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ABSTRACT

The first part of the dissertation is mainly from my first paper joint with my advisor
Papanikolas and the second part will be our second paper.

In 1973, Serre introduced p-adic modular forms for a fixed prime p, which are defined
to be p-adic limits of Fourier expansions of holomorphic modular forms on SLy(Z) with
rational coefficients. He also established fundamental results about families of p-adic mod-
ular forms by developing the theories of differential operators and Hecke operators acting

on p-adic spaces of modular forms. In particular, he showed that the weight 2 Eisenstein
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series F is also p-adic. If we let ¢ :=
holomorphic complex forms, then letting q(z) = €™, we have ¥ = q%, J(q") = nq".
Although ¢ does not preserve spaces of complex modular forms, Serre proved the induced
operation ¥ : Q®Z,[[q]] = Q®Z,[|q]] does take p-adic modular forms to p-adic modular
forms and preserves p-integrality. Moreover, the Bernoulli numbers B5,,, and the Eisenstein
series F,,, have p-adic limits as m goes to a p-adic limit.

To extend the theory to function fields, we investigate hyperderivatives of Drinfeld
modular forms and determine formulas for these derivatives in terms of Goss polynomials
for the kernel of the Carlitz exponential. As a consequence we prove that v-adic modular
forms in the sense of Serre, as defined by Goss and Vincent, are preserved under hyperdif-
ferentiation. Similar to the classical case, the false Eisenstein series F is a v-adic modular
form, though it is not a Drinfeld modular form. Moreover, upon multiplication by a Car-
litz factorial, hyperdifferentiation preserves v-integrality, which can be proved using Goss
polynomials.

Furthermore, we can show that the Bernoulli-Carlitz numbers BC),; have a v-adic

limit if m; have the form ag? + b with a, b non-negative. Using the same method, we can
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also prove that the Goss polynomials have v-adic limits after multiplication by a Carlitz
factorial. Because of this, we can also prove the limit of IT,, ©™i exists. Therefore, since
the Eisenstein series F,, can be expressed as the sum of Bernoulli-Carlitz numbers and
Goss polynomials, we can derive that £,,,; also have a v-adic limit in &K ® 4 A,[[u]]. Notice
for the Eisenstein series in function fields, the result we get is different from the classical
number fields. In the classical case, Serre proved that if m; has a limit m in the p-adic
topology and m; goes to infinity in the Euclidean norm, then the classical Eisenstein series
E,,; has a p-adic limit only depending on m. However, for example in function fields, even
if the two series ag¥ + b and (¢ — 1)¢*¥ + aq¥ + b satisfy the previous two condition and

their corresponding Eisenstein series are non-zero, they do not have the same v-adic limit.
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1. INTRODUCTION

1.1 Introduction of v-adic limits of modular forms

In [26], Serre defined p-adic modular forms for a fixed prime p, as p-adic limits of
Fourier expansions of holomorphic modular forms on SLy(Z) with rational coefficients.
He established fundamental results about families of p-adic modular forms by developing
the theories of differential operators and Hecke operators acting on p-adic spaces of modu-
lar forms, and in particular he showed that the weight 2 Eisenstein series F is also p-adic.
If weletd) := sz d% be Ramanujan’s theta operator acting on holomorphic complex forms,

then letting q(z) = €*™#, we have

¥(q") = nq". (1.1.1)

Although ¥ does not preserve spaces of complex modular forms, Serre proved the induced
operation ¥ : Q®Z,[[q]] = Q®Z,[|q]] does take p-adic modular forms to p-adic modular
forms and preserves p-integrality.

In this dissertation, we investigate differential operators on spaces of v-adic modular
forms, where v is a finite place corresponding to a prime ideal of the polynomial ring
A = F,[0], for F, a field with ¢ elements. Drinfeld modular forms were first studied by

Goss [12], [13], [14], [15] as rigid analytic functions,

f:Q—=Cy,

*Part of this section is reprinted with permission from "Theta operators, Goss polynomials, and v-adic
modular forms" by M. A. Papanikolas and G. Zeng, 2017. J. Théor. Nombres Bordeaux, 29, no. 3, Copyright
[2017] by Qing Liu.



on the Drinfeld upper half space (2 that transform with respect to the group I' = GLy(A)
(see §2.3 for precise definitions). Here if we take X' = F, (), then Q) is defined to be
Cx \ Ko, where K = F,((1/6)) is the completion of K at its infinite place and C is
the completion of an algebraic closure of /K. Goss showed that Drinfeld modular forms
have expansions in terms of the uniformizing parameter u(z) := 1/ec(7z) at the infinite
cusp of 2, where ec(z) is the exponential function of the Carlitz module and 7 is the

Carlitz period. Each such form f is uniquely determined by its u-expansion,

f= chu” € Coo[[u]]-

If t =0 (mod g — 1), then the weight k Eisenstein series of Goss [13], has a u-expansion

due to Gekeler [9, (6.3)] of the form

Ce(k)

Tk

— Y Gilu(az)),

a€ A, amonic

€K, (1.1.2)

where (¢ (k) is a Carlitz zeta value, G (u) is a Goss polynomial of degree £ for the lattice
Ac = AT (see §2.2-2.3 and (2.3.2)), and u(az) can be shown to be represented as a power
series in u (see §2.3). Gekeler and Goss also show that spaces of forms for I" are generated
by forms with u-expansions with coefficients in A. Using this as a starting point, Goss [16]
and Vincent [31] defined v-adic modular forms in the sense of Serre by taking v-adic limits
of u-expansions and thus defining v-adic forms as power series in K ® 4 A, [[u]] (see §2.4).
Goss [16] constructed a family of v-adic forms based on forms with A-expansions due
to Petrov [24] (see Theorem 2.5.3), and Vincent [31] showed that forms for the group
[o(v) € GLy(A) with v-integral u-expansions are also v-adic modular forms.

It is natural to ask how Drinfeld modular forms and v-adic forms behave under differ-

entiation, and since we are in positive characteristic it is favorable to use hyperdifferential



operators 07, rather than straight iteration % = d% 0---0 % (see §2.1 for definitions).
Gekeler [9, §8] showed that if we define © := —1-4 = —1 9!, then we have the action on

u-expansions determined by the equality

d
@:qﬁ@ =u? 0., (1.1.3)

Now as in the classical case, derivatives of Drinfeld modular forms are not necessarily
modular, but Bosser and Pellarin [3], [4], showed that hyperdifferential operators 0. pre-
serve spaces of quasi-modular forms, i.e., spaces generated by modular forms and the false
Eisenstein series I of Gekeler (see Example 2.3.7), which itself plays the role of Es.

For r > 0, following Bosser and Pellarin we define the operator ©" by

1

M

ar.

Uchino and Satoh [29, Lem. 3.6] proved that ©" takes functions with u-expansions to
functions with u-expansions, and Bosser and Pellarin [3, Lem. 3.5] determined formulas
for the expansion of ©"(u"). If we consider the r-th iterate of the classical ¥J-operator,

V" =1 o--- 04, then clearly by (1.1.1),
19or(qn) — nrqn.
If we iterate ©, taking ©°" = O o - - - 0 O, then by (1.1.3) we find

e (u") = r! <n tre 1) u"

r

which vanishes identically when > p. On the other hand, the factor of r! is not the

only discrepancy in comparing ©" and ©°”, and in fact we prove two formulas in Corol-



lary 2.3.10 revealing that ©" is intertwined with Goss polynomials for Ac:

O"(u") =u" 0 (W' Gy (u), Vn =1, (1.1.4)
T s 1 ]
o) =Y (” +§ )ﬁrvju”ﬂ, Vi >0, (1.1.5)
§=0

where f3, ; are the coefficients of G,.;(u). These formulas arise from general results
(Theorem 2.2.4) on hyperderivatives of Goss polynomials for arbitrary [F,-lattices in C,
which is the primary workhorse of this paper, and they induce formulas for hyperderiva-
tives of u-expansions of Drinfeld modular forms (Corollary 2.3.12). It is important to note
that (1.1.5) is close to a formula of Bosser and Pellarin [3, Eq. (28)], although the con-
nections with coefficients of Goss polynomials appears to be new and the approaches are
somewhat different.

Goss [16] defines the weight space of v-adic modular forms to be S = Z/(¢* — 1)Z x
Z,, where d is the degree of v, and if we take M7 C K ® 4 A, [[u]] to be the space of v-adic
forms of weight s € S and type m € Z/(q—1)Z (see §2.4), then we prove (Theorem 2.5.1)

that ©" preserves spaces of v-adic modular forms,

O M™ = M. r >0,

Of particular importance here is proving that the false Eisenstein series £ is a v-adic
form (Theorem 2.5.5). Unlike in the classical case, ©" does not preserve v-integrality
due to denominators coming from G, 1(u), but we show in §2.6 that this failure can be

controlled, namely showing (Theorem 2.6.4) that

IO : MI(A,) = MII(A), 120,



where I1, € A is the Carlitz factorial (see §2.1) and M™(A,) = M™ N A,[[u]].
1.2 Introduction to the v-adic limits of spectial values

The part of research will be the paper [22] joint with my advisor Papanikolas.

In the p-adic case, Serre showed that the classical Eisenstein series F,, have a p-
adic limit only depending on the p-adic limit of m; with m; — oo in the Euclidean
topology. In function fields, we have a similar phenomenon, but it differs from in the
p-adic case. Since we have proved that the Eisenstein series F,, can be expressed as the
summation of the Goss polynomials and Bernoulli-Carlitz numbers BC),, the question is
mainly translated to "do Goss polynomials (z,, and Bernoulli-Carlitz numbers BC, have
v-adic limits as n goes to some limit?". However, this statement turns out not to hold in
complete generality. Nevertheless, if we make the statement a little bit weaker, we can
find that the Goss polynomials G4, do have a v-adic limit as j goes to infinity, though
the limit depends on @ and b in aq¥ + b, and not just on its p-adic limit. Here d = deg(v).

Moreover, Carlitz [6] and Goss [11] gave a formula for the Bernoulli-Carlitz numbers
(3.1.2), which is closely related to the Goss polynomials. To be more precise, we can use

their formulas to prove that

ﬁm k_1
BCm = Hm La
>
gk <m+1
where f3,, ;1 is the coefficients of the Goss polynomial G,,11(u) = Y B u/™. In the
1=0
Theorem (3.1.15), for the sequence BC),;, = BCy44 14, We mainly compute the difference
of I, B qr—1 and 1Ly, By 1 g+—1 and prove the v-adic norm tends to 0 as j goes to

infinity. This argument can be also applied to Goss polynomials II,,, G, +1 (see Theo-

rem 3.1.26). Moreover, recall the relation between Goss polynomials and the © operator



(2.3.12b)
O"(f) = 0"(co) + > _ cat™ 0 (u"?Gria (u)).

n=1
Combining with Theorem (2.5.1), we show that if f is a v-adic modular form, then
jli_)rgo IL,,,©™ (f) is still a v-adic modular form (Corollary (3.1.31)). Since the Eisenstein
series [, can be written as the sum of Bernoulli-Carlitz numbers and the Goss polynomi-
als (1.1.2), it is natural to expect that Eisenstein series have the same property that F,,,
has a v-adic limit. After carefully dealing with the infinite summation, we find that this
expectation is true.

In the last section of the dissertation, we give some examples of the limits of Bernoulli-
Carlitz numbers. Moreover, we find the v-adic limit of the Bernoulli-Carlitz numbers
BC,; can be computed explicitly, and the limit is in a constant field extension of K with
degree d (Theorem 3.3.8).

Goss [15, §9.6] and Thakur [27, §4.2] talked about the interpolations at the finite
places, which gives us the idea to compute the v-adic limits for each terms in the Bernoulli-
Carlitz number. Various papers of Angles, Ngo Dac, Tavares Ribeiro, Pellarin, Perkins and
Thakur ([23], [1], [2] and [28]) discussed the properties of Bernoulli-Carlitz numbers, such
as v-adic limits, high congruence. They mainly discussed the properties of BC,;_, with
s =1 (mod g — 1) is fixed. First note ¢/ — s tends to a negative number in the p-adic
topology, however, our sequence m; = aq¥ 4 b tends to b, a positive number. If we as-
sume that ¢ = p a prime, by [10, Thm. 6.12], we can know the difference between the
two situations. For the first case, the lowest term in the Goss polynomial Gj;_s will have
higher degree as j goes larger. However, the sequence we used, G, the lowest term will
have stable degree as j goes to infinity. Moreover, in the first case, although each of the
coefficients have limits 0, we do not have any evidence to see whether they have v-adic

limits.



2. THETA OPERATORS, GOSS POLYNOMIALS, AND v-ADIC MODULAR
FORMS

2.1 Functions and hyperderivatives

Much of the exposition in this chapter is taken from the author’s paper with Papaniko-
las [21].

Let IF, be the finite field with ¢ elements, ¢ a fixed power of a prime p. Let A := F[0]
be a polynomial ring in one variable, and let K := [F,(6) be its fraction field. We let
A, denote the monic elements of A, A, the monic elements of degree d, and A4 the
elements of A of degree < d.

For each place v of K, we define an absolute value |- |, and valuation ord,,, normalized
in the following way. If v is a finite place, we fix p € A, to be the monic generator of
the prime ideal p, corresponding to v and we set |p|, = 1/¢%¢% and ord,(p) = 1. If
v = o0, then we set ||, = g and ord, () = —deg(f) = —1. For any place v we let
A, and K, denote the v-adic completions of A and K. For the place oo, we note that
K. =F,((1/0)), and we let C, be a completion of an algebraic closure of K. Finally,
we let ) := C, \ K be the Drinfeld upper half-plane of C,..

