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ABSTRACT 

The current study is driven by the demand for sub-micron fibers with high surface area 

to volume ratios to be used in applications such as high performance filtration, tissue 

engineering, in-situ wound dressing, drug delivery, thermal management, and energy 

storage. 

Traditionally, industry has been using solution electrospinning for manufacturing sub-

micron fibers. However, it is expensive and environmentally unfavorable because a 

significant quantity of toxic solvent is lost to the surroundings during this process. The 

alternative approach, melt electrospinning, is inherently limited to the production of 

micron-sized fibers. This is mainly due to the high viscosity and low electrical 

conductivity of the melt. In addition, rapid heat loss to the surroundings results in 

solidification of the polymer melt jet before it has been significantly stretched by the 

electric field. 

In order to address this problem, we propose that a volumetric heat source placed 

downstream in the melt electrospinning process can lead to markedly decreased fiber 

diameters. For this purpose, we utilize a model for non-isothermal melt electrospinning 

in the presence of a downstream volumetric heat source. The model is based on thin 

filament approximation applied to fully coupled momentum, continuity, charge, and 

energy equations, along with the non-isothermal Giesekus constitutive model and the 

electric field equation at steady state. 
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The simulation results demonstrate that downstream heating does reduce the fiber 

diameter, and is therefore a feasible solution for resolving the drawbacks of melt 

electrospinning. In addition, the model has been used to capture the influence of the 

surrounding temperature, which affects the thinning of the fiber through surface rather 

than volumetric interactions. Finally, experiments on melt electrospun polycaprolactone 

are utilized in order to validate the model predictions. 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

DEDICATION 

 

 

 

 

To my parents 

To my grandparents 

To my sister 

To my professors 

To my friends 

 

 

 

 

 

 

 

 



v 

 

ACKNOWLEDGEMENTS 

I would like to express my gratitude to my research advisor, Dr. Micah Green, and my 

research co-advisor, Dr. Mohammad Naraghi, for their constant support, feedback and 

guidance throughout my research, and for giving me an opportunity to work on such a 

fascinating and thought-provoking topic. Their expertise, critique, and opinion has been 

extremely helpful to me during this study. I am grateful to Dr. Yossef Elabd for serving 

on my committee.  I would like to thank my colleague, Kai Morikawa, who assisted me 

with the experimental section of this thesis. I really appreciate the support that I got from 

my friends and colleagues, as well as the faculty and staff at Texas A&M University. 

Finally, I want to thank my entire family for their constant encouragement and 

motivation during the entire phase of my MS degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

CONTRIBUTORS AND FUNDING SOURCES 

Contributors 

This work was supported by a thesis committee consisting of Dr. Micah Green of the 

Department of Chemical Engineering (advisor), Dr. Mohammad Naraghi of the 

Department of Aerospace Engineering (co-advisor), and Dr. Yossef Elabd of the 

Department of Chemical Engineering (committee member). 

The analyses depicted in Chapter III and Chapter IV (Section 4.2.) were conducted in 

part by Kai Morikawa of the Department of Aerospace Engineering. 

All other work conducted for the thesis was completed by the student independently. 

Funding Sources 

This work was made possible in part by the National Science Foundation under Grant 

Number CMMI-153804. 



vii 

 

NOMENCLATURE 

R - Radius of the polymer jet 

v - Local velocity of the polymer jet 

𝑉̇ - Flowrate of the polymer jet 

ρ - Density of the polymer 

g - Acceleration due to gravity 

FT - Viscoelastic tensile force in the polymer jet 

γ - Surface tension of the polymer 

σ - Surface charge density of the polymer 

ε0 - Vacuum permittivity 

ε - Local permittivity of the polymer 

Et - Component of the electric field tangential to the polymer jet surface 

K - Electrical conductivity of the polymer 

I - Electric current through the polymer jet 

E - Electric field acting on the polymer jet 

𝐸∞ - Electric field due to the voltage applied between the syringe nozzle and the 

collector 
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V - Applied potential difference between the syringe nozzle and the collector  

R0 - Initial radius of the polymer jet 

z - Distance along the direction of electrospinning 

d - Separation distance between the syringe nozzle and the collector 

Cp - Heat capacity of the polymer 

T - Temperature of the polymer jet 

h - Convective heat transfer coefficient 

𝑇∞ - Surrounding temperature 

Q - Volumetric heat source 

kair - Thermal conductivity of air 

δair - Kinematic viscosity of air 

A - Cross-sectional area of the polymer jet 

vair - Speed of the cooling air 

τp - Polymeric stress tensor 

α - Mobility factor of the polymer 

λ0 - Relaxation time of the polymer 

T0 - Jet temperature at the inlet/syringe nozzle (reference temperature) 
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ηp0 - Polymer contribution to the zero-shear-rate viscosity at the reference temperature 

f(T) - Temperature dependence of the zero-shear-rate viscosity 

η0(T) - Zero-shear-rate viscosity at temperature T 

η0(T0) - Zero-shear-rate viscosity at inlet/syringe nozzle temperature T0 

ΔH - Activation energy of flow  

Rig - Ideal gas constant 

τp,zz - Polymeric stress in the axial direction 

τp,rr - Polymeric stress in the radial direction 

τzz - Total stress in the axial direction 

τrr - Total stress in the radial direction 

ηs0 - Solvent contribution to the zero-shear-rate viscosity at the reference temperature 

Re - Reynolds number 

Bo - Bond number 

Ca - Capillary number 

Fe - Electrostatic force parameter 

βE - Dielectric constant ratio 

Pec - Peclet number (for electrical conductivity) 
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χ - Dimensionless distance from syringe nozzle to collector 

Pe - Peclet number (for thermal conductivity) 

Na - Nahme-Griffith number 

BiL - Local Biot number (takes into account the evolution of the heat transfer coefficient 

in the axial direction) 

Qp - Dimensionless volumetric heat source 

Bi - Biot number 

β - Ratio of solvent to zero-shear-rate viscosity 

De - Deborah number 

Г - Temperature factor 

h0 - Heat transfer coefficient evaluated at the syringe nozzle 

k - Thermal conductivity of the polymer 

K - Electrical conductivity of the polymer 

H - Vertical distance between heat lamp and glass plate 

Rfinal - Final radius of the polymer jet 

Δa - Dimensionless length over which heat is provided to the polymer jet 
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CHAPTER I 

INTRODUCTON 

1.1. Motivation and research objectives 

Over the past few decades, micro/nanoscale fibers have attracted major attention due to 

their remarkable properties and wide range of potential applications. Some of their 

numerous fascinating characteristics include - high surface area to volume ratio, small 

pore size, tunable mechanical strength to weight ratio, and flexibility in surface 

functionalities.1-3 Due to these properties, they find use in many attractive applications 

such as: 

 Filtration: Micro/nanofibers can function as excellent filter media. The large 

surface area per unit volume of the fibers provides ample filter-medium interface 

to reject undesired particles.4,5 

 Tissue engineering: Micro/nanofibers can be used to produce tissue scaffolds with 

surface properties and architecture that supports cell attachment, migration, 

growth, and ultimately tissue maturation.6,7 

 Drug delivery: The inherently high surface area to volume ratio of 

micro/nanofibers can enhance cell attachment, drug loading, and mass transfer 

properties.8 

 Energy storage: Micro/nanofibers can be used for manufacturing battery 

membranes, and therefore find application as a material for energy storage.2,8-11 
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However, despite such promising applications, scalable methods to produce 

micro/nanofibers are still in their infancy. There have been efforts to produce polymeric 

micro/nanofibers in large quantities via solution-based electrospinning. But, these 

methods are generally not considered “green”, due to release of toxic solvent vapor. The 

alternative solvent-free approach - melt electrospinning, often leads to the production of 

thick fibers. This is partly because of the fact that a polymer melt has a high viscosity and 

a low charge density (which results in a low electrostatic force on the polymer jet).12 In 

addition, rapid heat exchange between the polymer and the environment often leads to the 

solidification of the jet, thereby preventing major jet drawing by the electric field.13 Hence, 

through our research, we propose to address these issues so that it could be possible to 

manufacture micro/nanofibers in an environment-friendly and industrially scalable 

manner. 

