cleere et al., 2012). When heifers and steers 

grazed a mixture of rye (Secale cereale L.) and annual ryegrass (Lolium multiflorum Lam.) 

through the winter and spring, steers that had high ADG in the pasture (1.1 ± 0.10 kg/d) 
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had 13% lower ADG in the feedlot than steers that had low ADG in the pasture (0.3 ± 0.10 

kg/d; Cleere et al., 2012). Likewise, steers fed a diet of timothy (Phleum pratense L.) hay, 

soybean meal, and soybean hulls to achieve stocker ADG classes (0.29 kg/d from low, 

0.52 kg/d from medium, 0.79 kg/d from high) exhibited greater feedlot ADG when fed in 

the low ADG class than those from the medium or high classes (evidence of compensatory 

gain; Neel et al., 2007). The results of the current study agree with these findings, where 

increased ADG on pasture from increasing level of SUPP resulted in decreased feedlot 

ADG.  

 

 

 
Table III-6 Feedlot performance from steers grazing Tifton 85 bermudagrass and supplemented with 

varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, 0.5 or 1% body 

weight [BW]). 

 Rate of DDGS supplementation, % BW   Contrasts § 

Item † 0% 0.25% 0.5% 1% SEM ‡ P-value L Q 

Initial BW, kg 

     2014 452c 495b 499ab 519a 7.3 < 0.01 < 0.01 0.04 

     2015 393c 430b 443ab 461a 7.2 < 0.01 < 0.01 0.04 

Final BW, kg 

     2014 710 756 738 748 13.4 0.13 0.16 0.22 

     2015 719 706 723 708 8.9 0.46 0.53 0.71 

Average daily gain, kg BW/d 

     2014 1.88 1.91 1.76 1.69 0.080 0.24 0.07 0.89 

     2015 1.85a 1.67bc 1.73ab 1.54c 0.057 0.02 < 0.01 0.88 

Days on feed, d 

     2014 138 136 136 136 0.7 0.36 0.22 0.25 

     2015 177a 166b 162bc 160c 1.6 < 0.01 < 0.01 < 0.01 
† BW = body weight. 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported 
§ Orthogonal polynomial contrasts. L = linear; Q = quadratic.  
a, b, c Means within a row with uncommon superscripts are different (P ≤ 0.05). 
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Summary of feeder phase 

Initial BW on entry to the feedlot increased linearly with increasing SUPP on 

pasture. As a result of compensatory gain, there was a linear decrease in ADG in the 

feedlot with increasing SUPP on pasture, with ADG of 1.87, 1.79, 1.75, and 1.62 kg/d for 

non-SUPP, 0.25, 0.5, and 1% BW SUPP, respectively. There was no difference in days on 

feed in 2014, but there was a linear decreasing with increasing SUPP on pasture in 2015.  

 

Carcass Characteristics 

There was a quadratic effect (P = 0.03) of SUPP on pasture for dressing percentage 

of carcasses (Table III-7). Dressing percentage of 0.25 and 0.5% BW SUPP carcasses 

were less than no-SUPP or 1% BW SUPP. Despite this, HCW were similar (P ≥ 0.25) 

among SUPP. Calculated yield graded and empty body fat increased linearly (P ≤ 0.04) in 

2014, but not in 2015 (P ≥ 0.31). Similarly, 12th rib fat tended to increase linearly (P = 

0.07) with increasing SUPP in 2014 but not in 2015 (P = 0.71). There was no effect of 

SUPP (P ≥ 0.20) for LM area. Marbling score increased linearly (P = 0.03) in 2014 and 

tended to increase quadratically (P = 0.09) in 2015, with 7, 13, and 6% increases for 0.25, 

0.5, and 1% BW SUPP across the 2-yr experiment. However, caution should be used in 

interpreting results due to the nature of allocation in the feedlot. 
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Table III-7 Carcass characteristics from steers grazing Tifton 85 bermudagrass and supplemented with 

varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, 0.5 or 1% body 

weight [BW]). 

 Rate of DDGS supplementation, % BW   Contrasts ‡ 

Item 0% 0.25% 0.5% 1% SEM † P-value L Q 

Dressing percentage, % live weight 

     2014 63.7w 62.3x 62.7wx 63.6w 0.42 0.10 0.60 0.03 

     2015 62.3 63.7 63.5 62.7 0.44 0.13 0.92 0.03 

Hot carcass weight, kg 

     2014 452 471 463 476 8.6 0.25 0.11 0.71 

     2015 448 450 459 443 6.9 0.46 0.65 0.19 

Calculated yield grade 

     2014 3.4 3.5 3.6 4.1 0.23 0.17 0.04 0.50 

     2015 3.9 3.7 3.5 3.8 0.19 0.47 0.65 0.16 

12th rib fat, cm 

     2014 1.60 1.39 1.55 1.87 0.127 0.11 0.07 0.13 

     2015 1.85 1.67 1.62 1.88 0.127 0.41 0.71 0.11 

Longissimus muscle area, cm2 

     2014 99.0 97.7 97.1 94.8 2.62 0.72 0.27 0.97 

     2015 94.8 90.4 97.4 93.8 2.17 0.20 0.79 0.77 

Marbling score § 

     2014 394b 396b 443a 426ab 11.1 0.02 0.03 0.11 

     2015 409 463 462 426 24.2 0.35 0.89 0.09 

Empty body fat #, % 

     2014 30.6x 30.1x 31.1wx 32.9w 0.75 0.09 0.02 0.34 

     2015 32.1 32.3 31.3 30.9 0.98 0.70 0.31 0.96 
† SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported 
‡ Orthogonal polynomial contrasts. L = linear; Q = quadratic.  
§ 200 = traces; 300 = Select+; 400 = Choice-; 500 = Choice0; 600 = Choice+; 700 = Prime-; 800 = 

Prime0; 900 = Prime+ (Guiroy et al., 2001). 
# Guiroy et al. (2001). 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 

 

 

 

Few manuscripts have evaluated the effects of pasture supplementation on 

subsequent carcass characteristics. When supplemented with 0.7% BW DDGS while 

grazing smooth bromegrass, steers had a 6% increase in HCW and an 11% increase in 

marbling scores (Greenquist et al., 2009). However, others have found results more similar 
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to the results of the current study, Rouquette et al. (2008) found no effect of supplemental 

corn gluten feed (0.8% BW; 23% CP) on carcass characteristics of Bonsmara crossbred 

steers either harvested directly off pasture or after 90 d on feed. Likewise, Buttrey et al. 

(2012) observed no difference in carcass traits when steers were offered DDGS in the 

backgrounding phase. Several researchers found no difference of previous forage 

treatment on USDA quality grade (Hancock et al., 1987; Capitan et al., 2004; Kumar et 

al., 2012). 

While it has been documented that high-grain (feedlot) diets may increase the 

prevalence of liver abscesses (Nagaraja and Chengappa, 1998), there was no evidence of 

effect of SUPP on liver (P ≥ 0.11) or lung scores across years (P ≥ 0.32; Table III-8). This 

was consistent with the finding of many others who have included corn- (May et al., 2010; 

Uwituze et al., 2010) or wheat-based DDGS (Beliveau and McKinnon, 2008; Gibb et al., 

2008; Yang et al., 2012) at rates from 23 to 60% of the diet, and none have reported 

incidence with supplemental DDGS on pasture.  
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Table III-8 Frequency table (counts) of liver and lung scores from steers grazing Tifton 85 bermudagrass 

and supplemented with varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 

0.25, 0.5, or 1% body weight [BW]). 

 Rate of DDGS supplementation, % BW  

Quality grade group 0% † 0.25% 0.5% 1% Sum 

----- Liver scores ‡ ----- 

2014 §      

     0 10 8 11 10 39 (81%) 

     A 2 4 1 2 9 (19%) 

     A+ 0 0 0 0 0 (0%) 

2015 #       

     0 14 13 13 8 48 (75%) 

     A 2 3 3 6 14 (22%) 

     A+ 0 0 0 2 2 (3%) 

      

----- Lung scores ----- 

2014 ǁ      

     1 9 5 7 8 29 (60%) 

     2 2 6 4 3 15 (31%) 

     3 1 1 1 1 4 (9%) 

     4 0 0 0 0 0 (0%) 

     5 0 0 0 0 0 (0%) 

2015 ¶      

     1 14 10 12 11 47 (75%) 

     2 1 6 4 4 15 (24%) 

     3 1 0 0 0 1 (1%) 

     4 0 0 0 0 0 (0%) 

     5 0 0 0 0 0 (0%) 
† Values represent number of carcasses within a rate of supplemental DDGS in each group. 
‡ Elanco (2014). 
§ χdf=3

2  = 2.60; P = 0.46. 
# χdf=6

2  = 10.40; P = 0.11. 
ǁ χdf=6

2  = 3.54; P = 0.74. 
¶ χdf=6

2  = 7.00; P = 0.32. 

 

 

 

Summary of carcass characteristics 

Dressing percentage demonstrated a quadratic response to SUPP in each year. 

Effects of SUPP on carcass characteristics were most pronounced in 2014, when 
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calculated yield grade and empty body fat increased linearly with increasing SUPP. In 

2015, only marbling score was affected by SUPP. The USDA quality grades, indicated 

through marbling scores, were average for such cattle, generally grading Choice0. Yield 

grades were within an acceptable range for harvest, though the means approaching 4 

would be considered large and may encounter a discount at harvest. 

 

Conclusion 

Average daily gain of steers in the pasture increased with increasing rates of 

supplementation with DDGS. A maximum ADG of 1.15 kg/d occurred with 1% BW 

SUPP in 2014, but this occurred at an S:G of 10.4:1. The most efficient use of supplement 

occurred at 0.25% BW in 2014, with ADG of 1 kg/d and S:G of 3.8:1. Stocking rate was 

increased linearly with increasing SUPP. Animals receiving 1% BW SUPP substituted 

DDGS for forage, which resulted in increased forage mass on pastures and necessitated 

increased stocking rate to maintain equitable forage allowance. Gain per land area 

increased linearly with increasing supplemental DDGS. There was evidence of 

compensatory gain in the feedlot, with increasing SUPP on pasture resulting in linearly 

decreased ADG in the feedlot. However, effects of SUPP on subsequent carcass 

characteristics were inconsistent across years. Thus, supplementation of steers with low 

rates of DDGS (approx. 0.25% BW) may be effective for increased gains on pasture and 

potentially increased profitability without inducing substitution effects.  
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CHAPTER IV 

PASTURE PERFORMANCE, SUBSEQUENT FEEDLOT PERFORMANCE, AND 

CARCASS CHARACTERISTICS OF STOCKER CATTLE GRAZING COASTAL 

BERMUDAGRASS SUPPLEMENTED WITH DRIED DISTILLERS’ GRAINS WITH 

SOLUBLES 

 

Synopsis 

Dried distillers’ grains with solubles (DDGS) continues to provide unique 

opportunities for feeding strategies of livestock across various production cycles. The 

objective of this study was to determine the influence of varying rates of DDGS 

supplemented daily to stocker cattle grazing ‘Coastal’ (Cynodon dactylon [L.] Pers.) 

bermudagrass pastures. Steers (n = 127, 385 ± 2.1 kg BW) were stratified by BW and 

randomly allocated to 9 pastures (1.3 ± 0.17 ha) during each summer of 2 yr (2014, 2015). 

Pastures were allocated randomly to 2 daily rates of DDGS supplementation (SUPP; 0.25 

or 1% BW) and a non-SUPP control for 96 d in 2014 and 92 d in 2015. Steer ADG 

increased (P < 0.01) with 1% BW SUPP (35 and 66% increase in 2014 and 2015, 

respectively), but ADG from 0.25% BW SUPP did not differ (P > 0.05) from non-SUPP. 

Supplemental feed:additional gain in 2014 was -7.6:1 from 0.25% BW SUPP and 16.2:1 

from 1% BW SUPP. Gain per hectare was greatest (P < 0.01) from 1% BW SUPP (904 

kg/ha), while 0.25% BW SUPP and non-SUPP pastures were similar (P > 0.05). There 

was a tendency for linearly decreased feedlot ADG (P = 0.10) with increasing SUPP on 

pasture. However, there was little effect of SUPP on carcass characteristics. 
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Supplementation of steers grazing Coastal bermudagrass with DDGS may not be a viable 

strategy for stocker production systems. 

 

Introduction 

Supplementation of stocker cattle has been employed as a strategy to offset 

deficient forage mass due to overstocking and/or adverse climate, or to enhance animal 

performance while grazing forages of low or medium nutritive value (Moore and Kunkle, 

1995; Moore et al., 1999; Huston et al., 2002). The use of dried distillers’ grains with 

solubles (DDGS) as a supplemental feed source used for cattle grazing cool-season grasses 

(Greenquist et al., 2009; Watson et al., 2011; Beck et al., 2014), dormant forages (Murillo 

et al., 2016), hay (Morris et al., 2005; Gadberry et al., 2010), and native warm-season 

perennial grasses (Morris et al., 2006; McMurphy et al., 2011; Martínez-Pérez et al., 

2013). The effects of DDGS supplementation with actively-growing, warm-season 

perennial grass pastures (especially bermudagrass [Cynodon dactylon (L.) Pers.]) have 

been less often documented. Gadberry et al. (2010) reported supplemental feed:additional 

gain (S:G) of 3.7:1 (27% increased ADG) and 5.9:1 (33% increased ADG) with 0.34 and 

0.69% BW DDGS daily, respectively, when steers were grazing bermudagrass pastures. 

Beck et al. (2014) documented S:G of 3.6:1 to 6.7:1 for steers and heifers supplemented 

with DDGS while grazing mixed crabgrass (Digitaria ciliaris [Retz.] Koeler) in Arkansas. 

The objectives of this experiment were to: 1) evaluate the effects on ADG, efficiency of 

supplementation, and gain per hectare of two rates of DDGS supplemented to stocker 
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cattle while grazing ‘Coastal’ bermudagrass pastures, and 2) determine subsequent 

performance in the feedlot and assess carcass traits. 

 

Materials and Methods 

All protocols and procedures for this experiment were approved by the Agriculture 

Animal Care and Use Committee of Texas A&M AgriLife under Animal Use Protocol 

#2014-013A. 

 

Pastures and Forages 

Nine replicate Coastal bermudagrass pastures (1.3 ± 0.17 ha) located at Overton 

were used each year in this 2-yr experiment. Soil types represented in the research pastures 

were Cuthbert fine sandy loam (fine, mixed, semiactive, thermic Typic Hapludults; 19% 

of land area), Darco loamy fine sand (loamy, siliceous, semiactive, thermic Grossarenic 

Paleudults; 11% of land area), Kirvin very fine sandy loam (fine, mixed, semiactive, 

thermic Typic Hapludults; 8% of land area), Lilbert loamy fine sand (loamy, siliceous, 

semiactive, thermic Arenic Plinthic Paleudults; 49% of land area), Mattex clay loam (fine-

loamy, siliceous, active, acid, thermic Aeric Fluvaquents; < 1% of land area), and 

Owentown loamy fine sand (coarse-loamy, siliceous, active, thermic Oxyaquic 

Dystrudepts; 13% of land area). Prior to the initiation of stocking in each year, pastures 

were grazed in May at a high stocking density to stage pastures for similar stages of growth 

for the supplementation study. Pastures were fertilized with 77 kg N (as ammonium 

nitrate), 29 kg P2O5, and 62 kg K2O/ha prior to stocking in each year. At approximately 6-



 

69 

 

wk intervals, 76 kg N/ha was applied to pastures. This resulted in a total seasonal 

fertilization of 229 kg N, 29 kg P2O5, and 62 kg K2O/ha. Forage mass, height, density, and 

nutritive value characteristics were assessed via protocols described in CHAPTER III. 

 

Weather Conditions 

Weather conditions for the stocking experiment were identical to those presented 

in CHAPTER III. Monthly precipitation is presented in Figure III-1, mean daily 

temperature is presented in Figure III-2, and day length is presented in Figure III-3.  

 

Animals 

Sixty-three steers (350 ± 7.5 kg initial BW) were obtained in 2014, and 64 steers 

(335 ± 3.7 kg initial BW) were obtained in 2015 from either the Texas A&M AgriLife 

Research and Extension Center at Overton, TX (32.29° N, 94.98° W), or the Beef Cattle 

Systems Unit of the Department of Animal Science in College Station, TX (30.52° N, 

96.42° W) to be used as tester animals. Additional steers from the same sources were used 

as grazers to regulate forage mass. Steers were either sired by Bos taurus bulls with 

crossbred dams (resulting in steers with at least 25% B. indicus influence) or were 

purebred B. indicus (American Brahman). Steers were approximately 15 mo of age at 

initiation of the experiment. Prior to beginning the experiment, steers were treated with an 

anthelmintic (Cydectin Injectable, Boehringer Ingelheim Vetmedica, Inc., St. Joseph, MO; 

0.2 mg moxidectin/kg BW) for internal and external parasites and an insecticidal ear tag 

(GardStar Plus, Y-Tex, Cody, WY; 10% permethrin by wt), and implanted with 40 mg 
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trenbolone acetate and 8 mg estradiol (Revalor-G, Merck Animal Health, Madison, NJ). 

Animals were weighed, unshrunk, and BCS was assessed by a single, trained observer at 

the initiation and termination of the trial.  

 

Supplemental Feed 

Granular corn-based DDGS, with 2% added limestone, was sourced from 

Producers Cooperative Association, Bryan, TX, as described in CHAPTER III. Samples 

of the SUPP were collected and analyzed as previously described. A characterization of 

the nutritive value of SUPP is presented in Table III-1. 

 

Animal Procedures 

Steers were stratified by initial BW within sire breed type into 9 groups. Animal 

groups were randomly allocated to each of 9 pastures. Pastures were randomly allocated 

to each of 3 treatments including 2 rates of DDGS supplementation (SUPP; 0.25 or 1% 

BW) and a non-supplemented control. Stocking procedures were described in CHAPTER 

III. Grazing was terminated on October 1, 2014, and September 23, 2015, for a total 

grazing period of 96 and 92 d, respectively, for the 2 yr study. 

 

Finishing Phase 

In both years, following stockering on bermudagrass, steers were co-mingled, 

sorted into pen groups of similar BW, and shipped 693 km to a commercial feedlot (King 

Ranch Feedyard, Kingsville, TX) for the finishing phase. Details of the finishing phase 
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were the same as those described in CHAPTER III. Composition of the diet is presented 

in Table III-2.  

 

Carcass Measurements 

Following the feedlot phase, animals were transported 59 km to and harvested at a 

commercial abattoir (Sam Kane Beef Processors, Corpus Christi, TX). Carcass 

measurements were the same as those described in CHAPTER III. 

 

Statistical Analyses 

Data were analyzed using SAS 9.4 (SAS Institute Inc., Cary, NC). Analyses were 

described for a similar study in CHAPTER III.  

Orthogonal polynomial contrasts were tested for linear and quadratic effects of 

SUPP. Coefficients for contrasts were determined using PROC IML. Linear coefficients 

were -0.57 for 0% BW, -0.23 for 0.25% BW, and 0.79 for 1% BW SUPP. Quadratic 

coefficients were 0.59 for 0% BW, -0.78 for 0.25% BW, and 0.20 for 1% BW SUPP. For 

responses in which there was no measurement of non-SUPP (such as additional gain from 

SUPP, supplemental feed:additional gain [S:G], and feed cost of SUPP), no orthogonal 

contrasts were tested.  
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Results and Discussion 

 

Forages and Stocking 

There was no interaction of days of supplementation and SUPP for CP in either 

year (P ≥ 0.60). The maximum CP value (P < 0.05) in 2014 was observed on d 42, while 

the peak in 2015 was observed on d 70 (an anomalous observation across all nutritive 

value measures; Figure IV-1). In each case, peak values were similar (P > 0.05) to d 0, 

resulting in a bimodal distribution similar to that observed in CHAPTER III. Likewise, 

this mimics another grazing and supplementation experiment with Coastal bermudagrass 

in Overton, where maximum CP concentrations were observed in early July (16% CP), 

August (21% CP), and late September (19% CP; Grigsby et al., 1987).  

