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ABSTRACT

Due to the explosive deployment of WiFi and ZigBee wireless networks, 2.4GHz

ISM bands (2.4GHz-2.5GHz) are becoming increasingly crowded, and the co-channel

coexistence of these two networks is inevitable. For coexistence networks, people

always want to predict their performance (e.g. throughput, energy consumption,

etc.) before deployment, or even want to tune parameters to compensate unnec-

essary performance degradation (owing to the huge differences between these two

MAC protocols) or to satisfy some performance requirements (e.g., priority, delay

constraint, etc.) of them. However, predicting and tuning performance of coexisting

WiFi and ZigBee networks has been a challenging task, primarily due to the lack of

corresponding simulators and analytical models.

In this dissertation, we addressed the aforementioned problems by presenting

simulators and models for the coexistence of WiFi and ZigBee devices. Specifically,

based on the energy efficiency and traffic pattern of three practical coexistence sce-

narios: disaster rescue site, smart hospital and home automation. We first of all

classify them into three classes, which are non-sleeping devices with saturated traf-

fic (SAT), non-sleeping devices with unsaturated traffic (UNSAT) and duty-cycling

devices with unsaturated traffic (DC-UNSAT). Then a simulator and an analytical

model are proposed for each class, where each simulator is verified by simple hard-

ware based experiment. Next, we derive the expressions for performance metrics like

throughput, delay etc., and predict them using both the proposed simulator and the

model. Due to the higher accuracy of the simulator, the results from them are used

as the ground truth to validate the accuracy of the model. Last, according to some

common performance tuning requirements for each class, we formulate them into
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optimization problems and propose the corresponding solving methods. The results

show that the proposed simulators have high accuracy in performance prediction,

while the models, although are less accurate than the former, can be used in fast

prediction. In particular, the models can also be easily used in optimization problems

for performance tuning, and the results prove its high efficiency.
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1. INTRODUCTION

In recent years, due to the remarkable advantages of wireless networks such as

“increased mobility and collaboration”, “improved responsiveness”, “economic ac-

cess to information”, “easier network expansion” and “enhanced guest access”, we

have witnessed a proliferation of wireless technologies that have now become ubiq-

uitous [1]. For example, cell phone networks, wireless local area networks (WLAN),

wireless personal area networks (WPAN), wireless sensor networks (WSN), satel-

lite communication networks, and terrestrial microwave networks are very widely

deployed nowadays [2].

Given the scarce availability of RF spectrum, many of these technologies are

forced to use the cost-free 2.4GHz unlicensed frequency bands, which are also under

the famous name industrial, scientific and medical (ISM) radio bands. The two most

popular wireless techniques working on ISM are WiFi [3] and ZigBee [4] for WLAN

and WSN, respectively. According to a report by ABI Research, the WiFi chipset

accumulative shipments in 2016∼2020 will reach 20 billion [5], while such number

for ZigBee realm during the same period will achieve 2.5 billion based on a report

by ON World [6].

WLAN network traffic is mostly contributed by mainstream/entertainment appli-

cations that exploit the high data rate provided by the IEEE 802.11 MAC protocol [7]

of WiFi. Wireless Sensor Networks traffic, on the other hand, has been concentrated

towards applications such as building automation, health care monitoring and envi-

ronmental sensing because of energy economy and low date rate imposed by the IEEE

802.15.4 MAC protocol [8] of ZigBee. Although there are many differences between

802.11 and 802.15.4 protocols, they both employ the Carrier Sensing Multiple Access

1



with Collision Avoidance (CSMA/CA) as the underlying wireless accessing mecha-

nism, which renders the network operating efficiently without a central controller

(i.e. in a distributed manner).

To avoid potential collisions between different wireless networks, people tend to

distribute them into non-overlapping channels where signals never affect each other.

For example, since there are three orthogonal channels for WiFi (i.e. channel 1, 6 and

11), two WiFi networks can be put on channel 1 and channel 6 respectively to eradi-

cate collisions completely. However, owing to the aforementioned exponential growth

in the number of WiFi and ZigBee networks deployments, almost all channels in ISM

bands have been extremely crowded. Thus the approaches that utilize orthogonal

channels to improve the performance of WiFi and ZigBee networks [9] [10] [11] are

rendered ineffective, implying that their coexistence on the same channel is not avert-

ible. Since the same channel coexistence is the focus of this dissertation, hereafter

“coexistence” in the context always indicates “coexistence on the same channel”,

unless otherwise specified.

According to the difference in the transmission power level of WiFi and ZigBee

devices, two types of coexistence are defined, i.e. single-cell coexistence (symmetric

coexistence) and multi-cell coexistence (asymmetric coexistence). In the former sce-

nario, these two types of devices are placed inside each other’s communication ranges

(i.e. they are basically within the range of ∼ 20m of each other), and they are able

to sense each other’s signals. While for asymmetric coexistence, ZigBee devices are

placed inside the coverage of WiFi devices, but not vice versa, therefore only ZigBee

can detect the transmissions of WiFi.

In symmetric coexistence, both WiFi and ZigBee can hear the voice of each other,

their underneath CSMA/CA mechanism enables their coexistence intrinsically, i.e.

any transmission will not be interrupted arbitrarily. Thus our concerns for symmetric

2



coexistence scenario are more related to performance issues, i.e. can we predict or

even tune the performancec of both type of devices.

On the other hand, since in asymmetric coexistence scenario WiFi devices are

unaware of the existence of ZigBee, their CSMA/CA protocol cannot detect an

ongoing transmission of the latter, i.e. WiFi never backoff for ZigBee. This sit-

uation is disastrous for ZigBee devices because their packets may be destroyed by

a WiFi communication at any point of time. Due to the severity of this problem

(from the perspective of ZigBee), there is much research has been taken to overcome

it [12] [13] [14]. For example, [12] tried to analyze the distribution of the white space

size in WiFi traffic (i.e. the length of the time gap in which no WiFi is transmitting),

and then it segments the packet of ZigBee such that its size can be probabilistically

fitted into an empty space of WiFi. Rather than analyzing the traffic characteris-

tic of WiFi, [13] employs a more straightforward idea, i.e. it tries to fix the errors

in a ZigBee packet (caused by a WiFi transmission) by using Reed Solomon code.

While [14] adds a WiFi signal cancellation circuit to the PHY layer of ZigBee devices

to eliminate the negative effects from WiFi transmission.

The solutions above for asymmetric coexistence have shown promising results in

improving the performance of ZigBee, however, they are often very complicated, and

usually becomes infeasible when network density is high. The main problem of this

type of solution is, ZigBee always tries to adapt itself to WiFi, which is too passive

to succeed in an intensive competition. Thus another type of solution emerges, i.e.

making ZigBee proactive, and the most effective way to do so is letting WiFi knows

the existence of ZigBee. In [15], the authors place a high power ZigBee busy toner

which transmits dummy packet along with a normal packet (on different ZigBee

channel) such that the CSMA/CA mechanism of WiFi begins to function for the

ZigBee network.
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Now, we want to argue that the idea of transforming asymmetric coexistence to

symmetric coexistence is a better strategy because passive solutions reply too much

on the competitor (i.e. WiFi), and if the latter is very eager for the resource, the

passive ones might get starved easily. Therefore, symmetric coexistence is the focus

of this dissertation.

1.1 Problems

1.1.1 Performance prediction

When designing a network, people are always wondering how well the network

can actually perform, such that they can change the design when the result is not

satisfactory. The most common approach to predict network performance is using

simulators, such as ns-2 [16], OPNET [17] etc., which are accurate but usually very

time costly. Another option is based on mathematical modeling, i.e. formulating

the network as several equations through stochastic techniques and directly compute

the performance needed. This type of solution is not as accurate as simulators

but outperforms the latter in terms of speed. However, for symmetric coexistence

network, so far not only the simulator is lacking, but also there is no mathematical

model available to the community.

1.1.2 Performance tuning

In a symmetric coexistence network, it is expected to see performance degradation

for both WiFi and ZigBee devices [18] [19], because one precious resource (i.e. the

channel) needs to shared by more consumers. Although this seems reasonable, the

fact is more complicated than that. By digging inside these two MAC protocols,

we know that the design philosophy of them are quite different. Specifically, WiFi

protocol is designed to be very aggressive to obtain maximum throughput, while

ZigBee is quite passive so as to save energy to its best. Thus when coexisting with
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each other, ZigBee is very likely to lose the competition with WiFi; but if the passive

ZigBee seizes the channel (with low probability), it occupies the channel for a long

time due to its low data rate (i.e. 250Kbps), which in turn makes the WiFi suffer. In

other words, their coexistence is possible, but is far from ideal. Therefore, given the

performance objective constraint of one side (e.g. WiFi), our pursuit is to optimize

the performance of the other side as much as possible by tuning the core parameters

such as contention window (CW ), etc.

For WiFi, for example, under the premise that the throughput has reached a

requirement, we can reduce the aggressiveness by increasing its CW to give ZigBee

more chances to use the channel, i.e. increasing the throughput of ZigBee. However,

it is worth emphasizing that, the performance metric like throughput of WiFi and

ZigBee are essentially a pair of contradictions, it is thus not possible to maximize

both of them at the same time. Generally, we can formulate the performance tuning

process as the following optimization problem,

arg max/min
CW,etc.

Metric of device type 1

subject to Metric of device type 2 ≥ Constraint,

Other constraints.

which uses an initial guesses of parameters CW as the input, and outputs the opti-

mal values of them. Note that a valid metric can be the throughput, delay, energy

consumption etc., and the metrics for different types are not necessarily the same

(e.g. we can maximize the throughput of WiFi, under the delay constraint of Zig-

Bee). Apparently, for optimization problems, simulators are not good choice because

obtaining one result takes hours, not to mention searching a massive solution space

for an optimum. Thus, the mathematical model becomes the only option.
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In this dissertation, we propose mathematical models for predicting and tuning

the performance of the symmetric coexistence network of WiFi and ZigBee. Simu-

lators for symmetric coexistence are also proposed, which can not only be used for

performance prediction, but also for verifying the accuracy of the proposed models.

1.2 Motivations

In this section, we motivate our research in detail by the following three different

symmetric coexistence conditions.

• Disaster response, where many ZigBee sensors and WiFi routers are deployed

within a small disastrous area. Then huge amount of data is generated by

wireless sensors and responders (photos, videos etc.), which is then conveyed

through a WiFi backbone network to the Command and Control (C2). The

characteristic of this coexistence scenario is that all WiFi and ZigBee devices

are very powerful (e.g. sufficient battery, long communication range), the traf-

fic pattern is saturated, and the duty cycling mechanism is disabled to achieve

better throughput. Since different type of devices mule information with differ-

ent privilege, the tuning requirement of giving one type of devices higher priority

motivates the need for a mathematical model as well as a good simulator for

the coexistence of non-sleeping devices with saturated traffic.

• Smart Hospital, where ZigBee sensors are placed around the body of patients,

and the host instruments of the sensors are equipped with WiFi to enhance

the mobility. The sensors collect data from the patients and send it wirelessly

to the host instruments, which then report the analyses to the doctors/nurses

through WiFi. In this type of coexistence, the WiFi and ZigBee devices are

also powerful, the traffic pattern, however, is usually unsaturated, and they

are not allowed to go to sleep in the consideration of delay constraints and
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reliability. It is important for the data from the sensors to be delivered before

some deadline, thus needs of maximizing the throughput of WiFi while ensur-

ing service time constraint of ZigBee motivates us to find an analytical model

and a corresponding simulator for the coexistence of non-sleeping devices with

unsaturated traffic.

• Home Automation, where many ZigBee sensors/actuators are deployed in the

house, and many WiFi devices such as routers, smartphones, tablets are coex-

isting with them. Since most devices are powered by batteries, the duty cycling

mechanism is always enabled. Obviously, the characteristic of this kind of coex-

istence is the unsaturated traffic plus duty cycling. Usually the hand-held WiFi

devices are expected to work as long as possible before getting charged, and the

sensors need to work for years before the batteries get changed, the tuning re-

quirement of lifetime extension for both type of devices motivates us to have a

mathematical model and a simulator for the coexistence of duty-cycling devices

with unsaturated traffic.
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Figure 1.1: Classification of coexisting WiFi and ZigBee
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Based on the motivations above, we classify the symmetric coexistence network

in terms of traffic pattern and energy efficiency as in Figure 1.1. The research

objective is to model and simulate the single-cell coexistence for three different cases,

i.e. saturated traffic without duty cycling (SAT), unsaturated traffic without duty

cycling (UNSAT) and unsaturated traffic with duty cycling (DC-UNSAT), such that

we can predict and tune performances for the devices involve. Note that although

the scenario of duty cycling devices with saturated traffic is unreasonable (named

DC-SAT), it actually serves as a critical part in the approximation for the modeling

of DC-UNSAT.

1.3 Dissertation Statement

Due to the explosive deployment of wireless technology such as WiFi and ZigBee,

coexistence network of them has become more and more pervasive. For the case

of multi-cell coexistence, transforming it into a single-cell one (i.e., making ZigBee

proactive) is more advantageous than the solutions which adapt ZigBee to WiFi

because it is near impossible for a passive device to win a very intensive competition.

We claim that symmetric coexistence will be the future of this hybrid coexistence

network, and thus is the focus of this dissertation. As predicting and tuning network

performance are of great importance for network designers, the tools which can help

improving the designs are thus highly demanded. However, for symmetric coexistence

network there is neither simulator nor mathematical model that is available to use

so far.

This research is trying to fill up this gap, and it proposes the first models and

simulators for symmetric coexistence network, which can be used for the aforemen-

tioned purpose. Specifically, by showing three different coexistence scenarios in terms

of traffic pattern and energy efficiency, it classifies symmetric coexistence into three
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types and proposes a model and a simulator for each type. Then it validates the

accuracy of the models by comparing the performance predictions from the models

against the ones from the proposed simulators. Lastly, to demonstrate the usages of

the models on performance tuning, it formulates three requirements as three opti-

mization problems, one for each type, and obtains three optimal values for the chosen

parameter sets by solving the corresponding problems.

1.4 Main Contributions

The contributions of this research are outlined as follows:

For chapter “Coexistence of non-sleeping WiFi and ZigBee with satu-

rated traffic”,

• it presents the first Monte Carlo based coexistence simulator for SAT;

• it proposes an accurate Markov Chain model for SAT;

• it presents the first analysis and closed form expressions to predict throughput;

• it presents two performance tuning methods that achieve priority and fairness,

respectively;

• it validates the accuracy of the model and the feasibility of the tuning method

through extensive simulations.

For chapter “Coexistence of non-sleeping WiFi and ZigBee with unsat-

urated traffic”,

• it presents the first ns-3 based coexistence simulator for UNSAT;

• it proposes a new accurate Markov Chain model for UNSAT;
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• it proposes a M/G/1 queueing model that accurately compute buffer empty

probabilities;

• it presents the first analysis and closed form expressions to predict throughput

and packet delivery delay;

• it presents a performance tuning method, that maximizes WiFi throughput

while satisfying 802.15.4 packet delivery delay constraints;

• it validates the accuracy of the model and the feasibility of the tuning method

through extensive simulations.

For chapter “Coexistence of duty-cycling WiFi and ZigBee with unsat-

urated traffic”,

• it extends the Monte Carlo based coexistence simulator such that it supports

the simulation of DC-UNSAT;

• it proposes an accurate Markov Chain model for WiFi power saving mode

(PSM), as a step stone to the entire DC-UNSAT modeling objective;

• it presents an approximation based yet accurate model for DC-UNSAT;

• it proposes a M/G/1 queueing model that can accurately compute buffer empty

probabilities;

• it presents the first analysis and closed form expressions to predict throughput

and energy consumption;

• it presents performance tuning method to account for energy consumption;

• it validates the accuracy of the model and the feasibility of the tuning method

through extensive simulations.
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1.5 Organization

This dissertation is organized as follows. In Section 2, the state of the art and

prior works related to this dissertation are reviewed. Section 3 proposes a Monte

Carlo simulator, a Markov Chain model for SAT, Section 4 proposes a ns-3 based

simulator and a new Markov Chain and M/G/1 based model for UNSAT, and Section

5 describes a extended Monte Carlo simulator, a Markov Chain model for WiFi PSM

and an approximation based model for DC-UNSAT. Finally, Section 6 concludes this

dissertation and illustrates its future perspective.
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2. STATE OF THE ART

2.1 Background

Much research has revealed the performance degradation in coexisting WiFi and

ZigBee network [18] [19] [12] [15] [13] [20], where [18] [19] demonstrate this phenom-

ena for symmetric coexistence scenario, while [12] [15] [13] [20] show the problem in

asymmetric coexistence networks.

First of all, in symmetric coexistence case, performance degradation are observed

on both WiFi and ZigBee sides [18] [19]. Specifically, the results of [18] indicate

that packet error rate is more than 90% for 802.15.4 (the degradation of 802.11 is

not shown, but can be expected), which the experimental results in [19] show that

the throughput loss of IEEE 802.11 can be up to 30%, and may reach 60% when

802.15.4 duty cycles is large. The main reason for this problem is that although these

two CSMA/CA based MAC protocols are still functioning in coexistence condition,

nevertheless they do not work well because of the huge yet critical differences between

them. More precisely, since 802.11 is very aggressive compare to 802.15.4, it can grab

the transmission chance more easily than the latter, however, because the data rate

for 802.15.4 is low, whenever it grabs a chance to send, it occupies the channel for a

long time hence hurts 802.11 significantly.

On the other hand, in [12] [15] [13] [20], all the authors point out that for asym-

metric coexistence case (i.e. when ZigBee devices are located far from WiFi), the

performance of ZigBee degrade significantly (> 90%), especially when the WiFi traf-

fic is heavy. The reason for this is that WiFi devices are agnostic of the ongoing

transmission of ZigBee, which makes ZigBee devices vulnerable to WiFi transmis-

sions.
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2.2 General Solutions

Frequency hopping is a general solution for both symmetric coexistence and asym-

metric coexistence because whenever the performance becomes too bad (especially

for ZigBee in asymmetric coexistence), the victims always have the option to use

an emptier channel. Frequency hopping wisely manipulates the usage of the fre-

quency channels that are available. This solution implements channel assignment

algorithms that target multi-channel networks. Based on the detected interference

level the nodes are assigned different channels to reduce the impact of interference.

Examples of solutions that adopted this technique are [9] [10] and [11]. Han et al.

presented a centralized interference mitigation mechanism that is based on dynamic

channel selection for cluster tree ZigBee networks [9]. Interference is detected by

sensing the channel or using packet error rate. If high level of interference is affirmed,

the coordinator announces the start of multi-channel operation mode in its cluster.

In this mode, the nodes in the cluster use channel hopping and transmit data on

different channels determined by the coordinator. After monitoring the transmission

quality, the coordinator finds the best channel and assigns it as the new channel

then return back to the single-channel operation mode. [10] and [11] also use the

channel hopping idea but without a master nodes who select the best channel for

other devices. Each device tracks the current channel of its neighbors and also notifies

them when itself changes the channel. However, to determine the interference level

and choose the best new channel, different methods are used.

Recently, cognitive radio has become a promising approach to mitigate the in-

terference from other wireless techniques [21] [22] [23] [24] [25] [26]. In principle,

cognitive radio is a radio or system that senses its operational electromagnetic envi-

ronment and can dynamically and autonomously adjust its radio operating parame-
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ters to modify system operation, such as maximize throughput, mitigate interference,

facilitate interoperability, access secondary markets. Compare to the aforementioned

frequency hopping solutions, cognitive radio selects the best working channel more

intelligently, thus is usually more complicated. [21] and [23] surveyed the applica-

tions, challenges and research trends for cognitive radio in wireless sensor networks,

while [22] [24] [25] and [26] studied the interference in cognitive networks by some

theoretical means such as statistical model etc.

The main problem in frequency spacing solutions is the limited number of avail-

able channels, especially, when interfering with networks that has large bandwidth

frequency channels, e.g. a channel in WiFi interferes with three or four channels in

ZigBee. Moreover, there is no accurate methodology to determinate the level of in-

terference based on SINR, RSSI, channel quality etc., and an accurate determination

of whether a channel is emptier is also not trivial.

2.3 Asymmetric Coexistence Specific Solutions

Since in asymmetric coexistence network, ZigBee devices cannot affect WiFi, the

first type of strategy for ZigBee is “adaptation”, i.e. the solutions under this category

try to adapt the behavior of ZigBee to reduce interference from WiFi [12] [13] [14] [27].

White spaces in WiFi networks were exploited in [12]. The interference between

ZigBee and WiFi was studied empirically based on real life traffic traces and used

to model white spaces in bursty WiFi networks. Also, they modeled the behavior of

Zigbee links under WiFi interference where the probability of collision was analyzed

mathematically. Based on that, the authors proposed a frame control protocol called

WISE which predicts the white spaces length of WiFi using the developed model and

adjusts the frame size of ZigBee accordingly to fit into the available free space.

[13] and [14] tried to reduce the interference by WiFi from a different perspective.
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Specifically, [13] utilized a Forward Error Correction based approach named Reed

Solomon Code to fix the packet errors caused by 802.11 interference; while [14]

recovers ZigBee packet during WiFi/ZigBee collision by extracting WiFi packet first

(because WiFi signal is very strong compare to ZigBee), and then subtracts WiFi

interference and decodes ZigBee packet. Moreover, [13] also defined two types of

interference: symmetric (WiFi device can hear Zigbee transmission) and asymmetric

(WiFi device cannot hear Zigbee transmission), which is same as we do.

Multiple-antenna and beamforming techniques were utilized in [27] where a cog-

nitive smart grid network protocol has been proposed. ZigBee nodes monitor the

transmission time of frames needed by WiFi devices which is used to compute the

beamforming vector for the antennas. This vector guarantees a satisfactory rate

for ZigBee nodes while sharing the spectrum with WiFi devices and allows data

transmission with the interfering WiFi networks simultaneously.

Note that this strategy (i.e. adaptation) works unsatisfactorily when WiFi traffic

load is heavy because there is no enough space to “adapt”. Therefore, unlike adapting

ZigBee to WiFi, the second strategy is letting WiFi know the existence of ZigBee

such that WiFi are forced to share the channel with ZigBee (i.e. more fairly).

In [15], Zhang et al. placed an extra powerful ZigBee device as a busy toner

in the original ZigBee network. The busy toner has two antennas and is able to

work on two different 802.15.4 channels. The novelty of this work is that, the toner

receives the transmission from the ZigBee network on one channel, and uses the other

channel to transmit dummy packet such that WiFi devices are forced to backoff. This

work needs the two 802.15.4 channels to be covered by one WiFi channel, which is

feasible because one 802.11 channel is around four times wider than a 802.15.4 one.

Radunovic et al. [20] redesign the preamble of ZigBee based on a key observation

that longer preamble sequence can be detected easier. In this case, WiFi will sense
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the presence of ZigBee, and thus backoff.

Fake WiFi packets were used in [28] where the authors proposed WiCop frame-

work that tends to exploit the white spaces of interfering WiFi networks. In WiCop

each ZigBee network has a policing node that implements WiCop framework. Before

the start of ZigBee activity the policing node broadcasts a fake WiFi packet that con-

tains a preamble, physical header, and the packet duration, possibly without data.

This packet forces nearby WiFi nodes to mute and ZigBee nodes may exploit this

interval for data transmission. Another mechanism that was also proposed in [28],

is DSSS (Direct Sequence Spread Spectrum) nulling. A band-pass filter is used to

reshape a DSSS jamming signal, which result from the continuous transmission of

repeated WiFi preambles, to have smaller bandwidth that can jam the WiFi devices

on a specified channel while not jamming all Zigbee channels in the same frequency

band. Thus, the un-jammed ZigBee channels can still be used for communication.

The aforementioned solutions for asymmetric coexistence, although are promis-

ing in the corresponding setups, usually involve significant changes to the PHY layer

or MAC layer or both, or even need extra devices (i.e. transform asymmetric coex-

istence to symmetric coexistence). Moreover, the techniques used are complicated

and not applicable to symmetric coexistence, where CSMA/CA works for both types

inherently.

2.4 Symmetric Coexistence Specific Solutions

In symmetric coexistence scenario, since WiFi and ZigBee know the existence of

each other, their default MAC layers (i.e. CSMA/CA) are already functioning. How-

ever, compare with CSMA/CA, coordination based methods (e.g. TDMA) usually

provide better performance because the devices involve are guaranteed to have cer-

tain level of performance, thus is beneficial especially for the non-aggressive ZigBee.
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The main difficulty in coordination is, although both types of devices can detect each

other’s signal, they actually have no clue about the information embedded, which

means they cannot communicate directly. There are two types of solutions for this,

one is using central dual-radio gateways to make the communication between WiFi

and ZigBee possible [29], the other is utilizing some special techniques [30].

Nodes clustering and dual-radio nodes design were exploited in [29] to mitigate

interference in ZigBee networks coexisted with WiFi networks. The nodes were

grouped into clusters where ZigBee was used for intracluster communication and

WiFi was used for inter-cluster communication. This was enabled by the usage of

cluster heads that are equipped with dual radios one for ZigBee and another for

WiFi. Data aggregation and delayed transmission were used to reduce interference

between the two heterogeneous radios as well as with nearby nodes.

Kim et al utilized time shifting of beacons to mule information across WiFi and

ZigBee devices [30]. Specifically, by observing that one type of device can detect the

beacon (i.e. a spike signal) of the other type, it proposed a method to accurately

compute the difference between the actual beacon time and the supposed beacon

time, which is used to convey a specific meaning (i.e. data). And to facilitate the

accurate capture of the actual beacon time, it also proposed a statistics based method

by observing the channel condition for a sufficiently long time.

