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ABSTRACT: Surface chemistry is believed to be the key
parameter affecting the aggregation and breakage of colloidal
suspensions when subjected to shear. To date, only a few
works dealt with the understanding of the role of the physical
and chemical properties of the particles’ surface upon
aggregation under shear. Previous studies suggested that
surface modifications strongly affect polymer particles’
adhesion, but it was very challenging to demonstrate this
effect and monitor these alterations upon prolonged exposure
to shear forces. More importantly, the mechanisms leading to
these changes remain elusive. In this work, shear-induced aggregation experiments of polymer colloidal particles have been
devised with the specific objective of highlighting material transfer and clarifying the role of the softness of the particle’s surface.
To achieve this goal, polymer particles with a core−shell structure comprising fluorescent groups have been prepared so that the
surface’s softness could be tuned by the addition of monomer acting as a plasticizer and the percentage of fluorescent particles
could be recorded over time via confocal microscopy to detect eventual material transfer among different particles. For the first
time, material exchange occurring on the soft surface of core−shell polymer microparticles upon aggregation under shear was
observed and proved. More aptly, starting from a 50% labeled/nonlabeled mixture, an increase in the percentage of particles
showing a fluorescent signature was recorded over time, reaching a fraction of 70% after 5 h.

1. INTRODUCTION

The process of aggregation and breakage of polymer particles
under shear, which is a very relevant operation in the
production of many polymeric materials,1 is highly influenced
not only by the physical parameters of the system (i.e., solid
and volume fraction, shear regime, and particles’ size)2−6 but
also by the surface chemistry and properties of the particles
themselves.7−10 Our ability to quantitatively describe the
behavior of aggregating particles exposed to shear forces is
only limited to simple systems, behaving strictly as non-
deformable sticky spheres. As soon as the particles present
complex surface features, such as advanced functionality and
composition, the core−shell architecture, and the presence of
plasticizers that soften the particles’ shells, they show
characteristic and peculiar behaviors difficult to rationalize.7 A
particularly relevant example is surface nanoroughness, which
has already been shown to strongly affect polymer particles’
adhesion.11,12 Shear aggregation experiments carried out in our
group on certain polystyrene particles have led us to
hypothesize that, upon aggregation, their surface roughness
was changing as a function of time, leading to completely
different time evolutions of clusters’ morphology and to
progressively decrease the average cluster sizes, instead of
commonly encountered steady-state conditions.9 Indeed, the
increase in surface roughness leads to weaker bonds among
particles within clusters, thus progressively increasing their

breakage rate with time. Despite the importance of such effects,
it is generally challenging to experimentally demonstrate not
only the presence of surface roughness but even more a
modification of this parameter upon prolonged exposure to
shear forces. More importantly, the mechanisms that lead to
these changes remain elusive. One of the proposed mechanisms
is plastic deformation, but what causes it still needs to be fully
understood. Along with this line, molecular dynamic simu-
lations have highlighted the possibility of some material transfer
between particles as a result of repeated aggregation/breakage
events, with small chunks of polymer being torn off from the
surface and transferred to other particles.13 Moreover, the
phenomenon of chain exchange at a molecular level has been
previously observed in different systems.14,15 In this work, we
have devised a novel and elegant strategy to experimentally
prove the deformation of polymer particles exposed to shear
forces, causing their aggregation and subsequent breakage. The
surface alteration mechanism of suitably engineered colloidal
particles was revealed by means of fluorescent microscopy. This
technique has the potential to accurately visualize colloidal
clusters when they are made of large enough primary
particles.16 Two sets of experiments were performed in this
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work. First, small polymer colloidal nanoparticles with slightly
cross-linked polystyrene shell, swollen with styrene (STY),
which acts as a softener, were exposed to shear-controlled
aggregation under fully destabilized conditions. It was found
that the system did not reach a stable steady-state size, as
commonly observed with hard particles, but showed a decrease
in the average cluster size over time while keeping a constant
fractal dimension (i.e., maintaining the cluster structure
unaltered) and never reaching a steady-state condition.
Among the various factors hypothesized to explain this
behavior, an alteration of the surface, owing to the softness of
the outer layer induced by the monomer, seemed the most
plausible and consistent with our previous findings.9 In the
second set of experiments, a different system was used,
consisting of much larger particles, visible through an optical
microscope, featuring an architecture similar to the smaller
particles, but incorporating a fluorescent monomer. Using this
second system and working with a mixture of fluorescently
labeled and nonlabeled particles, we took advantage of
fluorescence to monitor the surface alteration of the particles.
In particular, we tracked whether some polymer could be
displaced from a particle to another upon repeated aggregation
and breakage events by simply recording the percentage over
time of particles showing fluorescence. It was demonstrated
that substantial material exchange occurs between particles if
their surface is sufficiently soft, which indeed is the case only in
the presence of swelling monomer. Not surprisingly, the
presence of a soft layer around the particles was also found to
promote their adhesion upon contact.17 Keeping in mind that
material exchange might not be the only mechanism
responsible for surface alterations of polymer particles, this
work proves for the first time that material exchange takes
place, thus providing a novel insight into the importance of
particle architecture and surface properties on shear aggrega-
tion.

