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Abstract: Building energy performance (BEP) is an ongoing point of reflection among researchers
and practitioners. The importance of buildings as one of the largest activators in climate change
mitigation was illustrated recently at the United Nations Framework Convention on Climate Change
21st Conference of the Parties (COP21). Continuous technological improvements make it necessary
to revise the methodology for energy calculations in buildings, as has recently happened with the
new international standard ISO 52016-1 on Energy Performance of Buildings. In this area, there is
a growing need for advanced tools like building energy models (BEMs). BEMs should play an
important role in this process, but until now there has no been international consensus on how these
models should reconcile the gap between measurement and simulated data in order to make them
more reliable and affordable. Our proposal is a new generation of models that reconcile the traditional
data-driven (inverse) modelling and law-driven (forward) modelling in a single type that we have
called law-data-driven models. This achievement has greatly simplified past methodologies, and is
a step forward in the search for a standard in the process of calibrating a building energy model.

Keywords: multi-zone calibration; energy simulation; uncertainty analysis; multi-objective
optimization; genetic algorithm (NSGA-II); zero energy calibration (ZEC); building energy models
(BEMs); law-driven (forward) modelling; data-driven (inverse) modelling; law-data-driven BEMs

1. Introduction

Buildings hold a double facility in the climate change mitigation scenario. First as contributor,
because they account for about a third of the total global final energy demand and about 30% of
global energy related to CO2 emissions. Secondly, because it is often suggested that buildings have
the largest low-cost climate change mitigation potential. That importance was highlighted at the
United Nations Framework Convention on Climate Change 21st Session of the Conference of the
Parties (COP21), where an entire day was devoted to the building sector’s potential to assist in limiting
global warming below 2 ◦C. As a matter of fact, improving building energy performance by adding
energy efficiency technologies could reduce the global cost of limiting global warming by up to US
2.8 trillion dollars by 2030, compared to the implementation of a more energy-intensive roadmap [1].
How to evaluate building energy performance for the fulfillment of those ambitious goals is an open
question. To make those numbers affordable, we need to develop a new generation of advanced
tools. Unfortunately, there is no single straightforward answer to solve the problem, because building
performance is connected with a large number of independent and interacting variables.

If we consider the problem of building energy performance from the rating point of view, we can
focus on two main areas: asset rating (AR) and operational rating (OR). The different implications
of each in measuring energy performance is explained well in [2], where a solution is found for the
UK case. Both methods look at the same problem from a different—yet complementary—perspective,
and for that reason are essential.
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An asset rating can be defined as a calculation based on energy through a building energy model
(BEM). This means that the evaluation depends on a theoretical calculation for making an energy
performance certificate (EPC); it is also known as law-driven (forward) modelling. The asset can be
reflected by the CO2 emissions of a building or on a letter scale. An AR is one evaluation in a lifetime.
It is a long-term metric due to the fact that the elements that could cause change remained quite stable
throughout the building’s life cycle (once in ten years, when a building may undergo refurbishment).

In contrast, an operational rating (OR) is related to a building’s daily operations and measurements,
such as timetables, human behavior, heating ventilation and air conditioning (HVAC) systems
performance, computers and lighting loads. Operational rating (OP) is an indicator of the amount
of energy consumed during the occupation of the building over a specified period. An OR is often
measured and analyzed by data from sensors, smart meters, and building management systems
(BMSs). It is frequently used for improvements in HVAC systems. These energy measures can be
considered low-cost if we compare them with the redesign of the systems.

The International Performance Measurements and Verification Protocol (IPMVP) [3] classifies
the computer simulation (similar to Asset Rating) as option D and the meter approach (similar to
Operational Rating) as Option C. However, the two are thought of as “Whole Building” approaches.
These approaches have achieved good results when an evaluation of the building energy performance
is at stake.

It is clear that both approaches are necessary to produce high standards of building energy
performance; to facilitate this, we need a high-quality building energy model (BEM). The BEMs
that we are trying to produce should be able to capture the heat dynamics of a building [4],
as is indicated by the american society of heating, refrigerating, and air-conditioning engineers
(ASHRAE) Handbook-Fundamentals 2013 [5].