1.2. Organization of the thesis 

This thesis is divided into five chapters. In Chapter II, we discuss the process of 

electrospinning with particular focus on melt electrospinning. Here, we introduce our idea 

for modifying the process of melt electrospinning so as to achieve the proposed objective 

of our research. In Chapter III, we describe the main modeling and experimental methods 

that were used in our research. Next, in Chapter IV, we present the results of our effort. In 

this chapter, we demonstrate that our model establishes the significance of our novel 

concept, and the experimental work proves that our idea can be physically implemented 
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in order to obtain desirable results. Finally, In Chapter V, we present the conclusions of 

our work, and also suggest a possible direction for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

CHAPTER II 

ELECTROSPINNING 

2.1. Introduction to electrospinning 

Industrially, micro/nanoscale fibers are produced via electrospinning - a fiber production 

method which uses electric force to draw charged threads of polymer solutions or polymer 

melts up to fiber diameters in the sub-micron range.14,15 

A typical electrospinning setup comprises of three major components as can be seen from 

Figure 1.16 The first component is the feeding unit which consists of the syringe and the 

syringe pump. The next component is a high voltage power supply which is used to 

generate an electric field. Finally, the last component is the collector plate which is used 

for collecting the electrospun fiber.17 Before electrospinning, the polymer is either 

completely dissolved in a suitable solvent or it is melted, and then placed in the syringe. 

The syringe pump is then used for pushing the fluid out of the syringe nozzle. Next, using 

the power supply, a high voltage difference is applied between the syringe nozzle and the 

collector plate. Once the fluid flows out of the syringe nozzle, it comes under the influence 

of the electric field, and starts developing electrostatic charges. The fluid at the nozzle is 

held by its own surface tension, until such a point when the electrostatic forces developed 

in the fluid overcome its surface tension. Subsequently, it assumes a conical shape (known 

as the Taylor cone) before a stream of fluid vents out. The jet elongates in the electric field 

before eventually getting deposited on the collector.18  
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An electrospinning process typically has two stages - a stable jet stage and an instability 

stage, as depicted in Figure 1.16 In the first stage, the jet accelerates in a straight trajectory 

for a certain distance from the syringe nozzle. The jet profile does not vary with time. This 

is followed by the second stage in which the jet is observed to exhibit a distinct “whipping 

motion”. This chaotic motion often arises due to bending instabilities that are produced in 

the jet as a result of the electrostatic charges.19 

 

Finally, depending upon the physical state of the polymer used, the process of 

electrospinning is categorized as - solution electrospinning (in which a polymer solution 

is used), and melt electrospinning (in which the polymer is in its melt state). These will be 

elaborated in the following sections. 

 
Figure 1: Typical setup for electrospinning.16 
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2.2. Solution electrospinning 

Solution electrospinning is the more popular electrospinning technique for fabricating sub-

micron fibers. For solution electrospinning, the fluid present inside the syringe nozzle is a 

polymer which had been thoroughly dissolved in a solvent. In this process, as the jet forms 

near the nozzle and travels towards the collector, the solvent evaporates and dry sub-

micron sized fibers are obtained on the collector.20 In the stable jet region, the fiber 

elongates under the influence of the electric field. Once the bending instabilities set in, the 

chaotic whipping motion of the jet allows the polymer chains within to stretch and slide 

past each other, which results in the formation of fibers having a small diameter.21 

However, in this process, a large amount of solvent is introduced to the atmosphere (as 

much as 5 - 10 times the mass of the produced fibers) which may cause environmental 

pollution and demand a safe ventilation measure in order to avoid any health issue.22-24 

Other major challenges for solution electrospinning include recovery of organic solvents, 

residual toxic solvents in the fibers, and small pores in the fibers (due to solvent 

evaporation or unintended phase separation).25,26 More importantly, solution 

electrospinning is unsuitable for processing many relevant commodity polymers. 

Due to these drawbacks of solution electrospinning, significant study has been devoted to 

melt electrospinning - an alternative solvent-free approach for manufacturing sub-micron 

sized fibers.  
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2.3. Melt electrospinning 

Figure 2 shows a schematic representation of the process of melt electrospinning. Here, 

the fluid present in the syringe is typically a polymer in its melt state. This process differs 

from solution electrospinning in another aspect - the whipping instability in melt 

electrospinning is much less pronounced as compared to solution electrospinning.  This is 

mainly because a melt has a lower charge density (which results in a lower magnitude of 

electrostatic force) and a higher viscosity (which helps the melt to resist the bending 

motion).27  

Several parameters in the melt electrospinning process play a vital role in determining the 

fiber diameter.28,29 These include: 

 Electric field strength: 

o Lyons et al. researched the effect of the electric field strength on the 

collected fiber diameter of select electrospun polymers. These studies 

indicated that the larger electric field strengths produced polymers with 

smaller fiber diameters.30 

 
Figure 2: Schematic of a typical setup for melt electrospinning. 
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o Long et al. explored the influence of the collector distance on the fiber 

diameter. Fiber diameter initially decreases on increasing collector distance 

up to a certain extent. Then the fiber diameter increases on further 

increasing the collector distance.  There are two factors influencing this 

phenomenon - the fiber stretching time and the electric force experienced 

by the fiber. What happens is, initially, on increasing the collector distance, 

the effect of increasing the fiber stretching time is more significant 

compared to the effect of diminishing electric force experienced by the 

fiber, and therefore, the fiber diameter decreases. After a certain distance 

downstream, the effect of the diminishing electric force felt by the fiber 

dominates the effect of prolonging the fiber stretching time, which leads to 

an increase in the fiber diameter.31 

 Flow rate: 

o Studies show that flow rate is directly proportional to fiber diameter. In 

Hutmatcher’s experiment, at constant voltage and spinning distance, on 

operating at flow rates of 5, 10, and 20 μLh-1, fibers with different average 

diameters of 6.6, 12.6, and 20.3 μm were obtained.32 

 Air temperature: 

o Viscosity is an important factor in determining the fiber diameter in the 

electrospinning process. The temperature of air in the spinning chamber 

has a significant influence on the viscosity of the polymer melt. Generally, 
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the viscosity will reduce with an increase in the spinning temperature, and 

consequently the fiber diameter will decrease.33-35  

2.4. Challenges in the process of melt electrospinning 

Although melt electrospinning has certain advantages over solution electrospinning, it 

comes with its own set of challenges. A polymer melt has a high viscosity and a low charge 

density. The former lowers the stretchability of the jet, while the latter results in a low 

electrostatic force on the jet.12,36 In addition, rapid heat exchange between the jet and the 

environment often solidifies the jet in the vicinity of the Taylor cone, which prevents major 

jet drawing by the electric field.13 Due to this, fibers produced using melt electrospinning 

often tend to be thicker compared to solution electrospinning. 

2.5. Downstream volumetric heat 

In order to overcome some of the challenges faced by current melt electrospinning 

systems, we propose to incorporate a new means of extending the melt thinning region - 

through a downstream volumetric heat source, which can be manipulated by the system 

geometry. This volumetric heat source term is active at every point within the fiber volume 

and has units of W/m3. Rather than a simple empirical approach, we utilize a model to 

predict how our novel experimental setup can be tailored to alter the fiber radius dynamics. 

In principle, the volumetric heat source can be treated as a step function in the region 

where we turn on the heat and zero elsewhere as shown in Figure 3. 
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This volumetric heat source could stem from the interaction of the polymer (or a filler) 

with an applied electromagnetic field. If the penetration depth of the field is larger than 

the radius of the fiber, the field would be able to interact across the cross-sectional area of 

the fiber rather than at the surface only. In many cases, the polymer may require additives 

in order to be field responsive. One can envision several different experimental scenarios 

where downstream volumetric heating is possible, including the following:  

(i) Microwave fields interacting with embedded conductive nanoscale inclusions in 

the polymer.37 

(ii) Laser radiation interacting with dyes embedded in the polymer.38  

(iii) Magnetic fields interacting with superparamagnetic nanoparticle additives in the 

polymer.39 

Note, of course, that such additives may change the physical properties of the polymer, 

and would need to be accounted for. 

 

Figure 3: Schematic of our setup for melt electrospinning PLA. 
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In our research, we utilize both, a modeling and an experimental approach to demonstrate 

the utility of downstream volumetric heating in the process of melt electrospinning. Our 

model predicts the fiber radius as a function of distance from the syringe nozzle. In 

addition, we have also investigated different trends by varying the surrounding air 

temperature, the magnitude of downstream heat, as well as the region where downstream 

heat is provided. Experiments are conducted to validate the predictions of the model. For 

the experiments, downstream heat is provided using an infrared heat lamp placed at 

various distances to simulate different magnitudes of heat. The results of initial jet profile 

and final fiber radius are compared for various magnitudes of downstream heat. 
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CHAPTER III 

MODEL AND EXPERIMENT 

3.1. Model 

3.1.1. Background 

In conventional electrospinning, the polymer jet undergoes rapid initial thinning in a stable 

trajectory. Further downstream, bending instabilities cause a whipping motion which 

further thins the jet prior to its arrival and solidification on a collector plate.40-44 For the 

particular case of melt-electrospinning, this whipping movement is not nearly as 

pronounced as it is in solution electrospinning. This is because of the large fiber diameter 

of the former because of which the polymer jet experiences little or no bending 

instabilities.27 This increases the importance of optimizing the thinning of the polymer 

melt in the stable jet region. Therefore, in this paper, we model the jet as if it had a stable 

trajectory right from the syringe nozzle to the collector.  

