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ABSTRACT

Memory is a critical component of all computing systems. It represents a fundamental

performance and energy bottleneck. Ideally, memory aspects such as energy cost, perfor-

mance, and the cost of implementing management techniques would scale together with

the size of all different computing systems; unfortunately this is not the case. With the up-

coming trends in applications, new memory technologies, etc., scaling becomes a bigger

a problem, aggravating the performance bottleneck that memory represents. n A memory

hierarchy was proposed to alleviate the problem. Each level in the hierarchy tends to have

a decreasing cost per bit, an increased capacity, and a higher access time compared to its

previous level. Preferably all data will be stored in the fastest level of memory, unfor-

tunately, faster memory technologies tend to be associated with a higher manufacturing

cost, which often limits their capacity. The design challenge is, to determine which is the

frequently used data, and store it in the faster levels of memory.

A cache is a small, fast, on-chip chunk of memory. Any data stored in main memory

can be stored in the cache. For many programs, a typical behavior is to access data that has

been accessed previously. Taking advantage of this behavior, a copy of frequently accessed

data is kept in the cache, in order to provide a faster access time next time is requested.

Due to capacity constrains, it is likely that all of the frequently reused data can not fit in

the cache, because of this, cache management policies decide which data is to be kept in

the cache, and which in other levels of the memory hierarchy. Under an efficient cache

management policy, a encouraging amount of memory requests will be serviced from a

fast on-chip cache.

The disparity in access latency between the last-level cache and main memory mo-

tivates the search for efficient cache management policies. There is a great amount of
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recently proposed work that strives to utilize cache capacity in the most favorable to per-

formance way possible. Related work focus on optimizing the performance of caches fo-

cusing on different possible solutions, e.g. reduce miss rate, consume less power, reducing

storage overhead, reduce access latency, etc.

Our work focus on improving the performance of last-level caches by designing poli-

cies based on principles adapted from other areas of interest. In this dissertation, we

focus on several aspects of cache management policies, we first introduce a space-efficient

placement and promotion policy which goal is to minimize the updates to the replacement

policy state on each cache access. We further introduce a mechanism that predicts whether

a block in the cache will be reused, it feeds different features from a block to the predictor

in order to increase the correlation of a previous access to a future access. We later intro-

duce a technique that tweaks traditional cache indexing, providing fast accesses to a vast

majority of requests in the presence of a slow access memory technology such as DRAM.
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1. INTRODUCTION

To this day, memory latency continues to be a critical performance bottleneck. For

years, processor speeds continued to constantly increase, while memory speeds failed to

keep up. In order to alleviate the cost of memory latency, computer architects proposed the

idea of a multi-level memory hierarchy, where each level design is chosen by comparing

the trade-offs between speed, capacity, manufacturing costs, and others.

1.1 Multi-level Cache Hierarchy

Starting from the memory hierarchy level that is physically the closest to the core, the

trend appears to be, to sacrifice capacity for better access latency compared to the next

level in the hierarchy. On-chip memory is referred to as caches. A cache can be define as

a small fast memory, which goal is, to store only data that is frequently accessed.

The most significant gap in memory speeds between two consecutive levels in the

memory hierarchy appears in between the last level cache (LLC) located on-chip and main

memory located off-chip. For many years, the rule of thumb was, where this scenario

consisted of an SRAM LLC, and DRAM technology for main memory, however, with

emerging Non-Volatile Memory (NVM) technologies, architects have proposed adding

an on-chip DRAM LLC to the hierarchy, as a cost effective way to replace DRAM as

main memory. Each of the different technologies ingrain in different challenges, SRAM

is the most access-latency efficient technology, unfortunately it’s manufacturing cost, and

density makes it unfeasible to satisfy these days huge capacity requirements. DRAM

has been the one solution for capacity problems for years, but DRAM access-latency is

higher than desired. New trends in technology appeal to be a manufacturing cost-efficient

solution for main memory, but the savings come with the price of paying an even higher

access latency than that of DRAM. Due to the attractive potential benefits that can be
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obtained from LLCs, many researches in the field have proposed a wide variety of policies

to obtain optimize the performance of LLCs, all with the solely purpose of managing cache

content in most favorable to performance way possible [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Despite the amount of efforts

in the research, today there is still room to bridge the performance of the state-of-the-art

policy and that of an unfeasible optimal technique. The very best performance of a cache

will happen when every single memory request can be served from an on-chip cache, and

accessing the slow main memory is avoided at all cost. However, in order for this to

happen, data would have to be fetch to the cache before the core requests it, and in order to

make this possible, knowledge of the future is required, making this approach unfeasible.

The goal of architects is to design better management policies such that their performance

come as close as possible to the performance of an optimal policy.

1.2 Last-level Cache Management Policies

The effectiveness of the management policy translates directly into an overall better

system performance. Because of the limited capacity of the LLC, and the constant growth

of memory requests from current applications, very often, it becomes not possible to fit

the application’s working set in the LLC. Policies must make the decision to evict some

of the residing data in the LLC, in order to make room for the new requested data. There

are several other management decisions policies cover, in these dissertation, we present

several policies that focus on tackling different challenges that are present in LLCs.

1.3 Dissertation Statement

The performance and efficiency of last-level caches can be improved by applying prin-

ciples of machine learning and other areas of research to intelligent last-level cache man-

agement policies.
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1.4 Dissertation Organization

In this dissertation we present three novel management policies that are designed to

overcome some difficulties that are present in current memory systems, as well as prepar-

ing for the challenges that upcoming memory technologies represent. Our proposed work

is characterized by the idea of following principles found in machine learning and other

areas of interest. We demonstrate that by adapting this principles to cache management,

we are able boost performance, save storage overhead, and further reduce access latency.

For the following chapters, in order to put our work into perspective, we will first intro-

duce some of the most relevant related work. Following, each of the proposed mechanism

will be introduced, first stating the background and motivation that lead up to this work.

Each technique will then be introduced in detail, followed by articulating the method-

ology and results we obtained. In Chapter 3, our Minimal Disturbance Placement and

Promotion policy is introduced, following the same intuition as that of the minimal distur-

bance principle found in neural networks, we were able to optimize the compelling storage

overhead saving tree-based PseudoLRU technique, yielding the same performance as the

state-of-the-art technique, while requiring a fraction of the storage overhead. Chapter 4

proposes an accurate reuse predictor policy, it is able to highly accurately predict whether

a block in the LLC will be reused again before it is evicted. The predictor is inspired by

neural networks, and trained following the perceptron learning rule. It provides the pre-

dictor with an extra kick of accuracy and a reduces the training period for application with

changing behavior phases. Chapter 5 is used to describe a policy that provides affordable

access-latency in the presence of a set-associative DRAM cache, with essentially the high

hit-rate associativity delivers. Finally, Chapter 6 gives a conclusion of the work done and

presented in this dissertation.
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2. RELATED WORK

Our work builds on the contributions of many other researchers to the field. To place

our work in the context of other research, we now review some of the most recent related

work.

2.1 Placement and Promotion Decision

Each reference block has a last reference during the execution of an application, for

several of the blocks the first reference might be the last reference. The placement and

promotion of a block should be accordingly to their reuse.

2.1.1 Dynamic Placement

The Least Recently Used (LRU) policy places blocks into the Most Recently Used

(MRU) position. Qureshi et al. observe that changing the placement position to LRU

sometimes results in an improvement as blocks that are no re-referenced after being brought

to the cache, are quickly eliminated avoiding these blocks to pollute the cache [28]. The

authors of this work propose dynamic insertion policy (DIP) that determines at run-time

whether LRU or MRU placement works best for a particular workload. Jaleel et al. pro-

pose a thread-aware version of DIP, TADIP [13] that improves over DIP as well as previous

thread-aware cache management policies. Khan and Jiménez propose decision tree analy-

sis for choosing from a wider range of placement positions [14].

2.1.2 Placement and Promotion Vectors

Genetic Insertion and Promotion for PseudoLRU Replacement (GIPPR) uses genetic

algorithms to find insertion and placement vectors (IPVs) for tree-based PseudoLRU [22].

The vectors assign the placement position for new blocks as well as the position to which a

block in a given original position should be promoted. A single vector does not generalize
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well to different workloads, so in this work the authors propose to supply the policy with

four vectors from which the best performing one is chosen at run-time using set-dueling.

GIPPR begins with a blank slate on which the trace-driven genetic algorithm writes a novel

placement and promotion drawn from an enormous search space. GIPPR work attempts

to find the most favorable positions for blocks to be placed and promoted to.

2.2 Reuse Prediction

Much recent work on last-level cache replacement has focused on predicting whether

and when a block will be re-referenced.

2.2.1 Re-reference Interval Prediction

Re-reference Interval Prediction (RRIP) categorizes blocks as near-immediate re-reference

interval, intermediate re-reference intervals, and distant re-reference interval [12], associ-

ating these positions with cache blocks in a way roughly analogous to the positions in

other replacement policies. Static RRIP (SRRIP) always places into the same position

(e.g. distant re-reference interval) while Dynamic RRIP (DRRIP) uses set-dueling [29] to

adapt the placement position to the particular workload. RRIP is a simple policy, requiring

little overhead (2 or 3 bits per block) and no complex prediction structures, while resulting

in significant improvement in performance. The intuition behind this policy is to allow

incoming blocks to the cache to remain just the enough amount of time to be re-referenced

again and promoted to a more favorable position, or in the opposite case, to be evicted

quickly and allow the allocation of other blocks.

2.2.2 Dead Block Prediction

Dead block predictors predict whether a block will be used again before it is evicted.

There are numerous dead block predictors applied to a variety of applications in the liter-

ature [30, 31, 32, 33, 34, 35, 6, 16]. In some of our work, we take inspiration from the
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Sampling Dead Block Prediction (SDBP) of Khan et al. [16]. In this work, a sampler

keeps partial tags of sampled sets. Three tables of two-bit saturating counters are accessed

using a technique similar to a skewed branch predictor [36]. For each hit in the sampled

set, the program counter (PC) of the relevant memory instruction is hashed into the three

tables and the corresponding counters are decremented. For each eviction from a sampled

set, the counters corresponding to the PC of the last instruction to access the victim block

are incremented. For any access to the LLC, the predictor may be consulted by hashing

the PC of the memory access instruction into the three tables and taking the sum of the

indexed counters. When the sum exceeds some threshold, the accessed block is predicted

to be dead. Tags in sampled sets are managed with true LRU and a reduced associativity,

but the LLC may be managed by any policy. The paper applies dead block prediction to

replacement and bypass, but in this work we use the predictor for determining placement

position and bypass.

2.2.3 Signature-Based Hit Prediction

Wu et al. [37] approach re-reference prediction from the opposite perspective of dead

block prediction: rather than predict whether a block is dead, their signature-based hit

predictor (SHiP) predicts the likelihood that a block will be hit again. This technique

uses a table of 3-bit saturating counters indexed by a signature of the block, e.g. the

memory instruction PC that caused the initial fill of the block. When a block with a given

signature is hit, the counter associated with that signature is incremented. When a block

with a given signature is evicted, the counter is decremented. The hit predictor is used to

determine placement position for RRIP. When the counter corresponding to the signature

of an incoming block exceeds some threshold, the block is predicted to have a “distant re-

reference interval,” otherwise it is predicted to have an “intermediate re-reference interval.”

That work proposes an efficient sampling-based predictor where a small subset of cache
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sets keep metadata such as signatures, and the predictor generalizes to the whole cache.

2.3 Machine Learning for Cache Management

2.3.1 Perceptrons in Microarchitecture

Perceptron learning was proposed for predicting conditional branches [38]. In this

work, a perceptron weights vector is selected by a hash of the branch address and its dot

product with an input vector of branch history outcomes. If the product is at least 0, the

branch is predicted as taken, otherwise it is predicted not taken. The weights are updated

with the perceptron update rule: if the prediction is incorrect, or the dot product does not

exceed some threshold magnitude, then the weights are incremented or decremented based

on their correlation to the corresponding history bits.

Subsequent work on predicting branches with perceptron-like algorithms improved the

latency of the operation by using history bits to generate indices into weights tables rather

than as input to the dot product computation [39, 40, 41]. In some of our work we take this

approach as well, using input features to index weights tables and updating the weights

with perceptron learning.

2.4 DRAM Last-Level Caches

With the increasing demands for memory capacity, on-chip stacked DRAM caches

have been proposed, as the new last level cache that comes right before main memory, in

order to improve the hierarchy performance [42, 43, 44, 45]. DRAM technology represent

challenges that are often not an issue with SRAM, some proposed optimizations include:

reducing the overhead of supporting tags, improving hit rate, and optimizing access la-

tency, etc.
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2.4.1 Tag Optimizations for DRAM LLCs

Because of the large magnitude of DRAM caches, storing each corresponding tag from

each of the cache blocks.

The Loh-Hill cache [47] was proposed to co-locate the tags and data in the same

DRAM cache row. The request will read the tag first, then determine in which column

the data resides and access it all with a row buffer hit access timing. Although the Loh-

Hill cache reduces access latency compared to a naive scheme that places the tag and the

data into different rows, accessing the tag still adds significant access latency to the critical

path. The DRAM cache data may be accessed only after obtaining the tag and finding out

the location of the data. Huang and Nagarajan[26] propose prefetching tags into a small

on-chip SRAM tag cache. Requests with spatial locality are able to read tags from the

fast on-chip tag cache. However, incorrectly prefetched tags to the tag cache incur in a

significant bandwidth overhead. The Buffered Way Predictor (BWP) technique [48] has

been proposed to predict the way number of the cache set where the data being requested

is located. The data can be fetched from the DRAM cache according to the predicted way

number, avoiding having to read in all tag from the set first. However, the key drawback

of BWP is that it requires 6% of the SRAM cache capacity to store the way number of the

DRAM cache data.

2.4.2 Access Latency Optimization for Direct-Map DRAM Caches

Qureshi and Loh[46] propose the Alloy Cache, a direct-mapped DRAM cache design.

This work explores the trade-off between access latency and miss rate for DRAM caches.

The Alloy cache proposed to prioritize access latency over miss rate for a DRAM cache.

The technique co-locates tags and data in the same DRAM cache block so the tag and data

can be streamed out in two back-to-back data bursts. It incorporates a Memory Access

Predictor (MAP) to predict whether a request will hit in the DRAM cache or not. The pre-
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diction is used to guide whether to do a parallel or sequential access between the DRAM

cache and main memory. The Alloy Cache sacrifices DRAM cache hit rate for a lower ac-

cess latency, however, for workloads that significantly benefit from a set-associative cache

design, the Alloy cache might degrade their performance.
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3. MINIMAL DISTURBANCE PLACEMENT AND PROMOTION ∗

In this chapter, we introduce our work Minimal Disturbance Placement and Promo-

tion (MDPP), a space-efficient replacement algorithm. MDPP builds upon a tree-based

PseudoLRU technique, and guides the placement and promotion decisions following the

minimal disturbance principle. MDPP is presented in a static and dynamic version. Static

MDPP can match the state-of-the-art policies’ performance, while dynamic MDPP out-

performs previously proposed work.