2. EXPERIMENTAL SECTION
2.1. Materials. Divinylbenzene (DVB), STY, rhodamine B (Rh B),

azobis(isobutyronitrile) (AIBN), sodium dodecyl sulfate (SDS),
potassium peroxydisulfate (KPS), polyvinylpyrrolidone (PVP; 40k
MW), dicyclohexylcarbodiimide (DCC), 4-(dimethylamino)-pyridine
(DMAP), 2-hydroxyethyl methacrylate (HEMA), magnesium chloride,
and acetonitrile were purchased from Sigma-Aldrich and used without
further purification. Ethanol was purchased from Fluka and used
without further purification. Ultrapure water was prepared by a
Millipore Synergy water purification system. Nuclepore filters with
0.45 μm pore size for dialysis were purchased from Whatman.
2.2. Synthesis of Colloidal Core−Shell Polymer Nano-

particles. The synthesis of the polymer nanoparticles was carried
out in a LabMax Automatic Reactor from Mettler-Toledo equipped
with a 4 L jacketed glass reactor. The preparation involved two steps:
core synthesis and shell covering. The former was made of 20% cross-
linked particles of STY and DVB, produced via semibatch emulsion
polymerization, whereas the latter was obtained by a seeded emulsion
polymerization, using 20% cross-linked particles as a seed, forming a
1% cross-linked shell around the core.

2.2.1. Synthesis of the Core. A mixture of water and surfactant
(SDS) was initially charged into a glass reactor, and the temperature
was set at 70 °C using the oil heating jacket [initial charge (IC) as
reported in Table 1]. When the reactor temperature reached the set
point (in approximately 25 min), a solution of water and initiator
(KPS) was injected through a septum directly into the reactor
[initiator solution (IS)]. To guarantee starved conditions, an emulsion
of STY, DVB, water, and surfactant was fed over the reaction time
using a syringe pump [continuous feed (CF) as reported in Table 1].
A solution of water and KPS was continuously fed using a second

syringe pump, to guarantee the constant presence of the initiator
[initiator feed (IF)]. When the reaction time was over, the system was
kept at 70 °C for 1 h, to ensure complete conversion of the monomer.
The monomer conversion and the particle size evolution were
followed by gravimetric analysis and dynamic light scattering (DLS),
respectively. The exact quantities of the chemicals used in the particle
synthesis are reported in Table 1.

2.2.2. Synthesis of the Shell. To form a soft shell onto the core
particles, the latter was added a second time into the LabMax together
with water and surfactant (IC as reported in Table 2). The previously

synthesized latex worked as a seed for the second polymerization step.
When the reactor temperature reached the set point of 70 °C, a water
solution of initiator KPS was added to the jacketed reactor (IS).
During the reaction time, a mixture of STY and DVB was fed to
achieve a radially homogeneous cross-link density18 (CF as reported in
Table 2). Again, the monomer conversion and the average particle size
were determined by gravimetric analysis and DLS, respectively. The
exact quantities of the chemicals used in the synthesis of the shell are
reported in Table 2.