Whole building simulation programs (EnergyPlus [6], TRNSYS [7], IDA ICE [8]) are potentially
able to produce this type of BEM. These models depend on a great number of constant parameters,
many of which are poorly known and cannot be measured. Accordingly, an essential step in modelling
is the calibration process. These unknown parameters are estimated by fitting the model to data
measured in the field. This procedure to achieve the best model is called inverse (data-driven)
modelling, in contrast to forward (law-driven) modelling, where the parameters are well-known and
the model is directly used for forecasting test [9].

Therefore, calibration is the problem of reducing the gap between the real building and the BEM.
This gap has been analyzed before [10–14], and many authors point out the critical issues of using
a whole building simulation program for that purpose:

• It requires the previous collection of a great amount detailed information, over a period of at least
12 months [3,15–17].

• A high level of user skill and knowledge is necessary in both the simulation and practical building
operation [5,18,19].

• It is time-consuming with regard to software as well as manpower [5,15,19–21].
• A specific weather data file is needed by the simulation software to improve the accuracy

of results [5,19].
• There is no standardization methodology which can carry us to implementation problems [5,21].
• Initialization problems also produce a great variability in building energy performance [22].
• There are many undetermined parameters to adjust [16,19,23,24].
• It is difficult to work with a multiplicity of thermal zones [5,25].

In this article we explain how an accurate BEM can be achieved with a physical sense
(forward modeling) using less time and taking advantage of the measurements from a real building
(inverse modeling). Our approach combines the power of the two methodologies to build a reliable
solution. This new methodology introduces a significant reduction in time and an important
simplification, and even increases the accuracy of the BEMs obtained, improving upon the
methodologies used in our previous articles [26,27]. In Section 2, we explain how it can be achieved and
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the key elements of the process. Subsequently, in Section 3, we will put the methodology into practice
through the presentation of a real test case. In Section 4 we analyze the results through different tables
and figures. Finally, Section 5 discusses the main conclusions.

2. The New Approach: The Law-Data-Driven Model

The question that we are trying to solve is whether it is possible to produce models that can take
data from the measurements of an operational rating and put them into a model like that used by the
asset rating or, in summary, whether we can merge the two concepts. The idea was proposed years
ago by Sonderegger [23]: “Instead of telling the computer how the building is built and asking it for the indoor
temperature, one tells the computer the measured indoor temperature and asks it for the building parameters”.
Our approach in this article carries out this principle to its full meaning, as is explained in the
following paragraph.

From our point of view, the criteria for considering whether or not a calibrated model is
data-driven should rely on the use made of the measured data that will be introduced in the model.
In most of the automatic calibration techniques, the data are not part of the calibration process
(except for the weather data file). The simulated data are used at the end of the simulation to be
compared against measured data. This comparison is called uncertainty analysis, and the results of the
uncertainty analysis are used as an objective function by the algorithm to select a new set of parameters
or otherwise. This idea can be seen graphically in Figure 1B.

This means that measured data is not part of the models’s energy balance equation [28–31].
The reason is that programs such as EnergyPlus and TRNSYS have severe problems with the
initialization of variables [22], and it is difficult to introduce data that could affect the thermal
energy balance. Because of this issue, most calibration techniques based on a whole building simulation
programs use the data at the end of the process as a comparison between simulated and measured data.
From a practical point of view, it means that the measured data does not influence the energy balance
of the thermal zone [18,19,24,32–37].

This is a problem that we have partially solved before [26,27], because our methodology
reproduces the thermal history of the building as a dynamic set-point. It is an external comma-delimited
file with the temperature data taken from the real building that will be introduced as the set-point
thermostat. The goals of these files are pre-heating or pre-cooling the building before the calibration
process starts. Accordingly, we can introduce as much measured data (temperatures) as needed. In fact,
the more zones that are included the better, because these data increase the thermal characterization of
the model. A problem remains, however, due to the fact that we have to stop the dynamic set-point
at the time of starting the calibration process, because otherwise the indoor temperature would be
useless in the uncertainty analysis.