For: > 1, we set

[ =0 -0, Di=[i—1"--[1]7, Li=(-V[Ei-1---1], QL

and we let Dy = Ly = 1. We have the recursions, D; = [{]D{ ; and L; = —[i]L;_1, and

*Reprinted with permission from "Theta operators, Goss polynomials, and v-adic modular forms" by
M. A. Papanikolas and G. Zeng, 2017. J. Théor. Nombres Bordeaux, 29, no. 3, Copyright [2017] by Qing
Liu.



we recall [15, Prop. 3.1.6] that

[1] = H i Di= H a, L;j=(—=1)"-lem(f € Ai}).
fEAL, irred. a€A;+
deg(f)lé

(2.1.2)

For m € Z,, we define the Carlitz factorial IT,, as follows. If we write m = > m;q¢* with

0 <m; < q—1,then
s | 2

For more information about II,,, the reader is directed to Goss [15, §9.1].

(2.1.3)

For an [ -algebra L, we let 7 : L — L denote the ¢-th power Frobenius map, and

we let L[] denote the ring of twisted polynomials over L, subject to the condition that

Tc = cl1 for ¢ € L. We then define as usual the Carlitz module to be the [F,-algebra

homomorphism C' : A — A[r| determined by

09:9+T.

The Carlitz exponential is the [F,-linear power series,

S
X
I

|Z\2

(2.1.4)

The induced function e¢ : C, — C, is both entire and surjective, and for all a € A,

ec(az) = Cylec(z)).

The kernel A¢ of ec(z) is the A-lattice of rank 1 given by Ac = A7, where for a fixed



(¢ — 1)-st root of —0,

o0

x 1/ (a-1) H(l _ 9 q) e K@((_g)l/(fl—l))

i=1

is called the Carlitz period (see [15, §3.2] or [20, §3.1]). Moreover, we have a product

expansion

z):zH/<1—§) :ZH/<1—%>, 2.1.5)

XeAc acA
where the prime indicates omitting the @ = 0 term in the product. For more information
about the Carlitz module, and Drinfeld modules in general, we refer the reader to [15,
Chs. 3-4].
We will say that a function f : 2 — C is holomorphic if it is rigid analytic in the
sense of [8]. We set H(S2) to be the set of holomorphic functions on 2. We define a

holomorphic function u : {2 — C, by setting

u(z) == —, (2.1.6)

and we note that u(z) is a uniformizing parameter at the infinite cusp of Q2 (see [9, §5]),

27rzz

which plays the role of q(z) = in the classical case. The function u(z) is A-periodic
in the sense that u(z + a) = u(z) for all @ € A. The imaginary part of an element z € C,
is set to be

|Z|i = :L“éIIl(foo |Z - m|007

which measures the distance from z to the real axis K,, C C,. We will say that an

A-periodic holomorphic function f : Q@ — C is holomorphic at oo if we can write a



convergent series,

oo
= chu(z)nv cn € Cooy  |2]i > 0.

n=0

The function f is then determined by the power series f = ) ¢, u" € Cy[[u]], and we call
this power series the u-expansion of f and the coefficients c,, the u-expansion coefficients
of f. We setU(£2) to be the subset of 7 (£2) comprising functions on 2 that are A-periodic
and holomorphic at co. In other words, /(£2) consists of functions that have u-expansions.

We now define hyperdifferential operators and hyperderivatives (see [S], [7], [17], [29]
for more details). For a field F' and an independent variable z over F, for j > 0 we define
the j-th hyperdifferential operator &’ : F[z] — F[z] by setting

di(=") = (”) 9 00,

J

where (?) € Z is the usual binomial coefficient, and extending ['-linearly. (By usual
convention (’;) =0if 0 < n < j.) For f € F[z], we call 9/(f) € F|z] its j-th hyper-

derivative. Hyperderivatives satisfy the product rule,

0(fg) = Za’“ )0 (), f.g€ Fl2, (2.1.7)

and composition rule,

J+k

i o V(£ — (I o &
(80 0 04)(f) = (0 0 ) (f) = ( ]

>8ﬂ+k(f), f € F[z]. (2.1.8)

Using the product rule one can extend to &’ : F'(z) — F(z) in a unique way, and F'(z)
together with the operators &/ form a hyperdifferential system. If F has characteristic 0,

then &/ = %%, but in characteristic p this holds only for j < p — 1. Furthermore,

10



hyperderivatives satisfy a number of differentiation rules (e.g., product, quotient, power,
chain rules), which aid in their description and calculation (see [17, §2.2], [20, §2.3], for a
complete list of rules and historical accounts). Moreover, if f € F(z) is regular at ¢ € F,

then so is 82 (f) for each j > 0, and it follows that we have a Taylor expansion,
F(2) =) & (f)e) - (z=c)f € Fllz—d]. (2.1.9)
§=0

In this way we can also extend & uniquely to &7 : F'((z — ¢)) = F((z — ¢)).

For a holomorphic function f : 2 — C, it was proved by Uchino and Satoh [29, §2]
that we can define a holomorphic hyperderivative &’(f) : Q — C,, (taking F' = Cy, in
the preceding paragraph). That is,

81 H(Q) — H(Q).

z

Moreover they prove that the system of operators 9/ on holomorphic functions inherits the
same differentiation rules for hyperderivatives of polynomials and power series. Thus for

f € H(Q) and ¢ € Q, we have a Taylor expansion,
f(z) = 0Uf)e) - (z =) € Cullz = ).
=0

We have the following crucial lemma for our later considerations in §2.3, where we find

new identities for derivatives of functions in U/(£2).

Lemma 2.1.10 (Uchino-Satoh [29, Lem. 3.6]). If f € H(2) is A-periodic and holomor-

phic at oo, then so is 91(f) for each j > 0. That is,

11



We recall computations involving u(z) and 9! (u(z)) (see [9, §3]). First we see from

(2.1.4) that 9} (ec(2)) = 1, so using (2.1.5) and taking logarithmic derivatives,

1 1 9lec(mz) 1 1
u(z) = —— _?W_%GEZAH_G. (2.1.11)

Furthermore,

1 s 1 _ —0i(ec(Tz)) ()2
) = L Y RE)

ec(m2)

Thus, 0} (u) = —7u? € U(Q). In §2.3 we generalize this formula and calculate 07 (u™) for
r,n = 0.

We conclude this section by discussing some properties of hyperderivatives particular
to positive characteristic. Suppose char(F) = p > 0. If we write j = >_°_, b;p’, with

0<b; <p—1andb, # 0, then (see [17, Thm. 3.1])
ol zggooaglpo...oagsf’ (2.1.13)

which follows from the composition law and Lucas’s theorem (e.g., see [3, Eq. (14)]). We

note that for 0 < b < p — 1,

agpk = a{jk 0---0 6§k, (b times).

Moreover the p-th power rule (see [5, §7], [17, §2.2]) says that for f € F((z — ¢)),

o) ifj =,
() = S (2.1.14)

0 otherwise,

12



and so calculation using (2.1.13) and (2.1.14) can often be fairly efficient.
2.2 Goss polynomials and hyperderivatives

We review here results on Goss polynomials, which were introduced by Goss in [14,
§6] and have been studied further by Gekeler [9, §3], [10]. We start first with an IF,-vector

space A C C, of dimension d. We define the exponential function of A,

eal2) :zH/(1_§),

which is an FF,-linear polynomial of degree ¢. If we take t5(z) = 1/ea(z), then just as

in (2.1.11) we have

ta(2) :Zzi/\'

AEA

We can extend these definitions to any discrete lattice A C Cy,, which is the union of
nested finite dimensional F-vector spaces Ay C Ay C ---. We find that generally ex (2) =
lim; o0 €, (2) and t5(2) = lim;_, ta,(2), where the convergence is coefficient-wise in
Coo((2))-

Remark 2.2.1. If we take A = A¢, then ep,(2) = ec(z), whereas if we take A = A, then

ea(z) = Lteq(72). Thus

T

~ o~ T
t =7t =
A(z) m Ac(ﬂ-z) 60(%2’)7
and u(z), as defined in (2.1.6), is given by
ta(z ~
u(z) = A;T ) =t (T2).

This normalization of u(z) is taken so that the u-expansions of some Drinfeld modular

forms will have K -rational coefficients.
Theorem 2.2.2 (Goss [14, §6]; see also Gekeler [9, §3]). Let A C C, be a discrete

13



Fg-vector space. Let

/ yA s j
en(z) = ZH <1 - X) = Zaqu ,
AEA 7=0

and let ty(z) = 1/en(2). For each k > 1, there is a monic polynomial Gy A(t) of degree k

with coefficients in F g, o, . . .| so that

Furthermore the following properties hold.
(a) Gk,A(t) = t(Gk_LA(t) + Oéle_q’A(t) + OéQGk,qz,A(t) + - )

(b) We have a generating series identity

gA(t’x) - g GkA(t)xk - 1-— z:/\(w)
(c) If k < q, then Gy a(t) = t*.
(d) Gpra(t) = Gra(t)P.
(e) 20} (Gra(t)) = kGri1a(t).
Gekeler [9, (3.8)] finds a formula for each Gy, 5 (%),
k :
HOED ) (Z )o/tf“, (2.2.3)
Jj=0 -
where the sum is over all (s + 1)-tuples i = (io, . .., s), with s arbitrary, satisfying 7y +

cootig = jand igt+iyq+- - - +iq° = k; (Z) = j!/(io!- - - i4!) is a multinomial coefficient;

i __ %0 '
and o* = o - - - .
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Part (e) of Theorem 2.2.2 indicates that there are interesting hyperderivative relation-
s among Goss polynomials, with respect to ¢ and to z, which we now investigate. All
hyperderivatives we will take will be of polynomials and formal power series, but the con-
siderations in §2.1 about holomorphic functions will play out later in the paper. The main

result of this section is the following.

Theorem 2.2.4. Let A C C, be a discrete F-vector space, and let t = tx(z). Forr > 0,

we define 3, ; so that

Gr—l—l,A(t) = Z 57',jtj+1'
=0

Then
AL(A™) = (1) "0 (t"*Gry1a(t)), Vn =1, (2.2.4a)
oL(t") = ()" Y B T A (Y, Ym0, (2.2.4b)
=0
and
—1 ! , o
(” *jj )GW,A(t) SN B PO (FIGa), Va1 (2240
j=0

Remark 2.2.5. We see that (2.2.4a) and (2.2.4b) generalize (2.1.12) and that (2.2.4c) gen-
eralizes Theorem 2.2.2(e). In later sections (2.2.4a) and (2.2.4b) will be useful for taking
derivatives of Drinfeld modular forms. The coefficients 3, ; can be computed using the
generating series G (t, z) or equivalently (2.2.3). The proof requires some preliminary

lemmas.

Lemma 2.2.6 (cf. Petrov [25, §3]). Forr > Oandn > 1,

0 (Spn(2)) = (—1)" (” e 1) Grira(t). (2.2.6a)

r
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Moreover, we have
L (Spa(z)) = (=11 927 (Sr1,0(2)) (2.2.6b)
and
OL(t) = (—1)"Gry1a(t). (2.2.6¢)

Proof. Using the power and quotient rules [17, §2.2], we see that for A € C,

) (i (e

Therefore,
n+r—1
r

02 (S1a2) = (-1 )Suieaa)

and combining with the defining property of G}, 1, A (¢) in Theorem 2.2.2, we see that (2.2.6a)

n+r—1\ _ ((r+1)+(m-1)-1
()R,

and so (2.2.6b) follows from (2.2.6a). Finally, (2.2.6¢) is a special case of (2.2.6a) with

follows. Now

n = 1. ]

Lemma 2.2.7. Forn > 1, we have an identity of rational functions in x,

T L T _ a2 .
A tex(m))y (1-@@)) Op ("Gt 7).