From a modeling point of view, the stable jet region has been extensively examined in 

previous studies. Spivak and Dzenis developed a 1-D model with a power law fluid.45 

Hohman et al. refined this model by introducing the concept of a “leaky dielectric” in 

order to account for the interaction of the surface charges in the jet with the external 

applied electric field.43,44 Feng incorporated the Giesekus constitutive model to account 

for the viscoelastic behavior of polymers.46,47 Carroll and Joo verified the predictions of 

Feng’s model by comparing it to numerous experimental results.19 A corresponding non-
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isothermal model, particularly for simulating the process of polymer melt-electrospinning, 

was proposed by Zhmayev et al.13 This study utilizes the model used by Zhmayev et al., 

and extends it to examine the effect of adding a downstream volumetric heat source. 

3.1.2. Governing equations 

The present simulation model for the stable jet trajectory is developed by fully coupling 

the conservation of mass, momentum, charge, and energy equations at steady state, along 

with an electric field equation, and a viscoelastic constitutive model. A thin filament (1-

D) approximation has been utilized in order to obtain a simpler solution. That is, all the 

model variables across the radial direction are averaged. The crystallization rate of PLA 

is slow, and the residence time of polymer melt is short during electrospinning, such that 

melt electrospun PLA is mostly amorphous. Thus, polymer crystallization is not 

considered in the current study. 

The governing equations for non-isothermal simulations have been presented by Zhmayev 

et al.13 We follow their basic format and modify as needed for our case: 

Mass: 𝜋𝑅2𝑣 = 𝑉̇                (1) 

Momentum: 𝜌𝑣𝑣′ = 𝜌𝑔 +
𝐹𝑇′

𝜋𝑅2
+

𝛾𝑅′

𝑅2
+

𝜎𝜎′

𝜀0
+ (𝜀 − 𝜀0)𝐸𝑡𝐸𝑡

′ +
2𝜎𝐸𝑡

𝑅
          (2) 

Charge: 𝜋𝑅2𝐾𝐸𝑡 + 2𝜋𝑅𝑣𝜎 = 𝐼              (3) 

Electric field: 𝐸 ≈ 𝐸∞ =
2𝑉

[(𝑅0+2𝑧− 
𝑧2

𝑑
) 𝑙𝑛(1+

4𝑑

𝑅0
)]

            (4) 
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Tangential projection of electric field: 𝐸𝑡 =
𝐸

√1+ (𝑅′)2

           (5) 

In the above set of equations, R is the radius of the polymer jet, v is the local velocity of 

the jet, 𝑉̇ is the flowrate of the polymer jet, ρ is the density of the polymer, g is the 

acceleration due to gravity, FT is the viscoelastic tensile force in the jet (computed from 

the constitutive Giesekus equation), γ is the surface tension of the polymer, σ is the surface 

charge density of the polymer, ε0 is the vacuum permittivity, ε is the local permittivity of 

the polymer, E is the electric field acting on the polymer jet, Et is the component of the 

electric field tangential to the jet surface, K is the electrical conductivity of the polymer, I 

is the electric current, 𝐸∞ is the electric field applied between the syringe nozzle and the 

collector, V is the applied potential difference between the syringe nozzle and the collector 

plate, R0 is the initial radius of the polymer jet, d is the syringe nozzle-to-collector 

separation distance, and z denotes the direction of electrospinning. Primes indicate 

derivatives with respect to z. 

In our case, the conservation of charge equation considers both the components of the 

current carried by jet - the charge convection on the surface of the jet, and the conduction 

within it.19 (Zhmayev et al. had assumed a non-conductive jet.13) 

Further, in order to validate the use of Equation (4) and Equation (5) for representing the 

electric field in our case, we compared the values of the tangential component of electric 

field obtained from Equation (5) with those obtained by using COMSOL finite element 

solver. 
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In order to obtain the numerical values of the tangential component of electric field as a 

function of z, the given system of equations was solved using an implicit time stepper in 

MATLAB to get the values of R and R’, where R’ is the derivative with respect to z. Then, 

we plug in the values of V, R0, d, and the values of R’ obtained above, into Equation (5). 

Now, using COMSOL finite element solver, we simulated the electric field acting on a 

polymer melt jet between a syringe and a collector plate under the same processing 

conditions. After processing the data, we computed the values of the tangential component 

of this electric field in order to compare against the values obtained from Equation (5). 

 

As seen from Figure 4, a close overlap between the two lines justifies the use of Equation 

(4) and Equation (5) for representing the electric field between a syringe and collector 

plate, for our case. 

 

Figure 4: Comparison of electric field obtained using COMSOL, and that obtained 

using Equation (5) from the paper. 
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Next, we extend the existing model by Zhmayev et al. by incorporating a volumetric heat 

source term in the conservation of energy relation. This has been computed by performing 

a 1-D energy shell balance on a disk-shaped fluid element. The change in internal energy 

of the fluid element is balanced with viscous heating, radial convection heat loss to the 

surroundings, and the volumetric heat added to the system. Another possible heat source 

term arising because of heat released due to crystallization is not considered in this study. 

The resulting equation is: 

Energy: 𝜌𝐶𝑝𝑣𝑇′ =
𝑣′𝐹𝑇

𝜋𝑅2 −
2ℎ(𝑇−𝑇∞)

𝑅
+ 𝑄             (6) 

Here, Cp is the polymeric heat capacity, T is temperature of the polymer jet, h is the 

convective heat transfer coefficient, 𝑇∞ is the external air temperature, and Q is the 

volumetric heat source. As stated earlier, primes indicate derivatives with respect to z, 

which is the direction of electrospinning. 

The heat transfer coefficient is determined from an empirical relation by Matsuo and 

Kase.48 This relation has been employed in previous melt electrospinning studies:  

ℎ = 0.388𝑘𝑎𝑖𝑟 (
𝑣

𝛿𝑎𝑖𝑟𝐴
)

1/3

(1 + (
8𝑣𝑎𝑖𝑟

𝑣
)

2

)
1/6

             (7) 

Here, kair, δair, and vair are the thermal conductivity, kinematic viscosity, and the speed of 

the cooling air, respectively, and A is the cross-sectional area of the polymer jet. 

The non-isothermal constitutive model used for describing the viscoelastic behavior of the 

polymer melt has been incorporated here in the same manner as done by Zhmayev et al.13 
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The polymeric stress tensor, τp, used to account for the viscoelastic behavior of the melt, 

is described by the Giesekus constitutive model modified to its non-isothermal form via 

time-temperature superposition.49  

𝜏𝑝 + 𝛼
𝜆0𝑇0

𝜂𝑝0𝑇
{𝜏𝑝. 𝜏𝑝} + 𝜆0𝑓(𝑇)

𝑇0

𝑇
[𝜏𝑝(1) − 𝜏𝑝

𝐷𝑙𝑛(𝑇)

𝐷𝑡
] = −𝜂𝑝0

𝑓(𝑇)𝛾̇          (8) 

Here, α is the mobility factor, reference temperature T0 is the temperature of the polymer 

jet at the inlet/syringe nozzle, λ0 and ηp0 are the polymer relaxation time and the polymer 

contribution to the zero-shear-rate viscosity at the reference temperature, respectively, 

D/Dt denotes the material derivative, and f(T) represents the temperature dependence of 

the zero-shear-rate viscosity, defined as:  

𝑓(𝑇) =  
𝜂0(𝑇)

𝜂0(𝑇0)
= 𝑒𝑥𝑝 [

𝛥𝐻

𝑅𝑖𝑔
(

1

𝑇
−

1

𝑇0
)]             (9) 

Here, η0(T) is the zero-shear-rate viscosity at the polymer jet temperature T, η0(T0) is the 

zero-shear-rate viscosity at inlet/syringe nozzle temperature T0, ΔH is the activation 

energy of flow, and Rig is the ideal gas constant. The two non-vanishing components of 

the polymeric stress can finally be written as: 

𝜏𝑝,𝑧𝑧 + 𝛼
𝜆0𝑇0

𝜂𝑝0𝑇
𝜏𝑝,𝑧𝑧

2 + 𝜆0𝑓(𝑇)
𝑇0

𝑇
[𝑣𝜏𝑝,𝑧𝑧

′ − 2𝑣′𝜏𝑝,𝑧𝑧 − 
𝑣𝜏𝑝,𝑧𝑧𝑇′

𝑇
] = 2𝜂𝑝0

𝑓(𝑇)𝑣′      (10) 