3.1 Introduction

With the disparity between cache latency and memory latency, a replacement policy

that reduces misses can significantly improve performance. Many replacement policies or-

der blocks into distinct positions, choosing to replace the block in a least favorable position

when there is a miss to a set. Positions are manipulated by the placement and promotion

policies. The placement policy decides what the initial position of a block should be, while

the promotion policy decides what the new position of a re-referenced block should be. To

accommodate a block in a new position, often other blocks must change their positions.

These changes can disturb non-referenced blocks, causing them to move closer to the least

favorable position by an amount that may be out of proportion to their merit. Previous

work focuses on what happens to the just-referenced block without regard to the the effect

on the other, non-referenced blocks.

Figure 3.1 shows the average change in position of non-referenced blocks for two

common replacement policies: least-recently-used (LRU) replacement policy as well as

tree-based PseudoLRU over a set of 100 multi-core workloads described in Section 3.4.
∗2016 IEEE. Reprinted, with permission, from E. Teran, Y.Tian, Z. Wang and D. Jiménez, "Minimal

disturbance placement and promotion", April 2016
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An evicted block travels one position beyond the maximum value, i.e. it moves out

of the set. The LRU policy is relatively well-behaved, moving non-referenced blocks

no more than one position and often less than one position when a block is promoted

or placed. Tree-based PseudoLRU, a widely-used space efficient policy, moves blocks’

positions much further than LRU, and the movement varies wildly with the non-referenced

block’s original position.
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Figure 3.1: Average change in position caused by a promotion for the non-promoted blocks

In this work, we develop a replacement policy that reserves promotion privileges to

blocks with an actual risk of being evicted, we found that promoting blocks that hold

higher positions in the recency stack introduce unnecessary changes to all blocks’ order-

ing, something we would like to avoid.
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Widrow and Lehr introduced the minimal disturbance principle applied to neural net-

work learning that says: "Adapt to reduce the output error for the current training pattern,

with minimal disturbance to responses already learned". Guided by this principle, we

present a technique that only promotes referenced blocks when unprotected, meaning they

are at risk of being evicted, it does not promote blocks protected from eviction, doing this

we attempt to introduce the minimal disturbance to blocks in the set.

We apply this approach to tree-based PseudoLRU. The results are a simple static pol-

icy that significantly outperforms true LRU with less complexity, and a dynamic policy

that outperforms the state-of-the-art on multi-core workloads. The dynamic MDPP Cache

achieves a normalized weighted speedup of 11.0% on multi-core workloads over LRU

while SHiP [37] achieves an 9.1% speedup.

This chapter describes the following contributions:

1. We show that tree-based PseudoLRU is a disturbing policy. That is, it causes changes

to the positions of non-referenced blocks that are out of proportion to those blocks’

likelihood to be referenced again.

2. We introduce a static minimal disturbance placement and promotion policy for Pseu-

doLRU. We describe the policy and show that it outperforms other static policies for

single-threaded workloads and is competitive with other static policies for multi-

core workloads. Because it builds on the space-efficient PseudoLRU policy, the

MDPP has lower space overhead than previous recent work on replacement.

3. We introduce a minimal disturbance dynamic placement and promotion policy that

adapts the placement policy to changing program behavior using dead block pre-

diction resulting in dynamic MDPP. We show that this policy matches the perfor-

mance of the state-of-the-art replacement policy single-threaded workloads with a
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speedup of 5.9% over LRU, and exceeds the state-of-the-art performance for multi-

core workloads with a normalized weighted speedup of 11.0% over LRU.

3.2 Motivation

3.2.1 Policy Based on Binary Trees

PseudoLRU policies are based on providing an effect similar to the least-recently-used

(LRU) policy, but with a more efficient representation. LRU orders blocks in a recency

stack from most-recently-used (MRU) to least-recently-used, placing new blocks into the

MRU position and evicting blocks from the LRU position. As blocks are reused, they are

moved to the MRU position with all blocks previously ahead of the reused block shifted

down the recency stack. At any point in the algorithm, each block has a distinct position

in the recency stack. For an n-way set-associative cache, the positions are numbered 0

(MRU) through n− 1 (LRU).

The tree-based PseudoLRU replacement policy uses a binary tree to prioritize cache

blocks [49]. The leaves of the tree are the indices of blocks (i.e. ways) in a set. The

internal nodes are labeled with bits: 0 or 1. The internal nodes are represented as an array

of bits with an implicit tree structure. There are n− 1 internal nodes in a binary tree with

n leaves. Thus, tree-based PseudoLRU is space efficient since it requires only n − 1 bits

per set compared with n log2 n bits per set for LRU.

PseudoLRU Replacement

On replacement, the victim block is chosen by tracing a path from the root of the tree

to a leaf block. At each internal node, if the label is one, then the next node on the path is

the right child of the current node; otherwise, it is the left child.

PseudoLRU Placement and Promotion

When a block is placed or re-referenced, it is promoted. The bits along the path from

the root to the associated leaf are modified such that the replacement algorithm would
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Figure 3.2: The nodes in an example PseudoLRU tree arranged in ascending order of node
number showing the labels guiding replacement policy

choose to go in the opposite direction from the leaf. That is, for all the nodes along a path

from root to leaf, if the leaf is in the left subtree of the current node, then the bit in that

node is changed to 1, otherwise the bit is changed to 0. Thus, among all blocks in the set,

the promoted block receives the most protection from being evicted.

Protection

We can formalize the notion of protection in a PseudoLRU tree: a leaf is protected at

tree level l if the lth node on a path from root to leaf is labeled 0 when the leaf is in the

right subtree of that node, or labeled 1 when the leaf is in the left subtree of that node;

otherwise, the leaf is unprotected. A promoted block is protected at all levels, while the

block chosen as the victim is unprotected at all levels. We also define the protected subtree

of a node to be the right subtree if the node is labeled 0, or the left subtree if the node is

labeled 1.

PseudoLRU Ordering

The leaves of the PseudoLRU tree may be ordered from 0 to n − 1 in much the same

way as the positions in the LRU recency stack [22]. The most protected leaf occupies

position 0, i.e. the “PseudoMRU” block. The most unprotected leaf occupies position
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Old Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
New Position 0 1 2 3 4 5 6 7 0 1 2 3 0 1 0 0

Table 3.1: Minimal Disturbance promotion for 16-way associativity.

n− 1, i.e. it is the PseudoLRU block. The other blocks occupy positions in between. For

example, the sibling of the PseudoMRU block occupies position 1, and the first cousins of

the PseudoMRU block are in positions 2 and 3. Let us think of the position of a leaf as a

binary integer whose least significant bit is associated with the leaf. At each level of the

tree, the relevant bit in the position is 1 if the leaf is unprotected at that level, or 0 if it is

protected at that level.

One way to see the ordering is by considering a simple transformation on the binary

tree: for each internal node labeled with 0, swap the left and right subtrees and change the

label to 1. This procedure produces a canonical form in which the leaf nodes are ordered

from left to right in ascending recency position: the rightmost leaf is the PseudoLRU way

and the leftmost leaf is the PseudoMRU way. For example, Figure 3.2 shows an example

8-way associative PseudoLRU tree representing internal nodes numbers 0 through 6 la-

beled with randomly chosen binary values. After the transformation, nodes 0, 2, 3, and 5

would have their left and right subtrees swapped, placing the leaves into ascending order

of position.

Promoting a block has the effect of moving other blocks into less fortunate positions,

sometimes dramatically so. For instance, promoting a block such that the bit in the root

node is toggled may move the previous PseudoLRU block down by n/2 positions.

Only one block at a time is in the PseudoLRU position, but the position of each block

is roughly proportional to its vulnerability to being moved to the PseudoLRU position in

the near future.
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3.2.2 PseudoLRU Disturbs Non-Promoted Blocks

Let us consider the placement/promotion algorithm for tree-based PseudoLRU. At

each level in the tree, the algorithm alters a bit to protect the referenced block without

regard for the disturbance caused to other blocks. We consider the disturbance to a block

to be the number of positions it is moved as a result of an placement or promotion to

another block. Disturbance typically can be defined as the act of interfering with the ar-

rangement, order, or harmony of, in this case the promotion of referenced blocks alters the

order of non-referenced blocks in the set , that can lead to consequences such as making

non-referenced blocks become vulnerable to eviction.

PseudoLRU is a disturbing policy because it changes in the positions of the non-

referenced blocks out of proportion to the analogous changes in standard LRU. Figure 3.1

shows the average magnitude of the change in position (the y-axis) for non-referenced

blocks when a block at a given position (the x-axis) is placed or promoted for LRU and

PseudoLRU. The average is for a 16-way set-associative 16MB cache taken over the 100

8-core workloads described in Section 3.4. For LRU, the maximum change in the position

of a non-referenced block is 1 when the formerly MRU block is not referenced, and goes

down to 0.6 for the LRU block. For tree-based PseudoLRU, the non-referenced blocks’

positions are changed much more. The formerly PseudoMRU block travels on average

two positions away, the block in position 12 moves 1.39 positions away, and at most block

positions the distance traveled is significantly higher than the corresponding position in

true LRU.

Thus, tree-based PseudoLRU is more disturbing to blocks’ positions than true LRU, so

the blocks’ PseudoLRU recency positions are inaccurate reflections of their true recency

positions in true LRU. That is, blocks that might have locality may needlessly be moved

too close to LRU, exposing them to the risk of eviction. To the extent that imitating true
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LRU is a worthy goal, PseudoLRU somewhat fails. This is not really surprising as we

expect to give up some performance when gaining a more space-efficient policy. However,

what is surprising is that this level of disturbance is totally unnecessary, and removing it

results in a replacement policy superior to LRU.

3.3 Design

We present a different placement and promotion policy for tree-based PseudoLRU:

place and promote blocks to positions that cause the minimal amount of disturbance among

all blocks. The positions of blocks in the tree can be directly manipulated with simple

algorithms [22], but we must still choose what the new positions should be to minimize

disturbance.

3.3.1 Minimal Disturbance Placement

When an incoming block is placed, we must balance the potential disturbance caused to

existing blocks with the potential risk of eviction to the placed block if it is left completely

unprotected from eviction. What is the choice of placement position to achieve minimal

disturbance?

From this, we decide that the logical choice of placement is the one that affords the

most protection to the incoming block while still allowing for a majority of the existing

blocks to remain in the same position, while disturbing a minority of blocks .

Based on this premise, for an n-way set-associative cache, a MDPP Cache would place

incoming blocks in position 3n/4. Since the previous position of a newly evicted block

was n− 1, placing the block into position 3n/4 insures that the labels of the root node and

the second-level nodes remain the same so there are no wide swings in the positions of the

3/4 of blocks closest to PseudoMRU. Changing bits any closer to the root risks affecting

the positions of a majority of other blocks. The newly placed block remains unprotected at

the root level and second level, but fully protected beyond that so it has a good opportunity
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to be referenced and thus promoted.

3.3.2 Minimal Disturbance Promotion

Table 3.1 gives the old and new positions for promotions for 16-way associativity. Let

us recursively subdivide the PseudoLRU tree into 1 + log2 n regions of greater and lesser

protection, starting with the protected subtree of the root, then the protected subtree of the

unprotected subtree of the root, and so on, ending with singleton subtrees at positions n−2

and n− 1. Figure 3.3 illustrates these regions of protection. When a block B is promoted,

a minimal number of bits in the tree are changed such that the first block in the smallest

unprotected region that contains B is moved to the MRU position. As a result, B is moved

along with the first block to a position relatively close to MRU. This strategy gives due

protection to the promoted block while minimizing movements among the other blocks.

Thus, for n = 16, i.e. 16-way associativity, the blocks in positions 0 through 7 remain in

the same positions because they are already in the protected subtree. Position 8 moves to

position 0, position 9 moves to position 1, and so forth as in Table 3.1.

Note that implementing our modified promotion and placement policies incurs virtu-

ally no extra energy or area penalty; the replacement status vector is updated using the

same sort of logic as tree-based PseudoLRU, but with a different set of state transitions.

Indeed, dynamic energy is reduced because for a great many accesses no update needs to

be made to the status vector.

Effect of Minimal Disturbance on Block Positions

Figure 3.4 shows the effect of minimal disturbance placement and promotion on the

average change of non-referenced blocks. The magnitude of changes in position is far less

than the average for PseudoLRU or even true LRU. The block in position 0 moves the

most, an average of 0.79 positions. Movements of subsequent blocks steadily decrease

until block 8, which moves an average of 0.40 positions. The block in the PseudoLRU
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Figure 3.3: Regions of Protection in the PseudoLRU Tree

position moves an average of 0.27 positions. We can quantify the “total disturbance” of a

placement and promotion policy as the area under the curve in Figure 3.4. Integrating the

curves for the three replacement policies, we see that the total disturbance caused by LRU

is 12.1, by PseudoLRU is 13.8, and by minimal disturbance PseudoLRU is 5.2.

Quantifying disturbance for RRIP is problematic for two reasons: 1) block positions

are not distinct, as in LRU and PLRU; and 2) promotion of a block in RRIP is decou-

pled from changes in other block positions; blocks are only moved away from MRU on

evictions so RRIP is not directly comparable with policies where promotions necessarily

disturb some non-promoted blocks.

Disturbance to the Evicted Block

Figure 3.4 assumes that the disturbance of moving from one position to the next is

constant. However, evicting a block, i.e. moving it from LRU to a position out of the cache,

incurs far more disturbance to a block than simply moving it to another position. Thus, for
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Figure 3.4: Average change in recency stack position for LRU, PseudoLRU, and MDPP
Cache

example, an absurd policy of inserting only into the LRU position and never promoting

any blocks would have a very high miss rate but relatively cause minimal disturbance.

A more nuanced formulation of the disturbance metric would assign a larger distance to

evicting a block than to simply changing its position. This distance would take into account

latency to satisfy a cache miss as well as the probability that the block will be referenced

again. There is no general way to know that probability a priori but, as we will see in

Section 3.3.3 we can estimate it dynamically with dead block prediction.

3.3.3 Dynamic MDPP

The minimal disturbance MDPP Cache policy as presented so far is a static policy.

That is, the policy remains the same regardless of the run-time features of the workload.

However, a great deal of recent work has focused on dynamic policies that change in

response to workload characteristics. Thus, we extend the minimal disturbance idea to a

dynamic policy. In particular, we allow the placement position to be adapted through dead
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block prediction.

Some recent dynamic policies adapt the placement position using techniques such as

prediction [37] and set-dueling [28, 12]. Other policies implement selective bypass, i.e.

when an incoming block is predicted to not be used before it is evicted, it is not placed in

the cache but rather bypassed to the core [16, 19]. Both of these ideas are compatible with

the minimal disturbance idea of causing as little disturbance as possible. Clearly, selective

bypass works along provoking minimal disturbance: a block that will not be re-referenced

will only pollute the cache and confuse the replacement policy. Such a block cannot be

disturbed by bypass because it is already a dead block. Adapting the placement position

can also achieve the minimal disturbance for PseudoLRU caches as long as the placement

position is beyond the halfway point in the PseudoLRU recency stack so as not to make

wide swings in block positions.