2.3. Synthesis and Purification of the Rh B-HEMA Precursor.
The synthesis method was adapted from the study of Cova et al.19 The
Rh B-HEMA precursor was synthesized by Steglich esterification. In a
flask, 4 g of Rh B was dissolved in 80 mL of acetonitrile. After full
dissolution, 1.3 g of HEMA was added to the reaction mixture under
stirring. In a second flask, 1.72 g of DCC and 52 mg of DMAP were
mixed in 80 mL of acetonitrile and added dropwise to the solution
within 20 min. The reaction was run for 24 h at 40 °C. The crude
product was filtered to remove the precipitated byproduct. The
obtained solution was then purified by preparative chromatography
using a C18 reversed-phase column and acetonitrile/water mixture as
the mobile phase. The purity of the product was confirmed by mass
spectroscopy (LC−ESI−TOF) identifying a peak at 555 m/z. This

Table 1. Recipe for the Synthesis of the Corea,b

IC IS CF IF

water 1575 g 75 g 315 g 75 g
DVB 63 g
STY 252 g
SDS 6.2 g 2 g
KPS 2 g 2 g
reaction time 5 h
cross-linking degree 20%
diameter 42 nm
polydispersity index (PDI) 0.055

aAll numbers are target values; the actual ones may vary by less than
1%. bIC = initial charge, IS = initiator solution, CF = continuous feed,
and IF = initiator feed.

Table 2. Recipe for the Synthesis of the Shella,b

IC IS CF

water 1295 g 50 g
DVB 0.8 g
STY 79.7 g
SDS 1 g
KPS 1.5 g
core latex 723 g
reaction time 5 h
cross-linkage degree 1%
diameter 54 nm
PDI 0.030

aAll numbers are target values, the actual ones may vary by less than
1%. bIC = initial charge, IS = initiator solution, and CF = continuous
feed.
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precursor has been used to produce the fluorescent shell on the
micron-sized particles.
2.4. Synthesis of Core−Shell Polymer Microparticles.

2.4.1. Synthesis of the Core. The synthesis method was based on
the work by Lee and Wi.20 Accordingly, 1.5 g of PVP was dissolved in
102.6 g of ethanol in a 500 mL round-bottom flask and heated to 70
°C. Furthermore, 0.15 g of AIBN was dissolved in 15 g of STY and
added to the reaction mixture upon reaching the target temperature.
The reaction was left at 70 °C for 24 h under continuous stirring.
When a conversion of 80% was reached, the mixture was cooled to
room temperature. At this point, 1.43 g of DVB, corresponding to 20%
of the converted amount of STY, was mixed with 0.075 g of AIBN and
added to 58 g of the seed reaction product. The mixture was left for 6
h under stirring at room temperature. After completion, the mixture
was added to a 250 mL three-neck round-bottom flask and heated to
70 °C for several hours, until conversion reached values above 95%.
The final size was approximately 2 μm in diameter. Scanning electron
microscopy (SEM) pictures and optical microscopy confirmed very
high monodispersity of the prepared particles.

2.4.2. Synthesis of the Shell. To grow the shell on the polymer
microparticles, 50 g of the previously produced suspension of cross-
linked core particles was added to a plastic wide neck bottle. Under
stirring, 100 mL of water was dripped into the solution over 20 min
using an addition funnel. The resulting mixture was added to a
Millipore dialysis chamber with a 0.45 micron Whatman Nuclepore
membrane. Millipore water was rinsed through the chamber at 0.8 bar
until the surface tension of the permeated solution reached the one of
pure water, equal to 71.97 mN/m at 25 °C, to ensure complete
removal of PVP from the dispersion. The dialyzed particles were
transferred to a 250 mL round-bottom flask and heated to 70 °C. After
charging 0.01 g of KPS, 30 μL of the monomer mixture (STY with 1%
DVB) was added successively every 30 min over 4 h to increase the
particle size by about 100 nm. In the case of the synthesis of a
fluorescent shell, the Rh B-HEMA precursor was added to the previous
mixture. The precursor was dissolved in 5 mL of acetonitrile and put
into a small flask and completely dried from the solvent, using a rotary
evaporator. The conventional monomer mixture used in the previous
case was used to redissolve the precursor. Effective inclusion of the Rh
B-HEMA precursor within the polymer was assessed by UV
measurements of the supernatant after precipitation of the particles.
The absence of any signal confirmed complete incorporation.
Moreover, to verify with more accuracy that the dye was bound to
the polymer chains, some particles were centrifuged out of the aqueous
solution, dried, redispersed, and swollen with an organic solvent
(isopropanol). After precipitation of the polymer particles, the
supernatant was newly analyzed by means of UV spectroscopy, and
again no trace of dye was found. An increase in size of the particles was
determined via small-angle light scattering (SALS) measurements and
SEM pictures. Moreover, the absence of an unwanted nucleation,
leading to a second small nanoparticles population, was confirmed by
DLS.
2.5. Processing of the Particles. 2.5.1. Dilution and Swelling.