By maintaining the dynamic set-point all the time, we would not lose the thermal history of the
building during the free floating period. The question that arises then is whether it is possible to
maintain the thermal history while the calibration process is in progress.

This is the main novel contribution of this article: we present an easier objective function that
gives a powerful stimulus to the algorithm and allows the maintenance of the dynamic set-point
during the calibration process.

This new objective function is the energy consumed to maintain the dynamic set-point temperature
of the thermal zone in free oscillation mode. This energy should ideally be zero if the model has
the right envelope parameters. On the other hand, if the parameters of the envelope are not correct,
this energy consumption will be very high and the algorithm will discard that set because it does
not comply with the requirements of being zero. We have called this methodology zero energy for
calibration (ZEC) because we are looking for a zero energy objective. The concept is simple and the
results are very good, as be seen in Section 3.

The new methodology we propose simplifies the previous two methodologies, as shown in Figure 1.
The first and second approaches were based on uncertainty calculations. The first one [27] used
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an internal object of EnergyPlus (Energy Management System—EMS) to calculate the uncertainty of the
model (see Figure 1A). The second [26] simplified the methodology using a script developed in Python,
enabling the user to divide the model into all of the thermal zones needed (see Figure 1B). This new
methodology uses a direct output of EnergyPlus, reducing the complexity of the process and achieves
this, more importantly, without losing the thermal history of the building.
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Figure 1. (A) First approach [27]; (B) Second approach [26]; (C) Present approach. CLG: cooling;
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3. The Design of the Experiment

As in our past two articles [26,27], the building under consideration is the “Amigos” building
in the University of Navarra (see Figure 2). The model used is the same as in the second article [26],
with 32 thermal zones (see Figure 3). Finally, in order to compare the three different methodologies,
all of the data measured (the temperature, weather, and blower door test [38]) have been reused.

Figure 2. “Amigos” building elevation.
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Figure 3. Building thermal zones [26].

This approach is very similar to the other methodologies, and includes the use of a genetic algorithm
(GA), non-dominated sorting genetic algorithm II (NSGA-II) [39–41], to find calibrated BEMs in
the search space defined by the parameters shown in Table 1. The genetic algorithm is one of the
metaphor-based methods of metaheuristic algorithms. It is based on Darwin’s theory of evolution,
where in each iteration (generation) a set of simulations (population) is generated. The best individuals
of the population are the ones that best match with the objective function, and therefore they
must survive (the survival principle). Thanks to the crossover (switch parent’s simulations) and
mutation (random parameter changes) operators, the generated offspring preserve the good attributes
of the parents. As in the other article [27], the population size is 10 and the maximum value of
generations is 200. These values are taken from the author’s experience, as we are using the same
search space 1.07 × 1021. With bigger search spaces, the number of generations and the population
size should be considered. The use of the new objective function (ZEC) simplifies the energy model
used and allows the maintenance of the dynamic thermal history of the building throughout the whole
calibration process (see Figure 1A–C).
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Table 1. Search space for the genetic algorithm.

Construction Type of
Parametrized Value

Baseline
Model Other Values

Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 Value 7 Value 8 Value 9 Value 10

A Façade CE04c Thickness (m) 0 0.05 0.06 0.07 0.08 0.09 0.1 0.11 - -
B Brick density (kg/m3) 1150 1250 1350 1450 1550 - - - - -
C Façade CE06a Thickness (m) 0 0.01 0.02 0.03 0.04 0.05 0.6 0.07 - -
D Façade CE06b Thickness (m) 0 0.05 0.06 0.07 0.08 0.09 0.1 0.11 - -
E Façade CE07 Thickness (m) 0 0.05 0.06 0.07 0.08 0.09 0.1 0.11 - -
F Roof Insulation thickness (m) 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
G Gravel thickness (m) 0.10 0.025 0.05 0.075 0.125 0.15 0.175 0.20 - -
H Top façade Thickness (m) 0 0.01 0.02 0.03 0.04 0.05 0.6 0.07 - -
I Slab Specific heat (J/kgK) 1000 850 900 950 1050 1100 - - - -
J Thickness (m) 0.35 0.25 0.30 0.40 0.45 0.50 - - - -
K Partition walls Density (kg/m3) 1 1000 1100 1200 1300 1400 1500 1600 1700 -
L U-Factor W/m2K 1.4 0.8 0.9 1.0 1.1 1.2 1.3 - - -
M Solar Heat Gain Coefficient Non-dimensional 0.6 0.4 0.5 0.7 0.8 0.9 1.0 - - -
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The idea behind this experiment is to show that the methodology we are proposing now is robust
and consistent and can therefore be applied in a general context.