We use the sampling-based dead block prediction algorithm (SDBP) [16] to drive block

placement and bypass. A dead block predictor predicts whether a block that has been

placed or referenced will be referenced again before it is evicted. The SDBP paper uses the

program counter (PC) of a memory instruction to index a skewed predictor that provides

a number between 0 and 9. If that number exceeds a threshold, the referenced block is

predicted to be dead. If the block is referenced again, the corresponding counters in the

prediction tables are decremented. If the block is evicted before being referenced again,

the counters are incremented. The predictor learns from a sampler, a small set of partial

tags held separately from the cache and managed with the LRU policy. In the original

paper, each cache block has a prediction bit associated with it to drive the replacement

policy. Our technique does not need this extra bit since the PseudoLRU block is always

evicted. The technique only consults the predictor when a block is placed.

We modify the MDPP Cache policy to incorporate dynamism for a 16-way set-associative

cache as follows: on a cache miss, the PC of the offending memory instruction is used to
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consult the dead block predictor. The predictor returns a confidence value c between 0 and

9. If c = 0, the block is placed in position 8, which is the closest placement to PseudoMRU

that does not disturb the 8 blocks in the protected subtree of the root. If 0 < c < 6 then

the block is placed in position 14. This choice of placement position swaps the previous

PseudoLRU block with the next-to-PseudoLRU block, having no effect on the positions

of any other block in the set. If c ≥ 6 then the block is bypassed, and the replacement

state for the set remains unchanged. The cutoff for bypass of 6 or greater was determined

empirically.

3.4 Evaluation

3.4.1 Methodology

We model performance with two simulators: one for single-threaded workloads and

one for eight-core multi-programmed workloads. Both simulators use the following mem-

ory hierarchy parameters: L1 data cache: 32KB 8-way associative, L2 unified cache:

256KB 8-way, 16-way, DRAM latency: 200 cycles. The single-thread simulator uses a

4MB L3 cache while the multi-core simulator uses a 16MB L3 cache. The single-thread

simulator is a modified version of CMP$im [50]. The version we used was provided with

the JILP Cache Replacement Championship [51]. It models an out-of-order 4-wide 8-

stage pipeline with a 128-entry instruction window. This infrastructure enables collecting

instructions-per-cycle (IPC) figures as well as misses per kilo-instruction and dead block

predictor accuracy. For multi-core workloads, we found that CMP$im was quite slow and

was unable to complete correctly beyond six cores. Thus, we adapted an in-house simula-

tor to interoperate with CMP$im’s cache replacement code to model eight core workloads.

Workloads

We use the 29 SPEC CPU 2006 benchmarks. Each benchmark is compiled for the 64-

bit X86 instruction set. The programs are compiled with the GCC 4.1.0 compilers for C,
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Technique Overhead for 4MB cache Overhead for 16MB cache
LRU 4 bits × 216 blocks = 32KB 4 bits × 218 blocks = 128KB
PseudoLRU 15 bits × 212 sets = 7.5KB 15 bits × 214 sets = 30KB
Static MDPP Cache same as PseudoLRU: 7.5KB same as PseudoLRU: 30KB
SRRIP/DRRIP 2 bits × 216 blocks = 16KB 2 bits × 218 blocks = 64KB

SHiP
16KB for RRIP +

11KB predictor = 27KB
64KB for RRIP +

11KB predictor = 75KB
Dynamic MDPP Cache 7.5KB + 11KB predictor = 18.5KB 30KB + 11KB predictor = 41KB

Table 3.2: Overhead required by the various techniques

C++, and FORTRAN. We use SimPoint [52] to identify up to 6 segments (i.e. simpoints)

of one billion instructions each characteristic of the different program phases for each

workload.

Single-Threaded Workloads

For single-threaded workloads, the results reported per benchmark are the weighted

average of the results for the individual simpoints. The weights are generated by the Sim-

Point tool and represent the portion of all executed instructions for which a given simpoint

is responsible. Each program is run with the first ref input provided by the runspec

command. For each run, the simpoint is used to warm microarchitectural structures for

500 million instructions, then measures and reports results for the subsequent one billion

instructions.

Multi-Core Workloads

For eight-core multi-programmed workloads, we generated 100 workloads consisting

of mixes from the SPEC CPU 2006 simpoints described above. Each workload is a mix

of eight simpoints chosen uniformly randomly without replacement. For each workload

the simulator warms microarchitectural structures until 500 million total instructions have

been executed, then measures results until at least one benchmark reaches one billion

instructions. Thus, all 8 cores are active during the entire measurement period.
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Replacement Policies

We compare our proposed technique against several related techniques: static and dy-

namic versions of re-reference interval prediction (SRRIP/DRRIP)[12], signature-based

hit predictor for RRIP (SHiP)[37], and static and dynamic versions of genetic placement

and promotion for tree-based PseudoLRU replacement (GIPPR/DGIPPR) [22]. For both

simulators, we directly use code provided by the respective authors either through the

World Wide Web or through personal communication. Our dynamic policy uses SDBP

[16]. For that predictor, we used the code that is available from the cache replacement

championship website[51].

The SHiP authors also graciously provided code for their hit predictor in a form that

was readily adaptable to the RRIP code. We modified this code to implement the sampling-

based policy described in their paper and use the program counter (PC) as the signature for

the hit predictor. Thus, what we hereafter refer to as SHiP in this paper is called SHiP-PC-

S in that paper’s nomenclature[37]. This modification allows us to control the overhead

consumed by SHiP’s structures. Thus, we may allocate the same amount of storage to both

SHiP and SDBP for a fair comparison of the dynamic policies. To be clear, we implement

sampling-based SHiP using the PC as the signature and deciding the placement position

for a baseline RRIP policy with a maximum re-reference prediction value of three.

The results we present in this paper compare our technique against SRRIP, DRRIP,

SHiP, and GIPPR. In preparing this work, we also compared our technique against SDBP-

based replacement and bypass [16] and protecting distance based policy [19]. We find that

SHiP is superior in performance to these other policies, so we choose not to present those

results and are content to compare with SHiP. We compare with SRRIP as an excellent

static policy. We compare with DRRIP as a relatively simple dynamic policy with good

performance. We compare with GIPPR/DGIPPR as the most closely related previous

work.
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3.4.2 Overhead Analysis

Overhead for Predictors

Both SHiP and SDBP require extra state for their prediction structures. SHiP uses a

14-bit signature derived as a hash of the PC indexing a table of 16,384 three-bit saturating

counters. It also keeps 14-bit signatures for each block in the sampled sets. SDBP keeps

three tables of 8,192 2-bit saturating counters each indexed by a different 13-bit hash of

the PC. It also keeps a sampler, an array of cache metadata kept separately from the main

cache. Each block in the sampler includes a 15-bit partial tag, a valid bit, a prediction bit,

a 4-bit LRU stack position and a 15-bit signature. The associativity of the sampler is 12.

To keep the same amount of state for each predictor, we use 192 sampled sets for SHiP

and 96 sampled sets for SDBP. Both predictors consume approximately 11KB.

Overhead for Techniques

Each replacement policy we study require some overhead. Table 3.2 summarizes the

overhead of the various polices. Note that DRRIP and DGIPPR require a few extra bits for

set dueling counters. We ignore this tiny extra storage overhead. The multi-core MDPP

Cache saves area over SHiP due to the fact that it requires only one bit of replacement

state per block rather than two. This savings translates to a fraction of a percent of the

bits allocated to the cache so we do not wish to overstate this advantage. Nevertheless, we

note that the replacement state saved is typically implemented using larger 8T register file

cells rather than 6T SRAM cells, and the savings in terms of cells per core of the dynamic

MDPP Cache over SHiP is approximately 8KB, which is roughly equivalent to the size of

a moderate dual-ported branch direction predictor or branch target buffer.

Impact of Storage Overhead

In the main results, we model SHiP and the dynamic MDPP Cache with the same stor-

age overhead for the predictors, including tables of counters and set sampling overhead.
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However, SHiP consumes 32 extra bits per set for storing the 16 2-bit re-reference interval

prediction values, while the MDPP Cache requires only an additional 15 bits per set to

store the PseudoLRU tree.

In another area study (not illustrated for space reasons), we performed three iso-area

comparisons of SHiP with dynamic MDPP Cache to study the impact of this additional

storage overhead. In the first experiment, we modeled SHiP with a smaller 2.5KB predic-

tor, thus reducing the total overhead of SHiP to roughly the same as the dynamic MDPP

Cache for the single-core 4MB cache configuration. This change had negligible impact

on SHiP’s performance. In the second experiment, we modified SHiP to use one bit for

RRIP states rather than two bits, so that SHiP and the dynamic MDPP Cache would have

equivalent storage requirements for the larger 16MB cache. This change resulted in a re-

duction of SHiP’s speedup from 9.1% to 6.9%. In the third experiment, we allowed the

16MB dynamic MDPP Cache to expand the number of sampled sets such that SHiP and

the MDPP Cache consume the same number of bits overall, including the per-set bits in

the hardware budget. This allows the MDPP Cache to use 966 sampled sets instead of

96, resulting in an increase in the speedup to 11.5% from 11.0%. Thus, while the size

of the SHiP predictor does not seem to have a large impact on performance, the size of

the per-block state, which is the majority of the cache management metadata storage in the

multi-core cache, has a significant impact on performance. Moreover, replacing SHiP with

the dynamic MDPP Cache and keeping total area constant results in an 11.5% speedup.

3.4.3 Results for Static Policies

This section gives results for static policies. These policies do not adapt to changing

workload characteristics, but are relatively simple to implement and verify. For instance,

the static MDPP Cache policy could be plugged in easily to an existing PseudoLRU-

replaced cache by simply modifying the algorithm or lookup table that implements place-
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ment and promotion.
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Figure 3.5: (a) Normalized Weighted Speedup over LRU for Static Policies on 8-core
Workloads, and (b) Misses Normalized to LRU for Static Policies

Multi-Core Workloads

Figure 3.5 shows weighted speedup normalized to LRU for SRRIP, static MDPP Cache,

and standard PseudoLRU with a 16MB last-level cache (see Section 4.3.1 for our defini-

tion of speedup). The figure shows the speedups for each workload in ascending sorted

order to yield S-curves. Standard PseudoLRU performs somewhat worse than LRU, giving

a geometric mean speedup of 0.99. SRRIP gives a 5.2% improvement over LRU. Static

MDPP Cache gives a 2.8% improvement over LRU. The best speedup of the static MDPP

Cache over SRRIP is 10%, while the best speedup of SRRIP over the static MDPP Cache

is 16%. SRRIP performs better, but at a cost of 56% more storage overhead. GIPPR with

a single vector (not shown) performs quite poorly, so much so that it is impractical to
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Figure 3.6: Speedup over LRU for Static Policies on Single-Threaded Workloads

447.dealII
464.h264ref

459.G
em

sFD
T
D

403.gcc
434.zeusm

p

437.leslie3d

471.om
netpp

454.calculix

453.povray

416.gam
ess

465.tonto
458.sjeng
410.bw

aves

444.nam
d

433.m
ilc

445.gobm
k

481.w
rf

470.lbm
483.xalancbm

k

435.grom
acs

450.soplex
462.libquantum

473.astar
456.hm

m
er

436.cactusA
D

M

429.m
cf

401.bzip2
482.sphinx3

400.perlbench
G

eom
etric M

ean

Benchmark

1

2

3

M
is

s
e
s
 N

o
r
m

a
li

z
e
d

 t
o

 L
R

U

1

2

3

Standard PLRU

GIPPR

SRRIP

Static MDPP

Figure 3.7: Misses Normalized to LRU

illustrate the performance graphically. Its average speedup over LRU is 0.87, i.e. it deliv-

ers a 13% slowdown. We have probed deeply into the GIPPR algorithm with the author

of the original work to try to determine why it performs so poorly on multi-core work-

loads. GIPPR was designed by a genetic algorithm using single-threaded workloads. We

conclude that its parameters work well in that context, but are not suitable for multi-core

workloads. Single-core workloads are characterized by a few distinct patterns of behavior
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that can be captured by a handful of GIPPR vectors, but multi-core workloads combine

characteristics resulting in a wide range of behaviors that cannot be distilled down to a

small number of vectors.

Misses

Figure 3.5(b) illustrates misses for the static policies on multi-core workloads. The

graph shows misses normalized to LRU in descending order, i.e. best-to-worst from left-

to-right, to yield S-curves. GIPPR delivers the fewest misses for approximately 20% of

the workloads, but is worse than LRU for a majority of workloads, giving on average

5.7% more misses than LRU. SRRIP and static MDPP Cache perform closely, with SR-

RIP giving 94.5% of the misses of LRU and MDPP minimal disturbance PseudoLRU giv-

ing 94.8% of LRU. minimal Disturbance PseudoLRU performs significantly worse than

LRU for about 20% of the workloads. Several of those workloads are quite sensitive to

misses, explaining SRRIP’s significant performance advantage over minimal disturbance

PseudoLRU. Standard PseudoLRU performs similarly to LRU.

Single Threaded Workloads

Figure 3.6 gives the speedup over LRU for several static techniques on single-threaded

workloads with a 4MB last-level cache. The benchmarks on the y-axis are sorted based

on their performance on the DRRIP policy. We use the same ordering in Section 3.4.4

for the bar chart there. Most of the benchmarks are not helped or significantly hurt by

most of the polices. The aggregate speedup attributable to the polices are mostly due to

the memory intensive benchmarks listed to the right of 401.bzip2. However, some

benchmarks such as 459.GemsFDTD and 471.omnetpp experience some slowdown

from non-LRU policies.

Standard PseudoLRU gives no speedup or slowdown over LRU on average. SRRIP

gives a geometric mean 2.6% speedup over LRU. GIPPR with a single vector optimized

for the SPEC CPU 2006 benchmarks gives a speedup of 3.5%. minimal Disturbance
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Figure 3.8: (a) Normalized Weighted Speedup over LRU for Dynamic Policies on 8-core
Workloads, and (b) Misses Normalized to LRU for Static Policies

PseudoLRU gives a speedup of 2.5%. Thus, the static MDPP Cache gives comparable

performance to SRRIP. While GIPPR is slightly better than the static MDPP Cache on

single-threaded workloads, we shall see that GIPPR performs poorly on multi-core work-

loads.

Misses

Figure 3.7 illustrates misses normalized to LRU for the single-threaded workloads. The

benchmarks on the y-axis are sorted in descending order of misses for DRRIP normalized

to LRU. Although GIPPR gives the best speedup, it only gives a geometric mean 95%

of the misses of LRU. This counterintuitive result is largely due to the contribution of

447.dealII, for which GIPPR more than doubles the misses of LRU, but whose change

in performance is smaller than the changes for benchmarks such as 436.cactusADM

and 429.mcf. The geometric mean of normalized misses for standard PseudoLRU is

approximately the same as LRU. SRRIP and static MDPP Cache both give an arithmetic
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Figure 3.9: Speedup over LRU for Dynamic Policies on Single-Threaded Workloads

mean 94% of the misses of LRU.