The synthesized nanoparticles’ latex has been diluted with degassed
Millipore water down to a specific dry mass fraction (5 × 10−5). This
mixture has been used either as it is or it is swollen with additional
hydrophobic monomer (i.e., STY), whose amount is calculated as a
percentage of the solid content of the latex. The obtained solution has
been left under mild agitation overnight at 200 rpm before further
processing.
The microparticles’ dispersion has been diluted in degassed

Millipore water from the previous mixture to reach a mass fraction
of 5 × 10−4. In the case of swelling, pure STY equal to half of the
saturation concentration in water has been added to the mixture. The
system was left to equilibrate overnight. The repartition of the
monomer between the water and the hydrophobic polymer phase
allows for swelling of the outer, slightly cross-linked shell on the
surface of the particles. Experiments were run using either fully
nonfluorescent or an equal mixture of fluorescent and nonfluorescent
particles.

2.5.2. Stirred Tank Reactor. The diluted latex has been aggregated
using a 2 L cylindrical stirred tank reactor equipped with a 60 mm
Rushton impeller and four metallic cylindrical baffles. The solution has
been fed into the reactor through an opening, and the tank has been
firmly closed. Significant attention has been dedicated to the removal
of any bubble of air inside the reactor, to avoid aggregation at the
interface between the suspension and air. To prevent air from entering
the reactor when sampling, a part of the excess polymer solution was
pumped in a vertical tube (1.5 m high) connected to the reactor. The
stirring velocity is set at 500 rpm, which corresponds to a maximum
shear rate of 17 300 s−1 and an average one in the range of 900−1700
s−1, evaluated from the scaling for the maximum dissipation rate
proposed by Soos et al.21 To destabilize the system, 60 mL of a 2 M
solution of MgCl2 was added to the reactor through an opening in the
bottom plate. Owing to the strong shear forces produced by the stirrer,
the primary particles start aggregating in a shear-controlled regime,
which is not driven by the Brownian motion but is controlled by the
extent of the applied shear.

2.6. Characterization Methods. 2.6.1. Monomer Conversion.
The monomer conversion is determined from the dry mass fraction of
the sample. A small aliquot of the sample (about 1 cm3) was spread
over quartz sand and heated at 120 °C in air using a HG53 Moisture
Analyzer from Mettler-Toledo.

2.6.2. Dynamic Light Scattering. The average size of the
nanoparticles was determined by DLS using a Zetasizer Nano ZS
from Malvern.

2.6.3. Static Light Scattering. To compute the size and the fractal
dimension of the aggregated nanoparticles’ clusters and the average
size of the microparticles as well as of their aggregated clusters, a small-
angle static light scattering instrument, Mastersizer 2000 from Malvern
Instruments equipped with a laser having λSALS = 633 nm, was used.
The radius of gyration ⟨Rg(t)⟩ was obtained by fitting the structure
factor in a Guinier plot, as reported in Harshe et al.22 The fractal
dimension df was extracted from the Guinier plot, by measuring the
slope of the curve in the power-law region, using the relation ⟨S(q)⟩ ∝
q−df.

2.6.4. Microscopy. The microparticles and their clusters were
analyzed using a SEM instrument (Gemini 1530 FEG from Zeiss),
with a field-emission gun operated at 5 kV. The coating of the samples
was performed using platinum. Optical microscopy was performed
using a Leica SP8-AOBS confocal microscope. An argon laser at 550
nm was used for the excitation of the samples, and the emitted light
was collected using a HyD detector. Bright-field images were collected
in parallel using a photomultiplier tube detector.

2.6.5. Image Analysis. The image analysis was performed on the
picture taken with a confocal microscopy using ImageJ software. At
least 2000 microparticles were evaluated for each measurement. For
each picture, the average area in terms of the number of pixels
occupied by the nonclustered polymer microparticles was evaluated.
The obtained value was used, together with the total occupied area, to
compute the total number of polymer microparticles present as
individuals, noncluster objects, and aggregated in clusters, in the case
of both nonfluorescent and fluorescent particles.