 

 

 
Figure IV-1 Forage crude protein measurements from Coastal bermudagrass pastures in which steers were 

supplemented with varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, or 

1% body weight [BW]). 
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Apart from the anomalous d 70, values of NDF and ADF increased (P < 0.05) 

through d 56, with a small, late-season decline around d 84. There was an interaction of 

days of supplementation and SUPP for NDF (P = 0.05; Figure IV-2) and ADF (P = 0.08; 

Figure IV-3) in 2014. In 2014, NDF concentrations tended to increase (P < 0.10) with 

increasing SUPP on d 56, but were not different (P > 0.10) among SUPP on other days. 

Concentrations of ADF in 2014, when different among SUPP, were generally less (P < 

0.10) from non-SUPP pastures than from pastures in which SUPP was offered. Fiber 

values in this experiment were greater than those reported by Mandebvu et al. (1999) (66% 

NDF, 29% ADF). 

 

 

 
Figure IV-2 Forage neutral detergent fiber measurements from Coastal bermudagrass pastures in which 

steers were supplemented with varying rates of a dried distillers’ grains with solubles (DDGS) supplement 

(0, 0.25, or 1% body weight [BW]). 
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Figure IV-3 Forage acid detergent fiber measurements from Coastal bermudagrass pastures in which 

steers were supplemented with varying rates of a dried distillers’ grains with solubles (DDGS) supplement 

(0, 0.25, or 1% body weight [BW]). 

 
 

 

 

There was no effect of SUPP on CP or NDF concentrations in either year (P ≥ 

0.41; Table IV-1). Concentrations of ADF in 2015 were greater (P < 0.05) from pastures 

receiving SUPP than from non-SUPP pastures.  
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Table IV-1 Forage and stocking parameters from Coastal bermudagrass pastures in which steers were 

supplemented with varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, or 

1% body weight [BW]).  

 DDGS supplementation, % BW   Contrasts § 

Item † 0% 0.25% 1% SEM ‡ P-value L Q 

CP, % DM 

     2014 13.7 13.8 13.9 0.42 0.97 0.81 0.94 

     2015 13.7 13.6 13.5 0.40 0.96 0.80 0.92 

NDF, % DM 

     2014 70.1 71.0 71.4 0.65 0.41 0.25 0.51 

     2015 68.7 70.4 71.3 1.36 0.45 0.27 0.57 

ADF, % DM 

     2014 35.7 37.0 36.5 0.54 0.28 0.56 0.14 

     2015 32.8b 35.9a 34.5a 0.49 0.01 0.23 < 0.01 

Forage mass, kg DM/ha 

     2014 2,409 2,531 2,459 265.5 0.95 0.97 0.76 

     2015 3,024 2,583 3,210 212.9 0.18 0.29 0.12 

Forage height (median), cm 

     2014 21.7 22.5 23.6 1.81 0.76 0.49 0.91 

     2015 19.4b 21.9ab 21.3a 0.71 < 0.01 < 0.01 0.22 

Forage allowance, kg DM/kg BW 

     2014 1.15 0.91 0.79 0.12 0.17 0.10 0.34 

     2015 1.38 0.94 0.97 0.16 0.18 0.21 0.15 

Stocking rate #, hd/ha 

     2014 6.4x 8.2wx 9.1w 0.72 0.09 0.05 0.26 

     2015 6.7b 8.3ab 9.8a 0.63 0.04 0.02 0.32 
† CP = crude protein (N × 6.25); DM = dry matter; NDF = neutral detergent fiber (assayed inclusive of 

α-amylase and expressed inclusive of residual ash); ADF = acid detergent fiber (expressed inclusive of 

residual ash); BW = body weight. 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported 
§ Orthogonal polynomial contrasts. L = linear; Q = quadratic.  
# 1 hd = 340 kg steer. 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 

 

 

 

Forage mass was managed during the experiment through the put-and-take 

stocking method (Mott and Lucas, 1952) to maintain equitable forage mass for all 

treatments levels and target a forage allowance of approximately 1 kg DM/kg BW 
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(Rouquette, 2016). However, despite management, forage allowance tended to decrease 

linearly (P = 0.10) to 0.79 kg DM/kg BW in 2014, but was not different (P = 0.18) among 

pastures in 2015. This represents an intensive or aggressive grazing strategy that may 

affect other interpretations from experimental pastures. Thus, pastures were stocked at 

higher than desirable levels due to climatic conditions during the experiment. Others have 

documented the relationship in forage allowance and ADG, noting different thresholds for 

different forages (McCartor and Rouquette, 1977; Roth et al., 1990). 

One may generally draw speculation regarding substitution or positive associative 

effects through the put-and-take method. A positive associative effect is one in which 

forage intake is stimulated with the addition of supplement, resulting in increased ADG. 

A substitutive effect is one in which animals will substitute the supplemented feedstuff for 

the grazed forage, either with or without increased ADG (Moore et al., 1991; Moore and 

Kunkle, 1995; Moore et al., 1999; Huston et al., 2002). Stocking rate increased linearly (P 

≤ 0.05) in both years. The stocking rate for 0.25% BW SUPP increased by 1.8 and 1.6 

hd/ha and 1% BW SUPP increased by 2.7 and 3.1 hd/ha in 2014 and 2015, respectively. 

Generally, one could interpret this to mean that, because of the increased stocking rate, 

there is evidence of a substitution effect of supplementation with each incremental 

increase in SUPP (Goetsch et al., 1991; Vendramini et al., 2007). However, due to the 

aggressive grazing strategy mentioned earlier, as well as the lack of differences in forage 

mass (P ≥ 0.18), this evidence may be confounded and caution should be used in 

interpretation of results.  
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Aiken and Brown (1996) observed no change in stocking rate with 0.2 kg/d 

supplementation with cottonseed meal/soybean meal on bermudagrass pastures. 

Greenquist et al. (2009), however, documented a 61% increase in stocking rate with 0.92% 

BW DDGS supplementation of yearling steers grazing smooth bromegrass (Bromus 

inermis Leyss.) pastures. When steers grazing Tifton 85 bermudagrass were supplemented 

with 0.25, 0.5, or 1% BW DDGS, there was a linear increase in stocking rate with DDGS 

supplementation (CHAPTER III). Vendramini et al. (2007) made a similar observation 

when calves were provided with 1, 1.5, or 2% BW of a 15% CP/70% TDN supplement.  

 

Animal Performance on Pasture 

Initial BW did not differ (P ≥ 0.76; mean = 350 and 335 in 2014 and 2015, 

respectively) among SUPP (Table IV-2). Final BW, however, was increased (P ≤ 0.01) 

with 1% BW SUPP, though 0.25% BW SUPP did not differ (P > 0.05) from non-SUPP. 

As a result, ADG from 0.25% BW SUPP was similar (P > 0.05) to non-SUPP (0.74 and 

0.64 kg/d in 2014 and 2015, respectively). The ADG for 1% BW SUPP was increased by 

35 and 66% in 2014 and 2015, respectively, compared with non-SUPP.  
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Table IV-2 Animal performance measures for steers grazing Coastal bermudagrass and supplemented 

with varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, or 1% body 

weight [BW]).  

 DDGS supplementation, % BW   Contrasts § 

Item † 0% 0.25% 1% SEM ‡ P-value L Q 

Initial BW, kg 

     2014 348 351 350 3.2 0.76 0.74 0.53 

     2015 335 335 335 1.8 1.00 1.00 1.00 

Final BW, kg 

     2014 419b 420b 446a 6.3 0.04 0.01 0.49 

     2015 392b 396b 430a 4.6 < 0.01 < 0.01 0.37 

Average daily gain, kg BW/d 

     2014 0.74b 0.71b 1.00a 0.055 0.02 < 0.01 0.24 

     2015 0.62b 0.66b 1.03a 0.047 < 0.01 < 0.01 0.35 

Additional gain from supplementation, kg BW/d 

     2014 - -0.02b 0.27a 0.048 0.01 - - 

     2015 - 0.04b 0.41a 0.032 < 0.01 - - 

Average feed offered, kg/d 

     2014 - 1.0b 4.0a 0.03 < 0.01 < 0.01 0.39 

     2015 - 0.9b 3.8a 0.01 < 0.01 < 0.01 < 0.01 

Supplemental feed to additional gain ratio, kg feed/kg BW gain 

     2014 - -7.6 16.2 10.32 0.18 - - 

     2015 - 0.2 9.5 41.22 0.88 - - 

Gain per hectare, kg BW/ha 

     2014 439b 563b 881a 53.7 < 0.01 < 0.01 0.86 

     2015 376b 509b 927a 40.3 < 0.01 < 0.01 0.93 

Initial BCS 

     2014 5.3 5.3 5.3 0.08 0.81 0.86 0.55 

     2015 5.0 4.9 5.0 0.04 0.42 0.71 0.22 

Final BCS 

     2014 5.3b 5.3b 5.8a 0.08 < 0.01 < 0.01 0.53 

     2015 5.4x 5.6wx 5.9w 0.12 0.07 0.03 0.64 

Change in BCS (initial to final) 

     2014 -0.1b 0.1ab 0.5a 0.12 0.05 0.02 1.00 

     2015 0.4x 0.7wx 0.9w 0.12 0.06 0.03 0.38 
† BW = body weight; BCS = body condition score (1 to 9). 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the 

greatest of the values was reported 
§ Orthogonal polynomial contrasts. L = linear; Q = quadratic.  
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 

 

 

 



 

79 

 

Gains ranged from 0.05 (heavy stocking) to 0.47 kg/d (light stocking) when cattle 

grazed Coastal bermudagrass in College Station, TX, at various stocking rates (Conrad, 

1982; Conrad and Holt, 1983), while similar cattle in a similar experiment gained 0.30 

(heavy stocking) to 0.63 kg/d (light stocking; Conrad et al., 1981). Rouquette et al. (2004) 

found non-supplemented calves grazing Coastal bermudagrass gained 0.46 kg/d, while 

Chapman et al. (1972) documented ADG of 0.48 kg/d under similar conditions. In all 

cases, non-supplemented ADG in the current experiment were greater than those 

previously documented. 

Various supplemental feedstuffs have been evaluated with Coastal bermudagrass. 

Grigsby et al. (1989) found that Simmental crossbred calves supplemented (self-limiting; 

0.07 to 0.34% BW) with a compressed molasses block and fishmeal (33% CP) had a 16% 

increase in ADG, while those supplemented with only a compressed molasses block (32% 

CP) exhibited a 24% increase in ADG. In this same study, supplementation with a dry CP 

supplementation plus protected methionine and lysine (31% CP) resulted in a 36% 

increase in ADG, while dry CP supplementation alone (34% CP) yielded a 46% increase 

in ADG (Grigsby et al., 1989). The optimal supplementation in this trail was from fishmeal 

plus monensin (37% CP), which resulted in an 85% increase in ADG. However, in none 

of the previous supplementation experiments did supplemental feed result in no additional 

gain as was seen with 0.25% BW SUPP. It is possible that the lack of gain enhancement 

with 0.25% BW SUPP could be linked to the decrease in forage allowance without a 

concomitant increase in dietary energy or protein allocation. 
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Supplemental feed:additional gain is an indicator of efficiency in any 

supplementation regimen (Smith, 1984; McCollum and Horn, 1990). Low numerical S:G 

indicates a more efficient system, while high numerical S:G indicates an inefficiency 

wherein more feed is required for the same amount of gain. In this experiment, S:G for 

0.25% BW SUPP in 2014 was negative because the treatment provided no additional gain 

above the control. Similarly, in 2015, the S:G of 0.2 is misleading because it is a mean 

value composed of highly positive (97.1:1) and highly negative (-104.4:1) pasture means. 

However, S:G with 1% BW SUPP was more efficient in contradiction to observations in 

a similar experiment with ‘Tifton 85’ bermudagrass (CHAPTER III). Values of S:G may 

be used as an evaluation metric for the potential profitability of supplementation strategy. 

The lack of additional gain with 0.25% BW SUPP, resulting in greatly increase feed costs 

compared to ADG (Table IV-3). Due to the fixed cost of fertilizer and the increased gain 

per hectare with increasing SUPP, there was a linear decrease (P < 0.01) in fertilizer cost 

of gain with increasing SUPP. This resulted in a quadratic effect of SUPP (P ≤ 0.03) in 

both years for total feed and fertilizer cost of gain, with increases over non-SUPP of $10.67 

and $2.86 for 0.25 and 1% BW SUPP.  
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Table IV-3 Feed and fertilizer costs of gain from steers grazing Coastal bermudagrass and supplemented 

with varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, or 1% body 

weight [BW]). 

 DDGS supplementation, % BW   Contrasts ‡ 

Item  0% 0.25% 1% SEM † P-value L Q 

Feed cost of additional gain §#, $/kg 

     2014 - $4.77 $3.88 $1.127 0.61 - - 

     2015 - $16.74 $2.28 $5.271 0.12 - - 

Fertilizer cost per hectare ǁ, $/ha 

     2014 $163.80 $163.80 $163.80 - - - - 

     2015 $163.80 $163.80 $163.80 - - - - 

Fertilizer cost of gain, $/kg 

     2014 $0.38a $0.29a $0.19b $0.028 < 0.01 < 0.01 0.29 

     2015 $0.44a $0.33b $0.18c $0.027 < 0.01 < 0.01 0.30 

Total feed and fertilizer cost of gain, $/kg 

     2014 $0.38b $5.06a $4.07a $0.918 0.03 0.09 0.02 

     2015 $0.44x $17.08w $2.46x $4.318 0.07 0.63 0.03 
† SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported 
‡ Orthogonal polynomial contrasts. L = linear; Q = quadratic.  
§ Cost of additional gain based on feed cost of DDGS at $0.24/kg. Prices obtained from the “Texas 

Border” delivered price of the USDA Market News Report, June 24, 2016. 
# Calculated as ($0.24/kg SUPP × feed offered, kg) / additional gain from SUPP, kg.  
ǁ Calculations based on fertilizer costs of $0.45/kg for 21-8-17 and $0.44/kg for 34-0-0. 
a, b, c Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 

 

 

 

In the Grigsby et al. (1989) experiment, self-limiting supplementation with a 

condensed molasses block and fishmeal resulted in S:G of 2.7:1 (0.19% BW), condensed 

molasses blocks yielded S:G of 1.8:1 (0.2% BW), dry CP supplementation plus protected 

methionine and lysine resulted in 6.0:1 (0.22% BW), dry CP supplementation had 4.0:1 

(0.23% BW), and supplementation with fishmeal and monensin resulted in S:G of 1.3:1 

(0.3% BW). In all cases, S:G observed with a DDGS supplement in the current study were 

greater than those documented by Grigsby et al. (1989). When Gadberry et al. (2010) 

supplemented steers grazing bermudagrass pastures with 0.34 or 0.69% BW DDGS (32% 
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CP, 16% EE), S:G of 3.7:1 and 5.9:1 were realized. Beck et al. (2014) found 0.39% BW 

DDGS supplementation of heifers grazing mixed pastures of bermudagrass, crabgrass, and 

dallisgrass (Paspalum dilatatum Poir.) resulted in S:G of 5.3:1 or 5.6:1 in consecutive 

experiments. Efficiency of supplementation in each of these experiments was greater than 

that of the bermudagrass × DDGS experiment. 

Gain per hectare on bermudagrass increased linearly (P < 0.01) with increasing 

SUPP. Supplementation of steers with 0.25% BW resulted in an approximate increase of 

129 kg/ha, and 1% BW SUPP resulted in an approximate increase of 496 kg/ha over the 

non-SUPP pastures. Observations from 1% BW SUPP in this experiment were similar to 

observations made from supplementation trials involving Tifton 85 bermudagrass, both in 

this document (CHAPTER III) and in previously published literature (Vendramini et al., 

2007).  

Initial BCS were similar across SUPP in each year (P ≥ 0.42). Final BCS increased 

linearly (P ≤ 0.03) with increasing SUPP. This resulted in linear increases (P ≤ 0.03) over 

non-SUPP of 0.3 and 0.6 for 0.25 and 1% BW SUPP.  
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Summary of pasture phase 

Stocking rates on pasture were increased linearly with increasing levels of SUPP, 

resulting in linear increases in gain per hectare of approximately 32 and 124% for 0.25 

and 1% BW SUPP. Similarly, ADG was increased only with 1% BW SUPP, resulting in 

2-yr average S:G of -3.7:1 and 12.9:1 from 0.25 and 1% BW SUPP, respectively. There 

was a linear increase in BCS gain, with 1% BW SUPP gaining a 2-yr average 0.7. 

Combined feed and fertilizer cost of gain was $0.41/kg for non-SUPP, $11.07/kg for 

0.25% BW SUPP, and $3.27/kg for 1% BW SUPP across the 2-yr experiment.  

 

Feedlot Performance 

Due to the ADG on pasture observed for SUPP, initial BW at termination of 

pasture and entry to the feedlot increased linearly (P < 0.01) with increasing SUPP on 

pasture (Table IV-4). Pasture SUPP of 1% BW resulted in feedlot entry BW 43 kg heavier 

than non-SUPP steers, while steers with 0.25% BW SUPP entered the feedlot 15 kg 

heavier than non-SUPP. However, there was no effect of SUPP (P ≥ 0.29) on final BW. 

There was a tendency (P = 0.10) for decreased feedlot ADG with increasing SUPP on 

pasture in 2014 (but not 2015 [P = 0.40]), alluding to potential compensatory gain. There 

was no effect of SUPP (P ≥ 0.29) for days on feed. 
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Table IV-4 Feedlot performance from steers grazing Coastal bermudagrass and supplemented with 

varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, or 1% body weight 

[BW]). 

 DDGS supplementation, % BW   Contrasts § 

Item † 0% 0.25% 1% SEM ‡ P-value L Q 

Initial BW, kg 

     2014 409b 429ab 451a 7.3 0.02 < 0.01 0.33 

     2015 388b 398b 431a 4.8 < 0.01 < 0.01 0.88 

Final BW, kg 

     2014 663 699 671 15.2 0.29 0.89 0.13 

     2015 681 683 695 14.8 0.79 0.51 0.94 

Average daily gain, kg BW/d 

     2014 1.81 1.93 1.56 0.116 0.15 0.10 0.26 

     2015 1.69 1.65 1.60 0.071 0.67 0.40 0.86 

Days on feed, d 

     2014 141 139 141 1.2 0.53 0.95 0.28 

     2015 173 172 165 3.5 0.29 0.13 0.83 
† BW = body weight.  
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported 
§ Orthogonal polynomial contrasts. L = linear; Q = quadratic. 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 

 

 

 

Unlike the observations of this experiment, past research has generally 

documented an effect of pasture treatment on subsequent feedlot performance. 

Compensatory gain is defined as the more rapid and efficient growth of animals following 

a period of feed or nutrient restriction (Osborne and Mendel, 1915, 1916). Compensatory 

gain has been documented when cattle intake was previously restricted (Fox et al., 1972; 

Sainz et al., 1995) as well as when performance in the pasture phase is decreased through 

limitation of some nutrient (Bohman, 1955; Bohman and Torell, 1956; Cleere et al., 2012). 

Steers grazing a mixture of rye (Secale cereale L.) and annual ryegrass (Lolium 

multiflorum Lam.) with high ADG (1.1 ± 0.10 kg/d) had ADG in the feedlot 13% less than 

those that had low ADG (0.3 ± 0.10 kg/d) on pasture (Cleere et al., 2012). Steers grazing 
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native rangeland or ‘Ironmaster’ Old Word bluestem (Bothriochloa ischaemum [L.] Keng) 

had greater ADG in the feedlot (2.19 and 2.22 kg/d, respectively) than those grazing ‘Jose’ 

tall wheatgrass (Agropyron elongatum [Host] P. Beauv.; 2.07 kg/d) or a combination of 

‘Hardie’ bermudagrass, ‘Alfagraze’ alfalfa (Medicago sativa L.), and Jose tall wheatgrass 

(2.06 kg/d) in the summer, even though ADG on pasture were similar (Capitan et al., 

2004). However, similar to the current study, Greenquist et al. (2009) found no difference 

in subsequent feedlot performance when steers were supplemented with DDGS while 

grazing smooth bromegrass (Bromus inermis Leyss.) pastures. Likewise, heifers grazing 

rye and annual ryegrass pastures in the winter exhibited no alteration in subsequent feedlot 

performance (Cleere et al., 2012).  