Proof. Our derivatives with respect to ¢ are taken while considering x to be a constant. We

note that for ¢ > 0,

% (1 - tleA<x>> e —iﬁi:ii))““

16



by the quotient and chain rules [17, §2.2]. Therefore, by the product rule,

1 n—1 1
an—l( ) ak = 1 an 1- k( )
K 1 —tep(x) kzg 1 —tea(x)
. Z n — 1 teA( ) e 1
1 — tey(z) 1 —tep(x)

(1. M AR S

1 —tep(x) 1 —tep(x)
A simple calculation yields that this is 1/(1 — te,(z))", and the result follows. O

Proof of Theorem 2.2.4. The chain rule [17, §2.2] and (2.2.6¢) imply that

8;(75”):2(2)15”"“ Z AU (t) -+ % (1)

k=1 eS|
O+ +L=r
r
— (=S () et Goosin(t) - Goialt
— Y (1) Y Cuna) Coanalt)
k=1 eS|
Ly +Lp=r

By direct expansion (see [17, §2.2, Eq. (I)]), the final inner sum above is the coefficient of

" in

(GZA(t)CL’ + G3,A(t)x2 + - )k7

and therefore by the binomial theorem,
or(t") = (—-1)"- (coefﬁcient of 2" in (t + Goa(t)x + Gaa(t)z* + - - )”)

Now G A(t) =t, so

_1_ Galt2) t
t+ Gop(t)r+ Gap(t)a® +--- =Y Gya(t)ah™' =22 =
2.a(t) 3.A(1) ; k() T 1 —tex(z)

17



Therefore,

t"x
L (t") = (—1)" - ( coefficient of "' in —)
== ( (1 —tea(z))"

From Lemma 2.2.7 we see that

[e.9]

t"x
— " an—l tn—QG t {L‘k,
Ttentay ¢ 2% (7 Gkalt)

and so (2.2.4a) holds. To prove (2.2.4b), we first note that it holds when n = 0 by checking
the various cases and using that 3,0 = 0 for r > 1, since G,1(t) is divisible by ¢? for

r > 1 by Theorem 2.2.2, and that 5y, = 1. For n > 1, we use (2.2.4a) and write
O2(") = (1) 0 (G a) = (1) 0 (3 i)
=0

Noting that
n+j—1
n—1

azl—l (tn'i‘j_l) — (

we then have

OL(t") = (=1)7 ) Brg V1O ("),

Jj=0

and so (2.2.4b) holds. Furthermore, by (2.2.6a) and (2.2.6b),

(n +r— 1) Grpra(t) = (=11 027 (Srpaa(2)) = (=11 927 H(Grpra(t)).

r

But then by (2.2.4a),

O N (Graa() = D Brgdl M (E ) = (1) 1Y Bt O (T Ga(t)),

J=0 J=0

which yields (2.2.4c). [
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2.3 Theta operators on Drinfeld modular forms

We recall the definition of Drinfeld modular forms for GLy(A), which were initially
studied by Goss [12], [13], [14]. We will also review results on u-expansions of modular
forms due to Gekeler [9]. Throughout we let I' = GLy(A). A holomorphic function

f: Q — C is a Drinfeld modular form of weight & > 0 and type m € Z/(q — 1)Z if

1. forally=(2%) eTandall z € Q,

az+b‘

flyz) = (dety) ™ (cz +d)* f(2), 7z = o

2. and f is holomorphic at oo, i.e., f has a u-expansion and so f € U(12).

We let M} be the C-vector space of modular forms of weight k£ and type m. We know
that My® - M7 C M and that M = @, ,,, M[" and M° = @, M are graded Co-
algebras. Moreover, in order to have M]"* # 0, we must have £k = 2m (mod ¢ — 1). If
L is a subring of C, then we let M]"(L) denote the space of forms with u-expansion
coefficients in L, i.e., M;*(L) = M N L[[u]]. We note that if f = ) ¢, u™ is the u-

expansion of f € M;", then
¢ 70 = n=m (modgq-—1), (2.3.1)

which can be seen by using v = (8 ?), for  a generator of F, in the definition above.
Certain Drinfeld modular forms can be expressed in terms of A-expansions, which we

now recall. For k > 1, we set

k—1
Gi(t) = Grac(t) =Y Broagt!*, (2.3.2)
j=0
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to be the Goss polynomials with respect to the lattice A¢. Since ec(z) € K|[[z]], it fol-
lows from Theorem 2.2.2 that the coefficients 3;,_,; € K for all k, j. Asin (2.1.6) and

Remark 2.2.1, we have u(z) = 1/ec(7z), and for a € A we set

1
= = . 233
ue(2) = u(az) co(7as) (2.3.3)
Since ex(maz) = C,(ec(mz)), if we take the reciprocal polynomial for C,(z) to be
Ro(2) = 24°*"C,(1/%) then
T A 2.3.4
ua—Ra(u)—u + - € Al[u]]. (2.3.4)

We say that a modular form f has an A-expansion if there exist £ > 1 and ¢y, ¢, € C, for

a € A, so that

f=co+ Z caGr(ug).

acA4
Example 2.3.5. For k =0 (mod q—1), k > 0, the primary examples of Drinfeld modular

forms with A-expansions come from Eisenstein series,

1 / 1
Ewz) == 5
P e

which is a modular form of weight k£ and type 0. Gekeler [9, (6.3)] showed that

1 r1 Co(k
Ep = = E o E Gr(uq) = — C;?(k ) - E Gr(ua), (2.3.6)
bEA a€A+ a€A+

where (o (k) =>4, a~*is a Carlitz zeta value. We know (see [15, §9.2]) that (¢ (k) /7" €
K. We also define Bernoulli-Carlitz numbers BCj, to be I1,(c(k)/7*. T will talk about

Bernoulli-Carlitz numbers in the next chapter.
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For more information and examples on A-expansions the reader is directed to Gekeler

[9], Lopez [18], [19], and Petrov [24], [25].

Example 2.3.7. We can also define the false Eisenstein series E(z) of Gekeler [9, §8] to
be

1 a
Be=2 2 2 ooy

(LGA+ beA
which is not quite a modular form but is a quasi-modular form similar to the classical
weight 2 Eisenstein series [3], [9]. Gekeler showed that £ € U(f2) and that F has an

A-expansion,

E=Y aGi(u) =) au, (2.3.8)

a€AL a€A+

We now define theta operators ©" on functions in H({2) by setting for r > 0,

o (2.3.9)

If we take © = O, then by (2.1.12), ©Ou = u?, and O plays the role of the classical theta
operator v = qdiq. Just as in the classical case, © and more generally ©" do not take
modular forms to modular forms. However, Bosser and Pellarin [3, Thm. 2] prove that ©"

preserves quasi-modularity:
O": C[E, g,h] = Cx[E, g, h],

where F is the false Eisenstein series, g = E,_1, and h is the cusp form of weight ¢ + 1
and type 1 defined by Gekeler [9, Thm. 5.13] as the (¢ — 1)-st root of the discriminant
function A. To prove their theorem, Bosser and Pellarin [3, Lem. 3.5] give formulas
for ©"(u"), which are ostensibly a bit complicated. From Theorem 2.2.4, we have the

following corollary, which perhaps conceptually simplifies matters.
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Corollary 2.3.10. Forr > 0,

O (u") =u" 00 (W Grpa(u), Vn =1, (2.3.10a)

r ‘ ‘ A r 1 A
O"(u") = Zﬂmu”l@i(u”ﬂ_l) = (n +j )/Bmu”ﬂ, Vn>0, (2.3.10b)
Jj=0 0

.

where [3, ; are the coefficients of G, 11(t) in (2.3.2).

Proof. The proof of (2.3.10a) is straightforward, but it is worth noting how the different
normalizations of u(z) and ¢, (z) work out. From Remark 2.2.1, we see that

o) = (2) 2o = (Z) 7 ezino.

™ ™

=" O ("G (1)) = u" Iy (UG (u),

t=tp (T2
C

where the third equality is (2.2.4a). The proof of (2.3.10b) is then the same as for (2.2.4b).
[

Remark 2.3.11. We see from (2.3.10a) that there is a duality of some fashion between the

r-th derivative of u™ and the (n—1)-st derivative of G, 1 (u), which dovetails with (2.2.6b).

We see from this corollary that ©" can be seen as the operator on power series in
Cwo[[u]] given by the following result. Moreover, from (2.3.12b), we see that computation
of ©"(f) is reasonably straightforward once the computation of the coefficients of G, 11 (t)

can be made.

Corollary 2.3.12. Let f = > c,u™ € U(RQ). Forr > 0,

O"(f) = 0"(co) + Y _ cat” I (1" PG (), (2.3.12a)
n=1
O (f) =Y By Ol (w ), (2.3.12b)
7=0
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where [3, ; are the coefficients of G 11(t) in (2.3.2).

Finally we recall the definition of the r-th Serre operator D" on modular forms in M}

for r > 0. We set

D' (f) )+ Z (k * 7," )@’"—i(f)@i—l(E). (2.3.13)

The following result shows that D" takes modular forms to modular forms.

Theorem 2.3.14 (Bosser-Pellarin [4, Thm. 4.1]). For any weight k, type m, and r > 0,

D (M) € M

2.4 v-adic modular forms

In this section we review the theory of v-adic modular forms introduced by Goss [16]
and Vincent [30], [31]. In [26], Serre defined p-adic modular forms as p-adic limits of
Fourier series of classical modular forms and determined their properties, in particular
their behavior under the J-operator. For a fixed finite place v of K, Goss and Vincen-
t recently transferred Serre’s definition to the function field setting of v-adic modular
forms, and Goss produced families of examples based on work of Petrov [24] (see Theo-
rem 2.5.3). In §2.5, we show that v-adic modular forms are invariant under the operators
or.

For our place v of K we fix p € A,, which is the monic irreducible generator of the
ideal p,, associated to v, and we let d := deg(p). As before we let A, and K, denote
completions with respect to v.

We will write K ® A,[[u]] for K ®4 A,[[u]], and we recall that K ® A,[[u]] can be
identified with elements of K, [[u]] that have bounded denominators. For f = i cpu €

n=0
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K ® A,[[u]], we set
ord,(f) := igf{ordv(cn)} = mgn{ordv(cn)}. (2.4.1)

If ord,(f) > 0, i.e., if f € A,[[u]], then we say f is v-integral. For f, g € K ® A,[[u]],

we write that

f=g (mod p™),

if ord,(f —g) > m. We also define a topology on K ® A,[[u]] in terms of the v-adic norm,
1 fllo = g %W, (2.4.2)

which is a multiplicative norm by Gauss’ lemma.

Following Goss, we define the v-adic weight space S = S, by

S:=WmZ/(¢' - W'Z="2/(¢' - )L x L, (2.4.3)
l

We have a canonical embedding of Z < S, by identifying n € Z with (7, n), where i
is the class of n modulo ¢¢ — 1. For any a € A, with o { a, we can decompose a as
a = ajay, where a; € AX is the (¢% — 1)-st root of unity satisfying a; = a (mod v) and

ay € A satisfies ap = 1 (mod v). Then for any s = (z,y) € S, we define
a® = ajay. (2.4.4)

This definition of a°® is compatible with the usual definition when s is an integer. Further-

more, it is easy to check that the function s — a° is continuous from S to A;.

Definition 2.4.5 (Goss [16, Def. 5]). We say a power series f € K ® A,[[u]] is a v-
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adic modular form of weight s € S, in the sense of Serre, if there exists a sequence of

K-rational modular forms f; € M (K) so that as i — oo,

(a) ||fz - f”v — 0’
(b) k; — sinS.

Moreover, if f # 0, then m; is eventually a constant m € Z/(q — 1)Z, and we say that m

is the type of f. We say that f; converges to f as v-adic modular forms.

It is easy to see that the sum and difference of two v-adic modular forms, both with
weight s and type m, are also v-adic modular forms with the same weight and type. We

set
MP ={feK®A|{u ‘ f a v-adic modular form of weight s and type m}, (2.4.6)
which is a K,-vector space, and we note that

le _Mgz C Mm1+m2‘

s1+82

We take M7 (A,) := M7 N A,[[u]], which is an A,-module. Moreover, any Drinfeld
modular form in M]"(K) is also a v-adic modular form as the limit of the constant se-
quence (u-expansion coefficients of forms in A" (K') have bounded denominators by [9,

Thm. 5.13, §12], [13, Thm. 2.23]), and so for k € Z, k > 0,
M (K) C My, M*(A) € M (Ay).

The justification of the final part of Definition 2.4.5 is the following lemma.

Lemma 2.4.7. Suppose that f; € M, (K) converge to a non-zero v-adic modular form f.

Then there is some m € Z/(q — 1)Z so that except for finitely terms m; = m.
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Proof. Since ||f — fi|l, — 0, it follows that || f; — fi||l, = 0asi, j — oco. If f =D cu”

and ¢, # 0, then from (2.3.1) we see that for i, j > 0,n =m; =m; (mod ¢ —1). [

Proposition 2.4.8. Suppose {f;} is a sequence of v-adic modular forms with weights s;.

Suppose that we have fy € K ® A,[[u]] and s, € S satisfying,

(a) ||fi — follo — 0,
(b) s; — spinS.

Then fy is a v-adic modular form of weight sy. The type of fy is the eventual constant type

of the sequence { f;}.

Proof. Foreachi > 1, we have a sequence of Drinfeld modular forms g; ; — f; as j — oo.
Standard arguments show that the sequence of Drinfeld modular forms {g; ; }7°, converges

to fo with respect to the || - ||,-norm and that the weights k; of g;; go to s¢ in S. O

We recall the definitions of Hecke operators on Drinfeld modular forms and their ac-
tions on u-expansions [9, §7], [14, §7]. For ¢ € A, irreducible of degree e, the Hecke

operator T : M — M;" is defined by

(Tf)(=) = 1)+ Unf(2) = () + 3 f(”ﬁ).

l
56A(<e)

Just as in the classical case the operators 7} and Uy are uniquely determined by their actions

on u-expansions. We define Uy, V; : C[[u]] — Cx|[u]] by

U, (Z cnu”> =) G, (lu), (2.4.9)
n=0 n=1

where Ay C C is the e-dimensional IF,-vector space of ¢-division points on the Carlitz
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module C, and
Vv, (Z cnu"> = ey (2.4.10)
n=0 n=0

We find [9, Eq. (7.3)] that T} : Coo[[u]] — Coo[[u]] of weight k is given by Ty = 5V, + Uj,.
If f € M™ for some weight s € S, then we define Uy(f), V,(f) € K ® A,[[u]] as

above, and if ¢ # p, we set

Tu(f) = £Vl f) + Ue(f), (2.4.11)

where ¢° is defined as in (2.4.4) (note that if ¢/ = g, then (2.4.4) is not well-defined). Of

importance to us is that Hecke operators preserve spaces of v-adic modular forms.

Proposition 2.4.12. Let ¢ € A, be irreducible, { # @. For all v-adic weights s and types

m, the operators Ty, U,,, and V, preserve the spaces M7 and M (A,).