𝜏𝑝,𝑟𝑟 + 𝛼
𝜆0𝑇0

𝜂𝑝0𝑇
𝜏𝑝,𝑟𝑟

2 + 𝜆0𝑓(𝑇)
𝑇0

𝑇
[𝑣𝜏𝑝,𝑟𝑟

′ + 𝑣′𝜏𝑝,𝑟𝑟] = −𝜂𝑝0
𝑓(𝑇)𝑣′       (11) 

In the above equations, τp,zz is the polymeric stress in the axial direction, and τp,rr is the 

polymeric stress in the radial direction. 
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The total axial and radial normal stresses under non-isothermal conditions are: 

𝜏𝑧𝑧 = 𝜏𝑝,𝑧𝑧 + 2𝜂𝑠0
𝑓(𝑇)𝑣′             (12) 

𝜏𝑟𝑟 = 𝜏𝑝,𝑟𝑟 − 𝜂𝑠0
𝑓(𝑇)𝑣′             (13) 

Here, τzz is the total axial stress, τrr is the total normal stress, ηs0 is the solvent contribution 

to the zero-shear rate viscosity at the reference temperature. Again, primes indicate 

derivatives with respect to z, which is the direction of electrospinning. 

Finally, the viscoelastic tensile force in the polymer jet is given by: 

𝐹𝑇 =  𝜋𝑅2(𝜏𝑧𝑧 −  𝜏𝑟𝑟)             (14) 

3.1.3. Characteristic quantities 

Length: 𝑅0 

Velocity: 𝑣0 =  
𝑉̇

𝜋𝑅0
2 

Electric field: 𝐸0 = 𝐸(0) =  
2𝑉

𝑅0𝑙𝑛 (1+ 
4𝑑

𝑅0
)
 

Surface charge density: 𝜎0 =  𝜀0𝐸0 =  
𝐼𝑅0

2𝑉̇
 

Stress: 𝜏0 =  
𝜂0(𝑇0)𝑣0

𝑅0
 

Temperature: 𝑇0 and 𝛥𝑇𝑅ℎ =  |
𝜂0(𝑇)
𝜕𝜂0(𝑇)

𝜕𝑇

|
𝑇= 𝑇0
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Here, 𝛥𝑇𝑅ℎ is the temperature change which significantly alters the rheological properties 

of the fluid. Also, in order to simplify the calculations, dimensionless temperature is 

defined as:  

𝜃 =  
𝑇− 𝑇0

∆𝑇𝑅ℎ
  

Using these characteristic quantities, we can non-dimensionalize each of the governing 

equations in our model. 

3.1.4. Non-dimensionalization 

The final set of non-dimensionalized governing equations are as presented below: 

Continuity: 

𝑅2𝑣 = 1               (15) 

Momentum: 

𝑅𝑒𝑣𝑣′ = 𝐵𝑜 +
(𝑅2(𝜏𝑧𝑧−𝜏𝑟𝑟))

′

𝑅2 +
𝑅′

𝐶𝑎𝑅2 + 𝐹𝑒 (𝜎𝜎′ + 𝛽𝐸𝐸𝑡𝐸𝑡
′ +

2𝜎𝐸𝑡

𝑅
)        (16) 

Charge: 

𝜎 = 𝑅 −  
𝑅3𝐸𝑡

𝑃𝑒𝑐
               (17) 

𝜎′ = 𝑅′ −  
3𝑅2𝑅′𝐸𝑡+𝑅3𝐸𝑡

′

𝑃𝑒𝑐
             (18) 
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Electric field: 

𝐸𝑡 =  
1

[(1+2𝑧− 
𝑧2

𝜒
)(1+ (𝑅′)2)0.5]

             (19) 

𝐸𝑡
′ ≈

−2+ 
2𝑧

𝜒

(1+2𝑧− 
𝑧2

𝜒
)

2

(1+ (𝑅′)2)0.5

             (20) 

Energy: 

𝑃𝑒𝑣𝜃′ = 𝑁𝑎𝑣′(𝜏𝑧𝑧 − 𝜏𝑟𝑟) −  
2𝐵𝑖𝐿

𝑅
(𝜃 − 𝜃∞) + 𝑄𝑝          (21) 

𝐵𝑖𝐿 = 𝐵𝑖 (
𝑣

𝑅2)
1/3

(
1+(8𝑣𝑎𝑖𝑟/𝑣)2

1+(8𝑣𝑎𝑖𝑟)2 )
1/6

            (22) 

Here, BiL is the local Biot number, which takes into account the evolution of the heat 

transfer coefficient in the axial direction. 

Constitutive: 

𝜏𝑧𝑧 =  𝜏𝑝,𝑧𝑧 + 2𝛽𝑓(𝜃)𝑣′             (23) 

𝜏𝑟𝑟 =  𝜏𝑝,𝑟𝑟 − 𝛽𝑓(𝜃)𝑣′             (24) 

𝜏𝑝,𝑧𝑧 +
𝐷𝑒𝛤

(𝜃+𝛤)
(

𝛼𝜏𝑝,𝑧𝑧
2

(1−𝛽)
+ 𝑓(𝜃) [𝑣𝜏𝑝,𝑧𝑧

′ − 2𝑣′𝜏𝑝,𝑧𝑧 −  
𝑣𝜏𝑝,𝑧𝑧𝜃′

(𝜃+𝛤)
]) = 2(1 − 𝛽)𝑓(𝜃)𝑣′      (25) 

𝜏𝑝,𝑟𝑟 +
𝐷𝑒𝛤

(𝜃+𝛤)
(

𝛼𝜏𝑝,𝑟𝑟
2

(1−𝛽)
+ 𝑓(𝜃)[𝑣𝜏𝑝,𝑟𝑟

′ + 𝑣′𝜏𝑝,𝑟𝑟]) = −(1 − 𝛽)𝑓(𝜃)𝑣′       (26) 

𝑓(𝜃) = 𝑒𝑥𝑝 [
𝛥𝐻

𝑅𝑖𝑔𝛥𝑇𝑅ℎ
(

1

(𝜃+𝛤)
− 

1

𝛤
)]            (27) 
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𝑓′(𝜃) = 𝑒𝑥𝑝 [
𝛥𝐻

𝑅𝑖𝑔𝛥𝑇𝑅ℎ
(

1

(𝜃+𝛤)
−  

1

𝛤
)] (

𝛥𝐻

𝑅𝑖𝑔𝛥𝑇𝑅ℎ
) (

−1

(𝜃+𝛤)2) 𝜃′          (28) 

Here, β represents solvent to zero-shear-rate viscosity ratio. In contrast to previous studies 

on modeling of melt electrospinning,13 we argue that the value of β should be equal to 0, 

as no solvent is actually present in the melt. In our simulations, we simply set this 

parameter to a small value such that our simulations converge on the solution as β → 0.  

Note that all quantities used from this point onwards are dimensionless, but the same 

symbols are used for convenience. Also note that in the aforementioned set of equations, 

the following quantities are functions of z: 

R, v, τzz, τrr, σ, Et, θ, Qp, τp,zz, τp,rr, and f(θ). 

A number of dimensionless groups appear while deriving the above non-dimensional set 

of equations. These are presented below: 

Dimensionless distance from syringe nozzle to collector: 𝜒 =  
𝑑

𝑅0
 

Biot number: 𝐵𝑖 =  
ℎ0𝑅0

𝑘
 

Bond number: 𝐵𝑜 =  
𝜌𝑔𝑅0

2

𝜂0𝑣0
 

Capillary number: 𝐶𝑎 =  
𝑣0𝜂0

𝛾
 

Deborah number: 𝐷𝑒 =  
𝜆0𝑣0

𝑅0
 

Dielectric constant ratio: 𝛽𝐸 =
𝜀

𝜀0
− 1 
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Electrostatic force parameter: 𝐹𝑒 =
𝜀0𝐸0

2𝑅0

𝑉0𝜂0
 

Nahme-Griffith number: 𝑁𝑎 =  
𝜂0𝑣0

2

𝑘𝛥𝑇𝑅ℎ
 

Peclet number (for thermal conductivity): 𝑃𝑒 =  
𝜌𝐶𝑝𝑅0𝑣0

𝑘
 

Peclet number (for electrical conductivity): 𝑃𝑒𝑐 =  
2𝜀0𝑣0

𝑘𝑅0
 

Ratio of solvent to zero-shear-rate viscosity: 𝛽 =  
𝜂𝑠(𝑇0)

𝜂0(𝑇0)
 

Reynolds number: 𝑅𝑒 =  
𝜌𝑣0𝑅0

𝜂0
 

Temperature factor: 𝛤 =  
𝑇0

𝛥𝑇𝑅ℎ
 

Dimensionless volumetric heat source: 𝑄𝑝 =  
𝑄𝑅0

2

𝑘𝛥𝑇𝑅ℎ
 

Here, h0 is the heat transfer coefficient evaluated at the syringe nozzle, and k is the thermal 

conductivity of the fluid. 