 

Summary of feeder phase 

Initial BW on entry to the feedlot increased linearly with increasing SUPP on 

pasture. There was a tendency for compensatory gain in 2014, with ADG of 1.81, 1.93, 

and 1.506 kg/d for non-SUPP, 0.25, and 1% BW SUPP, respectively. There was no 

difference in days on feed in either year.  

 

Carcass Characteristics 

Dressing percentage tended to increase linearly (P = 0.08), HCW increased 

quadratically (P = 0.02), and LM area increased linearly (P = 0.02) with increasing SUPP 

in 2014, but not in 2015 (P ≥ 0.34; Table IV-5). However, there were no other effects of 

SUPP (P ≥ 0.26) in 2014. In 2015, marbling score tended to decrease linearly (P = 0.07) 



 

86 

 

with increasing SUPP on pasture, but no other traits differed (P ≥ 0.55) among SUPP. 

However, caution should be used in interpreting results due to the nature of allocation in 

the feedlot. 

 

 

 
Table IV-5 Carcass characteristics from steers grazing Coastal bermudagrass and supplemented with 

varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, or 1% body weight 

[BW]).  

 DDGS supplementation, % BW   Contrasts ‡ 

Item 0% 0.25% 1% SEM † P-value L Q 

Dressing percentage, % live weight 

     2014 57.6 59.9 61.2 1.13 0.15 0.08 0.37 

     2015 62.6 62.4 62.7 0.64 0.94 0.85 0.79 

Hot carcass weight, kg 

     2014 382b 419a 410a 7.8 0.04 0.13 0.02 

     2015 426 426 436 10.2 0.75 0.49 0.83 

Yield grade 

     2014 3.3 3.2 3.4 0.17 0.63 0.42 0.63 

     2015 3.6 3.6 3.6 0.17 0.96 0.80 0.94 

12th rib fat, cm 

     2014 1.45 1.25 1.49 0.126 0.38 0.63 0.21 

     2015 1.63 1.61 1.64 0.080 0.98 0.93 0.85 

Longissimus muscle area, cm2 

     2014 83.1b 89.0a 89.4a 1.19 0.02 0.02 0.03 

     2015 91.2 91.6 89.6 1.33 0.55 0.34 0.65 

Marbling score § 

     2014 393 409 402 10.2 0.58 0.74 0.34 

     2015 436 405 390 13.3 0.12 0.07 0.30 

Empty body fat #, % 

     2014 27.5 28.9 30.1 0.98 0.26 0.13 0.57 

     2015 31.1 30.7 30.4 0.67 0.77 0.51 0.83 
† SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported 
‡ Orthogonal polynomial contrasts. L = linear; Q = quadratic. 
§ 200 = traces; 300 = Select+; 400 = Choice-; 500 = Choice0; 600 = Choice+; 700 = Prime-; 800 = 

Prime0; 900 = Prime+ (Guiroy et al., 2001). 
# Guiroy et al. (2001) 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 
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Few experiments have evaluated the effects of pasture supplementation on 

subsequent carcass characteristics, and results have been varied. Greenquist et al. (2009) 

observed increases in HCW and marbling score when steers were supplemented with 0.7% 

BW DDGS while grazing smooth bromegrass. However, Rouquette et al. (2008) found no 

effect of supplemental 0.8% BW corn gluten feed. Likewise, no difference on USDA 

quality grade has been observed based on previous forage treatment (Hancock et al., 1987; 

Capitan et al., 2004; Kumar et al., 2012). 

While it has been documented that high-grain (feedlot) diets may increase the 

prevalence of liver abscesses (Nagaraja and Chengappa, 1998), there was no effect of 

SUPP (P ≥ 0.33) on liver or lung scores in the current study (Table IV-6). This was 

consistent with the finding of many others who have included corn- (May et al., 2010; 

Uwituze et al., 2010) or wheat-based DDGS (Beliveau and McKinnon, 2008; Gibb et al., 

2008; Yang et al., 2012) at rates from 23 to 60% of the feedlot diet, and none have reported 

incidence with supplemental DDGS on pasture.  
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Table IV-6 Frequency table (counts) of liver and lung scores from steers grazing Coastal bermudagrass 

and supplemented with varying rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 

0.25, or 1% body weight [BW]).  

 DDGS supplementation, % BW  

Quality grade group 0%† 0.25% 1% Sum 

----- Liver scores ‡ ----- 

2014 §     

     0 9 11 15 35 

     A 3 1 1 5 

     A+ 9 9 5 23 

2015 #     

     0 17 15 15 47 

     A 1 2 3 6 

     A+ 0 0 0 0 

     

----- Lung scores ----- 

2014‡     

     1 8 8 9 25 

     2 3 3 5 11 

     3 1 1 3 5 

     4 0 0 1 1 

     5 0 0 0 0 

2015§     

     1 14 11 14 39 

     2 4 6 3 13 

     3 0 0 1 1 

     4 0 0 0 0 

     5 0 0 0 0 
† Values represent number of carcasses within a rate of supplemental DDGS in each group. 
‡ Elanco (2014). 
§ χdf=4

2  = 4.59; P = 0.33. 
# χdf=2

2  = 1.11; P = 0.57. 
ǁ χdf=6

2  = 2.44; P = 0.87. 
¶ χdf=4

2  = 3.51; P = 0.48. 

 

 

 

Summary of carcass characteristics 

Dressing percentage, HCW, and LM area increased with increasing SUPP in 2014. 

However, in 2015, marbling score decreased with increasing SUPP on pasture. There were 
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no other changes in carcass characteristics. Thus, there was little consensus across years 

on the effect of SUPP on carcass characteristics. The USDA quality grades, indicated 

through marbling scores, were average for such cattle, generally grading Choice0. Yield 

grades (approx. 3) were within an acceptable range for harvest. 

 

Conclusion 

Average daily gain (pasture) of steers stocked on Coastal bermudagrass pasture 

was increased only with 1% BW SUPP. A maximum ADG of 1.03 kg/d occurred with 1% 

BW SUPP in 2015, but this occurred at an S:G of 9.5:1. This was also the most efficient 

use of SUPP. However, the lack of efficiency with 0.25% BW SUPP may have been a 

result of decreased forage mass due to management decisions to maintain increased 

stocking rates. Increased forage allowance may have been required for Coastal 

bermudagrass to allow for greater forage mass, thus presenting the opportunity for greater 

selectivity of leaf portions. There was a tendency for compensatory gain in the feedlot in 

2014. However, there was no consensus on the effect of SUPP on pasture for carcass traits. 

Thus, results would indicate that supplementation of steers with DDGS while grazing 

Coastal bermudagrass at this level of forage allowance was not an efficient management 

strategy.  
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CHAPTER V 

IN VITRO GAS PRODUCTION FROM BERMUDAGRASS CULTIVARS AS 

INFLUENCED BY RATE OF SUPPLEMENTAL DRIED DISTILLERS’ GRAINS 

WITH SOLUBLES 

 

Synopsis 

Dried distillers’ grains with solubles (DDGS), a co-product of the fuel ethanol 

industry, is of interest as a supplement for grazing cattle. The objective of this study was 

to evaluate the simulated effect of DDGS supplementation of ‘Coastal’ (COS; Cynodon 

dactylon [L.] Pers.) and ‘Tifton 85’ bermudagrass (TIF; C. dactylon [L.] Pers. × C. 

nlemfuënsis Vanderyst) forage on in vitro gas production (IVGP), digestibility, and 

methane production. Forage and DDGS were combined in the laboratory to represent 2 

rates of DDGS (0.25 or 1% BW) and a non-SUPP control which resulted in forage:DDGS 

(F:D) of 100:0, 87.5:12.5, and 50:50. Dietary samples were incubated using the IVGP 

technique, and a sample of the headspace was collected for quantification of methane 

concentration. The residue was rinsed in neutral detergent solution for determination of in 

vitro true digestibility (IVTD) and in vitro NDF digestibility (IVNDFD). Discrete lag 

times of both the exponential and logistic equations decreased linearly (P < 0.01) with 

increasing proportion of DDGS across cultivars. The IVTD of TIF (78% DM) was greater 

(P < 0.01) than COS (71% DM), as was IVNDFD (66 vs. 54% NDF). Similarly, IVTD 

increased (P < 0.01) by 5% with 87.5:12.5 and by 19% with 50:50. Methane production 

(g/kg digestible DM and g/kg digestible OM) decreased linearly (P ≤ 0.02) with increasing 
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proportion of DDGS. Results indicated that DDGS may be supplemented to cattle for 

increased diet digestibility with a potential benefit of reduced methane production, and 

efficacy of DDGS was dependent on forage nutritive value. 

 

Introduction 

The use of dried distillers’ grains with solubles (DDGS) as a supplemental feed 

source for grazing cattle has been of interest to scientists due to the immense supply of the 

product and the potential to enhance animal performance by filling voids in required 

nutrients (Moore and Kunkle, 1995; Moore et al., 1999; Huston et al., 2002). While many 

have evaluated the use of DDGS with various pastures, such as native rangeland (Morris 

et al., 2006; McMurphy et al., 2011), cool-season forages (Greenquist et al., 2009; Islas 

and Soto-Navarro, 2011; Watson et al., 2011), dormant warm-season perennial grasses 

(Murillo et al., 2016), hay (Morris et al., 2005; Loy et al., 2007; Leupp et al., 2009), and 

bermudagrass (Gadberry et al., 2010; Beck et al., 2014), there has been little investigation 

into the effect of supplemental DDGS on digestibility coefficients and potential methane 

production. Murillo et al. (2016) used heifers to graze dormant Chihuahuan rangeland 

(rose natal grass [Melinis repens (Willd.) Zizka], blue grama [Bouteloua gracilis (Willd. 

ex Kunth) Lag. ex Griffiths], mesquite [Prosopis juliflora (Sw.) DC.], prickly pear chollas 

[Opuntia Mill.], and romerillo [Viguiera linearis]) and supplemented then with 0.25 or 

0.5% BW DDGS. The apparent in vivo digestibility of DM, CP, and NDF was increased, 

as well as the fractional rate of digestion (kd) and passage (kp). The objective of this 

experiment was to ascertain the effect of various rates of DDGS supplementation of 
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‘Coastal’ (COS; Cynodon dactylon [L.] Pers.) or ‘Tifton 85’ bermudagrass (TIF; C. 

dactylon [L.] Pers. × C. nlemfuënsis Vanderyst.) on in vitro gas production (IVGP), 

digestibility, and methane production.  

 

Materials and Methods 

Protocols and procedures for the underlying stocking experiment were approved 

by the Agriculture Animal Care and Use Committee of Texas A&M AgriLife under 

Animal Use Protocol #2014-013A. 

 

Forage Collection 

Forage samples used in this IVGP assay were obtained from the Texas A&M 

AgriLife Research and Extension Center at Overton, TX (32.29° N, 94.98° W) as part of 

two supplementation × grazing experiments (CHAPTER II and CHAPTER III). Pastures 

were managed for a forage mass of approximately 3,000 kg/ha. At the initiation of 

stocking in 2014 (June 13 for TIF, June 27 for COS), and at 14-d intervals thereafter until 

September 29 for TIF and October 1 for COS, hand-plucked plant parts (Edlefsen et al., 

1960; Roth et al., 1990; De Vries, 1995) of bermudagrass in close proximity to and 

representative of forage grazed by cattle were obtained from 16 TIF and 9 COS pastures. 

Samples from each pasture at each date were maintained separately (no compositing). 

Samples were dried at 50°C (Scarbrough et al., 2001) to a constant weight and ground in 

a Wiley mill to pass through a 2-mm screen. A subsample was ground through a 1-mm 

screen and shipped to a commercial laboratory (Cumberland Valley Analytical Services, 
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Maugansville, MD) for chemical analysis. Analyses included DM (Goering and Van 

Soest, 1970; Shreve et al., 2002), CP (Method 990.03; AOAC, 2000; Leco FP-528 

Nitrogen Combustion Analyzer, Leco Corporation, St. Joseph, MO), NDF (Van Soest et 

al., 1991), ADF (Method 973.18; AOAC, 2000), Ca, and P (Method 985.01; AOAC, 2000; 

Perkin Elmer 5300 DV ICP, Perkin Elmer, Shelton, CT). Values for TDN were also 

calculated by the laboratory.  

 

Supplemental Feed 

Granular corn-based DDGS, with 2% added limestone, was obtained from 

Producers Cooperative Association, Bryan, TX, as described in CHAPTER III. Samples 

of the SUPP were collected and analyzed as previously described. A characterization of 

the nutritive value of SUPP is presented in Table III-1. 

 

Sample Preparation 

Samples from each pasture × date combination were combined with DDGS to 

generate dietary samples for the IVGP procedure. Diets were re-constituted to represent 

the intake of stocker steers at the various rates of DDGS supplementation (0, 0.25, or 1% 

BW) based on an assumed intake of 2% BW as DM (Table V-1). This resulted in 

forage:DDGS (F:D) of 100:0, 87.5:12.5, and 50:50 for 0, 0.25, and 1% BW, respectively. 

The 2% DMI was chosen to represent an “average” intake as advocated by many popular 

press and producer-oriented publications (Wieland, 2002; Rasby, 2013; DiCostanzo, 
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2017). Diet reconstitution as F:D also represented a direct substitution of forage (Moore 

and Kunkle, 1995; Moore et al., 1999; Huston et al., 2002). 

 

 

 
Table V-1 Proportion of bermudagrass forage and a dried distillers’ grains with solubles (DDGS) 

supplement used in the composition of samples for an in vitro gas production assay.  

Rate of DDGS supplementation, % BW Forage †, g DDGS, g Forage:DDGS 

0 3.000 0.000 100:0 

0.25 2.625 0.375 87.5:12.5 

1 1.500 1.500 50:50 
† Forage or DDGS proportions were based on an assumed intake of 2% BW as DM and a sample size of 

3 g. 

 

 

 

In Vitro Gas Production 

The experiment was conducted a randomized complete block design with a 2 × 2 

factorial treatment structure (bermudagrass cultivar [BG] × F:D). Block was the 

fermentation batch. Each combination of BG and F:D was measured in a minimum of 3 

batches to ensure adequate replication.  

Samples of each representative diet were incubated in an in vitro anaerobic 

fermentation chamber according to the procedure of Tedeschi et al. (2009). Briefly, 0.2 g 

of each diet sample was added to an individual 125-mL Wheaton bottle. Phosphate-

bicarbonate buffer (pH 6.9 – 7.0; 14 mL; Goering and Van Soest, 1970), 2 mL of boiled 

and cooled distilled water, and 4 mL of filtered (cheesecloth) rumen fluid (obtained from 

ruminally-fistulated steers consuming bermudagrass hay ad libitum and supplemented 

daily with 0.9 kg DDGS) were added to each bottle under constant CO2, sealed with butyl 
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rubber stoppers, and crimp sealed. Bottles were placed in a fermentation chamber at 39°C, 

normalized to ambient atmospheric pressure, and pressure sensors were inserted into the 

stoppers via 23 gauge needles. Samples were incubated for a 48-h period, and gas 

production was recorded (5-min intervals) using computer software (Pico Technology, 

Eaton Socon, Cambridgeshire, UK). After cessation of fermentation, a 1 mL sample of the 

headspace of each bottle was collected using a gas-tight syringe and injected into a gas 

chromatograph (GOW-MAC Instrument Co., Bethlehem, PA) for quantification of CH4. 

The pH was recorded and 40 mL neutral detergent solution (without the addition of α-

amylase or sodium sulfite) was added. Samples were autoclaved for 60 min at 121°C, and 

then filtered through Whatman #54 filter paper for determination of in vitro true 

digestibility (IVTD), IVTD on an OM basis (IVTDOM), and in vitro NDF digestibility 

(IVNDFD).  

Degradation kinetics were determined using the computer-collected data and fit to 

nonlinear models using GasFit (http://www.nutritionmodels.com/gasfit.html). Equations 

used in model evaluation were the exponential equation with a discrete lag (Ørskov and 

McDonald, 1979) and the logistic equation with two fermentable substrate pools and a 

discrete lag (Schofield et al., 1994; Tedeschi et al., 2008; Tedeschi and Fox, 2016). All 

samples were adjusted for negative controls (blank bottles with no added substrate). The 

exponential equation used in the IVGP assay was given Eq. [V-1], where IVGP was in 

vitro gas production, mL; aexp was the asymptote, mL; bexp was the fractional rate of 

degradation, h-1; cexp was the discrete lag time, h; and t was hours of incubation. The 

logistic equation used in the IVGP assay was given in Eq. [V-2], where alog was the 



 

96 

 

asymptote of the rapidly-fermentable substrate pool, mL; blog was the fractional rate of 

degradation of the rapidly-fermentable substrate pool, h-1; clog was the discrete lag time, 

h; dlog was the asymptote of the slowly-fermentable substrate pool, mL; elog was the 

fractional rate of degradation of the slowly-fermentable substrate pool, h-1. Samples were 

removed from consideration that did not converge to either model equation. In addition, 

models that yielded asymptotic parameters were removed from further analysis. 
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The GasFit program also provided calculations for measures of digestibility and 

energy. Digestible CP (dCP) was calculated according to Eq. [V-3], where ADIN = acid 

detergent insoluble N, % CP. Digestible NDF (dNDF) was calculated at kp of 4, 6, and 

8%/h according to Eq. [V-4], where NDIN = neutral detergent insoluble N, % CP; kd = 

fractional rate of degradation from the exponential equation, h-1; and kp = fractional rate 

of passage, h-1. Acid detergent lignin was not calculated for diet samples (not measured 

on forage); thus, this was not included in the calculation in this experiment.  

 

0.12 ADINdCP e     [V-3] 
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Statistical Analyses 

Data were analyzed using SAS 9.4 (SAS Institute Inc., Cary, NC). Prior to 

analysis, raw data were tested using the NORMAL option of PROC UNIVARIATE to 

ensure data normality. Normality was assumed when Shapiro-Wilk’s W met or exceeded 

0.9 (Shapiro and Wilk, 1965; Royston, 1992). Due to the nature of the data, parameters 

from the nonlinear equations were not held to the W ≥ 0.9 standard.  

All responses were analyzed using PROC MIXED. Denominator degrees of 

freedom were adjusted using the Kenward-Roger approximation method (Kenward and 

Roger, 1997). For diet nutritive value, the fixed effects were BG, F:D, and their 

interaction. There was no random effect. For IVGP responses and output of the GasFit 

model, the fixed effects were BG, F:D, and their interaction, and the random effect was 

fermentation batch.  

Least squares means were computed for each main effect and interaction. The α-

level for mean differences was set at 0.05, and 0.10 was used for tendencies. When 

interactions had P < α, the interaction was discussed; otherwise, main effects were 

discussed. Means separations were performed based on F-protected t-tests using the 

%PDMIX800 macro (Saxton, 1998). 

Orthogonal polynomial contrasts were tested for linear and quadratic effects of 

F:D. Coefficients for contrasts were determined using PROC IML. Linear coefficients 



 

98 

 

were -0.57 for 100:0, -0.23 for 87.5:12.5, and 0.79 for 50:50. Quadratic coefficients were 

0.59 for 100:0, -0.78 for 87.5:12.5, and 0.20 for 50:50.  

Proportion of observations fit to each nonlinear equation were analyzed using 

PROC FREQ. Two-way frequency tables were generated for the response by 

bermudagrass cultivar and SUPP. Means were tested using the χ2 statistic. 