3. RESULTS AND DISCUSSION

3.1. Shear-Controlled Aggregation. In our shear-
controlled aggregation experiments, a colloidal suspension of
primary particles is fed into a stirred tank reactor, and an
electrolyte solution is added to fully destabilize the system.
However, owing to the presence of the stirrer, the aggregation
process is not driven by the Brownian motion but is controlled
by the magnitude of the applied shear. Accordingly, the
aggregation rate is highly affected by the stirring velocity.5 The
destabilization of the system owing to the electrolyte addition
cancels the repulsive energy barrier, thus leading to primary
particles aggregating at a much faster rate into their primary
energy minimum. The stirrer creates velocity gradients that
drive particles and clusters against each other, thus increasing
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the frequency of their encounters. On the other hand, clusters
may also break under the action of hydrodynamic stresses
caused by the presence of shear forces.5 Consequently, it is
expected that the system reaches and preserves a steady-state
condition, determined by an equilibrium between the
aggregation and breakage rates.6 The critical parameter defining
the region of shear-controlled aggregation is the Peclet number
(Pe) which expresses the ratio between the shear and the
Brownian forces and is defined according to the equation

πμγ
=

̇
Pe

R

k T

3 p
3

B (1)

where μ is the solvent viscosity; γ ̇ is the shear rate; Rp is the
radius of the primary particles; kB is Boltzmann’s constant; and
T is the absolute temperature.10

3.2. Aggregation of Nanoparticles. The study of the
aggregation of particles in a shear-controlled regime has been
carried out using the polymer nanoparticles with a core−shell
structure, synthesized through the procedure described in the
Experimental Section. The soft shell of the polymer particles
allows for swelling by the additional monomer (STY), which is
used as a plasticizer that lowers the glass transition temperature
of the polymer domain,23 thus making it very soft at the
operating temperature. The addition of highly concentrated (2
M) magnesium chloride solution ensures full screening of the
surface charges located at the particles’ surface. The system is
left under agitation for some hours, and the morphology
evolution of the clusters, in terms of the radius of gyration
(⟨Rg⟩) and fractal dimension (df), is monitored. As the latter is
obtained via power-law regression of the scattering structure
factor, only variations in the range of ±0.1 are appreciable.
Figure 1 reports the average cluster size and fractal dimension
as a function of the aggregation time for the samples swollen
with 0, 10, and 20% of the additional monomer.
As can be seen from Figure 1a, the average cluster size for the

nonswollen clusters presents no appreciable variations with
time after about 50 min and reaches a constant value of
approximately 25 μm (black squares). This is in agreement with
the results obtained by Harshe et al.22 and Soos et al.,5 which
show that the interplay between aggregation and breakage
reaches an equilibrium and that the average cluster size remains
steady in time. Owing to the high Pe number, as soon as the
cluster is broken into smaller fragments, it promptly aggregates
with other polymer particles or clusters to reach the same
constant average size. On the other hand, in the case of primary
particles swollen with 10 and 20% STY, the average size of the

clusters continuously decreases with time. In particular, the
average size of the sample swollen with 10% STY is measured
to vary from 36 μm after 70 min to 19 μm after 270 (blue
squares). Similarly, the size of the sample swollen with 20% of
the additional monomer decreases from 36 μm after 60 min to
23 μm after 240 (green squares). In addition, Figure 1b shows
that the fractal dimension remains constant at a value of
approximately 2.7, which is virtually identical to that obtained
for clusters made of nonswollen particles in the case of shear-
induced aggregation and breakage processes.22

The observed decrease of the aggregate size with time is in
contrast to the available literature, and accepted explanations
for this trend are still missing. Consistent with that
hypothesized in a previous work,9 the observed trend could
be the result of some alterations on the surface of the swollen
primary particles, which eventually affect the bond strength
among particles and consequently the rate of breakage. More
specifically, after the particles undergo many cycles of
aggregation and breakage, their surface could become more
irregular and less homogeneous. The experimental evidence
indicates that this process should be related to the morphology
of the primary particles that are made of a hard core
surrounded by a shell that is softened through monomer
swelling. One possible mechanism consistent with these
observations is that the surface alteration of the primary
particles occurs through material exchange among different
particles upon collision and breakage. These alterations may
affect the surface adhesion of the particles and consequently the
breakage rate because less energy is required to separate them.
It is worth noting that the observed behavior cannot be simply
due to the fact that the system is not yet at equilibrium
conditions because a destabilized system under shear-controlled
aggregation regime typically reaches equilibrium between
aggregation and breakage within about 60 min, at least for
the particle concentration used in these experiments.5

