
ONTOLOGY THEN AGENTOLOGY:
A finer grained framework for enterprise modelling

Chris Partridge1,2 , Sergio de Cesare1, Andrew Mitchell2, Ana León 4, Frederik Gailly3 and Mesbah
Khan5

1 University of Westminster, 2 BORO Solutions Ltd.
3Faculty of Economics and Business Administration, Ghent University

 4 Universitat Politècnica de València
 5 Tullow Oil plc.

partridgec@borogroup.co.uk, s.decesare@westminster.ac.uk, mitchella@borogroup.co.uk, aleon@pros.upv.es,
frederik.gailly@ugent.be, mesbah.khan@tullowoil.com

Keywords: Enterprise Modelling · Computation Independent Model · Ontology · Agentology · Essential Indexical · De
Se · De Re · De Se Knowledge · De Re Knowledge · Deitic Centre · Agent-Neutral · Agent-Relative.

Abstract: Data integration of enterprise systems typically involves combining heterogeneous data residing in different
sources into a unified, homogeneous whole. This heterogeneity takes many forms and there are all sorts of
significant practical and theoretical challenges to managing this, particularly at the semantic level. In this
paper, we consider a type of semantic heterogeneity that is common in Model Driven Architecture (MDA)
Computation Independent Models (CIM); one that arises due to the data’s dependence upon the system it
resides in. There seems to be no relevant work on this topic in Conceptual Modelling, so we draw upon
research done in philosophy and linguistics on formalizing pure indexicals – ‘I’, ‘here’ and ‘now’ – also
known as de se (Latin ‘of oneself’) or the deitic centre. This reveals firstly that the core dependency is
essential when the system is agentive and the rest of the dependency can be designed away. In the context of
MDA, this suggests a natural architectural layering; where a new concern ‘system dependence’ is introduced
and used to divide the CIM model into two parts; a system independent ontology model and a system
dependent agentology model. We also show how this dependence complicates the integration process – but,
interestingly, not reuse in the same context. We explain how this complication usually provides good
pragmatic reasons for maximizing the ontology content in an ‘Ontology First’, or ‘Ontology then
Agentology’ approach.

1 INTRODUCTION

Data integration of enterprise systems typically
involves combining heterogeneous data residing in
different sources into a unified, homogeneous whole.
This heterogeneity takes many forms and there are
many significant practical and theoretical challenges
to managing it, particularly at the semantic level. In
this paper, we consider a type of semantic
heterogeneity that is common in Model Driven
Architecture (MDA) Computation Independent
Models (CIM); one that arises due to the data’s
dependence upon the system it resides in. There
seems to be no relevant work on this topic in the
Conceptual Modelling literature, so we draw upon
research done in philosophy and linguistics on
formalizing pure indexicals – ‘I’, ‘here’ and ‘now’ –
also known as de se (Latin ‘of oneself’) or the deitic
centre. This reveals firstly that the core dependency
is essential when the system is agentive and that the

rest of the dependency can be designed away. In the
context of MDA, this suggests a natural architectural
layering; where a new concern ‘system dependence’
is introduced and used to divide the CIM model into
two parts; a system independent ontology model and
a system dependent agentology model. We also show
how this dependence complicates the integration
process – but, interestingly, not reuse in the same
context. We explain how this complication usually
motivates maximizing the (domain) ontology content
in an ‘Ontology First’, or ‘Ontology then
Agentology’ approach.

In this introduction, we give an overall context for
the paper. Then we establish the broad features of
system dependence by reviewing the work on de se
done in philosophy and linguistics – where its
subjects are human. Then we show how this applies
in the related case of enterprise systems, using an
extended simple example. With the argument
established, we then look at its methodological and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/147103477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

architectural implications. Finally, we make some
brief comments on future work and summarize the
paper.

1.1 MDA Architectural Layers

The Object Management Group (OMG) has produced
significant documentation of the mainstream
approach to MDA. This starts with a general notion
of a system (here we narrow our focus to enterprise
application software systems). Then, they relate this
to models, where, for them, “[a] model in the context
of MDA is information selectively representing some
aspect of a system based on a specific set of concerns.
The model is related to the system by an explicit or
implicit mapping.” (Object Management Group,
2003) an almost identical statement is in (ORMSC,
ORMSC Draft). Interestingly for us, this text
recognises that there is a relation from the model to
the modelled system and that it is not always explicit;
but it does not mention the relation from the system’s
data to the system.