 

Results and Discussion 

 

Diet Nutritive Value 

There was no interaction of BG and F:D for CP, NDF, or P (P ≥ 0.21). Thus, main 

effects were discussed. Concentrations of CP, NDF, and P were greater (P ≤ 0.03) from 

TIF diets than from COS diets (7, 2, and 8% greater, respectively; Table V-2). When 

evaluating nutritive comparisons of Tifton 85 and Coastal bermudagrass in Georgia, 

Mandebvu et al. (1999) found that Tifton 85 was 5% lower in CP, 4% greater in NDF, 5% 

greater in ADF, and 11% lower in ADL than Coastal. This same experiment found that, 

despite increased fiber concentration, Tifton 85 was more digestible (as IVDMD) than 

Coastal due to a decreased occurrence of ether-linked ferulic acid (Mandebvu et al., 1999). 

Similar observations were made by Corriher et al. (2007) for Tifton 85 and Coastal 

pastures in Tifton, GA.  
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Table V-2 Nutritive value of diets (based on 2% body weight [BW] intake) composed of bermudagrass 

and varying ratios of forage and a dried distillers’ grains with solubles (DDGS) supplement (F:D; 100:0, 

87.5:12.5, or 50:50) used in the evaluation of in vitro digestibility and gas production, and presented by 

bermudagrass cultivar. 

 Bermudagrass cultivar   

Item † Coastal Tifton 85 SEM ‡ P-value 

CP 17.4b 18.6a 0.36 < 0.01 

NDF 62.7b 63.9a 0.36 0.02 

ADF 30.8b 31.8a 0.35 0.05 

Ca 0.50b 0.54a 0.014 0.03 

P 0.36b 0.43a 0.007 < 0.01 
† CP = crude protein (N × 6.25), % DM; NDF = neutral detergent fiber (% DM), assayed inclusive of α-

amylase and expressed inclusive of residual ash; ADF = acid detergent fiber (% DM), inclusive of 

residual ash; Ca = calcium, % DM; P = phosphorus, % DM. 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported. 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 

 

 

 

Across BG, all measures of nutritive value increased linearly (P < 0.01) with 

increasing proportion of DDGS (Table V-3). In the two cases in which there was an 

interaction of BG and F:D (ADF, P = 0.07; Ca, P < 0.01), 100:0 and 87.5:12.5 diets were 

similar (P > 0.10) from COS, but TIF were different (P < 0.05) for all levels of F:D. The 

observed increase in CP and concomitant decrease in fiber concentrations were expected 

with the addition of a DDGS supplement to the diet. Distillers’ grains are generally added 

to a diet or ration due to the concentrations of CP and fat (Schingoethe et al., 2009), 

contributing to an increase in dietary energy. Likewise, DDGS are lower in fiber than 

forages (contributing to decreased dietary concentrations), but the fiber in the co-product 

is highly digestible (Ranathunga et al., 2010).  
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Table V-3 Nutritive value of diets (based on 2% body weight [BW] intake) composed of bermudagrass 

and varying ratios of forage and a dried distillers’ grains with solubles (DDGS) supplement (F:D; 100:0, 

87.5:12.5, or 50:50) used in the evaluation of in vitro digestibility and gas production, presented by F:D. 

 Forage:DDGS ratio   Contrasts § 

Item † 100:0 87.5:12.5 50:50 SEM ‡ P-value L Q 

CP 14.5c 16.9b 22.6a 0.42 < 0.01 < 0.01 0.40 

NDF 71.2a 66.8b 51.9c 0.42 < 0.01 < 0.01 0.39 

ADF 36.3a 33.9b 23.6c 0.41 < 0.01 < 0.01 0.15 

Ca 0.41c 0.49b 0.66a 0.017 < 0.01 < 0.01 0.53 

P 0.24c 0.34b 0.61a 0.008 < 0.01 < 0.01 0.43 
† CP = crude protein (N × 6.25), % DM; NDF = neutral detergent fiber (% DM), assayed inclusive of α-

amylase and expressed inclusive of residual ash; ADF = acid detergent fiber (% DM), inclusive of 

residual ash; Ca = calcium, % DM; P = phosphorus, % DM. 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported. 
§ Orthogonal polynomial contrasts. L = linear; Q = quadratic. 
a, b, c Means within a row with uncommon superscripts are different (P ≤ 0.05). 

 

 

 

Digestive Kinetics 

Traditionally, digestive kinetics data are fit to the first-order kinetics model (Smith 

et al., 1972; Waldo et al., 1972), either expressed as exponential growth (Ørskov and 

McDonald, 1979) or exponential decay (Mertens and Loften, 1980), without or with a 

discrete lag time (McDonald, 1981). Use of the exponential model with discrete lag 

requires the a priori assumption that, during the discrete lag, no digestion/gas production 

takes place, and digestion thereafter proceeds in an asymptotic fashion. However, most 

samples from both TIF and COS diets were fit (P < 0.01) to the two-pool logistic model 

with discrete lag, a model of sigmoidal behavior (Table V-4). These results support 

previous findings which indicates that current estimation methods for digestive kinetics 

may not be adequate for accurate description (Tedeschi, 1996; Zanton and Heinrichs, 

2009); therefore, new methodology may be necessary and appropriate. 
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Table V-4 Proportion† of nonlinear equation fit from diets (based on 2% body weight [BW] intake) 

composed of bermudagrass and varying ratios of forage and a dried distillers’ grains with solubles 

(DDGS) supplement (F:D; 100:0, 87.5:12.5, or 50:50), presented by bermudagrass cultivar. 

Nonlinear equation Bermudagrass cultivar 

 Coastal Tifton 85 

Exponential ‡ 38.8% 24.7% 

Two-pool logistic § 61.2% 75.3% 
† χdf=1

2 = 7.77; P < 0.01. 
‡ Ørskov and McDonald (1979). 
§ Schofield et al. (1994); Tedeschi et al. (2008). 

 

 

 

Similarly, most samples of each F:D were fit (P = 0.04) to the two-pool logistic 

model (Table V-5). However, the proportion of samples fit to the exponential model 

increased with increasing proportion of DDGS. This was both interesting and revealing 

about the pattern of digestive kinetics and provided information that may be useful in 

future modeling efforts. Mertens and Loften (1980) applied the exponential decay 

equation to in vitro digestive kinetics which was with the addition of purified starch to the 

dietary medium. Thus, an increase in exponential fit with an increase in non-forage 

components to the diet may be justified as this was part of the initial model development.  
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Table V-5 Proportion† of nonlinear equation fit from diets (based on 2% body weight [BW] intake) 

composed of bermudagrass and varying ratios of forage and a dried distillers’ grains with solubles 

(DDGS) supplement (F:D; 100:0, 87.5:12.5, or 50:50), presented by F:D. 

Nonlinear equation Forage:DDGS ratio 

 100:0 87.5:12.5 50:50 

Exponential ‡ 24.5% 29.2% 40.0% 

Two-pool logistic § 75.5% 70.8% 60.0% 
† χdf=1

2 = 6.67; P = 0.04. 
‡ Ørskov and McDonald (1979). 
§ Schofield et al. (1994); Tedeschi et al. (2008). 

 

 

 

Using the exponential equation, aexp tended to decrease (P = 0.08) and cexp 

decreased (P < 0.01) with increasing proportion of DDGS for TIF diets (Table V-6). There 

was a 57% decrease (P = 0.03) in the COS bexp with 87.5:12.5, but 50:50 was intermediate 

(29% decrease from non-DDGS). Similar to TIF, there was a decrease (P < 0.01) in cexp 

with increasing proportion of DDGS for COS diets. When presented graphically (Figure 

V-1), increasing proportion of DDGS appeared to improve the digestive endpoint with 

COS diets, but the endpoint decreased with increasing proportion of DDGS for TIF diets. 

It may also be gleaned from this presentation that the maximum point of degradation 

occurs around 24 h of incubation.  
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Table V-6 In vitro gas production parameters, estimated by the exponential equation, of diets (based on 

2% body weight [BW] intake) composed of bermudagrass and varying ratios of forage and a dried 

distillers’ grains with solubles (DDGS) supplement (F:D; 100:0, 87.5:12.5, or 50:50). 

 Forage:DDGS ratio   Contrasts # 

Item † 100:0 87.5:12.5 50:50 SEM ‡ P-value § L Q 

aexp     0.08 0.38 0.48 

  Coastal 15.6 17.5 16.9 1.00    

  Tifton 85 20.6w 19.5wx 18.3x 0.98    

bexp     0.03 0.62 0.04 

  Coastal 16.1a 6.9b 11.5ab 2.18    

  Tifton 85 6.8 8.2 10.9 2.12    

cexp     < 0.01 < 0.01 0.05 

  Coastal 2.1a 1.2b 1.1b 0.23    

  Tifton 85 2.5a 2.4a 1.4b 0.23    
† aexp = asymptote from the exponential equation, mL of gas; bexp = fractional rate of degradation (kd) 

from the exponential equation, %/h; cexp = discrete lag time from the exponential equation, h. 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported. 
§ P-values presented are for the interaction of bermudagrass cultivar and rate of DDGS 

supplementation. 
# Orthogonal polynomial contrasts. L = linear; Q = quadratic. 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 
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Figure V-1 In vitro gas production profiles, estimated by the exponential equation, from diets (based on 

2% body weight [BW] intake) composed of bermudagrass (Coastal [COS] or Tifton 85 [TIF]) and varying 

ratios of forage and a dried distillers’ grains with solubles (DDGS) supplement (F:D; 100:0, 87.5:12.5, or 

50:50). 

 

 

 

 

There was no interaction of BG and F:D for alog (P = 0.21), nor was there an effect 

of F:D (P = 0.69), but was 16% greater (P < 0.01) from TIF (8.9 mL) than from COS diets 

(7.7 mL; Table V-7). Both the blog and elog parameters increased (P ≤ 0.05) with increasing 

proportion of DDGS for TIF diets, with 47 and 18% increases with 87.5:12.5 and 128 and 

63% increases with 50:50 over 100:0, respectively. However, blog from COS diets were 

similar (P > 0.05) across F:D, and there was a 52 and 37% decrease (P < 0.01) in elog with 

0.25 and 1% BW SUPP, respectively. There was a linear decrease (P < 0.01) in clog for 

both COS and TIF diets. There was a 18% decrease (P = 0.02) in dlog with 50:50 from TIF 

diets, but COS diets were similar (P > 0.05) across F:D. When presented graphically 
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(Figure V-2), the two-pool logistic equation presented a similar result as did the 

exponential equation. Decreasing F:D resulted in an increased digestive endpoint for COS 

diets, but there was a decrease in endpoints with increasing proportion of DDGS for TIF 

diets.  

 

 

 
Table V-7 In vitro gas production parameters, estimated by the two-pool logistic equation, from diets 

(based on 2% body weight [BW] intake) composed of bermudagrass and varying ratios of forage and a 

dried distillers’ grains with solubles (DDGS) supplement (F:D; 100:0, 87.5:12.5, or 50:50). 

 Forage:DDGS ratio   Contrasts # 

Item† 100:0 87.5:12.5 50:50 SEM ‡ P-value § L Q 

alog     0.21 0.40 0.85 

  Coastal 7.0 8.0 8.0 0.59    

  Tifton 85 9.3 8.3 9.1 0.58    

blog     0.05 0.25 0.26 

  Coastal 20.0 9.5 14.5 3.94    

  Tifton 85 8.9b 13.1ab 20.3a 3.83    

clog     0.02 < 0.01 0.01 

  Coastal 3.8a 2.8b 2.8b 0.27    

  Tifton 85 4.2a 3.8a 2.7b 0.26    

dlog     0.02 0.29 0.07 

  Coastal 6.8 8.3 8.1 0.58    

  Tifton 85 9.4a 9.6a 7.7b 0.57    

elog     < 0.01 0.72 0.03 

  Coastal 16.6a 7.9b 10.5b 1.89    

  Tifton 85 8.3b 9.8ab 13.5a 1.84    
† alog = asymptote of the rapidly-fermentable substrate pool from the two-pool logistic equation, mL of 

gas; blog = fractional rate of degradation of the rapidly-fermentable substrate pool from the two-pool 

logistic equation, %/h; clog = discrete lag time from the two-pool logistic equation, h; dlog = asymptote of 

the slowly-fermentable substrate pool from the two-pool logistic equation, mL of gas; elog = fractional 

rate of degradation of the slowly-fermentable substrate pool from the two-pool logistic equation, %/h. 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported. 
§ P-values presented are for the interaction of bermudagrass cultivar and rate of DDGS 

supplementation. 
# Orthogonal polynomial contrasts. L = linear; Q = quadratic. 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 
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Figure V-2 In vitro gas production profiles, estimated by the two-pool logistic equation, of diets (based on 

2% body weight [BW] intake) composed of bermudagrass (Coastal [COS] or Tifton 85 [TIF]) and varying 

ratios of forage and a dried distillers’ grains with solubles (DDGS) supplement (F:D; 100:0, 87.5:12.5, or 

50:50). 

 
 

 

 

Mandebvu et al. (1998) found that the potentially digestible fraction from COS 

(67.1%) was similar to TIF after 3 wk regrowth (69.8%), but was 14% less than 3 wk 

primary growth of TIF (77.9%) and 23% greater than 7 wk primary growth of TIF 

(54.7%). Similar observations were made from NDF extracted from COS and TIF. 

However, there was no effect of cultivar on rate of digestion (Mandebvu et al., 1998). 

Observations from the kinetics of the current experiment may also be explained by 

differences in the fiber structure among the cultivars. Mandebvu et al. (1998) observed 

decreased ether-linked ferulic acid lignin from TIF compared with COS, thereby 

explaining increased digestibility despite increase fiber concentrations. 
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Few experiments have evaluated the effects of DDGS supplementation on 

digestive kinetics. Though not evident in the current study, distillers’ grains have been 

shown to have a fractional rate of digestion (7.4 %/h) 35% less than alfalfa (Medicago 

sativa L.), 24% less than wheat (Triticum aestivum L.) middlings, and 20% less than 

soybean (Glycine max [L.] Merr.) meal, but 32% greater than corn (Getachew et al., 2004). 

These observations represent the “undegradable” features of DDGS that are not often 

examined. Loy et al. (2007) supplemented heifers with a DDGS supplement (89% DDGS, 

31% CP, 9.7% EE) at 0.4% BW daily, rate, but not extent, of in situ NDF digestibility of 

a smooth bromegrass hay (8% CP) was decreased by 6% (4.34 to 4.09%/h). However, in 

the current experiment, there was no definitive pattern of bexp based on SUPP.  

 

In Vitro Digestibility 

Digestibility coefficients of DM, OM, and NDF were greater (P < 0.01) from TIF 

than from COS, but coefficients of dCP were similar between BG (Table V-8). These 

findings were consistent with those of Mandebvu et al. (1998), who found that IVDMD 

from both whole forage and extracted NDF of COS was less than that of TIF at 3 wk 

primary growth and regrowth. Similarly, Burns and Fisher (2007) observed an IVDMD 

from TIF 16% greater than that of COS, with similar increases in the digestibility of NDF 

(20%), ADF (24%), hemicellulose (17%), and cellulose (19%). At kp of 4, 6, and 8%/h, 

dNDF in the current study (P < 0.01) were similar to those findings. 
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Table V-8 Measures of in vitro digestibility from diets (based on 2% body weight [BW] intake) composed 

of bermudagrass and varying ratios of forage and a dried distillers’ grains with solubles (DDGS) 

supplement (F:D; 100:0, 87.5:12.5, or 50:50), presented by bermudagrass cultivar. 

 Bermudagrass cultivar   

Item † Coastal Tifton 85 SEM ‡ P-value 

IVTD 70.7b 78.0a 1.85 < 0.01 

IVTDOM 68.7b 76.3a 1.98 < 0.01 

IVNDFD 54.4b 65.9a 2.80 < 0.01 

dCP 98.2 98.3 0.43 0.88 

dNDF0.04 50.5b 52.5a 0.53 < 0.01 

dNDF0.06 44.6b 46.5a 0.59 < 0.01 

dNDF0.08 40.3b 42.1a 0.60 < 0.01 
† IVTD = in vitro true digestibility, % DM; IVTDOM = in vitro true digestibility, organic matter basis, % 

OM; IVNDFD = in vitro neutral detergent fiber digestibility, % NDF; dCP = digestible crude protein, % 

CP, estimated using the GasFit model; kp = fractional rate of passage, h-1; dNDFkp = digestible neutral 

detergent fiber at kp, % DM, estimated using the GasFit model. 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported. 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 

 

 

 

Digestibility coefficients of DM, OM, and NDF increased linearly (P < 0.01), and 

CP decreased linearly (P = 0.04) with increasing proportion of DDGS. Similarly, dNDF 

decreased linearly (P < 0.01) with increasing proportion of DDGS at all kp. While there 

are no data available to evaluate the effect of DDGS on digestibility of bermudagrass, 

other supplementation studies reported similar results. When Leupp et al. (2009) 

supplemented steers at 0, 0.3, 0.6, 0.9, or 1.2% BW DDGS while consuming smooth 

bromegrass hay, there was a linear increase in total tract OM digestibility with increasing 

rates of DDGS. Similar results were reported by Murillo et al. (2016). However, 

Greenquist et al. (2009) found no effects of 0.69% DDGS on IVDMD of smooth 

bromegrass pastures. 
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Table V-9 Measures of in vitro digestibility from diets (based on 2% body weight [BW] intake) composed 

of bermudagrass and varying ratios of forage and a dried distillers’ grains with solubles (DDGS) 

supplement (F:D; 100:0, 87.5:12.5, or 50:50), presented by F:D. 

 Forage:DDGS ratio   Contrasts§ 

Item† 100:0 87.5:12.5 50:50 SEM‡ P-value L Q 

IVTD 68.8c 72.4b 81.7a 1.98 < 0.01 < 0.01 0.76 

IVTDOM 66.6c 70.5b 80.4a 2.13 < 0.01 < 0.01 0.73 

IVNDFD 56.7b 58.7b 65.2a 3.01 < 0.01 < 0.01 0.97 

dCP 98.7w 98.7w 97.3x 0.53 0.10 0.04 0.60 

dNDF0.04 58.6a 53.3b 42.5c 0.65 < 0.01 < 0.01 0.08 

dNDF0.06 52.0a 47.0b 37.6c 0.69 < 0.01 < 0.01 0.06 

dNDF0.08 47.2a 42.5b 34.0c 0.71 < 0.01 < 0.01 0.05 
† IVTD = in vitro true digestibility, % DM; IVTDOM = in vitro true digestibility, organic matter basis, % 

OM; IVNDFD = in vitro neutral detergent fiber digestibility, % NDF; dCP = digestible crude protein, % 

CP, estimated using the GasFit model; kp = fractional rate of passage, h-1; dNDFkp = digestible neutral 

detergent fiber at kp, % DM, estimated using the GasFit model. 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported. 
§ Orthogonal polynomial contrasts. L = linear; Q = quadratic. 
a, b, c Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 

 

 

 

Methane Production 

There was no effect of BG on CH4 production when expressed as a proportion of 

total gas production (P = 0.26), digestible DM (P = 0.26), digestible OM (P = 0.33), or 

digestible NDF (P = 0.59; Table V-10). However, CH4 production from TIF was 27% 

greater than COS as a proportion of DM (P = 0.02), 25% greater as a proportion of OM 

(P = 0.02), and tended to be 21% greater as a proportion of NDF (P = 0.06). A review of 

the literature revealed no references for methane production differences among 

bermudagrass cultivars. Bell et al. (2017) found that Bos taurus steers consuming a 

bermudagrass hay (77% NDF, 14% CP) produced 18.8 µmol CH4 mL-1 h-1, while B. 

indicus steers consuming the same forage produced 22.5 µmol CH4 mL-1 h-1.  
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Table V-10 Methane production from diets (based on 2% body weight [BW] intake) composed of 

bermudagrass and varying ratios of forage and a dried distillers’ grains with solubles (DDGS) supplement 

(F:D; 100:0, 87.5:12.5, or 50:50), presented by bermudagrass cultivar. 