3.1.5. Boundary conditions 

On rearranging the system of equations presented in the previous section, the problem can 

be reduced to a set of five first order ordinary differential equations (ODEs) ready for 

numerical analysis. The following boundary conditions are required to appropriately 

address the problem. The conditions on the normal polymeric stresses rely on the 
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assumption that the polymer is sufficiently relaxed at the inlet, and hence, as in previous 

studies, the initial stresses are assumed to be those of a Newtonian fluid.19,46,47  

𝜏𝑝,𝑧𝑧|𝑧=0 = 2(1 −  𝛽)𝑓(𝜃)𝑣′             (29) 

𝜏𝑝,𝑟𝑟|𝑧=0 = −(1 −  𝛽)𝑓(𝜃)𝑣′            (30) 

At the inlet, that is, at z = 0, the temperature of the polymer jet is equal to the syringe 

nozzle temperature. Therefore, after non-dimensionalization, this condition can be 

expressed as:  

𝜃|𝑧=0 = 0               (31) 

Similarly, at z = 0, the radius of the polymer jet is equal to the radius of the syringe nozzle. 

In the non-dimensional form, this is written as: 

𝑅|𝑧=0 = 1               (32) 

For the final boundary condition, past electrospinning models have utilized an underlying 

assumption of the balance of inertial and electrical forces in the asymptotic region.19,45-

47,50 However, under non-isothermal conditions, this does not hold true for highly 

viscoelastic fluids such as polymer melts, as they exhibit high tensile forces throughout 

the spinning region. Zhmayev et al. proposed a new initial thinning condition for fluids 

with low electrical conductivity and high viscosity (such as polymer melts) based on a 

force balance near the syringe nozzle. Since the fluid at the syringe nozzle is assumed to 

be nearly Newtonian, the following terms must be balanced: Newtonian stresses, surface 

tension, and electric driving force. This results in the following algebraic relationship (in 
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the non-dimensional form) that can be solved to obtain R’(0), and hence the last needed 

boundary condition which we will be incorporating in our model.13 

[
6

𝑅4
(𝑅′)2 + (

1

𝐶𝑎𝑅2 + 𝐹𝑒𝑅) 𝑅′ +
2𝐹𝑒

√1+(𝑅′)2
+ (1 −  

𝛽𝐸

√1+(𝑅′)2
)]

𝑧=0

= 0        (33) 

With the assumptions of the current model we have been able to reduce what would have 

been a boundary value problem of seven coupled ODEs to an initial value problem of five 

coupled ODEs. As a result, the current approach has led to a stable system that converges 

for a wide range of parameters, and easily covers the experimentally relevant window of 

non-isothermal processing conditions. 

3.1.6. Numerical solution 

The current model has been formulated as an initial value problem of five coupled first 

order ODEs, and has been solved numerically using an implicit solver in MATLAB. In 

order to gain additional insight into the electrospinning process, we have also investigated 

general trends in response to changing the surrounding air temperature, the magnitude of 

downstream heat, and the region over which the heat will be provided. 

The material properties of PLA used in the simulation are similar to those used by 

Zhmayev et al.,13 and are presented in Table 1. 
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Table 1: Material properties of PLA. 

Properties Values 

Zero-shear-rate viscosity (at 180 ºC) (η0) 1320 Pa.s 

Relaxation time (at 180 ºC) (λ0) 0.1 s 

Activation energy of flow (ΔH/Rig) 9060 K 

Density (ρ) 1240 kg/m3 

Heat capacity (Cp) 1800 J/kg.K 

Thermal conductivity (k) 0.2 W/m.K 

Electrical conductivity (K) 10-10 S/m 

Surface tension (γ) 0.0435 N/m 

Ratio of solvent to zero-shear-rate viscosity (β) 0.001 

Mobility factor (α) 0.015 

Dielectric constant ratio (ɛ/ɛ0) 3.1 

 

The reference set of dimensionless groups which have been used in the simulations, is 

based on PLA properties and typical experimental conditions (V = 20 kV, d = 0.1 m, R0 = 

0.5 mm, and 𝑉̇ = 0.044 mL/minute) as used by Zhmayev et al.,13 and is listed in Table 2. 
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Table 2: Typical values of dimensionless numbers and parameters used for PLA 

simulations. 

Bi 0.0103 

De 0.0270 

Bo 0 

Re 2.564 × 10-6 

Ca 4.264 

Na 2.632 × 10-5 

Fe 3.324 

Г 18.193 

Pe 4.770 

Pec 0.294 

 

It is important to note that the model mainly simulates melt-electrospinning using PLA as 

the polymer, but PCL was chosen for the experiment because it is simpler to melt-

electrospin PCL due to its relatively low melting point. So, in order to validate the model, 

we have simulated certain results with PCL as the polymer, so as to compare it with the 

experiment. The material properties of PCL used in these simulations are presented in 

Table 3. 

  



27 

 

Table 3: Material properties of PCL.13,51-54 

Properties Values 

Zero-shear-rate viscosity (at 100 ºC) (η0) 1900 Pa.s 

Relaxation time (at 100 ºC) (λ0) 0.019 s 

Activation energy of flow (ΔH/Rig) 7938.4 K 

Density (ρ) 1145 kg/m3 

Heat capacity (Cp) 1340 J/kg.K 

Thermal conductivity (k) 0.14 W/m.K 

Electrical conductivity (K) 9.5 × 10-9 S/m 

Surface tension (γ) 0.0435 N/m 

Ratio of solvent to zero-shear-rate viscosity (β) 0.001 

Mobility factor (α) 0.015 

Dielectric constant ratio (ɛ/ɛ0) 2.9 

 

The reference set of dimensionless groups which have been used in the simulations is 

based on PCL properties and experimental conditions as mentioned in Section 3.2.2. of 

this chapter, and is listed in Table 4. 
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Table 4: Typical values of dimensionless numbers and parameters used for PCL 

simulations. 

Bi 0.424 

De 1.14 

Bo 0 

Re 5.785 × 10-6 

Ca 1048.276 

Na 0.446 

Fe 0.0254 

Г 21.283 

Pe 105.209 

Pec 0.1122 

 

3.2. Experiment 

3.2.1. Experimental setup 

PCL was purchased from Polysciences Inc. (MW = 37,000). The PCL was used as 

purchased. It was heated in a 10 mL polystyrene syringe, with an 18 gauge (~400 μm 

radius) needle with 0.5 inch length. The heating mechanism used was a syringe heater 

(New Era Pump Systems, HEATER-KIT-1LG). A high voltage power supply (Acopian, 

N030HP1) was used to provide the electric field. A heat lamp (McMaster Carr, Product 

No. 3343K11) with a halogen light bulb having a power of 600 W (McMaster Carr, 

Product No. 1535K96) was used to act as the downstream heat source. This heat lamp was 
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used at various distances (H) to simulate different magnitudes of heat. An aluminum plate 

(3.5” x 2.5”) wrapped in aluminum foil was used as the collector. Figure 5 shows the 

schematic of the setup used for our experiment. 

 

3.2.2. Experimental procedure 

Melt electrospinning was performed at room temperature of 20 °C. The syringe was heated 

using the syringe heater to 100 °C. The ground cable of the power supply was connected 

to the syringe needle, and the high negative voltage was connected to the collector. The 

 

Figure 5: Schematic of our setup for melt electrospinning PCL. 
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voltage of the high negative end was -25 kV for all experiments. The distance between the 

syringe tip and collector was 10 cm. A glass plate with an opening of 2.3 cm x 2.3 cm was 

placed at a vertical height of 12.5 cm from the plane of the syringe tip, and above that, the 

heat source was placed at a variable height (H) in order to vary the amount of heat received 

by the fiber. The heat received by the fiber was assumed to be purely radiative because 

the surrounding air temperature was affected by a negligible mount. 

The feed rate of polymer was set to 44 mL/h. The high voltage power supply was turned 

on, and as the jet formed, the heat source was turned on, and fiber was collected for 15 

seconds. To stop fiber formation and collection, the electric field was turned off, followed 

by the heat source immediately after. Four samples at each distance (12 cm, 8 cm, and 4 

cm) were collected, and later analyzed to get average fiber diameters. 