We first define a sequence of normalized Eisenstein series studied by Gekeler [9, §6].
Ford > 1, we let

9a(2) = —Lq - Eg_1(2), (2.4.13)

which is a Drinfeld modular form of weight ¢?— 1 and type 0. By the following proposition

we see that gg plays the role of £, for classical modular forms.

Proposition 2.4.14 (Gekeler [9, Prop. 6.9, Cor. 6.12]). For d > 1, the following hold:
(a) ga € Al[u]l;
(b) g4 =1 (mod [d]).

Proof of Proposition 2.4.12. Let f € M?. Once we establish that T;(f), U,(f), and
Vo, (f) are elements of M, we claim the statement about the operators preserving M7 (A,)

is a consequence of (2.4.9)—(2.4.11). Indeed, in either case { # g or / = ¢ we have
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Vi(Ay[[u]]) € A,[[u]], since in (2.4.10) the u}} terms are in A[[u]] by (2.3.4). Likewise for
Uy, the polynomials G, o, (¢u) in (2.4.9) are in A[ul, as the F,-lattice A, has exponential
function given by polynomials from the Carlitz action, namely ex,(2) = Cy(z)/¢, and thus

by Theorem 2.2.2(b),

lux
G, (Cu, x) ZGW (fu)x =T ut@ © ¢ Alu][[]].

Additionally we recall that the cases of U, and V, preserving v-integrality were previously
proved by Vincent [31, Cor. 3.2, Prop. 3.3].

Now by hypothesis we can choose a sequence {f;} of Drinfeld modular forms of
weight £; and type m so that f; — f and k; — s. By Proposition 2.4.14(b), for any
120,

g;y =1 (mod goqi),
since ord, ([d]) = 1. The form g9 "has weight (¢?—1)q* and type 0, and certainly figgi — f
with respect to the || - ||,-norm. However, we also have that as real numbers,

weight of figgi = ki+ (¢ —1)¢" = 00, asi— oo.

Therefore, it suffices to assume that £, — oo as real numbers, as i — oo.
Suppose that f = Y c,u™, fi = > cou™ € K @ A,[[u]]. For £ # g, since (% — (¢

and c,; — c,, we have

Ty(f;) = 05 anaup + > cniGn, (Cu) — Ti(f).

n=0 n=0

Since Ty(f;) € M} (K), it follows that T;(f) € M.
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Now consider the case ¢ = g. Since k; — oo, we see that |p*|, — 0. Therefore,

Tp(fi) — chGn,A@(pu) = Up(f)»
n=0

and so Uy(f) € M7'. By the same argument each U,(f;) € M, starting with the

constant sequence f; in the first paragraph. By subtraction each

Vo(fi) = 07" (To(fi) — U(f2)) (24.15)
is then an element of M;". Because c,,; — ¢,, we see from (2.4.10) that V,(fi) — V,(f)
with respect to the || - ||,-norm. Thus by Proposition 2.4.8, V,,(f) € M as desired. =~ [J

2.5 Theta operators on v-adic modular forms

As is well known the operators ©" do not generally take Drinfeld modular forms to
Drinfeld modular forms [3], [29]. However, we will prove in this section that each O,
r > 0, does preserve spaces of v-adic modular forms. Using the equivalent formulations

in (2.3.12a) and (2.3.12b), we define K ,-linear operators
0" K@ Au]] = K® A,[[u]], r=0.
Theorem 2.5.1. For any weight s € S and type m € Z./(q — 1)7Z, we have for r > 0,
0" M - ML

This can be seen as similar in spirit to the results of Bosser and Pellarin [3, Thm. 2], [4,
Thm. 4.1] (see also Theorem 2.3.14), that ©" preserves spaces of Drinfeld quasi-modular

forms, and our main arguments rely on essentially showing that quasi-modular forms with
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K,-coefficients are v-adic and applying Theorem 2.3.14. Consider first the operator © =

©1, which can be equated by (2.1.12) with the operation on u-expansions given by

O =u*0).

We recall a formula of Gekeler [9, §8] (take » = 1 in (2.3.13)), which states that for
femMr,

O(f) =D'(f) + kE,
where E is the false Eisenstein series whose u-expansion is given in (2.3.8). Our first goal

is to show that E' is a v-adic modular form, for which we use results of Goss and Petrov.

For k,n > 1and s € S, we set

frm = Z ak’”Gn(ua), fs,n = Z a’Gp (). (2.5.2)
a€A+ a€f+
pta

The notation f,, and fsm is not completely consistent, since f},, is more closely related

to fk_n,n than fk,n, but this viewpoint is convenient in many contexts (see [16]).
Theorem 2.5.3 (Goss [16, Thm. 2], Petrov [24, Thm. 1.3]).

(a) (Petrov) Let k, n > 1 be chosen so that k —2n > 0, k = 2n (mod ¢ — 1), and
n < p* 1) Then

fk,n < MI?L(K)?
where m = n (mod g — 1).

(b) (Goss) Let n > 1. For s = (x,y) € Swithz = n (modq—1)andy = 0
(mod ¢°&™1) we have

fom € M40,
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where m = n (mod g — 1).

We note that the statement of Theorem 2.5.3(b) is slightly stronger than what is stated

in [16], but Goss’ proof works here without changes. We then have the following corollary.
Corollary 2.5.4. Forany { =0 (mod q — 1), we have fr11,1 € M.

If we take ¢ = 0, we see that

fl,l = Z au, € Ayl[ul]

a€A+
pla

is a v-adic modular form in M}(A,) and is a partial sum of F in (2.3.8). From this we can

prove that E itself is a v-adic modular form.
Theorem 2.5.5. The false Eisenstein series E is a v-adic modular form in M3(A,).

Proof. Starting with the expansion in (2.3.8), we see that £ € A, [[u]]. Also,

E = Zaua: Zaua%—pZaum

acA4 acAq ac€A4
pta
2
= E aua+p§ AUpe + E AUg24,
a€A4 ac€A4 a€A4
pta pta

and continuing in this way, we find

We note that



where V@Oj is the j-th iterate V, o - - - o V,,. By Proposition 2.4.12, we see that ngj (f 11) €

M1(A,) for all j. Moreover,
E= Z pjvpoj(fl,l)>

§=0
the right-hand side of which converges with respect to the || - ||,-norm, and so we are done

by Proposition 2.4.8. U

Proof of Theorem 2.5.1. Let f € M7 and pick f; € M;"(K) with f; — f. It follows
from the formulas in Corollary 2.3.12 that ©"(f;) — O"(f) with respect to the || - ||,-norm

for each r > 0, so by Proposition 2.4.8 it remains to show that each
O"(fi) € My,

We proceed by induction on 7. If r = 1, then since D'(f;) € M;"},(K) for each i by

Theorem 2.3.14, it follows from Theorem 2.5.5 that
O(f;)) = D'(fi) + kiEfi € M5,

for each i. Now by (2.3.13), for each ¢

r

or () = () - (-0

Jj=1

e 1) 0"\ (B).

By Theorem 2.3.14, D"(f;) € M;[3 (K), and by the induction hypothesis and Theo-

rem 2.5.5 the terms in the sum are in M 17 . O
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2.6 Theta operators and v-adic integrality

We see from Theorem 2.5.1 that ©" : M™ — M”74’ and it is a natural question to

ask whether ©" preserves v-integrality, i.e.,
O s MI(A,) = MIE(A,).

However, it is known that this can fail for r sufficiently large because of the denominators
in G,;1(u) (e.g., see Vincent [32, Cor. 1]). Nevertheless, in this section we see that O is
not far off from preserving v-integrality.

For an A-algebra R and a sequence {b,,} C R, we define an A-Hurwitz series over R
(cf. [15, §9.1]) by

o0

Z (K ®4 R)[[z]], (2.6.1)

m
m=0

where we recall the definition of the Carlitz factorial II,,, from (2.1.3). Series of this type
were initially studied by Carlitz [6, §3] and further investigated by Goss [11, §3], [15,
§9.1]. The particular cases we are interested in are when R = A or R = Alu, but we have
the following general proposition whose proof can be easily adapted from [11, §3.2], [15,

Prop. 9.1.5].
Proposition 2.6.2. Let R be an A-algebra, and let h(x) be an A-Hurwitz series over R.
(a) If the constant term of h(x) is 1, then 1/h(x) is also an A-Hurwitz series over R.

(b) If g(x) is an A-Hurwitz series over R with constant term 0, then h(g(z)) is also an

A-Hurwitz series over R.
We apply this proposition to the generating function of Goss polynomials.

Lemma 2.6.3. For each k > 1, we have I1;,_1Gy(u) € Alul.
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Proof. Consider the generating series

1 —uec(x)

=3 Guwrt = —2
k=1

We claim that G(u, x)/x is an A-Hurwitz series over A[u]. Indeed certainly the constant

series w itself is one, and

i

oo
ux?
1 —wuec(x) = g

=0

is an A-Hurwitz series over A[u] with constant term 1, so the claim follows from Proposi-

tion 2.6.2(a). The result is then immediate. ]

Theorem 2.6.4. Forr > 0, if f € M™(A,), then ILO"(f) € M5 (A,). Thus we have

a well-defined operator,
0" M(A,) — M5 (Ay).
Proof. By (2.3.12a), we see that the possible denominators of ©"(f) come from the de-

nominators of G, 1(u), which are cleared by II, using Lemma 2.6.3. 0

Remark 2.6.5. Once we see that 1, 0" preserves v-integrality, the question of whether 11,
is the best possible denominator is important but subtle, and in general the answer is no.
For example, taking r = ¢t — 1, we see from Theorem 2.2.2(d), that

Gt (u) = uqu,

q

and so ©7"" -1 A, [[u]] — A,[[u]] already by (2.3.12a). However, I1,4+1_1 can be seen to
be divisible by p.

Nevertheless, we do see that II, is the best possible denominator in many cases. For
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example, let r = ¢’ for i > 1. Then from Theorem 2.2.2(a),

_ _ , Gyit1-(u) Gi(u)\ _ ¢, Gaiti—q(u) u
Groalw) =Gyt Gralt O (o Gy )

From Theorem 2.2.2(b) we know that u? divides G (u) for all & > 2, and so we find that

the coefficient of u? in Gy (u) is precisely 1/D;, which is the same as IT .
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3. LIMITS OF BERNOULLI-CARLITZ NUMBERS AND v-ADIC FAMILIES OF
EISENSTEIN SERIES

3.1 Bernoulli-Carlitz numbers

We define Bernoulli-Carlitz numbers BC,, using the generating series:

ec(z) B

m

>\ BC,,

=Y T (3.1.1)
=0

By Carlitz [6] and Goss [11], we have a formula for Bernoulli-Carlitz numbers,

Uogq(erl)J A(k,)
BC,, =11, Z om (3.1.2)

cc(z) =Y AP (3.1.3)

Since we have ec(z) = Y Z; , expanding (3.1.3), we have the explicit formula for AP
i=0 "

A — S ¢ -1 ! (3.1.4)
m d ) DPpd... D’ o

do+di+-+ds=q*—1 -
do+dig+-+dsg*=m

where d = (dy,dy, ... ,ds) is an (s + 1)-tuples of non-negative integers (s arbitrary) and

(qul) is defined to be (¢* — 1)!/(do\d;! - - - d!).
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We define

1 qk —1 1
I =1, — .
K Ly Z ( d ) Dgthlil L. Dgls

do+di+-+ds=q"—1 -
do+dig+-+dsqg®=m

Therefore, the Bernoulli-Carlitz numbers can be written as

|log,, (m—+1)]|
K 1 ¢ —1 1
BCp =11 — > ( > - (3.1.5)
" o pd ... Dds
k=1 L do+di+-+ds=¢"—1 d Dy* Dy Dy
do+dig+---+dsqg®=m
[logg (m+1)]
= D Tk (3.1.6)
k=1
[logg (m—+1)]
Lemma 3.1.7. For any Bernoulli-Carlitz number BC,,, = > JIm.k» there is a lower
k=1

bound of ord,(Jy, ) which will increase as k increases. More specifically,

k
m q" —1 k
dy(Jm k) = ord, (11,,) — + B e
or ( ,k) or ( ) qd—l qd—l \‘dJ

Proof. By [20, Lemma 2.1.8], we have formulas for the valuations,

where i is a representative of 4 in {0,1,...,d — 1} modulo d. We only need to check the

valuation of 7 and we find

1
kDI DL pds”

1 k 1 _ _
do = =5 = 5 (do(¢" = ") + du(¢" —¢') + -
o (LkDgODfl...Dgs) LiJ qd_1< o —q)+dilg —q)+
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. k 1 . - _
+ds(¢° —¢%)) = — {—J b (m = (dog” + dig" + - - - + dsq®))

m 1 = T _ k

= — doq® + digt + -+ dq°) — | =
m 1 k

- do+dy+--+d)— |~
qd_1+qd_1(0+1+ +d,) LlJ

m ¢ -1 k
=— + — 2.
g —1 q¢?—1 d

WV

Therefore, if k increases, the valuation will increase. In fact, we have the following in-

equality.

k
v\Ym > va_ lal
ordy (Jym k) = ord,(I1,,,) qd_1+qd—1 {dJ

]

Remark 3.1.8. If we say m = mg + m1q + - - - + msq®, then the previous lemma yields

k
m " —1 k
dy(Jm ) = ord,(Dg™ - -- D7) — + B

1 B 0 s - m " —1 k
—qd_l(mo(q ¢")+ -+ ms(a® —q%)) A1 a1 |a
- qd—1<m0q + —i—msq)—l—qd_l {E

k d

g —1 k q
> S [ I )
S LlJ pra 1(m0+ + ms)

From now on, we letm = m; = aq¥ +b, where d = deg v, a = ap+a,q+asq*+-- -+
a,q" € Nand b = by+b,q+byq*>+- - -+bqt € N(O < a;,b; < gand a,, b, # 0). Therefore,
in calculating BC,, using the formulas (3.1.2) and (3.1.4), we can take s = s; = r 4 dj.
Remark 3.1.9. By the formula (3.1.1), it is easy to see that if (¢ — 1) fm, then BC,, = 0.

