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Figure S1. Gradient formation across the observation (middle) channel of the chip. Fluorescence 
profile formation across the channel without flow with (A) 1 µM or (B) 10 µM rhodamine in the 
source channel during 20 min (red lines, every 2 min), and after starting E. coli cell flow in the 
observation channel for another 20 min (blue lines, every 5 min). (C) Modeled rhodamine steady-state 
gradients at different transects along the observation channel. (D) Modeled serine gradients across the 
observation cell channel at position 2200 µm for seven source concentrations, as indicated, at the flow 
conditions computed as in Figure 1C. (E) Modeled effect of serine metabolism of E. coli on the 
established gradient at 10 µM serine source concentration and position 2200 µm in the observation 
channel. Note that for ease of comparison to the chip design, the distance across the channel is 
represented from 300 to –300 µm. 
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Figure S2: Non-chemotactic cell distribution of E. coli ∆fliC-mcherry toward serine. Images 
showing the distribution of ∆fliC-mcherry at the 2100-2200 µm location on the chip over time (0 - 40 
min) as a function of the indicated serine concentration. Top is sink channel, bottom is source channel.  
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Figure S3: Chemotaxis index measurement setup. Chemotaxis response was quantified in a zone of 
600 x 100 microns at a distance of 400 microns from the beginning of the filters. Fluorescence 
intensity profiles were extracted from the fluorescence images using ImageJ and normalized by the 
total fluorescence in the zone of measurement. The chemotaxis index was calculated as the proportion 
of fluorescence in the 100 µm segment closest to the source of attractant compared to the total 
fluorescence across the channel.  
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Figure S4: Microfluidic chip fabrication procedure. The fabrication procedure starts with a silicon 
wafer (1). A photolithography process produces a layer of resist at the filter position that protects this 
zone during the etching step (2). The etching results in the formation of the negative of the 650 nm 
high channels of the filters (3). A second step of photolithography produces the mold of thechannels 
with a resist layer of 14 microns high (4). This inverted mold is used multiple times to produce the 
PDMS chips, by pouring PDMS on it and let polymerize (5). Once polymerized, the PDMS is peeled 
off the inverted mold and, after punching holes for the inlets, is bonded to the glass slide by a plasma 
treatment (6).  
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Figure S5.  (A) Model geometry, dimensions, domains and boundaries. Ω1: Source domain (fed with 
chemoattractant solution), Ω2: Sink domain (fed with water), Ω3: Cells domain (fed with a suspension 
of cells), Ω4 and Ω5: Filter domains (separate the cells from source and sink channels). Γi,1, Γi,2, Γi,3: 
Inflows, Γo,1, Γo,2, Γo,3: Outflows.  The geometry dimensions are listed in Table S1. (B) Finite element 
mesh detail in the neighborhood of the filter region. 
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Table S1. Parameters of the continuum steady-state model 

Description Symbol Value Units Source 
Geometry     
Height (z-direction) 
- channel 
- filter 

 
h 

 
14 
0.25 

 
µm 
µm 

 
experimental 

Cell channel  
- width 
- length 

 
LY,3 

LX,3 

 
0.6 
11.5 

 
mm 
mm 

 
experimental 

Source and sink channels  
- width 
- length 

 
LY,1 , LY,2 

LX,1 , LX,2 

 
1 
9 

 
mm 
mm 

experimental 

Inlet/outlet channels  
- width 
- length 

 
LX,i 

LY,i 

 
0.26 
2 

 
mm 
mm 

experimental 

Filters  
- width 
- length 

 
LX,f 

LY,f 

 
5 
100 

 
µm 
µm 

experimental 

Filter spacing  Lf 30 µm experimental 
Flow     
Water viscosity (at 20°C) µ 0.001 Pa s - 
Water density ρ 1000 kg m–3 - 
Flow rate source/sink 
channels inlet 

Fin,l 0.25 µL min–1 experimental 

Flow rate cell channel 
inlet 

Fin,m 0.003 µL min–1 experimental 

Solutes     
Diffusion coefficienta) 
- rhodamine B 
- serine 

 
DS 

 
3.6×10–10 

8.9×10–10 

 
m2 s–1 

 
 (Culbertson et 
al., 2002)  (Ma 
et al., 2005) 

Serine concentration in 
inflow 

cS,i 1, 10, 20, 
50, 100, 
200, 500, 
1000 

µmol L–1 experimental 

Maximum serine uptake 
rate 

vmax 338 nmol mmol–1  
min–1 

(Kayahara et 
al., 1992) 

Michaelis-Menten half-
saturation coefficient 

Km 6 µmol L–1 (Kayahara et 
al., 1992) 

Cells     
Basic motility coefficient DX 3×10–9 

 
m2 s–1 estimated 

 
Chemotaxis sensitivity 
coefficient 

χ0 8×10–4 

 
cm2 s–1 estimated after 

(Chen et al., 
1998) 

Receptor-ligand 
dissociation constant 

KC 25–30 µM estimated after 
(Kalinin et al., 
2009) 

Cell concentration in 
inflow 

cX,i 10  
 

mmol L–1 experimental 
 

Maximum cell density cX,max 10×cX,i
 

 
mmol L–1 b) 
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a) corrected for 20 °C 

b) To calculate the biomass in mM we use a typical elemental formula of E. coli cells of CH1.8O0.5N0.2 

that corresponds to a molecular dry weight of 24.6 g/C-mol biomass. At an estimated individual E. 