The problem for [29] is that it is a centralized method, which needs an extra

expensive device, and is not scalable. Although [30] has shown interesting results,

it requires that all devices are capable of sending a beacon, thus is not feasible for

non-AP devices. Moreover, since the achievable throughput is quite slow (depending

on the length of the beacon interval), it is only suitable for very simple applications.
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2.5 Coexistence Modeling

To understand the performance of WiFi and ZigBee devices in symmetric coex-

istence, few papers have proposed simple models for it.

Howitt et al. [31] studied the effect of IEEE 802.15.4 devices on IEEE 802.11b

WLANs. They developed an analytical model for the probability of packets collision

in WLANs that is caused by the activity of Zigbee-based devices. The developed

model was used to set an upper limit on the cluster size of zigbee-based nodes to

reduce the interference on WiFi networks.

The throughput of Zigbee networks under the presence of WiFi interference was

analyzed in [32]. The model is based on Markov Chain mathematical system and

assumed that the Zigbee network has no effect on WiFi. The researchers found

that the increase of the WiFi network packet rate caused a decrease in the Zigbee

network throughput. Yuan et al. [33] also analyzed the throughput of Zigbee network

under the existence of 802.11b/g network. The obtained simulation and experimental

results were similar to other studies, the Zigbee throughput dropped severely in the

present of WiFi activity which matches the developed mathematical model.

However, these works only consider the impact from one type to another, i.e.

ignoring the possible effect from the victim to the interferer, which fail to depict the

whole picture in symmetric coexistence. Therefore, our work tries to complete the

picture by modeling the interactions between WiFi and ZigBee devices.

2.6 Performance Prediction

2.6.1 Simulation based studies

Generally speaking, there are two main types of simulation based approaches

for predicting performance, i.e. based on existing network simulators or based on

Monte Carlo methods. For the former, common choices are ns-2 [16], ns-3 [34],
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OMNeT++ [35], OPNET [17], QualNet [36], TOSSIM [37] etc., where the first three

are open sourced free simulations while the other two are commercial ones. However,

when the property of the objective network is beyond the functionality of a simulator

(for example, it runs a special protocol), one can either write a customized module

for the existing simulators or write Monte Carlo simulation code. Sometimes, Monte

Carlo simulation is preferred because in prototype stage people might not want to

worry about network typologies or environment factors such as channel condition

etc.

There are plenty of papers that study the network performance by simulations, ei-

ther using simulators or Monte Carlo methods [38] [39] [40] [41] [42]. [38] attempted

to analyze the performance of the wireless and wired computer networks through

OPNET simulator. Specifically, for wired networks, the performance metrics such as

delay and throughput have been investigated by changing transmission links and load

balances. While in wireless networks the metrics like delay, number of retransmission

attempts and throughput have been estimated by varying PHY layer characteristic

and buffer sizes. [39] studied the performance of some routing protocols for wired

and wireless network using the ns-2 simulator. It analyzes the packet delivery ratio

and end-to-end delay for protocols such as ADOV, DSDV, DSR, TORA and ZRP.

In [40], the authors conducted a detailed simulation study of stateless anycast rout-

ing in a mobile wireless ad hoc network by using a simulator called Winsim [43].

While Mallanda et al. [41] introduced the OMNeT++ simulator, which serves as

a faster substitution for the ns-2 for analyzing the performance of wireless sensor

networks. Paper [42] proposed a model for WSN simulation, and summarizes the

key factors for a good simulation tools, such as reusability, availability, performance,

scalability, graphical etc. This paper can be regarded as a guideline for designing a

new simulation framework.
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In terms of the application of the Monte Carlo based methods, [44] used this

idea to simulate a 802.15.4 network to analyze some detailed probabilities like the

probability to start sensing, etc.

2.6.2 Modeling based studies

There are plenty of literature that try to address the performance analysis/prediction

problem for both WiFi (i.e. 802.11) and ZigBee (i.e. 802.15.4).

In [45], the authors proposed a game theory based model to describe IEEE 802.11

DCF and designed a simple Nash equilibrium backoff strategy to achieve fairness.

Moreover, several queuing theory based models are designed using the uniqueness of

the fixed point to analyze the performance of IEEE 802.11 DCF [46] [47].

A very well known model for IEEE 802.11 DCF networks was proposed in [48] by

Bianchi in 2000, where a two-dimensional Markov Chain was created to characterize

the backoff process of each node. It is well validated by simulation results and demon-

strated to be a powerful, yet simple, analytical tool to evaluate the performance for

saturated WiFi network, i.e., each 802.11 node always has data to transmit.

To further improve the accuracy of Bianchis model, huge amount of works tried

to refine it, including but not limited to [49], [50], [51], [52], [53], [54], [55], [56], [57],

[58], [59], [60] which made more practical assumptions such as freezing of backoff

counters [49], [51], [52], [53], finite retransmission attempts [50], [54] and imperfect

channel conditions [55], [56], [57], [58]. Moreover, a great deal of effort was made

to extend Bianchi’s model to account for unsaturated networks [61], [62], [63], [64],

[65], [66], [67], [68], [69], [70], [71], [72], [73], [74].

More recently, researchers have attempted to analyze the networks with duty cy-

cling devices. Zheng et al. [58] tried to model the IBSS 802.11 PSM protocol, where

a transient analysis is used. However, it relies on an unrealistic assumption of the
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MAC service time being either exponential or deterministic. While [75] modeled the

802.11 IBSS PSM as a pure 3-D Markov Chain, where the key probability of a node

being reset in a cycle is obtained by simulation, which makes this model futile. In

stead of 802.11 PSM, [76] tried to model X-MAC, which is a duty cycling protocol

for WSN. This paper analyzes the medium access process and models the transmis-

sion queue as a Markov Chain to solve the model, but it ignores the CSMA/CA

mechanism for medium access, which attenuates its accuracy.

Researchers have also developed similar models for other protocols [44] [77] [78] [79].

Pollin et. al. [44] proposed an accurate model for IEEE 802.15.4, for both saturated

and unsaturated traffic. It is paramount to note that these models are all for single

MAC protocols, i.e., non coexistence. Notably, researchers have attempted to build

models for coexisting networks [80] [81], but all of them only studied the coexistence

of the variants of the 802.11 MAC protocol, e.g., 802.11b and 802.11g.

2.7 Performance Tuning

For performance tuning of wireless networks, methods that employ CW size adap-

tation have been proposed [82] [83] [84] [85]. These methods are either centralized or

distributed. They typically propose models for throughput, delay and fairness, then

make estimates for collision probabilities and number of devices. Finally, by solving

various optimization problems, optimal CW sizes are derived. However, it is often

very difficult to accurately estimate the number of devices in the distributed CW

size adaptation methods. To address this problem, recently, game theoretic solu-

tions were proposed [86] [87]. Essentially, these solutions optimize a payoff function

defined as the difference between a utility function (e.g. throughput) and a price

function (e.g. collision rate). Since each device in a game theoretic solution only

observes the price, and needs not to know the number of devices, the solution is
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distributed inherently. However, all existing performance tuning methods employing

game theoretic approaches are for devices of the same type, and can not be employed

in coexistence scenarios (symmetric or asymmetric).
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3. COEXISTENCE OF NON-SLEEPING WIFI AND ZIGBEE WITH

SATURATED TRAFFIC ∗

In this chapter, we discuss a mathematical model as well as a simulator for

symmetric coexistence of non-sleeping WiFi and ZigBee with saturated traffic (i.e.

SAT).

3.1 Background

3.1.1 The WiFi MAC Protocol

The standard MAC protocol for non-sleeping WiFi devices is named IEEE 802.11

distributed coordination function (DCF) (802.11 for short), which is discribed in the

802.11 standard [88]. In this section, we will briefly summarize 802.11. For efficiency

reasons, 802.11 employs a discrete-time backoff scale, i.e. all time involved is slotted

and one time slot is represented by σ.

A device with a new packet to transmit randomly chooses an integer from the

current contention window (CW) as its backoff counter (BC) , and then it monitors

the channel activity. If the channel is not idle, it persists to monitor the channel

until it is measured idle for a distributed inter-frame space (DIFS). If the channel

is measured idle for DIFS, the device begins to count down its BC. The BC is

decremented as long as the channel is sensed idle at the beginning of each time slot,

“frozen” when a transmission is detected on the channel, and reactivated when the

channel is sensed idle again for more than a DIFS. The device transmits when the

backoff counter reaches zero.

If the transmission succeed, the process is finished, otherwise, it doubles the

∗Reprinted from “On Modeling the Coexistence of 802.11 and 802.15.4 Networks for Performance
Tuning” by Wei Zhang, Mahima A. Suresh, Radu Stoleru, Harsha Chenji, 2014. IEEE Transactions
on Wireless Communications, Vol. 13, 5855-5866, Copyright 2014 by IEEE.
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contention window (i.e. reaching a new backoff stage (BS)), and restart the process

by choosing BC from the new CW and monitoring the channel. Note that the

contention window only doubles if it has not reached a maximum value Wm.

The aforementioned 802.11 protocol is demonstrated in Figure 3.1.

3.1.2 The ZigBee MAC Protocol

The standard MAC protocol for ZigBee is IEEE 802.15.4 [89], which is, however,

not considered in this research because the most popular WSN operating system

TinyOS uses BoX-MAC as its MAC protocol [90]. In fact, BoX-MAC is a simplified

version of IEEE 802.15.4 because there are only two backoff stages for the former

while the latter has five stages.

Each BoX-MAC device maintains three variables: CW BC and CS. CW is the

Contention Window size. A Backoff Counter BC is randomly chosen in [0, CW −

1]. Since BoX-MAC can transmit data only if the channel is sensed idle for two

consecutive times slots, the variable CS (the CCA Stage) is used to represent the

number of successful CCAs. It decrements if channel is sensed idle and be reset

otherwise. The exact mechanism is depicted in Figure 3.2. Initially, CS = 2, CW

equals the initial contention window CWinit, BC is randomly chosen in [0, CW −

1], and is decremented every time slot, until it reaches 0. When BC = 0, BoX-

MAC enters CCA stage, when the MAC layer requests PHY to perform CCA in the

following two consecutive time slots. In the CCA stage, if channel is sensed idle, CS

is decremented until 0, time when the packet will be transmitted; otherwise (i.e.,

the CCA fails) CS will be reset to 2, CW will be assigned the congested contention

window CWcong value. Then, the same aforementioned backoff rules are applied until

data is successfully transmitted.
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Figure 3.1: The IEEE 802.11 DCF protocol.
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Figure 3.2: The backoff mechanism for the BoX-MAC protocol.

3.2 Mathematical Model for SAT

In this section, we present the mathematical analysis for the coexistence of 802.11

DCF and BoX-MAC. We assume that the traffic is saturated and that the devices

are within communication range of each other (i.e., single-cell coexistence). To the

best of our knowledge, this is the first analysis for coexistence of these two classes

of devices. For analysis, we use independent analytical models for the two MAC

protocols, followed by their steady state analysis. A novel Markov Chain based
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channel model estimates the channel busy probability. These enable us to predict

network performance (e.g. compute saturation throughput, etc.) for the symmetric

coexistence model.

Both 802.11 DCF and BoX-MAC are modeled as Markov Chains. By the Markov

property, state transition probabilities are dependent only on the most recent states.

We model a state transition at the end of a time slot whose size is dependent on

the protocol. It is hard to analyze coexistence if two devices have different time slot

sizes. In this case, BoX-MAC has a time slot that is 3 times that of 802.11. To

account for the difference in slot sizes, while maintaining the Markovian property,

we add two dummy states to each BoX-MAC state, each with transition probability

1, as explained below. Therefore, each state in the Markov Chain corresponds to one

third of a BoX-MAC time slot, i.e., each BoX-MAC slot is divided in three equal

time slots.

3.2.1 Markov Chain Model for IEEE 802.11

The Markov Chain model that we propose for 802.11 DCF is depicted in Fig-

ure 3.3. We extend the Bianchi model [48] to include backoff freezing and we adopt

ideas for accurate modeling, as in Felemban and Ekici [74]. Our model uses two

parameters b(t) and r(t) for the high level stage (e.g., backoff, transmission, etc.)

and counter respectively. The counter is used as an indicator for the number of time

slots in each stage. Each state is represented as (b(t), r(t)). This model does not

account for inter-frame spacings when the channel is sensed busy in a backoff state.

The stages where b(t) ≥ 0 correspond to backoffs. When an 802.11 device at-

tempts to transmit a packet, it starts at state (0, k), where k is a random number

between 0 and CWmin, (CWmin is the minimal contention window). The channel is

sensed in each time slot (state). Similar to BoX-MAC, any channel sensing state
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Figure 3.3: The Markov Chain describing 802.11 DCF.

for 802.11 is modeled by a process named SENS W. If the channel is sensed busy

(with probability Pf ), the device remains in the same state, i.e., the backoff counter

freezes. If the channel is free, the backoff counter is decremented. When the backoff

counter reaches 0, if the channel is sensed idle, the 802.11 device transmits the packet

and waits for an acknowledgement (ACK). If an ACK is not received (e.g., due to

collision), the device tries to transmit the packet again, with a current contention

window Wj, being in backoff stage j. The probability that a transmitted packet

collides with others is Pcoll. Collisions occurring after backoff stage j (i.e., (j, 0)),
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where j = 1, 2, . . . ,m, are represented by states CTWj. In these states b(t) = −3− j

and r(t) = 0, 1, ..., LCTW − 1. When backoff stage m is reached, further retries are

still made from the same backoff stage and have the maximum contention window

size CWmax. We note that m = log2
CWmax

CWmin
.

When an ACK is received, i.e., the packet is successfully sent, the next packet

transmission is attempted after experiencing some delay from the operating system,

represented as state OSW , where b(t) = −2, and r(t) = 0, 1, ..., LOSW − 1. A

successful transmission is represented as state STW , where b(t) = −1, and r(t) =

0, 1, ..., LSTW − 1. Here, LSTW and LCTW are functions of packet size, the available

bandwidth and MAC protocol specific delays such as interframe spacing and ACK

timeout. LOSW is obtained from hardware experiments. Similar to the notation

W ′
j in BoX-MAC, we extend Wj such that it can denote LSTW, LCTW and LOSW of

802.11.

The single step transition probabilities, as defined by the Markov Chain for
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802.11, are:

Pr[j, k − 1|j, k] = 1− Pf

Pr[j, k|j, k] = Pf

Pr[−3− j, 0|j, 0] = Pcoll

Pr[j, k| − 3− (j − 1), LCTW] =
1

Wj

, j = 1, ...,m

Pr[m, k| − 3−m,LCTW] =
1

CWmax

Pr[−1, 0|j, 0] = 1− Pcoll

Pr[−2, 0| − 1, LSTW] = 1

Pr[0, k| − 2, LOSW] =
1

CWmin

Pr[j, k|j, k − 1] = 1, j = −1,−2, ...− 3−m

where j = 0, ...,m if not specified explicitly; k = 0, 1, ...Wj−1, where Wj = CWmin2j

when j = 0, 1, ...,m; and W−1 = LSTW, W−2 = LOSW, Wl = LCTW when l =

−3,−4, ...,−3−m.

In order to model the coexistence of WiFi with other types of devices, we need

to compute the variables Pcoll and Pf . These probabilities reflect the state of the

channel.

3.2.2 Markov Chain Model for BoX-MAC

The BoX-MAC protocol is a simplified version of the IEEE 802.15.4 protocol,

which makes it tenable for mathematical analysis. Similar to the approach in [44],

we model the BoX-MAC protocol as a Markov Chain (shown in Figure 3.4). Let s(t)

and c(t) be the stochastic processes representing the high level stage and counter,

respectively. The process where each state is represented by (s(t), c(t)) can be mod-
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Figure 3.4: The Markov Chain describing the BoX-MAC protocol.

eled as a Markov Chain. The high level stages of a BoX-MAC node are: backoff

with initial contention window CWinit, backoff with congested contention window

CWcong, transmission and operating system delays. The counter process accounts

for the number of time slots corresponding to each high level stage.

The states (j, k), (2j + 4, k), and (2j + 5, k), where j ∈ {0, 1, 2, 3}, represent one

third of a BoX-MAC slot. A node entering state (j, k) transitions to state (2j+4, k),

and then to (2j + 5, k) with probability 1 at the end of each time slot, thereby

accounting for an entire BoX-MAC slot. We denote by W ′
j the current contention

window size, where j ∈ {0, 1}. When j = 0 the stage s(t) ∈ {0, 4, 5} and the node is

in backoff stage with a contention window size CWinit (W ′
0 = CWinit). When j = 1 the

stage s(t) ∈ {1, 6, 7} and W ′
1 = CWcong. The backoff delay is represented by states
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(j, k), where j ∈ {0, 1} and k ∈ {−1, 0, 1, . . . ,W ′
j − 1}. The transition probabilities

are assumed to be independent. As described by the CSMA/CA mechanism, a device

starts from state (0, k), where k is a random number between 0 and CWinit − 1. In

states (j, 0) and (j,−1), a channel assessment (CCA) is performed. We note that

any channel sensing state, such as (0, 0) or (1,−1), is modeled by a process denoted

as SENS B and will be used in the channel model (Section III-D). If the channel

is sensed busy (with probability α), the device transitions to state (1, k) where k is

a random number between 0 and CWcong − 1. If the channel is sensed idle in both

states (j, 0) and (j,−1), the packet is transmitted.

Transmission states are represented as TXB; specifically, s(t) ∈ {2, 8, 9} and

c(t) ∈ {0, 1, . . . , LTXB−1}, where LTXB is the duration of a BoX-MAC transmission,

and a function of the packet size and transmission bandwidth. Before sending a

packet, the device experiences delay from the operating system. This is represented as

state OSB; specifically, s(t) ∈ {3, 10, 11} and c(t) ∈ {0, 1, . . . , LOSB−1}, where LOSB

is the operating system delay, obtained experimentally. For ease of understanding

the equations that follow, we extend the notation W ′
j such that it denotes LTXB and

LOSB, i.e., W ′
0 = CWinit, W

′
1 = CWcong, W

′
2 = LTXB and W ′

3 = LOSB. Thus, the valid

values for state j in (j, k) are {0, 1, 2, 3}.

The single step transition probabilities, as defined by the Markov Chain for BoX-
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MAC, are:

Pr[2j + 4, k|j, k] = 1, k = −1, 0, ...,W ′
j − 1

Pr[2j + 5, k|2j + 4, k] = 1, k = −1, 0, ...,W ′
j − 1

Pr[j, k − 1|2j + 5, k] = 1, j = 0, 1; k = 1, ...,W ′
j − 1

Pr[j,−1|2j + 5, 0] = 1− α, j = 0, 1

Pr[1, k|2j + 5, 0] = α/W ′
1, j = 0, 1; k = 0, ...,W ′

1 − 1

Pr[1, k|2j + 5,−1] = α/W ′
1, j = 0, 1; k = 0, ...,W ′

1 − 1

Pr[2, 0|2j + 5,−1] = 1− α, j = 0, 1

Pr[j, k|2j + 5, k − 1] = 1, j = 2, 3; k = 1, ...,W ′
j

Pr[3, 0|9, LTXB − 1] = 1

Pr[0, k|11, LOSB − 1] = 1/W ′
0, k = 0, ...,W ′

0

where j ∈ {0, 1, 2, 3} if not explicitly specified. The coexistence of BoX-MAC with

other types of devices can be modeled by computing α, i.e., the probability that

the channel is busy during a given time slot. The probabilities of sensing a busy

channel during the first and second CCA are typically correlated [44]. However,

we approximate them as independent events. We validate experimentally that this

inaccuracy is tolerable.

3.2.3 Steady State Analysis

First we perform steady state analysis in order to obtain the stationary distri-

butions for both BoX-MAC and 802.11 Markov Chains, and their normalization

conditions. These are then used to obtain the transmission probabilities and the

conditional collision probability under coexistence.
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Table 3.1: Expressions for the limiting distribution of 802.11 and BoX-MAC Markov
Chains

BoX-MAC
(k = 0, ...,W ′

j − 1)
802.11 DCF
(k = 0, ...,Wj − 1)

b′j,k =
W ′j−k
W ′j

b′j,0, j = 0, 1 bj,0 = b0,0P
j
coll, j = 0, ..., (m− 1)

b′1,0 =
b′0,0x

1−x , j = 0, 1 bm,0 = b0,0
Pmcoll

1−Pcoll
b′j,−1 = (1− α)b′j,0, j = 0, 1 bj,k = 1

1−Pf
Wj−k
Wj

bj,0, j = 0, ...,m

b′j,k = (1− α)2(b′0,0 + b′1,0), j = 2, 3 b−3−j,k = bj,0Pcoll, j = 0, ...,m

b′2j+4,k = b′j,k, j = 0, 1, 2, 3 b−1,k = b0,0
b′2j+5,k = b′j,k, j = 0, 1, 2, 3 b−2,k = b0,0

Let b′j,k = limt→∞ Pr{s(t) = j, c(t) = k} be the stationary distribution of the

BoX-MAC Markov Chain and bj,k = limt→∞ Pr{b(t) = j, r(t) = k} be the stationary

distribution of the 802.11 Markov Chain. Expressions for all the terms in the limiting

distribution of the Markov Chains are presented in Table 3.1, where x = (α + (1 −

α)α), W ′
0 = CWinit and W ′

1 = CWcong.

The normalization condition is used for obtaining b′0,0 and b0,0 from the Markov

Chains. The following equations are for BoX-MAC:

1 =
1∑
j=0

W ′j−1∑
k=0

3b′j,k +

LTXB−1∑
k=0

3b′2,k +

LOSB−1∑
k=0

3b′3,k

b′0,0 =
1(

3
W ′0+1

2
+ 3

(W ′1+1)x

2(1−x) + 31−α
1−x + 3LTXB + 3LOSB

) (3.1)

where W ′
0 = CWinit and W ′

1 = CWcong.
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The following equations are for 802.11 DCF:

1 =
m∑
j=0

Wj−1∑
k=0

bj,k +
m∑
j=0

LCTW−1∑
k=0

b−3−j,k +

LSTW−1∑
k=0

b−1,k +

LOSW−1∑
k=0

b−2,k

b0,0 =
1

CWmin(1−(2Pcoll)m)
2(1−2Pcoll)(1−Pf)

+ CWmin((2Pcoll)m)+1
2(1−Pcoll)(1−Pf)

+ LCTWPcoll
1−Pcoll

+ LSTW + LOSW

(3.2)

Using b′0,0 and b0,0, we can simply derive the probabilities that a node is trans-

mitting, i.e., τW for WiFi and τB and BoX-MAC, as follows:

τB = 3LTXB

1∑
j=0

(1− α)b′j,−1 = 3LTXBb
′
0,0 (3.3)

τW = LSTW

m∑
j=0

bj,0 =
LSTWb0,0
1− Pcoll

(3.4)

Knowing τB and τW , we can calculate the conditional collision probability Pcoll.

For a collision to occur, besides the WiFi device transmitting, there is at least one

other device transmitting:

Pcoll = 1− (1− τW )NW−1(1− τB)NB (3.5)

where NW and NB are the number of WiFi and BoX-MAC nodes, respectively.

We remark that the channel busy probabilities, i.e., α and Pf for BoX-MAC

and WiFi respectively, have not been computed yet. The challenge in computing

them comes from the fact that the two protocols are extremely different. The main

observation that we make is that the channel witnesses all activities of nodes. Con-

sequently, our main idea is to develop a Markov Chain based channel model for

symmetric wireless coexistence, the first of its kind.
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Figure 3.5: Markov Chain describing the channel.

3.2.4 Markov Chain Based Channel Model

We now present the Markov Chain based channel model for coexistence. With

this model we aim to compute the steady state transition probabilities and stationary

distribution of the channel states. Without a Markov Chain model, α and Pf (as

computed from the 802.11 and BoX-MAC Markov Chains) can not be proven to

reflect the steady state transition probabilities of the channel. Thus, a Markov

Chain model is expected to be more accurate. Evidence was given in [74], where a

channel model improved accuracy in Pf computation for 802.11 wireless networks.

Additionally, our Markov Chain based channel model simplifies the analysis for α

and Pf computation, which we expect to be extremely beneficial when heterogeneous

coexistent networks will be considered (i.e., different nodes have different contention

windows).

We note that α and Pf are conditional probabilities that depend on nodes “sens-

ing” the channel. From the perspective of a sensing node, which we call “Tagged
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Node”, the state of the channel (e.g., busy with successful transmission, busy with

collision, or idle) and the states of other nodes are interrelated. For a Tagged Node

(note: the tagged node simply senses the channel), the channel is busy when any

other node transmits; a transmission is successful if only one other node transmits; in

all other cases, the channel is idle. Since in our coexistence problem we have devices

of different types, the “Tagged Node” can be either a BoX-MAC node or an 802.11

node.

Each channel sensing process, i.e., SENS B and SENS W for BoX-MAC and WiFi

respectively, is modeled as a Markov Chain as shown in Figure 3.5. Let v(t) and x(t)

be the two stochastic processes representing the state of the channel and a counter

process, respectively. v(t) = 0 represents the state where the channel is idle; v(t) = 1

represents the state where the channel is busy with a successful 802.11 transmission;

v(t) = 2 represents the state where the channel is busy with a successful BoX-MAC

transmission; v(t) = 3 represents the channel busy with two or more 802.11 nodes

transmitting, which leads to a collision; v(t) = 4 represents the channel busy with

two or more BoX-MAC nodes transmissions, which leads to a collision; and v(t) = 5

represents the channel busy with at least one 802.11 node and at least one BoX-MAC

transmitting, which leads to a collision. We divide the busy states of the channel

in this manner because the duration of each transmission is different (depending on

the types of transmitters, i.e., BoX-MAC or WiFi), but deterministic (note that we

assume that devices of the same type transmit packets of same length). From each

busy state, the channel returns to an idle state after the transmission. We note that

if the transmission was not deterministic (i.e., packet length of same type devices can

be different), the model would have a single state for the busy channel, that returns

to the idle state with some probability. This would make the analysis much more

difficult and we leave it for future work. The single step transition probabilities are
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as follows:

Pr[0, 0|0, 0] = PII,

P r[1, 0|0, 0] = PISTW,

P r[2, 0|0, 0] = PITSB,

P r[3, 0|0, 0] = PICTW,

P r[4, 0|0, 0] = PICTB,

P r[5, 0|0, 0] = PICTBW,

P r[i, j|i, j − 1] = 1, for i = 2, . . . , 5, j = 1, . . . , Li − 1

Pr[0, 0|i, Li − 1] = 1, for i = 1, . . . , 5

where L1 = LSTW, L2 = 3LTXB, L3 = LCTW, L4 = 3LTXB, and L5 =max(LCTW, 3LTXB).