3.4.4 Results for Dynamic Policies

This section gives results for dynamic policies. These policies adapt to different work-

load characteristics using set-dueling and/or prediction. Dynamic policies deliver the best

performance in the literature. In particular, SHiP represents the current state-of-the-art

cache management policy.

Multi-Core Workloads

Figure 3.8(a) shows the normalized weighted speedup for the various dynamic tech-

niques. The speedups for the 100 workloads are shown as S-curves, sorted in ascending

order. DRRIP yields an 8.4% speedup. The state-of-the-art SHiP policy gives a 9.1%

speedup. The dynamic MDPP Cache achieves an 11.0% speedup. The best speedup of

the dynamic MDPP Cache over SHiP is 25%, while the best speedup of SHiP over the dy-

namic MDPP Cache is 18%. Thus, the MDPP Cache improves performance over previous

techniques without increasing complexity.

Misses

Figure 3.8(b) shows the misses normalized to LRU for the various dynamic tech-
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niques sorted in descending order, i.e. best-to-worst from left-to-right, to yield S-curves.

4DGIPPR is by far the worst, giving an average 4.2% more misses than LRU. SHiP and

dynamic MDPP Cache are evenly matched, both delivering 85% of the misses of LRU. The

advantage of MDPP Cache over SHiP on speedup is likely due to the effects of memory-

level parallelism and other second-order effects in the workloads. DRRIP gives 87% of

the misses of LRU. All of the policies except for 4DGIPPR give fewer misses than LRU

for 85% – 90% of the workloads.

Single-Threaded Workloads

Figure 3.9 illustrates the speedup over LRU of the various dynamic techniques. The

benchmarks on the y-axis are sorted based on their speedup over LRU for the DRRIP

policy. DRRIP achieves a speedup of 5.4% over LRU. Dynamic MDPP Cache yields a

5.9% speedup. 4DGIPPR, the 4-vector dynamic version of GIPPR, gives a 5.6% speedup.

SHiP gives a 5.9% speedup. Thus, dynamic MDPP Cache matches the performance of the

state-of-the-art policy SHiP and exceeds the performance of 4DGIPPR whose 4 vectors

are specially designed to work well with these specific single-threaded workloads.
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Figure 3.10: Misses for the Dynamic Policies Normalized to LRU
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Misses

Figure 3.10 gives the normalized misses for the dynamic policies. The benchmarks

on the y-axis are sorted in descending order of their misses on DRRIP normalized to

LRU. DRRIP and 4DGIPPR both give geometric mean normalized misses of 91% of LRU.

SHiP delivers a geometric mean normalized misses of 89% of LRU. Dynamic minimal

disturbance PseudoLRU yields 88% of the misses of LRU. Curiously, all of the dynamic

policies seem to give more misses than the static policies on 447.dealII, although

this fact does not have a large impact on performance because 447.dealII is not as

memory-bound as some of the other benchmarks.

3.4.5 Analysis

Figure 3.11 quantifies the contributions of the individual placement and promotion

policies to improving tree-based PseudoLRU. All combinations of standard PseudoLRU

placement and promotion, minimal disturbance promotion, and static and dynamic mini-

mal disturbance placement are considered. The normalized weighted speedups are aggre-
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gated over the 100 multi-core workloads. The bar chart is ordered in ascending geometric

mean speedup over true LRU.

Minimal disturbance promotion with standard placement at position 0 gives a geomet-

ric mean of 98.6% of the performance of LRU, very slightly worse than normal Pseu-

doLRU at a 99.0%. Standard promotion with minimal disturbance placement yields a

2.7% speedup over LRU. Minimal disturbance promotion and static minimal disturbance

placement together (i.e. the static MDPP Cache) give a 2.8% improvement over LRU. At

this point, it is clear that the placement position is more important for performance than

the promotion policy, but both are needed for the best static policy.

The contribution of minimal disturbance promotion is more apparent for the dynamic

policies. Dynamic minimal disturbance placement with standard PseudoLRU promotion

yields a geometric mean speedup of 9.3%, which is slightly better than the performance

of SHiP (not illustrated) at 9.1%. With both minimal disturbance promotion and dynamic

minimal disturbance placement (i.e. the dynamic MDPP Cache), the geometric mean

speedup is boosted to 11.0%.

3.5 Summary

In this chapter, we have considered the principle of minimal disturbance as applied

to the changes in positions of cache blocks. We have shown that tree-based PseudoLRU

is disturbing, and that mending it significantly improves the policy. We present results

to prove that the static minimal disturbance policy as well as a dynamic version using

dead block prediction provide performance competitive with state-of-the-art policies at a

significantly lower cost in terms of storage overhead.
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4. PERCEPTRON LEARNING FOR REUSE PREDICTION ∗

We have seen how machine learning principles can give rise to a simple and efficient

replacement policy. In this chapter, we will explore machine learning further to develop a

highly accurate reuse predictor.

Reuse predictors determine which blocks in the cache are most likely to be frequently

reference. However, the accuracy of the prediction mechanisms limits the scope of op-

timization. We present Perceptron Learning for Reuse Prediction. Our predictor yields

higher accuracy than previously proposed work, which translates into better system per-

formance.

4.1 Introduction

The last-level cache (LLC) mitigates the large disparity in latency and bandwidth be-

tween CPU and DRAM. An efficient cache keeps as many useful blocks as possible. Reuse

predictors detect whether a given block is likely to be accessed again before it is evicted,

allowing optimizations such as improved placement, replacement, and bypass. Reuse pre-

dictors use features such as data and instruction addresses to find correlations between past

behavior and future accesses, but extracting accuracy from these features has been prob-

lematic in the LLC. We present the idea of using perceptron learning to combine features

in a way that overcomes this difficulty, resulting in better accuracy. The predictor yields

significant performance improvements when used to drive a replacement and bypass opti-

mization.
∗2016 IEEE. Reprinted, with permission of E.Teran, Z. Wang, D. Jiménez, "Perceptron learning for

reuse prediction", December 2016
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Figure 4.1: Violin plots for false positive (darker) and coverage (lighter) rates. Perceptron
learning is significantly more robust, with higher coverage, fewer false positives, and less
variance in accuracy across workloads.

4.1.1 Better Accuracy with Perceptron Learning

Figure 4.1 shows violin plots for the accuracy of three reuse predictors: sampling dead

block prediction (SDBP) [16],

signature-based hit prediction (SHiP) [37], and our proposed perceptron-based reuse pre-

dictor over multi-programmed workloads. The coverage rate (shaded darker) is the per-

centage of all predictions for which a block is predicted not to be reused. The false positive

rate (shaded lighter) is the percentage of all predictions for which a block was incorrectly

predicted as not reused. The plots show the mean as a bar in the center of the plot along

with the probability density of the data. The coverage for perceptron-based reuse predic-

tion is higher than that for SDBP and SHiP (52.4% versus 47.2% and 43.2%, respectively)

while the false positive rate is lower (3.2% versus 7.4% and 7.7%, respectively). Coverage

represents the opportunity for optimization given by the predictor, while false positives
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represent the potential cache misses caused when an incorrect prediction leads to a live

block being replaced. Thus, perceptron learning leads to increased opportunity for opti-

mization while reducing false positives by a factor of 2. For more on the violin plots, see

Section 4.3.6.

Perceptron Learning

This chapter describes an algorithm that uses perceptron learning for reuse prediction.

Perceptrons are a simple model of neurons in neural networks [54, 55] modeled by vectors

of signed weights learned through online training. The output of a perceptron is the dot

product of the weights and a vector of inputs. In this work, we do not actually use percep-

trons, but we make use of the perceptron learning algorithm. There are two components

to the abstract perceptron learning algorithm:

1. To predict true or false, a vector of signed weights is chosen according to some

criteria. The dot product of the weights and input vectors, called yout, is computed.

If yout exceeds some threshold, the prediction is true, otherwise it is false.

2. To update the weights after the true outcome of the predicted event is known, we

first consider the value of yout. If the prediction was correct and |yout| exceeds a

threshold θ, then the weights remain unchanged. Otherwise, the inputs are used to

update the corresponding weights. If there is positive correlation between the input

and the outcome of the event, the corresponding weight is incremented; otherwise,

it is decremented. Over time, the weights are proportional to the probability that the

outcome of the event is true in the context of the input and the criterion for choosing

that weight. The weights saturate at maximum and minimum values so they will fit

in a fixed bit width.

In the original paper describing branch prediction with perceptrons, the input vector

was the global history of branch outcomes [38]. In this work, as in some subsequent branch
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(a) (b)

Figure 4.2: (a) Previous PC-based Reuse Predictors and (b) Perceptron-based Reuse Pre-
dictor

prediction work [41, 40], the weights in the vectors are chosen by indexing independent

tables using indices computed as hashes of features such as branch pattern and path history.

Such hashed perceptron predictors do not use a vector of binary weights. Rather, instead

of a dot product, they simply compute a sum which can be thought of as a dot product of

the weights vector with ~1. In this work, we use features relevant to cache management

such as the address of memory instructions and bits from the block address, tag, or page

number. Thus, although the technique does not use classical perceptrons, it uses perceptron

learning to adjust the weights.

Contributions

The work presented in this chapter makes the following contributions:

1. It shows that perceptron learning can be used to effectively combine multiple inputs

features to greatly improve the accuracy of reuse prediction.

2. It applies perceptron-learning-based reuse prediction to a replacement and bypass

optimization, outperforming the state-of-the-art policies for both single and multi-

programmed workloads. For 1000 multi- programmed workloads, perceptron learn-
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ing gives a geometric mean normalized weighted speedup of 8.3%. For single-

threaded workloads, perceptron learning gives a geometric mean speedup of 6.2%

over LRU, with a speedup of 18.3% on a memory-intensive subset of the bench-

marks.

3. It shows that cache management based on perceptron learning more than doubles

cache efficiency over the LRU policy.

4. It evaluates out Perceptron predictor as well as previous work in the presence of a

stream prefetcher. Previous work had been evaluated without considering prefetch-

ing.

Features Correlated with Last Access to a Block

Previous research has observed that multiple features are correlated with the last access

to a block. Some of the features are:

1. The trace of memory access instructions (PCs) beginning when the block is placed

and ending at the current access [31, 35]. This sequence of addresses can be con-

cisely summarized as a truncated sum of those PCs, generating an integer signature

to be used to index a prediction table. In an L1 cache, this signature is correlated

with the last access to a block. However, in an LLC, particularly in the presence

of a middle-level cache, many PCs are filtered, leaving a porous signature that is

unsuitable for prediction [16]. In this work, we keep track of recent PCs accessing

the LLC, but we treat each PC as a separate feature.

2. The PC of the memory instruction that caused the access. This feature is a suc-

cinct proxy for the program behavior that led to the ultimate eviction of the block.

Unlike the instruction trace, it has reasonable accuracy in the last-level cache [16].

However, its accuracy is limited because a single PC can exhibit multiple behaviors
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depending on the control-flow context, e.g., an access in a given subroutine may or

may not be the last access to a block depending on the caller.

3. Bits from the memory address, e.g., the page number or tag. Data in the same

memory region are often treated similarly by programs, so the last access (or the

only access) to one block may correlate with the last access to a neighboring block.

There are many more memory addresses than memory access PCs, so using bits

from the memory address as an input feature may lead to destructive interference in

small prediction tables. Liu et al. combine the trace signature with 3 bits from the

block address [35] to form a single index. Our work treats bits from the memory

addresses separately, isolating the effects of interference.

4. A compressed representation of the data itself [25]. Data that are similar in blocks

may lead to similar behavior.

5. Time/reference count. Some reuse predictors work on the idea that a block may be

accessed a certain number of times before it is evicted, and that this count may be

predicted. This technique requires keeping a count for each block in the cache, an

idea we dismiss as too complex for implementation in a large last-level cache.

4.2 Design

4.2.1 Perceptron Learning for Reuse Prediction

In this section we present the prediction algorithm. The structures are similar to those

of sampling-based dead block prediction [16], but the algorithm and inputs are altered to

provide superior accuracy.

The Main Idea

Our predictor combines multiple features. To make a prediction, each feature is used

to index a distinct table of saturating counters (hereafter weights) that are then summed.
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Figure 4.3: Datapath from extracting features from an access, to making a prediction and
acting on it

If the sum exceeds some threshold, then the accessed block is predicted not to be reused.

A small fraction of the accesses are sampled to update the predictor using the perceptron

update rule: if the prediction is incorrect, or the sum fails to exceed some magnitude, then

the weights are decremented on an access or incremented on an eviction.

Combining features by summing weights avoids the destructive interference and ex-

ponential blowup that can be caused by combining them into a single index. That is, if

we combine PC bits and memory address bits by, say, summing or XORing them directly

into an index, the predictor must learn all the likely patterns that lead to different behav-

ior before it can predict well. Using the perceptron update rule allows the predictor to

adapt to changes in program behavior. In previous work, both summing and perceptron

update have contributed to significant gains in branch prediction accuracy, motivating this

work [38, 40].

Figure 4.2(a) shows the organization of recent reuse predictors SDBP and SHiP. A
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single feature is used to index a table of weights to make a prediction. SHiP and SDBP

use as the feature a hash of the PC of the memory instruction that causes the reference.

Other dead block predictors use a signature formed by truncated addition of all the PCs

from the placement of the block to the current reference [31, 35], as well as some bits from

the address of the references block [31], but these features are all combined into a single

index into the table. It has been shown that the truncated addition idea works poorly for

a LLC [16] due to the fact that first- and middle-level caches filter out many of the useful

PCs, leaving a noisy signal.

Figure 4.2(b) shows the organization of the perceptron-based reuse predictor. Each

feature is hashed, then XORed with the PC to index a separate table. The corresponding

weights are summed and thresholded to get an aggregate prediction. This scheme works

well because, at any given time, one or another feature may carry correlation with reuse

behavior, while others do not. The perceptron algorithm discovers correlation and ignores

the lack of correlation, to give a more accurate prediction.

Figure 4.4: Two different kinds of correlation. The PC of one load (left) always correlates
with no reuse on thousands of pages, while another load (right) has no correlation through
the PC but does have correlation through page number.