 

 

Figure 6: Actual image of a melt electrospun fiber on the collector. 
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3.2.3. Characterization 

An optical microscope (Olympus SZX16) was used to image the collected fibers and 

measure the fiber diameter. For each sample, 3 to 6 images were taken and 20 to 30 

diameter measurements were taken for each image collected. ImageJ was used to analyze 

and make diameter measurements. A CCD camera (EO USB 2.0 CCD) with a zoom 

imaging lens (VZM 450 Zoom Imaging Lens), and extender lens (VZM 450 0.5X 

Extender Lens) was used to image the initial jet formation and to compare with the model 

predictions. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

In this section, we first present our simulations for melt electrospinning of PLA. The 

model predictions as well as experimental results for melt electrospinning of PCL are then 

presented separately.  

For PLA, our model is used to predict the radius and temperature profile of the polymer 

jet in presence of the downstream volumetric heat source. We also investigate how the 

fiber radius is affected by varying the surrounding air temperature, the magnitude of 

downstream heat, as well as the region in which this heat interacts with the fiber. For all 

our simulations, we have maintained a constant syringe nozzle temperature of 225 ºC and 

χ = 200 as the dimensionless spinning distance.  

For PCL, we compare our model prediction of the initial jet profile to that obtained 

experimentally in order to validate our current model, and calibrate some of its parameters. 

Then, using both, model and experiment, we study how the magnitude of heat influences 

the fiber radius. 

4.1. PLA model predictions 

4.1.1. Radius and temperature profile of the polymer jet in presence of downstream heat 

Here, we investigate the radius and temperature profile of the polymer jet in the presence 

of a downstream volumetric heat source. 
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In Figure 7, the heat source interacts with the fiber from the beginning, i.e., from z/R0 = 0 

up to z/R0 = 20. The air temperature is maintained constant at 20 ºC for this case. 

 

 

 

Figure 7: (a) Dimensionless fiber radius profile for the case when no heat is provided 

(Qp = 0), and when heat is turned on between 0 < z/R0 < 20 (Qp = 15, Qp = 20 & Qp 

= 25) at a constant air temperature of 20 ºC & (b) corresponding fiber temperature 

profile. 
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As expected, by providing more heat (or higher Qp), we can increase the temperature of 

the jet, thereby keeping the jet in a stretchable state for a longer region. As a result, thinner 

fibers will form as seen from Figure 7 (a).  

In Figure 7 (b), we observe an interesting crossover in the temperature of the polymer jet 

when it is subjected to different magnitudes of heat, which can be explained as follows. 

Initially, as expected from the conservation of energy and as shown in Figure 7 (b), a jet 

subjected to a higher Qp will have a higher temperature compared to another jet which is 

subjected to a lower Qp. The higher temperature of the jet lowers the jet viscosity. Hence, 

the jet exposed to a higher Qp would thin down faster causing it to have a higher surface 

area to volume ratio (which scales inversely with fiber radius). Thus, it would lose heat to 

the surrounding air via convection more quickly as compared to a jet subjected to a lower 

Qp (which is thicker). As a result, the fiber will experience a faster temperature drop, and 

after a certain point, it would have a lower temperature compared to the other fiber. 

Therefore, we observe a crossover in the temperature plot when fibers are subject to 

different Qp. 

Next, we investigate the radius and temperature profile of the polymer jet when we heat 

the fiber slightly downstream from the syringe nozzle, between z/R0 = 80 and z/R0 = 100. 

The air temperature is maintained constant at 20 ºC. 

In Figure 8, the fiber initially thins down purely under the influence of the electric field. 

Then, around z/R0 = 80, we notice that for all practical purposes, the initial thinning has 

stopped. This is indicated in Figure 7 (a) where the plot plateaus out. At this point, we 
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begin heating the fiber. As seen from the figure, we observe a second thinning regime. 

This is very interesting, especially from the point of view of our proposed objective, since 

it hints at the possibility of employing a multi-stage thinning process. Such a process has 

the potential of thinning down the fiber to a greater extent than what can be achieved via 

conventional melt electrospinning. 

 

 

 

Figure 8: (a) Dimensionless fiber radius profile for the case when no heat is provided 

(Qp = 0), and when heat is turned on between 80 < z/R0 < 100 (Qp = 1500, Qp = 1750 

& Qp = 2000) at a constant air temperature of 20 ºC & (b) corresponding fiber 

temperature profile. 
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Again, as seen from Figure 8 (b), we observe a crossover in the temperature profiles of the 

fiber when it is subjected to different Qp. This can be explained by the same concept as 

was discussed earlier for the case when the fiber was heated between 0 < z/R0 < 20. 

Note that as a result of downstream heat provided to the fiber, its temperature increases. 

In our effort, we try to avoid degradation of the fiber. Therefore, there is a maximum limit 

of heat that can be provided to the fiber before the fiber can overheat, and thus thermally 

degrade. This limit is reached when the maximum temperature attained by the fiber is just 

below its degradation temperature. Due to this, we cannot keep on increasing Qp because 

we might cross the degradation temperature of the fiber. 

Another important thing to note here is that in order to observe noticeable changes in the 

fiber diameter, in Figure 7, the dimensionless heat is varied between 0 and 25, but in Figure 

8, it is varied between 0 and 2000. This is because of two reasons. First is that the effective 

heating rate due to Qp is volumetric, which scales with R2 (i.e. with jet volume per unit 

length), while the rate of heat loss is convective which scales with R (i.e. with jet surface 

area per unit length). Therefore, lowering the jet radius changes the heat balance in favor 

of convective heat loss. So, when heat is provided in thinner regions of the jet (further 

downstream), higher volumetric heat (and thus higher Qp) is required to overcome the 

convective heat loss. Second reason is that, when the fiber is exposed to volumetric heat 

in Figure 8 (80 < z/R0 < 100), it is already significantly thin compared to the case in Figure 

7 when the fiber is heated between 0 < z/R0 < 20. 
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These simulation results demonstrate the fact that incorporating a downstream heat source 

can actually bring about a considerable degree of thinning, and is therefore a feasible 

solution for addressing the drawbacks of melt electrospinning. 

4.1.2. Combined effect of surrounding air temperature, magnitude of downstream heat, 

and region over which it is provided 

This section explores how the fiber radius is influenced by the surrounding air 

temperature, the magnitude of volumetric heat, and the location where this heat is 

provided. Dimensionless fiber radius is plotted vs. air temperature, which is varied 

between 20 ºC and 120 ºC. In each plot, different trends are analyzed by varying the 

amount of volumetric heat provided to the fiber. 

We first discuss the case where volumetric heat is turned on between 0 < z/R0 < 20, as 

shown in Figure 9 (a). In order to obtain the same fiber radius, one could either provide a 

larger Qp and operate at a lower air temperature or provide a smaller Qp and operate at a 

higher air temperature. However, in the limit of higher air temperature, one can encounter 

the problem of ensuring that the fiber is fully solidified before hitting the target. In 

contrast, localized downstream heating at a lower air temperature allows for a more precise 

control over the path of the fiber from melt to solid state prior to hitting the target. 
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Next, we discuss the case wherein volumetric heat is turned on between 80 < z/R0 < 100 

as depicted in Figure 9 (b). At low air temperature, thinning of the fiber is primarily 

controlled by the volumetric heat provided to it. In other words, volumetric heat keeps the 

jet in a melted, and thus stretchable state for a longer region. On the other hand, as air 

 

 

Figure 9: Rfinal/R0 vs. air temperature for varying values of Qp for the case when (a) 

heat is turned on between 0 < z/R0 < 20 (Qp = 2.5, Qp = 5.0 & Qp = 7.5) & (b) heat 

is turned on between 80 < z/R0 < 100 (Qp = 1750, Qp = 2000 & Qp = 2250). 
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temperature increases, surface cooling due to convection is slowed down because the 

driving force for heat loss (difference in fiber temperature and air temperature) is reduced. 

Thus, by the time the fiber experiences heat (z/R0 = 80), it is thinner than a corresponding 

fiber subject to a lower air temperature. Due to this, it absorbs a lower quantity of heat. 

Therefore, the influence of volumetric heat begins to diminish. Simultaneously, reduced 

surface cooling due to increased air temperature starts becoming the major factor 

influencing fiber thinning. At an intermediate air temperature, a trade-off between these 

effects leads to the occurrence of a maximum in the plot. Subsequently, at high air 

temperature, the contribution of volumetric heat towards fiber thinning becomes 

negligible. This is manifested by the convergence of lines representing different Qp. 