As mentioned, when considering the channel state, there must be a reference

node, i.e., the node that is sensing the channel or the Tagged Node. Since there are

two different types of Tagged Nodes (802.11 and BoX-MAC), two different analyses

of the channel are needed.

First, if a BoX-MAC node is the Tagged Node, the probability that it finds

the channel idle, namely P ′II, is the probability that none of the nodes other than

the BoX-MAC node is transmitting. From the idle state, the probability that the

channel will contain a successful 802.11 transmission in the next step P ′ISTW is the

probability that one of the WiFi nodes is transmitting while no other BoX-MAC node

is transmitting. Similarly, the probability that the channel goes from an idle state to

a state of successful BoX-MAC transmission P ′ISTB is the probability that exactly one

of the remaining BoX-MAC nodes is transmitting. Collisions are predicted based on

the probability that two or more nodes will enter a transmission state simultaneously
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(P ′ICTW, P ′ICTB and P ′ICTBW for WiFi devices, for BoX-MAC devices, and for WiFi

and BoX-MAC devices, respectively). A node l has a probability of transmission τl

that is determined by its contention window size. The resulting single step transition

probabilities of the channel Markov Chain are:

P ′II = (1− τW )NW (1− τB)NB−1

P ′ISTW = NW τW (1− τW )NW−1(1− τB)NB−1 (3.6)

P ′ISTB = NBτB(1− τB)NB−2(1− τW )NW (3.7)

P ′ICTW = (1− τB)NB−1(1−NW τW (1− τW )NW−1 − (1− τW )NW ) (3.8)

P ′ICTB = (1− τW )NW (1−NBτB(1− τB)NB−2 − (1− τB)NB−1) (3.9)

P ′ICTBW = (1− (1− τW )NW )(1− (1− τB)NB−1) (3.10)

If the Tagged Node is an 802.11 node: from the idle state, the probability that

the channel will contain a successful WiFi transmission in the next step is the proba-

bility that one of the remaining WiFi nodes is transmitting while none of BoX-MAC

nodes is transmitting. To keep the text concise, we omit the descriptions of other

probabilities. The resulting single step transition probabilities are as follows:

PII = (1− τW )NW−1(1− τB)NB

PISTW = NW τW (1− τW )NW−2(1− τB)NB (3.11)

PISTB = NBτB(1− τB)NB−1(1− τW )NW−1 (3.12)

PICTW = (1− τB)NB(1−NW τW (1− τW )NW−2 − (1− τW )NW−1) (3.13)

PICTB = (1− τW )NW−1(1−NBτB(1− τB)NB−1 − (1− τB)NB) (3.14)

PICTBW = (1− (1− τW )NW−1)(1− (1− τB)NB) (3.15)
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Given the single step transition probabilities, we derive the stationary distribu-

tions of this Markov Chain as follows (for the Tagged Node being BoX-MAC):

v′i,j = v′i,0 for i ∈ {1, 2, . . . , 5},

v′1,0 = P ′ISTWv
′
0,0,

v′2,0 = P ′ISTBv0,0,

v′3,0 = P ′ICTWv0,0,

v′4,0 = P ′ICTBv0,0,

v′5,0 = P ′ICTBWv0,0

where v′0,0 is steady probability that the tagged BoX-MAC node senses the channel

idle.

The normalization condition for the channel model yields the following:

v′0,0 +

LSTW−1∑
j=0

v′1,j +

3LTXB−1∑
j=0

v′2,j +

LCTW−1∑
j=0

v′3,j +

3LTXB−1∑
j=0

v′4,j +

max(LCTW,3LTXB)−1∑
j=0

v′5,j = 1

From the above equation, we obtain:

v′0,0 = 1
/(

1 + LSTWP
′
ISTW + 3LTXBP

′
ISTB + LCTWP

′
ICTW+

3LTXBP
′
ICTB +max(LCTW, 3LTXB)P ′ICTBW

)
(3.16)

where, from here onwards, the variables in the form of Lxxx represent the correspond-

ing duration when event xxx happens.
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Using a similar derivation, for an 802.11 node being the Tagged Node, we obtain:

v0,0 = 1
/(

1 + LSTWPISTW + 3LTXBPISTB + LCTWPICTW+

3LTXBPICTB +max(LCTW, 3LTXB)PICTBW

)
(3.17)

where v0,0 is steady probability that the Tagged Node senses the channel idle.

We now derive α and Pf based on the channel model. α and Pf are the conditional

probabilities that the channel has a transmission. Therefore, each is the sum of

probabilities that the channel is in any state other than the idle state. Consider α

as observed by a BoX-MAC node l sensing the channel when the backoff counter is

0. Now the BoX-MAC node is the Tagged Node, i.e., the channel as observed by the

Tagged Node contains all NW 802.11 nodes and NB \{l} BoX-MAC nodes. Similarly,

Pf represents the probability that the channel is not in an idle state for an 802.11

Tagged Node s, i.e., NW \ {s} WiFi nodes and NB BoX-MAC nodes. Therefore, α

and Pf can be expressed as follows:

α = 1− v′0,0 (3.18)

Pf = 1− v0,0 (3.19)

3.3 Performance Predication for SAT

3.3.1 Throughput Analysis

With the help of stationary distribution and normalization conditions, we have

successfully derived the variables that reflect the state of the channel, namely α

and Pf . These can be determined by numerically solving a set of non-linear equa-

tions. Several performance metrics can be derived from these probabilities. In this

dissertation, we are interested in the saturation aggregate throughput.

41



The normalized saturation throughput of BoX-MAC is the fraction of time that

the channel is busy with a successful BoX-MAC transmission, given by:

SBoX-MAC = 3LpTXBPSTB

/(
PI + 3LTXBPSTB + 3LTXBPCTB + LSTWPSTW+

LCTWPCTW + 3LTXBPCTBW

)
(3.20)

where LpTXB is actual packet size and PI is the probability that the channel is

in idle state. PSTB and PSTW are probabilities that a successful transmission oc-

curs, for BoX-MAC and WiFi respectively. Likewise, PCTB and PCTW are collision

probabilities among pure BoX-MAC and 802.11 respectively, while PCTBW indicates

the probability of collision caused by simultaneous transmission of BoX-MAC and

802.11. The variables in the form of Lxxx represent the corresponding duration when

event xxx happens. The expression of the state probabilities mentioned above are

as follows.

PI = (1− τW )NW (1− τB)NB

PSTW = NW τW (1− τW )NW−1(1− τB)NB (3.21)

PSTB = NBτB(1− τB)NB−1(1− τW )NW (3.22)

PCTW = (1− τB)NB(1−NW τW (1− τW )NW−1 − (1− τW )NW ) (3.23)

PCTB = (1− τW )NW (1−NBτB(1− τB)NB−1 − (1− τB)NB) (3.24)

PCTBW = (1− (1− τW )NW )(1− (1− τB)NB) (3.25)

Notably, these expressions are quite similar to those for the transitional prob-

abilities PII, PSTW, etc. as shown in Equations (3.6-3.15); however, the equations

here are describing the channel state probabilities while the earlier ones were for the
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channel model (which depend on an observation node). The normalized saturation

throughput of 802.11 is the fraction of time that the channel is busy with a successful

802.11 transmission given by:

S802.11 = LpSTWPSTW

/(
PI + 3LTXBPSTB + 3LTXBPCTB + LSTWPSTW+

LCTWPCTW + 3LTXBPCTBW

)
(3.26)

where LpSTW is the actual packet size.

We derive expressions for τW and τB from their respective Markov Chain models

as functions of the contention window sizes and channel states, i.e., CWmin, CWmax

and Pf for 802.11 nodes, and CWinit, CWcong and α for BoX-MAC nodes as:

τW =
LSTW

(1− Pcoll)
·

1
CWmin(1−(2Pcoll)m)
2(1−2Pcoll)(1−Pf)

+ CWmin((2Pcoll)m)+1
2(1−Pcoll)(1−Pf)

+ LCTWPcoll
1−Pcoll

+ LSTW + LOSW

(3.27)

τB =
LTXB

W ′0+1

2
+

(W ′1+1)x

2(1−x) + 1−α
1−x + LTXB + LOSB

(3.28)

These can be used to tune protocol parameters based on expected τl for a node

l.

3.4 Performance Tuning for SAT

3.4.1 Motivation

Since contention window size (CW ) is a well-known critical parameter that affects

throughput and fairness [82] [83] [84] [85], as studied in typical wireless networks

employing single MAC protocols, we were curious to investigate how CW sizes of

different, coexisting MAC protocols affect throughput and fairness of networks with
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Figure 3.6: Demonstrating the (a-b) priority problem and (c-d) fairness problem in
coexisting WiFi and BoX-MAC networks.

symmetric coexistence.

For this, we used the Monte Carlo simulator for SAT proposed in Section 3.5

and simulated 5 WiFi and 10 BoX-MAC devices, all within one hop, in two sets of

experiments. In the first set of experiments we ran multiple simulations, each with

a different combination of contention window sizes, CWW for WiFi and CWB for

BoX-MAC. Importantly, in each simulation, the devices of the same type employ

the same contention window size. In the second set of experiments we ran multiple

simulations and allowed devices of the same type to choose their contention window
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size (CWW for WiFi and CWB for BoX-MAC) freely. The traffic was saturated in

both sets of experiments.

The results for the first sets of experiments are presented in Figures 3.6(a)-(b).

As shown, the throughput of WiFi and BoX-MAC are strictly inversely proportional.

This motivates us to provide prioritization where a network administrator can decide

operating points for different type of devices such that they achieve different through-

put. The results for the second set of experiments are presented in Figures 3.6(c)-(d)

which show that if devices of the same type are allowed to use different CW , they

may experience different throughput, thus experiencing the fairness problem. When

nodes arbitrarily set their CW s to benefit themselves, channel sharing is unfair.

The state of art research only focused on the effects of CW size on the performance

of a single MAC protocol. In a symmetric coexistence scenario, different protocols

(WiFi and BoX-MAC) have different CW sizes. Intuitively, CW size will affect the

throughput and fairness of both protocols, but the extent to which they will be

affected, is not known.

In this section we present Contention Window (CW) tuning mechanisms intended

to control priority as well as fairness by changing the CW size on individual nodes.

CW is critical for all contention based protocols because it directly controls the

transmission probability, thus impacting the throughput [82] [83] [84] [85]. CW

tuning is the main objective of most state of the art optimization protocols, where

an accurate model plays the key role. Since we have proposed the first Markov Chain

based model for coexistence, the capability to tune the CW is important. As shown

by literature and confirmed by our experimental results in Section 3.5, the congested

CW size of BoX-MAC (CWcong) and the minimum CW size of 802.11 (CWmin) have

a significant impact on the throughput achieved by individual nodes in a coexisting

network, while the initial CW size of BoX-MAC (CWinit) and the maximal CW size
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of 802.11 (CWmax) do not. Thus for simplicity, we only consider tuning CWcong and

CWmin, and treat CWinit and CWmax as fixed.

The Markov Chain model presented in the previous section provides a method

to estimate the saturation throughput of coexisting networks of 802.11 and BoX-

MAC nodes. The model also provides a mechanism to estimate the probability of

transmission τB or τW of a node, given the CW sizes, the packet size, and an observed

status of the channel, i.e., α as observed by a BoX-MAC node, and Pcoll and Pf as

observed by a 802.11 node.

3.4.2 Centralized CW Tuning Method for priority

Priority is extremely important when heterogeneous protocols compete for the

same medium. For instance, low bit rate protocols (such as ZigBee and BoX-MAC)

cannot easily capture the channel due to their non-aggressive nature. On the other

hand, these protocols can severely degrade high bit rate protocols (like 802.11) when

they capture the channel (because of the former’s low transmission rate). Our CW

tuning method helps mitigate these effects.

It is problematic to claim that the priority is the ratio of the two absolute through-

puts because of the order of magnitude difference in their PHY bit rates. Therefore,

we define the priority metric under coexistence as the ratio of the successful transmis-

sion probabilities of 802.11 and BoX-MAC [91]. The probability that a transmission

is successful is expressed as:

SUB = τB(1− τB)NB−1(1− τW )NW

SUW = τW (1− τW )NW−1(1− τB)NB
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Hence the priority metric, denoted by φ, can be written as:

priority = φ =
SUB
SUW

=
τB(1− τB)NB−1(1− τW )NW

τW (1− τW )NW−1(1− τB)NB
=
τB(1− τW )

τW (1− τB)

We then obtain an expression of τW in terms of τB and φ:

τW =
τB

1−τB
φ

+ τB
(3.29)

There is a multitude of τB and τW combinations that satisfy φ. In this disser-

tation, we aim to maximize the total throughput of a given network. Since the

aggregate throughput, i.e S802.11 and SBoX-MAC, depends on τB and τW , we maximize

the total throughput as Stotal = SBoX-MAC + S802.11, while maintaining the priority

requirement.

Based on Equations (3.20) and (3.26), we obtain the expression for SBoX-MAC +

S802.11 as:

Stotal =SBoX-MAC + S802.11

=
(

3LpTXBPSTB + LpSTWPSTW

)/(
PI + 3LTXBPSTB+

3LTXBPCTB + LSTWPSTW + LCTWPCTW + 3LTXBPCTBW

)
(3.30)

All Pxxx above are functions of τB and τW . Using Equation (3.29), we substitute

all τW with τB, and express Stotal as a function of τB only. Note that the priority

ratio φ is user specified. In order to get the maximum value for Stotal, we take the

derivative of Equation (3.30) w.r.t τB, and set it to 0, i.e., S ′total = 0. Because of the

computational complexity of solving this equation, we use an approximation method.
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Under the condition τB � 1, the following approximation holds:

(1− τB)n ≈ 1− nτB +
n(n− 1)

2
τ 2B (3.31)

We can thus significantly simplify the expression for Stotal, reducing the com-

plexity of solving Equation (3.30) and making it feasible to run on COTS computer

hardware, especially when the number of nodes is large. By numerically solving

Equation (3.31), we obtain the value of τB and subsequently, τW through Equa-

tion (3.29). A few more unknowns need to be computed before CW sizes can be

obtained. α, Pcoll and Pf are computed using Equations (3.5) and (3.6-3.19). Fi-

nally, by substituting τB, τW , Pcoll, α and Pf into Equations (3.27-3.28) and treating

all other variables as constants, we obtain the contention window sizes for BoX-MAC

and 802.11.

3.4.3 Distributed CW Tuning Method for Fairness

As described before, CWmin and CWcong are critical for coexisting wireless net-

works. Nodes with different CWmin and CWcong achieve different throughput, thereby

leading to unfair utilization of the bandwidth. We call this the fairness problem.

When the nodes of a network are allowed to tune their parameters themselves, it be-

comes important to show the existence of an equilibrium point from which no node

has the incentive to modify its parameters [86].

To solve the fairness problem, we propose a game theoretic approach similar to

the one presented by Jin and Kesidis [86]. We define a concave maximization function

of τi (transmission probability of node i) for each node as max(Ui−Di), where Ui is

the utility, and Di is the disutility, or cost experienced by the node ni for a given τi
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and α.

Ui −Di =

(
2(NW +NB − 1)log(1 + τi)

L

)
− τiα

L(1 + α)

where L = LSTW is for 802.11 nodes and LTXB is for BoX-MAC nodes. Here, τi
α

1+α

is an approximation for the expected collision probability.

In this CW tuning method, each node always tries to maximize Ui − Di. This

can be thought of as a selfish behavior. The game model is such that each node

decides τ = [τ1, τ2, . . . τNW , τNW+1 . . . τNW+NB ]′ to maximize f(τ) = [U1 − D1, U2 −

D2, . . . UNW+NB −DNw+NB ]′. For a node ni, Ui−Di = (2(NW+NB−1)log(1+τi)
L

)− τiαi
L(1+αi)

.

The gradient, ∇f(τ)i = (2(NW+NB−1)
L(1+τi)

− αi
1+αi

). To prove that f(τ) is concave, we

show that the Jacobian of ∇f(τ), F (τ) is negative definite, i.e., has only negative

eigenvalues.

A diagonal element of F , Fii = −2(NW+N+B−1)
L(1+τi)2

, and non-diagonal element Fij

= −1
L

(1−αj)2
(1+αj)2

Πk 6=i 6=j(1 − τk). Since
(1−αj)2
(1+αj)2

≤ 1 and Πk 6=i 6=j(1 − τk) < 1, |Fij| < 1
L

.

Therefore,
∑

j 6=i |Fij| <
NW+NB−1

L
. Since τ is the probability that a node attempts

to begin a transmission, it is always less than 0.414, (1 + τi)
2 < 2, i.e., 1

(1+τi)2
> 1

2
,

which proves that |Fii| <
∑

j 6=i |Fij| for all i.

Since Fii is negative, and by the Gerschgorin circle theorem, all eigenvalues lie

in circles with center at Fii and radius
∑

j 6=i |Fij|, F is negative definite and this

proves that the game has a concave objective. As proven by Rosen [92], an n-

player non-cooperative game where each player is selfish and maximizes a concave

objective reaches Nash Equilibrium. Hence, there exists a Nash equilibrium, and

therefore, our proposed mechanism will reach a stable state where no node benefits

from changing their parameters, even though each node behaves selfishly (given that

the other nodes do not change their parameters). We also observe that at the Nash
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equilibrium, nodes of the same kind choose the same parameters.

Rosen also proposed a gradient projection method to iteratively reach Nash Equi-

librium. We use this result to define a gradient projection iteration to reach Nash

Equilibrium:

τk+1 = τk +
ε

L

(
2(NW +NB − 1)

1 + τk
− αk

1 + αk

)

where ε is the step size of the gradient projection method, τk is the τ observed by

the node in the kth step and αk is the α observed by the node in the kth step.

As we know from the Markov Chain model, τ is a function of the contention

window sizes. We can therefore solve for CWmin for 802.11 and CWcong for BoX-

MAC at the (k + 1)th step from τk+1. For a sufficiently large k, the system reaches

a stable point, i.e. Nash equilibrium, as proven by Rosen. Since the CW sizes have

to be chosen from a set (combinatorial), the CW sizes that result in a transmission

probability closest to τk+1 are chosen at each step. We have shown that the fairness

problem can be solved using this method, by proving that the individual throughput

of nodes of the same type are equal at Nash Equilibrium.

3.5 Monte Carlo based Simulator for SAT

As described in Section I, simulator is a tool which is able to predicate the net-

work performance accurately. However, there is no wireless coexistence module that

is available in the state of art network simulators (e.g., ns-2, OPNET, QualNet, etc.).

Therefore, in this section, we develop a Monte Carlo based simulator for symmetric

coexistence of non-sleeping WiFi and ZigBee with saturated traffic. To verify the

accuracy of the proposed simulator, hardware based experiments are performed to

obtain throughput, which is then used to compare against the result from the sim-

ulator. It is worth noting that, since doing hardware experiment is a very tedious
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Table 3.2: Parameters and Variables used in the Monte Carlo simulator

Notation Description Value
T # of time slots for simulator 10,000,000
channel channel state {IDLE, BUSY}
N = NB +NW # of all devices [5, 50]
nbColli[1 : N ] total # of collisions sim variable
DIFScnt[1 : N ] 802.11 DIFS counter sim variable
CW [1 : N ] contention window size sim variable
delay[1 : N ] backoff counter sim variable
state[1 : N ] FSM state (802.11) {DIFS-T,CSMA-T

TRDEL-T, OS-T}
nbTrans[1 : N ] total # of transmissions sim variable
busyFor[1 : N ] delay counter for transmission sim variable
softdelay[1 : N ] delay counter of OS delay sim variable
nbCCA[1 : N ] total # of CCAs (BoX-MAC) sim variable
CS[1 : N ] CCA stage (BoX-MAC) sim variable

task, only 2 pairs of WiFi and 4 pairs of ZigBee devices are deployed here.

3.5.1 Simulator Design

The pseudocode for our Monte Carlo simulator is presented in Algorithms 1, 2

and 3. All variables used in the simulator, italicized in the pseudocode, are listed

in Table 3.2.

Similar to the approach in [44], our Monte Carlo simulator is based on time slots.

Both MAC protocols (in our case 802.11 DCF and BoX-MAC) have the concept of

time slot, a time interval when a specific device behaves consistently; both MAC

protocols randomly choose the sizes of their backoff window from a uniform distri-

bution. This works well when we repeatedly sample for a sufficiently large number

of time slots randomly (as shown in Table 3.2, T = 107 samples).

Algorithm 1 is the main function of the simulator. As shown, the simulation is

for T time slots. In each time slot, the code first checks the state of the channel (i.e.
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Algorithm 1 Monte Carlo Simulator for SAT

1: for T slots do
2: check the channel state, and set channel.
3: for N nodes do
4: if node i is WiFi then
5: invoke 802.11 DCF(i) (Algorithm 2)
6: else
7: if T mod 3 = 0 then
8: invoke BoX-MAC(i) (Algorithm 3)
9: end if
10: end if
11: end for
12: if more than one simultaneous transmission then
13: increase nbColli
14: end if
15: end for

whether any node is transmitting), then executes the MAC protocol for each of the

N nodes (note: nodes are either 802.11 or BoX-MAC devices). Since a node may

either be an 802.11 or a BoX-MAC node, we have two algorithms: one for 802.11

DCF (Line 5) and the other for BoX-MAC (Line 8). Since the time slot for BoX-

MAC is roughly three times that of 802.11 DCF, we invoke the procedure for 802.11

three times more frequently than for BoX-MAC (Line 7 in Algorithm 1). At the end

of a slot, Algorithm 1 checks for collision (Line 10).

Algorithm 2 describes the Monte Carlo method for 802.11 DCF for a node i. The

simulator maintains a Finite State Machine (FSM) to control the code execution.

A node i that has data to send initializes its state to DIFS-T (not shown). Before

entering the random backoff (CSMA-T state, in Line 8), a node must sense the

channel idle for DIFS time slots. If the channel is sensed busy in this interval,

DIFScnt is set to 0 (Line 10), and the node remains in DIFS-T state. After the

channel is sensed idle for DIFS time slots (Lines 4), the node checks if the backoff
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Algorithm 2 802.11 Procedure of the Monte Carlo Simulator

1: if state(i) = DIFS-T then
2: if channel(i) = IDLE then
3: DIFScnt(i) = DIFScnt(i) + 1
4: if DIFScnt(i) = DIFS then
5: DIFScnt(i) = 0
6: if delay(i) = 0 then
7: CW (i), delay(i) randomly set by 802.11DCF
8: end if
9: state(i) = CSMA-T
10: end if
11: else
12: DIFScnt(i) = 0
13: end if
14: else if state(i) = CSMA-T then
15: if channel(i) = IDLE then
16: delay(i) = delay(i) - 1
17: if delay(i) = 0 then
18: nbTrans(i) = nbTrans(i) + 1
19: set busyFor(i)
20: state(i) = TRDEL-T
21: end if
22: else
23: DIFScnt(i) = 0
24: state(i) = DIFS-T
25: end if
26: else if state(i) == TRDEL-T then
27: busyFor(i) = busyFor(i) - 1
28: if busyFor(i) = 0 then
29: set softdelay(i)
30: state(i) = OS-T
31: end if
32: else if state(i) = OS-T then
33: softdelay(i) = softdelay(i) -1
34: if softdelay(i) = 0 then
35: state(i) = DIFS-T
36: end if
37: end if
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counter was frozen before entering DIFS-T (Line 6). If the backoff counter was frozen,

CSMA-T resumes with that backoff counter. Otherwise, the node first updates

CW (i.e., contention window size) according to exponential backoff mechanism (i.e.

choosing a value equals CWmin2m), and randomly sets delay (i.e., the backoff counter)

from a uniform distribution between 0 and CW (Line 7), then goes enter the CSMA-

T state. When the node is in the CSMA-T state, it decrements the delay variable

if the channel is free (Line 13). Otherwise, it freezes the backoff counter and goes

back to DIFS-T state (Line 19-20). If delay reaches zero, the node sets busyFor and

increments nbTrans before switching to TRDEL-T state (Line 15-17), in which it

transmits the data for busyFor time slots (Line 22). nbTrans is used to represent the

total number of transmissions. The TRDEL-T state is a special state, in which a node

transmits, thus other nodes would sense the channel busy. After the transmission,

a node does not begin with a new packet immediately. It delays for softdelay time

slots in OS-T state (Line 27), which simulates the operating system (OS) or other

hardware delays. The node begins a new transmission by going back to DIFS-T.

Algorithm 3 is for BoX-MAC. Since the BoX-MAC protocol does not continuously

sense the channel, the mechanism is simpler. In the beginning, the node with data

to transmit sets delay to a randomly (uniform) picked value between 0 and initial

backoff value CW = CWinit (not shown in the pseudo code), and decrements this

number in each BoX-MAC time slot (Line 2). When delay reaches zero, the node

increments nbCCA (Line 12), (used to represent the total number of CCAs), and

checks the channel state. If the channel is busy, the node updates delay to a value

between 0 and CW = CWcong and resets CS to 2 (Line 20). Otherwise, the node

decrements CS (Line 14) (denotes the number of successful CCAs in one CCA stage).