42



Example

To illustrate why perceptron learning yields superior accuracy to previous reuse predic-

tors, let us consider a simple example. Suppose we must design a reuse predictor indexed

by either the PC of the memory instruction, the page number of the memory access, or a

combination of both. Figure 4.4 illustrates two instructions: load A and load B. Load A

randomly accesses cache blocks across thousands of pages, but these blocks experience

little to no reuse after being accessed by load A. (Perhaps load A is in a destructor in a

pointer-chasing object-oriented program.) Load B accesses blocks with good spatial lo-

cality over a small number of pages. Cache blocks accessed by load B on a certain set of

pages experience reuse, but on another set of pages blocks experience little reuse. (Per-

haps load B is a factory method handing out objects to various callers with different access

patterns.) Load A would be predicted well by a PC-based predictor, but load B would be

predicted poorly because of the variable nature of subsequent accesses. Load A would be

predicted poorly by a page-based predictor because thousands of page references would

cause aliasing (i.e., collisions) in the prediction table, while load B might be better pre-

dicted by a page-based predictor since its behavior is page-based. Neither one would be

predicted by indexing a table by a combination (e.g., XOR) of PC and page number: load

A continues to have the problem with aliasing, and the prediction table for load B now has

more aliasing pressure because we are multiplying the number of indices into the table by

the number of other PCs in the working set of load and store instructions.

By contrast, perceptron learning separates the two features into two different tables.

Where there is correlation in one table, the magnitude of the weight selected for prediction

is high. Where there is no correlation, or poor detection of correlation due to aliasing, the

magnitude of the weight is low. The prediction is based on a sum of the weights. The

signal of reuse or no reuse comes clearly through the noise of low correlation or aliasing

because the noisy weights have low magnitude.
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Note that SDBP uses three separate tables indexed by different hashes of the same

PC [16]. This slightly reduces the impact of aliasing, but does not help in situations like

load B where there is page-based correlation that is not discovered by a PC-based predictor.

Training with a Sampler

The sampler is a separate array for a small number of sampled sets. Some sets in the

last-level cache are chosen to be represented by a set in the sampler. Each sampler set

consists of entries with the following fields:

1. A partial tag used to identify the block. We need only store enough tag bits to

guarantee a high probability that a tag match is correct, since the predictions are by

their nature imprecise. We find that 15 bits is sufficient.

2. A small integer sum (yout) representing the most recent prediction computation.

yout is used to drive the threshold rule of the perceptron learning algorithm: if the

magnitude of yout exceeds some threshold and the prediction is correct, the pre-

dictor does not need to be updated. As this strategy prevents the weights from all

saturating at their extreme values, it improves prediction accuracy by ensuring that

the predictor can respond quickly to changes in program behavior.

3. A sequence of hashes of the input features used to index the prediction tables. In this

sequence, each feature is hashed, then XORed with the lower-order bits of the PC

of the memory instruction that last accessed this entry. These hashes will be used to

index the predictor’s tables.

4. LRU bits for replacement within the sampler.

These sets are kept outside the main cache in a small and fast SRAM array. When a

sampled set is accessed, the corresponding set and block in the sampler are accessed. A

partial tag from the block is used to match a tag in the sampler set. If there is no match, the
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tag is placed in the sampler set, replacing the LRU entry in that sampler set. Otherwise, the

access is treated as a hit in the cache and perceptron learning is used to train the predictor

that this sequence of input features leads to a hit. Then, the current values of the input

features (e.g., a hash of the PC or the page number) are placed in the sampled entry. When

an entry is evicted from a sampler set, the previous access to that entry is treated as the last

access to the corresponding block. Before the entry’s values are overwritten, they are used

with perceptron learning to train the predictor that the previous access is the last access.

4.2.2 Predictor Organization

The predictor is organized as a set of tables, one per input feature. Each table has a

small number of weights. In our experiments, we find that providing each table with 256

entries of 6-bit signed weights (ranging in value from -32 to +31) is sufficient. A sequence

of hashed features are kept in per-core vectors that are updated on every memory access.

We have listed several possible features in Section 4.1.1. We find that using the last few

PCs to access the cache as well as bits extracted from the address of the currently accessed

block yield the best accuracy. Figure 4.3 shows the datapath from extracting features from

memory accesses to making a prediction.

Making a Prediction

The predictor is consulted when a block is hit as well as when a block may be placed

in the cache. When there is an access to the LLC, the predictor is consulted to determine

whether there is likely reuse for that block. When an incoming block is considered for

placement in the LLC, the predictor is used to decide whether to bypass the block if it is

predicted to have no reuse. In both situations, the predictor is accessed by indexing the

prediction table entries corresponding to the hash of each feature XORed with the PC of

the instruction making the access. The signed weights read from each table are summed

to find a value yout. If yout is less than some threshold τ , then the block is predicted
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to be reused; otherwise, it is predicted to have no reuse, i.e., it is predicted dead. An

incoming block predicted as dead bypasses the cache. Each cache block is associated with

an extra bit of data that records its most recent reuse prediction that will be used to drive

the replacement policy.

Training the Predictor

When the sampler is accessed, there are two possibilities resulting in two different

training outcomes:

When there is a replacement in the sampler: a miss in the sampler requires eviction

of the LRU entry. The fact that this block is evicted shows it is unlikely to be reused,

so the predictor learns from this evidence. If the value of yout for the victim entry is

less than a threshold θ, or if the prediction was incorrect, then the predictor table entries

indexed by the corresponding hashes in the victim entry are incremented with saturating

arithmetic. Thus, future similar sequences of features for this instruction are more likely

to be predicted as not reused. (Note that the threshold θ for invoking training may be

different from the threshold τ for predicting reuse; see Section 4.2.2).

When a sampled entry is accessed: a hit in the sampler is evidence that the current

set of features is correlated with reuse. If the value of yout for the entry exceeds a threshold

−θ, then the predictor table entries indexed by the hashes in the accessed sampler entry

are decremented with saturating arithmetic. Subsequent accesses in the context of similar

features are more likely to be predicted as reused (i.e., live).

4.2.3 Replacement and Bypass Optimization

The predictor is applied to the optimization of dead block replacement and bypass.

As in previous work [16], the LLC is replaced with a default replacement policy such as

LRU, but a block predicted with no reuse (i.e., a dead block) will be replaced before the

candidate given by the default policy. In this work, the LLC uses tree-based PseudoLRU
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as the default replacement policy [22]. Each cache block is associated with a prediction

bit that holds the most recent reuse prediction for that block.

When a block is hit in the LLC, the predictor is consulted using the current vector of

features to compute the prediction bit for that block. When there is a miss in the LLC,

the predictor is consulted to predict whether the incoming block will have reuse. If not,

the block is bypassed. Otherwise, a replacement candidate is chosen. The set is searched

for a block predicted not to have reuse. If one is found, it is evicted. Otherwise, the

block chosen by the PseudoLRU policy is evicted. We call this bypass and replacement

optimization Perceptron with a capital P to distinguish it from the predictor itself.

Tree-based PseudoLRU requires n− 1 bits per set for an n-way set associative cache.

Thus, including the prediction bit, each block requires about two bits of replacement state,

which is equivalent to the per-block overheads for DRRIP [12] and SHiP [37].

Prefetches

When the hardware prefetcher attempts to bring a block from the memory into the

LLC, the predictor makes a reuse prediction for that block. Since hardware prefetches are

not associated with instruction addresses, a single fake address is used for all prefetches

for the purpose of hashing into the predictor. Other features, such as bits from the block

address, continue to be used in the predictor.

4.3 Evaluation

4.3.1 Methodology

We model performance with an in-house simulator using the following memory hierar-

chy parameters: L1 data cache: 32KB 8-way associative, L2 unified cache: 256KB 8-way,

DRAM latency: 200 cycles. It models an out-of-order 4-wide 8-stage pipeline with a 128-

entry instruction window. The single-thread simulations use a 4MB L3 cache while the

multi-core simulations use a 16MB L3 cache. The simulator models a stream prefetcher.
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It starts a stream on a L1 cache miss and waits for at most two misses to decide on the

direction of the stream. After that it starts to generate and send prefetch requests. It can

track 16 separate streams. The replacement policy for the streams is LRU. This infrastruc-

ture enables collecting instructions-per-cycle figures as well as misses per kilo-instruction

and dead block predictor accuracy.

Workloads

We use the 29 SPEC CPU 2006 benchmarks. Each benchmark is compiled using a

configuration file for the X86 instruction set distributed with the SPEC CPU 2006 bench-

marks. We use SimPoint [52] to identify up to 6 segments (i.e., simpoints) of one billion

instructions each characteristic of the different program phases for each workload.

Single-Threaded Workloads

For single-threaded workloads, the results reported per benchmark are the weighted

average of the results for the individual simpoints. The weights are generated by the

SimPoint tool and represent the portion of all executed instructions for which a given

simpoint is responsible. Each program is run with the first ref input provided by the

runspec command. For each run, the 500 million instructions previous to the simpoint

are used to warm microarchitectural structures, then the subsequent one billion instructions

are used to measure and report results.

Multi-Core Workloads

For 8-core multi-programmed workloads, we generated 1000 workloads consisting

of mixes from the SPEC CPU 2006 simpoints described above. We follow the sample-

balanced methodology of FIESTA [56]. We begin by selecting regions of equal standalone

running time for each simpoint. Each region begins at the start of the simpoint and ends

when the number of cycles in a standalone simulation reaches one billion cycles. Each

workload is a mix of 8 of these regions chosen uniformly randomly without replacement.

For each workload the simulator warms microarchitectural structures until 500 million
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total instructions have been executed, then measures results until each benchmark has

executed for at least one billion additional cycles. When a thread reaches the end of its

one billion cycle region, it starts over at the beginning. Thus, all 8 cores are active during

the entire measurement period.

Avoiding Overfitting of the Parameters

Perceptron has several parameters whose values affect accuracy and performance. We

took steps to avoid overfitting the parameters to the workloads.

For single-threaded workloads, we use a leave-out-one cross-validation methodology.

That is, for each of the 29 SPEC CPU 2006 benchmarks, we explore the space of pa-

rameters that give the best aggregate performance for the other 28 benchmarks, then use

those parameters for the benchmark in question. The parameters varied were the values

of θ, τbypass, τreplace, the bit width of the weights, and parameters related to selecting the

features listed in Section 4.3.1. Thus, for each of the benchmarks, we report results based

on parameters that were not tuned for that benchmark. We find remarkable consistency

in the parameters chosen for each benchmark. For instance, when |yout| < θ, training is

invoked. We find that for every combination of 28 benchmarks but one, the best value is

θ = 74. When the benchmark sphinx3 is held out the best value is θ = 71.

For multi-programmed workloads, we use a smaller set of 100 mixes to explore the

parameter space to find the set of parameters that give the best aggregate performance.

These 100 workloads are separate from the 1000 workloads used for the performance

results. Thus, for the 1000 workload mixes, we report results based on parameters that

were not tuned for those mixes.

Replacement Policies

We compare Perceptron against two closely related techniques: sampling based dead

block prediction driving replacement and bypass (SDBP) [16] and signature-based hit pre-

diction (SHiP) [37]. We use SDBP code provided by the original authors. The SHiP
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Technique Overhead
SDBP 3 tables of 8,192 2-bit counters + 96-set, 12-way sampler = 11.06KB
SHiP 1 table of 16,384 3-bit counters + 192-set, 16-way sampled PCs = 11.25KB
Perceptron 6 tables of 256 6-bit signed weights + 64-set, 16-way sampler = 10.75KB

Table 4.1: Overhead required by the various techniques is approximately the same in our
experiments. See text for details of sampler entry overheads.

authors provided code for their hit predictor in a form that was readily adaptable to RRIP

code they also provided. We modified this code to implement the sampling-based policy

described in their paper and use the program counter (PC) as the signature for the hit pre-

dictor. Thus, what we hereafter refer to as SHiP in this chapter is called SHiP-PC-S in

that paper’s nomenclature [37]. This modification allows us to control the overhead con-

sumed by SHiP’s structures. Thus, we may allocate the same amount of storage to SHiP,

SDBP, and perceptron-based reuse prediction for comparison. To be clear, we implement

sampling-based SHiP using the PC as the signature and deciding the insertion position for

a baseline RRIP policy with a maximum re-reference prediction value of three. In the fol-

lowing text and figures, Perceptron with a capital P refers to the replacement and bypass

optimization that uses perceptron learning for reuse prediction.

We evaluate SDBP because its structure is similar to that of our predictor and it also

uses summation and thresholding to make a prediction. We evaluate SHiP because it pro-

vides the best speedup in the literature for cache management based on reuse prediction.

There is significant other work in reuse prediction [31, 33, 34, 35, 6, 12, 19, 22] but be-

cause of SHiP’s superior performance and for space reasons we do not report results for

those techniques.

SHiP and Bypass

SHiP was described as a placement policy for RRIP without considering bypass. It

50



uses a threshold on the 3-bit confidence counter read from the prediction table to decide

whether to place a block in the distant re-reference interval or the immediate re-reference

interval. Perceptron and SDBP both implement bypass, so we attempt to use bypass in

SHiP also. We modify SHiP to use two thresholds: one to indicate that the probability of

a hit is so low that the block should be bypassed rather than placed, and a higher one to

decide whether to place in the distant or immediate re-reference interval. Sampled sets are

not bypassed so that the hit predictor can continue to learn from them. We exhaustively

search all pairs of feasible thresholds. The configuration with the best performance is a

threshold of 0 for bypass and 1 for distant re-reference interval placement. We find that

SHiP with bypass yields no better speedup than SHiP without bypass on average. Thus,

we report results for SHiP without bypass.

SDBP and SHiP with Prefetching

In the original papers, SDBP and SHiP were evaluated without modeling prefetching.

To provide a realistic evaluation, we model a stream prefetcher. We found that the unmod-

ified SDBP and SHiP algorithms perform poorly in the presence of prefetching because

the prefetcher sometimes issues prefetches that hit in the cache. These hits artificially

boost the apparent locality of the blocks, causing SDBP and SHiP to promote blocks that

should remain near LRU. We modify the code for both SDBP and SHiP to ignore hitting

prefetches and observe that the change restores the good performance of these algorithms.

In Section 4.3.6 we describe results without prefetching to evaluate our work in the same

methodological context as the previous work.

Measuring Performance

In Section 4.3.4 we report performance relative to LRU for the various techniques

tested. For single-threaded workloads, we report the speedup over LRU, i.e., the instructions-

per-cycle (IPC) of a technique divided by the IPC given by LRU. For the multi-core work-

loads, we report the weighted speedup normalized to LRU. That is, for each thread i shar-
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ing the 16MB cache, we compute IPCi. Then we find SingleIPCi as the IPC of the same

program running in isolation with a 16MB cache with LRU replacement. Then we com-

pute the weighted IPC as
∑

IPCi/SingleIPCi. We then normalize this weighted IPC with

the weighted IPC using the LRU replacement policy.

4.3.2 Overhead Analysis

SHiP, SDBP, and perceptron-based reuse prediction require extra state for their pre-

diction structures. Table 4.1 summarizes the overheads for the various techniques. SHiP

uses a 14-bit signature derived as a hash of the PC indexing a table of 16,384 three-bit

saturating counters. It also keeps 14-bit signatures and one reuse bit for each block in the

sampled sets. SDBP keeps three tables of 8,192 2-bit saturating counters each indexed

by a different 13-bit hash of the PC. It also keeps a sampler, an array of cache metadata

kept separately from the main cache. Each block in the sampler includes a 15-bit partial

tag, a prediction bit, a valid bit, a 4-bit LRU stack position and a 15-bit signature. The

associativity of the sampler is 12. To keep the same amount of state for each predictor, we

use 192 sampled sets for SHiP and 96 sampled sets for SDBP. Both predictors consume

approximately 11KB.