As in the other automatic calibration techniques, the uncertainty analysis allows an evaluation
of the model with well-known statistical indices such as coefficient of determination (R2),
coefficient of variation of the root mean square error (CV(RMSE)), and normalized mean bias
error (NMBE) [42]. ASHRAE Guidelines 14 [43,44], Federal Energy Management Program (FEMP)
3.0 [45,46], and International Performance Measurements and Verification Protocol (IPMVP) [3]
recommend limits in order to consider an energy model as calibrated. Table 2 shows the limits
of the different documents. When the statistical indices are used as an objective function, these are
embedded in the calibration process. In our case, we did not use this approach; as a result, this analysis
must be performed at the end of the simulation to check if the values are within the limits according to
Table 2.

Table 2. Calibration criteria of the Federal Energy Management Program (FEMP), ASHRAE Guideline
14 and IPMVP. CV(RMSE): coefficient of variation of the root mean square error; IPMVP: International
Performance Measurements and Verification Protocol; NMBE: normalized mean bias error.

Data Type Index FEMP Criteria [45,46] ASHRAE Guideline 14 [43,44] IPMVP [3]

Calibration criteria

Monthly criteria % NMBE ±5 ±5 ±20
CV(RMSE) 15 15 -

Hourly criteria % NMBE ±10 ±10 ±5
CV(RMSE) 30 30 20

Model recommendation

R2 - >0.75 >0.75

The main purpose of this article is the demonstration of a new methodology in the field of building
calibration. We have taken advantage of our previous articles, as well as the calibrated model that was
produced before. With this methodology, however, we can easily reach the same level of calibration
quality demonstrated in the previous work, with an important reduction in the degree of complexity.
We have performed the calibration in different scenarios with the purpose of showing that it is possible
to produce high-quality calibrated models in all of them despite the fact that some have a reduced
quantity of data (see Figure 4).

We propose a four-stage process to carry out the methodology:

• First stage: Select a variety of different periods with temperature data available in free oscillation
mode. Free oscillation periods are very suitable for achieving good calibration results when
we are trying to find good parameters for the building envelope. Figure 4 shows the schema
and the names proposed for the different periods. Each scenario has been named from Z0 to
Z9. The idea is to check if the methodology we propose can offer reliable results in different
environments. Each scenario (Z0, Z1, ..., Z9) will produce a class of models (M0, M1, ..., M9).
The calibration process is guided by the genetic algorithm (NSGA-II), and since it is a stochastic
approach, there are several solutions. For each class, we have chosen the first 20 models
(M0_00, M0_01, ..., M1_19). In order to compare this new methodology with the former one
[26], the results of our past calibration study have been included as an extra class named as “R”
(R_01, R_02, ..., R_20). Thus, the total amount of models that we are going to check is 220.

In relation to the different periods, we can comment that Z0 is the longest scenario. This scenario
has a double function, as a space of calibration and at the same time as a space for checking for the
rest of the models. This means that all the models will be evaluated in this scenario independently
of where they have been generated. This scenario has been used in our previous articles [26,27].
In this way, we can compare all the models under the same conditions.
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We can divide the rest of the scenarios into three types. The first three (Z1, Z2, and Z3) are related
to the long period of the Christmas season (week 4 and 5) where the building was unoccupied and
out of operation. The first type covers the whole period, and the other two are the first and second
halves of this period. The second type corresponds with the previous weekends. In particular,
Z6 is a very challenging scenario where we use data from one weekend, but must take note that
the weekend is formed by 30 h of temperature data taken at a pace of ten minutes per time-step.
The third type is similar to the previous one, but with the difference that the building structure is
cold after the unoccupied period, and therefore a transient state of heat storage is generated.