3.3. Aggregation of Microparticles. To confirm whether
the hypothesized material exchange process occurs, aggregation
and breakage have been investigated using the microparticles
produced according to the procedure reported in the
Experimental Section. These particles exhibit the same
architecture as the nanoparticles: they have a hard core of 2
μm diameter, composed of polystyrene cross-linked with 20%
DVB, and a soft outer shell of 100 nm, again made of
polystyrene but only 1% cross-linked. The morphology of the
microparticles before and after the growth of the shell is shown
in Figure 2. Note that the microparticles present dimples that
probably result from the swelling and cross-linking procedure

Figure 1. Time evolution of the average cluster size (a) and fractal dimension (b) for different swelling ratios (black squares: nonswollen; blue: 10%
swollen; and green: 20% swollen) during the shear-controlled aggregation of nanoparticles.
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used to produce their shell, as reported and discussed earlier in
the literature.24,25

Furthermore, some particles have been made fluorescent by
the addition of the Rh B-HEMA precursor in the monomer
mixtures used to synthesize the shell so that they can be
visualized with a fluorescent confocal microscope. Their shear-
controlled aggregation has been investigated by introducing an
equal mixture of fluorescent and nonfluorescent particles into
the stirred tank, following the same procedure as for the
nanoparticles. Again, the experiments have been run without
and with the addition of further STY to swell and thus soften
the particles’ outer shell. The number of fluorescent micro-
particles before and after aggregation, present both as single
entities and grouped in clusters, has been determined by the
image analysis. Figure 3 shows the confocal pictures of the
microparticles, before and after applying the fluorescent filter.
This allows visualizing all particles (Figure 3a) or only the
fluorescent ones (Figure 3b). The two pictures are super-
imposed in Figure 3c, in which it is possible to count the
number of microparticles presenting fluorescent.

3.3.1. Aggregation of Nonswollen Microparticles. Non-
swollen microparticles were aggregated under shear and
monitored for several hours. The ⟨Rg⟩ values of the formed
clusters measured by SALS measurements are shown in Figure
4 (red squares). It can be observed that already after 1 h a
steady state of the average size is reached, which remains
constant over the 5 h experimental time. Remarkably, this
equilibrium value for ⟨Rg⟩ is considerably smaller than that in
the case of nanoparticles. This observation can be understood
considering the number of particles present in each cluster,
which can be estimated through the equation

=
⟨ ⟩⎛

⎝
⎜⎜

⎞
⎠
⎟⎟i k

R

R

d
g

p

f

(2)

where k is the fractal prefactor, a number whose value typically
ranges between 1 and 1.2;26,27 ⟨Rg⟩ is the average radius of
gyration; Rp is the radius of the primary particles; and df is the
fractal dimension of the colloidal aggregates. It results that the

number of nanoparticles aggregated in a cluster is on the order
of 107, whereas that of the microparticles is limited to 4−5.
Because aggregation is a second-order kinetic process, a smaller
number of particles imply a lower aggregation rate, whereas
breakage, being a first-order kinetic process, is unaffected by a
lower number of particles. It is, therefore, reasonable to expect
a different equilibrium condition, dominated by the relative
higher breakage contribution. Moreover, the breakage process
is also strongly influenced by the size of the particles. For the
same cluster size, in fact, a cluster made of micron-sized
particles contains a lower number of particles and consequently
a lower number of bonds among them. Given this relatively
weaker bond strength compared to the hydrodynamic stress
acting on the particles, it is reasonable to assume that, when
subjected to shear, their clusters can rebreak into much smaller
units, including individual particles.28 To determine any
alteration on their surface, the percentage of fluorescent
particles was monitored as a function of time as shown in
Figure 5 (red squares). The fact that this value does not change
over 5 h allows to conclude that, in this case, no material
exchange occurs among the surfaces of the primary particles.