If CS = 0, the node increments nbTrans before transmitting its data for busyFor

BoX-MAC time slots (Line 8). After the transmission, the node waits for softdelay
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Algorithm 3 BoX-MAC Procedure of the Monte Carlo Simulator

1: if node i is backing off (delay(i) != 0) then
2: delay(i) = delay(i) - 1
3: else if softdelay(i) != 0 then
4: softdelay(i) = softdelay(i) - 1
5: if softdelay(i) = 0 then
6: set CS(i), CW (i) and delay(i)
7: end if
8: else if busyFor(i) != 0 then
9: busyFor(i) = busyFor - 1
10: if busyFor(i) = 0 then
11: set softdelay(i)
12: end if
13: else
14: nbCCA(i) = nbCCA(i) + 1
15: if channel(i) == IDLE then
16: CS(i) = CS(i) - 1
17: if CS(i) = 0 then
18: nbTrans(i) = nbTrans + 1
19: set busyFor(i)
20: end if
21: else
22: if CS(i) != 0 then
23: update CS(i), CW (i) and delay(i) according to BoX-MAC protocol
24: end if
25: end if
26: end if

(Line 4), then it resets and starts another transmission.

3.5.2 Simulator Verification

We verify the accuracy of our Monte Carlo simulator by comparing results from

it with those from hardware experiments (∼4 million and ∼60 million transmitted

WSN and WiFi packets, respectively).
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Figure 3.7: Setup of WiFi and TelosB hardware for experiments.

3.5.2.1 Experimental Setup

For our experiments, we use 8 TelosB motes and 4 Microtik WiFi routers. The

TelosB motes run TinyOS 2.1, using BoX-MAC as its default MAC layer. The

Microtik routers are based on the AR9220 chipset and use the Atheros based R52HN

wireless card. The firmware for the MicroTik routers is OpenWrt Backfire 10.03.1

with ath9k wireless driver. OpenWrt is Linux based, thus making the debugging over

the serial port relatively easy. We collect the number of packets sent and received

for each test scenario, from the TelosB motes through USB cables, and from the

Microtik routers over RS232 ports respectively.

For our experiment, we divide the hardware in two groups: 4 TelosB motes

and 2 routers as the transmitters, while the remaining devices are receivers. We

use a TinyOS application (called TxThroughput) on the TelosB motes to send data

continuously. The receiver TelosB motes execute the BaseStation application. We

configure the MicroTik WiFi routers in 802.11g mode, ran iperf, and save the

number of packets transmitted/received. To mitigate the irregularity of wireless
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signal, we place all devices symmetrically, as shown in Figure 3.7.

3.5.2.2 Results for Monte Carlo vs Real Experiments

To complete the comparison, we need to first select the protocol parameters to

investigate. Intuitively, since 802.11 DCF and BoX-MAC are CSMA/CA-based, the

size of the contention window (CW ) is a key parameter which could impact the

throughput (e.g., smaller window size implies high aggressiveness and more oppor-

tunities for collisions). Additionally, the packet size is an important factor since it

impacts the time the channel is occupied. Hardware dependent parameters, e.g., OS

delay and time slot size cannot be changed on our hardware.

Consequently, the parameters we vary for 802.11 DCF are the minimum con-

tention window size (CWmin), the maximum contention window size (CWmax) and

the packet size (PW ). The values we choose for these parameters are: CWmin = {16,

32, 64}, CWmax = {256, 512, 1024}, and PW = {500, 1000, 1500}. Similarly, the met-

rics for BoX-MAC are initial contention window size (CWinit), congested contention

window size (CWcong), and the packet size (PB). The values of the parameters are as

follows: CWinit = {80, 160, 240, 320}, CWcong = {40, 60, 80}, and PB = {48, 68, 88,

108, 128}. We use
∑k

i=1(|TSi − THi | × 2/(TSi + THi))/k, the classical formula for the

average difference between two sets of data (i.e., simulator and real experiment in

our case), where k is the number of tests, and TS and TH are simulator and hardware

throughput, respectively.

Figure 3.8 shows the throughput for WiFi and ZigBee when varying BoX-MAC

parameters only (we keep fixed CWmin = 16, CWmax = 1024 and PW = 1500).

When CWinit is varied, and CWcong is set to 80 (Figures 3.8(a-b)), we observe that

the throughput of BoX-MAC decreases in both simulator and experiment. This

is because at higher CWinit BoX-MAC becomes less aggressive. The decrease in
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Figure 3.8: 802.11 and BoX-MAC throughput from simulator and hardware when
varying BoX-MAC parameters : (a-b) CWinit; (c-d) CWcong; and (e-f) PB

58



BoX-MAC throughput results in a slight increase in 802.11 throughput. As shown

in Figures 3.8(c-d), when CWcong is varied and CWinit is set to 240, we observe

that for higher CWcong the throughput for BoX-MAC decreases more than for lower

CWinit. At higher CWcong, BoX-MAC is less aggressive, resulting in a lower through-

put. 802.11 benefits from this, and its throughput slightly increases. The results

when varying packet size and CWcong, while keeping CWinit = 240 are shown in Fig-

ures 3.8(e-f). We observe that the packet size has the biggest effect on BoX-MAC

throughput. With larger packets, the throughput increases by as much as 100%. As

shown, this is at the expense of 802.11 throughput. It is interesting to note that our

results show a remarkable agreement (average difference 6%, a worst case of 22%)

between simulator and real world.

Figure 3.9 shows the throughput of WiFi and BoX-MAC when varying WiFi

parameters only (we keep fixed CWinit = 320, CWmax = 80 and PB = 128). Fig-

ures 3.9(a-b) show the results when varying CWmin and packet sizes, while keeping

CWmax = 1024. Upon increasing CWmin, throughput of WiFi decreases, since they

are less aggressive at larger CWmin. This benefits BoX-MAC devices, for which the

throughput increases. Figures 3.9(c-d) and 3.9(e-f) show that for larger PW , the

throughput of WiFi increases, since the channel is more efficiently occupied by WiFi

transmissions. This is at the expense of degrading BoX-MAC throughput. Real

hardware experiments are subject to noise and other irregularities that cannot be

modeled in simulation. Therefore we observe that throughput of real hardware fluc-

tuates. We see an average difference of 17%, and a worst case difference of 84%

between simulator and hardware experiment as a result of the noise. WiFi devices

can take over the channel, since 802.11 DCF is more aggressive than BoX-MAC. By

changing WiFi parameters, the throughput of BoX-MAC varies significantly, whereas

changing BoX-MAC parameters has a smaller impact, as is apparent in Figures 3.8
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Figure 3.9: 802.11 and BoX-MAC throughput from simulator and real hardware
when varying 802.11 parameters: (a-b) CWmin; (c-d) CWmax; and (e-f) PW .
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and 3.9.

3.6 Model and Tuning Evaluation

In this section we investigate the accuracy of our analytical model and present the

performance evaluation of our CW tuning methods. For this, we use the coexistence

simulator presented in Section 3.5. We chose to use our own simulator because no

existing existing academic or commercial simulator, e.g., ns2, QualNet, etc., supports

wireless coexistence scenarios (please note, coexistence of different wireless MAC

protocols). Additionally, we need the ability to control all low level parameters

in the simulator (e.g., computations of different collision probabilities), which is a

capability typically not exposed to users, in commercial simulators. The proposed

Monte Carlo based simulator mimics 802.11 and 802.15.4 protocols at the MAC layer.

The simulator’s accuracy has been validated through extensive experiments on real

hardware (4 MikroTik WiFi routers, 8 TelosB motes and over 60 million transmitted

packets). We chose a simulator based approach for validating our analytical model

and evaluating our CW tuning methods because it is rather very difficult to obtain

results from large scale deployments (i.e., scalability issue), and still maintain the

ability to evaluate multiple configuration settings (i.e., various protocol parameters).

3.6.1 Simulation parameters

Since 802.11 DCF and BoX-MAC are CSMA/CA-based, the contention window

size is a key parameter which impacts the throughput (e.g., a smaller window size

is more aggressive, but it gives more opportunities for collisions). The packet size

is also an important factor since it impacts the time the channel is occupied. In

our evaluations, the metrics we choose for 802.11 DCF are the minimum contention

window size CWmin = {16, 32, 64}, the maximum contention window size CWmax =

{256, 512, 1024} and the packet size PW = {500, 1000, 1500}. Similarly, the metrics
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for BoX-MAC are the initial contention window size CWinit = {80, 160, 240, 320},

congested contention window size CWcong = {40, 60, 80}, and the packet size PB =

{48, 68, 88, 108, 128}. We used
∑k

i=1(|TSi − THi | × 2/(TSi + THi))/k, the classical

average difference between two sets of data (i.e., simulator and analytical model in

our case) as the evaluation metric, where k is the number of tests, and TS and TH

are simulator and model throughput, respectively.

3.6.2 Analytical Model Validation

We compare the normalized throughput (as in [48] [74]) obtained from our ana-

lytical model with that obtained from the Monte Carlo simulator. The parameters

we vary are: the contention window size CWmin, maximum contention window size

CWmax, and the packet size PW of WiFi, and the initial contention window size

CWinit, contention window size CWcong and the packet size PB for BoX-MAC. The

default values of these parameters are: CWmin = 32, CWmax = 1024, PW = 1500 for

WiFi, and CWinit = 320, CWcong = 80, PB = 48. Due to approximations made in the

Markov Chain model (e.g., DIFS delay after backoff freeze), we see differences in re-

sults obtained from simulator and the analytical model. We use the aforementioned

average difference metric to compare them.

3.6.2.1 The number of devices

Analyzing the coexistence of WiFi and WSN by varying the number of devices

in a real implementation is tedious and time consuming. The same can be done by

merely varying these parameters in the analytical model and simulator. Figure 3.10

depicts the comparison of normalized throughput when the number of WiFi and

BoX-MAC devices are varied, setting other parameters to their default values. The

results indicate that increasing the number of WiFi devices increases the throughput

of WiFi and degrades the throughput of BoX-MAC, while increasing the number of
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Figure 3.10: Throughput of model and simulator vs number of devices.

BoX-MAC devices increases BoX-MAC throughput and degrades WiFi throughput.

Interestingly, there is good agreement between simulator and analysis with an average

difference of 3% and with worst difference of 6%.

3.6.2.2 Throughput Comparison

To analyze the impact of BoX-MAC parameters on throughput, as obtained from

the simulator and from the analytical model, we considered a scenario with 15 WiFi,

30 BoX-MAC devices and default WiFi parameters. The results are depicted in

Figure 3.11. Figures 3.11 (a-b) show that increasing CWinit the throughput of BoX-

MAC remains almost the same. This is because with a big number of devices, the

probability of transmitting after the first backoff attempt is low. As CWcong increases

(in Figures 3.11 (c-d)), the backoff overhead of BoX-MAC increases, thus making its

throughput decrease. The trend for varying PB is expected (in Figures. 3.12 (a-b)),

since a big packet size implies larger payload and longer channel occupancy, both of

which benefit BoX-MAC. Results show an excellent agreement (average difference of

3% and worst case of 6%) between analysis and simulator. Notably, since CWinit is

not effective in throughput scaling, it should not be considered as a parameter for
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Figure 3.11: Model validation: 802.11 and BoX-MAC throughput from model and
simulator when varying BoX-MAC parameters [(a-b) CWinit; (c-d) CWcong].

tuning.

The impact of WiFi parameters on throughput derived from simulator and ana-

lytical model was analyzed with the same number of devices and default BoX-MAC

parameters. Results are depicted in Figure 3.12 and 3.13. One can observe that

CWmin has a significant impact on throughput, as shown in Figures 3.12 (c-d). In

terms of CWmax, since the collision probability is not too high with this number of

nodes, it is unlikely that WiFi nodes reach the maximum contention window size, for

successful transmissions. Also, CWmax does not affect the throughput, as shown in
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Figure 3.12: Model validation: 802.11 and BoX-MAC throughput from model and
simulator when varying BoX-MAC parameters [(e-f) PB] and when varying 802.11
parameters [(g-h) CWmin].

Figures 3.13 (a-b). As for PW (in Figures 3.13 (c-d)), the trend is also expected, i.e.,

it impacts the throughput greatly. These results also show a remarkable agreement

(average difference of 2% with a worst case of 5%) between analysis and simulator.

The agreement between the simulator and the analysis in all these experiments val-

idates the analytical model as an extremely valuable tool. Similarly, CWmax is not

an effective parameter for throughput tuning.
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Figure 3.13: Model validation: 802.11 and BoX-MAC throughput from model and
simulator when varying 802.11 parameters [(i-j) CWmax and (k-l) PW ].

3.6.3 Contention Window Tuning Evaluation

We evaluate the tuning methods proposed in Section 3.4 using our simulator.

First, we demonstrate that the priority can be satisfied through our CW tuning

method, and that the total throughput is also maximized. Second, we show that

the tuning method we present reaches Nash equilibrium. Then we show that at-

taining Nash equilibrium can also solve the fairness problem, i.e., unfair bandwidth

utilization, which is seen when nodes with different CWmin and CWcong have different
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No. of WiFi No. of BoX-MAC φ1 φ2 φ3 φ4 φ5
10 10 1 2 5 10 20
15 15 1 2 5 10 20
20 20 1 2 5 10 20
10 15 1 2 5 10 20
15 10 1 2 5 10 20
15 20 1 2 5 10 20
20 15 1 2 5 10 20

Table 3.3: Settings for priority tuning evaluation

throughput.

3.6.3.1 Evaluation of priority tuning

The basic idea of the evaluation is that given the number of BoX-MAC and WiFi

nodes, and information like packet size, a centralized master device can communicate

with both types of devices and calculate the contention window size based on the

CW tuning method. Each node will be informed of the CW size to use, and as

a result, the priority requirement is met while the total throughput is maximized.

We perform simulations using several combinations of BoX-MAC and WiFi nodes,

and different priority settings, i.e., φ, as in Table 3.3. We now show the optimal

contention window sizes that satisfy the requirement.

As shown in Figures 3.14 (a-b), the optimized CW size is quite different from the

default settings (CWmin = 32, CWmax = 1024, PW = 1500 for WiFi, and CWinit =

160, CWcong = 80, PB = 48 for BoX-MAC), which emphasizes the necessity for CW

tuning. The realized throughput at these CW sizes is shown in Figure 3.14 (c-d).

Notably, the throughput from default contention window size we chose was very close

to the optimal value for the priority parameter φ = 10. For other CW combinations,

the results were not as good as when the value was obtained from our optimization.
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Figure 3.14: CW tuning for priority: Optimized CW size for (a) 802.11 and (b)
BoX-MAC nodes based on deployment size. The realized throughput for these CW
sizes is shown in (c) for WiFi and (d) for BoX-MAC.

3.6.3.2 Evaluation of Fairness tuning

As mentioned before, the fairness problem is due to nodes choosing different cor-

responding contention window sizes, i.e., CWmin and CWcong. However, the solution

for this problem is quite straightforward, since, generally, nodes of the same kind

tend to choose the same parameters when Nash equilibrium is reached which implies

that the realized throughputs are equal (they share the bandwidth fairly). We per-

formed simulations for 5 WiFi and 10 BoX-MAC nodes. The nodes initially chose

68



 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50  60  70

8
0
2
.1

1
 T

h
ro

u
g
h
p
u
t 
(M

b
p
s
)

Rounds

802.11 Node 3 W/ tuning
802.11 Node 4 W/ tuning

802.11 Node 3 W/O tuning
802.11 Node 4 W/O tuning

(a)

 5

 10

 15

 20

 25

 0  10  20  30  40  50  60  70

B
o
X

-M
A

C
 T

h
ro

u
g
h
p
u
t 
(K

b
p
s
)

Rounds

BoX-MAC Node 1 W/ tuning
BoX-MAC Node 2 W/ tuning

BoX-MAC Node 1 W/O tuning
BoX-MAC Node 2 W/O tuning

(b)

Figure 3.15: Throughput of 802.11 and BoX-MAC are fairly shared by tuning CWcong

and CWmin.

random CWcong and CWmin. To compare the results for fairness, we ran two sepa-

rate tests, whose results are shown in Figure 3.15. It is obvious that when the Nash

equilibrium was attained, the devices fairly shared the throughput, while without

tuning, the throughput can be quite different, based on the parameters they choose

initially.
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4. COEXISTENCE OF NON-SLEEPING WIFI AND ZIGBEE WITH

UNSATURATED TRAFFIC

An analytical model and a simulator have been obtained for the coexistence of

non-sleeping WiFi and ZigBee with saturated traffic in Chapter III, an endeavor is

necessary to understand the more general case where traffic pattern is unsaturated,

such that the corresponding performance analysis and tuning can be achieved. Thus,

in this chapter we discuss a mathematical model as well as a simulator for symmetric

coexistence of non-sleeping WiFi and ZigBee with unsaturated traffic (i.e. UNSAT).

4.1 Mathematical Model for UNSAT

In this section, we first of all briefly describe the BoX-MAC standard and some

key assumptions of our Markov Chain (MC) model. Then we introduce the MC

model in detail (it is worth noting that, this MC model, which, is quite different

from the one for SAT, significantly improves the accuracy). Finally we cover the

M/G/1 queueing model and derive the expressions of throughput and delay.

4.1.1 Preliminaries and Assumptions

As before, we consider BoX-MAC in this dissertation because it is the MAC

protocol of TinyOS, and yet a simplified version of 802.15.4. Generally, 802.15.4

has several double sized contention window (CW) backoff stages up to a maximal

one (e.g. CW = 8, 16, 32 etc.), while BoX-MAC only uses two such backoff stages

(shown as CW = W ′
0,W

′
1 in Figure 4.2). Same as 802.15.4, BoX-MAC employs the

double-channel-sensing (DCS) mechanism, i.e. a device transmit a packet only if the

channel stays idle for two continuous time slots.

We assume that all devices employ energy based modulation, and are within a
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single wireless cell. The same type of devices are homogeneous, i.e. their traffic

pattern are Poisson with equal λ , and they transmit packets of equal size L (i.e.

λi = λj and Li = Lj if nodes i and j are of same type). For simplicity, we also

consider an ideal channel (i.e. no shadowing, fading and capture effect), implying

communication fails only due to collisions. Moreover, we make two fundamental, yet

widely used assumptions on the probabilities of a reference device: a) the probability

of a transmission attempt is constant and independent of the attempts of other de-

vices; and b) the collision probability (conditioning on an attempt) is constant and

independent of the number of collisions experienced. These assumptions were proven

to be accurate [48]- [93].

4.1.2 Markov Chain model for 802.11

The Markov Chain for 802.11 is shown in Figure 4.1. Unlike the MC for BoX-

MAC and the one in last chapter, each state in this one is three dimensional, i.e.

(s(t), c(t), p(t)). The first two stochastic processes have same meaning as BoX-MAC

(the backoff behavior is also similar expect there are m stages instead of 2 for 802.11,

and for conciseness the details are not elaborated here), while the third one p(t)

represents the channel status in the previous time slot (i.e. p(t) = 1 or 0, corresponds

to busy or idle). Generally, the purpose of p(t) is to describe the event that the

channel being idle for two continuous baseline time slots, which is critical for BoX-

MAC devices because they can transmit data only if the double-channel-sensing is

passed. Notably, for each backoff stage in Figure 4.1 (i.e. each solid line box), the

bigger circles represent the time instances that the channel is idle, while each smaller

circle denotes an ongoing transmission by other devices (either BoX-MAC or WiFi

or both, see the dashed line box in Figure 4.1). The probability Pf is the transition

probability from state (i, j, 0) to a channel busy state (i.e. at least one other node is
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Figure 4.1: Markov Chain describing the 802.11 protocol.

sending). Since (i, j, 0) means that its previous time slot is idle, which implies that

there are two continuous idle time slots, BoX-MAC devices have chance to transmit.

However, from state (i, j, 1), since there is single idle slot for the channel, BoX-MAC

cannot seize the channel, thus the corresponding P ′f is not equal to Pf . Note that for

states where the reference device attempts to transmit, i.e. states (1 ∼ m, 0, 0 ∼ 1),
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the corresponding transition probabilities are denoted as Pc and P ′c (i.e. collision

probability), and since both Pc and Pf imply the same transition probability, we

have Pc = Pf (similarly, P ′c = P ′f ).

The state IDLE is a shorthand for several states (shown in the dot-dash line box

in Figure 4.1) according to the behavior of 802.11. When the transmission queue is

empty (with probability PW ), the device has to wait in (−1, , 0) or (−1, , 1) state.

Note that here we denote by s(t) = −1 the queue being empty (abused a little bit),

and as before p(t) = 0 or 1 depends on the channel status of the last time slot. Since

the transitions between (−1, , 0) and (−1, , 1) are fairly simple (e.g. the self-loop for

(−1, , 0) happens only if the queue is empty and no other nodes is transmitting, i.e.

PW (1 − Pf )), the elaboration is omitted here. When the queue is not empty (w.p.

1− PW ) and if no one is using the channel (w.p. 1− Pf or 1− P ′f ), the device will

begin with the backoff process from (0, j, 0); if the channel is being used (w.p. Pf

or P ′f ), the device simply wait until the transmission finishes and begin to backoff

from (0, j, 1). Notably for backoff stages other than 0, there is only one input (i.e.

to (1 · · ·m, j, 1)) because from their (i.e. stages 1 to m) perspectives the channel is

always busy in the previous time slot due to the collided transmission.

Before deriving Pf and P ′f , we first of all discuss the probability that a 802.11

device attempts to transmit, i.e. τW , which is needed in the expressions of Pf and

P ′f . Similar to φB we discussed before, τW is also a probability conditioned on the

channel being idle, thus we have

τW =

∑m
i=0

∑1
k=0 bi,0,k∑m

i=0

∑Wi

j=0

∑1
k=0 bi,j,k + bIDLE

(4.1)

where bi,j,k (and bIDLE) represents the stationary probability of state (i, j, k) (and

state IDLE) in the MC.
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Unfortunately, for such a complex MC, there is no simple close form expression

for τW , we therefore resort to a more general method, namely the transition matrix

method. Since each transition probability for the 802.11 MC is known (symbols such

as Pf , Pc are also considered known because they will be replaced by initial guesses

of number when using numerical method), its transition matrix T can be built. And

for a MC being stationary, πT = π must hold, where π is the row vector stores the

stationary probabilities of all states. Then by using the condition that
∑
πi = 1,

each element in π (i.e. πi) can be obtained. Thus the value of τW can be computed.

Having obtained τW , we are ready to discuss Pf and P ′f . For Pf , since it is con-

ditioned on p(t) = 0 (two continuous idle time slots), thus BoX-MAC can transmit,

then we have

Pf = 1− (1− φB)NB(1− τW )NW−1 = Pc (4.2)

where NB and NW are the number of BoX-MAC and WiFi devices, respectively.

While for P ′f , since the previous time slot is busy, BoX-MAC has no chance to

transmit, thus

P ′f = 1− (1− τW )NW−1 = P ′c (4.3)

As mentioned before, α and β can be derived using a Markov Chain for the

channel, which is discussed next.

4.1.3 Markov Chain model for BoX-MAC

The MC for BoX-MAC is shown in Figure 4.2, where each state is two dimensional

(s(t), c(t)). Specifically, s(t) is a stochastic process representing the current backoff

stage (i.e. two backoff stages as 0 and 1); while c(t) is a process representing the
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Figure 4.2: Markov Chain for the BoX-MAC protocol

current backoff counter in the corresponding stage (0 ≤ c(t) ≤ W ′
0 or W ′

1). Notably,

in the dashed-line box in Figure 4.2, since BoX-MAC has a time slot 3 times longer

than 802.11 (i.e. 802.11 time slot is our baseline), to account for the difference in slot

sizes, for each state (j, k) (not including the states for double-sensing, i.e. (0,−1)

and (1,−1), because double-sensing is generally fast, and we assume each such state

takes one baseline time slot) in the BoX-MAC MC, we add two dummy states to

it (i.e. (2j + 4, k), and (2j + 5, k)). Thus the node entering state (j, k) will transit

to state (2j + 4, k), and then to (2j + 5, k) with probability 1, thereby accounting

for an entire BoX-MAC slot. For clear presentation, we omit the two dummy states

henceforth.

In the BoX-MAC protocol, a device starts by choosing a random number from 0

to W ′
0 − 1, and then begin with the backoff procedure by decrementing the backoff

counter. In the Markov Chain, this behavior corresponds to starting from state (0, k),

where k is a random number between 0 and W ′
0− 1, and then move to the (0, k− 1)

and so on so forth, until it reaches states (j, 0) and (j,−1), where the double-channel-
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sensing is performed. If the channel is sensed busy (with probability α + (1 − α)β,

where α and β are the probabilities that the node finds the channel busy for the first

and the second time, respectively), the device transitions to state (1, k) where k is a

random number between 0 and W ′
1 − 1. If the channel is sensed idle in both states

(j, 0) and (j,−1), the packet is transmitted. Transmission is represented by TXB,

which includes LTXB tandem states with all transition probabilities are equal to one

(LTXB is the duration of a BoX-MAC transmission). Since two-dimension for TXB is

meaningless, each state is simplified to one dimensional. Unlike the saturated traffic

scenario, for this unsaturated case, the probability that the transmission queue being

empty is not zero, and we denote by PB such probability. Thus after a transmission,

a device enters IDLE state to check the status of its queue, i.e. wherever there

is no packet in the queue (w.p. PB), it stays in the IDLE; otherwise, it begins a

new backoff process immediately. Note that since β is conditioned on the success of

the first channel sensing, it differs from the model in last chapter where β = α is

improperly assumed.