Therefore if (¢ — 1) f(a +b), then BC, 41, = 0, which is trivial. In this chapter, we will

assume that (¢ — 1)|(a + b).
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Corollary 3.1.10. For m; = aq¥ + b as defined above, we have

k d—1
¢" =1 |k| q¢g—1)
OI‘dU(ijJﬁ) 2 qd 1 — \‘—J — W(T + s+ 2),

which is independent on j.

Furthermore, we set

. d0+..'+d7“+dj:l
Ij,l = (do, Ce ’d7”+dj) c Z;—Edj—i—l

do+dig+ -+ drgjq ™ = aq¥ +b
3.1.11)

Lemma 3.1.12. For j > qi—l +t + 1, then for any element (dy, dy, ..., d,1q4) in Zj;, we

have dy+ diq + - - -+ diq" = by + b1g+ - - - + byq". Also there is a bijection ¢ between I;,

and Ij-l—l,l-.

6 (dovdi, ... dvrg) > (dosdy, ... dy,0,0,. .., 0,dis1,dpsa . dyyg).  (3.1.13)
d terms

Proof. First, for any element (dy, di, . . ., d,yq;) in Z;;, we have do+dy g+ - ~+d, 1 qiq" % =
aq¥ +b = by + big+ -+ bgt + apqg? + a1t + -+ a,q¥*". For j > qi—l +t, if
do + diqg+ -+ digt # by + big+ -+ byg', we know that dy + diq + -+ + diq* >
bo+biq+- - -+biqt. If not, then 0 < bo+b1g+- - -+biq' — (do+dyq+- - -+diq') < ¢"*'. How-
ever this term can also be expressed as di1¢" ™+ - -+ dpy ;¢ TY — (g + - - - +a,q"Y),
which is positive and divisible by ¢'*, s0 by + b1q + - - + b;¢" — (do + dig+ -+ - +diq") =
dip1g™ 4+ dergi Y — (apq? + -+ + a,¢"TY) > ¢"1. Contradiction.

Therefore consider the gap between ¢’ and ¢%, it is not difficult to see that dy + d; +
ot djg o 2 bo b b+ (= 1) (d=1-1) > (=1 ([ -1-1) > (¢-1) L5 =1,

which contradicts the first condition. Therefore, dy+d g+ - -+d;q" = bo+big+- - -+ biq'.
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Moreover, by the same idea, we can easily check that d; 1 = dy o = -+ = dja_1/(g-1)-1 =
0.
Weseto: Z;; —ZLj11;by

¢ : (do,dl, e adr+dj) — (do,dl, R ,dt,0,0, R ,O,dt+1,dt+2, . adr—i-dj)a (3114)
—_———

d terms

which is clearly an injection. Also by the last sentence of the previous paragraph, we

observe that ¢ is surjective. [

Theorem 3.1.15. The Bernoulli-Carlitz numbers BCm]. have a v-adic limit in K, as j

goes to infinity, where m; = a¥ + b with a and b chosen as above.

Proof. We only need to prove that || BC,,,, — BC,, ., ||l — 0. Following by the discussion

above, we can compute the v-adic norm directly:

1 ¢ —1
Bij - Bij+1 == Hmj Z L_ Z ( d > DdODdl . ded+'r
0 1

l<gb<m;+1 g deT; k_y ja+r

e ¥ X (M)
- mMj4+1 T ’ ’ d . '
L i DgoDill ...D (G+L)d+r

k
1<gb<m;pa+1 LEL; 1y by (J+1)d+r

Moreover, for j > ¢, we know thatIl,,,, = DY pbr... ph Dy Dy, Dy, andlIl,, =
DDyt - Dy D Dty -+ Dty 4, by the definition of T, (2.1.3). Notice that
the first ¢ terms are the same. Therefore, for any positive integer K (to be specified later),

we have the following equation:

aop a1 ar
Dd]de—i-l'”de—i-r

k
wn,~bm 2000003 1 3 (") G
g*<g® " dE€T; i, 01 jd+r
(3.1.16)
_ Z Li Z (ch; 1) DZ&HL/DZS/H)H 'C;,'VD%H)M
a*<q® kiezﬂ—l,qk—l o DOODll'”D(;:lel));i:
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o Y S (M )
mj 7. do d djdsr
g <gh<m;+1 L d€T; ok _y d D" Dy -+ nglit’
1 ¢ —1 1
—T1,, — : .
A Z L Z ( d ) DdéDdll Dd(j+1)d+r
g <gh<mypal T A€, kg e N AR LA

First, by Lemma (3.1.7), we have the following inequality:

k

m; ¢ —1 k

ordy (Jm; k) = ordy(Ily,;) — pr— + i bJ
1 - B o
= = (t(@” =) +hale" =g+ bl — )+ aolq? — ¢¥)

_I_al(qdj—i—l _ qdjﬁ) 4. +ar(qdj+r _ qﬁ))
agh +b  ¢"—1 k
-1 q¢'-1

d

1 . _ _ ) _
= | (aqdj +b— (boqo + blq1 4+ bt F aoqdf

aqdj+b+qk—1_ E
¢—=1  ¢'-1

+ar g 4t agg ) — 7

k_l k d—1
> 1 —bJ—qg—_l(boerl+---+bt+a0+a1+---+as).

It is clear that for any N > 0, we can find a K € Z such that for any £ > K,

Zij — ] —%(bo-klh+---+bt—i—a0—i—a1+---—|—as) > N. This means that for

k> K,

-1 1

1
I N op

¥ <gh<m;+1 F de; kg jd+r

<q N (3.1.17)

v

The same K also works for m;,4, i.e.

- —1 1

1
BT O S i P

k .
qK<qk<mj+1+1 d—/teJrl,qkfl (]—i—l)d-i-r

v

(3.1.18)
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Now we consider the first term in the right hand side of (3.1.16), which we can compare

term by term for a fixed £. For a given k < m; + 1, compute

Z ¢ -1 DSJQDSJ'IH o D(Ciljr-i-r
d Dl pd... pliasr

461j7qk_1 = jd+r
- ) ¢" =1\ D1 Lagienye1 Darnr (3.1.19)
d’ Dngd’l Dd,(j+1>d+r . o
iez—j-‘,—l,qk—l - 0 1 " (]+1)d+7‘

K

By Lemma (3.1.12), for j > qq__11 +t+1, there is a bijection between Z; jx_y and Z; 1 o»_4

for all £ < K. Furthermore, since the map ¢ is just a shifting, it keeps the multinomial

(qk_l) unchanged, i.e. (qkd_l) = (qk_l). Also by the proof in Lemma (3.1.12), we know

d #(d)
that for d € Ij7qk,1, dt+1 == dt+2 = ' = Ujd—h—-1 — 0 and for i, S Ij+17qk,1, d;—l—l -
dipg =+ = d{ji1y4 1 = 0, where h := h(k) := (¢® —1)/(q — 1). That means the

number of possible nonzero terms in d is same for all 7, which allows us to consider only

a fixed number of terms in (3.1.19). In fact, we can rewrite (3.1.19) to be

> ¢l ! D D1 -~ D (3.1.20)
d DdODdl . Ddt ded—hded7h+l L ded+r o
deT; = 01 t jd—h ' jd—h41 jd+r
B DZ&-H) Z(1j+1)+1 e Ddafj+1)+r )
dja—n djg—nt1 djqgir ’
D(J]'+1)d7hD(;+1)d7h+1 T D(;+1)d+r

Note that djg_n¢@ "+ djq_p 1"+ -+ djgrr?" = ag?. Therefore, the question
is to prove that the difference inside the parentheses goes to 0 in the v-adic norm as j tends
to infinity.

Replacing all D; by [i][i — 1]¢---[1]9"", we can simplify the first term inside the

parentheses as
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ao al ar
de de+1 T de—H“

dia—n pydia— djdtr
Djdithjdith:f e Djdfr
_ ([d]][d] — 1]‘1 A [1](]@,1)@0 .. ([d] + 7”] [dj +r— 1]q o [1]ng+T71)ar
([ = Al = b= 12 &b ([ 4 o]l 4 = 1] [P b

Remembering that dg;_,q¥ ™" + dgj 119%™ " + -+ + dgjsr g = ag? = apg’? +

a1 4 -+ a, ¢, we can simplify this term to be the following:

[dj _|_ T]ar [dj + r— 1]a,«_1+qr - [dj . h + 1]aoqh71+alqh+,..+arqh+r—1
[dj + T]ddj-H" [dj +1r — 1]ddj+r—1+qddj+r <o dj — h+ 1]ddj—h+1+ddj—h+2q+'“+ddj+rqr+h_1 '

We apply the same manipulations to the second term, and we find that the numerator of

ao ai e ar
Dd(j+1)Dd(j+1)+1 Dd(j+1)+r
djg—n djg—n+y1 djdtr
D(j+1)d—hD(j+1)d—h+1 D(j-i-l)d-i—r

is

h+r—1

[dj + 7+ d*[dj + 7 — 1+ d" T [df = b 1 ]t e edt T

and the denominator is

r+h—1

[dj+r+d]ddj+r [dj+7a_1+d]ddj+r71+qddj+7- . [dj_h_|_1+d]ddj7h+1+ddj7h+2Q+'“+ddj+rq

Also, notice that [m + d] — [m] = [d]?" and 2 (I

Tntd " ]l = rdml which implies that

ord, ([m+d] —[m]) = ¢™ and Ord”(m — ﬁ) > ¢™ — 2. Thus in (3.1.19), the valuation

i—h+1

of the difference inside the parentheses is at least ¢% — 2. Therefore, as j goes to

infinity, (3.1.19) tends to 0 v-adically for any £ < K. Together with (3.1.17) and (3.1.18),
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we have proved the theorem. O

Remark 3.1.21. In Goss [11, Theorem 3.3.1], we have pBC,,,; € A,. Thus pjli)r(r)lo BC, €
A,

Recall the definition and properties of Goss polynomials G, and coefficients £, ;
(Theorem 2.2.4) in the last chapter. Now comparing 3, ; and A" we notice that A% =
Binge-1-

Remark 3.1.22. Actually, in the proof of the Theorem 3.1.15, especially (3.1.20), we have

proved that 1L, 3, 1 has a v-adic limit in K. Moreover, it is easy to prove that

1L, ﬁmj,l has a v-adic limit in K, for any positive integer [.
Remark 3.1.23. Recall that the topology in A,[[u]] is defined in Section 2.4: || f], :=
g~ %) and ord, (f) := inf{ord,(c,)} forany f = >">7 c,u" € A,[[u]].

Proposition 3.1.24. The space A,[[u]] with the v-adic topology is complete.

Proof. Assume that the sequence f;(u) = > agj Jul € A,[[u]] is a Cauchy sequence with
i>0
the v-adic topology. By the definition of the v-adic norm, we have for any € > 0, there

exists N > 0, for any j, 7' < N, s.t.

Sup|]a§j) — al(-jl)Hv < e (3.1.25)

120

Thus, for all 7, we know the sequence {az(»j )};?‘;1 is a Cauchy sequence in A,. Since A, is

complete, there exists an a; € A, to be the limit of agj ). Define

flu) =" au' € A[ul].

120

We will show that f is the limit of f; in the v-adic topology.
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For any € > 0, we let 0 < ¢ < ¢, then AN > 0 s.t. ||a£j) - agj/)||v < € for all 7 and

j,j" < N. Thus, we have Haz(j) _ a<N)||

.||l < € foralliand j > N. Moreover, we have

la; — ™|, = Tim [|a? — ™|, < €,
]*}OO
for all 7.
Therefore, we have
| N N
la; — o], = [[(a; — &™) + (@™ — ai)|l.

M

< max{|ja; — ™|, [Ja{™ — o]} < € < e,

for any i and j > N. That is sup||a§j) —aill, < e ie. lim| f; — fll, =0.
iZO J—00
O

Noticing I1,,G,n41(u) € AJu] by Lemma 2.6.3. Together with similar method above,

we have the following theorem.

Theorem 3.1.26. Goss polynomials 11,,,G ;1 (w) have a v-adic limit in A,[[u]] as j goes

to infinity, for any m; has the form aq¥ + b, with a and b chosen as above.
Remark 3.1.27. The summation for ﬁm].,l (defined in Theorem 2.2.4) runs through Z; ;.