 Bermudagrass cultivar   

Expression† Coastal Tifton 85 SEM‡ P-value 

mg/L 15.8 17.3 1.29 0.26 

g/kg DM 1.5b 1.9a 0.15 0.02 

g/kg OM 1.6b 2.0a 0.16 0.02 

g/kg NDF 2.4x 2.9w 0.24 0.06 

g/kg dDM 2.1 2.4 0.23 0.26 

g/kg dOM 2.3 2.6 0.26 0.33 

g/kg dNDF 4.8 4.5 0.52 0.59 
† DM = dry matter; OM = organic matter; NDF = neutral detergent fiber; dDM = digestible dry matter; 

dOM = digestible organic matter; dNDF = digestible neutral detergent fiber. 
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported. 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 

 

There was no effect of F:D on CH4 production when expressed as a proportion of 

total gas production (P = 0.67), DM (P = 0.82), OM (P = 0.79), or digestible NDF (P = 

0.90; Table V-11). Methane production as a proportion of NDF increased linearly (P = 

0.04) with increasing proportion of DDGS, but decreased linearly (P ≤ 0.02) with 

increasing proportion of DDGS as a proportion of digestible DM and digestible OM.  
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Table V-11 Methane production from diets (based on 2% body weight [BW] intake) composed of 

bermudagrass and varying ratios of forage and a dried distillers’ grains with solubles (DDGS) supplement 

(F:D; 100:0, 87.5:12.5, or 50:50), presented by F:D. 

 DDGS supplementation, % BW   Contrasts§ 

Expression† 0% 0.25% 1% SEM‡ P-value L Q 

mg/L 16.7 15.7 17.2 1.50 0.67 0.62 0.46 

g/kg DM 1.7 1.7 1.6 0.17 0.82 0.54 0.88 

g/kg OM 1.9 1.8 1.7 0.19 0.79 0.50 0.84 

g/kg NDF 2.4 2.5 3.0 0.28 0.11 0.04 0.72 

g/kg dDM 2.5w 2.3wx 1.9x 0.26 0.07 0.02 0.94 

g/kg dOM 2.8a 2.6ab 2.0b 0.30 0.04 0.01 0.84 

g/kg dNDF 4.7 4.5 4.8 0.60 0.90 0.81 0.71 
†DM = dry matter; OM = organic matter; NDF = neutral detergent fiber; dDM = digestible dry matter; 

dOM = digestible organic matter; dNDF = digestible neutral detergent fiber. 
‡SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported. 
§Orthogonal polynomial contrasts. L = linear; Q = quadratic. 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 

 

 

 

When DDGS replaced hay incrementally in vitro, Behlke et al. (2007) documented 

a decrease in total methane production. Similarly, when DDGS replaced barley (Hordeum 

vulgare L.) in a backgrounding ration, McGinn et al. (2009) found a 20% decrease in daily 

CH4 production and a 16% reduction in CH4 as a proportion of DMI. Hünerberg et al. 

(2013b) found similar proportional decreases in methane with 40% dietary inclusion of 

DDGS. Grainger and Beauchemin (2011), in a review, demonstrated that dietary fat 

inclusion decreased enteric methane production, lending a hypothesis to the mechanism 

of alterations caused by feeding DDGS. 
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Conclusion 

The two-pool logistic model best described TIF and COS diets, but the exponential 

model improved with increasing proportion of DDGS. This lends to the hypothesis that 

current estimation techniques may not be adequate in complete description of digestive 

kinetics and alternative techniques or statistical procedures should be used. When DDGS 

supplement was added to TIF, the potential extent of degradation was reduced, compared 

to an improvement in extent when the same was added to COS. Supplemental DDGS 

resulted in improvements in digestibility of DM, OM, and NDF, but not in CP. Likewise, 

digestibility of TIF diets was greater than that of COS. When expressed as a proportion of 

digestible material, supplemental DDGS reduced methane production from bermudagrass 

diets. Results indicated that the DDGS may be included as a supplement in the diet of 

grazing cattle for an effective increase in diet digestibility and as a potential mitigator of 

enteric methane production. However, this is contingent on the nutritive value (primarily 

the digestibility coefficient of hemicellulose, cellulose, and lignin components) of the base 

forage. Greater DDGS (such as 1% BW) may be more effective with forages of lesser 

nutritive value (such as COS), but forages such as TIF may not require supplemental 

DDGS from the perspective of digestive kinetics. 
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CHAPTER VI 

INFLUENCE OF MONTH OF YEAR AND SUPPLEMENTAL DISTILLERS’ 

GRAINS ON IN SITU DEGRADATION OF TIFTON 85 BERMUDAGRASS† 

 

Synopsis 

Month of forage growth and supplementation have the potential to affect digestion 

and animal performance. The experiment’s objectives were to evaluate the ruminal 

digestion kinetics of ‘Tifton 85’ bermudagrass (TIF; Cynodon dactylon [L.] Pers. × C. 

nlemfuënsis Vanderyst) as affected by month of year (MOY) and rate of dried distillers’ 

grains with solubles (DDGS) supplementation (SUPP). The MOY were harvested in June, 

August, and October 2014. Six ruminally-fistulated steers were stratified by BW and 

allocated to 3 pens. Pens (experimental unit) were randomly assigned to 1 of 2 rates of 

SUPP (0.25, or 1% BW) or a non-SUPP control. Duplicate samples of each MOY and a 

single DDGS sample were inserted into the rumen of each animal and removed after 2, 4, 

8, 12, 24, 72, or 96 h using the sequential removal methodology. Degradation of DM 

decreased with both increasing MOY (P ≤ 0.01) and increasing SUPP (P ≤ 0.04). The 

indigestible fraction (U) of DM from TIF was least (P < 0.05) for June (19%), followed 

by August (34%), and greatest for October (41%). The U variable from TIF DM was not 

different (P = 0.47) based on rate of SUPP, with an average residue of 31%. There was an 

                                                 
† This chapter has been previously published as: Smith, W. B., J. L. Foster, K. C. McCuistion, L. O. 

Tedeschi, and F. M. Rouquette, Jr. 2017. In situ degradation patterns of 'Tifton 85' bermudagrass with dried 

distillers' grains supplementation. Crop Sci. 57:1773-1783. doi: 10.2135/cropsci2016.12.0981. Permission 

has been granted by Crop Science Society of America for republication in this document, and changes have 

been made in accordance with the copyright release agreement and requests of the dissertation committee. 
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interaction of MOY and SUPP for TIF NDF (P = 0.01) and ADF disappearance (P < 0.01), 

with increasing SUPP resulting in increasing degradation in the June harvest but not in the 

October harvest. Harvests from later in the year have altered the cell wall structural profile 

than early-season TIF, and increases in DDGS supplementation might have created an 

inhospitable rumen environment for fiber-degrading bacteria. 

 

Introduction 

‘Tifton 85’ bermudagrass (Cynodon dactylon [L.] Pers. × C. nlemfuënsis 

Vanderyst) is unique among the Cynodon genus regarding nutritive value and chemical 

composition. Silva et al. (2015) documented increased leaf proportion of Tifton 85 when 

compared with ‘Jiggs’ or ‘Vaquero’ and greater in vitro organic matter digestibility. 

Mandebvu et al. (1999) found that, unlike ‘Coastal’ bermudagrass, concentrations of NDF 

and ADF in Tifton 85 were not directly correlated with in vitro DM digestibility, mainly 

due to an increase in arabinose, xylose, and ester-linked ferulic acid, and a decrease in 

ether-linked ferulic acid.  

While the overall productivity and efficiency of the animal are paramount concerns 

in supplementation strategies for cattle production, supplementation effects on the ruminal 

digestive environment are also of importance (Hess et al., 1996). With increasing levels 

of supplement in the diet and the likelihood of substitution of forage, there might be a 

decrease in the fractional rate of degradation or potential extent of ruminal forage 

digestibility. Mertens and Loften (1980) demonstrated that the in vitro addition of starch 

to bermudagrass, tall fescue (Lolium arundinaceum (Schreb.) S. J. Darbyshire) or 
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orchardgrass (Dactylis glomerata L.) reduced potential extent of forage NDF degradation 

by up to 20% while increasing discrete lag times. Likewise, when dried distillers’ grains 

with solubles (DDGS) was fed daily or on alternate days, the fractional degradation rate 

of in situ mixed-grass hay NDF disappearance was reduced (Loy et al., 2007). The 

objective of this experiment was to evaluate the effect of DDGS supplementation rate 

(SUPP) and month of the year (MOY) of Tifton 85 bermudagrass on ruminal in situ 

degradation patterns. It was hypothesized that supplementation with DDGS would 

increase digestibility of late-summer Tifton 85 bermudagrass without measurable effects 

at earlier sample collection dates.  

 

Materials and Methods 

All protocols and procedures for this experiment were approved by the 

Institutional Animal Care and Use Committee of Texas A&M University – Kingsville 

under Animal Use Protocol #2012-06-04B. 

 

Forage Collection 

Hand-plucked plant parts (Edlefsen et al., 1960; Roth et al., 1990; De Vries, 1995) 

of Tifton 85 bermudagrass in close proximity to and representative of forage grazed by 

cattle were obtained from 16 research pastures in June, August, and October at the Texas 

A&M AgriLife Research and Extension Center at Overton, TX (32.29° N, 94.98° W; 

1155.7 mm 48-yr mean annual rainfall; 18.1°C 41-yr mean temperature), and composited 

into one, representative sample. Pastures were fertilized with 77 kg N (as ammonium 



 

116 

 

nitrate), 29 kg P2O5, and 62 kg K2O/ha prior to initiation of the experiment in each year. 

At approximately 6-wk intervals, 76 kg N/ha was applied to pastures. This resulted in a 

total seasonal fertilization of 229 kg N, 29 kg P2O5, and 62 kg K2O/ha. The Tifton 85 

samples obtained from these pastures were representative of forage selected by stocker 

steers in a grazing and DDGS supplementation level experiment (CHAPTER III). Tifton 

85 samples were dried at 50°C for at least 72 h (Scarbrough et al., 2001), composited by 

date and shipped to Texas A&M AgriLife Research – Beeville, and ground using a Wiley 

mill (Arthur H. Thomas Company, Philadelphia, PA) to pass through a 4-mm screen 

before incubation. This grind size was a deviation from Vanzant et al. (1998), who 

recommended grinding samples to 2 mm, but has been used by Foster et al. (2011). 

Likewise, the use of larger particle sizes for in situ measurements has been discussed at 

length in Bowman and Firkins (1993). A subsample of each forage collection was ground 

to pass through a 1-mm screen and analyzed as described in CHAPTER III. A chemical 

characterization of forage nutritive value is given in Table VI-1. 
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Table VI-1 Nutritive value of Tifton 85 bermudagrass forage samples harvested at 3 months of year 

(MOY) from the Texas A&M AgriLife Research and Extension Center at Overton.  

 Month of year 

Chemical component †‡ June August October 

CP, % DM 24.1 15.7 12.2 

NDF, % DM 66.2 72.8 72.3 

ADF, % DM 31.9 36.6 34.9 

TDN, % DM 63.7 57.3 57.6 

Ca, % DM 0.56 0.40 0.40 

P, % DM 0.35 0.28 0.22 
†DM = dry matter; CP = crude protein (N × 6.25); NDF = neutral detergent fiber, assayed inclusive of α-

amylase and expressed inclusive of residual ash; ADF = acid detergent fiber, expressed inclusive of 

residual ash; TDN = total digestible nutrients; Ca = calcium; P = phosphorus. 
‡Composition of NDF and ADF were measured via wet chemistry on composite samples in Beeville, 

TX. All other components were measured or calculated by a commercial laboratory (Cumberland Valley 

Analytical Services, Maugansville, MD) on similar samples collected on similar dates from experimental 

pastures in CHAPTER III. 

 

 

 

Weather Conditions 

Weather conditions for the stocking experiment were identical to those presented 

in CHAPTER III. Monthly precipitation is presented in Figure III-1, mean daily 

temperature is presented in Figure III-2, and day length is presented in Figure III-3.  

 

Supplemental Feed 

Granular corn-based DDGS, with 2% added limestone, was sourced from 

Producers Cooperative Association, Bryan, TX, as described in CHAPTER III. Samples 

of the SUPP were collected and analyzed as previously described. A characterization of 

the nutritive value of SUPP is presented in Table III-1. 
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In Situ Protocols 

Two samples (4-mm grind size) of each of the 3 Tifton 85 MOY and 1 sample of 

SUPP were prepared for each time point (0, 2, 4, 8, 12, 24, 72, and 96 h of incubation) and 

each animal (n = 6). Samples (MOY and SUPP; 3 g) were prepared according to the 

procedures described by Foster et al. (2011). Samples were sealed in duplicate polyester 

bags (10 × 20-cm, 53 ± 10 µm pore size; Bar Diamond, Inc., Parma, ID). The sample mass 

to surface area exposure was 15 mg/cm2. Bags were attached to linked, stainless steel 

chains (self-weighted to remain below the fiber mat) with rubber O-rings for suspension 

during ruminal incubation. 

Ruminally-fistulated steers (n = 6; Angus-cross; approx. 730 kg BW; 12 yr of age), 

housed and managed at Texas A&M University – Kingsville (27.54° N, 97.88° W), were 

stratified by BW and allocated randomly to each of 3 outdoor pens (2 steers per pen). Pens 

were randomly assigned to each of 3 treatments including 2 rates of SUPP (0.25 or 1% 

BW) and a non-SUPP control. Steers were group-fed SUPP daily at 0800 h, and bunk 

space was allowed at a minimum of 150 cm/hd. Water, trace-mineralized salt (Special 

Pasture Mineral, Producers Cooperative Association, Bryan, TX; 14% Ca, 12% NaCl, 7% 

P, 4.9% Mg, 0.1% K, 9,900 ppm Zn, 3,900 ppm Mn, 2,500 ppm Cu, 100 ppm I, 45 ppm 

Se, 440,000 IU vitamin A, 44,000 IU vitamin D, and 220 IU vitamin E), and Tifton 85 

hay (13.6% CP, 68.7% NDF, 32.1% ADF, sourced from a single field, second harvest in 

Pearsal, TX [28.89° N, 99.10° W]) were provided for ad libitum access.  

The in situ experiment was replicated across 3 periods in a Latin square 

experimental design (pen = row [experimental unit], period = column). Steers were 
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adapted to diets for 7 d and 4 d of in situ protocol. During the collection period, duplicate 

samples of each of the 3 MOY of Tifton 85 (n = 42 total Tifton 85 samples per animal, 

excluding the 0-h bags) and a sample of SUPP (n = 8 total SUPP samples per animal) were 

inserted into the rumen cannula of each animal and suspended below the fibrous mat of 

the rumen. Removal of bags occurred at 2, 4, 8, 12, 24, 72, and 96 h of incubation (Vanzant 

et al., 1998). Bags reserved for the 0-h timepoint were not inserted into the rumen but were 

handled identically to bags upon removal. Bags were immediately submerged in ice water 

to cease fermentation and immediately frozen for further nutritive analyses. 

Upon completion of the in situ trial, samples were thawed and rinsed under cold 

tap water to remove any remaining ruminal residue. Mechanized washing was 

accomplished using the procedure described by Coblentz et al. (1997). The washed 

samples were dried at 50°C until weight loss ceased. Samples were composited by 

seasonality and dietary treatment for chemical analyses. Initial samples (Tifton 85 and 

DDGS, subsampled from pre-incubation materials) were ground using a Wiley mill to 

pass through a 1-mm screen and analyzed for DM (Shreve et al., 2002), OM, NDF (without 

heat-stable α-amylase or sodium sulfite), and ADF (sequential; Vogel et al., 1999) at 

Beeville, TX. Identical samples gathered from the 16 research pastures were analyzed for 

CP (Method 990.03; AOAC, 2000), RDP (Krishnamoorthy et al., 1983), TDN, and NEG 

via wet chemistry by a commercial laboratory (Cumberland Valley Analytical Services, 

Maugansville, MD). All incubated residues were analyzed for DM, NDF, and ADF as 

described above. 
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The model used for parameter evaluation was that of Mertens and Loften (1980). 

Regarding in vitro or in situ digestion experiments and equations, lag time represents that 

time from the start of incubation to the first signs of disappearance. It was assumed that it 

is during this time that fibrous particles are hydrated, and rumen microbes attach to 

particles to begin degradation. This model is given by the equation of Mertens and Loften 

(1980; Eq. [VI-1]), where R is the residue (%), D0 is the digestible fraction (%), U is the 

indigestible fraction (%), kd is the digestion rate constant (h-1), L is the lag time (h), and t 

is hours of incubation.  
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Statistical Analyses 

Data were analyzed using SAS 9.4 (SAS Institute, Cary, NC). For the Latin square 

design, period was treated as the column, and pen was treated as the row. The experimental 

unit was the pen. Prior to analyses, data were subset by the substrate (Tifton 85 or SUPP) 

and MOY (June, August, or October). Correlations among residues were evaluated using 

PROC CORR to elucidate relationships among DM, NDF, and ADF. Data were also 

plotted using PLOT SGPLOT for evaluation of patterns of the observed data. Nonlinear 

model parameters were obtained by subjecting the observed data to PROC NLIN with the 

BEST=20 option and using the iterative Marquardt estimation method (Marquardt, 1963). 

The NLIN procedure was invoked independently for each substrate or MOY (within 
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substrate), and the BY statement was applied for each combination of animal, period, and 

SUPP.  

Parameter estimates obtained from PROC NLIN were analyzed using PROC 

MIXED. Denominator degrees of freedom were adjusted using the Kenward-Roger 

approximation method (Kenward and Roger, 1997). For forage samples, data were 

analyzed with MOY, SUPP, and their interaction as fixed effects. Pen and period were 

included as random effects. For SUPP samples, data were analyzed with the SUPP as the 

fixed effect, and pen and period were included as random effects.  

Least squares means were computed for each main effect and interaction. The α-

level for mean differences was set at 0.05, and 0.10 was used for tendencies. When 

interactions had P < α, the interaction was discussed; otherwise, main effects were 

discussed. Means separations were performed based on F-protected t-tests using the 

%PDMIX800 macro (Saxton, 1998). 

Orthogonal polynomial contrasts were tested for linear and quadratic effects of 

SUPP. Coefficients for contrasts were determined using PROC IML. Linear coefficients 

were -0.57 for 0%, -0.23 for 0.256%, and 0.79 for 1% BW SUPP. Quadratic coefficients 

were 0.59 for 0%, -0.78 for 0.25%, and 0.20 for 1% BW SUPP.  
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Results and Discussion 

 

In Situ Disappearance 

 

Forage kinetics 

There was no interaction of MOY and SUPP for disappearance parameters from 

forage DM (P ≥ 0.11; Table VI-2). The digestible fraction decreased (P < 0.01) with 

SUPP, resulting in a 10% decrease with 0.25% and a 7% decrease with 1% BW SUPP 

compared with non-SUPP (54.5% DM). Similarly, kd decreased linearly (P = 0.02) with 

increasing SUPP. There was no effect of SUPP (P ≥ 0.27), however, on discrete lag time 

(mean = 7.1 h) or indigestible fractions (mean = 31.1% DM) of forage.  

There was an interaction of MOY and SUPP for D0 from NDF (P = 0.01) and ADF 

(P < 0.01). The digestible fraction of NDF was 5% less (P < 0.05) from 0.25% BW (59.3% 

NDF) than from other levels of SUPP in June, but there was no difference (P > 0.05) 

among SUPP in August. The digestible fraction of ADF was greater (P < 0.05) from non-

SUPP than from other levels in both June and August. In October, both NDF and ADF 

digestible fractions were greatest (P < 0.05) from 0.25% BW (56.8% NDF and 65.0% 

ADF) and least (P < 0.05) from 1% BW SUPP (49.0% NDF and 52.4% ADF), with non-

SUPP intermediate (53.9% NDF and 57.3% ADF). 

The digestion rate constant from NDF tended (P = 0.07) to decrease linearly with 

increasing SUPP. There was no effect of SUPP (P ≥ 0.29) on discrete lag times (mean = 

7.0 h) or indigestible fractions (mean = 37.2% NDF) for NDF. However, discrete lag times 
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increased linearly (P = 0.01) and indigestible fractions tended to decrease linearly (P = 

0.07) with increasing SUPP for ADF.  

 

 

 
Table VI-2 In situ disappearance parameters from Tifton 85 bermudagrass forage as affected by varying 

rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, or 1% body weight [BW]). 