The next step is deriving the expression for the probability that a BoX-MAC

device attempts to sense the channel for the first time, i.e. φB. Notably, φB is the

another difference from Chapter 3 where the probability that a BoX-MAC node at-

tempts to send (i.e. τB) is derived. The reason we use φB here is that it gives us

opportunity to model the details of the coexistence, lacking of which bring inaccura-

cies. Moreover, since φB is a conditional probability given that the reference node

is not transmitting, the expression for it is φB =
∑1

i=0 b
′
i,0/(

∑1
i=0

∑W ′i
j=0 b

′
i,j + b′IDLE),

where b′i,j (and b′IDLE) represents the stationary probability of state (i, j) (and state

IDLE) in the MC. The denominator of the equation serves as the condition for φB

because it includes all states that the reference node is not transmitting. Then by

76



similar method in [48], we can derive an elegant form of φB as

φB =
2(1− PB)

3((3 + (1− α)β + α)(1− PB) + 2(1− α)(1− β))
(4.4)

As we can see, Equation (4.4) needs three unknown probabilities, i.e. α, β and

PB. For the derivations of the former two, we will leverage a MC for the channel

(shown later), while for PB, a queueing analysis will be used.
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Figure 4.3: Markov Chain describing the channel.

4.1.4 Markov Chain model for the Channel

The Markov Chain describing the channel is shown in Figure 4.3. This MC is

simple and only one dimensional. In particular, state 0 represents a currently idle

channel with the previous time slot being idle, while state 1 represents a currently

idle channel with the previous time slot being busy. States STW , CTW , STB

and CTO are similar to STW in the MC of 802.11, and they respectively denote a

successful WiFi transmission, a collision WiFi transmission, a successful BoX-MAC
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transmission and all other cases. Notably, we assume that the occupation of a BoX-

MAC packet in the channel is longer than that of WiFi, thus the length for CTO is

the length of a BoX-MAC packet. Same as the cases in the 802.11 MC, BoX-MAC

can only send data when the channel is idle for two continuous time slots (i.e. state 0),

thus from 0 there are four transitions to STW , CTW , STB and CTO respectively.

Whereas from 1, there are only two transitions to STW and CTW because BoX-

MAC has no chance to transmit in this case. According to the meaning of these

transitions, we first of all define A0 = (1 − φB)NB (i.e. no BoX-MAC attempts to

send), A1 = NBφB(1 − φB)NB−1(i.e. only one BoX-MAC attempts to send), B0 =

(1− τW )NW (i.e. no WiFi attempts to send) and B1 = NW τW (1− τW )NW−1 (i.e. only

one WiFi attempts to send), and then we easily have P00 = A0 ·B0, P0STW = A0 ·B1,

P0CTW = A0 · (1 − B0 − B1), P0STB = A1 · B0 and P0CTO = 1 − A0 − P0STB

for state 0, and P10 = B0, P1STW = B1 and P1CTW = 1 − B0 − P1STW for state

1. By solving this simple MC (using the same method as in [48]), and denoting

P0STW + P0CTW + P0STB + P0CTO by P0X as well as P1STW + P1CTW by P1X for

simplicity, we obtain the stationary probabilities of state 0 and 1 as,

b0 =
1− P00

P10(1 + P0X) + (1− P00)(1 + P1X)

b1 =
P10

P10(1 + P0X) + (1− P00)(1 + P1X)
.

Then by the definition of α, i.e. the probability that the channel being busy, then

α = 1−P(channel idle), thus

α = 1− (b0 + b1) (4.5)

The derivation of β is little tricky because it is a probability of channel being
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busy in current time slot conditioned on it was idle in last time slot, namely P (b|i).

What we do is utilizing the law of total probability i.e. P (b|i) = P (b, i)/P (i) =

(P (i0)P (b|i0) + P (i1)P (b|i1))/P (i), which gives us

β =
b0(1− A0 ·B0) + b1(1−B0)

b0 + b1
(4.6)

So far, we have eight unknowns (i.e. φB, α, β, τW , Pf , P
′
f , PB, PW ) and six

Equations (4.4)-(4.6). We move to queueing theory to model the transmission buffers

of BoX-MAC and 802.11 as two M/G/1 queues to find the remaining two expressions

for PB and PW . Note that in this dissertation we use the terms buffer and queue

interchangeably.

4.1.5 M/G/1 queuing models for 802.11 and BoX-MAC

We first define λB and µB as the arrival rate and the service rate for the queue

of a BoX-MAC node, and λW and µW as the same for a 802.11 node. For M/G/1

queue, we have PB = 1 − ρB and PW = 1 − ρW , where ρB and ρW are the traffic

intensities (defined as ρB = λB/µB and ρW = λW/µW ), and since the arrival process

is Poisson, we only need to get the expressions for µB and µW .

Since service processes are based on the CSMA behavior, which is generally dis-

tributed, there is no simple expressions for them. However, as mentioned before,

what we really need is the service rate, i.e. the mean of the service time. In the

following subsections, we first of all introduce the concept of probability generating

function (PGF) and how it is related to mean and variance. Then by using PGF,

we derive expressions for the mean (i.e. µB and µW ) and variance (i.e. σ2
B and σ2

W ).

Notably the variance is needed in the computation of delay.
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4.1.5.1 Probability generating function (PGF)

PGF is a mathematical tool to describe a discrete random variable (r.v.). Assume

X is a discrete r.v. taking values in {0, 1, ...}, then its PGF is defined as: G(z) =∑∞
x=0 p(x)zx, where p is the probability mass function of X. PGF has two important

properties, i.e. the expectation of X is given by E (X) = dG(z)
dz
|z=1 = G′(1), while the

variance ofX is given by Var(X) = G′′(1)+G′(1)−(G′(1))2, whereG′′(1) = d2G(z)
dz2
|z=1.

Moreover, as shown in [65], the PGF for any given two different states in a MC

is the transfer function (TF) of the corresponding signal flow graph (SFG), which

can be obtained by taking Z-transform for each transition probability (along with

the time spent in the transition) in the MC. Then we can apply the well-known

Mason formula to the SFG to derive the PGF. Figure 4.4 shows a MC and its SFG,

where the SFG is very similar to the MC, except that each transition probability is

replaced by its Z-transform (i.e. p · zδ, where p is the transition probability and δ is

the duration of a baseline time slot). Furthermore, by the property of Z-transform,

the SFG can be simplified by combining all states with transition probability 1.

For example, the states 1 to L can be simplified as a single state LA, and the

PGF between A and L (without the loop) becomes p1z
(L+1)δ. Note that z(L+1)δ here

actually means the overall transition between A and L uses L + 1 time slots, which

is accurate. Now, by the Mason formula, we can obtain the overall PGF from A to

L as GAL(z) = p1z(L+1)δ

1−p1z(L+1)δp2zδ
.
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Figure 4.4: Signal Flow Graph of a Markov Chain.
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4.1.5.2 BoX-MAC MAC service time characteristics

Let TB be the r.v. representing the MAC service time of BoX-MAC. As before,

to compute E(TB), we need to obtain the PGF of TB, i.e. BG(z) = E(zTB) by using

the SFG of the BoX-MAC MC (Figure 4.2). The SFG is generated by simply adding

z to each transition probability in Figure 4.2 (to make the presentation concise, a

figure for the SFG is omitted here). It is worth noting that since TB is the MAC

service time, the PGF of TB is actually the transfer function between point S and B

in Figure 4.2. Since the entire SFG is a little complex, we first of all derive the PGF

between point S and state (0, 0) (using the Mason formula) as BG0,0(z) = z3δ

W ′0

1−z3δ·W
′
0

1−z3δ ,

where 3δ represents a BoX-MAC time slot which is 3 times longer than the baseline

(802.11) one. Then since the PGF between (0, 0) and (−1, 0) is simply (1−α)zδ, the

PGF between S and (0,−1) is BG0,−1(z) = BG0,0(z)·(1−α)zδ. Using similar method

(note that due to the self loop of C, the derivation is a little harder), we can have the

PGF between point C and (1,−1) as BG1,−1(z). Finally by combining all the PGF’s

of different parts, the overall PGF (between S and B) can be expressed as BG(z) =

BG0,0(z)(1−α)zδ(1−β)z3δLTXB+BG0,0(z)(αzδ+(1−α)βz2δ)BG1,−1(z)(1−β)z3δLTXB .

Then by the property of PGF, we have 1/µB = E(TB) = BG′(1), thus

PB = 1− λB ·BG′(1) (4.7)

4.1.5.3 802.11 MAC service time characteristics

We define TW as the r.v. denoting the MAC service time of 802.11. Similar to

the analysis for BoX-MAC, here the PGF (i.e. WG(z) = E(zTW )) of TW is needed

to obtain E(TW ). The same method as before is used to convert the MC for 802.11

(in Figure 4.1) to its corresponding SFG. To get the expression for the PGF between
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point S0 (or S1) and B, we also employ the divide-and-conquer strategy, i.e. first

expressing the TF’s from S0 (or S1) to C, then C to D and so on, and finally

combining them to generate the overall PGF.

However, due to the increased complexity of the SFG, the derivation for the PGF

between S0 (or S1) and C is more difficult than that for BoX-MAC. We first of all

define the PGFs from S0 to two states with same backoff counter (e.g. S0 to (0, j, 0)

and to (0, j, 1)) as a row vector WG00,j(z).Then the PGF from S0 to (0,W0 − 1, 0)

and to (0,W0 − 1, 1) (for demonstration purpose) is WG00,W0−1(z) =

[
z/W0, 0

]
.

From WG00,W0−1(z), WG00,W0−2(z) is also obtained, and so on so forth, until

WG00,0(z) is derived. Specifically, based on the transitions between WG00,j(z)

and WG00,j−1(z), we define a matrix which describes the TF between them as

Q0 =

(1− Pf )z a(z)

(1− P ′f )z b(z)

, where a(z) = A0C1z
δLSTW + A0(1 − C0 − C1)z

δLCTW +

(1 − A0 − A1C0)z
3δLTXB and b(z) = P ′fz

δLSTW + (P ′f − C1)z
δLCTW , where A0, A1 are

defined in Section 4.1.4, and C0 and C1 are defined as (1 − τW )NW−1 and (NW −

1)τW (1− τW )NW−2, respectively. Although the expressions above look tedious, they

are simple Z-transforms of all different transition paths between WG00,j(z) and

WG00,j−1(z). With Q0 (note that I−Q0 is invertible), we note that WG00,0(z) =

WG00,W0−1(z) · (I + Q0 + · · ·+ Q0W0−1) = [z/W0, 0] · I−Q0W0

I−Q0
. Since the PGF

(denoted by TG(z)) between [(0, 0, 0), (0, 0, 1)] and point C is

TG(z) =
[
a(z)− A0C1z

δLSTW , b(z)− P ′fzδLSTW
]T

(note Pc = Pf and P ′c = P ′f ), we define the PGF for backoff stage 0 (represented by

WG00(z)) as the PGF between S0 and C. We then have WG00(z) = WG00,0(z) ·

TG(z). By similar method, the PGF for backoff stages 1 to m − 1 can be derived.
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For example, the PGF for stage 1 (i.e. between C and D) is WG01(z) = WG01,0(z)·

TG(z), where WG01,0(z) is the PGF between C and [(1, 0, 0), (1, 0, 1)] and TG(z)

is the PGF from [(1, 0, 0), (1, 0, 1)] to D. Note that TG(z) does not change with

backoff stage.

Same as BoX-MAC, the PGF for stage m is a little tricky because of the self-

loop. The derivation, however, is still trivial by using the Mason formula. The

corresponding result is as

WG0m,0(z) =

[
WG0′m,0

(1)(z)

1−WG0′m,0
(1)(z) ·TG(1)(z)

,
WG0′m,0

(2)(z)

1−WG0′m,0
(2)(z) ·TG(2)(z)

]

where the superscript (i) represent the ith element in a vector, and WG0′m,0 is the

forward PGF (i.e. without the self-loop) from point E to [(m, 0, 0), (m, 0, 1)].

Having had the PGF’s for all stages, the final PGF from S0 to B can be derived

using Mason formula as below

WG0(z) = WG00,0(z) ·
[
(1− Pf )zδLSTW , (1− P ′f )zδLSTW

]T
+

m∑
i=1

(
WG0i,0(z) ·

[
(1− Pf )zδLSTW , (1− P ′f )zδLSTW

]T · i−1∏
j=0

WG0j(z)

)

By similar derivation as above, the PGF from S1 to B (i.e. WG1(z)) is obtained.

Then by the property of PGF, we have

P0 =
bIDLE,0 · (1− Pf ) + bIDLE,1 · (1− P ′f )

bIDLE

P1 =
bIDLE,0 · Pf + bIDLE,1 · P ′f

bIDLE

PW = 1− λW · (P0 ·WG0′(1) + P1 ·WG1′(1)) (4.8)
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where P0 and P1 denote the probabilities that the outputs of IDLE state being S0

and S1, respectively.

Now, by employing numerical methods to solve Equations (4.4)-(4.8), all eight

unknown probabilities are obtained. Several performance metrics can be derived

from these probabilities. In this dissertation, we are interested in the aggregate

throughput and the total delay, i.e., the time between a packet entering the queue

until it is transmitted successfully.

4.2 Performance Prediction of UNSAT

4.2.1 Throughput Analysis

With the help of the Markov Chain model for the channel shown in Section 4.1.4,

it is straightforward to derive the expressions for the throughput of 802.11 and BoX-

MAC.

4.2.1.1 Throughput for 802.11

Similar to BoX-MAC, we can express the 802.11 throughput as

SW = (b0P0STW + b1P1STW )LpSTW (4.9)

where b1 is the stationary probability for state 1 in the channel MC (Section 4.1.4),

P0STW is the transition probability for an 802.11 transmission being succeed, and

LpSTW is packet payload size of 802.11 in baseline time slot.
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4.2.1.2 Throughput for BoX-MAC

From the perspective of the channel, the throughput of BoX-MAC is simply the

time spent in a successful BoX-MAC transmission, thus we have

SB = b0P0STB3LpTXB

where b0 is the stationary probability for state 0 in the channel MC (Section 4.1.4),

P0STB is the transition probability for a BoX-MAC transmission being succeed, and

3LpTXB is packet payload size of BoX-MAC in baseline time slot.

4.2.2 Delay Analysis

By Little’s Law, delay D = L/λ, where L is the steady state queue length and λ

is the arrival rate. Consequently, to compute the delay we need to obtain the steady

state queue length of the BoX-MAC and 802.11. For a M/G/1 queue, the expression

for the average queue length is L = ρ + λ2(σ2+1/µ2)
2(1−ρ) [94], where σ2 is the variance of

the service time, and ρ = λ/µ.

Since we obtain the PGF’s of the MAC service time of BoX-MAC and 802.11 in

Section 4.1.5.2 and 4.1.5.3, the corresponding variances are

σ2
B = Var(TB) = BG′′(1) +BG′(1)− (BG′(1))2

σ2
W = Var(TW ) = WG′′(1) +WG′(1)− (WG′(1))2

Then the expressions for the queue length are

LB = ρ+
λ2B(σ2

B + 1/µ2
B)

2(1− ρB)

LW = ρ+
λ2W (σ2

W + 1/µ2
W )

2(1− ρW )
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With average MAC service time, we can simply write the expressions for delay

(by Little’s Law) as DW = LW/λW and,

DB =LB/λB (4.10)

4.3 Performance Tuning for UNSAT

4.3.1 Parameters Tuning for Delay Constraints

In this section we present a protocol tuning method that maximizes 802.11

throughput while satisfying delay constraints of 802.15.4, by varying the CW size of

individual nodes. CW affects throughput since it directly controls the transmission

probability (i.e. aggressiveness) [82]. As previously demonstrated in previous chap-

ter, the congested CW size of BoX-MAC (W ′
1) and the minimum CW size of 802.11

(W0) have a significant impact on the achievable throughput in coexisting networks,

while the initial CW size of BoX-MAC (W ′
0) and the maximum CW size of 802.11

(Wm) do not. Thus, we only consider tuning W ′
1 and W0, and fix the other two. Our

tuning method also adjusts the WiFi data arrival rate λW since it is the only way to

tune the throughput under unsaturated condition.

Since we want to ensure that the performance (i.e. throughput) of WiFi devices

be maximized under the delay constraint of BoX-MAC, we formulate this as a non-

linear optimization problem,

arg max
W0,W ′1,λW

SW

subject to DB ≤ Delay Threshold,

W ′
1,W0, LB, LW ≥ 0

where the throughput of 802.11 SW (see Equation (4.9)) is the objective function,
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while the delay threshold of BoX-MAC (see Equation (4.10) for DB) and Equa-

tions (4.4)-(4.8) serve as the main constraints. More importantly, the CWs and

queue lengths (i.e. LW , LB) for all nodes must be greater than or equal to 0, so that

the queue of each node is stable (i.e. arrival rate < service rate). By solving this

problem numerically (e.g. fmincon toolbox in MATLAB), we obtain the optimal

CW sizes for BoX-MAC and optimal CW’s and arrival rates λW for WiFi. This

tuning method is centralized, and due to the homogeneity of devices of same type,

the optimal parameters for same type are equal. Thus this method does not exhibit

fairness issues for the same type of devices. We note that ensuring fairness between

BoX-MAC and 802.11 is not appropriate because of the very large difference in their

maximal flow rates.

4.4 ns-3 based Simulator for UNSAT

4.4.1 Simulator Design

We implemented our simulator for single-cell coexistence based on the well-known

ns-3 simulator, which is a discrete-event network simulator. ns-3 has been developed

to provide an open, extensible network simulation platform, which is easy for de-

velopers to implement their own protocols, especially when the protocols are on the

high IOS layer (e.g. application layer).

The spectrum PHY module in ns-3 is used as the common operating channel for

both 802.11 and BoX-MAC devices. Since our simulator is focused on MAC layer,

the implementation involved significant modifications at MAC layer of the WiFi

and LrWPAN modules of ns-3, to handle homogeneous and heterogeneous collisions.

In addition, the network and transportation layers are removed to accelerate the

simulation speed. Furthermore, an unsaturated traffic generators are added to the

application layers of WiFI and ZigBee to enable the simulation for saturation.
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4.5 Model and Tuning Evaluation

4.5.1 Validation of Model for UNSAT

To valide the proposed model for UNSAT, we compare the throughput and delay

obtained from the model with those obtained from the ns-3 simulator.
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Figure 4.5: Throughput of model and simulator vs # devices.
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Extensive simulations were performed under varying configuration parameters in

order to characterize the effects of CW size tuning on aggregate throughput and

total delay. The parameters we vary are: number of nodes, the minimum contention

window size W0 of 802.11, the congested contention window size W ′
1 of BoX-MAC

and the corresponding per-node offered load (data arrival rate) λW and λB. The

default values of these parameters are: W0 = 16, Wm = 1024, PW = 1500, λW = 20

for WiFi, and W ′
0 = 310, W ′

1 = 70, PB = 48, λB = 4 for BoX-MAC.

Typically, the time spent for the model to numerically converge is less than

one minute on a fast PC (with i7 4790K CPU and 16GB ram), while solving the

optimization problem takes a little longer than that. The simulation time for all

tests is 10000s, which, on average, takes more than ten hours on the same machine.
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Figure 4.7: Throughput of model and simulator vs CW sizes.

4.5.1.1 Effects of number of devices

Analyzing the coexistence of WiFi and WSN by varying the number of devices

in a real implementation is tedious and time consuming. The same can be done by
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merely varying the number of devices in the analytical model and simulator. Fig-

ure 4.5 and Figure 4.6 depict the effect on throughput and delay when the number

of WiFi (i.e., {5, 10, 20, 40}) and BoX-MAC (i.e., {10, 20, 40, 80}) devices are varied,

while setting other parameters to their defaults. We surprisingly observe that the

results for the simulator and analysis match each other closely. Specifically, when

the network density is small (e.g. 20 BoX-MAC vs 10 WiFi), the throughput of

both types increase linearly with the increase of the number of devices due to un-

saturated queueing condition. For a crowded network (e.g. 80 BoX-MAC vs 40

WiFi), the BoX-MAC reach near-saturated condition (we have chosen λB = 4 on

purpose to demonstrate), and the 802.11 devices reach saturated condition. Thus,

we observe that the throughput of BoX-MAC still increase linearly, however, the one

for 802.11 increases slowly due to saturation. The delay exhibits similar behavior as

the throughput. Especially when the number of devices becomes large, the delay of

BoX-MAC becomes large due to near-saturated condition, while the queue for 802.11

tends to infinity (denoted by “Inf” in the figure) due to saturation.
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4.5.1.2 Effects of contention window sizes

To analyze the impact of contention window size on throughput and delay, we

consider a scenario with 10 802.11 and 20 BoX-MAC devices. All default parameters

are used expect the CW size, which are selected within {30, 50, 70} and {16, 32, 64}

for BoX-MAC and 802.11, respectively. The results are depicted in Figure 4.7 and

Figure 4.8 for throughput and delay, respectively. Remarkably, the results obtained

from the model agree with the simulation quite well. In the case of throughput, since

the CW’s for BoX-MAC always lead to unsaturated condition, its throughput does

not vary much. While for 802.11, since a smaller CW (such as W0 = 16) implies

higher aggressiveness, the queue is unsaturated, and the throughput of 802.11 equals

to its input. However, when the CW of 802.11 increases, due to the decrease of

the aggressiveness, its queue becomes sensitive to the aggressiveness of BoX-MAC

devices. For example, if CW of BoX-MAC equals 70, W0 = 64 lead to saturation,

but if CW of BoX-MAC equals 30 or 50, W0 = 32 tends towards saturation. For

the delay analysis, since bigger CW results in longer MAC service time, the delay is

higher for bigger CW. As mentioned before, the queue of 802.11 becomes saturated

for some cases, hence the corresponding delay is infinite.

4.5.1.3 Effects of per-node offered load

Due to the significant impact of traffic arrival rate, i.e per-node offered load,

on the network performance, we study its effect on the throughput. As earlier, we

consider a scenario with 40 WiFi, 40 BoX-MAC devices and default parameters.

We vary the per-node offered load in {2, 4, 6} packets per second for Box-MAC and

{1, 10, 20, 30} packets per second for WiFi. The results are depicted in Figure 4.9 and

Figure 4.10 for throughput and total delay, respectively. Amazingly, the simulation

results are in close agreement with those obtained from the model. In particular,
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Figure 4.10: Total delay of model and simulator vs offered load.

when the offered load of WiFi increases, until saturation, the throughput of both

BoX-MAC and WiFi increase linearly. Then, their throughput gradually and slowly

decreases due to the increased collision rate. Similar results can be observed for the

delay. As the queue becomes saturated, the delay tends toward infinity.

4.5.2 Parameters Tuning Evaluation

We evaluate the tuning method proposed in Section 4.3.1 using our ns-3 simula-

tor. We demonstrate that our approach guarantees the delay constrains of BoX-MAC
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Table 4.1: Optimal parameter values obtained under λB = 2

Delay constraint λW (802.11) W0 (802.11) W ′
1 (BoX-MAC)

50 ms 53 8.1748 13.2673
100 ms 78 5.1457 21.3654

Table 4.2: Optimal parameter values obtained under λB = 4

Delay constraint λW (802.11) W0 (802.11) W ′
1 (BoX-MAC)

50 ms 42 14.6472 6.7848
100 ms 60 9.2516 10.8520

while maximizing 802.11 throughput. The evaluation of the tuning method is per-

formed upon 20 BoX-MAC and 10 802.11 nodes, with different BoX-MAC delay

constraints among {50, 100}ms.

We inspect three cases of the arrival rates λB for BoX-MAC from {2, 4, 6}, and

obtain from the model the optimal CW sizes for BoX-MAC (i.e. W ′
1) and 802.11 (i.e.

W0) as well as the optimal arrival rates λW for 802.11. As shown in Table 4.1, when

the delay constraint for BoX-MAC is 100ms, the optimal CWs obtained from the

tuning method are significantly different from their default values (i.e. W0 = 16 and

W ′
1 = 70). And since λB is only 2, it is easy to satisfy the delay constraint, which

offers WiFi a very good available throughput (which is = 78). However when delay

constraint becomes 50 ms, since it is harder to satisfy the constraint, the BoX-MAC

becomes more aggressive by reducing its W ′
1, and WiFi increase the W0 to further give

space for BoX-MAC. Therefore the maximal throughput of WiFi λW decreases to 53.

Similarly, when λB = 4 or 6, the same trends of W ′
1, W0 and λW can be observed in

Table 4.2 and 4.3. Especially, for an extreme case where λB = 6 and delay constraint

equals 50, the BoX-MAC becomes very aggressive (i.e. W ′
1 = 3.1837), while WiFi
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Table 4.3: Optimal parameter values obtained under λB = 6

Delay constraint λW (802.11) W0 (802.11) W ′
1 (BoX-MAC)

50 ms 27 20.3774 3.1837
100 ms 46 13.2743 7.2562

reduce its aggressiveness by increasing its W0 to 20.3774 and thus has a throughput

of only 27.

In practice, this tuning method can be used on a dual radio powerful master

device which first computes the optimal parameters and then informs both WiFi

and BoX-MAC devices about the values obtained.
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5. COEXISTENCE OF DUTY-CYCLING WIFI AND ZIGBEE WITH

UNSATURATED TRAFFIC

In this chapter a mathematical model and a simulator for symmetric coexistence

of duty-cycling WiFi and ZigBee with unsaturated traffic (i.e. DC-UNSAT) are

discussed. Since the difficulty of modeling the DC-UNSAT problem is quite high, we

actually tackle it through two steps, i.e. first modeling the WiFi power saving mode

(PSM) to get an idea, and then solve the whole problem of DC-UNSAT. It is worth

emphasizing that, after modeling the PSM, we notice that it is too complicated

to solve the DC-UNSAT problem by using the same manner for modeling PSM,

a different type of approach is employed eventually, i.e. an approximation based

approach. However, we think it is still valuable to present the modeling for PSM,

which is in Section 5.2.