• Second stage: In this phase we prepare the EnergyPlus models for producing energy,
heating (HTG), and cooling (CLG) for those periods. This information will be introduced
into the GA as an objective function (Figure 1C), and the goal will be to obtain the least possible
amount of energy (ideally zero). Our approach is that the model that provides a better fit to the
measured curve of temperature with the least amount of energy is the one nearer to the real model.

• Third stage: We perform the genetic algorithm in order to determine the parameters that produce
lower energy. As can be seen in Figure 5, the objective function obeys the classical rule of a Pareto
front (red dots), because we are working with a pair of values (heating and cooling) that are
opposite. The algorithm used to perform the thermal zone energy balance in EnergyPlus is
the conduction transfer function (CTF), which offers a very fast an elegant solution to find the
temperature of the thermal zone. However, zero energy calibration (ZEC) is a technique based
on the thermal zone energy balance, and for that reason, CTF sometimes introduces energy
penalty. This extra energy consumption makes it so that some models with slightly higher energy
consumption have better uncertainty results than the best models ranked by energy. Therefore,
the best way of solving this problem is by selecting the 20 best energy models, in the same way as
other similar works [47].

• Fourth stage: Once the 20 best models of each class (M0, M1, ..., M9) have been selected,
we perform an uncertainty analysis to check if the results of the calibration process are within the
margins recommended by ASHRAE Guidelines 14, FEMP 3.0, and IPMVP (see Table 2). We have
used the box plot graph see Figure 6 as a way of measuring the dispersion or compactness
of the models. In general, we can state that when a model’s class offers compact values,
the calibration process is clear on that zone, and when there is dispersion, more attention should
be paid. This could mean (M0, M1, ..., M9) that the algorithm has insufficient data to offer
a compact solution. The last statement does not mean that good results cannot be achieved, as will
be seen later in this article.

Week 1
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Week 2 Week 8
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Labor WE

Week 3 Week 4 Week 5 Week 6 Week 7

Labor WE Labor WE Labor WE Labor WE Labor WE Labor WE Labor WE
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Figure 4. Different calibration scenarios.
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4. Analysis of the Results

The results offered by Figure 6 are coherent and have improved the quality of those obtained in
the past [26]. Each figure offers its own range of values, but the results have a similar pattern, which is
commented upon below.

First, the models generated in the weeks prior to Christmas (M4, M5, and M6) and during the
Christmas period (M1, M2, and M3) offer very compact data; the former produces good results in
terms of R2, NMBE, and CV(RMSE), and the latter generates results that comply with calibrating
criteria in Table 2. It is remarkable that the models that have been calibrated with data taken from one
weekend (M6 and M9)—despite having disperse values among their ranks—give very good results.

The dispersion in models M7 and M8 could be related to the cold building phenomenon.
This means that during those days the building was storing energy after the unoccupied weeks and
its thermal behavior was transient, in contrast with models M4 and M5 that were generated in more
steady-state conditions. This phenomenon could have finished in the third weekend after unoccupied
weeks, which could be the reason why model M9 demonstrated very good results. The same dispersion
pattern can be observed in Figure 6 in terms of the R2, CV(RMSE), and NMBE analysis.

For a better understanding of the results, we have generated several Tables 3–5. In Table 3 it
is intended that it is clear to see for each class (M0, M1, ..., M9 and R) which are the best models
of the 220 that have been analyzed and how they are distributed in quality. Therefore, “Best rank”
shows the position in the ranking of the best models which is the best of each class. M6 is the best,
with number one. “Rank-25” indicates the number of models in each class that are between the 25
best models. M5 is the second in Best rank and has the 20 best models among the best. In contrast,
the best one among the ranks (M6) has only one in the “Rank-25”. This means that on the one
hand, the calibration space Z5 produced very good results in all the models, but on the other hand,
the Z6 space has the capacity of producing good results but does not always do so. Something
similar happens to class M9. “Rank-50” demonstrates the same analysis but does so between the 50
best models, and so on.