 DDGS supplementation, % BW   Contrasts § 

Item † 0% 0.25% 1% SEM ‡ P-value L Q 

----- DM ----- 

D0 54.5a 49.1b 50.6b 3.19 < 0.01 0.12 < 0.01 

kd 8.8a 6.8ab 5.6b 1.30 0.03 0.02 0.25 

L 6.6 7.7 6.9 1.22 0.55 0.93 0.28 

U 29.3 32.0 32.0 1.79 0.27 0.25 0.24 

        

----- NDF ----- 

D0 68.6a 62.2b 62.6b 5.68 0.04 0.06 0.05 

kd 11.0 7.4 6.2 2.36 0.13 0.07 0.28 

L 6.2 7.9 6.9 1.54 0.29 0.83 0.12 

U 35.9 37.4 38.4 2.28 0.61 0.34 0.73 

        

----- ADF ----- 

D0 75.1a 68.5b 66.2b 3.35 < 0.01 < 0.01 0.08 

kd 8.6 8.2 7.3 1.39 0.53 0.27 0.92 

L 6.2b 8.5a 9.0a 0.90 0.01 0.01 0.07 

U 39.6x 43.9wx 45.2w 3.01 0.10 0.07 0.25 
† D0 = digestible fraction. %; kd = digestion rate constant, h-1; L = lag time, h; U = indigestible fraction, 

%.  
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported. 
§ Orthogonal polynomial contrasts. L = linear; Q = quadratic. 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 

 

 

 

When Loy et al. (2007) supplemented heifers daily (0.4% BW) or on alternate days 

(0.8% BW) with DDGS, a 12% decrease in the rate of grass hay in situ NDF disappearance 

was realized. Miller and Muntifering (1985) noted no decrease in fractional degradation 
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rate with corn supplementation up to 80% of the diet DM in vivo, but did observe an 

increase in discrete lag time and a decrease in potential degradation. Vendramini et al. 

(2007), however, noted no difference in dietary in vitro OM digestibility of Tifton 85 

bermudagrass with 1 to 2% BW supplementation with a commercial pelleted supplement 

(15% CP, 70% TDN). In the current experiment, when a supplementation effect was 

realized, whether alone (as in Tifton 85 DM) or as an interaction (as in Tifton 85 NDF and 

ADF), there was a decrease in the overall degradation of the forage (Figure VI-1).  

 

 

 
Figure VI-1 In situ disappearance profiles from Tifton 85 bermudagrass forage as affected by varying 

rates of a dried distillers’ grains with solubles (DDGS) supplement (0, 0.25, or 1% body weight [BW]). 

 
 

 

 

Many effects of supplementation may be explained by the ratio of TDN to CP. 

Moore et al. (1991) described a previous study (Moore et al., 1970) in which soybean meal 
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supplementation at 0.12% BW was effective in increasing voluntary intake of ‘Pensacola’ 

bahiagrass (Paspalum notatum Flueggé) when the TDN:CP ratio exceeded 8:1, but had no 

effect for other instances. Similarly, no effect of supplemental protein was realized for 

bermudagrass hay intake with TDN:CP below 8.5:1 (Moore et al., 1991). When 

supplemented with approximately 0.17% BW as soybean meal, wethers consumed less 

immature hay (TDN:CP = 3.7:1; 32% TDN, 18% CP), while mature hay with TDN:CP of 

9:1 (59% TDN, 7% CP) was consumed at a greater rate (Ventura et al., 1975). Ventura et 

al. (1975) explained that the increased intake from supplementation using RDP with 

mature hays could be explained by the increase in NDF digestibility. Moore and Kunkle 

(1995) accumulated a database of 30 publications describing supplementation regimen 

with cattle on pasture. When forage digestible OM:CP was less than 7:1, there was nearly 

always a substitution effect in the supplementation regime, while a positive associative 

effect was realized with the advent of protein supplements when forages had digestible 

OM:CP ratios of 7:1 or greater (Moore and Kunkle, 1995; Moore et al., 1999). In a 

companion experiment to the current study, supplementation with 1% BW SUPP resulted 

in a substitution effect. Thus, a substitution effect (or at least a more inhospitable rumen 

environment) may be realized in the negative response observed with all levels of 

supplementation and TDN:CP ratios well below the threshold of 8:1. 

There was a decrease (P < 0.01; 21% from June to August, 11% from August to 

October) in the digestible fraction of DM with each increase in MOY (Table VI-3). 

Similarly, there was an increase (P < 0.01) in the indigestible fraction of DM, NDF, and 

ADF with increasing MOY. However, there was no effect of MOY (P ≥ 0.55) on kd or L. 
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Table VI-3 In situ disappearance parameters from Tifton 85 bermudagrass forage as affected by month of 

year (MOY; June, August, or October). 

 Month of year   

Item † June August October SEM ‡ P-value 

----- DM ----- 

D0 61.7a 49.0b 43.4c 3.21 < 0.01 

kd 7.5 6.8 6.9 1.32 0.85 

L 7.4 6.8 7.0 1.24 0.88 

U 18.9c 33.7b 40.8a 1.83 < 0.01 

      

----- NDF ----- 

D0 79.7a 60.5b 53.2c 5.66 < 0.01 

kd 7.5 7.4 9.7 2.32 0.55 

L 6.9 6.7 7.4 1.54 0.78 

U 22.5c 38.9b 50.3a 2.24 < 0.01 

      

----- ADF ----- 

D0 84.0a 67.5b 58.3c 3.35 < 0.01 

kd 8.4 8.0 7.6 1.39 0.79 

L 7.4 7.9 8.4 0.90 0.59 

U 27.0c 43.3b 58.4a 3.01 < 0.01 
† D0 = digestible fraction. %; kd = digestion rate constant, h-1; L = lag time, h; U = indigestible fraction, 

%.  
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported. 
a, b Means within a row with uncommon superscripts are different (P ≤ 0.05). 
w, x Means within a row with uncommon superscripts are different (0.05 < P ≤ 0.10). 

 

 

 

Month of year has been shown to play a key role in the nutritive value, and 

digestibility/kinetics (by extension), of bermudagrass. Researchers found that, when 

weighing the effects of chronological age of regrowth (4 to 24 wk) and MOY in 

Kingsville, TX, the variation in CP was greatest with advancing seasons regardless of 

regrowth interval in samples of ‘Coastal’ and ‘Coastcross-1’ bermudagrass (Jolliff et al., 

1979). In this same study, IVDMD decreased with advancing MOY in all regrowth 

intervals. Neathery (1972) made a similar observation with ‘Midland’ bermudagrass, 
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noting a general decrease in TDN with advancing MOY. Fribourg et al. (1979) reported 

similar findings in an evaluation of Midland and common bermudagrasses, noting 

decreases in IVDMD with advancing MOY that were rarely altered with increasing N 

fertilization. Similar research conducted in the Texas A&M AgriLife System support these 

findings (Rouquette and Keisling, 1981; Holt and Conrad, 1983). These reports agree with 

the current study in which MOY was the primary influence of observations of in situ DM 

disappearance, and digestibility decreased with advancing MOY (Figure VI-2). 

 

 

 
Figure VI-2 In situ disappearance profiles from Tifton 85 bermudagrass forage as affected by month of 

year (MOY; June, August, or October). 

 
 

 

 

The nutritive value changes in Tifton 85 harvested in advancing MOY can possibly 

be explained by several external environmental factors. Day length declined from June 
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(15 h) through October (12 h) and could have contributed to the observed effects of 

seasonality. This decrease in digestibility with decreasing day length is supported by work 

conducted with kleingrass (Panicum coloratum L.), green sprangletop (Leptochloa dubia 

[H. B. K.] Nees) and plains bristlegrass (Sataria macrostachya H. B. K.) in which in vitro 

OM digestibility was negatively correlated (-0.31) with day length (Pitman and Holt, 

1982). Van Soest et al. (1978) lists sunlight as one of the factors having a positive 

relationship with forage digestibility through the increased accumulation of storage 

carbohydrates. Thus, a decrease in light intensity of day length would lead to a decrease 

in forage digestibility. Sinclair et al. (2003) noted a decrease in stem/shoot growth from 

both Pensacola bahiagrass and Tifton 85 bermudagrass with decreasing photoperiod 

without a subsequent change of in vitro OM digestibility.  

 

DDGS kinetics 

There was no effect of SUPP on disappearance of DDGS DM (P ≥ 0.11), NDF (P 

≥ 0.45), or ADF (P ≥ 0.37) components (Table VI-4). These results indicate that there was 

no viable change in the rumen environment that could have provided a competitive 

advantage to concentrate degradation (Figure VI-3).  
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Figure VI-3 In situ disappearance profiles from dried distillers’ grain with solubles (DDGS) as affected 

by varying rates of a supplemental DDGS (0, 0.25, or 1% body weight [BW]). 
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Table VI-4 In situ disappearance parameters from dried distillers’ grain with solubles (DDGS) as affected 

by varying rates of a supplemental DDGS (0, 0.25, or 1% body weight [BW]). 

 DDGS supplementation, % BW   Contrasts § 

Item † 0% 0.25% 1% SEM ‡ P-value L Q 

----- DM ----- 

D0 40.4 37.6 36.8 2.98 0.11 0.07 0.30 

kd 4.4 5.7 5.8 0.94 0.40 0.31 0.39 

L 2.8 3.7 3.7 2.26 0.87 0.67 0.80 

U 3.9 5.5 3.4 1.45 0.34 0.18 0.59 

        

----- NDF ----- 

D0 74.7 68.3 69.7 4.19 0.45 0.43 0.34 

kd 4.5 6.1 5.1 1.44 0.72 0.93 0.44 

L 4.4 3.9 4.0 1.57 0.93 0.80 0.80 

U 9.1 15.6 14.2 4.56 0.49 0.47 0.36 

        

----- ADF ----- 

D0 69.0 60.4 62.7 5.78 0.52 0.44 0.37 

kd 5.3 7.7 7.4 2.46 0.76 0.64 0.57 

L 4.8 5.5 4.3 1.58 0.62 0.49 0.70 

U 11.3 19.4 20.7 4.93 0.37 0.25 0.39 
† D0 = digestible fraction. %; kd = digestion rate constant, h-1; L = lag time, h; U = indigestible fraction, 

%.  
‡ SEM = standard error of the mean. When SEM differed for various levels of the treatment, the greatest 

of the values was reported. 
§ Orthogonal polynomial contrasts. L = linear; Q = quadratic. 

 

 

 

Conclusion 

Based on the observed data, we believe that the patterns of degradation were a 

result of the cell wall structural bonding and ease of degradation unique to Tifton 85 

bermudagrass. A combination of early season (June) and either no supplementation or 

high supplementation (1%) with DDGS resulted in greater degradation of both NDF and 

ADF of Tifton 85 bermudagrass. Seasonality of the forage, however, proved to be the 

major factor affecting all parameters of in situ degradation kinetics of Tifton 85 

bermudagrass. Later in the growing season, degradation of Tifton 85 forage was 
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decreased. Implications may be drawn, with some speculation and inference, from the 

observed data. The interaction of seasonality with DDGS on degradation of Tifton 85 

would suggest a potential two-season grazing scheme during the summer. Class, size, and 

age of stocker cattle can be selected to best match the season × degradation traits of Tifton 

85, and/or a shortened grazing season could be used for optimum animal performance. 

 



 

132 

 

CHAPTER VII 

A NOVEL TECHNIQUE FOR MODEL EVALUATION AND SELECTION FOR IN 

SITU DEGRADATION PARAMETERS 

 

Synopsis 

Current procedures for evaluation of digestive degradation models, whether in situ 

or in vitro, generally involve the use of a traditional Mitscherlich (exponential) model fit 

to individual animal data, followed by an analysis of the model parameters individually to 

ascertain treatment differences. This procedure requires an a priori assumption of the 

appropriate model to fit the observed data as well as an interpretation of parameters 

without consideration of the model as a whole. The objective of this protocol was to 

describe a technique by which nonlinear models could be selected based on fit statistics 

and evaluated as complete models. Degradation data were obtained from an in situ study 

with ‘Tifton 85’ (TIF) bermudagrass (Cynodon dactylon [L.] Pers. × C. nlemfuënsis 

Vanderyst). Briefly, forage samples were obtained at 3 months of year (MOY) of TIF for 

measurement of in situ degradation (DM, NDF, ADF). Fistulated steers were 

supplemented daily with 0, 0.25 or 1% BW dried distillers’ grains with solubles (SUPP). 

Dry matter, NDF and ADF data from this study were fit to each of 52 published nonlinear 

growth models using the NLMIXED procedure of SAS and evaluated for fit based on 

maximum Akaike weight, a derivation of the AICC statistic. Once a common model was 

selected for each response variable, model intercepts were allowed to vary based on the 

influence of seasonality, DDGS treatment or a combination of these factors. The selected 
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model was then allowed to vary in its shape parameter based on the treatment factors. The 

final model selected for DM data was the Gompertz model of Ricker of the form (MOY 

× SUPP × 14.9) + (53.7 ×𝑒−3.4𝑒
−0.09𝑡

). The final model selected for NDF data was the 

generalized Michaelis-Menten model of the form (MOY × 7.8) + (56.7× [t2.5/ (t2.5 + 

20.92.5)]). The final model selected for ADF data was the Von Bertalanffy model of the 

form (MOY × 12.6) + (48.9 × (1 − 𝑒−0.08(𝑡−3.6))
3
). While these values may not apply to 

TIF as a whole, they represent an alternative view on forage digestive kinetics. The 

proposed technique was effective in fitting predicted degradation patterns to observed 

data, representing a potential improvement in the analysis and interpretation of in situ data. 

 

Introduction 

Understanding kinetics of digestion is key to the full understanding of the ruminant 

animal and efficient utilization of feedstuffs (NASEM, 2016). Traditionally, digestive 

kinetics data obtained from in situ experiments is subjected to a two-stage fitting in which 

data from individual animals are subjected to nonlinear regression fitting, and model 

parameters are subsequently analyzed for mean differences (Ørskov and McDonald, 1979; 

Mertens and Loften, 1980; McDonald, 1981). However, several issues arise from the use 

of this technique. First, the exponential, or first-order kinetics, equation is used to the 

exclusion of other proposed equations (Table VII-1). In contrast, several authors have 

proposed model equations that describe in situ, in vitro, or in vitro gas production data that 

may be more properly suited to a given dataset. Additionally, Zanton and Heinrichs 

(2009), in a comparison of the two-stage fitting, geometric averaging, or nonlinear mixed 
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models, found that the use of nonlinear mixed models in the evaluation of in situ data 

resulted in the least biased and most precise estimates of equation parameters, especially 

as variability in the underlying data increased. The objectives of this experiment were to: 

1) standardize terminology and nomenclature related to nonlinear kinetics equations, and 

2) use multiple published equations (n = 52) and nonlinear mixed models to generate data-

driven model descriptions of in situ data.  

 

Materials and Methods 

Code for the novel methodology, dubbed DIGEST, was written using SAS® 9.4 

(SAS Institute, Cary, NC). The individual files that make up the DIGEST model selection 

tool can be generally categorized into 7 groupings.  
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Table VII-1 Publications (1982-2015) from selected journals with “in situ” in the manuscript title, 

abstract, or keywords that evaluated ruminal digestive kinetics. 

Year Publications † Exp. growth ‡ Exp. decay § Proportion 

---------- Crop Science ---------- 

1982 - 1990 2 0 1 0.50 

1991 - 2000 0 0 0 . 

2001 - 2010 0 0 0 . 

2011 - 2015 1 0 1 1.00 

Subtotal 3 0 2 0.67 

     

---------- Journal of Animal Science ---------- 

1982 - 1990 39 4 10 0.36 

1991 - 2000 67 16.1 # 31.5 0.71 

2001 - 2010 40 16.5 13.5 0.75 

2011 - 2015 14 8 5 0.93 

Subtotal 160 44.6 60 0.65 

     

---------- Journal of Dairy Science ---------- 

1982 - 1990 48 12 10 0.46 

1991 - 2000 50 17.3 18 0.71 

2001 - 2010 41 22.8 10.5 0.81 

2011 - 2015 18 9 7 0.94 

Subtotal 157 61.2 45.5 0.68 

     

---------- Professional Animal Scientist ---------- 

1982 - 1990 0 0 0 . 

1991 - 2000 7 1.5 4.5 0.86 

2001 - 2010 5 3 1 0.80 

2011 - 2015 1 0 1 1.00 

Subtotal 13 4.5 6.5 0.85 

Grand Total 333 110.3 114 0.67 ǁ 
† This number includes all publications with “in situ” in the title that evaluated ruminal digestive 

kinetics. Publications not relevant to the topic, such as those that used a different technique (e.g. in situ 

conservation, in situ hybridization) or only measured total disappearance (e.g. independently, repeated 

measures, split-plot in time) instead of digestive kinetics, were excluded from totals. 
‡ Exponential growth model as described by Ørskov and McDonald (1979) and McDonald (1981). 
§ Exponential decay (inverse of exponential growth) model as described by Mertens and Loften (1980), 

based on the natural logarithmic relationships established by Smith et al. (1972) and Waldo et al. 

(1972). 
# Fractional numbers of publications indicate the use of multiple models.  
ǁ Of those models not utilizing either an exponential growth or decay equation, 47% expressed kinetics 

by using rates derived from the natural logarithmic relationship of disappearance and time, and 21% 

expressed potential extent of degradation and rate using the equation of Ørskov and McDonald (1979) 

inclusive of kp.  
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Data Evaluation 

The first step allows users to define the path from which data is read and what 

factors are included in the dataset. All the paths, factors, and variables were written into 

user-defined macro variables for ease of use. DIGEST was coded to allow for up to 2 fixed 

treatment factors (3 levels each) and up to 2 random factors. However, the DIGEST was 

written in a manner that may be expanded to larger experimental designs in future releases.  

In step 02, PROC IMPORT was used to obtain raw data from an external file (.xlsx, 

Microsoft Excel, Microsoft Corporation, Redmond, Washington). Contrary to the 

expression of disappearance that uses decay equations to describe incubation residue 

(Mertens and Loften, 1980), DIGEST models data as ruminal disappearance (data are fit 

to growth equations) and converts data from residue to disappearance once it has been 

obtained from the external file. In the case of modeling diverse substrates (when substrate 

is not a treatment factor), step 02 subsets the raw data so that substrates can be evaluated 

independently. For data evaluation, raw data is sorted and printed to an external file 

(portable document format [PDF], .pdf, Adobe Systems Inc., San Jose, CA). For all steps 

from here forward, PDF files are generated for documentation. 

Data are evaluated for patterns and diagnostics in steps 03 and 04. PROC REPORT 

was used to generate distribution attributes (mean, standard deviation, minimum, 

maximum, and range) based on treatment factors in the experiment. Data were tested for 

normality using the NORMAL option in PROC UNIVARIATE. Normality was assumed 

when the Shapiro-Wilk W was greater than or equal to 0.9 (Shapiro and Wilk, 1965; 

Royston, 1992). Step 04 generates graphical representation of the raw data. Time series 
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plots were generated using PROC SQPLOT with the SCATTER, REG, and LOESS type 

options for each of the fixed treatment factors.  

 

Random Effects 

To account for random effects of the experimental design (block in a randomized 

complete block design; row, and column in a Latin square design; etc.), step 05 generates 

a predicted dataset. PROC MIXED was used to account for specified random effects in a 

repeated measures analysis. The COVTEST option was used to generate significance 

values for random effects. The MODEL statement included the fixed effects defined in 

step 01, and the RESIDUAL and SOLUTION options were selected. Denominator degrees 

of freedom were adjusted using the Kenward-Roger (2nd order) approximation method 

(Kenward and Roger, 1997). Random effects were stated in the RANDOM statement. 

Compound symmetry was used as a covariance structure for the repeated measurement 

given that it is the simplest design and generally equated to the more traditional univariate 

ANOVA (also known as split plot in time; Wang and Goonewardene, 2004). Random 

effects were removed through generation of an adjusted dataset constructed from the 

intercept and fixed coefficients from the SOLUTION option and the residuals from the 

RESIDUAL output. This adjusted (Y’) dataset was used for all further modeling efforts. 