Another interesting observation from this figure is that the location of the maximum shifts 

to the direction of higher air temperature as Qp increases. This observation is consistent 

with our reasoning. An increase in the magnitude of volumetric heat provided to the fiber 

would make it the dominant factor for a longer section of air temperature. 

4.1.3. Effect of length over which downstream heat is provided 

In this section, we study how the fiber radius is influenced by the length over which 

volumetric heat is provided to the fiber. We focus on the case when downstream heat is 

provided from z/R0 = 80 using Qp = 1500. Dimensionless radius is plotted against air 

temperature which is varied between 20 ºC and 120 ºC. Different trends are investigated 

in this plot by varying the interval for which heat is provided to the fiber. 
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Increasing the interval over which the fiber experiences the heat is analogous to supplying 

a greater quantity of volumetric heat (or providing a higher Qp as studied previously in 

Section 4.1.2.). The fact that Figure 10 follows a similar trend as Figure 9 (b) reinforces 

the concept that we described for explaining Figure 9 (b). 

 

4.2. PCL model and experiment 

4.2.1. Comparison of the initial jet profile 

In order to modify the model to be applicable to PCL, we found material properties of 

PCL from various sources as shown in Table 3. Moreover, we verified the accuracy of the 

model by comparing the initial jet profile and final fiber diameter obtained using the 

model, to that obtained experimentally. An example of the jet profile which was used to 

measure the jet radius as a function of z/R0 is shown in Figure 11 (b). The reported radius 

 

Figure 10: Rfinal/R0 vs. air temperature for varying values of Δa for the case when Qp 

=1500, and when heat is provided from z/R0 = 80. 
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of the jet at each value of z/R0 is an average of several measurements, and the reported 

errors represent the standard deviation of the measurements. The model slightly 

underpredicts the jet radius unitl about z/R0 = 5. This is due to the fact that the simulation 

does not capture the Taylor cone geometery of the electrospinning process, in which there 

is an inflection point on the jet, which can be seen from the experimental profile in Figure 

11 (b). 

 

 

Figure 11: Initial jet profile - (a) comparison between experiment and simulation & 

(b) CCD image. 
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4.2.2. Effect of distance of heat source from the fiber 

With the experimentally validated model for melt electrospinning, we studied the effect 

of downstream volumetric heat on the fiber diameter. The magnitude of volumetric heat 

was controlled by adjusting the distance between the heat lamp and the glass plate. We 

studied four cases: no radiation (benchmark), and lamp to plate distances of 4 cm, 8 cm, 

and 12 cm. Optical microscopy was used to measure the melt electrospun fiber diameter. 

We modeled the lamp as a line heat source such that the heat dissipates radially, similar 

to Kishore et al.55 Therefore, the quantity of heat absorbed by the fiber varies inversely 

with distance between the heat source and the polymer jet. After non-dimensionalization 

and appropriate rearrangement, this modified heat source term was incorporated into the 

existing energy equation. Using experimental data, we fitted a Qp,characteristic which is 

characteristic of the heat lamp. Using the line source analysis, we determined the Qp 

corresponding to each case. 

Figure 12 shows sample optical microscope images of fibers for varying lamp to jet 

distances. Fiber diameter distributions consistently show a thinner diameter for increasing 

magnitudes of heat. A similar trend was observed from the model as presented in Figure 

13. The experiment shows a 12.1%, 18.7%, and 22.7% decrease in diameter for the cases 

of lamp at 12 cm, 8 cm, and 4 cm, respectively. The model predicts an 11.3%, 16.2%, and 

24.8% decrease in diameter for the respective distances. This shows that the experiment 

and model are in good agreement with each other.  



43 

 

 

 

 

Figure 12: Optical microscope images with (a) no heat, and heat lamp at (b) 12 cm, 

(c) 8 cm & (d) 4 cm. 

 

Figure 13: Dimensionless fiber radius vs. distance of heat source from the glass plate. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

We have utilized a model for non-isothermal melt electrospinning with a volumetric heat 

source in order to demonstrate that downstream heating in the spinning process assists in 

the thinning of melt electrospun fibers. The model is based on thin filament approximation 

applied to fully coupled momentum, continuity, charge, and energy equations, along with 

the non-isothermal Giesekus constitutive model and the electric field equation at steady 

state. 

The simulation results for PLA validate that the concept of downstream heating leads to a 

decrease in the fiber radius. Therefore, it is a practical solution for addressing the 

drawbacks of melt electrospinning. In addition, the model has been used to study how the 

fiber radius is influenced by surrounding air temperature, magnitude of downstream heat, 

and the region over which this heat is provided to the fiber. 

For PCL, the simulated initial jet profile has been quantitatively compared to an 

experimental image of the stable jet near the syringe nozzle. In addition, the predicted 

effect of the downstream volumetric heat on the final radius of PCL is compared to the 

experimentally obtained average fiber radius. The simulated results are in agreement with 

the experimentally acquired data under difference processing conditions. 

Therefore, this study establishes that melt electrospinning coupled with downstream 

heating, as a method to produce sub-micron fibers, could be useful to industry. Such 
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techniques are cost-effective, environmentally friendly, and inherently safe. Downstream 

heating allows for the scalable production of sub-micron fibers which is otherwise very 

difficult to achieve with melt electrospinning. 

However, the results presented for PCL point to moderate reductions of fiber diameter via 

simple means of downstream heating, such as a heat lamp. More significant reduction in 

fiber diameter, demands stronger coupling between the heat source and the polymer jet, 

so that the jet can be maintained in a stretchable state over a longer region. This can be 

achieved by, for instance, addition of nanoparticle additives to the polymer, which are 

receptors of electromagnetic radiation.  Such a technique would alter the physics of the 

problem, and would therefore require a modified analytical and experimental approach, as 

will be the subject of future studies. 
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APPENDIX A 

MODEL FORMULATION 

The model has been formulated as an initial value problem of a set of five coupled first 

order ordinary differential equations.

The first equation in our system is as follows: 

𝑅′ = 𝑅̂               (34) 

From equation (15) we get the following relations: 

𝑣 =  
1

𝑅2               (35) 

𝑣′ =  
−2𝑅′

𝑅3                (36) 

From equations (23), (24) and (36) we get the following relation: 

𝜏𝑧𝑧 − 𝜏𝑟𝑟 =  𝜏𝑝,𝑧𝑧 − 𝜏𝑝,𝑟𝑟 + −
6𝛽𝑓(𝜃)𝑅′

𝑅3            (37) 

On substituting equations (35), (36) and (37) into equation (21) and subsequently 

rearranging it, we get: 

𝜃′ =
−2𝑁𝑎𝑅′

𝑃𝑒𝑅
( 𝜏𝑝,𝑧𝑧 − 𝜏𝑝,𝑟𝑟 −

6𝛽𝑓(𝜃)𝑅′

𝑅3 ) − 
2𝐵𝑖𝐿(𝜃−𝜃∞)𝑅

𝑃𝑒
+

𝑄𝑝𝑅2

𝑃𝑒
        (38) 

On substituting equations (35) and (36) into equation (25) and subsequently rearranging 

it, we get: 
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𝜏𝑝,𝑧𝑧
′ =  (

𝑅2

𝑓(𝜃)
) (

(𝜃+𝛤)

𝐷𝑒𝛤
) [

−4(1−𝛽)𝑓(𝜃)𝑅′

𝑅3 −  𝜏𝑝,𝑟𝑟 − 
𝐷𝑒𝛤

(𝜃+𝛤)
(

𝛼𝜏𝑝,𝑧𝑧
2

(1−𝛽)
+

4𝜏𝑝,𝑧𝑧𝑓(𝜃)𝑅′

𝑅3 −

 (
𝑓(𝜃)

𝑅2 )
𝜏𝑝,𝑧𝑧𝜃′

(𝜃+𝛤)
)]             (39) 

On substituting equations (35) and (36) into equation (26) and subsequently rearranging 

it, we get: 

𝜏𝑝,𝑟𝑟
′ =  (

𝑅2

𝑓(𝜃)
) (

(𝜃+𝛤)

𝐷𝑒𝛤
) [

2(1−𝛽)𝑓(𝜃)𝑅′

𝑅3
−  𝜏𝑝,𝑧𝑧 −  

𝐷𝑒𝛤

(𝜃+𝛤)
(

𝛼𝜏𝑝,𝑧𝑧
2

(1−𝛽)
−

2𝜏𝑝,𝑟𝑟𝑓(𝜃)𝑅′

𝑅3
)]      (40) 

On substituting equations (35), (36) and (37) into equation (16) and subsequently 

rearranging it, we get: 