Table 3. Rank of models. Ranks distribution.

Class Best Rank Rank-25 Rank-50 Rank-75 Rank-100

M0 5 2 13 14 14
M1 151 0 0 0 0
M2 74 0 0 2 18
M3 129 0 0 0 0
M4 3 1 7 10 14
M5 2 20 20 20 20
M6 1 1 5 5 6
M7 31 0 1 2 3
M8 62 0 0 2 2
M9 4 1 4 5 6
R 53 0 0 15 17

Total 25 50 75 100

Table 4 offers the results ordered by index parameter. The index parameter is obtained as the
arithmetic sum of the errors (CV(RMSE), NMBE, and R2). The R2 error is achieved by subtracting 1
from the value. The model with the lowest index is the one considered to have the best performance.
The different columns show the uncertainty index of each model, and as can be seen, all of them
comply with the requirements of ASHRAE Guideline 14, FEMP 3.0, and IPMVP. It is surprising to see
that the best model was produced in one of the more challenging calibration spaces (Z6, the one with
30 h of measured data), and another model from Z9 is in fourth place.
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In Table 5 we want to show that even models that have very high ranks such as M1, M2, M3,
and M8 are calibrated when they are contrasted with ASHRAE Guidelines 14, FEMP 3.0, and IPMVP
parameters in Table 2.

Table 4. Rank of models. The best models.

Rank Class R2 N MBE CV(RMSE) Index

1 M6 92.281% 0.436% 4.053% 0.12203
2 M5 94.223% 2.311% 4.152% 0.12235
3 M4 94.084% 2.238% 4.146% 0.12296
4 M9 94.027% 2.198% 4.143% 0.12310
5 M0 94.399% 2.531% 4.237% 0.12365
6 M5 94.273% 2.439% 4.212% 0.12373
7 M5 94.219% 2.397% 4.202% 0.12375
8 M5 94.246% 2.420% 4.208% 0.12377
9 M5 94.256% 2.438% 4.216% 0.12393

Table 5. Rank of models. The best of each class.

Class Best Rank R2 N MBE CV(RMSE) Index

M0 5 94.399% 2.531% 4.237% 0.12365
M1 151 93.154% 4.763% 6.061% 0.17670
M2 74 94.839% 3.951% 5.140% 0.14252
M3 129 95.321% 5.835% 6.652% 0.17166
M4 3 94.084% 2.238% 4.146% 0.12296
M5 2 94.223% 2.311% 4.152% 0.12235
M6 1 92.281% 0.436% 4.053% 0.12203
M7 31 93.631% 2.403% 4.456% 0.13227
M8 62 91.855% 1.208% 4.677% 0.14030
M9 4 94.027% 2.198% 4.143% 0.12310
R 53 90.463% 0.065% 4.360% 0.13962

Finally, we show the data from Table 5 in a series of temperature dispersion graphs in Figure 7 and
in temperature time series in Figure 8 . The best model of each class is compared with the best model
of class R, which was classified in rank 53 according to the Index in Table 5. In this way, we intend
to check the quality of the new methodology over the last [26]. In the dispersion graphs of Figure 7,
a band of ±1 ◦C shows the accuracy of the calibration process. Each dot represents the hourly average
free oscillation temperature inside the building; there are 466 h of comparison. Figure 8 represents the
same temperatures, but organized by the time in which they were generated. In this way, we can see
the relation between temperatures and spaces of calibration (Z0, Z1, ..., Z9), as can be seen in Figure 8.
Extra information such as outdoor temperature, measured temperature, and temperature of the best
model of class R is exposed in Figure 8 for a better understanding of the process.