Steps 06 and 07 repeat the procedures described by steps 03 and 04 to generate tabular 

and visual evaluation of the adjusted data.  
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Parameter and Equation Selection 

 

Parameter standardization 

Step 08 selects initial parameters from the predicted dataset using PROC SQL. 

Definitions of equation parameters are presented in Table VII-2. There has been ambiguity 

and inconsistency in the nomenclature of equation parameters in past literature. For 

example, many Mertens and Loften (1980) present their discrete lag time as L. However, 

McDonald (1981) presented lag time as t0, while France et al. (2000) presented this 

parameter as T, and France et al. (1990) defined it as τ. Similarly, López et al. (1999) 

defined the rate constant of degradation (a parameter within an equation) as c, while the 

fractional rate of degradation (a derivation of an equation) was defined as μ. However, μ 

represents the mean of a population in mathematics and statistics, and kd has often been 

used to represent both the rate constant and fractional rate of degradation. An effort was 

made in the current project development to present standardized parameter symbols that 

are unique and can be used consistently in future publications.  

All initial parameters were defined as a range to be used as search parameters in 

PROC NLMIXED. Nonlinear growth equations can be characterized by single (or 

multiple-pool substrate models (Eq. [VII-1]), where the models varied based on the model 

function, Φ(t).  
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 
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Table VII-2 Definition and standardization of variables used in nonlinear growth models related to 

ruminal digestive kinetics. 

Variable Units Definition 

a, b, c, d - constant specific to the given equation 

C0  initial microbial concentration  

D % disappearance 

kd, k1, k2 h-1 rate constant of disappearance 

km h-1 rate constant of microbial growth 

kτ h-1 rate constant of lag 

S0 % potentially degradable fraction 

S1 % rapidly degradable fraction 

S2 % slowly degradable fraction 

t h time point of incubation 

t* h inflection point 

t0.5 h half-life 

U % undegradable fraction 

W % soluble fraction/intercept 

x0 h x-intercept 

η h-1 fractional rate of disappearance 

η0.5 h-1 fractional rate of disappearance at half-life 

λ  fractional substrate availability 

τ h lag time 

 

 

 

The initial immediately soluble substrate (W) parameter was selected as the 

average disappearance at time 0. The initial recalcitrant substrate (U) parameter was 

selected as the average disappearance at the maximum time, which was defined in step 01. 

The initial potentially degradable substrate (S0) parameter was selected as the difference 

in 100 and the sum of U and W. The initial S1 and S2 were defined as ½ the selected S0. 

For all S, S1, S2, U, and W, minimum and maximum values for the search were defined 

by 0.9 and 1.1 times the average value, and the search was conducted across 10 equal 

portions of this range. Constant parameters (a, b, c, d, x0) were defined as 1. Initial 

microbial concentration (C0) was defined as a range from 10 to 14, searched by 1, and was 

based on the typical ruminal microbial concentration as stated in Russell (2002). Mertens 
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and Loften (1980) suggested selecting a rate constant of disappearance (kd) for the 

exponential model by evaluating the regression of disappearance against the natural 

logarithm of time as was proposed by Smith et al. (1972) and Waldo et al. (1972). 

However, based on the authors’ previous experience with evaluation of digestive kinetics 

data, a range of 0.04 to 0.08 (by 0.01) was used for the search range for kd, k1, and k2. 

Based on trial and error, a range of 0.005 to 0.02 (by 0.005) was used for the rate constant 

of microbial growth (km). Initial inflection point (t*) and half-life (t0.5) parameters were 

assigned values of 12 to 36 (by 2) to represent a mid-range between 0 and the maximum 

time. Initial fractional substrate availability (λ) was defined as 0.25 to 0.75 (by 0.05), and 

initial lag time (τ) was defined as 8 to 12 (by 1). While S, S1, S2, U, and W are defined by 

the user dataset, the end user can choose to re-define all other initial parameter ranges.  

 

Nonlinear equations 

Step 08 also selects nonlinear model equations from an external .xlsx file as part 

of the DIGEST model selection tool. A total of 52 nonlinear growth equations are 

contained in the file. Because previous equations have been written to describe both 

growth and decay patterns, all equations were re-written to model nonlinear growth, or 

ruminal disappearance.  

 

Exponential (Mitscherlich) models 

Digestive kinetics are generally expressed as some variation on the exponential 

equation. The equation was first applied by, and has since been identified in honor of, 
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Mitscherlich (1919), who used the form to describe physiological changes in plant growth. 

Smith et al. (1972) and Waldo et al. (1972) each used the concepts of the natural 

logarithmic relationship of digestion and time proposed in the Mitscherlich (1919) paper 

to model cell wall disappearance in vitro, and Mertens and Loften (1980) went on to 

provide the oft-used exponential decay equation for ruminal kinetics, albeit in vitro. 

Ørskov and McDonald (1979) further expanded on the knowledge base by applying the 

exponential growth equation to in situ kinetics (Eq. [VII-2]), and McDonald (1981) 

improved on the equation with the addition of a discrete lag time (Eq. [VII-3]). Dhanoa et 

al. (1995) went on to standardize the equation with the addition of a square root time 

dependency, without (Eq. [VII-4]) or with a discrete lag (Eq. [VII-5]). France et al. (1990) 

presented a variation on the exponential form, known as “negative exponential” (Eq. [VII-

6] and [VII-7]). Robinson et al. (1986) described versions of the Mitscherlich model 

accounting for two substrate pools (Eq. [VII-8] and [VII-9]). 
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Logistic models 

Pearl and Reed (1920) introduced the basic form of the logistic equation to 

describe population dynamics in the United States. In a review of fish physiology, Ricker 

(1979) presented a version of the logistic equation (Eq. [VII-10]). Robinson et al. (1986) 

used the logistic form to incorporate microbial action into digestive kinetics theory (Eq. 

[VII-11]). Schofield et al. (1994) and France et al. (2000) offered logistic equations with 

discrete lag times (Eq. [VII-12] and [VII-13]), and López et al. (1999) described an 

“ordinary” logistic model (Eq. [VII-14]). Equations accounting for two substrate pools 

were proposed by Robinson et al. (1986) and Schofield et al. (1994; Eq. [VII-15], [VII-

16], and [VII-17]). 
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Gompertz models 

Benjamin Gompertz (1825) proposed a relationship between a response and its 

growth rate that could be described as a natural logarithm and applied this equation to 

human mortality for the generation of actuarial tables. While Wright (1926) first proposed 

its application, Winsor (1932) proposed the use of the Gompertz curve to generate a 

rational description of biological growth. It was also Winsor who presented the know-
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standard form of the Gompertz equation, characteristically identified by the exponent-

negative exponent feature. Since the time of its introduction, however, the Gompertz 

representation of growth functions has taken many alternate calculations while 

maintaining a consistent overall behavior. Ricker (1979) put forward multiple Gompertz 

curves for the description of the growth of fish, either as a standard (Eq. [VII-18]) or 

inflected equation (Eq. [VII-19]). France et al. (1990) went on to present a Gompertz 

model with a discrete lag function (Eq. [VII-20]), with another iteration presented by 

France et al. (2000) (Eq. [VII-21]). Further, Schofield et al. (1994), López et al. (1999), 

and Tedeschi et al. (2008) have each put forth versions of the Gompertz equation (Eq. 

[VII-22], [VII-23], and [VII-24], respectively). Schofield et al. (1994) introduced two 

Gompertz equations that accounted for two substrate pools (Eq. [VII-25] and [VII-26]). 
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nth-order models 

Although digestive kinetics data have traditionally been fit to first-order models, 

others have proposed models of the nth order to more adequately describe ruminal 

physiology. France et al. (1990) presented a second-order model in their description of 

ruminal feed degradation (Eq. [VII-27]). 
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Similarly, zero-order models have been employed in the agricultural sciences. 

Both McCartor and Rouquette (1977) and Rouquette (2016) have used zero-order (also 

known as segmented spline or broken line) models for estimation of relationship in forage 

allowance and ADG. These models are generally of practical benefit due to the estimation 

of a “break point” that may be of some practical significance. Several variations of the 
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zero-order model have been proposed for use in digestive kinetics estimation (France et 

al., 1990; López et al., 1999), and these are detailed in Eq. [VII-28] through [VII-33]. 
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Gamma-dependent models 

Further efforts have been made to adequately describe ruminal digestive kinetics 

with nonlinear models, including abandoning the assumption of normality and using a 

gamma-dependent distribution (Matis, 1972; Pond et al., 1988). The GNG1 suite of models 

(Eq. [VII-34] through [VII-39]) make use of gamma distribution theory and can 

accommodate any number of fermentable substrate pools (Pond et al., 1988; Vieira et al., 

2007a, b, c; Vieira et al., 2008a, b). The GNG1 model depend on several external 

calculations, detailed in Eq. [VII-40] through [VII-43]. 
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Other models 

Many other researchers have proposed equations for description of biological or 

physiological phenomena that have subsequently been applied to digestive kinetics. In a 

description of enzyme (invertase) kinetics, Michaelis and Menten (1913), translated by 

Johnson and Goody (2011), described an equation governed by total substrate 
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concentration and a constant rate. López et al. (1999) subsequently applied this equation 

to describe ruminal substrate digestion (Eq. [VII-44] and [VII-45]). Further alterations 

have been proposed to this equation (Eq. [VII-46] and [VII-47]) that generalize its form 

(France et al., 1990; Tedeschi et al., 2008). Though not directly related to the work of 

Michaelis and Menten (1913), others have used the concept of enzyme kinetics (Eq. [VII-

48] and [VII-49]) to describe ruminal digestive kinetics (France et al., 1990).  
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Surface area of feed particles and microbial growth rates play a vital role in ruminal 

digestive kinetics. Robinson et al. (1986) proposed several equations that made use of the 

concept of surface area competition (Eq. [VII-50] through [VII-53]). France et al. (1990), 

on the other hand, offered models that accounted for the specific (Eq. [VII-54]) or 

proportional (Eq. [VII-55]) growth rate of rumen microbes.  
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Van Milgen et al. (1991) presented an equation in which lag time was presented as 

a rate rather than a discrete value (Eq. [VII-56]). Ricker (1979) described an equation, 

known as Johnson’s growth curve, in evaluating fish growth projections (Eq. [VII-57]). 

Finally, researchers have used the form of Von Bertalanffy (1938; Eq. [VII-58] and [VII-

59]) to further characterize biological growth functions (Ricker, 1979; López et al., 1999). 
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Equation nomenclature 

In addition to the ambiguous nomenclature of equation parameters mentioned 

previously, there also exists a lack of consensus in the name of nonlinear model equations. 
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To create cohesiveness and consistency in description of such models, Table VII-3 assigns 

a single name to each equation, presents the typical model behavior of each equation, and 

lists alternate names that have been used to describe the equation. Model equations were 

selected from the external file using a binary toggle in the file that was accessed using 

PROC SQL.  

 

Common Model 

Step 09 uses a reiterative macro for using each selected model equation to generate 

fit curves of the dataset. Data were analyzed using PROC NLMIXED. Parameters for 

search were defined in step 08. Lower and upper bounds were obtained from the external 

file and are specific to the model equation. Predicted datasets, fit statistics, and parameter 

estimates were created for each model tested.  
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Table VII-3 Nonlinear growth models related to ruminal digestive kinetics with type behavior and alternative nomenclature.  

Identifier Model name Behavior Alternative nomenclature 

----- Mitscherlich equations ----- 

[VII-2] Mitscherlich Model exponential Exponential Model (Ørskov and McDonald, 1979; 

Tedeschi et al., 2008) 

Pütter’s Equation (Ricker, 1979) 

First Order Model (Robinson et al., 1986) 

Simple Exponential Growth Model with Cutoff 

(Schofield et al., 1994) 

[VII-3] Mitscherlich Model with Discrete Lag lag exponential Exponential Model (Mertens and Loften, 1980; 

McDonald, 1981) 

First Order Model (Robinson et al., 1986) 

First Order Degradation Model (France et al., 

1990) 

Discrete Lag Model (Van Milgen et al., 1991) 

Substrate Limited Exponential Growth Model 

(Schofield et al., 1994) 

First Order Kinetics Model (Dhanoa et al., 1995) 

Mitscherlich Model with Lag (López et al., 1999) 

[VII-4] Generalized Mitscherlich Model exponential none (derivation of Dhanoa et al. (1995)) 

[VII-5] Generalized Mitscherlich Model with 

Discrete Lag 

lag exponential none (Dhanoa et al., 1995) 

[VII-6] Negative Exponential Model exponential none (derivation of France et al. (1990)) 

[VII-7] Negative Exponential Model with 

Discrete Lag 

lag exponential Negative Exponential Model of Inhibition (France 

et al., 1990) 

[VII-8] Two-Pool Mitscherlich Model exponential First Order Model (Robinson et al., 1986) 

Two-Pool Simple Exponential Growth Model with 

Cut-off (Schofield et al., 1994) 
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Table VII-3 continued 

Identifier Model name Behavior Alternative nomenclature 

[VII-9] Two-Pool Mitscherlich Model with 

Discrete Lag 

lag exponential First Order Model (Robinson et al., 1986) 

Two-Pool Simple Exponential Growth Model with 

Cut-off (Schofield et al., 1994) 

    

----- Logistic equations ----- 

[VII-10] Logistic Model of Ricker sigmoidal Logistic Growth Curve (Ricker, 1979) 

[VII-11] Logistic Bacterial Model sigmoidal Logistic Model (Robinson et al., 1986) 

[VII-12] Logistic Model of Schofield with Discrete 

Lag 

sigmoidal Logistic Growth Model (Schofield et al., 1994) 

Logistic Nonlinear Function (Tedeschi et al., 

2008) 

[VII-13] Logistic Model of France with Discrete 

Lag 

sigmoidal Logistic Growth Function (France et al., 2000) 

[VII-14] Logistic Model of López sigmoidal Ordinary Logistic Model (López et al., 1999) 

[VII-15] Two-Pool Logistic Bacterial Model sigmoidal Logistic Model (Robinson et al., 1986) 

[VII-16] Two-Pool Logistic Model sigmoidal none (derivation of Schofield et al. (1994)) 

[VII-17] Two-Pool Logistic Model with Discrete 

Lag 

sigmoidal Two-Pool Logistic Growth Model (Schofield et 

al., 1994) 

Two-Pool Logistic Model with Lag (Tedeschi et 

al., 2008) 

    

----- Gompertz equations ----- 

[VII-18] Gompertz Model of Ricker sigmoidal Gompertz Growth Curve (Ricker, 1979) 

[VII-19] Gompertz Model with Inflection sigmoidal Gompertz Growth Curve (Ricker, 1979) 

[VII-20] Gompertz Model of France (1990) with 

Discrete Lag 

sigmoidal Gompertz Representation of First-Order 

Degradation (France et al., 1990) 

[VII-21] Gompertz Model of France (2000) with 

Discrete Lag 

sigmoidal Gompertz Growth Function (France et al., 2000) 

[VII-22] Gompertz Model of Schofield sigmoidal Gompertz Growth Model (Schofield et al., 1994) 

Gompertz Model with Lag (Tedeschi et al., 2008) 
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Table VII-3 continued 

Identifier Model name Behavior Alternative nomenclature 

[VII-23] Gompertz Model of López sigmoidal Gompertz Curve (López et al., 1999) 

[VII-24] Gompertz Model of Tedeschi sigmoidal none (Tedeschi et al., 2008) 

[VII-25] Two-Pool Gompertz Model sigmoidal none (derivation of Schofield et al. (1994)) 

[VII-26] Two-Pool Gompertz Model with Discrete 

Lag 

sigmoidal Two-Pool Gompertz Growth Model (Schofield et 

al., 1994) 

Two-Pool Gompertz Model with Lag (Tedeschi et 

al., 2008) 

    

----- nth-order equations ----- 

[VII-27] Second Order Model exponential Second-Order Degradation Model (France et al., 

1990) 

[VII-28] Zero Order Model segmented spline none (derivation of France et al. (1990)) 

[VII-29] Zero Order Model with Discrete Lag segmented spline Simple Zero Order Model (France et al., 1990) 

Segmented 3-Spline Model (López et al., 1999) 

[VII-30] Zero Order Constant Specific Microbial 

Growth Model 

segmented spline none (France et al., 1990) 

[VII-31] Zero Order Enzyme Kinetic Model segmented spline none (derivation of France et al. (1990)) 

[VII-32] Zero Order Enzyme Kinetic Model with 

Discrete Lag 

segmented spline Zero Order Enzyme Kinetic Model of Inhibition 

(France et al., 1990) 

[VII-33] Zero Order Negative Exponential Model segmented spline none (derivation of France et al. (1990)) 

    

----- Gamma-dependent equations ----- 

[VII-34] G1G1 sigmoidal none (Vieira et al., 2007a, b, c; Vieira et al., 

2008a, b) 

[VII-35] G2G1 sigmoidal none (Vieira et al., 2007a, b, c; Vieira et al., 

2008a, b) 

[VII-36] G3G1 sigmoidal none (Vieira et al., 2007a, b, c; Vieira et al., 

2008a, b) 
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Table VII-3 continued 

Identifier Model name Behavior Alternative nomenclature 

[VII-37] G4G1 sigmoidal none (Vieira et al., 2007a, b, c; Vieira et al., 

2008a, b) 

[VII-38] G5G1 sigmoidal none (Vieira et al., 2007a, b, c; Vieira et al., 

2008a, b) 

[VII-39] G6G1 sigmoidal none (Vieira et al., 2007a, b, c; Vieira et al., 

2008a, b) 

    

----- Other equations ----- 

[VII-44] Michaelis-Menten Model sigmoidal none (derivation of López et al. (1999)) 

[VII-45] Michaelis-Menten Model with Discrete 

Lag 

sigmoidal Michaelis-Menten Model (López et al., 1999) 

Simple Michaelis-Menten Model (France et al., 

2000) 

[VII-46] Generalized Michaelis-Menten Model sigmoidal Cone Model (Tedeschi et al., 2008) 

[VII-47] Generalized Michaelis-Menten Model 

with Discrete Lag 

sigmoidal Generalized Michaelis-Menten Model (France et 

al., 1990; Tedeschi et al., 2008) 

[VII-48] Enzyme Kinetic Model exponential none (derivation of France et al. (1990) 

[VII-49] Enzyme Kinetic Model with Discrete Lag lag exponential Enzyme Kinetic Model of Inhibition (France et al., 

1990) 

[VII-50] Surface Area Model exponential Surface Model (Robinson et al., 1986) 

[VII-51] Surface Area Model with Discrete Lag lag exponential Surface Model (Robinson et al., 1986) 

Two-Thirds-Order Model (France et al., 1990) 

[VII-52] Two-Pool Surface Area Model exponential Surface Model (Robinson et al., 1986) 

[VII-53] Two-Pool Surface Area Model with 

Discrete Lag 

lag exponential Surface Model (Robinson et al., 1986) 

[VII-54] Constant Specific Microbial Growth 

Model 

exponential none (France et al., 1990) 

[VII-55] Proportional Specific Microbial Growth 

Model 

sigmoidal Specific Microbial Growth Rate Model 

Proportional to Potentially Degradable 

Substrate (France et al., 1990) 
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Table VII-3 continued 

Identifier Model name Behavior Alternative nomenclature 

[VII-56] Diminishing Lag Model sigmoidal Compartmental Digestion Model (Van Milgen et 

al., 1991) 

Lag Compartment Model (López et al., 1999) 

[VII-57] Johnson’s Growth Model sigmoidal Johnson’s Growth Curve (Ricker, 1979) 

[VII-58] Von Bertalanffy Model exponential Pütter’s Growth Curve No. 2 (Ricker, 1979) 

[VII-59] Generalized Von Bertalanffy Model exponential none (López et al., 1999) 
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Model selection was performed based on an extension the Extra Sums of Squares 

Principle for regression equations proposed by Draper and Smith (1966). Draper and 

Smith (1966) posited that a common regression model is appropriate until, with the 

addition of another term, there is a significant change in the regression sums of squares. 