The state required for perceptron-based reuse prediction is proportional to the number

of features used. We empirically determined that six features provided the best trade-off

between storage and accuracy (see Section 4.3.3). We find that using an associativity of 16

for the sampler provides the best accuracy, as opposed to the associativity of 12 that was

used in the SDBP work [16]. The prediction tables for the perceptron sampler have 6-bit

signed weights, and there are six such tables. We find that using 256-entry tables provides a

good trade-off between accuracy and storage budget. Thus, the prediction tables consume

1.125KB.

Each perceptron sampler entry contains six 8-bit hashes of the features, a valid bit, a 9-
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bit sum resulting from the most recent prediction computation, a 4-bit LRU stack position,

and a 15-bit partial tag. Each sampler set contains 16 such entry. To stay within the 11KB

hardware budget of the other two techniques, and accounting for the prediction tables, we

choose 64 sampler sets, resulting in 10.75KB of storage for the perceptron reuse predictor.

The sampler structure is larger than in SDBP, but the storage for the prediction tables is

smaller. In addition to the tables, the predictor keeps per-core histories of the three most

recent PCs accessing the LLC. The additional storage for all of these histories is less than

100 bytes.

Each of the three policies also keeps storage associated with each cache block. SHiP

is built on RRIP [12] requiring two bits per cache block. The perceptron-based reuse

predictor uses tree-based PseudoLRU as its default replacement policy using one bit per

cache block. It adds another bit for each block to store the most recent reuse prediction for

that block. Thus, SHiP and perceptron-based reuse prediction keep the same number of

bits associated with each block. SDBP uses true LRU instead of PseudoLRU, so it requires

4 LRU bits plus one prediction bit for each block in the cache. We use the unmodified

SDBP code rather than hack PseudoLRU into it. We stipulate that PseudoLRU and true

LRU ought to behave similarly so the 5-bit overhead of SDBP should not be counted

against SDBP.

The implementation complexity of the perceptron-based reuse predictor is slightly

higher than that of SHiP or SDBP, but it is still reasonable. Conditional branch predic-

tors based on perceptron learning have been implemented in Oracle and AMD proces-

sors [57, 58]. Branch predictors must operate under very tight timing constraints. Pre-

dictors in the last-level cache have a higher tolerance for latency, so we are confident

perceptron learning can be easily adapted to reuse predictors.
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4.3.3 Features and Parameters

Features for the Predictor

We determined that the following six features provide a good trade-off between hard-

ware overhead and prediction accuracy. Suppose PCi is the address of the ith most recent

instruction accessing the LLC from the current thread, where PC0 is the PC of the current

memory access instruction. Then the features are:

1. PCi shifted right by 2, for i = 0.

2. The three values of PCi shifted right by i, for 1 ≤ i ≤ 3.

3. The tag of the current block shifted right by 4,

4. The tag of the current block shifted right by 7.

We choose not to use features such as the number of accesses to a block [6] or other

history of the block itself because of the overhead required in storing such information per

block.

The first feature, the PC of the current memory access instruction, must be shifted

because all of the features will be XORed with the PC before indexing the tables. Without

shifting, the value would simply be 0. Shifting and XORing gives a hash of the PC, which

is similar to the hashed PC used by SDBP.

The next three features are the most recent PCs of memory access instructions that

accessed the LLC, each shifted right by an increasing number. These features give the

predictor an idea of the “neighborhood” the instruction was in when it made the access.

Shifting by increasing amounts allows a wider perspective for events further in the past,

i.e., rather than specifying the instruction at PC3, the predictor learns from the 8-byte

region around that instruction.

54



The last two features are two shifts of the tag of the currently accessed block. These

features trade off resolution for predictor table capacity: shifting the tag right by 4 allows

the predictor to distinguish between more memory regions at the cost of a higher chance

of aliasing, while shifting right by 7 allows grouping many pages that could have the

same behavior into the same predictor entry, at the cost of coarser granularity. If one of

the features has higher correlation with reuse, its weight will have high magnitude and

contribute more to the prediction.

It is important to note that not all features are expected to correlate with reuse

behavior for all blocks. Some features will have no correlation. Only the features with

high correlation will contribute significantly to the prediction.

Other Parameters

The parameter τ is the threshold below which a block is predicted to be reused. We
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Figure 4.5: Normalized Weighted Speedup over LRU for 8-Core Multi-Programmed
Workloads
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chose two different values for τ based on the purpose of the prediction: τbypass for pre-

dicting whether a block should be bypassed, and τreplace for predicting whether a block

may be replaced after a hit. On 100 multi-programmed workloads (as described in Sec-

tion 4.3.1), we empirically found the best values were τbypass = 3 and τreplace = 124. The

best value for θ, for which training is triggered when the magnitude of a correct prediction

is below θ, was 68. Recall that, even though θ = 68, training will still be invoked if the

prediction is incorrect. These parameters were used to provide the results for the 1000

multi-programmed workloads (that exclude the 100 used for training). For single-thread

workloads, the parameters were chosen according to the cross-validation methodology

described in Section 4.3.1 to avoid overfitting.

4.3.4 Results for Multi-Core

This section gives results for the various policies tested. It presents accuracy, cache

misses, and speedup results. First, results are given for multi-core workloads. Then,

results are given for single-core workloads.

Performance

This section gives results for the 1000 8-core multi-programmed workloads.

Figure 4.5 shows weighted speedup normalized to LRU for SDBP, SHiP, and Percep-

tron with a 16MB last-level cache. See 4.3.1 for the definition of weighted speedup. The

figure shows the speedups for each workload in ascending sorted order to yield S-curves.

SDBP yields a geometric mean 4.3% speedup and SHiP yields a 4.4% speedup. Percep-

tron gives a geometric mean speedup of 7.4%. The superior accuracy of Perceptron gives

a significant boost in performance over the other two reuse predictors.

Misses

Figure 5.11 shows misses per 1000 instructions (MPKI) various techniques sorted in

descending order, i.e., worst-to-best from left-to-right, to yield S-curves with a log scale
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y-axis. Perceptron, at an arithmetic mean 7.2 MPKI, delivers fewer misses than the other

techniques. LRU, SDBP, and SHiP yield 9.4 MPKI, 7.8 MPKI, and 7.6 MPKI, respec-

tively.

4.3.5 Results for Single-Core

This section discusses the single-thread performance and misses for the 29 SPEC CPU

benchmarks with a 4MB LLC. Prefetching is enabled.

Performance

Figure 4.7 shows single-thread speedup of the techniques over LRU. The benchmarks

are sorted by speedup with Perceptron. SDBP and SHiP achieve a geometric mean 3.5%

and 3.8% speedup over LRU, respectively. Perceptron yields a 6.1% geometric mean

speedup. For 25 out of the 29 benchmarks, Perceptron matches or exceeds the performance

of LRU, and for most workloads it exceeds the performance of the other two techniques.
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Many of the benchmarks experience few misses on a 4MB cache. We define a memory-

intensive subset of SPEC as benchmarks with an MPKI of at least 1.0 under the LRU

replacement policy. These benchmarks are GemsFDTD, sphinx3, xalancbmk,

cactusADM, lbm, astar, soplex, omnetpp, milc and mcf. On this subset (not separately

illustrated), perceptron learning yields a geometric mean 18.3% speedup, versus 10.5%

for SHiP and 7.7% for SDBP.

Misses

Figure 4.8 gives the MPKI for the 29 benchmarks Note the y-axis is a log scale. SDBP

and SHiP have 2.3 and 2.2 MPKI, respectively. Perceptron gives 2.0 MPKI. The average

MPKI figures are low because most of the benchmarks fit a large part of their working sets

into a 4MB cache. For omnetpp, a benchmark with considerable misses, SDBP gives 8.3

MPKI, SHiP yields 9.2 MPKI, and Perceptron gives 7.7 MPKI.

4.3.6 Alternative Metrics

The original SDBP and SHiP studies were presented in simulation infrastructures that

did not include prefetching. Prefetching has a significant effect on cache management

studies because many more references to memory are made. We believe cache manage-

ment is best studied alongside prefetching since modern high performance processors in-

clude hardware prefetchers. As stated in Section 4.3.1, we modify SDBP and SHiP to

remove the confusing influence of prefetching, boosting their performance. Neverthe-

less, to put our work in the proper context of previous work, we run experiments with

prefetching disabled for all techniques including the baseline LRU policy, SDBP, SHiP,

and Perceptron. We do not illustrate the results with graphs for space reasons. The ge-

ometric mean normalized weighted speedups for SDBP, SHiP, and Perceptron are 7.5%,

8.3%, and 11.2%, respectively. The first two numbers are consistent with the conclusions

of the previous work: SHiP has an advantage over SDBP. The third number shows that
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Perceptron continues to yield significant speedup over SHiP and SDBP. Note that all of

the speedups are higher than the speedups obtained with prefetching. Prefetching elimi-

nates some of the opportunity for optimization by replacement policy since it turns many

potential misses into hits. Our LRU baseline with prefetching achieves a geometric mean

37% speedup over no prefetching, so obviously we are satisfied to accept a slight decrease

in the advantage provided by an improved replacement policy.

Accuracy

Figure 4.1 (from Section 4.1, the introduction) illustrates the accuracy of the three

predictors, giving violin plots for the false positive and coverage rates of each predictor.

Violin plots show the mean as a bar in the center of the plot along with the probability

density of the data. The coverage rate is the percentage of all predictions for which a block

is predicted not to be reused. The false positive rate is the percentage of all predictions for

which reuse was incorrectly predicted.

To summarize the figure, the plots show that SDBP and SHiP have higher mean false

positive rates and lower coverage rates than Perceptron, but also higher variance among

workloads for the false positive and coverage rates. The Perceptron probability density

graphs are shorter, showing that, in addition to superior accuracy and coverage, Perceptron

delivers a more dependable and consistent range of accuracy and coverage rates.

The coverage for perceptron-based prediction is higher than that for SDBP and SHiP

(52.4% versus 47.2% and 43.2%, respectively) while the false positive rate is lower (3.2%

versus 7.4% and 7.7%, respectively). Note that, while SHiP has a slightly higher false

positive rate than SDBP, it delivers superior performance to SDBP. SHiP only predicts at

placement, while SDBP predicts on every access, so the denominators in the false posi-

tive and coverage rates are different. Coverage represents the opportunity for optimization

given by the predictor, while false positives represent the potential cache misses caused

when an incorrect prediction leads to a live block being replaced. Thus, the perceptron
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scheme leads to increased opportunity for optimization while reducing false positives by a

factor of 2. The plots also show that the coverage and false positive rates have far less vari-

ance for perceptron versus the other schemes. The standard deviation false positive rates

for SDBP, SHiP, and perceptron learning are 3.3%, 3.6%, and 1.7%, respectively. Thus,

we may more reliably depend on the perceptron scheme to deliver consistent accuracy.
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Figure 4.7: Speedup over LRU for Single-Thread Workloads.

Cache Efficiency

Cache management with reuse prediction improves cache efficiency. Cache efficiency

is defined as the fraction of time that a given cache block is live, i.e.,, the number of cycles

that a block contains data that will be referenced again divided by the total number of

cycles the block contains valid data [59]. A more efficient cache makes better use of the

available space and wastes less energy storing dead blocks. Figure 4.9 illustrates cache

efficiency for the various techniques on a typical multi-programmed workload. In the four

128× 128 heat maps, each pixel represents the average efficiency of one set in the 16MB
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Figure 4.8: Misses per 1000 Instructions for Single-Thread Workloads.

cache, with higher efficiency represented by lighter values. The LRU cache is quite dark.

SDBP and SHiP are clearly more efficient, but Perceptron is the lightest, thus it is the most

efficient. On average over all blocks and 1000 multi-programmed workloads, LRU yields

an efficiency of 21%, i.e., at any given time 21% of blocks are live and 79% are dead.

SDBP gives an average efficiency of 47% and SHiP gives an efficiency of 43%. Although

SHiP outperforms SDBP, its efficiency is somewhat lower because it does not bypass, so

some dead blocks inevitably enter the cache and depress efficiency. Perceptron has 54%

efficiency. Thus, Perceptron more than doubles the efficiency of the cache over LRU.

4.3.7 Analysis

Perceptron learning improves accuracy over previous techniques by being able to in-

corporate more input features such that highly correlated features make a large contribution

to the prediction while uncorrelated features make little contribution. Wider weights allow

more discrimination between levels of correlation. More features allow more correlations

to be found. Figure 4.10 shows the results of experiments using different weight widths
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Figure 4.9: Heat map of cache efficiency in cache sets for the various techniques on a
typical multi-programmed workload. Darker signifies poor efficiency while lighter means
better efficiency.
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Figure 4.10: Cumulative impact of increasing numbers of features and weight widths.

62



and numbers of features, as well as for SDBP and SHiP for reference. The graph shows

the geometric mean normalized weighted speedup over the multi-programmed workloads

with a 16MB LLC. Features are added in the order they appear in Section 4.3.3. Clearly,

wider weights and more features contribute to improved performance. Considering the

global history of PCs and memory addresses individually allows finding correlations not

apparent from any one feature or from combining features into a single index as in previous

work.

4.4 Summary

This chapter describes reuse prediction based on perceptron learning. Rather than

using a single feature, or a hashed combination of features indexing a single table, percep-

tron learning allows finding independent correlations between multiple features related to

block reuse. The accuracy of perceptron-based reuse prediction is significantly better than

previous work, giving rise to an optimization that outperforms state of the art cache re-

placement policies. The complexity of perceptron-based reuse prediction is no worse than

that of branch predictors that have been implemented in real processors. In this work, the

features we focus on are the addresses of previous memory instructions and various shifts

of the currently accessed block. In future work, we intend to explore how other features

may be incorporated without increasing the overhead of the technique. We also plan to

explore how perceptron-based prediction might help with other cache management tasks

such as reuse distance prediction and prefetching.
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5. LOW-COST ASSOCIATIVITY FOR DRAM CACHES

As the memory capacity needs continue to increase, on-chip DRAM caches have been

proposed as a solution to mitigate the high latency of off-chip memory. With DRAM as

the LLC, a whole set of new challenges arise from those of SRAM caches. For this work,

we first provide studied in detail those challenges that are to be overcome, and later we

revisit the idea of associativity for DRAM caches. In this chapter we present Just-in-Time

Associativity (JITA), a low-cost technique to makes associativity affordable in DRAM

caches.