Some observations can be noted from Figures 7 and 8. First, as the measured temperature has
mainly been taken with the building unoccupied (free oscillation), it tends to be cooler. This calibration
methodology based on energy works better with a greater thermal jump between indoor and
outdoor temperature. These lower temperatures were generated in week 5, as can be seen in
Figure 8. Moreover, in week 5 the outdoor temperature increased suddenly and therefore the jump
between outdoor and indoor temperatures decreased. This presents a problem, because the lower the
thermal jump, the lower the energy available by the algorithm to find a set of more suitable parameters.
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Figure 8. Temperature time series between the two calibration methodologies.

Secondly, the results can be organized into three kinds of models:

• Models that perform better than the best R model (M0, M4, M5, M6, M9). If we look at them from
the point of view of the time taken for calibration, three types can be considered: long calibration
spaces like Z0 with 466 h of free oscillation, medium spaces like Z4 and Z5 with 90 h and 60 h,
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respectively, and short calibration spaces like Z6 and Z9 with 30 h. The common characteristic
of these spaces is that the indoor temperature is generally over 20 ◦C, and therefore they are the
warmer free oscillation hours of the process. Accordingly, we can state that during these free
oscillation hours the building is thermally in a steady-state condition.

• Models that perform similarly to the R model (M2, M7, M8). In this case, the spaces Z2, Z7,
and Z8 have 143, 90, and 60 h of calibration, respectively. They have in common a mixture of
warm and cool indoor temperatures, due to the proximity to week 5. This week generates a bad
influence in the calibration process that reduces the quality of the models, as we have said before.
Hence, we can say that in these zones the building is thermally in a transient state from a warm
to cool period (M2) and from a cool to a warm period (M7, M8).

• Models that perform worst than the best R model (M1, M3). It seems clear that the reason for
that is because week 5 is part of the calibration space. As we have said before, in this week the
junction of two phenomena (low indoor temperature and high outdoor temperature) generated
a low thermal jump, which produces poor results.

5. Conclusions

The basis of this technique is the thermal characterization of the building. This means that the
model is guided through the same thermal path as the real building. This idea opens the door to new
possibilities for calibration techniques with different objective functions, both statistical and physical.

As can be seen in Figure 1, this procedure is very easy to implement. The software is available
for download and is user-friendly, and from the hardware point of view, a standard PC is enough
to run the simulations. The outputs of heating and cooling are standard values of EnergyPlus,
and the coupling with the optimization software (jEPlus + EA [48]) does not present any problem.
The main difficulty is the data gathering (temperature) and the work of generation schedules to feed
the set-points. We have solved this problem via energy management system (EMS). Other options
(e.g., via MATLAB) can be used for doing that work [17].

The main conclusions of this article are:

1. The simplicity of implementing new calibration spaces with a reduced amount of data
(temperature).

2. There is no need to have long free oscillation periods in order to produce good results in terms
of R2, NMBE, and CV(RMSE).

3. A dramatic reduction in the expertise and the amount of code needed to implement a reliable
model is realized. It means that the code to connect the simulation environment with the
optimization software has disappeared.

4. In this new approach, the temperatures measured in each thermal zone are the guide for the
algorithm to find a suitable set of parameters. Therefore, the new methodology takes advantage
of a complete thermal characterization of the model.

5. The proposed methodology has the limitation that the measured data should be gathered from an
unoccupied building.

This new idea of a law-data-driven model allows us to use all of the data measured in the real
building for the calibration process. We can take advantage of the power calculation capacity of the
whole energy simulation program to reduce the gap between the model and the real building.

6. Future Works

The high level of quality obtained for this model—in comparison with the standards of ASHRAE
Guidelines 14, FEMP 3.0, and IPMVP—encourages us to think that the model could go beyond a mere
energy evaluation or prediction of future building energy performance. The question remains as
to whether we can use this model as virtual monitoring. Improvements to the algorithm are also
needed in order to reduce the calibration time, which is around 20 h in a 2-core machine and 3 h in
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a 16-core machine. Other objective functions (statistical and physical) will be developed in the future
to enable calibration in unoccupied periods. More case studies should be developed to test how this
new calibration procedure will work in other situations that could have a greater impact than the
parameters selected in this case study, such as phase change materials [49], cool roofs [50], etc.
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