5.1 Background

5.1.1 WiFi 802.11 PSM Protocol

The Ad-Hoc PSM (namely IBSS) is defined in IEEE 802.11 standard [88]. Similar

to infrastructural WiFi network, all devices in IBSS PSM are time synchronized with

a centralized beacon node. As shown in Figure 5.1, each cycle is called a Beacon

Interval (BI), and each BI has two fixed length windows, i.e. Announcement Traffic

Indication Message (ATIM) window and DATA window. Every node wakes up at

the beginning of a cycle, and after hearing a beacon, it stays awake for ATIM long

to listen to or transmit an ATIM packet. The ATIM packet is a control frame

exchanged by devices to determine the behavior in the following DATA window.

Specifically, when a device has data for a receiver, it transmits an ATIM packet to

the receiver during ATIM using the 802.11 DCF mechanism (i.e. randomly backoff).
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In response to an ATIM packet, the receiver will reply an ATIM-ACK. After a

successful ATIM handshake, both devices will be in power-on mode in the following

DATA window, where the actual packet transmission takes place. If a device fails

to send an ATIM frame within the ATIM window, the data frame is buffered and

another attempt will be made during the next BI cycle. A device enters the power

save mode at the end of the ATIM window if it has no data to transmit/receive, or the

transmission/reception in ATIM window is failed. To make the modeling tractable,

we assume that a transmitter which succeeds in ATIM window can only send one

packet in the following DATA window.
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Figure 5.1: 802.11 IBSS PSM Protocol

5.1.2 ZigBee BoX-MAC LPL Protocol

BoX-MAC low power listening (LPL) is considered in this dissertation because it

is the most widely used duty cycling protocol for WSNs. Figure 5.1 demonstrate how

LPL works. Specifically, a receiver (e.g. node B or C here) wakes up periodically to

check if there is a data for it, and the duty cycle ratio determines its awake duration
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in each cycle. Regardless of whether the reception is successful or not, the receiver

immediately goes back to sleep whenever its awake time is exhausted. While for a

sender (e.g. node A), it wakes up right away if a packet needs to be transmitted,

and then it repeatedly sends the packet (i.e. retries) and wait for the reply from

the corresponding receiver, until it succeeds or the entire cycle is used up. Since a

receiver has same cycle length as the sender, it always has chance to receive that

packet. If the transmission succeed, the sender goes to sleep when it receives the

reply; otherwise the packet is dropped after it is retried for one cycle. Note that each

retrial is still based on 802.15.4 (but for simplicity, it has only two backoff stages),

i.e. a sender backs off first, then checks channel (namely clear channel assessment

(CCA)) and sends data only if the channel is idle.
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Figure 5.2: LPL Protocol

5.2 Mathematical Model for 802.11 PSM

In this section, we introduce a four dimensional Markov Chain to model the

802.11 IBSS PSM standard.
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5.2.1 Key Assumptions

We assume that all devices employ duty cycling mechanism to save energy, and

are within a single wireless cell (i.e. all devices are mutually reachable). For all

devices, the packets sizes d are the same, and the data arrival rates λ are equal.

For simplicity, we also consider an ideal channel (i.e. no shadowing, fading and

capture effect), implying communication failure is only due to collisions. Moreover,

we make two fundamental, yet widely used assumptions: a) the probability τ of each

transmission attempt is constant and independent of other attempts; and b) the

conditional collision probability given an attempt is constant and independent of the

collision history. These assumptions were proven to be accurate for both saturated

and unsaturated scenarios [48]- [93].

5.2.2 Markov Chain Model

Now we describe the Markov Chain model and its analysis.

5.2.2.1 The Per-node Markov Chain

In the original Discrete Time Markov Chain model of the reference node (or MC

for simplicity) for 802.11 DCF [48], each state is two dimensional (s(t), c(t)), where

s(t) is a stochastic process representing the current backoff stage (0 ≤ s(t) ≤ m,

where m is the maximum stage), and c(t) is a process representing the current backoff

counter in the corresponding backoff stage (0 ≤ c(t) ≤ CW (i), where CW (i) is the

contention window size of stage i). This Markov Chain maintains the Markovian

property because given a state (s(t), c(t)), the following state i.e. (s(t+ 1), c(t+ 1))

is independent of the state before t. Notably, henceforth the terms “backoff stage”

and “stage” are used interchangeably.

However, for the 802.11 IBSS PSM protocol, because of the two windows (i.e.
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ATIM window and DATA window), both s(t) and c(t) will be reset to 0 whenever

the window is used up. Thus given a state (s(t), c(t)), it is not sufficient to determine

whether the next state is (s(t+ 1), c(t+ 1)) or (0, 0) (i.e. when window is used up),

which implies that the Markovian property cannot be maintained with only two

dimensions. To solve this problem, we introduce a new stochastic process w(t) to

denote the time elapsed in the corresponding ATIM/DATA window. Then we have

0 ≤ w(t) ≤ A (or D), where A and D are the lengths of a ATIM and a DATA window,

respectively. Particularly, w(t) = 0 in the beginning of a window, and increments at

the end of each time slot until A (or D) (i.e. when the window is exhausted).

According to the IBSS PSM protocol, a node can send at most one ATIM packet

in an ATIM window, and based on our simplification of the protocol, within one

DATA window, a node can send at most one data packet. This property is important

because after a successful transmission (within a window) a node will not contend for

the channel in that window, which implies that the number of contending (active)

nodes may reduce. Since the probability that a node senses a busy channel depends

on the number of active devices in a window (which is a variable), we bring in

another stochastic process n(t) which represents the number of active nodes in an

ATIM/DATA window (thus 0 ≤ n(t) ≤ N , where N is the total number of devices).

Therefore, the entire Markov Chain is four dimensional, and each state can be

denoted as (s(t), c(t), w(t), n(t)). For simplicity, we name each state as (stage

counter, backoff counter, window counter, node counter). Since this 4-D

Markov Chain is fairly complex, we divide the entire chain into several components,

which are shown in Figure 5.3.

Big picture of the MC: Each BI includes an ATIM window (represented by the

dashed-line box in Figure 5.3) and a DATA window (represented below the dashed-

line box). The reference node enters an ATIM component at the beginning of the
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BI if it has data to transmit (with probability 1−p0, where p0 is the probability of an

empty queue). If the handshake in the ATIM is successful, the node enters the SA

component (stands for success in the ATIM window) to wait until the ATIM window

ends, and then enters a DATA component. While if it fails in the ATIM, the node

enters the EW component (stands for waiting till BI ends). If there is success in

the DATA window (i.e. the DATA component), the node enters the SD component

(stands for success in the DATA window). If the transmission fails in DATA, the

node immediately returns to an ATIM component to resend the data. The ATIM

(along with the corresponding SA and EW ) andDATA (with the corresponding SD)

components have N similar regions representing different number of active devices

at the beginning of the corresponding window and are indexed with the symbol X.

For example, DATAX means that the node is in a DATA window with X active

nodes at the beginning of the window.

�

�

�
��

�
�

�
�

�
�

�
�

���

���

���

���

�

����
�

��
�

����
�

��
�

��
�

����
�

��
�

����
�

��
�

��
�

����
�

��
�

����
�

��
�

��
�

�
���

�

�
� �

�

�

�
	

���
�

Figure 5.3: Big picture of Markov Chain for IBSS PSM.

Before exploring each component in detail, we first introduce our main idea of

solving the MC, i.e., finding the stationary probability of each state. Due to the

complexity of the MC, there is no simple closed form expression, we therefore adopt
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a numerical method. As we know, a numerical method usually employs an iterative

approach, until the objective converges. We initially make a guess of the stationary

probabilities (denoted as an input vector I = [I1, I2, · · · , IN ]) for the input of each

component ATIMX . Then, by traversing the MC, we get a high level transition

probability matrix (denoted by P) from an old input vector to a new one (due to

the closed loop property), thus we have I′ = I · P. Finally, by iteratively updating

I, we will obtain a stationary vector (i.e., I · P ∼ I). We therefore need to find P,

which we will briefly discuss here. For ease of explanation, in Figure 5.3, we mark

probabilities of some states such as points A (i.e. the input probability of ATIMX),

B (i.e. the output probability of SAX) etc. Through detailed analysis of the MC

(discussed later), the transition probability PAB between A and B are obtained

(PAB is a vector, as shown later, and is denoted as PAB = PSAX). Similarly, PAC

(as PFAX), PAG (as PEWX), PDE (as PSDX) and PDF (as PFDX) are derived

accordingly. In the following sections, we will cover the details of the MC to compute

these high level transition probability vectors, and later, we will discuss the method

to compute P.

The details of ATIMX/DATAX : Figure 5.4 shows the ATIMX/DATAX com-

ponent, where the backing off procedure takes place (recall that X represents the

number of active nodes at the beginning of ATIM/DATA window). We present the

ATIMX and DATAX components together because of their similarity in behavior.

To make the presentation concise, we only show the first stage (i.e. stage 0) of the

total m stages, and we assume that its input probability is iYX (i.e. iAX or iDX for

ATIM window or DATA window). The part above the big down-arrow shows the

high-level concept of the MC for stage 0, which is very similar to the one for 802.11

DCF [48], but with two major differences: (i) each state in this MC has two outputs,

i.e. one (the horizontal left-arrow) to its normal next state (same as the MC in [48]),
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Figure 5.4: Detailed MC for ATIMX/DATAX .

and the other one (i.e. the vertical down-arrow) to component E (E = EWX if

the MC is for ATIMX ; if for DATAX , E corresponds to the end of DATA window,

i.e. the end of current BI cycle); (ii) in this MC, each state (i, j) is a set of Y · X

states, i.e. (i, j, 0, X), (i, j, 0, X − 1), · · · , (i, j, Y ,X), . . . , (i, j, Y , 1), where Y = A or

D, which are the lengths of the ATIM or DATA window.

The detailed MC of stage 0 is shown below the big down-arrow of Figure 5.4,

102



and for each state (i, j, k, n) (not including the states on the leftmost column and the

states in the dashed-line box ), there are three possible transitions: when the channel

is idle, the chain transits to state (i, j − 1, k + 1, n) w.p. pak,n because with the

passage of one time slot, the backoff counter will decrement and the window counter

will increment (i.e. j → j − 1 and k → k + 1); when channel contains a successful

transmission, the backoff counter has to freeze during the transmission, the window

counter will increases by d since the transmission takes d time slots, and the node

counter will decrement because the node which has succeeded in the transmission will

stay silent in this window, thus the MC has to enter state (i, j− 1, k+ d, n− 1) w.p.

pbk,n; and when there is a failed transmission due to collision, the backoff counter

and the window counter have same results as the previous case, but because of the

failure, the node counter will not change (i.e. to state (i, j − 1, k + d, n) w.p. pck,n).

To represent a MC for stage i, we define a ((Y · X) ·Wi) matrix YXi
(i.e. AXi

or

DXi
), where Wi is the contention window size for backoff stage i. To clarify the idea

behind YXi
, we have collapsed the last two dimensions (i.e. window counter w(t)

and node counter n(t)) of the MC into one. Thus the element YXi
(k · X + n, j)

corresponds to the state (i, j, k, n) in the MC.

According to the behavior described above, the three conditional probabilities

of the reference node (i.e. pak,n, pbk,n and pck,n) can simply be defined as pak,n =

(1−τk,n)n−1, pbk,n = (n−1)τk,n(1−τk,n)n−2 and pck,n = 1−pak,n−pbk,n where τk,n is

the transmission attempt probability of any other node. From these definitions, we

can easily see that pak,n, pbk,n and pck,n depend on the node counter n and τk,n, and

since τk,n depends on the window counter k and node counter n (which we will explain

later), pak,n, pbk,n and pck,n depend on k and n. To compute pak,n, pbk,n and pck,n,

we need to obtain τk,n first. Because of the complexity of the MC, there is no simple

close form expression for τk,n, we therefore resort to a constructive manner method.
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As before, we have defined YXi
, thus YX0 of backoff stage 0 can be initialized as,

YX0 =

 iYX
W0

iYX
W0

· · · iYX
W0

0 0 · · · 0

 ,Y is A or D (5.1)

where the first row (i.e., state (0, j, 0, X)) is initialized by the input iYX/W0, and all

other elements are 0.

As mentioned before, since each state (i, j, k, n) has three outcomes (when k <

Y −d), the corresponding matrix entry YXi
(k ·X+n, j) will be used to update three

other elements as follows (recall that d is the packet size in time slots),


YXi

(k ·X + n+X, j − 1) + = pak,n ·YXi
(k ·X + n, j)

YXi
(k ·X + n+ d ·X, j − 1) + = pbk,n ·YXi

(k ·X + n, j)

YXi
(k ·X + n+ d ·X + 1, j − 1) + = pck,n ·YXi

(k ·X + n, j)

(5.2)

We now consider the states on the leftmost column corresponds to the transmis-

sion attempt of the reference node. If the attempt fails (w.p. 1 − pak,n), the chain

will go to the next backoff stage, thus the update rule between stage i and i+ 1 (i.e.,

transition from state (i, 0, k, n) to states (i+ 1, 0 : Wi+1 − 1, k + d, n) is as,

YXi+1
(k ·X + n+ d ·X, 1 : Wi+1) =

1− pak,n
Wi+1

YXi
(k ·X + n, 1), k ≤ Y − d,Y is A or D (5.3)

where the symbol “1 : Wi+1” denotes all columns in YXi+1
.

All devices in the network are time synchronized, and their per-node MC’s have

knowledge of the current number of active devices. Thus given a specific window

counter and node counter (e.g. (k, n)), i.e. when specifying a row (denoted as
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R(k, n)) in the MC, the state of any other node must be on the same row. Therefore,

the way to compute τk,n becomes simple because according to the definition, given

a state (e.g. (i, j, k, n)) of a reference node, the transmission attempt probability of

any other node equals the probability that such node lies in state (i, 0, k, n), i.e. the

leftmost elements of all m stages on the row R(k, n). From this, we get τk,n as,

τk,n =

∑m
u=0 YXu(k ·X + n, 1)∑m

u=0

∑Wu

v=1 YXu(k ·X + n, v)
, Y is A or D (5.4)

Now we have a method to calculate τk,n in terms of YX’s. However, Equa-

tions (5.2) and (5.3) reveal that generating YX depends on τk,n (because pak,n, pbk,n

and pck,n are needed). By Equation (5.1), we observe that the first row of the matrix

YX0 is known, thus by Equation (5.4) we can compute τ0,X for the first row. Then

by using Equations (5.2) and (5.3), we obtain three other rows for YX0 and two

rows for the matrix of YX1 . Since the rows in the matrix are ordered by the window

counter (i.e. time elapsed from 0 to Y ), by iteratively updating rows from top down

(i.e. row in YXi
updates another three rows in YXi

and two rows in YXi+1
), all τk,n’s

and all entries of the matrices YX’s can be attained.

Since we have modeled ATIMX and DATAX , we are ready to derive the output

of them (i.e. the inputs for SYX and EWX). As we know, if the reference node

succeeds in its transmission (w.p. pak,n), the MC transits to component SYX (i.e.

SAX or SDX). We define a (Y + 1) · X vector SYX for component SYX (We will

discuss the details of SYX later in this section), and then similar to Equation (5.3)

the input for SYX (i.e. the output of YXi
when the reference node succeeds) can be

written as,
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SYX(k ·X + n+ d ·X + 1) =

pak,n
∑
i

YXi
(k ·X + n, 1), k ≤ Y − d,Y is A or D (5.5)

While for the output of ATIMX/DATAX when the reference node fails, we notice

that the dashed line box in Figure 5.4 correspond to the time instances close to the

end of a ATIM/DATA window. A node in these states may use up its window and

exit ATIMX/DATAX . For example, for states after (i, j, Y − d, n) of the reference

node, if it sees a transmission of other nodes, its window counter increases by d, thus

the window is exhausted (since Y − d + d = Y ), it has to leave ATIMX/DATAX .

Since the bottom d·X rows (except the last X row) of YXi
will exit ATIMX/DATAX

w.p. 1− pak,n (w.p. 1 for the last X rows where the time left in the window is too

short for even one time slot of waiting), the output FYX of YXi
when the reference

node fails can be as,

FYX(e) =
m∑
i=1

( d−1∑
j=1

(1− pa) ·YXi
((Y − j) ·X − e+ 1, 1 : Wi)

+ YXi
(Y ·X − e+ 1, 1 : Wi)

)
, 1 ≤ e ≤ X,Y is A or D (5.6)

For the ATIM window, since the output of AXi
(i.e. FAX) is the input for EWX ,

we define another (Y +1) ·X dimensional vector EWX for component EWX (we will

cover the details of EWX later in this section). Then we have EWX(e) = FAX(e).

The high level transition probability vector for this case is PFAX = FAX/iAX (recall
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that PFAX corresponds to PAC in Figure 5.3). While for the DATA window, since

there is no EWX for it, we only need to express the corresponding high level transition

probability vector as PFDX = FDX/iDX (note that PFDX is PDF in Figure 5.3).
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Figure 5.5: Detailed MC for SYX (left) and EWX (right).

The details of SYX : As mentioned before, component SYX (i.e. SAX and SDX)

occurs in the ATIM or DATA window when the reference node succeeds in the

corresponding window. Recall that the fourth dimension is the number of active
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nodes (i.e. n(t)), even though in SYX the reference node is not active (within the

current window), the remaining node are still active, thus the MC of the reference

node still needs to track n(t). This property is important because the knowledge of

the number of active nodes is used to determine which region the MC to enter in the

following window. The detailed MC is depicted on the left side of Figure 5.5, where

we can see two columns. The right column is the leftmost column of the MC of stage

i (i ∈ [0,m]) of ATIMX/DATAX . By Equation (5.5), we know that the inputs of SX

are from the leftmost column of each stage of ATIMX/DATAX . Since the packet

transmission takes d slots of time, a state (i, 0, k, n) will transit to (−1, , k+d, n− 1)

w.p. pak,n. The left column is the main part of SYX . Similar to the update rule of

ATIMX/DATAX , depending on whether the channel is free, contains a collision, or

contains a successful transmission, each state (−1, , k, n) has three outcomes, i.e. to

state (−1, , k + 1, n), to (−1, , k + d, n) or to (−1, , k + d, n − 1), respectively. It is

worth noting that, when k ≥ Y − d (so k+ d ≥ Y , i.e. the window is used up), each

state will only transit to (−1, , k+1, n) (w.p. pak,n) and (−1, , Y , n) (w.p. 1−pak,n).

Earlier, we have defined a vector (i.e. SYX) for SYX , to systematize the update rule
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for a vector, we define a vector operator UPDT(V ec) =
∑

s UPDT(V ec(s)) as,

if s < (Y − d) ·X

UPDT(V ec(s)) :


V ec(s+X)+ = pak,n · V ec(s)

V ec(s+ d ·X)+ = pbk,n · V ec(s)

V ec(s+ d ·X + 1)+ = pck,n · V ec(s)

if (Y − d) ·X ≤ s < (Y − 1) ·X

UPDT(V ec(s)) :

 V ec(s+X)+ = pak,n · V ec(s)

V ec(s+ d ·X)+ = (1− pak,n) · V ec(s)

if s = (Y − 1) ·X UPDT(V ec(s)) : V ec(s+X) += V ec(s)

where s = k ·X + n.

By updating using UPDT(SYX) (1 ≤ X ≤ N), the last X elements of SYX (i.e.

SYX(Y ·X : (Y + 1) ·X), note that Y = A or D for ATIM or DATA window) store

the probabilities of different number of successful nodes given X active nodes at the

beginning of the corresponding window. For example, the last element represents

the probability that all nodes are successful given X active nodes, while the last

but one represents the probability that exactly X − 1 nodes succeed. The high level

transition probability vector PSYX (i.e. PSAX and PSDX) equals SYX(Y · X :

(Y + 1) ·X)/iYX (recall that PSAX corresponds to the PAB, and PSDX corresponds

to PDE in Figure 5.3).

The details of EWX : In terms of component EWX which represents the time

waiting for the DATA window to end when the reference node fails in the ATIM

window. Same as SYX discussed before, although the reference node is not active,

it still needs to track the number of active nodes in the network. The detailed MC
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for EWX is shown on the right side of Figure 5.5. From before we know that the

inputs of EWX is from the bottom d ·X rows of each stage of ATIMX/DATAX (i.e.,

Equation (5.6)). Same as SYX , we update EWX using UPDT(EWX) (1 ≤ X ≤

N), and the last X elements of EWX (i.e., EWX(D · X : (D + 1) · X)) store the

probabilities of number of successful nodes (although here the reference node fails)

given X active nodes at the beginning of an ATIM window. We obtain the high level

transition probability vector PEWX, which equals EWX(D ·X : (D + 1) ·X)/iAX

(note that PEWX is PAG in Figure 5.3).
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Figure 5.6: Detailed MC for component W .
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The details of W : W represents time spent waiting for the queue to become

non-empty. The detailed MC is shown in Figure 5.6. When entering W the reference

node is at the beginning of a BI cycle, and if its queue has data (w.p. p0) it exits

W immediately to send the data. While if the queue is empty, it has to wait for an

entire BI until it has the chance to check the status of its queue again. Thus the

main body of W includes an ATIM and a DATA component to reflect an entire

cycle. Generally, each MC for ATIM and DATA is similar to that of EWX , and

the outputs of ATIM components directly lead to the input of DATA component.

Notably, at the output of DATA, besides the outputs that exit the W component

(w.p. p0), there is another output that leads to the input owing to an empty queue

(w.p. 1−p0), and this loop corresponds to the one on the top-left corner in Figure 5.6.

Similar to vector EWX, we define two (Y + 1) · N vectors WA and WD for

component ATIM and DATA (in W ), respectively. Assuming that at the beginning

of a cycle the reference node entersW due to empty queue, the number of active nodes

is X, and the corresponding input for W is iWX
. Then we can apply UPDT(WA)

and UPDT(WD) to derive the output vector WDX(D ·N : (D + 1) ·N), and the

high level transition probability vector PWX (i.e. from the input from ATIM to the

end of DATA in W ) is WDX(D ·N : (D + 1) ·N)/iWX
. We have not yet discussed

the inputs for W , which will be covered later.

5.2.2.2 Solving the Markov Chain

Now we derive the high level transition probability matrix P. Observe that in

Figure 5.3, from one ATIM region, the MC can enter any one of the N DATA regions,

i.e., it forms a one-to-many network, which can be represented by the product of a

vector (i.e. PSAX) and a matrix. Based on this idea, we define a high level transition

probability vector PSX, which stores the transitions from the input of ATIMX to the
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point OSW in Figure 5.3 (i.e. all possible outputs when the reference node succeeds

in an BI cycle). Then, we have PSX = PSAX · PSD, where PSD is defined as

PSD = [PSD1,PSD2, · · · ,PSDN]T . Similarly, for the case that the reference node

fails in a BI cycle, we define a high level transition probability vector PFX containing

the transitions from the input of ATIMX to the point OF in Figure 5.3. PFX is

expressed as PFX = PEWX + PSAX ·PFD because when the reference node fails

in a BI cycle, it either fails in the ATIM window or succeeds in the ATIM but fails

in the DATA window (note PFD = [PFD1,PFD2, · · · ,PFDN]T ). Since PSX and

PFX give us the transitions from the input (point I in Figure 5.3) to the overall

output (OSW and OF ), we still need the transitions from point OSW to points OS

(trivial) and OW , and the transitions from the overall output (points OS, OF and

OW ) to the overall input I to complete the loop.

We now discuss the transitions from point OS to the overall input. As we know,

after the current cycle, if a node fails, it will resend the packet in the following cycle.

Whereas if it succeeds, it may or may not send a new packet depending on whether

it has one pending in its queue. This implies that the active number of nodes at the

beginning of the new cycle depends on the result of previous cycle, i.e. the numbers

of failed, successful and idle nodes. To model this property, we consider a scenario

where there are X nodes initially, and at the end (of the cycle), i nodes (including

the reference node) are successful. Then we know that the number of failed nodes

is X − i, all of which will resend their packets in next cycle. While the remaining

N − (X − i) devices may or may not have data to send. If we assume the reference

node has data in its queue, then the probability of j active nodes at the beginning of

the new cycle is expressed as
(
N−X+i−1
i+j−X−1

)
pN−j0 (1− p0)i+j−X (recall that each node has

same probability p0 of queue being not empty). Now we define a N · N transition

probability matrix, which represents that the reference node is successful and has
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data in the queue to the input of ATIMX , as follows,

if i<X, j<N-(X-1+i) or i>X , PSIXi,j
= 0;

otherwise, PSIXi,j
=

(
N −X + i− 1

i+ j −X − 1

)
pN−j0 (1− p0)i+j−X (5.7)

Consequently, we express one term for I′ at point OS as,

I′S = I · [PS1 ·PSI1, · · · ,PSN ·PSIN]T

Since PSIX is defined under the assumption that the reference node is successful

and has data in the queue, for the cases when the queue is empty or the packet

transmission failed, this matrix needs to be modified. We first define PFIX to be the

transition probability matrix from point OF to point I. Then, from expression (5.7),

we derive PFIX = 1
1−p0 PSIX. Thus I′ from point OF is expressed as,

I′F = I · [PF1 ·PFI1, · · · ,PFN ·PFIN]T

The last case is that the reference node succeeds but has no data in the queue.