As such, regression modeling is an iterative process of increasing model complexity based 

on statistical principles. Thus, a common model was fit to all data beginning with step 09, 

and divergent models were evaluated in successive steps.  

Unlike the method proposed by Draper and Smith (1966) in which model 

complexity is controlled by changes in the sums of squares, the DIGEST model selection 

tool makes used of information criteria through the independent macro 

%MODELSELECT (Smith, unpublished). The %MODELSELECT macro operates on the 

principles proposed by Burnham and Anderson (2004). These authors described 

derivations of the Akaike information criterion (AIC; Akaike, 1974), which was an effort 

in merging statistical “information” in the principle of Fisher (Kullback-Leibler 

information; Kullback and Leibler, 1951) with likelihood theory as used in mixed models 

(Burnham and Anderson, 2004). Due to the nature of AIC values and the wide range that 

can be achieved, Burnham and Anderson (2004) advise scaling with delta-i (Δi) and 

normalizing to the Akaike weight (wi) for model comparison and selection. The 

%MODELSELECT macro obtains the AIC corrected for small sample size (AICC) from 

the NLMIXED FitStatistics table and uses PROC SQL to calculate Δi, relative likelihood 

(RL), and wi for output to a PDF file and decision making regarding the most appropriate 

model equation.  
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Step 10 uses PROC SQL to obtain model variable parameters from the optimum 

model (i.e. the model with the maximum wi). Step 11 repeat the procedures described in 

step 03. In addition, step 11 uses PROC REG to generate a comparison of the common 

fitted model to the original raw data.  

 

Intercept Adjustment 

Step 12 used PROC SQL to obtain the fixed treatment factors specified in step 01. 

Step 13 used a similar iterative macro of PROC NLMIXED as that used in step 09 to 

assess fit of a common model or a model varied by intercept. Dummy macro variables 

were generated for each level of each fixed treatment factor. These dummy variables were 

multiplied by the W variable of Eq. [VII-1] for generation of models with varied 

intercepts. Models were assessed using the %MODELSELECT macro. Once selected, 

step 14 selects model variable parameters as described in step 10, and model diagnostics 

were performed in step 15 as described in step 11. 

 

Slope Adjustment 

Step 16 used a similar iteration as described in step 13. Dummy variables were 

generated and multiplied by the Φ(t) portion of Eq. [VII-1] for generation of models with 

varied intercepts. Models were assessed using the %MODELSELECT macro. Once 

selected, step 17 selects model variable parameters as described in step 10, and model 

diagnostics were performed in step 18 as described in step 11. 
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Final Model 

Step 19 uses the model selected in the slope adjustment group of codes to generate 

a final set of model parameters. The final predicted data was tabulated using PROC 

REPORT and visualized using PROC SGPLOT. The final model was also compared to 

the initial dataset using PROC REG. Finally, predicted data are exported to an external 

.xlsx file for generation of publication-ready graphics.  

 

Model Evaluation 

Demonstration of the novel method and program codes was performed using an in 

situ trial at Texas A&M University – Kingsville. All protocols and procedures for the in 

situ experiment were approved by the Institutional Animal Care and Use Committee of 

Texas A&M University – Kingsville under Animal Use Protocol #2012-06-04B and were 

described in CHAPTER VI. Briefly, samples of ‘Tifton 85’ bermudagrass (Cynodon 

dactylon [L.] Pers. × C. nlemfuënsis Vanderyst) were harvested from 16 replicate pastures 

(Overton, TX) in June, August, and October, 2014 (MOY). Six ruminally-fistulated steers 

were stratified by BW and allocated to 3 pens in 3 periods for a Latin square design. Pens 

were assigned to 0, 0.25, or 1% BW supplementation (SUPP) with a dried distillers’ grains 

with solubles supplement. Steers were allowed ad libitum access to water, trace-

mineralized salt, and Tifton 85 hay. Polyester bags were sequentially incubated for 0, 2, 

4, 8, 12, 24, 72, and 96 h (Vanzant et al., 1998). For model demonstration, disappearance 

of DM, NDF, and ADF from Tifton 85 bermudagrass were used.  
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Results and Discussion 

 

Historical Review 

As stated in the introduction, an assessment of the use of nonlinear equations in 

ruminal digestive kinetics from selected publications is presented in Table VII-1. In this 

assessment, the period from 1982 to 2015 was evaluated for the use of the exponential 

model, either in growth or decay. The year 1982 was chosen as a threshold because 

McDonald (1981) was the most recent revision to the exponential model, introducing a 

discrete lag time to the exponential growth model of Ørskov and McDonald (1979). For 

this review, manuscripts were evaluated for description of ruminal digestive kinetics by 

inclusion of “in situ” in the title, abstract, or keywords. Manuscripts were excluded if a 

different technique was described (i.e. in situ conservation, in situ hybridization, mobile 

bag technique), if the data were treated as repeated measures or split plot in time, or if the 

total or effective degradation was the only parameter of interest without regard to rates 

and forms. Over this time, a total of 333 manuscripts were identified across Crop Science, 

Journal of Animal Science, Journal of Dairy Science, and The Professional Animal 

Scientist. Of these, 33% utilized the exponential growth model similar to that described 

by Ørskov and McDonald (1979) and McDonald (1981), while 34% utilized the 

exponential decay equation similar to that of Mertens and Loften (1980).  

It is revealing that two-thirds of the previously published literature made an a priori 

assumption of the appropriateness of a single model equation. Likewise, the exponential 

form of ruminal digestive kinetics, primarily with the inclusion of a discrete lag time, is 
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the basis for digestive rate functions in Nutrient Requirements of Beef Cattle (NRC, 2000; 

NASEM, 2016). The assumption of first-order digestive kinetics was based on the initial 

assumption of Waldo et al. (1972) that a feedstuff is a homogenous unit, that it has a single 

potentially degradable pool, and this pool is digested in a linear fashion over time 

(NASEM, 2016). While the Nutrient Requirements of Beef Cattle acknowledges the 

existence of other, divergent characterizations of digestive kinetics, only the exponential 

kd is used in characterization of feedstuffs (NASEM, 2016). It is likely that the simplicity 

of programming for the exponential model, combined with the linear dependency of 

calculation and a general lack of knowledge in regards to alternate programming that lends 

to the dependency on the exponential equation. 

 

A Case for Nonlinear Mixed Models 

In the traditional, two-stage fitting as suggested by Ørskov and McDonald (1979), 

raw data are fitted to the exponential growth model on the basis of the experimental unit. 

Model parameters are then taken from the individuals and analyzed as a sample dataset, 

thus resulting in an ANOVA of the average of the individuals. However, this approach to 

evaluation of nonlinear models has been disputed by many. Merrell (1931) presented a 

clear argument that an average of individual growth curves was not equal to, and often 

quite different than, the population average of a common fitting technique. In an 

evaluation of animal growth models, Tedeschi (1996) validated this observation.  

Zanton and Heinrichs (2009) played an important role in the investigation to 

improve description of digestive kinetics in situ. In this study, researchers used the 
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traditional, two-step fitting technique with PROC NLIN, PROC NLIN with geometric 

averaging of model parameters, and nonlinear mixed models for determination of in situ 

degradation. It was determined that geometric averaging presented an intense negative 

bias of parameter estimates and, when population means were or of interest, nonlinear 

mixed models provided the least biased and most precise estimation of model parameters 

(Zanton and Heinrichs, 2009). Thus, it was recommended that simultaneous evaluation of 

data through nonlinear mixed models be used in estimation of ruminal digestive kinetics 

(Zanton and Heinrichs, 2009), albeit only the exponential equations were evaluated.  

 

Evaluation of the DIGEST Model Selection Tool 

As previously stated, DIGEST fit models iteratively following an extension of the 

extra sums of squares principle (Draper and Smith, 1966), using fit statistics in lieu of 

sums of squares, as supported in principle by Akaike (1974). Tifton 85 DM was fitted to 

the Gompertz model of Ricker (Eq. [VII-18]), NDF was fitted to the generalized 

Michaelis-Menten model (Eq, [VII-46]), and ADF was fitted to the Von Bertalanffy model 

(Eq. [VII-58]; Table VII-4). It is telling that, for the DM, NDF, and ADF fractions, the 

traditional lag exponential model ranked 6th, 17th, and 36th, respectively. In the iterative 

fitting procedure, model intercepts for DM were adjusted for the interaction of MOY and 

SUPP, while NDF and ADF model intercepts were adjusted only for MOY. No 

adjustments were made for model slopes because there was no improvement in wi.  
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Table VII-4 Model evaluation and selection procedure for nonlinear fit of Tifton 85 bermudagrass 

disappearance using the DIGEST † model selection tool. 

Model step DM NDF ADF 

Common Eq. [VII-18]  

(wi
 ‡ = 27.8%) 

Eq. [VII-46] 

(wi = 26.7%) 

Eq. [VII-58] 

(wi = 23.8%) 

Intercept MOY § × SUPP 

(wi = 59.0%) 

MOY 

(wi = 54.3%) 

MOY 

(wi = 83.5%) 

Slope NI # 

(wi = 100.0%) 

NI  

(wi = 100.0%) 

NI  

(wi = 100.0%) 
† The DIGEST model selection tool is a collection of SAS codes that has been developed for fitting of 

ruminal digestive kinetics (in vitro or in situ) data. 
‡ wi = Akaike weight (Burnham and Anderson, 2004). 
§ MOY = month of year (June, August, October); SUPP = level of dried distillers’ grains with solubles 

supplementation (0, 0.25, 1% BW). 
# NI = No model improvement was observed at this step. 

 

 

 

In the modeling of in situ DM disappearance, the variable effect of MOY was 1.36, 

0.95, and 0.65 from June, August, or October, respectively (Figure VII-1). The variable 

effect of SUPP was 1.03, 0.98, and 0.88 for 0, 0.25, and 1% BW SUPP, respectively. The 

W fraction, that portion measured by washout from the polyester bags, accounted for 15% 

of the total Tifton 85 DM. The S0 fraction of Tifton 85 DM accounted for 54% for all 

MOY and SUPP, while the “a” variable was 3.37.  
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Figure VII-1 Predicted in situ DM disappearance of Tifton 85 bermudagrass using the DIGEST model 

selection tool. 

 

 

 

 

In the modeling of in situ NDF disappearance, the variable effect of MOY was 

1.84, 0.81, and -0.03 from June, August, or October, respectively (Figure VII-2). The W 

fraction accounted for 7.8% of the total Tifton 85 NDF, and the S0 fraction accounted for 

56.7%. The generalized Michaelis-Menten model fits a substrate half-life, and this was 

found to be 20.9 h. The “a” variable was 2.45.  
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Figure VII-2 Predicted in situ NDF disappearance of Tifton 85 bermudagrass using the DIGEST model 

selection tool. 

 

 

 

 

In the modeling of in situ ADF disappearance, the variable effect of MOY was 

1.54, 0.72, and -0.41 from June, August, or October, respectively (Figure VII-3). The W 

fraction accounted for 12.6% of the total Tifton 85 ADF, and the S0 fraction accounted for 

48.9%. The “a” variable was 0.08, and the “x” variable was 3.63.  

 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 12 24 36 48 60 72 84 96

D
is

ap
p

ea
ra

n
ce

, 
%

 N
D

F

Incubation time, h

June

Aug.

Oct.



 

167 

 

Figure VII-3 Predicted in situ ADF disappearance of Tifton 85 bermudagrass using the DIGEST model 

selection tool. 

 

 

 

 

Use of the DIGEST model selection tool for evaluation and description of in situ 

digestive kinetics data seems to be validated in this experiment. When using the traditional 

two-step fitting technique, potentially degradable substrate (D0) and undegraded residue 

(U) of Tifton 85 chemical components were observed to differ based on MOY (CHAPTER 

VI). Similarly, the equations of Tifton 85 DM, NDF, and ADF were all modified to fit 

varying intercepts MOY using the DIGEST model selection tool. When evaluating these 

two situations, one must recall that the Ørskov and McDonald (1979) equation used in a 

portion of the traditional technique was designed to describe residue remaining in the 

polyester bag, while DIGEST uses equations written to describe disappearance of the 

substrate, given that the intent of the experiment is to estimate digestibility. With this 
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logic, the sum of the A and R components (used when time is less than the lag time, L) of 

the traditional technique would correspond to W, or the intercept, of the novel technique. 

This means that the two techniques obtained similar results.  

In the traditional technique, there was an observed effect of SUPP in Tifton 85 

DM, with an MOY and SUPP observed for NDF and ADF (CHAPTER VI). However, 

Tifton 85 NDF and ADF were not adjusted for SUPP using the DIGEST model selection 

tool. This is due to the use of maximum wi in model selection. In the evaluation of Tifton 

85 DM, the model incorporating the effects of both MOY and SUPP had a wi of 59.0%, 

and was superior to the model only incorporating MOY (wi = 41.0%) or SUPP (wi = 0%) 

alone. A similar situation is observed with Tifton 85 NDF and ADF, where the models 

incorporating the effects of both MOY and SUPP had wi of 45.7 and 16.5%, respectively, 

while the models only incorporating MOY had wi of 54.3 and 83.5%, respectively.  

An advantage to the novel technique is the removal of a priori assumptions for 

model fit and behavior. Using the traditional two-step fitting technique, researchers must 

assume an exponential disappearance pattern, preceded by a discrete lag time (a linear 

portion of the curve). However, as may be seen in the graphical representation of Tifton 

85 DM, NDF, and ADF, the behavior of the disappearance curve may be better suited for 

a sigmoidal relationship, whereby the lag time is incorporated as a diminishing rate rather 

than a discrete value. The removal of a priori assumptions allows researchers to allow 

inferences to be data-, rather than model-, driven. 

Caution should be used when discussing parameters derived from each of the 

models used to describe disappearance attributes in the DIGEST program suite. Because 
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each fraction was described using a different nonlinear growth model, derivations of each 

equation, such as fractional rates, half-lives, and inflection points, are not on equivalent 

scales and cannot be compared without transformation. This represents a limitation of the 

novel procedure, given that several models describing ruminant nutrition use the kd of the 

exponential model as would be obtained in the traditional fitting technique (NRC, 2000; 

Fox et al., 2004).  

The lack of discrete lag times in the fit of disappearance all components of Tifton 

85 stands in contrast to a long-established concept. Lag time is associated with hydration 

of feedstuffs in the rumen and attachment of ruminal microbes to the feed particle (Russell, 

2002). This concept, coupled with the ideal of specialization of ruminal microbes for 

certain substrates under dietary regimes, was the basis for model fitting in (Mertens and 

Loften, 1980). The sigmoidal behavior observed in the present study (such as those seen 

in the disappearance curves in Figure VII-1, 2 and 3) does not preclude these concepts but, 

rather, supports a view that the lag associated with hydration and attachment is one of 

diminishing fashion and may not represent a discrete time point. 

 

Conclusion 

The new procedure for analysis of digestive kinetics data may represent an 

improvement on current techniques, primarily through the elimination of a priori 

assumptions related to kinetics behavior. The proposed procedure makes use of the wealth 

of published information related to various nonlinear equations for use in agriculture and 

brings these together in a cohesive set of programs. When validated with an experimental 
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dataset, DM, NDF, and ADF constituents of forage substrates were found to behave in 

sigmoidal patterns, contrary to the previously held hypothesis. Likewise, discrete lag times 

were eliminated in favor of a “diminishing lag” fashion in the sigmoidal equation. Use of 

the proposed procedure may allow researchers to uncover unique degradation patterns in 

the evaluation of ruminant feedstuffs that could not be described with current techniques.  
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CHAPTER VIII 

CONCLUSION 

 

Supplementation with dried distillers’ grains with solubles (DDGS) appears to be 

a viable strategy for the management of stocker cattle. When steers grazing ‘Tifton 85’ 

bermudagrass (TIF; Cynodon dactylon [L.] Pers. × C. nlemfuënsis Vanderyst) were 

supplemented with varying rates of a DDGS supplement (SUPP; 0, 0.25, 0.5, or 1% BW), 

ADG increased linearly with increasing SUPP (0.61, 0.89, 0.96, and 1.10 for 0, 0.25, 0.5, 

and 1% BW SUPP, respectively, across the 2-yr experiment). This occurred at 

supplemental feed:additional gain (S:G) of 3.8:1, 7.7:1, and 9.1:1 for 0.25, 0.5, and 1% 

BW SUPP. There was also an increase in stocking rate with 1% BW SUPP, resulting in 

gain per hectare that increased linearly with increasing SUPP. The increase in stocking 

rate with 1% BW SUPP provided indication of a substitution effect in the grazing scenario. 

Compensatory gains were realized in the feedlot, with ADG decreasing with increasing 

SUPP on pasture (1.87, 1.79, 1.75, and 1.62 for 0, 0.25, 0.5, and 1% BW SUPP). In 2014, 

SUPP resulted in linear increases in yield grade, 12th rib fat, marbling score, and empty 

body fat. From this experiment, supplementation of steers with 0.25% BW DDGS may be 

a viable strategy for increased performance when grazing TIF. 

When steers grazing ‘Coastal’ bermudagrass (COS; C. dactylon [L.] Pers.) were 

supplemented with varying rates of SUPP (0, 0.25, or 1% BW), ADG also increased 

linearly with increasing SUPP (0.68, 0.69, and 1.02 for 0, 0.25, and 1% BW SUPP, 

respectively, across the 2-yr experiment). This occurred at S:G of -3.7:1 and 12.9:1 for 
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0.25 and 1% BW SUPP, indicating that 0.25% BW SUPP was ineffective at yielding 

additional gain. Stocking rate increased with increasing SUPP, but this was confounded 

by a decrease in forage allowance, nullifying the potential inference of a substitution 

effect. Gain in the feedlot tended to decrease with increasing SUPP in 2014, but not in 

2015. Similarly, there was little effect of SUPP on carcass characteristics in either year. 

Thus, supplementation of steers grazing COS at the levels of forage allowance used in this 

experiment would likely not be an effective management strategy. 

When supplemented TIF and COS forage samples were subjected to in vitro gas 

production procedures, most models were fit to the two-pool logistic equation rather than 

the exponential equation that was traditionally used. Model fit for the exponential equation 

improved with increasing SUPP. Inclusion of SUPP in diets containing TIF resulted in a 

decrease in the potential extent of degradation, while SUPP increasing the endpoint for 

COS samples. Supplemental DDGS improved digestibility coefficients of DM, OM, and 

NDF for both TIF and COS. Addition of SUPP also resulted in decreased methane 

production as a proportion of digestible substrate. The use of supplemental DDGS may be 

effective at increasing the digestibility of the diets of grazing cattle and may mitigate 

methane production, but this is dependent on the nutritive value of the grazed forage.  

When TIF was evaluated for in situ degradation as affected by month of year or 

SUPP, the patterns of degradation appeared to be a response to the cell wall structural 

bonding and ease of degradation unique to TIF. Month of year of harvest proved to be the 

major factor affecting all parameters of in situ degradation kinetics of TIF. Later in the 

growing season, degradation of TIF forage was decreased. The interaction of month with 
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SUPP (for fiber concentrations) on degradation of TIF suggested a potential two-season 

grazing scheme during the summer in which class, size, and age of the animal may be used 

for strategic management decisions to generate optimum performance.  

Finally, a new procedure for analysis of digestive kinetics data was proposed and 

may represent an improvement on current techniques. This was due to the elimination of 

a priori assumptions related to kinetics behavior. The proposed procedure makes use of 

the breadth of published information related to various nonlinear equations for use in 

agriculture and other fields and brings these together in a cohesive set of programs. When 

validated with data from the in situ experiment previously mentioned, DM, NDF, and 

ADF constituents of forage substrates were found to behave in sigmoidal patterns. This 

was contrary to the previously held hypothesis that degradation was an exponential 

phenomenon. Likewise, discrete lag times were eliminated in favor of a “diminishing lag” 

fashion in the sigmoidal equation. Use of the proposed procedure may allow researchers 

to uncover unique degradation patterns in the evaluation of ruminant feedstuffs that could 

not be described with current techniques. 
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