coli cell weight of 300 fg and a starting suspension of 8·108 cells per mL, this corresponds to 10 C-

mmol biomass L–1. 
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Table S2. Parameters, variables and functions used in the Metropolis model 

Description Symbol 
in script 

Symbol 
in main 
text 

Value Units Source 

Counter for 
simulation steps 

 s 0, 1, 2, ..., 1200 steps 1200 
corresponds 
to 60 min 

Distance per time 
step of simulation 

d  20 µm Chosen 

Grid width h Ly 600 µm Channel 
width 

Grid length l Lx 2500 µm Channel 
length 

Cell simulation 
window position 

  2000–2500 µm  

Random angle r θ rand(0:360) degrees  

Chemotactic 
sensitivity 

ksi_0 ξ 1·105 - (Chen et al., 
1998) 

Receptor-ligand 
dissociation 
constant 

c_dis KC 0.03 mM (Kalinin et 
al., 2009) 

Free parameter 
Gibbs-Boltzmann 
equation 

beta β -0.000013 - Fitting 

Correction factor alpha α 0.4 - Fitting 

Gradient      
Local serine 
concentration in 
y-direction for 
inlet 
concentration 

g(y) cS(p)  mM  

  0 mM ser    0 mM Definition 
  0.001 mM ser    -0.0006/(0.715*exp(-

0.0056*y)+0.684)+0.00093 
mM Fitting 

  0.01 mM ser    -0.009/(1.027*exp(-
0.005*y)+1)+0.0095 

mM Fitting 

  0.1 mM ser    -0.09/(1.34*exp(-
0.005*y)+1.04)+0.092 

mM Fitting 

  1 mM ser    -0.9/(1.5*exp(-
0.0054*y)+1.03)+0.9 

mM Fitting 

Mean gradient      
Local serine 
starting 
concentration for 
inlet 
concentration 

c cS,0  mM  

  0 mM    1 mM Arbitrary 
  0.001 mM ser    0.00028 mM Fitting 
  0.01 mM ser    0.00236 mM Fitting 
  0.1 mM ser    0.0268 mM Fitting 
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  1 mM ser    0.279 mM Fitting 
Adaptation function a(t) 1 (1 + 𝑒𝑒−𝑘𝑘∗( 𝑠𝑠

100 −𝑠𝑠0))⁄   Logistic 
function 

steepness k k    
mid-sigmoidal 
inflection point on 
simulation-axis 

s0 s0    

  0 mM ser    1  Definition 
  0.001 mM ser    k=2.5; s0=0.01 - Fitting 
  0.01 mM ser    k=2; s0=0.1 - Fitting 
  0.1 mM ser    k=1.5; s0=2 - Fitting 
  1 mM ser    k=1, s0=3 - Fitting 
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Metropolis script 

function metropolis(x,y,g,d,c_dis,ksi_0,beta,alpha,a,c) 
 
#x,y; starting position on the (x,y) grid within cell accumulation window position 
#Number of simulation steps: 1200 (corresponding in the experiments to 60 min; so ~3 s equivalent to 
each simulation step). This function is called at each time step. 
#Number of cells: 5000 
#Number of simulations: 5 
#sind(r): sinus in degrees of random angle 
#cosd(r): cosinus in degrees of random angle 
#rand(): random number between 0 and 1 from a uniform distribution 
#h=600 (grid width) 
 
## function H ## 
    r = rand(0:360); 
 
    Hx = ksi_0*(c_dis*c/(c+c_dis)^2)^alpha*(g(y)/c); 
    Hy = ksi_0*(c_dis*c/(c+c_dis)^2)^alpha*(g(y+d*sind(r))/c); 
 
## metropolis algorithm ## 
     
    if sind(r)<=0 
        if y <= -d*sind(r) 
            y = 0 
            x = x + d*cosd(r) 
        else 
            y = y + d*sind(r) 
            x = x + d*cosd(r) 
        end 
               
    else 
        if exp(-beta*a*(Hy-Hx)) >= rand() 
            if y >= h - d*sind(r) 
                y = h 
                x = x + d*cosd(r) 
            else 
                y = y + d*sind(r) 
                x = x + d*cosd(r) 
            end 
             
    end 
     
    return [x,y] 
end 
 
 
 
 
  



 12 

 
Supplementary references 

Chen, K.C., Ford, R.M., and Cummings, P.T. (1998) Perturbation expansion of Alt's cell balance 
equations reduces to Segel's one-dimensional equations for shallow chemoattractant gradients. 
SIAM J Appl Math 59: 35-57. 

Culbertson, C.T., Jacobson, S.C., and Ramsey, J.M. (2002) Diffusion coefficient measurements in 
microfluidic devices. Talanta 56: 365-373. 

Kalinin, Y.V., Jiang, L., Tu, Y., and Wu, M. (2009) Logarithmic sensing in Escherichia coli bacterial 
chemotaxis. Biophys J 96: 2439-2448. 

Kayahara, T., Thelen, P., Ogawa, W., Inaba, K., Tsuda, M., Goldberg, E.B., and Tsuchiya, T. (1992) 
Properties of recombinant cells capable of growing on serine without NhaB Na+/H+ antiporter 
in Escherichia coli. J Bacteriol 174: 7482-7485. 

Ma, Y., Zhu, C., Ma, P., and Yu, K.T. (2005) Studies on the diffusion coefficients of amino acids in 
aqueous solutions. J Chem Eng Data 50: 1192-1196. 

 