Similar to the previous case where the reference node fails, we define PSWX to be

the transition probability matrix from point OSW to the input of W , and we have

PSWX = p0
1−p0 PSIX. According to the structure of the MC, we express the input

vector b0 of W as below,

b0 = I · [PS1 ·PSW1, · · · ,PSN ·PSWN]T

Since W has a self-loop, the input b0 cannot be directly used to derive the output

of W . We therefore derive the stationary probabilities of the input first. Observe
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that the loop back to W (w.p. p0) is the same as the transition from SDX to W .

Thus, we define its transition probability matrix as PWWX = PSWX. Similarly,

the transition probability matrix to exit W (i.e. to enter I, w.p. 1− p0) is same as

PSIX. Therefore, we obtain PWIX = PSIX.

Since we already have PWX for W , we have,

b0 + b · [PW1 ·PWW1, · · · ,PWN ·PWWN]T = b

from which we solve for b. In MATLAB, the solution is obtained using the “\”

operator.

Then by using b, we obtain I′ from point OW , as:

I′W = b · [PW1 ·PWI1, · · · ,PWN ·PWIN]T

Thus, the overall I is updated to I′ at every iteration (cycle) until it converges,

as follows (P can be derived from it),

I′ =I′S + I′F + I′W = I ·P

=I ·
(

[PS1 ·PSI1, · · · ,PSN ·PSIN]T + [PF1 ·PFI1, · · · ,PFN ·PFIN]T
)

+ b · [PW1 ·PWI1, · · · ,PWN ·PWIN]T

We also require the normalized condition (i.e. the summation of the stationary

probabilities of all states is one) of the MC for this numerical method to work. Since

we have the expression for the stationary input probability vector from which the

stationary probability of each state can be attained, the normalized condition is

applied easily.
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5.2.3 Queueing Analysis

We now discuss how p0 is determined using queueing theory concepts. First,

we assume that the data arrival process is Poisson distributed. The service time

is considered to be a general distribution, we apply M/G/1 queueing analysis to

estimate the queue empty probability, p0. For a M/G/1 queue, the queue empty

probability, p0 = 1 − λ/µ, where λ is the average packet arrival rate and µ is the

average service rate. Since the arrival rate λ is known, we only need to determine

the mean of the service time, i.e., 1/µ.

The computation of the average service time for IBSS PSM protocol is simple

because of the cyclic behavior. We use a method based on probability generation

function (PGF). The PGF method is feasible because the length of the cycle C (i.e.

C = A + D) is fixed, thus can be discretized (i.e., treated as a unit). Consider a

cycle with X active devices at the beginning of a cycle, we define a random variable

TX representing the service time of the reference node, and let φTX (s) be the PGF

of TX . If the reference node fails in its transmission, at the beginning of the next

cycle, the service time will be “renewed” to TY , where Y is the active nodes number

for the new cycle. This renewal property for a random variable is precious since it

greatly simplifies the analysis. Let z1 be the number of active devices after one cycle

(i.e. at the beginning of next cycle), based on the renewal property of TX , we have

the following expression for the PGF of TX [95],

φTX (s) = sC
N∑
i=1

E(sTi1z1=i)

= sC
N∑
i=1

(PFX ·PFIX)(i) · φTi(s)

where 1() is the indicator random variable, and (PFX · PFIX)(i) represents the
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transition probability from X active nodes at the beginning of current cycle to i

active nodes at the beginning of next cycle, given that the reference node failed in

current cycle.

Having obtained the PGF expression of TX , we take its derivative to compute

the expectation as E(TX) = C +
∑N

i=1(PFX · PFIX)(i) · E(Ti). Since there are N

such linear equations, we can solve for each E(TX), where X = 1, · · · , N . After we

have the mean of TX , we compute the mean of the overall service time as:

E(T ) =
N∑
k=1

Ik∑N
j=1 Ij

· E(TX)

where Ik∑N
j=1 Ij

is the ratio of the stationary probabilities of different number of active

nodes at the beginning of a cycle. Finally, by plugging E(T ) = 1/µ into p0 = 1−λ/µ,

p0 is obtained.

5.2.4 Performance Predication

After we have obtained all information about the MC, i.e., the stationary proba-

bility of each state and the probability of queue being empty, we are ready to derive

the expressions for aggregate throughput, total delay, and energy consumption.

5.2.4.1 Aggregate Throughput

The definition of aggregate throughput is the average time used in successful

transmission in DATA window for all devices. As we know, for the reference node to

be successful in DATA window, it must succeed in the ATIM window first, and then

transmit a DATA without collision before the DATA window is exhausted. Thus, we

can express its behavior in the DATA window as below:
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Th(X) = d

m∑
i=0

D∑
k=0

X∑
n=1

DXi
(k ·X + n, 1) · pak,n, 1 ≤ X ≤ N

where Th is a column vector, and DXi
(k · X + n, 1) · pak,n represents a successful

transmission attempt in the DATA window (recall that DXi
(k ·X+n, 1) corresponds

to the state (i, 0, k, n) in the MC for DATAX).

To get the overall throughput, we plug in the stationary probabilities vector I

and the transition probability matrix PSA = [PSA1,PSA2, · · · ,PSAN]T for the

reference node being successful in the ATIM window. Thus the expression of the

aggregate throughput is N · I ·PSA ·Th.

5.2.4.2 Total Delay

By Little’s law, the total delay can be computed as Delay = L/λ, where L is

the average length of the queue. For a M/G/1 queue, the expression for the average

queue length is L = ρ+ λ2(σ2+1/µ2)
2(1−ρ) [94], where σ2 is the variance of the service time,

and ρ = λ/µ.

Thus, we need to compute the variance of the service time. As we have derived

earlier, we have the PGF of TX . By the property of PGF, we know that V ar(TX) =

φ′′TX (1) +E(TX)−E2(TX). The second derivative of φTX (s) is expressed below, and

it gives us N linear equations, solving which we can get the variance of each TX ,

where X = 1, · · · , N .
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φ′′TX (s) =C(C − 1)sC−2
N∑
i=1

(PFX ·PFIX)(i) · φTi(s)

+ 2CsC−1
N∑
i=1

(PFX ·PFIX)(i) · φ′Ti(s)

+ sC
N∑
i=1

(PFX ·PFIX)(i) · φ′′Ti(s)

To compute the overall variance of T , we use:

V ar(T ) =

(
N∑
k=1

ik∑N
j=1 ij

)2

· V ar(TX)

Finally, by Little’s law, we get the per-node total delay.

5.2.4.3 Energy Consumption

Energy consumption is defined as the average awake time per cycle per node. The

computation for energy consumption is similar to the one for throughput, except that

when a node fails in the ATIM window, its awake time is only A; while if a node

fails in the DATA window, the awake time is C = A+D; and if a node successfully

sends its data in DATA window, the awake time is then A+ current time+ d, thus

we have,
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Figure 5.7: Throughput vs Load.

En(X) = A
∑

PFAX + (A+D)
∑

PSAX ·PFD

+
m∑
i=0

D∑
k=0

X∑
n=1

(
k ·X + n

X
+ d+ A) ·DXi

(k ·X + n, 1) · pak,n

where k·X+n
X

represent the current time in the DATA window.

Similar to throughput, the per-node energy consumption is computed as I ·PSA ·

En.

5.2.5 Model Validation

Our model has been realized in MATLAB using the fsolve function. Since τk,n

does not depend on the input iYX , given the number of devices X, ATIM/DATA

window size Y (i.e. A or D) and the minimal contention window size W0, the matrix

YXi
can be generated beforehand to save time. We have implemented our IBSS

802.11 PSM simulations based on the well-known ns-3 Simulator. The implementa-

tion involves significant modifications to ns-3, due to the lack of IBSS PSM support

in the 802.11 module in ns-3. We compare the throughput, total delay, and energy
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consumption obtained from our analytical model with those from the ns-3 simulator.

We performed extensive experiments by varying parameters in order to charac-

terize the effects of nodes density, per-node workload (i.e. data arrival rate) and duty

cycling ratio (i.e. cr =ATIM window size/DATA window size) on aggregate through-

put, total delay and energy consumption. The parameters we vary are: number of

nodes N , per-node offered load λ and the duty cycling ratio cr (we change the ratio

of ATIM window to DATA window, while fixing the length of a cycle to 20ms). The

default contention window sizes are CWmin = 16, CWmax = 512, the default packet

size is P = 1500B, and the default values of the other parameters are: N = 20,

λ = 20 and cr = 2/18 (i.e. ATIM window=2 ms, DATA window=18 ms).

The typical time used for the analytical model to converge is less than ten minutes

on a fast PC (with i7 4790K CPU and 16GB ram). The simulation time for all tests

is 10000s, which, on average, takes more than ten hours on the same machine.

5.2.5.1 Effects of per-node workload

Due to the significant impact of traffic arrival rate, i.e., per-node workload on the

network performance, we study its effect on the throughput, delay as well as energy

consumption. We vary the per-node workload from 5 to 50 packets per second. The

results are depicted in Figure 5.7, Figure 5.8 and Figure 5.9 for throughput, total

delay and energy consumption, respectively. As shown, all simulation results are in

close agreement with those obtained from the model. In particular, for a given set-

tings for other parameters (e.g. N = 20, cr = 2/18), when the workload λ increases

until saturation, the throughput increases linearly. Then, due to the increased colli-

sion rate the throughput under saturation slowly decreases as the workload increases.

As for the total delay, shown in Figure 5.8, a slight increase is observed when the

workload increases. Especially when the queue becomes saturated, the delay tends
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toward infinity. In Figure 5.9, we see that the energy consumption increases (almost

linearly) until saturation due to the increase in collisions. When the traffic is satu-

rated, the energy consumption stays nearly constant because the nodes that failed

in the ATIM window are forced to sleep in the DATA window of that cycle. From

above we conclude that PSM saves energy even under saturated traffic scenario.

5.2.5.2 Effects of number of devices

The number of devices is another important factor that affects the performance

of a network. Figure 5.7, Figure 5.8 and Figure 5.9 depict the effect on throughput,

total delay and energy consumption when the number of WiFi devices are varied

({10, 20, 30}, we also vary workload as before and set cr = 2/18). As can be seen in

the figures, the results from the simulator and analysis match each other closely. In

Figure 5.7, when the traffic is not saturated, the throughput achieved for larger net-

work is higher than that of a smaller network. However, due to the larger number of

devices, a larger network reaches saturation faster when the workload increases. For

example, for a network with 30 nodes, the traffic becomes saturated when λ > 25,

while for a network of 10 nodes, λ > 50 causes saturation. In terms of total delay and

energy consumption, Figure 5.8 and Figure 5.9 tell us similar results as the through-

put, i.e. larger network causes saturation more easier. Especially when saturation

is reached, the total delay becomes infinite because of the unlimited increase of the

queue length, and the energy consumption does not change due to the “force sleep”

mechanism of the PSM protocol.

5.2.5.3 Effects of duty cycling ratio

To understand the impact of duty cycling ratio on throughput, total delay and

energy consumption, three different duty cycling ratio cr ∈ {1/19, 2/18, 4/16} are

examined (we still vary workload as before and set number of devices N to 20). The
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results are depicted in Figure 5.10, Figure 5.11 and Figure 5.12 for throughput, total

delay and energy consumption, respectively. As expected, the results obtained from

the model agree with the simulation quite well. As shown in Figure 5.10, when the

traffic is not saturated, as N is the same for all three cases, we observe the same

throughput. Moreover, since there is a smaller chance that all devices are successful

in a shorter ATIM window, with the increase of the workload, lower duty cycling ratio

leads to saturation faster. For example, for cr = 1/19, the traffic becomes saturated

when λ > 20, while for cr = 4/16, λ > 50 causes saturation. In terms of total

123



delay and energy consumption, Figure 5.11 and Figure 5.12 reveal similar results as

in Figure 5.10, i.e., shorter ATIM window causes saturation easier. In particular,

under saturation, the total delay approaches infinity and the energy consumption

stays constant due to the same reason as described before.

5.3 Approximation based Mathematical Model for DC-UNSAT

In this section, we first of all briefly describe the Ad-hoc 802.11 PSM and LPL

protocols. Then we introduce the methodology employed in the analysis of the co-

existing duty cycling networks. Finally an approximation analytical model is thor-

oughly discussed in subsections 5.3.2, 5.3.3 and 5.3.4.

5.3.1 Methodology

5.3.1.1 Challenges

Analyzing the performance of coexisting 802.11 PSM and LPL devices is very

challenging due to following reasons.

First, in PSM, the number of active node (i.e. the node having data to send)

in the network decreases in the ATIM window and DATA window because a node

can only send one notification and one data packet (an assumption for simplicity).

Thus, the classical method which based on a two dimensional Markov Chain is in-

feasible for PSM because it assumes that the number of active nodes is constant (i.e.

saturation). Moreover, since the ATIM window and DATA window is finite, it is

possible that a node gets reset before it succeeds, thus within a transmission cycle

PSM cannot actually reach the stationary state (i.e. it is not independent of time).

Therefore, in order to model PSM using a Markov Chain, two new dimensions are

needed, one for the number of current active nodes and the other for the residual

time in the ATIM/DATA window, as shown in Section 5.2. Since the time factor

becomes the fourth dimension, Markov property is still maintained. This method
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gives high accuracy, however, becomes intractable very easily due to the immense

states incurred by the large size of the DATA window (100ms/10µs=10000, where

10µs is the length of one timeslot).

Second, since LPL is asynchronous, it is even more complicated than the syn-

chronous PSM. Similar to PSM, due to the duty cycling property, a LPL node may

be reset when its cycle is exhausted, thus a dimension for the residual time of a

cycle is necessary for a Markov Chain based model. Nevertheless, to save energy to

its best, LPL usually has a very long cycle (e.g. 500ms) which simply renders the

Markov Chain based method infeasible.

5.3.1.2 Main idea

To overcome the intractability of the high dimensional Markov Chain, this disser-

tation employs an approximation approach which is simple, computationally efficient

and reasonably accurate.
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Figure 5.13: Main idea illustration

Step 1: As we know, the seminal 2-D Markov Chain model is for saturation

problem which is easier to study due to the independence of the the number of
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active nodes. Thus our main idea is decomposing the entire problem of modeling the

coexistence of PSM and LPL nodes with unsaturated traffic into several smaller yet

tractable ones, i.e. the modelings of the coexistence of different numbers of saturated

PSM and LPL nodes [74]. Then if the distribution of the number of saturated nodes

(i.e. Pr(nW = w, nB = b), w ∈ [0,W ], b ∈ [0, B] where W and B are the number

of PSM and LPL transmitters, respectively) can be obtained, the saturation models

can be applied to approximate the unsaturated network effortlessly. These ideas are

illustrated as the “1st Decompos.” and the “2nd Compos.” in Figure 5.13. The

model for the saturated coexistence is discussed in 5.3.3, and the 2nd composition is

described in 5.3.4.

Step 2: However, saturation problem itself is still very challenging due to the

aforementioned “reset” mechanism, thus it is necessary for us to further decompose

it (i.e. “2nd Decompos.” in Figure 5.13). Basically, because of the “reset”, a PSM

or a LPL node cannot become stationary in a cycle, but we also notice that the

length of a cycle is several orders of magnitude greater than a transmission of node

(because an active node can only send one packet). In other words, although the

stationary state cannot be reached, the saturation 2-D MC models for 802.11 and

802.15.4 (named stationary model here) should yield reasonably good approximation

(i.e. “1st Compos.”). Specifically, when modeling the self-behavior of a node, the

“reset” probability is ignored and the classical 2-D MC model is used (but notice that

such “reset” probability takes effect (i.e. exists) for all other cases). The stationary

models are discussed in detail in Section 5.3.2.

5.3.1.3 Key Assumptions

We have following key assumptions: a) All devices are within a single wireless

cell, and each transmitter has one dedicated receiver (which is named “PSM pair”
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for short), i.e. there are 2W PSM nodes and 2B LPL nodes in total; b) Same type of

devices are homogeneous (i.e. same Poisson traffic pattern, same data packet size);

c) Channel is ideal, implying communication fails only due to collisions; d) For the

stationary 2-D MC model, the “independent and constant” assumption for transmis-

sion attempt probability τ and the conditional collision probability p is applied as

in [48]; e) Single CCA instead of double for LPL is assumed to simplify the coexis-

tence analysis; f) Given w active PSM and b active LPL nodes, the corresponding

reset probability (see PeWw,b
and PeBw,b in Section 5.3.2.4 and 5.3.2.5, respectively)

are independent and are constant for same type of devices.

5.3.2 Stationary Model

There are three stationary models that we consider for PSM, LPL and the chan-

nel, respectively, where PSM and LPL ones describe the self-behaviors of each, while

the channel model analyzes their interactions. We assume that for each model, there

are w (w ∈ [0,W ]) and b (b ∈ [0, B]) active PSM and LPL nodes, respectively. Note

that this information is represented by the subscript w, b in the following context.

5.3.2.1 PSM Model

Let us denote by τWw,b
the probability that a PSM node attempts to send, and

pWw,b
the conditional collision probability. Then by the 2-D Markov Chain model [48]

for saturation 802.11 network, we have

τWw,b
=

2(1− 2pWw,b
)

(1− 2pWw,b
)(CW0 + 1) + pCWw,b

· CW0 · (1− (2pWw,b
)m)

(5.8)

where CW0 is the minimum contention window size and m is the maximum backoff

stage.
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5.3.2.2 LPL Model

Similar to the stationary model for PSM, we denote by τBw,b the probability that

a LPL node attempts to sense the channel, and PIw,b the probability of the channel

being idle, then by same approach as the 802.11 Markov Chain model [48], we have

the following expression for τBw,b ,

τBw,b =
2

3(PIw,b(CW
′
0 + 1) + (1− PIw,b)(CW ′

1 + 1))
(5.9)

where CW ′
0 and CW ′

1 are the contention window sizes for the two backoff stages of

802.15.4. Since PIw,b represents the state of the channel, it will be derived in next

section.
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Figure 5.14: Markov Chain for the channel model
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5.3.2.3 Model for the channel

The channel model is Markov Chain based, which describes the state of the

channel. As shown in Figure 5.14, I stands for idleness of the channel and the

R’s represent different types of transmissions. Specifically, R1 and R3 represents a

non-collided transmission of any LPL node and any PSM node, respectively; while

R2 and R4 represents an intra-collision between LPL nodes only and between PSM

nodes only, respectively; R5 denotes an inter-collision between LPL nodes and PSM

nodes.

Let us first define a shorthand SHBw,b for the probability that a LPL node keeps

silent, i.e. it either gets reset (w.p. PeBw,b) or is still backing off (w.p. (1−PeBw,b)(1−

τBw,b)), thus SHBw,b , PeBw,b + (1 − PeBw,b)(1 − τBw,b). We also define another

shorthand SHWw,b
for the probability that all PSM nodes keep silent, i.e. SHWw,b

,

PeW + (1 − PeW )(1 − τWw,b
)w. Then the transition probabilities for the channel

Markov Chain can be derived as,

PIR1w,b =
(
b · τBw,b · (1− PeBw,b) · SHb−1

Bw,b

)
· SHWw,b

PIR2w,b =

(
b∑
i=2

(
b

i

)
τ iBw,b(1− PeBw,b)

i · SHb−i
Bw,b

)
· SHWw,b

PIR3w,b =
(
(1− PeW ) · w · τWw,b

(1− τWw,b
)w−1

)
· SHb

Bw,b

PIR4w,b =

(
(1− PeW )

w∑
i=2

(
w

i

)
τ iWw,b

(1− τWw,b
)w−i

)
· SHb

Bw,b

PIR5w,b =
(

1− SHb
Bw,b

)
· (1− PeW ) · (1− (1− τWw,b

)w)

PIIw,b = 1−
5∑

k=1

PIRk

PIw,b =
1

1 +
∑5

k=1 LRkPIRkw,b
(5.10)
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where PIw,b represents the stationary probability for the channel being idle, which can

be obtained by solving this Markov Chain; LRk is the length of state Rk, 1 ≤ k ≤ 5;

PIR1w,b is the transition probability from I to R1, i.e. only one LPL node attempts

to transmit (w.p. b · τBw,b · (1 − PeBw,b) · SHb−1
Bw,b

) and all PSM nodes do not send

(w.p. SHWw,b
); other transition probabilities are very similar to PIR1w,b , which are

ignored here for concision.

Based on how the conditional collision probability for PSM (i.e. pWw,b
) is defined,

we can also derive pWw,b
by using SHBw,b from the channel model, as,

pWw,b
= 1− (1− τWw,b

)w−1 · SHb
Bw,b

(5.11)

So far we have four expressions (5.8)-(5.11) for six unknowns τWw,b
, τBw,b , PIw,b ,

PeBw,b , PeWw,b
and pWw,b

, another two equatoins are necessary for these simultaneous

equations to be solvable. Now we begin to discuss how to derive PeWw,b
and PeBw,b .

5.3.2.4 PeWw,b

According to the definition of PeWw,b
, since all PSM nodes are synchronized with

each other, the probability of a PSM node being reset is simply the probability that a

window is exhausted. Therefore for ATIM and DATA window, we have two different

values for it, which are,

PeWw,b
, PeW =

1

TWA

(for ATIM) or
1

TWD

(for DATA) (5.12)

where TWA
and TWD

are the lengths of the ATIM and DATA window, respectively.
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5.3.2.5 PeBw,b

For PeBw,b , since whether or not a LPL node gets reset depends on if the cor-

responding receiver receives successfully, thus the reset probability is actually the

probability that a node fails to transmit within the awake period of its receiver. Let

us denote by TB the cycle length of LPL, and by Pa the ratio of a receiver being

awake in a cycle, thus the awake time of a receiver is TaB = TB ·Pa. Given that the

receiver is awake, there are three possible status for a transmitter, which are mute

(due to backing off or busy channel), failed transmission and successful transmission,

respectively. The probabilities for a node to enter one of these three status are as

follows,

PiBw,b = 1− PIw,b · τBw,b

PfBw,b = PIw,b · τBw,b
(

1− SHb−1
Bw,b
· SHWw,b

)
PsBw,b = PIw,b · τBw,b · SHb−1

Bw,b
· SHWw,b

The expressions are self-explanatory and the description is thus ignored for brevity.

To compute the probability that a node failed to send a packet within TaB of

its receiver (i.e. PeBw,b), we note that a sender succeeds only if there is a successful

transmission before the end of TaB. Since a node can only be in one of the aforemen-

tioned three status at any given point of time, and if we name both the mute and

failed transmission statuses as a waiting status, there must be zero or more waitings

before a success. Thus we can use Geometric distribution to derive the probabil-

ity of the number of waitings (i.e. random variable X) before the first successful
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transmission as below,

Pr(X = k) = (PiBw,b + PfBw,b)
kPsBw,b = (1− PsBw,b)kPsBw,b

where 1− PsBw,b is the probability for a waiting status.

Thus PeBw,b is simply the corresponding CDF for r.v. X, which can be expressed

as,

PeBw,b = Pr(X ≥ K) = (1− PsBw,b)K+1 (5.13)

where K is the number of waitings a TaB can accommodate. The question now

becomes how to compute K. Since we already have TaB, if we know the average

time cost of each waiting DuBw,b , then K is imply TaB−DsB
DuBw,b

, where DsB is the length

of a successful transmission.

However, since a waiting can either be a mute (which lasts three timeslots) or a

failed transmission (uses DfB timeslots), we thus compute the length of a waiting

as the average length of a mute and a failed transmission, i.e.

DuBw,b =
Pfw,b

1− Psw,b
DfB +

Piw,b
1− PsBw,b

· 3

Then K is obtained, and PeBw,b can be derived by using Equation (5.13). With

(5.8)-(5.13), τWw,b
, τBw,b , PIw,b , PeBw,b , PeWw,b

and pWw,b
can be obtained numerically.

It is worth emphasizing that the model here are only for a specific pair of w and b

(and we name it (w, b)-stationary-model), and W × B rounds of computations

are needed to get all required values for the approximation approach to work.

As we know, the stationary model is used in the 1st composition process, i.e. ap-

proximating the saturation coexistence model, which is discussed in the next section.
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5.3.3 Model of Coexistence of Saturated PSM and LPL

Since the objective is to derive the expressions of throughput and energy con-

sumption for unsaturated duty-cycling coexistence problem, some higher level met-

rics rather than the fundamental probabilities obtained in the previous section are

needed to achieve our goal more efficiently. The higher level metric we consider is the

per-packet average MAC service time, which is the duration from a packet becomes

the head of the queue until it gets transmitted successfully or dropped (for LPL

only). As shown later, this metric is proved to be not only easy to obtain, but also

convenient in deriving throughput and energy consumption. Therefore, the service

time for PSM (denoted by SWw,b
) and LPL (by SBw,b) are our focus in the following

few subsections.

5.3.3.1 PSM

To obtain SWw,b
, we need to know the probability that a packet gets transmitted

successfully in a cycle (by PWw,b
). Since each PSM cycle has ATIM and DATA

windows, for a node to succeed in a cycle, it has to be successful in both windows.

We denote by PWAw,b and by PWDw,b the probabilities that a packet gets transmitted

successfully in ATIM and in DATA, respectively, and then we have PWw,b
= PWAw,b ·

PWDw,b . Due to the reset event, each cycle is independent from the one experienced

before, thus SWw,b
can be derived by using the results of the Geometric distribution

with respect to PWw,b
as,

SWw,b
= TW ·

∞∑
i=0

(i+ 1)(1− PWw,b
)iPWw,b

=
TW
PWw,b

(5.14)

As PWw,b
= PWAw,b · PWDw,b , next we discuss how to obtain each for ATIM and

DATA, respectively.
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ATIM window: Here we notice that the probability PWAw,b is actually the ratio

of nodes that finish their transmissions in ATIM, i.e.