Proof. We have the formula

mj l Hmj
Hmj ij+1 (U) = E E (Z) WUZ—H. (3128)
=0 G0+i1 4 Ay qj =l - 0 r+dj

ioHi1gt iy g Y =my

Using the same method in Theorem (3.1.15), for fixed I, we can show that ord, (II

mj+1
Bunsind — Wi, Brmy) = q¥ " — 2 — t‘qlfl—j, where h := h(l) := qi—l which appears in

(3.1.20). Therefore, each coefficient in II,,,G,,; 11 has a limit ¢; in A,. Hence, we now
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only need to prove that II,,, G, 11 is a Cauchy sequence in A, [[u]]. We will use the same

strategy as in Theorem (3.1.15):

_ I+1
ordy (I, Gy 41 — i Gy 41) = ordy( E | —1T

K<l<mj+1
l l
- Z <Hmj+1ﬁmj+1,l - Hmjﬁmjvou - Z Hmaﬂmmlu H)
0<I<K K<l<m,
> i { i {0, (L, By} (00T, B0 = T ),

min {ordy (I, Bm;1}) },

K<l<mj

where K < m; is a positive integer to be specified later.
Using same argument in Lemma (3.1.7), we know that the lower bound of

ord, (I, Bm, 1) increases with [. To be precise, we can get

ord, (I, By) = ord, (11,,,) — + ) (3.1.29)

Thus, we have

, mjp  K+1  K—(a+0b)g?t?
B, > )
K<Illilv%+1{0rd”<Hm’“ﬁm”1’l)} > ordy(In;) -1 -1 gt —1 ’

where the last inequality comes from the same idea in Corollary (3.1.10). At the same

time, we have

Kg}ggjﬂ{Ordv(Hm]’ﬂﬂij,l)} > qd — ’
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Therefore, we get

ordy (i, , Gy 11—l Gy 1) = min {

K — (a+b)g"! qdj—h(K)+1_2_tqt -1
qd -1 ’ qd -1

For any M > 0, we can find K such that %f’fqd_l > M and find J > 0 such that

g —hEo)+1 _ 9 tg;j > M. Therefore, for all j, ' > J, we have ord, (Il , G, 1 —
Iy, Gi,41) > M, which proves the sequence Il G, 41 is Cauchy. By Proposition
(3.1.24), we know lim II,,, Gy 1 = D qulth € Ay[[u]].

[
Remark 3.1.30. By Gekeler [10, Thm. 6.12], for ¢ = p a prime, we know that the multi-
plicity of 0 as a zero of G, (1), which now is considered as a polynomial in u, will stay
stable if j is larger enough. Also by computing of the valuation of the lowest degree term,

the valuation will stay stable too. Therefore, the limit of Goss polynomials I1,,,,G,,; is not

trivial.

Corollary 3.1.31. For m; = aq¥ + b defined as above and f € M™(A,), we have

lim I, O™ (f) € M (A,).

Jj—00
Proof. Combine the Theorem (2.6.4), Corollary (2.3.12b) and the Theorem (3.1.26). [

Remark 3.1.32. Although m; — b as j goes to infinity in the p-adic topology and the

Bernoulli-Carlitz numbers B ij have a v-adic limit in K, the situation is different from

the case of Kummer’s congruences in the classic p-adic case. However, lim BC,,, # BC,,
j—00

even if m; — b g-adically.
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By Gekeler [9, (6.3)], we have the following formula for Eisenstein series:

m+1) BCm
Em+1 = CC Z G(m—f—l ua = Z Gm+1 Ua (3133)

T =ml
7Tm+ m+1

CIEA+ u€A+

To avoid any confussion, we change the notation a little bit. In this chapter, we use a to

represent a polynomial in A. Therefore, multiplying by II,,,, we obtain

11,
My By = == BCny — I, > G (). (3.1.34)

m+tl acAy

t+1

I —
Hm]il) > _Ordv<Dt+1) 2 _qq_119

Notice that ord,( which is a fixed number. Together

with Theorem (3.1.15) and (3.1.26), we can then prove the following theorem.

Theorem 3.1.35. The Eisenstein series 11, Ep, 1 (w) have a v-adic limit in K ® 4 A, [[u]]

as j goes to infinity, for any m; has the form aq® + b, with a and b chosen as above.
Proof. At first, we need to prove that II,, Gy, +1(uq) has a limit in A, [[u]]. Recall that
qdegu

+ .-+ € A[u]] as defined in the Equation (2.3.4). We may assume that u, =

>° ~u® with y; € A. Therefore, we have

i}qdeg a

ord,(v;) = 0,

for all 7, i.e.

il < 1, (3.1.36)

for all 7. Note that Y deza = 1.
By Theorem (3.1.26), we have I, Gy, 41(u) = > 1Ly, ﬁmjlul“ is convergent to

=0

=" cqu*tin A,[[u]], which tells us that for any € > 0, there exists J > 0, such that
>0

|1, By — cillo < €, (3.1.37)
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foralll > 0,5 > J.

Moreover, by the proof of Lemma (3.1.7), there exists L > 0, such that
lello <€ (3.1.38)

foralll > L.

Consider

m;
Hijijrl (ua) = Z Hmjﬁmj,luf;rl

=0

m; I+1
— Hmjﬁmj,l < ,YZU/ )

=0 i>qdegu

m;
St S (8 e
=0

n>(l+1)gdee® iy ip e iy 2qdeee
i1+t Fip1=n

Lin
= Z (anjﬁmj,l Z ’Yil%z“'%,ﬂ)un,
1=0

n>qdega i1, i 2qde8
t1tigt+Fip1=n

where [;,, := min{m;, [n/q'&®] —1}. If [;,, < 0, then the coefficient of " will be 0. For

convenience, we set

Yaln = Z Vi1 Viz * " Vigga -

01,4, iy 1 2q9°8 °

i1 izt =n
Since the v-adic norm is non-Archimedean, then ||y, |, < 1. Notice that the coefficients

of u™ is a finite summation, since / has at most |n/q%&®| < n choices. Thus, for each n,

we have
Lin [n/qdese|—1
hm g Hmjﬁmj,ZVa,l,n = E CValn-
Jj—00 =0 —0
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For any n, let us compute the difference:

/g5 2] -1

ljin
E Hmj 5mj,17a,l,n - E le)/a,l,n
=0

=0
[n/q°5 2] -1

ljn
=> (Hmjﬁmj,l - Cz) Yadn — D ClYaln- (3.1.39)
=0

I=ljn+1
Notice that the second summation will be 0 if m; > [n/q%°8®| — 1. Therefore, we get

[n/qe5?) -1

ljn
E Hmj ﬁmj,lya,l,n - E CYa,ln
=0

=0

v

<max{ max {(Mn B i — )tainlleds o {Hcma,l,nnv}}

0<I<jn ljn+1<I<|n/gqdesa| -1

0<I<ljn

< { e 10, = ). o T}

For any € > 0, there exist J’ > 0 satisfying Equations (3.1.37) forall [ > 0, 7 > J'. Now
find J” > 0and N > 0, such that [;,, > l;» y > L, which satisfies Equation (3.1.38).

Set J = max{.J’, J"}, then it is easy to see that  ax {IM s, B0 — @} < € and

< gl]’,n

l}rgiil{ﬂclﬂv} <eforall j > Jandn > N.

Now for n < N, we can set .J = max{/J, log,(NN)}, then

ljn

- Z (Hmjﬂmj,l'Ya,l,n - Cl’%l,l,n)

[n/qde |1

ljn
E Hmjﬁmj,l'%l,l,n - E ClYa,ln
=0

=0

v v

o

3
- (Hmljﬁm‘j,l - Cl)’}/a,l,n
0

J,n
(Hmjﬁmj,l - CZ)
=0

~ e~

v

~ o~

N

<,

(%

for any j > J. Note that since j > log,(NN), the second summation in Equation (3.1.39)
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is just O forall n < N.
Therefore, we have

(/g5 e) -1

m; 5mj,17a,l,n - § Cl’)/a,l,n

=0

< €,

(2

for any j > J, which is independent on n and a. Therefore, I1,,; G, 11(ua) is a Cauchy

sequence in A,[[u]]. Then by Proposition (3.1.24), it has a limit in A,[[u]], say the limit
Lm
is Y cqut € Af[u]]. Thatis, forany a € Ay, > ILy, B, 1 7Van tends to cqpoy
qudegu_l =0
uniformly on n as well as a.

Asfor Y II,,Gmj11(ua), we get

ﬂ€A+

lin
Z Hm]Gm]—H Uu Z Z (anjﬁmj,l’%,lm) u"”

acAy acAy n>gdese ™ [=0
= E ( E E Hmj ﬂm],lf)/a,l,n)
n>1 CIEA+

deg a<log, (n )

Comparing the coefficients and using the same method as for II,,,, Gy, 11 (ua), We can

easily show that > Il Gy 1(ua) = > > Can—1u™ with respect to the v-adic

a€A+ n>1 a€A+
deg a<log,(n)
norm.
Now consider the constant term H B Cin;+1. We have
m 5
J
U, 1T

- )
Hmj+1 Hb+1

for dj > log,(b). Together with Theorem (3.1.15), we kno m;+1 has a limit in

K,.
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Now we can compute the v-adic limit for the Eisenstein series:

I,
Hijmj+1 = - Bij-i-l - Z ij+1(uu)

I1,,.
i +1 a€A+

1T,
— — BC,, 11 — E E +1
My j+1 Ca, iU

a€Ay [>qdesa_1

]._.[b
—_ BCyp1 — Y > an 3.1.40
Iy 11 i ( C‘Ll)u ( )

>0 acAq
deg a<log, (1)

Remark 3.1.41. By Remark (3.1.30) and the computation above (3.1.40), we know that

the v-adic limit will not be zero for Il,,; Gy, 11(ua) as well as I1,;,, E,, 1. Moreover, next

11,

section will tell us the constant term — o

BCy,, 41 is not trivial.
3.2 Limits of Bernoulli-Carlitz numbers

Proposition 3.2.1. For any prime polynomial ¢ € A, of degree d, lim 01" exists in A,.
Jj—00

Moreover, the limit is in an algebraic extension of I, of degree d.

Proof. We set Teichmiiller character w : A, — A, by w(a) := lim a?”. Therefore,
j—o00
. . . d
when « has v-adic expansion & = ag + ap + - - -, then w(a) = lim al . Moreover,
j—o0

F, := I'm(w) is isomorphic to A/g as a field with order ¢% by 1(a) = lim a?”. Now we

Jj—00

have the following commutative diagram,

Alp

where the map from A, to A/g is the canonical projective which maps 6 to 0. Therefore,
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notice that p is a polynomial with coefficients in F,, we have

p(w(0)) = p¥(0)) = v (p(0)) = v(p(®)) =¥ (0) =0, (3.22)

ie. w(f) = lim 7” is a root of a prime polynomial @ of degree d. O
j—00

. dj
From now on, we set a := lim 09" € A,
J—00

Remark 3.2.3. Gal(K(«)/K) is a cyclic group with the Frobenius map o(a) = 9.

Corollary 3.2.4. lim [dj +n] = —0 + a9 foralln € Z.
J—00

Proof. For j large enough, we have dj + n > 0, then lim [dj + n] = lim gr’" — g =

J—00 J—00
(lim §9")7" — 9 = —0 4 7", O
J—00

Remark 3.2.5. We can assume that n is a non-negative integer less than d in the corollary

above since that lim [dj + n] = lim [d(j + 1) +n] = lim [dj + (n + d)].
j—00

J—00 J]—00
We set a, := lim [dj + n]. Actually, a? = o, o, = —0 + ", o(tn) = pyy and
Jj—oo
Q= oy, form =n (mod d). Also, we fix the choice of (¢ —1)-th root of oy, cva, . . . , g,

and for i € Z, we set

d—1 d—2 1

Ai = (e, o iy Qog_i—1) 2! (3.2.6)
and
quj-‘ri
Fi(z) = , 3.2.7)
= Lgjt

Usually we may assume that 0 < i < d — 1, since a,,, = o, form = n (mod d). In other
words, A, = A, and F,,,(z) = F,(z) for m = n (mod d). By these notations, we have

logo(2) = >, Fi(z)and A = g ;A 1.

0<i<d—1

Proposition 3.2.8. In the v-adic topology, log( >, A,) =0.

0<n<d—-1
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Proof. At first, ord,(A,) > -

-1 > 0 for all n, so the series converges as well as F;(A,)

for all ¢ and n. It is a standard fact that 0 log.(z) — log-(0z) = log(27) (see [15, §3.4]).

Therefore, we have the following equality,

0F;(z) — F;(0z) = F,_1(27).

Thus we can compute

-1 d-1
00y Fi(A)) = F,(0A;) + F,_1(AY).
=0 =0
Noting that A! = ay ;. A; 1 = —0.A4;1 + a?" " A;_, and F;(z) is linear over F,, we can

simplify the equation as the following,

d—1 d—1

Then > F;(A;) = 0, since 0 # ad’ ™, Similarly, one can show that > F;(A;;,) = 0 for
i=0 i=0

any integer n. Note that A, = A, form = n (mod d). We can sum these equation up

for n from 0 to d — 1, which is

T
L
T
L
R.

-1 d—-1
0= Fi(Ain) = Fi(A,) =loga (S A). (3.2.9)
i =0

T
L

3
I
o
-
Il
=)
3
Il
o
3
I
o

]

_1
Remark 3.2.10. Since we have A! = a4 ;A; 1, if we fix a root of Afd_l, then all root

of A;%d’l will be fixed. In other words, if ( € IFqu is a (¢ — 1)-th root of unity, then

log( Z 1" Ay_n_1) = 0 for any integer [.

n=0
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d—1
Remark 3.2.11. By [33, Section. 3], > Cl‘l"d/ld,n,l are Carlitz p-torsion points, i.e.

n=0

d—1

Co( S ¢ Ay_p_1) = 0, this fact can also be derived directly. Together with the trivial
n=0

zero 0, we have ¢? different zeros for C,,. Note that the degree of C, is ¢%, which means

that we have found all the zeros.
3.3 Some examples for the limits of Bernoulli-Carlitz numbers

Unless otherwise stated, all limits in this section are taken with respect to the v-adic
topology. Also all hyperdifferential operators 0™ are with respect to x.