5.1 Introduction

As the demand for main memory capacity continues to increase, memory systems

consisting of multiple levels of memory are becoming increasingly popular for satisfying

memory capacity needs, while at the same time providing high memory bandwidth and

low memory latency in the common case. These memory systems typically consist of

fast memory, possibly high bandwidth stacked DRAM, and slow memory, perhaps com-

modity DRAM or an alternative memory technology like Intel’s 3DXpoint. The perfor-

mance of these systems is highly sensitive to the organization of the cache. In cases where

slow memory consists of commodity DRAM, the latency difference between slow and fast

memory is likely to be small (∼ 2X). Here, the latency added by associativity to DRAM

cache hits may outweigh the benefits of incremental miss-rate reduction, motivating the

use of a direct-mapped cache organization. In contrast, where slow memory consists of

alternative memory technologies such as 3DXpoint with much higher latencies (∼ 8X)

than stacked DRAM the tradeoffs shift [60]. In this case, the high latency of DRAM

cache misses outweigh the additional costs of associativity, rebalancing the tradeoffs in

favor of associativity. In this chapter, we examine the role of associative DRAM caches in
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multi-level memories incorporating alternative memory technologies such as 3DXpoint.

Associativity has a large impact on cache performance by avoiding conflict misses.

With no associativity, direct map caches suffer the most degradation in performance due

to conflict misses. Section 5.2 gives data emphasizing the seriousness of this problem.

Nevertheless, direct map DRAM caches give a lower access latency, as each chunk of data

can only be located in one location in the cache so only that location must be probed for a

tag match.

Alternatively, in a set associative design, blocks can be mapped any of W blocks in a

set, where W is the associativity. Set associativity provides flexibility to reduce conflict

misses. The key drawback to associativity is that, when searching through the cache for

requested data, each possible location in the set must be searched to determine whether

the data is allocated in the cache.

The impact of associativity on performance is not always clear. The performance of a

cache is usually specified by the following equation:

P = (hit_ratio ∗ hit_latency) + ((1− hit_ratio) ∗miss_latency)

Since a hit in a direct-mapped cache is usually faster than in a set-associative cache,

it is possible that the average memory access time may be lower even if the miss ratio is

higher. This is often the case for DRAM caches [46]. The main source of high access

latency for set-associative DRAM caches is the serialization of tag and data access. When

there is an access to the cache, all tags for each of the blocks in the corresponding set must

be read and compare to the tag of the requested data. If there is a match, then the location

of the data is determined and data is read. In the case of set associative SRAM caches,

the latency of tags and data serialization is reasonable. The performance gains obtained

from significantly higher hit ratio from a direct map cache outweigh the higher hit latency.
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However, this is not be the case for DRAM caches. Design decisions in DRAM caches can

quickly aggravate the already high access latency of a DRAM. Consequently, prior work

has prioritized optimizing access latency rather than hit ratios for DRAM caches [46].

For a DRAM cache, both access latency and hit ratio are strongly influenced by the

cache organization, specifically by the following two factors: tag placement, associativity

From the access latency perspective, ideally all the DRAM cache tags (and other meta-

data) would be kept on-chip in SRAM arrays. On a DRAM cache access, the SRAM store

could quickly provide information about whether and where the requested data is available

on the DRAM cache. However, since DRAM caches are expected to have capacities in

the range of multiple GBs, the area and latency overhead of an on-die metadata store is

too high. For example, for a 2GB DRAM cache with 64-byte cache blocks and assuming

52-bit physical addresses, the metadata store would require at least 96 MB. Consequently,

most prior DRAM cache work assumes that metadata is stored in the DRAM cache itself.

For example, in the previously proposed Loh-Hill cache [47], tags and data for the same

cache set are co-located in a DRAM row. Specifically, a 2KB DRAM cache row contains

29 64-byte data blocks and 3 64-byte tag blocks for one 29-way DRAM cache set. On

a DRAM cache hit, the row is opened to read the tags first and then the tag comparison

indicates the column number for the matching data way. The key drawback of this orga-

nization is that the tag and data accesses are serialized, resulting in long latency for cache

hits.

To address the hit latency problems of set-associative DRAM caches, Qureshi et al.

proposed Alloy Cache[46] that uses a direct-mapped organization and co-locates the tag

and data for each set in a contiguous 72B chunk within a row. On each cache access, the

metadata and data are read together in one DRAM access. Since this is a direct-mapped

cache, one access would suffice to determine the cache hit/miss status and to read the data

for a hit. Furthermore, unlike the Loh-Hill cache, since multiple cache sets are mapped
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to the same DRAM row, streaming accesses to consecutive sets result in row hits. Both

of these factors contribute to a lower hit latency relative to Loh-Hill cache. However, the

direct-mapped design of Alloy cache can result in a large number of conflict misses.

In light of the above two extreme design choices, we observe that there is a trade-off

between the DRAM cache hit rate and the row buffer hit rate. Increasing the associativity

increases the cache hit ratio but reduces the number of sets mapped to the same DRAM

row, potentially reducing the row buffer hit rate. Conversely, a lower associativity may

increase the row buffer hit rate but may also end up increasing the number of cache misses.

We illustrate this trade-off, and show the impact of changing associativity on cache hit ratio

(Figure 5.1) and row buffer hit ratio (Figure 5.2). Based on this data, we conclude that an

associativity of 4 to 8 provides a good balance between achieving a high cache hit ratio

and a high row buffer hit rate.

In this chapter, we analyze the trade-offs between set-associative and direct-mapped

DRAM cache organizations. While prior work has focused on choosing one of the above

and exploiting its advantages, we propose a low-cost novel technique, Just-In-Time Asso-

ciativity (JITA) achieves the best of both alternatives. Just as in a direct-mapped cache,

JITA attempts to map every incoming block to a distinct position in the cache, enabling

low hit latency for subsequent accesses. We refer to these positions as “direct-mapped”

or static positions. However, when there is a possible conflict miss, JITA dynamically

predicts whether it is advantageous to continue to allocate the new block into its static

position, potentially causing an eviction to a “hot” (repeatedly referenced) block currently

residing in that position; or to steer the incoming block to a new location as in a tradi-

tional set-associative cache and thus preserving multiple useful blocks and reducing the

miss ratio. This re-mapping of blocks away from their static positions affects the access

latency of subsequent references to this data, but this will only be done when a conflict

miss would otherwise occur. Avoiding such a miss is more important than optimizing for
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Figure 5.1: Row-buffer hit rates for one hundred randomly chosen eight-core mixes. The
mixes on the x-axis are sorted in increasing order of row-buffer hit rate

low access latency. Our evaluation shows that, when the avoided conflict misses are not

the common case, JITA delivers the low access latency benefit of a direct-mapped cache

with a negligible performance loss.

5.2 Motivation

5.2.1 Importance of Associativity

The role of associativity in DRAM caches continues to be a subject of debate, particu-

larly in light of the high cost and complexity of implementing associativity with commod-

ity DRAMs. In this section we provide some intuition behind the importance of associa-

tivity. We illustrate this in the figure below. We simulate a 64MB cache with a variety of

associativities when running a workload that repeatedly scans a 32MB (219 cache lines)
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Figure 5.2: Misses per thousand instructions for one hundred randomly chosen eight-core
mixes. The mixes on the x-axis are sorted in increasing order of MPKI

working set. Each of the blocks referenced by the workload is essentially random, exhibit-

ing no spatial locality. However, since the 32MB data structure is scanned repeatedly, and

the 32MB data structure is smaller than the 64MB capacity of the cache there is a great

deal of temporal locality in this reference stream. In Figure 5.3, when the associativity is 1

(direct-mapped) the miss-rate of the cache (solid line) is 40%, despite residing in a cache

with twice the capacity of the working set. We see the reason behind this high miss-rate in

the total percentage of lines used (dotted line), which shows that only 4% of the cache lines

in the cache are used. This is in contrast to the 50% that would be used if an ideal mapping

function could be achieved. As associativity increases, the percentage of used cache lines

increases and the miss rate decreases until an associativity of 32 completely eliminates the
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conflict misses, eliminating cache misses and increasing the number of used cache lines to

50%. Figure 5.4 illustrates the same trend, this time on a much larger, 256MB cache, 8X

the size of the working set. Here, the miss rate for the direct-mapped cache is much lower

but still fairly high at around 12%.

10

20

30

40

50

60

1 2 4 8 16 32
Associativity

P
er

ce
nt

ag
e

Misses

Lines Used

Figure 5.3: Percentage of accesses that miss in the cache, as well as the percentage of total
lines in the cache that were used for a 64MB cache running a workload that repeatedly
scans a 32MB working set.

We gain two insights from considering this experiment. First, evenly distributing cache

lines across the cache sets is difficulty even when the addresses are randomly distributed

and the working set is significantly smaller than the cache capacity. Increasing capacity

is not a cost effective way of reducing misses caused by conflicts. Second, if hot sets can

occur when addresses are random, improved indexing functions are also unlikely to solve

this problem. In fact, associativity seems to be the only effective mechanism to solve this

problem. However, most sets require no additional associativity. In fact, we have found
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that adding an additional way to 20% of the sets in a direct-map cache is sufficient to

improve reduce the miss-rate to that of a 2-way set associative cache, we illustrate this in

figure 5.5. This is the general motivation behind our proposed JITA cache design.
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Figure 5.4: Percentage of accesses that miss in the cache, as well as the percentage of total
lines in the cache that were used for a 256MB cache running a workload that repeatedly
scans a 32MB working set.

5.3 Design

5.3.1 Just-In-Time Associativity

Our proposal, the Just-In-Time-Associativity (JITA) cache provides the flexibility of

acting as a direct mapped cache when conflict misses are rare and as a set associative cache

when they are not. The JITA cache achieves this by exploiting the flexibility available in

modern cache insertion policies. In a traditional Least Recently Used (LRU) replacement

algorithm, only a single cache block (the LRU block) is a candidate for replacement. How-
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Figure 5.5: Percentage of the cache where we need associativity.

ever, most modern replacement algorithms implement an approximation to LRU, where

they group several cache blocks in a set in a recency category. For these policies, many

cache blocks belong in an LRU equivalence class. They might not be the last block that

was referenced, but instead they are one of the many blocks that have not been referenced

recently. All of these blocks serve as potential replacement candidates. The JITA cache

exploits the flexibility to steer newly allocated lines to their static locations. The goal is

that under a workload behavior that experiences rare conflict misses JITA would map most

cache lines to their one-to-one mapping, just as it would in a low access latency direct map

cache design.

The Main Idea

The DRAM cache controller is responsible for choosing where to place the data re-

quested from main memory. The flexibility that the controller has in choosing this map-

ping is determined by the associativity of the DRAM cache. A fully-associative cache
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allows newly allocated data to be placed anywhere in the cache, an 8-way set associa-

tive cache may use 1 of 8 locations, and on a direct-mapped cache the hardware may use

only one location to place this data. When looking for a previously allocated data in the

cache, each of the possible mapping locations for the data must be examined to determine

whether the data resides in the cache. This is done by performing a tag-search in which

the address of the requested data is compared with the tag of the data stored in each possi-

ble mapping, to determine if and where the data is located. Generally, high associativities

reduce the probability of conflicts misses, which translates into lower miss ratios, hence

better performance.

However, the pre-requisite to perform a tag-search before accessing the data entails a

significant increase in cache access latency. An ideal DRAM cache would act as a direct-

mapped cache all the times associativity is not required, and revert to a set-associative

cache when appropriate. Our proposal, Just-In-Time-Associativity (JITA) cache provides

this flexibility. JITA achieves this by exploiting flexibility available in modern cache in-

sertion policies. The JITA cache exploits the flexibility to preferentially insert newly al-

located cache blocks into locations that correspond to their static locations. When these

lines are subsequently requested by the processor, we are able to quickly locate them by

inferring their static position from the requested address. Requests that reside in their

static position are consider low access latency accesses, hereafter fast hits. Their loca-

tions can be successfully predicted prior to a tag access. When running workloads with

relatively smaller and regular working sets in which conflicts are rare, JITA will succeed

in mapping a vast majority of the cache lines to their static locations. However, when

running workloads with larger and more irregular working sets, allocating all the cache

lines in their direct-mapped position would suffer from a large number of conflict misses.

In such scenarios, JITA exploits the flexibility provided by associativity to map lines to

other available locations, thereby minimizing misses. If any of these re-mapped blocks
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is subsequently accessed, their location within a set cannot be inferred directly from the

request address and would require a tag search. We refer to these request as slow hits.

Thus, when compared to a direct mapped cache, such as Alloy cache, a JITA cache trades

off expensive conflict misses for relatively cheaper slow hits. The relative latencies of slow

hit vs. a cache miss depends on the main memory technology. For a DRAM-based main

memory like the one assumed in Alloy cache work[46], the miss latency is similar to the

hit latency. However, a main memory solution built with emerging memory technologies,

such as PCM or 3DXpoint may be 4X to 10X slower than the DRAM cache hit latency

[60]

5.3.2 JITA Cache Organization

The JITA cache is organized like a conventional set-associative DRAM cache. Similar

to the Loh-Hill cache, all tags and data associated with each way in a set are contained

within the same DRAM row. However, unlike the Loh-Hill cache, a single row contains

multiple cache sets. The number of cache sets mapped to a single row is determined by the

associativity, cache block size and the DRAM row size. For example, Figure 5.7 shows a

JITA cache organization for an 8-way DRAM cache with 64B blocks and a DRAM row

size of 2KB. In this case, four consecutive cache sets are mapped to the same DRAM

row. For each set, there is a 64B tag block that contains the tags for all the ways followed

by 7 contiguous 64B. In this organization, the location of tag blocks for each set can be

statically determined from the set number. Furthermore, given a way number within a set,

the location of the data block can also be statically determined.

5.3.3 Accessing the JITA Cache

When a request arrives at the DRAM cache controller, a subset of the address bits

is first used to find the set number corresponding to this address. This set number is

used to identify the exact DRAM row mapped to this address. Moreover, another subset
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Figure 5.6: On the left, we illustrate a fast hit, the requested data is in fact is in the predicted
way. To right of the figure we can observe a slow hit, the requested data is no located on
its corresponding static position, but does reside and in the cache and is accessed paying a
somewhat more costly access time.
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Figure 5.7: 2KB DRAM row containing four cache sets, for each set, we allocate its
corresponding tags in a 64B block, followed by seven 64B blocks filled with data
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of address bits derived from the tag bits is used to predict the way number within the set

which contains the requested cache line. We call this the static mapping for the address. As

a simple example, for an 8-way set-associative cache, the static way number may simply

be determined by the three least significant bits in the tag. This process is illustrated in

Figure 5.6, where pred_way refers to the static mapping:

Once the set number set_ndx and the static way number pred_way are known, the

DRAM cache controller generates corresponding row and column addresses and sends

two back-to-back read requests to the DRAM cache. The first request is for the tag block

which contains all the tags in the set and the second request is for the data block residing

in the statically predicted way. Since the exact column numbers for both these requests

are already known, the CAS command for the second request can be sent in parallel with

the data burst for the first request, resulting in consecutive back-to-back bursts of the tag

and data blocks from DRAM cache. Such back-to-back accesses would not have been

possible in a traditional set-associative DRAM cache (such as the Loh-Hill cache), since

the generation of the second CAS request would first require the tag block to be read from

the DRAM and compared with the tag for the requested address. After receiving the tag

block, the JITA controller compares the tag for the statically predicted way number with

the tag obtained from the requested address. The outcome of this comparison can lead to

one of the following three cases: (i) Fast Hits, (ii) Slow Hits, (iii) Misses.