PWAw,b =
# successful nodes in ATIM

w

thus the number of successful nodes for ATIM window is needed. Obviously, since

the length of ATIM window is fixed, if the average time usage of each successful

transmission is known, the number of successful nodes is obtained simply by dividing

the length of ATIM by the average time. Then the problem becomes how to compute

the average length of each successful transmission.

As known, we assume the PSM and LPL nodes are saturated. Thus for PSM, at

the beginning of each cycle (also the start point of the ATIM window), there are w

active PSM and b active LPL nodes, implying that it can be approximated by the

aforementioned (w, b)-stationary-model.

To compute the average length of the first successful transmission for case (w, b)

in ATIM (denoted by sWAw,b), we notice that before the first successful transmission,

there are three possible cases, i.e. idle, LPL transmission or failed PSM transmission.

Since the transition probability to each case can be easily get from the stationary

channel model, we can first compute the average length of them and then utilize
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Geometric distribution again to compute sWAw,b , as

PIBw,b = PIR1w,b + PIR2w,b + PIR5w,b

PIWcw,b = PIR4w,b

Duw,b =
PIIw,b · 1 + PIBw,b ·DsB + PIWcw,b ·DfW

PIIw,b + PIBw,b + PIWcw,b

PIWsw,b = PIR3w,b

sWAw,b = (1− PIw,b) ·
DsB

2
+

1− PIWsw,b

PIWsw,b

·Duw,b +DsW

where PIBw,b is the transition prob. from idle to a LPL transmission, PIWcw,b is

the one to a failed PSM transmission and Duw,b is the average length of the three

cases. In the last equation, ((1− PIw,b) ·
DsB
2

) is the length of possible ongoing LPL

transmissions at the beginning of the PSM cycle,
1−PIWsw,b

PIWsw,b

is the number of failures

(including the three cases) before the first success, which is obtained by Geo-Dist.

DsW is the size of a successful PSM transmission.

Then after one PSM node succeeds, it quits the contention and thus the number

of active PSM decrements (i.e. becomes w− 1), then the new status can be approxi-

mated by the (w− 1, b)-stationary-model, and so on until the ATIM window is used

up. Since sWAw,b is obtained, we can compute sWAw−1,b
, sWAw−2,b

, · · · , sWA1,b
using

similar approach. Finally, the average number of packet transmitted successfully

within TWA
can be computed as follows,

max∑xw,b
i=0 sWAw−i,b≤TWA

xw,b ≤ w

where xb,w is the average number of nodes that is successful in the ATIM window,

thus PWAw,b =
xw,b
w

.
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DATA window: Inside DATA window, since the number of remaining active PSM

is only xw,b, there are at most tw,b + 1 values for sWDj,b , j ∈ [0, xw,b] (corresponds to

sWAj,b). Assume there are yw,b nodes succeed in the DATA window, then PWDw,b =

yw,b
xw,b

. The detailed derivation for PWDw,b and sWDj,b are ignored for conciseness due to

their high similarities with PWAw,b and sWAj,b . It is worth noting that since the length

of DATA window is very long compare to the length of a successful transmission,

almost all xw,b nodes succeed (i.e. yw,b ≈ xw,b, thus PWDw,b ≈ 1).

With PWAw,b and PWDw,b (thus PWw,b
), SWw,b

is obtained by Equation (5.14).

5.3.3.2 LPL

As described before, the number of active PSM nodes decreases in the ATIM/DATA

window, which also affects the performance of LPL. Thus our idea to tackle this prob-

lem is still utilizing the stationary model, i.e. we first compute the MAC service time

of LPL packet under different number of PSM nodes j ∈ [0, w] by the (j, b)-stationary

model as

sBj,b = PeBj,b · TB + (1− PeBj,b) ·
TB
2

where TB
2

comes from the observation that when a LPL succeeds in its cycle (w.p.

1 − PeBj,b), the average time cost is TB
2

because the receiver averagely wakes up in

the middle of a cycle (i.e. uniform distribution).

Then the ratio (i.e. distribution) of j active PSM nodes within TW (denoted by

γWj,b
) can be obtained by the following equation,

γWj,b
=
sWAj,b · 1[w−xw,b,w](j) + sWDj,b · 1[xw,b−yw,b,xw,b](j)

TW

where 1[range](j) is an indicator function (namely the function equals to 1 if j ∈
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[range], otherwise it is 0), sWAj,b and sWDj,b are described in the previous section.

Finally the actual MAC service time of a LPL packet under w saturated PSM

and b saturated LPL SBw,b is computed by taking the expectation of sBj,b over the

distribution of different active PSM nodes in TW , i.e.

SBw,b =
w∑
j=0

γWj,b
· sBj,b (5.15)

So far, the key metrics for w saturated PSM and b saturated LPL have been ob-

tained in expressions (5.14) and (5.15), we are now ready to apply it to our objective,

i.e. the unsaturated coexistence case.

5.3.4 Model of Coexistence of Unsaturated LPL and PSM

As mentioned in Section 5.3.1.2, the main idea is obtaining the distribution of the

number of saturated PSM and LPL nodes from the traffic pattern, and then approx-

imating the unsaturated coexistence using the results from the analysis of saturated

case. Since per-packet average MAC service time is important in throughput and

energy consumption derivation, we thus compute them for unsaturated PSM and

LPL (denoted by SW and SB) through SWw,b
and SBw,b .

5.3.4.1 M/G/1 model

To compute the distribution of the number of saturated PSM and LPL nodes

from the Poisson traffic pattern, we employ two M/G/1 queueing models, which are

described below for PSM and LPL, respectively.

PSM: M/G/1 queueing theory is useful to derive the queue idle probability Q0W

for PSM as

Q0W = 1− λW · SW (5.16)
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where λW is the data arrival rate and SW is the per-PSM-packet average MAC service

time for unsaturated case (derived later).

Then with Q0W , the distribution of the number of saturated PSM nodes (denoted

by βWw here, w represents # saturated PSM nodes) can be obtained through

βWw =

(
W

w

)
(1−Q0W )w ·Q0W−wW , w = 0, 1, · · · ,W (5.17)

LPL: Similar to the analysis for PSM, we have the following two expressions for

LPL,

Q0B = 1− λB · SB (5.18)

βBb =

(
B

b

)
(1−Q0B)b ·Q0B−bB , b = 0, 1, · · · , B (5.19)

where λB, SB and βBb have similar meanings as these defined for PSM above.

5.3.4.2 Per-packet average MAC service time

The last steps are deriving SW and SB. Since both the distributions for the

number of saturated nodes (i.e. βWw and βBb) and the per-packet average MAC

service times for saturated case (i.e. SWw,b
and SBw,b) are get, the 2nd composition

processes are straightforward, as follows,

SW =

∑W
w=1 βWw ·

∑B
b=0 βBb · SWw,b

1− βW0

(5.20)

SB =

∑B
b=1 βBb ·

∑W
w=0 βWw · SBw,b

1− βB0

(5.21)

By solving the simultaneous equations (5.16)-(5.21), all unknowns are attained.

Note that equation (5.17) ( or (5.19)) represents W + 1 (or B + 1) equations, but

since the number of unknowns and equations are the same, they are solvable.
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5.4 Performance Prediction for DC-UNSAT

With SW , SB and all other necessary metrics such as βWw , βBb etc, the expressions

for throughput and energy consumption are derived in this section.

5.4.1 Throughput

Since LPL sender simply drops a packet if it fails in the cycle, while PSM retries

until the packet succeeds, their throughput are defined differently.

5.4.1.1 PSM

For PSM, the maximum throughput is simply the reciprocal of per-packet MAC

service time. If current data arrival rate is less than the maximum throughput,

namely the traffic is unsaturated, the actual throughput equals to λW , otherwise

(i.e. the traffic becomes saturated) the actual throughput is the maximum. Thus

the expression for the actual throughput of a PSM sender is,

TrW = λW · 1[0, 1
SW

)(λW ) +
1

SW
· 1[ 1

SW
,+∞)(λW ) (5.22)

5.4.1.2 LPL

For LPL, the throughput is defined as the probability that a packet succeeds in

a cycle, thus:

TrB =
B∑
b=1

βBb ·
W∑
w=0

βWw · (1− FBw,b) (5.23)

where FBw,b is the probability of an LPL packet being dropped (i.e. an LPL get-

ting reset) in a cycle under saturated case, which can be obtained through FBw,b =∑w
j=0 γWj,b

· PeBj,b , where PeBj,b is the probability that an LPL node gets reset in
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the stationary model (see equation (5.13)).

5.4.2 Energy consumption

Energy consumption is defined as the average percentage of time that a node

stays awake within a cycle.

5.4.2.1 PSM

For PSM, there are three different cases, i.e. failure due to ATIM failure w.p.

1 − PWAw,b , failure due to DATA failure w.p. PWAw,b · (1 − PWDw,b), success w.p.

PWw,b
= PWAw,b · PWDw,b . These cases correspond to different energy consumption,

i.e. TWA
, TW and LWw,b

, respectively, where LW is the average energy consumption

when a node successfully finishes its transmission in a cycle. Thus

LWw,b
= TWA

+
1

yw,b

yw,b∑
i=0

i∑
j=0

sWD(yw,b−j),b

where yw,b and sWDk,b are defined in Section 5.3.3.1.

Therefore the expression for energy consumption under the case (w, b) is,

EnWw,b
=
∞∑
r=0

r∑
i=0

(
r

i

)
(1− PWAw,b)

i
(
PWAw,b · (1− PWDw,b)

)r−i
· (PWAw,b · PWDw,b)

i · TWA
+ (r − i) · TW + LW

r · TW

where r is the number of retransmissions.

The equation above is difficult to solve because r can be infinity and
(
r
i

)
is pro-

hibitive to compute. However, as mentioned before, PWDw,b ≈ 1, hence it can be

simplified as,

EnWw,b
=
TWA

TW
+

(LWw,b
− TWA

) · PWAw,b

TW · (1− PWAw,b)
· ln(

1

PWAw,b

)
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Finally, since a PSM receiver consumes same energy with its transmitter due to

their synchronization, the overall energy consumption of a PSM pair is expressed as,

EnW =
W∑
w=1

βWw ·
B∑
b=0

βBb · EnWw,b
(5.24)

5.4.2.2 LPL

The expression for LPL is extremely simple because according to the LPL proto-

col, a LPL node stays awake whenever it has data in its queue, thus for a transmitter

EnBT = 1 − Q0B. While for a receiver, EnBR is simply the awake probability Pa,

i.e. EnBR = Pa.

Thus the overall energy consumption of a LPL pair is,

EnB =
(1−Q0B + Pa)

2
(5.25)

With Equations (5.22)-(5.25), performance can be optimized by formulating the

requirement as an optimization problem with constraints, which is the focus of the

following section.

5.5 Performance Tuning for DC-UNSAT

5.5.1 Motivation

As we know, a network usually has a fairly stable long term traffic pattern,

however, since the default configurations for the duty cycling parameters are not

optimized for coexistence scenarios, some energy is excessively wasted.

5.5.2 Parameters Tuning for Energy Consumption

To tackle this problem, we utilize the proposed model to optimize these parame-

ters such that the total energy consumption is minimized while the traffic requirement
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is still respected. The corresponding optimization formulation is as follows,

arg min
RW ,RB ,TW ,TB

En ,
EnW ·W + EnB ·B

W +B

subject to TrW == λW ,

T rB > 85%,

RW , RB, TW , TB > 0.

where En is the total energy consumption of both PSM and LPL (note that En is a

percentage), RW and RW are the duty cycle ratios for PSM and LPL, respectively.

The constraint TrW == λW means that all input traffic is guaranteed to be served by

a PSM transmitter, while for a LPL sender, since it has no retransmission mechanism,

we ensure 85% of the traffic be served.

To solve this optimization problem, we notice that the solution space is not con-

tinuous because the unit of TW and TB is timeslot (= 10µs), we thus employ the

“pattern search” [96] which is a powerful numerical optimization method for noncon-

tinuous or non-differentiable problems. Specifically, we input the model to MATLAB

and then formulate and solve the problems with the “patternserach toolbox” [97].

Usually, the convergence speed depends on the choice of the initial guessing, but the

patternserach method always converges, which proves its effectiveness.

5.6 Monte Carlo based Simulator for DC-UNSAT

5.6.1 Simulator Design

A coexistence simulator for duty cycling network was implemented in the well-

known ns-3 simulation framework. Specifically, we implemented in ns-3.25 the PSM

protocol based on the WiFi module, the LPL protocol based on the LrWPAN module

and also replaced their default channel modules with a common one such that PSM
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and LPL nodes were sensible to each other. Then all PSM and LPL nodes are

placed in single cell to form a symmetric coexistence scenario, and we compare

the throughput and energy consumption obtained from it against those from the

proposed analytical model.

5.7 Model and Tuning Evaluation

5.7.1 Model for DC-UNSAT Validation

To validate our model, we compare the throughput and energy consumption

obtained from our analytical model with those obtained from the proposed simulator.

We performed extensive simulations by varying following parameters: number of

senders W and B, the per-node offered load (packet arrival rate) λW and λB, and

the duty cycling settings (i.e. lengths TW and TB, and ratios RW and RB). The

default settings are: W = 20, CW0 = 16, m = 6, PW = 1000 bytes, λW = 5p/s,

TW = 100ms, RW = 10% for PSM, and B = 20, CW ′
0 = 120, CW ′

1 = 70, PB = 30

bytes, λB = 1p/s, TB = 400ms, RB = 5% for LPL.

Typically, the time spent for solving the model is about two minutes on a fast

PC (with Intel Core i7 4790K CPU, 16GB of RAM and 256GB SSD HD), while it

takes around 20 minutes for the optimization problem to numerically converge (with

reasonable initial guessing). The simulation times for all tests are 10000s, which take

about one hour if the traffic is light and more than ten hours if otherwise.

5.7.1.1 Effects of number of nodes

Measuring the performance of coexisting PSM and LPL by varying the number of

devices in hardware experiment is prohibitive in terms of deployment, especially when

tens of devices are involved. However, it is very economic to do so using the analytical

model and simulator. Figure 5.15 and Figure 5.16 depict the effect on throughput

and energy consumption when the number of PSM (i.e., {5, 10, 15, 20, 25, 30}) and
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Figure 5.15: Throughput of model and simulator vs # devices.
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Figure 5.16: Energy cost of model and simulator vs # devices.

LPL (i.e., {10, 20, 30}) devices are varied. Note that all other settings are set to their

defaults. Surprisingly, we observe that the results from the simulator match with

the ones from the analysis closely. To be more specific, since the default λW = 5p/s,

if the number of PSM is small (e.g. 15), PSM is unsaturated even there are 30 LPL,

thus its throughput equals 5. While if W = 30 and B ≥ 20, TrW is little less than 5

due to saturation. For LPL, with the increase of # nodes, TrB decreases due to more

intensive contention. Note that the variation of W does not affect TrB significantly
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because PSM nodes are in active state only for a short time in a PSM cycle. In terms

of energy consumption, EnW increases with W and B, but not hugely due to the

property of PSM protocol (i.e. the number of successful PSM nodes in ATIM does

not change much with # active nodes). Similar results apply to EnB as well.
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Figure 5.17: Throughput of model and simulator vs offered load.
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Figure 5.18: Energy cost of model and simulator vs offered load.
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5.7.1.2 Effects of per-node offered load

Due to the significance of per-node offered load (i.e. traffic arrival rate) to the

network performance, we study its effect on the throughput and energy cost. Sim-

ilar as before, a scenario with 20 PSM and 20 LPL nodes with default parameters

(except λW/B) are considered. We vary λW in {1, 3, 5, 7, 9, 11} and λB in {0.5, 1, 3}

packet per second. The results obtained are depicted in Figure 5.17 and Figure 5.18

for throughput and energy consumption, respectively. Remarkably, the simulation

results are in close agreement with those from the model. More precisely, when

λW increases, if LPL is not saturated (i.e. λB < 3), since PSM is not saturated,

its throughput increases linearly until λW is near 10 (where saturation is reached).

While if LPL is saturated, PSM becomes saturated when λW reaches 3 (because

the channel is too busy with LPL transmissions), thus TrW is almost constant for

λW ≥ 3. For LPL, as long as λB < 3 (i.e. unsaturated), TrB ≈ 100%, but if the

saturation is attained, TrB can only get 60%. Due to the same reason as described

in 5.7.1.1, the variation of the offered load of PSM has very limited impact on TrB.

As for energy consumption, due to the properties of PSM and LPL protocols, EnW

only increases slightly with λW , while EnB increases greatly with λB, especially when

saturation is reached, EnB becomes 100% because the senders are always busy with

the transmissions.

5.7.1.3 Effects of duty cycle settings

To analyze the impact of duty cycling length and ratio on throughput and en-

ergy usage, we investigate few different combinations of (TW/B, RW/B) with other

default settings for the nodes. The combinations we use are {(50, 0.1), (50, 0.2),

(100, 0.05), (100, 0.1), (200, 0.025), (200, 0.05)} for PSM, and {(200, 0.1), (400, 0.04),

(800, 0.0125)} for LPL. The results are depicted in Figure 5.19 and Figure 5.20 for
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Figure 5.19: Throughput of model and simulator vs duty cycle.
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Figure 5.20: Energy cost of model and simulator vs duty cycle.

throughput and energy cost, respectively. Amazingly, the results obtained from the

model agree with the simulation quite closely. In the case of throughput, when TW

is small, TrW = λW due to the unsaturation; while when TW = 200ms, if RW is

small (such as 0.025 here), since the ATIM is too short to send out enough packet,

PSM becomes saturated (namely TrW < λW ), otherwise (like RW = 0.05), it is just

enough to handle all incoming traffic, thus TrW = λW . As saturated LPL affects

PSM significantly, we can thus observe that if TB = 800ms,RB = 0.0125, only a
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small TW = 50ms and a big RW = 0.2 can ensure a unsaturated condition for PSM.

The case for LPL is similar to what we discussed before, TrB is only around 50%

when it is near saturation. In terms of energy cost, as before, for PSM, regardless of

the saturation level, EnW is only slightly greater than RW ; while for LPL, its energy

cost highly depends the degree of saturation (higher value implies bigger EnB).

5.7.2 Parameters Tuning Evaluation

Table 5.1: Results for the performance optimization, part 1

Data arrival settings
Default values

En TrW TrB TW RW TB RB

λW = 2, λB = 0.5 9.5% 2 98% 100 0.1 400 0.05
λW = 5, λB = 1 13.5% 5 92% 100 0.1 400 0.05
λW = 8, λB = 2 25.5% 5.25 69% 100 0.1 400 0.05

Table 5.2: Results for the performance optimization part 2

Data arrival settings
Optimal values

En TrW TrB TW RW TB RB

λW = 2, λB = 0.5 5.4% 2 92% 300 0.02 50 0.15
λW = 5, λB = 1 6.9% 5 89% 102 0.03 50 0.15
λW = 8, λB = 2 12.1% 8 85% 50 0.1 50 0.15

In this section, we evaluate the performance optimization method proposed in

Section 5.5. We demonstrate that this optimization minimize the total energy con-

sumption of PSM and LPL, while satisfying their throughput constraints. This

evaluation is performed on 20 PSM and 20 LPL nodes, firstly with default values for

TW , RW , TB and RB, and then with the corresponding optimal values obtained from
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the optimization method. We inspect three different scenarios of the data arrival

rate, which are {λW = 2, λB = 0.5}, {λW = 5, λB = 1} and {λW = 8, λB = 2}.

As shown in Table 5.1 and 5.2, when the work load is light (e.g. λW = 2, λB =

0.5), the default duty cycling settings (namely TW = 100ms, RW = 0.1, TB = 400ms

and RB = 0.05) can offer satisfactory results. Specifically, under such condition, the

total energy consumption is only 9.5% and both throughput constraints are met,

however it is still not optimal. By our optimization method, the optimal settings

for the four parameters are TW = 300ms, RW = 0.02, TB = 50ms and RB = 0.15,

and the corresponding energy cost is 5.4%, thus 4% more energy are saved than

the default one. A more interesting case is when the traffic load becomes high (for

instance, λW = 8, λB = 2), where the default duty cycling setting consumes 25.5%

of the energy, and especially, the throughput constraints cannot be satisfied for both

PSM (i.e. TrW = 5.25 < 8) and LPL (TrB = 69% < 85%). However, the optimal

settings (i.e. TW = 50ms, RW = 0.1, TB = 50ms and RB = 0.15) generated by the

optimization method yield amazingly well result, i.e. En = 12.1%, which is only half

of the default. At the same time, both throughput constraints are satisfied as well.

Therefore, the proposed approach is very effective in optimizing energy efficiency.
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6. CONCLUSIONS AND FUTURE WORKS

In this section, we conclude this dissertation and present some idea for future

works.

6.1 Conclusions

Due to the ubiquity of WiFi and ZigBee networks, the demand for predicting

and tuning the performance of their coexistence networks is becoming more and

more intense. However, there are no simulators or mathematical models available

for this purpose in the market, thus this research is devoted to solve this problem.

Specifically, based on the energy efficiency and traffic pattern of three practical

coexistence scenarios i.e. disaster rescue cite, smart hospital and home automa-

tion, we first of all classify them into three classes, which are non-sleeping devices

with saturated traffic (SAT), non-sleeping devices with unsaturated traffic (UNSAT)

and duty-cycling devices with unsaturated traffic (DC-UNSAT). Then three sim-

ulator are proposed, one for each class, where each simulator is verified by using

simple hardware based experiment. Similarly, we present three analytical models

to address the corresponding performance prediction and tuning problems. More

precisely, for UNSAT, our analysis is anchored in solid theoretical results based on

modeling 802.11 DCF and BoX-MAC as Markov Chains, and a channel model that is

able to accurately estimate channel busy probabilities; while for UNSAT, more deli-

cately designed Markov Chain models are combined with M/G/1 queueing analysis

to depict the unsaturated coexistence network; due to the big complexity for duty-

cycling protocols, a divide-and-conquer strategy as well as an approximation method

are employed to realize the modeling for DC-UNSAT. Next, for each class we derive

the expressions for performance metrics like throughput, delay, energy consumption
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etc., and predict them using both the proposed simulator and the model. Due to the

higher accuracy of the simulator, the results from them are used as ground truth to

validate the accuracy of the model. Last, according to some common performance

tuning requirements for each class (e.g. priority, satisfying delay constraint, mini-

mizing energy consumption etc.), we formulate them into optimization problems and

propose the corresponding solving methods.

The results show that the proposed simulators have high prediction accuracy,

while the models, although are less accurate than the former, can be used in fast

prediction. In particular, the models can be easily used in optimization problems for

performance tuning, and the results prove its high efficiency.

6.2 Future Works

6.2.1 Improving model

Improving the model is an eternal theme. In this dissertation, we mainly use

Markov Chain, which, although is convenient to use, is often too detailed, thus is

cumbersome to computationally solve. So if we use a more abstract approach, such as

Renew process, Point process, etc., the computation overhead can usually be reduced

significantly. Certainly the side effect is that the modeling becomes far more difficult,

which is a trade-off.

In addition to reducing the computational difficulty, it is possible to increase the

practicality of the model. For example, here we assume that the traffic pattern is

Poisson distribution, which simplifies the analysis, but does not reflect the reality

very well. Thus for future works, we can take into account more practical traffic

patterns such as Pareto distribution.

151



6.2.2 Hidden terminal problem

WiFi and ZigBee use the RTS/CTS mechanism to solve the famous Hidden ter-

minal problem. But for coexistence networks, RTS/CTS does not work properly

because WiFi and ZigBee do not understand each other. In this dissertation, the

existences of terminal devices are not ignored for simplicity, i.e. it is assumed that

every device is hearable from each other, and the basic (i.e. non-RTS/CTS) protocols

are used.

Since coexistence of WiFi and ZigBee devices diminishes the efficacy of the

RTS/CTS mechanism, the simulation and modeling for RTS/CTS protocols should

be considered.

6.2.3 Coexistence of heterogeneous WiFi/ZigBee nodes

In this dissertation, we assume that all devices of the same type have the same

traffic arrival rate, thus they will have same parameters when fairness is guaranteed.

However, in reality, even the nodes of the same type may have different traffic arrival

rate based on their actual needs. So it is meaningful to study the coexistence of

heterogeneous WiFi/ZigBee nodes.

Obviously the simulator directly supports the corresponding simulation, but the

situation for the model becomes complicated. Since the parameters of each node

are likely to be different due to the heterogeneity, the variable space becomes much

larger, and if the original model is used for performance tuning, it will be extremely

difficult to solve the optimization problem. Thus for future works, a more powerful

model should be found.
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6.2.4 Packet size as a tunable parameter

For the sake of simplicity, only CW is used as a variable parameter in this research.

In fact, if packet size is also tunable, the results from performance tuning may be

even better. However, because the variable space increases, the optimization problem

become very difficult to solve by using the original model. Therefore a better model

is necessary, which can be a possible path for future work.

6.2.5 Real-time tuning and real-time distributed tuning

Performance tuning is currently performed either offline (i.e., at design time),

or on-line on the central node, but neither is in real time (because one result often

takes several minutes to obtain). Certainly, real-time performance tuning is more

desirable, that is, to tune the parameter instantly according to the change of the

environmental to optimally reach the performance objective. To do so, it is necessary

to find approximation methods for both the model and the approach to solve the

optimization problem, such that the optimal parameters can be get quickly. This is

very challenging because modeling a complex network is always quite complicated,

however, it can be a good direction for the future work.

In addition, distributed performance tuning is always preferred than centralize

manner, but is far more difficult. Since each node only know their own information,

they must infer the condition of the entire network based on the state of the channel,

which is difficult. Furthermore, the computational power of each node is weak, so

the aforementioned approximation methods must be even easier to solve, which,

undoubtedly, is extremely challenging.
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