First, let us consider a simplest case: the prime polynomial g is linear, say ¢ = 0 + a

with @ € F,. In this case, we have o = lim 91" = lim (6 + a)qdj —a?’ = —a. We
j—o0 Jj—00
can also rewrite lim [j] to be Ay = —6# — a, which means that the limits of all bracket
Jj—00

polynomials are the same. Before we start to compute the limits, there is a useful lemma.

Lemma 3.3.1. Let g(z) =z + 29" + 29 + ... € F[[z]] and j > n. For0 <m < ¢* — 1

we have

aqdj (gm+"(qd_1))‘x=0 — 1 m=1,

0 otherwise.

Proof. If m = 1, the statement is clearly true for n = 0,1. Now we consider F'(x) :=

gitna’=1) _ ganla’=1) — zgn(@’~1) Using induction, we have the following calculation,
91" (gl+n(qd_l))|x:0 _ 91" (qu+n(qd—l)>’x20 — 51 (F)|geo = aqdj—1<gn(qd—1))‘x:0_

Therefore, we have

dj

97 (F)]umo = 071 (g"@" =D,

which is the coefficient of 9"~ in g"(@"~) That is, the summation 3 ("(qj_l)), where

2
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i = (ig, 1, - . .,1s) satisfies the following two equations,
ig+ i1+ +is=n(g? —1)

and

io + q%iy + -+ q®ig = q¥ — 1.
By our assumption, j > n, which means that ig + i1 + - - - + i, > n(¢? — 1) by taking the
¢“-expension for ¢% — 1. That is, 99 (F')|,—o = 0, which tells us that

aqdj (gH"(qd*l))‘z:o _ aqdj (qu+n(qd71))|x20.

Thus we can use induction to prove the first statement.
If m # 1, then 997 (g™~ D)| _ is the coefficient of z7” in g™ ("=, which is

> (mm ) where i = (i, 41, . .., 15) satisfies the following two equations,
io i1+ +ig=m+n(gt—1)

and

io + q%i1 + -+ ¢%is = ¢

Taking both equations modulo ¢% — 1, we obtain

io+i1+-+is=m (mod ¢¢ — 1),
io+ig+--+i,=1 (mod ¢ — 1),
which is contradiction since m # 1. Thus 847 (g™(@"~1)|,_y = 0 with m # 1. N

Proposition 3.3.2. If we assume that m; = ¢’ +q—2and p = 0+ a € Awitha € F,
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then lim BC,, = —(0+a)™!

]—}OO

Proof. From the computation in the Theorem (3.1.15), we can compute the limit for

BC,,,.

1 ¢ —1\ =
lim BC,, = Y — I WV 3.3.3

where i = (ig, i1, ...,%;) satisfies ig + 41 + -+~ +4; = ¢" — land ig + 41 + - - - + i;¢° =

m; = ¢ + q — 2. Notice that the term (—6 — a)qq%q is independent on the choice of

%, so that we only need to consider the summation Z (qk;). Defining power series g as
l

in lemma (3.3.1), we can see that the summation is equal to the coefficient of 27 +4=2 ip

g — 1, which is 9 +972(g¢"~1)|,_,. Use formula 9% o 942 = (q“rq ?)or+a=2 (]20,

Prop. 2.3.7]) and Lucas’s theorem, we have

8qj+q_2(9qk_1)|x:0 = 9" 0 97 2( “Hla=o

Logi  ag—2/ ot
= 10" 00" (g" Ml

= (¢" — 1)o7 (g7 )|, _,

_o7 (qu_q+1))|x:0-
Since ¢* — g+ 1=1 (mod ¢ — 1) and d = 1 in lemma (3.3.1), we have
o7 (qu—qul))‘x:O -1

Therefore we can simplify (3.3.3) according to Proposition (3.2.8),

* 1 qk*q
lim BC,,, = — Z L—.Aoq_l
k
k=1
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Notice that in the case d = 1, we can pull the term

0,

J

o . ylr+di
DO Dr—i—dj

outside of the summation, which makes the computation much easier. However, this does
not work any more if d > 1. To prove the general result, a stronger version of Lemma

(3.3.1) is required.

Proposition 3.3.4. Let g be a power series as in Lemma (3.3.1) and m > 0 and n > 0 be

a
qd-1

integers. For j > n + and a = ay+ a1q® + - - - + a,q¥ > 0, the base q¢ expansion of

a, we have

= a d
1<k dj+di (k17k27"-7k57a) m (mod q - 1)7
<ki<aig*

aq¥ ( m+n(gd—
0 q](g +nle 1))‘96:0 = ki=a; (mod ¢%—1)

0 otherwise,
where a = a — (k1 + ko + -+ - + ks).

Remark 3.3.5. Therefore, Lemma (3.3.1) is a special case of the proposition by taking

a=1.
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Remark 3.3.6. If j > s, the sum will be stable. To be precise, we have

a a
2 (klkgkz&) B 2 (klek:a)

1<k;<a;q¥ T4 1<k;<a;q?T!
ki=a; (mod ¢%—1) k;=a; (mod ¢%—1)

since k; < a for all 7.

Proof. At first, we can use the similar method to prove part of the proposition. If m # a

(mod ¢%—1), we know that 94" (gm+7@" D).y = 3O (m+”(2.qd_1)), where i = (ig, i1, .. ., i)

satisfying that

ig+i1+ - +ig=m+n(¢’—1)

and

io + q%iy + -+ ¢™iy = ag¥.

Reducing the two equations modulo ¢ — 1, we get

wwt+i1+--+is=m (modqd—l)

ig+i1+-+is=a  (modq?—1).

This is contradiction since m # a (mod ¢?— 1), which means that o1” (gm+”(‘1d_1)) le=0 =
0 with m # a (mod ¢¢ — 1).

Assuming that we know the value of 374" (¢*)|,—o, we will show that 829 (¢*)|,—o =
929" (ge+n(a®=1)| _, for all integers n satisfying a + n(¢* —1) > Oand n < j — g
Actually, the idea is almost the same as in Lemma (3.3.1). Setting f := g”"(qd’l) —
gt D@ =) — gge=l4n(@=1) we can show that 99" (F)|,—o = 0, which proves that
Haa” (g“"(qd*l))h:o — gua® (ga+(n+1)(qd*1)) oo

Now we claim that that 9*¢” (99)|s=0 = 1if a < ¢. Since we have ¢ = (x + x4+

vt )4, the only term with degree ag¥ comes from 217, if we multiply out the
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exponent of the power series, and add up the terms with degree ag®¥. If there is a term X

d(j+1) ) _

that contains a monomial with degree higher than aq?¥, then deg(X) > deg(x4
¢t > qq¥, which is impossible. If there is a term X that contains monomials with
degree no greater than ¢% and at least one monomial is less than ¢%, then deg(X) < aq®¥.
Therefore, the only term with degree ¢% comes from 29" in each parenthesis. This shows
our claim.

For a > ¢¢, we prove the result by induction. If a = ag + a(fd, taking advantage of the

properties of hyperderivative ([20, Prop. 2.3.12], [17, §2]), we get

o (g) = o o o (g)

v ajq¥+d u "
— Hr04” ( Z (k) ga—k Z (l l - )
k=1 15025y lgqditd

ll:l27~~~la1qdj+d =0
hitlottl, dji+a=Fk
l1+2l2++ar qdj+dla1 qdi+d=01 gt

(O ) @Ha)) - @ g )

=3 (D)o@ S (§) @ @ g

k=1 i

By the discussion above, we know that 9°0¢” (¢*~*)|,_o = 1 if and only if a — k = ag

(mod ¢¢ — 1), and otherwise it is 0. This condition can be written as
_ _ d _ d
k=a—ay=ap+a1q° —agp=a1¢° =a; (mod ¢* —1).

Also considering that 9"(¢g) = 1 if and only if h is a power of ¢¢, we can simplify the
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equation to be

(a0 = D (k) Z (’“) (04(9))"(%(g))" -+ (97" (g))

1<k<a1q¥+
k=a1 (mod ¢%—1)

- > (o )

1<k<ag¥td l17lqdv---lqdj+d20
k=a1 (mod ¢%-1) bl a++ dgj+a=Fk
ll +qdlqd+"'+qdj+dlqdj+d :alqdj"'d

Notice in the sum, & has the form a; + n(qd — 1) for some nonnegative n. Therefore, from

the above result, we have

L .
Z = coefficient of 219" in ¢*
l1, lqd, - ,lqdj+d

bl gyl dj+a>0
b+l at+l djra=k
l1+qdlqd +"'+qdj+dlqdj+d =aq¥td

_ aalqdj-Fd(gk.)‘m:O _ 1

Hence we have

= X (})

1<k<ar gVt
k=a1 (mod (¢%—1))

Now we consider when a = ag + a,¢* + - - - + a,¢? and assume the result

aa/qdj( a’)| . Z a’
g =0 k17k27-"7k37175/

1<k;<aiq ¥t
k;=a; (mod ¢%—1)
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is true for a’ = ag + a1¢% + - - - + a,_1¢%~Y). Then by the previous argument, we have

! dj

; a
071" (¢)] om0 = > (kb b k3_1,5>’ (3.3.7)

1<k;<a;jq¥ T4
k;=a; (mod ¢%—1)

where @ = a’ (mod ¢? — 1). We then have

e ) = 0 (00 ) )
asqditds

_ 8a,qdj a a—ks ks
- k)Y Lilos ooy i
ks=1 lil2,d, odjvds 20 sq
litlat A1, djrds=Fs
l1+2l2+'"+asqdj+dsla5qdj+ds:asqdj+ds

(0" (9)" (0%(g))" -+ (= <g>>la5qdj+ds)

=Y (e (L)@@ o g

ko=1 1

By (3.3.7) and same argument above for the second summation, we get

agh ( _a _ a o -
a (g )|x:0 Z (ks) Z (k]_’ kg’ ey k.S*].’ a/)

1<ks<asq¥tds 1<k;i<a;q¥ T4
ks=as (mod ¢%—1) ki=a; (mod ¢%—1)
Z a a— ks
pu— —_ —
1<k;<azqPtdt ks kl’ k’z, T ks_l’ a— ks

ki=a; (mod q?—1)

a
B 2 <k1,k2,...,ks_1,a’)‘

1<k;<a;q¥+4i
ki=a; (InOd qd—l)

Then by the result we obtained previously, 907 (gotn(a*=D)| _ = goa¥ (ga+(n+ (e =1y _

and we have proved the proposition. 0

Now consider for general case m; = aq¥ + b, where a,b > 0anda+b =0 (mod ¢ —
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1). For convenience, we may assume that a = ag + a;q + - - - + ag.q?" and b = by + byq +
-+ 4 bgq® for all a; and b; are nonnegative integers less than ¢. Note we allow ag, or by

be 0.

Theorem 3.3.8. If we assume that m; = aq¥ + b, where a = ag + a1q + -+ + ag.q"
and b = by + biq + - - + by q™ are the base q° expansion of a and b respectively. Then
lim BC,,; € K().

j—00

Proof. Recall that the formula for Bernoulli-Carlitz numbers (3.1.5),

dj+dr

1 q* — 1) I1,,.
ch — - < . . . - [ )
a2 U ) mig
where i = (ig, 41, - . ., igj+ar) satisfies

io+ i1+ +igirar = ¢ — 1,

: : dj-+dr; _
G0+ qir + -+ ¢V Vigipar = my.

. . k
72 e Iy — _ 1
I/ _ . . Zdj+dr+1 0 + + d‘j+dT q
j,k‘ — (ZO7 PR 72dj+d’r‘) E 20 9
; - . dj+d dj
o+ i1q+ -+ igrarq?" = aq” +b

Sy = {(io, i1, ,ia)lio + i1q + - - + iaq™ = b}
and for any o € 5, set
Iy = {i = (io, i1, igjrar) € Tjsl (0,01, s ia) = O}

Note that the definition of 77, is similar as Z;,; defined in (3.1.11). Also note that | Sy| <
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0o. We may assume that j > dt. Using Lemma (3.1.12), we know that for all integers

k< Kj:=log,((j—dt—1)(g—1)+1), gg I, =T,.
o€Sh
Therefore we can rewrite the Bernoulli-Carlitz number B C’mj as

/
Kj—].