Fast hits: If the tag in pred_way matches the tag from the requested address, then this

is a fast cache hit, illustrated in Figure 5.6. The data is retrieved from the cache much

faster than in a traditional set-associative cache.

Slow Hits: When a block resides in the cache, but is not located on its static position,

we refer to this, as a slow hit. To pinpoint the location of the block, the JITA controller

compares the address tag with the tags stored for all the other ways in the set, similar to

what a traditional set-associative cache does for each cache access. The comparison can be
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done in parallel with when the DRAM cache is sending the data burst for the pred_way

data block. If the JITA controller finds out that the requested address tag matches the

stored tags for one of the ways (different from pred_way), then it calculates the column

number for the data block in that way and sends a request to read that data from the cache.

We classify this request as a slow hit since it takes longer than the previously described

fast hit. However, it is important to note that according to this definition, all the hits in a

traditional set-associative DRAM cache would be characterized as slow hits.

Misses: If neither the statically predicted tag, nor any of the other tags within the set

match the tag from the requested address, then this request is a cache miss. In that case,

the cache eviction algorithm finds a victim block to be replaced by the new block.

Insertion Policy

Consider a block Bnew that needs to be allocated into the cache on a cache miss. As-

sume that Bnew maps to set i and static way number j. In order to make the allocation

decision for Bnew, JITA always prioritizes mapping Bnew to its static position. The first

step is to check the availability of position i. If the position is available (i.e. current block

contains no valid data), Bnew is allocated in position i, and consequently access to Bnew

will result in fast hit type of access. If position i is already occupied with valid data, JITA’s

replacement algorithm is consulted to determine whether Bold, the current residing block

is likely to be referenced again. As JITA prefers to place blocks in their static position, it

acts more aggressively when deciding what is consider to ready for eviction than it would

in a different scenario. If, according to the JITA’s algorithm Bold shows that it will most

likely be referenced again in the near future, JITA takes advantage of the flexibility of be-

ing a set-associative cache and will re-direct Bnew to a different available position in the

cache. Figure 5.8 illustrates JITA’s insertion mechanishm.

In order to avoid performance degradation by having most accesses result in slow hits,

JITA has a maximum number of allowed re-map blocks per set τ_r . We first determine
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whether the number of currently re-mapped blocks has already reached τ_r. If this is

the case, JITA searches among blocks that are not residing in their static position, i.e.

re-mapped blocks, and as a replacement candidate the block that shows little promise of

being re-referenced again before being evicted from the cache. When all blocks show

future reuse, one block among all the re-mapped blocks is chosen at random.

Otherwise, if there is room for more re-mappings within the set, a replacement candi-

date in the set is chose by relying of JITA’s replacement policy. However, this re-mapping

would subsequently result in slow hits upon later accesses to Bnew.

JITA’s replacement algorithm is based on the static RRIP eviction algorithm [12],

which uses a two bit re-reference interval prediction value (RRPV) to categorize a block in

a reuse-distance category. When JITA makes the decision whether to evict Bold, the policy

is less forgiving and decide to evict Bold if the corresponding RRPV is at least two. In

other cases, JITA follows the original technique where it does only evict once the block’s

RRPV has saturated.

1"

r r

block’s static position i is 
available or Bold can be evicted

max number of remaps have been 
reached, a block that is identified as 
remapped is chosen for replacement

remap allowed, choose 
block with RRPV = 2

Bnew

Bnew

Bnew

Bold

Figure 5.8: JITA’s insertion policy.
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Summary of Latencies

To summarize the different latencies for each type of access, Figure 5.9 shows the

comparison of JITA latencies to Alloy cache and the Loh-Hill cache. The fast hit latency

for JITA is close to the hit latency for Alloy cache and significantly faster than that of the

Loh-Hill cache. The slow hit latency for JITA is similar to the hit latency for Loh-hill

cache. Note that the figure shows only the case of a row buffer hit. In the case of a row

buffer miss, the activate command (ACT) latency is added to these latency numbers.

1

CAS TAG DATA

Fast Hit:

Slow Hit:

Loh-Hill:

Alloy:

CAS TAG DATA

CAS DATA

CAS TAG

CAS DATA

CAS TAG DATA

Figure 5.9: Different access latencies for each policy.

5.4 Evaluation

In this section, we evaluate the JITA cache. First, we present the evaluation methodol-

ogy and compare the performance of JITA with the most closely related to our technique

DRAM cache designs.
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5.4.1 Methodology

We compare JITA to other proposed designs for DRAM caches, using an in-house

simulator with the following memory hierarchy parameters: L1 data cache: 32KB 8-way

associative, L2 unified cache: 256KB 8-ways. It models an out-of-order 4-wide 8-stage

pipeline with a 128-entry instruction window. We model a 256MB DRAM cache. The

latencies we model are the same as those for previously proposed work [46, 47]. For both

the Loh-Hill cache and JITA we used an SRRIP [12] based policy, with some modifications

for the JITA cache, as part of our optimization. Because of the simplicity of our proposed

technique (i.e. does not require any extra SRAM storage, etc) we decided to compare JITA

to the more related previously proposed work, the Alloy cache as a direct-map design, and

the Loh-Hill as a set associative cache. We evaluated JITA as an 8-way set associative

cache, where in each set, on of the ways is used to store the corresponding tags for the set.

Workloads

We use the 29 SPEC CPU 2006 benchmarks [61] as well as three server workloads

from CloudSuite[62] and a machine learning workload from mlpack [63]. We use Sim-

Point [64] to identify up to 6 segments (i.e. simpoints) of one billion instructions each

characteristic of the different program phases for the SPEC and mlpack workloads. For

CloudSuite, we fast-forward at least 30 billion instructions to get past the initialization

phases. In total, we use 99 segments representing 33 benchmarks.

Multi-Core Workloads

For 8-core multi-programmed workloads, we generated 100 distinct workloads con-

sisting of mixes from the 99 segments described above. We follow the sample-balanced

methodology of FIESTA [56]. We begin by selecting regions of equal standalone running

time for each simpoint. Each region begins at the start of the simpoint and ends when

the number of cycles in a standalone simulation reaches one billion cycles. Each work-
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Figure 5.10: Normalized Weighted Speedup over baseline no DRAM cache for 8-Core
MultiProgrammed Workloads

load is a mix of 8 of these regions chosen uniformly randomly without replacement. For

each workload the simulator warms microarchitectural structures until 100 million total

instructions have been executed, then measures results until each benchmark has executed

for at least one billion additional cycles. When a thread reaches the end of its one billion

cycle region, it starts over at the beginning. Thus, all 8 cores are active during the entire

measurement period.

5.4.2 Results

Figure 5.10 shows weighted speedup for Alloy, Loh-Hill and JITA caches with 256MB

normalized to no DRAM cache. A solid line across the figure represents our baseline, a

memory hierarchy with no DRAM cache where every request that misses in the SRAM
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LLC would have to access main memory. We propose JITA in the context of a system

with a main memory solution built with emerging memory technologies, where the access

latency is significantly higher. In this context, a DRAM cache is crucial to preserve system

performance. An extra line in the figure was added to demonstrate the upper bound gain in

performance we could obtain if we could achieve a complete set-associative DRAM cache

with a like access latency as a direct map cache, we refer to this as ideal JITA. Figure 5.10

shows the speedups for each workload in ascending sorted order to yield S-curves. Loh-

Hill yields a geometric mean 74% speedup and the Alloy cache yields a 77% speedup.

JITA gives a geometric mean speedup of 87%. The superior hit-rate and the low-cost

access latency of JITA gives a significant boost in performance over the other two other

techniques. Note that the Loh-Hill cache achieves similar performance to the performance

of the Alloy cache in the presence of a significantly more latency expensive main memory

technology, such as 3DXpoint. In such scenario, we believe the DRAM cache management

policy should strive to optimize hit rate, while yielding the lowest average access latency

possible.

Misses

Figure 5.11 shows misses per 1000 instructions (MPKI) for various techniques sorted

in descending order, i.e., worst-to-best from left-to-right, to yield S-curves. The Loh-

Hill cache yields the fewest misses at an arithmetic mean 27.8 an expected results giving

that associativy gets rid of most conflict misses, JITA follows very closely at an arithmetic

mean of 28.4 MPKI. As discussed throughout the chapter, JITA’s ability to behave like both

a direct-map cache and a set-associative one, deliver a fast access latency for vast majority

of the access to DRAM cache and places the technique in ahead in the competition for

performance, even if Loh-Hill achieves a slightly lower MPKI ratio. As we expected,

Alloy cache delivers the most misses, with an arithmetic mean of 40.7, the Alloy cache

main goal was not designed to reduce number of misses, rather they focus on reducing the
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average access latency.

5.4.3 Analysis

Fast Hits

Fast access hits are crucial for JITA to improve performance. With our experiments,

we learned that caches might achieve the full benefits associativity can provide by only

having a small number of sets behave as a set associative cache. For the vast majority

of applications, we learned that if we provide a cache with a 25% associativity, meaning

25% of the cache follows a set associative design, it would be sufficient to enjoy the

benefits in performance coming from the high reduction in misses, without having to pay

the significant cost as high access latency. Figure 5.12 illustrates the fast hits obtained for

each of the 100 eight-core mixes evaluated. For a most mixes the number of fast hits is

close to the total of hits. This represents those mixes that already perform well in a direct-

map cache design in which conflict misses are rare. This shows that JITA does not hurt

the performance of already well-performing benchmarks. For the mixes where the fast hit

ratio is less than optimal, this represents the necessity for the presence of associativity. We

must remember that most of the not achieved fast hits (i.e. slow hits) would have been a

miss in a direct-map configuration.

Sensitivity to Cache Size

Figure 5.13 shows the average IPC for the 100 mixes of eight-core workloads, for both

the Alloy and the JITA cache, evaluated using different cache sizes. As we increase the

cache size, we learn that misses are less likely to increase.

Sequential or Parallel Access

The Alloy cache [46] proposes a simple yet effective mechanism to decide, whether

to make accesses to the DRAM cache in a sequential or parallel fashion. For the scenario

where the Alloy cache was proposed for, a DRAM cache backed up by DRAM, a sequen-
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tial access to the DRAM cache that ends up missing on the cache, would be be more costly

than the access had been sent directly to main memory. For this, they make use of a Mem-

ory Access Predictor, to determine whether the data will be in the cache or not, and they

use this prediction to decide how to access main memory. To keep the simplistic trend of

this work, the results are shown with the use of no predictor, but for a fair comparison, we

evaluated both the Alloy cache and the JITA cache using the MAP predictor, it boosted

performance of both techniques, the trend remain the same JITA outperforming the Alloy

cache by a 13% on average.

Multi-Level Cache Policy

In this work we have focused on evaluating JITA in the context of managing a DRAM

cache. Efficiently implementing associativity in DRAM caches continues to be challenge
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and makes this a natural area of focus. However, in today’s power sensitive CPUs, large

associative L2 and L3 caches typically require the tag and data lookup to be performed
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sequentially. Only after the tag lookup identifies which way holds the data is the data

array accessed. The concepts, described here are applicable to these caches as well and

could be used to predict which way contains the desired data (way-prediction). Here, JITA

would allow the data and tag lookup to proceed in parallel, eliminating the latency of the

tag lookup from the overall cache latency.

5.5 Summary

This chapter discusses the necessity of achieving high hit rates as well as mitigating the

high access latency DRAM caches. We present our technique JITA, a low-cost approach

to associativity, that slightly modifies the mapping of data to cache locations in a set-

associative cache configuration, resulting in a DRAM cache that behaves as a low access

latency direct map cache for most accesses, and defaults to a set associative cache when

needed to avoid conflict missed that would come at a cost with a high miss penalty. With

minimal changes to the hardware, JITA is able to provide the much larger associativity for

DRAM caches, with almost the same low access time of that of a truly direct map cache.

JITA outperforms the state-of-the-art technique by a 13% on average.
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6. SUMMARY AND CONCLUSIONS

In this chapter, we review the contributions of this dissertation.

6.1 Contributions

Recall the thesis statement from the introduction:

The performance and efficiency of last-level caches can be improved by applying

principles of machine learning and other areas of research to intelligent last-level cache

management policies.

Cache management has been extensively studied. With our work, we have proven that

by applying some principles from other areas of research, the performance of the last-

level cache can be improved. As new memory technologies are emerging, future research

should focus on designing techniques that, will scale well to these new technologies, and

will also efficiently manage last-level caches under the presence future applications with

significantly higher memory capacity demands.

In this dissertation we have examined a number of different last-level cache organiza-

tions, and evaluated them in the context of both current and future process technologies.

We have proposed a low-storage overhead policy that will gracefully scale with future in-

creasing memory capacity such as MDPP, as well as enabling more complex policies such

as Perceptron to maximize the efficiency of more critical capacity memories. Following

the future trends in technology, we also presented JITA, a technique to enable associativity

in higher access latency memories at an accesible latency cost.

We first introduce MDPP, a low-storage overhead replacement policy. MDPP follows

the minimal disturbance principle found in neural networks research, which helps solve the

problem that the highly cost effective tree-based PseudoLRU represents, when a block is
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promoted, positions for all non-referenced blocks are significantly altered, and very often

are placed in non-favorable positions even when showing high locality. MDDP performs

as well as the state-of-the-art policies found in the literature at a fraction of the cost.

We have introduced a reuse predictor that uses neural networks —the perceptron in

particular —as the basic prediction mechanism. Perceptrons are attractive because they

can use long history lengths without requiring exponential resources. A potential weakness

of perceptrons is their increased computational complexity when compared with other

simpler schemes, but we have shown how a perceptron predictor can be implemented

efficiently. The perceptron predictor achieves a lower misprediction rate than other similar

proposed work.

Finally, we introduce a technique to be able to choose a set-associative design in terms

of a DRAM cache, at an affordable latency-access cost. First we studied the tradeoff

between performance benefits and cost of different degrees of associativity. With then add

some simple extra steps to the traditional way of mapping blocks to the cache, to allow the

DRAM cache to act as a low-access latency direct-map cache when possible, and default

to a set-associative cache when necessary to optimize for hit rate. We evaluated our work

in respect to new emerging technologies such as 3DXpoint, which creates a new set of

challenges for DRAM caches, and ends the assumption that it is okay not to optimize for

hit rate for such scenarios.

In summary, in this dissertation, we have improved last-level cache performance, by

rethinking current cache management technique, and incorporating machine learning ideas

to improve on such techniques effectiveness, accuracy, and overall performance. Our de-

sign philosophy is extensible to current memory system, and it also presents better oppor-

tunities for future memory technologies.
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