𝑅̂′ =  𝑅′′ =
𝑅3

𝟔𝛽𝒇(𝜃)
[

2𝑅𝑒𝑅′

𝑅5 + 𝐵𝑜 +  
2𝑅′

𝑅
( 𝜏𝑝,𝑧𝑧 − 𝜏𝑝,𝑟𝑟 + −

6𝛽𝑓(𝜃)𝑅′

𝑅3 ) + (𝜏𝑝,𝑧𝑧
′ − 𝜏𝑝,𝑟𝑟

′ +

+
18𝛽𝑓(𝜃)𝑅′2

𝑅4 ) +
𝑅′

𝐶𝑎𝑅2 + 𝐹𝑒 (𝜎𝜎′ + 𝛽𝐸𝐸𝑡𝐸𝑡
′ +

2𝜎𝐸𝑡

𝑅
)]         (41) 

Equations (34), (38), (39), (40) and (41) are set up in MATLAB to solve for R, θ, τp,zz, τp,rr 

and R’, respectively. 
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APPENDIX B  

MATLAB CODE 

Function describing our system of coupled ODEs 

%Function containing the set of coupled ODEs 

function dydx = NonIsothermalElectrospinningODEIVP(x,y,Par) 

dydx = y*0; %Initialize 

dydx(1) = y(5); %Equation (34) 

f = exp((Par.H/(Par.R*Par.deltaT))*((1/(y(2) + Par.gamma)) - 

(1/Par.gamma))); %Equation (27) 

Qp = (Par.Qpm*(heaviside(x - Par.a) - heaviside(x - Par.b))); 

%Dimensionless heat source parameter for PLA 

dydx(2) = ((-2*Par.Na*y(5))/(Par.Pe*y(1)))*(y(3) - y(4) - 

((6*Par.beta)/y(1)^3)*f*y(5)) - 

((2*(Par.Bi*((1/y(1)^4)^(1/3))*(((1 + (8*Par.vair*y(1)^2)^2)/(1 

+ (8*Par.vair)^2))^(1/6)))*y(1))/Par.Pe)*(y(2) - 

Par.thetainfinity) + (Qp/Par.Pe)*y(1)^2; %Equation (38) 

dydx(3) = ((y(1)^2/f)*((y(2) + 

Par.gamma)/(Par.De*Par.gamma)))*(((-4/y(1)^3)*(1 - 

Par.beta)*f*y(5)) - y(3) - ((Par.De*Par.gamma)/(y(2) + 

Par.gamma))*(((Par.alpha*y(3)^2)/(1 - Par.beta)) + 

((4/y(1)^3)*(y(3)*f*y(5))) - ((1/y(1)^2)*f*(y(3)*dydx(2)/(y(2) + 

Par.gamma))))); % Equation (39) 

dydx(4) = ((y(1)^2/f)*((y(2) + 

Par.gamma)/(Par.De*Par.gamma)))*(((2/y(1)^3)*(1 - 

Par.beta)*f*y(5)) - y(4) - (((Par.De*Par.gamma)/(y(2) + 

Par.gamma))*(((Par.alpha*y(4)^2)/(1 - Par.beta)) + ((-

2/y(1)^3)*(y(4)*f*y(5)))))); %Equation (40) 

Et = 1/((1 + 2*x - x^2/Par.chi)*((1 + y(5)^2)^0.5)); %Equation 

(19) 
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dEt = (-2 + (2*x/Par.chi))/(((1 + 2*x - x^2/Par.chi)^2)*((1 + 

y(5)^2)^0.5)); %Equation (20) 

sigma = y(1) - (1/Par.Pec)*y(1)^3*Et; %Equation (17) 

dsigma = y(5) - (1/Par.Pec)*((3*y(1)^2*y(5)*Et) + (y(1)^3*dEt)); 

%Equation (18) 

df = exp((Par.H/(Par.R*Par.deltaT))*((1/(y(2) + Par.gamma)) - 

(1/Par.gamma)))*(Par.H/(Par.R*Par.deltaT))*(-1/((y(2) + 

Par.gamma)^2))*dydx(2); %Equation (28) 

dydx(5) = (y(1)^3/(6*Par.beta))*(1/f)*(((2*Par.Re*y(5))/y(1)^5) 

+ Par.Bo + ((2*y(5)/y(1))*(y(3) - y(4) - 

(6/y(1)^3)*(f*Par.beta*y(5)))) + (dydx(3) - dydx(4) + 

((18/y(1)^4)*Par.beta*f*y(5)^2) - 

(((6*Par.beta)/y(1)^3)*df*y(5))) + (y(5)/(Par.Ca*y(1)^2)) + 

(Par.Fe*((sigma*dsigma) + (Par.betaE*Et*dEt) + 

(2*sigma*Et)/(y(1))))); %Equation (41) 

end 

Function describing our initial conditions 

%Function containing the initial conditions 

function [R,theta,tpzz,tprr,dR] = 

NonIsothermalElectrospinningIC(Par) 

dRguess = -1; 

R = 1; %Equation (32) 

theta = 0; %Equation (31) 

dR = fsolve(@problemdR,dRguess,[],Par); %Obtained by solving 

equation (33) 

tpzz = 2*(1 - Par.beta)*(-2*dR); %Equation (29) 

tprr = -(1 - Par.beta)*(-2*dR); %Equation (30) 

end 

  

function fdR = problemdR(dR,Par) 
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fdR = 6*dR^2 + ((1/Par.Ca) + Par.Fe)*dR + ((2*Par.Fe)/((1 + 

dR^2)^(0.5)))*(1 - (Par.betaE/((1 + dR^2)^(0.5)))); %Equation 

(33) 

end 

Sample main function 

This function is used for generating the radius and temperature profile for PLA 

corresponding to the case where Qp = 0 (heat provided between 0 < z/R0 < 20). 

%Main function 

%Heat provided between 0 < z/R0 < 20 

%Qp = 0 

function [] = NonIsothermalElectrospinningODEIVPResult() 

% PLA 

Par.H = (9060*8.314); %Activation energy of flow 

Par.R = 8.314; %Universal gas constant 

Par.Tnozzle = (225 + 273); %Nozzle temperature 

Par.deltaT = (Par.Tnozzle^2)/(Par.H/Par.R); %Temperature change 

necessary to substantially alter the rheological properties of 

the polymer melt 

Par.gamma = Par.Tnozzle/Par.deltaT; %Temperature factor 

Par.vair = 0; %Air velocity 

Par.Na = 2.532*10^(-5); %Nahme-Griffith number 

Par.Pe = 4.770; %Peclet number for thermal conductivity 

Par.beta = 0.001; %Viscosity ratio 

Par.Bi = 0.0103; %Biot number 

Par.De = 0.0270; %Deborah number 

Par.alpha = 0.015; %Mobility factor 

Par.Pec = 0.294; %Peclet number for electrical conductivity 

Par.chi = 200; %Ratio of length of experimental setup to intial 

radius of the polymer melt 
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Par.Re = 2.564*10^(-6); %Reynolds number for flow 

Par.Bo = 0; %Bond number (It is equal to 0 since the flow is not 

influenced by gravity) 

Par.Ca = 4.264; %Capillary number 

Par.Fe = 3.324; %Electrostatic force parameter 

Par.betaE = 2.1; %Dielectric constant ratio 

Par.Qpm = 0; %Magnitude of heat source 

Par.a = 0; %Start of heat 

Par.b = Par.a + 20; %End of heat 

Par.Tair = (20 + 273); %Surrounding air temperature 

Par.thetainfinity = (Par.Tair - Par.Tnozzle)/Par.deltaT; 

x = linspace(0,Par.chi,1000); 

[R,theta,tpzz,tprr,dR] = NonIsothermalElectrospinningIC(Par); 

initial = [R theta tpzz tprr dR]; %Initial conditions 

M = [1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1]; 

options = odeset('AbsTol',10^(-10),'Mass',M); 

format longeng; 

[x,Q] = 

ode23s(@NonIsothermalElectrospinningODEIVP,x,initial,options,Par

); %Solving the system of ODEs using an implicit time stepper 

%Radius profile 

semilogy(x,Q(:,1),'-','LineWidth',0.7); 

xlabel('z/R_0'); 

ylabel('R/R_0'); 

legend('Q_p = 0'); 

figure; 

%Temperature profile 

JetTemperature = (Par.Tnozzle - 273) + Par.deltaT*Q(:,2); 

plot(x,JetTemperature,'-','LineWidth',0.7); 

xlabel('z/R_0'); 

ylabel('Fiber Temperature (ºC)'); 

legend('Q_p = 0'); 

end 