BCuw =3 Y 1Z(Qk_1) o
’ o€Sy k=1 Ly, i€ly ¢ D(Z;JOD? U DZ?TﬁZ
P e ()
k=K' Li €T}, t ) DYDY Dyl
0, o 1 ko1 I
- b L q — aq¥ .
- Z Dio . Didt Z L Z ( 7 > Didt+1Didt+2 . Didi+dr + O(j)’
oesS, 0 dt k=1 i€l = dt+1Hdt+2 dj+dr
where
1 q°—1 I1,,.
0= 1 S (") e o
k=K' Li = Lt ) DgDy - Dgly

Note that O(j) tends to 0 as j goes to infinity by (3.1.8). Since the order of the set .S, is
finite, we can reach the maximum of ig + ¢; + - - - + 74, denoted as b. Define K to be a

positive integer such that ¢~ > 1 + b, which makes the binomial (qkflf(i‘f'"”di)) well-

. . . k__ k__ k_1_2:
defined for all 2 € I,. Hence we can express the multinomial (q ; 1) as (q i 1) (q i ’0) e
k_1—ig—ig——igs_ k_1—(ig+-+i y . . .
(1 A D (z, dt)), where i’ = (igr41,%di42, - - - igjrar). Moreover, by

. k_ k_1_.
Lucas’s theorem, we have that each term in the product (q o 1) (q i ’O) e

~ (qk_l_io_“_”'_idt—l) stays stable when k > K. Therefore we let j > ‘1;%11 +dj +1,

idt

which makes K} larger than K. Now we split the summation into three parts,

II K_1q K_1—fg—idy— - — g 1
Bij _ Z — bDidt (q . ) (q 20 ’21 Lds 1) Z -
oes, 0 T Pa to Lat =K =k
_Z<qk—1—(io+"'+idt)) g
i i T+ dr
il L Dyt Dgllar
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Hb 1 qk _ 1 Haqdj A
Y2 g p 2 T ( p )Didm L+ 00

a€Sy dt 1<k<K i€l dt+1 "' dj+dr
We first compute the limit for the term
1L,
20 11 idj+d7"
Dy Dy - 'de+dr
as we did in Lemma (3.3.2),
, ao ., %"
lim Hogo _ i 24 P (3.3.9)
oo tdt+l | yidi+dr oo i+l | yidi+dr o
17 Dy - Dgivar - 77 Dy - Dgillar

] (g ] [ e
j—o0 ([dt + 1] - [1]q‘“)idt+1 - ([d] + dr] ... [1]qdﬂ+d’“‘1)idj+dr

Note we have lim [dj + n] = a,,, where 0 < m < d — 1 and m = n (mod d). The most
j—o0

important observation is that we can consider all [n] to have limit «,,, if m = n (mod d). S-
ince we know from the computation in the proof of Lemma (3.1.12) and Theorem (3.1.15),
forn < dj —h (where h = ‘1;_—_11 + 1) the exponents are actually 0. However, for the conve-

nience of computation, we still add them up. Therefore we can simplify the limit in (3.3.9)

as
L (To+qli+-+q? g1 —(Po+qP1++q* 1 Py_1))
. q?—1 - -
Lim(1, P) =«
dll(qd7110+11+'“+qd721d71—(qd71P0+P1+-~+qd*2Pd71))
Caf e
qd%l(q10+q211+"'+1d—1_(qP0+q2P1+"'+Pd71))
Qg1 ;
where

I:(IOajla"'7Id—1)7 P:(P())Pl?"'apd—l)?
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and

I, = Z Tm,

td+1<m<dj+dr
m=n (mod d)

Let us focus on

Z (qk —1—(ig+--+ idt)) gai
) D

’ iqt41 idjtdr
1 .
icl, = dtr1 " Daitar

Right now, we can regroup the summation to be

Z (qk — 1 — (ZO + s + idt)) Haqdj

! 7 it dr
iel, L Dy - Dy
k . .
q —1—(Z0+"'+2dt) .
= ( p ) Lim([, P)
i€ls =

_ Z Z(qk_1_<i0+“'+idt))Lim(I,P),

: v
TotATg1=qF—1—(io++igs) 1€IB N

where Ip = {1 € I, > im = I, for all I,,}. Tt is easy to see that
td+1<m<dj+dr
m=n (mod d)

F 1 —(ig+--4i F—1—(ig+ -+
Z (q (ZO.,+ ‘Hdt)) _ (q (io + —Hdt)) - coefficient of
)

I, Iy, ..., I;_
iclg 0,41, sy Ld—1

dj dt+hd+d fo dt-+hd+1 h dt-+hd+d—1 Ta-1
i . , , I
x4 1n(§ x9 ) (E x4 ) (E x4 > .

h=0 h=0 h=0

If we set g to be the same as in Lemma (3.3.1), the power series can be expressed as

dt+d dt41, . dt+d—1 . 4 . .
glod™ T LT F a1 . Thus the coefficient of 2% in the power series is
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§oa” (gloa™ F+hg™ Tt L™y By Proposition (3.3.4), we know that the value is

a
Z (kl,k‘z,...,ksﬁ)

1<k;<a;jq¥ T4
k;=a; (mod ¢%—1)

if Iog*d + Lig¥*t + - 4+ I, 1% = @ (mod ¢? — 1), which is only dependant on
a. Notice that the condition is equivalent as Iy + ql; + -+ ¢ *I;_; = a (mod ¢? —1).

Therefore we can simplify our expression further, i.e.

qk_l_(20++zdt) Haqdj
Z ; Didt+1

i€l, v FAAEERR D;;JI;:
a
S )
1<k;<ajqst1 kla kQ, c. ’ks; a
ki=a; (mod ¢%—1)
k . '
-1~ e
) (q (o + -+ zdt)) Lim(I, P).
1071]_, “ e ’Id—l

To+-+Ig_1=q"—1—(io++iar)
Io4qli4+¢*1Iy_1=a (mod ¢%—1)

Notice that the condition Iy + ql; + -+ + ¢*'I; 1 = a (mod ¢ — 1) means that the

power of each «, in Lim(/, P) is an integer, and vice versa. Say

fla) = 3 (qk ~1- o+ idt)) Lim(7, P),

Io 1y, ... I,
To+-+Ig_1=qF —1—(io++ias) T ’
TIo+qli+-4q% 1 I;_1=a (mod ¢%—1)

where @ = (ap, ..., aq_1). Also define

k1 = (443
F(i) = Z (q (20 + —+ Zdt))ﬂféo_PO . I.Id—l_Pd—l

-1 )
IO) [17 s 7Id71

where x = (zq, ..., T4 1).
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Let ¢ € F%, be a primitive root, i.e. ¢ has exact order ¢ — 1. Let us compute
q

a’=2 ) = (0 = 1= (o4 + i)
F(Clwo, (g, (s, . (0 g ) = t
; (C'wo, (1, (T, .., (T wg) ;Z Iy, ... Iy,

x(f]o Poxll_Pl .. .xfld:ll_Pd—lCl(fo—Po-Hl(fl—P1)+"'+qd71(Id—1—Pd—1))

- —1- ZO + o+ Zdt) lo—Fy, . i—P1 lIg—1—Pg—1
I Lo I Ly
coydd

§ Io Po+q(Ii—P1)++q* 1 (Ig_1—P4_ 1))l

=0

> ()

Ly
To—Po+q(I1—P1)++q4=1(Ig_1—P4-1)=0 (mod ¢¢-1) ’

Io Py I1—P Ig_1—Pi1 Io Py I17P1 Ig_1—Pi1
Lo Iy B AS| Lo g

Iy, ..., I;_
Io+qli++q%1I;_1=a (mod q?-1) 0 1=l

Ip—Py .I1—P, Iy 1—Py_1 _Iog—Py I,—P; Iy 1—Py1
"Ly T g Lo T g

If we input x; = quiAd_i_l fori =0,1,...,d — 1 as A; defined in (3.2.6), it is easy to
q*—2
check that f(a) = — Z F(C'Aq1,CAq o, ..., ¢ " Ay). On the other hand, we also

have F(z) =z, ™ -z, Pf Y@o - - + 2g_)? 1 lotFia) Therefore we have
] A A DL LR
(wo+ -+ xd_l)qk_l_(i0+"'+id—1).

Now as j goes to co, we can start to compute

%1 Z( —1—( L,—i_.“—i_idt))D- g0

tdt+1 | Didj+dr
zela dt+1 dj+dr

68



d—2

} : —P —Py_1 k1—(ig+-+ig_
woo...xd_l ($0+"'+l’d71)q (0 dl)

=0

1(]

=Kk
o2 1 ‘
_ } : —P —Py_1 —1—(ig+++ig_ } :
= — Z O'..xd—l (l’0+"'+$d—1) (o d—1) L—(‘T0+"‘+x‘d71>q
1=0 k=K 7k

d_2
_ —Py P —1—(ig+-Fig_
__E x0T (o e Tg) (4o da-1)
1=0

1
(htoa a5 st
<k

By the remark (3.2.10), we know that log(zg + - -+ + 24-1) = 0. Also, we have z; =

% and considering the trace for the field extension K («)(x¢)/K («), we have

aj lo %5 Ry

1 qk—l—(lo—i-—'—ldt) Haqdj
L_ Z ! Didtﬂ . Didj+dr

k=K Ficl, = dt+1 dj+dr
q‘-2
_P, —Py_ —1—(to++iq—
— T O"'$d7f1($0+"'+xd—1) (o++++ig—1)
=0
1 7
—(330 + -+ xd_l)
Ly,
k<K

—P - —1—(20++ig—
:TT xo 0...xd71 (x0+...+xd_1> (ZO+ +id 1)

1
D (ot +wd—1>qk> € K(a).
k<K 7k

. . k: — Hm y .
For the other part of Bernoulli-Carlitz numbers, > Lik > (4 ; 1) W isa
1<k<K i 0“1 dj+dr
finite sum and each of the limits for the bracket polynomials are in K'(«), which means
the term is in K («).
Therefore, both parts of Bernoulli-Carlitz numbers are elements in /& («), so we have

proved the theorem. 0
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Proposition 3.3.10. If ¢ = 3 and p = 0> + 1, then we have

lim BCs;,1 = a, and lim BC32+141 = —a.
j—o0 j—o0

We can also compute the following two limits:

) 03— 6
]lggo BCs2j 5 = 1 (1+ad)(—a—0>—0) —ab + 1,
and
. 0 — 0 ,
JILHE.IO B032j+1+5 = —m(l — 049)(04 — 0 — 0) + 046’ + 1

Proof. Use the theorem above, and set K = 1. As j goes to infinity, using the same

notation as above, we have

00 7
1
BCg2j+1 — E L_ E F(ClAnglAO)
=0

k=1 "k

k

7 7
1 k
— E :L_ E :C_lAl_l(ClAl +C3l~’40)3 —2
=0

s=0
7

= L . ! 3l R 3l 4 \30
= ; ClAl(Cl-Al + <31A0)2 (log(C Ay +C AO) Lo (C Ay —|—C AO) )

7

1
- Z AL (CL AL + ¢BLAp)? (AL + )
s=0

d 1

- ; CLAL(CPAy + BLA)

1 ¢ H(Ar — ¢* Ao) (AT + (A7)

7
"2 A T ) A~ ) B+ (TR

27: C2MB 4 (A AR — A2 Ay — M A
Ai (Al — AP)
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a€ K(a),

I
—
I
(]~

|
£

I
=

|
£

I

where  is a primative root in F, Ay = (adaq)s, A = (aPa)s, ap = —0 + o and
a; = —0 + a?. Using the similar computation, we can also get that lim BCysj+1,, = —«
J—00

and the other two limits.

]

Remark 3.3.11. In the previous proposition, notice that we have o® = —a. By Remark

(3.2.3), Theorem (3.3.8) and Propsition (3.3.10), we find that

lim B032j+1 = 0'( lim B032j+1+1)7

Jj—00 Jj—o0

where 0 € Gal(K(a)/K) = Z/2Z, the Frobenius map. More generally, observing the

computation in Theorem (3.3.8), we have

lim BCaqdj+b = 0'( lim BCaqdj+1+b>,

j—o0 Jj—oo

where 0 € Gal(K («)/K) = Z/dZ, the Frobenius map.
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4. SUMMARY AND FUTURE WORK

In this dissertation, we have shown that © operators map a v-adic modular form to
another v-adic modular form (see Theorem (2.5.1)). Moreover, by multiplying a Carlitz
factorial, we can restrict the coefficients in A, (see Theorem (2.6.4)). Then we let m; =
aq¥ +b = (ag+aiq+ -+ aq")q% + (bo + by + - - - + b;q"), we show the v-adic limits
exists for Bernoulli-Carlitz numbers BC,,;, Goss polynomials II,,,, G, +1 and Eisenstein
series 1, i, 11 (see Theorem (3.1.15), (3.1.26) and (3.1.35)). At last, I show that the
limit of the Bernoulli-Carlitz numbers BC),, is actually in an algebraic extension of K
by explicitly computing the limit (see Theorem (3.3.8)). Also, I give two examples of
the limits of some sequence of Bernoulli-Carlitz numbers (see Proposition (3.3.2) and
(3.3.10)).

One natural direction is to compute the v-adic limit for Bernoulli-Carlitz numbers for
more general sequences m;. Moreover, an important plan for future work is to try to
understand why v-adic limits exist for Bernoulli-Carlitz numbers, and more important,
why the limits will lie in K («). Papanikolas and I proved the theorem by calculation, but
we believe there is something intrinsic that we have not discovered. Since the Bernoulli-
Carlitz numbers are so close to the Carlitz zeta function, any property of Bernoulli-Carlitz
numbers may help us understand the Carlitz zeta function better. The ideal situation will
be whether we can find clear analogies between the Bernoulli numbers and Bernoulli-
Carlitz numbers, as well as the classical zeta function and the Carlitz zeta function. In
my research, it is very possible that we can find the corresponding properties in function
fields.

In the near future, I also plan to extend these arguments to Drinfeld modules. In the

Drinfeld module case, the exponential function is different from that in the Carlitz module,
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which is much easier to compute. Moreover, the corresponding lattice can have dimen-
sion more than 1, which makes the calculations much more difficult and many elementary
results are no longer correct. However, I believe that similar ideas can still be applied to
Drinfeld modules and there may be similar Bernoulli-Carlitz numbers for Drinfeld mod-

ules.
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