3.3.2. Aggregation of Swollen Microparticles. The same
experiment has been repeated using particles whose shell has
been swollen with STY. The values of ⟨Rg⟩ were determined via
light scattering and shown in Figure 4 as a function of time
(green squares). It is seen that the gyration radius reaches the
value of 3 μm within the first hour and then remains constant.
Noticeably, it seems not to decrease over time, as in the case of
the nanoparticles. This aspect is again due to the low number of
particles present in each cluster, which makes it difficult to
observe a significant decrease in the average cluster size in time
when dealing with microparticles. In any case, it is a fact that

Figure 2. Particles without shell (a) and after shell growth (b).

Figure 3. Micrographs of the microparticles in transmission mode (a), in fluorescent confocal mode (b), and their superposition (c).

Figure 4. Average ⟨Rg⟩ as a function of time for different
microparticles. In particular, black squares refer to nonswollen core
microparticles, red squares to nonswollen core−shell microparticles,
and green squares to swollen core−shell microparticles.
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the interplay between aggregation and breakage controls the
process. Anew, the proportion of fluorescent particles was
measured. As shown in Figure 5, the percentage of fluorescent
particles clearly increases over time, moving from the initial
50% to approximately 62% after 2 h and eventually to 70% after
5 h (green squares). This experiment shows that the fluorescent
polymer chains, initially present only on the surface of
fluorescent particles, are displaced and can also be found on
the surface of nonfluorescent particles. In particular, this
material exchange occurs only when the shell of the particles is
sufficiently soft, that is, when the particles are swollen by STY.
It is therefore reasonable that a similar mechanism occurs even
in the case of nanoparticles and might be responsible for the
unexpected progressive decrease in the average cluster size.

3.3.3. Aggregation of the Microparticles without Shell. For
the sake of completeness, the highly cross-linked polystyrene
microparticles without shell were aggregated under shear.
Interestingly, under the same conditions, they were unable to
aggregate over the 4 h time course of the experiment (Figure
4). This behavior further confirms the extreme importance of
the surface of the particles in colloidal aggregation. More aptly,
a softer surface, in this case, owing to a 1% cross-linked
polystyrene shell of 100 nm, was observed to promote
aggregation, whereas a harder one, composed of highly cross-
linked polystyrene (20%), makes it impossible for the
microparticles to form stable clusters in the tested conditions.
They surely collide, but due to their rigidity, weak bonds are
formed, which are easily broken by shear forces.

4. CONCLUSIONS
In this work, shear-induced aggregation experiments of various
polymer colloidal particles have been carried out, with the
specific objective of clarifying the role of the softness of the
particle shell on the outcome of the aggregation. In particular,
in a previous work, we hypothesized that the surface of
sufficiently soft particles could be deformed as a result of the
repeated aggregation and breakage events, leading to an
increase in surface roughness. This effect could be sufficiently
pronounced to lead to exchange of material from one particle
surface to another. To prove the presence of such material
exchange, specially designed polymer particles with a core−
shell structure and having the fluorescence group incorporated
into their shell have been prepared. To tune the softness of the
polymer shell, some STY monomer was added, which acts as a
plasticizer. For the first time, material exchange occurring on
the surface of the core−shell polymer microparticles, when

softened by monomer addition, upon aggregation under shear
was proven and highlighted. This was achieved by aggregating a
1:1 mixture of the fluorescent and nonfluorescent particles and
by monitoring the increase in the number of particles exhibiting
fluorescence as a function of time. An increase in the
percentage of particles showing a fluorescent signature was
recorded over time, reaching a fraction of 70% after 5 h.
The consequences of our work are far-reaching. It is

reasonable to assume this phenomenon to be responsible for
the unusual behavior observed on similar nanoparticles under
the same conditions (swollen shell). Indeed, the slow but
progressive decrease in the size of the formed clusters over time
upon shear-controlled aggregation, without substantial change
in fractal dimension and without reaching steady-state
conditions, might be due to surface alterations and increased
roughness on the polymer domain induced by the material
transfer. These modifications can affect the surface adhesion
among the particles and lead to a restructuring of the clusters
toward continuously new steady-state conditions between
aggregation and breakage.
It is worth noticing that material exchange, which has been

proven for the first time in this work, might not be the only
phenomenon controlling the unusual behavior observed in the
shear-controlled aggregation of nanoparticles, but we believe
that it represents a very important effect; the full consequences
of it need to be further ascertained and deepened.
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