OMG then outlines the need for the models to
work in architectural layers based upon separating
sets of concerns; recognising that: “Separation of
concerns enables greater agility, ability to deal with
change and a “divide and conquer” approach to
realizing a system.” (Object Management Group,
2014). They accept that “there can be any number of
architectural layers” and identify these three possible
layers in Table 1. As noted earlier, we focus on the
first of these three, the CIM.

1.2 Data Integration Configuration

The integration of data in enterprise systems typically
involves combining heterogeneous data residing in
different sources into a unified whole; where a
significant part of the process is the transformation of
the data into a homogeneous format. There are a
variety of possible integration configurations. Data
warehouses extract data from a variety of source
systems, transform it into a common, homogeneous
format and load this into a target warehouse.

1.3 Direct Interoperability
Configuration

Here we are focussed on the CIM level and so use in
our examples a type of integration scenario that
allows the CIM to vary while keeping the other levels
(PIM and PSM) unchanged. These scenarios involve
the integration of data across a group of standard
implementations of an application package on the
same hardware. As these have the same program code
and the same platform, they share a common PIM and
PSM. All that can vary within the group is the system
specific data content. We call such groups here
standard scenarios.

Data that can be copied directly from one system
to another within a standard scenario without causing
an operational error is called directly interoperable.
We use examples to illustrate the way dependence
works by showing system independent data is directly
interoperable while the system dependent data is not.
This is a kind of extension of Leibniz’s
intersubstitutivity salva veritate principle – so we
could say that dependent data is interoperably
opaque.

1.4 System Dependent Data

It is relatively easy to find examples of system
dependent data; data that is dependent upon the
system of which it is a part. Take a standard scenario
and consider one of the packages. Assume it has a
system configuration file (this is likely to contain
system-dependent data). Assume further that this
configuration has a 'System Base Currency' attribute
with a value of 'USD'. This 'means' that the base
currency for that specific system is US Dollars.

One can get a feel for its dependence by
considering a couple of integration scenarios where
there is no transformation. If this data is copied to
another directly interoperable system without
transformation, clearly there is no guarantee that it
will be correct as the new system may well have a
different base currency. Consider those packages in
the standard scenario that have the same 'USD' value

Table 1: OMG’s MDA architectural layers (adapted from (Object Management Group, 2014)).

Name Acronym Description
Computation
Independent Model

CIM Business or domain models – models of the actual people, places, things,
and laws of a domain.

Platform Independent
Model

PIM Logical system models – models of the way the components of a system
interact with each other – independently of the platform upon which
they are implemented.

Platform Specific Model PSM Implementation models for a specific type of platform; for the set of
resources on which a system is realized.

in the equivalent attribute. At a data level, their
content is equivalent, there are no differences.
However, one cannot integrate these different
systems into a single target without transformation as,
although the data looks exactly the same, it does not
mean exactly the same. In each case, the data is saying
that US Dollars is the base currency of that specific
system; in other words, it is dependent upon its
owning system.

1.5 System Independent Data

It is equally easy to find examples of system
independent data. Consider the application package
above, and assume it has a currency table with a 'USD'
row. Then the equivalent currency tables in some
other implementations are likely to have a similar
'USD' row. In normal circumstances, these two rows
are homogenous (in the data integration sense), they
'mean' the same thing. So it is likely that one could
safely simply copy the 'USD' row into the equivalent
table of other package systems without causing
problems.

1.6 The Dependence Distinction in
Software Engineering

Most mainstream work on software engineering pays
little attention to the system dependence distinction,
either using language that clearly makes no
commitment to the system or casually shifting from
one perspective to the other. For example, Pressman
(Pressman, 2005) could be taking a system
independent perspective when he suggests that a
model is constructed by asking the customers what
are “… the “things” that the application or business
process addresses”.

One MDA Guide (Object Management Group,
2003) focuses on the system and its environment,
saying the CIM “… describe[s] the situation in which
the system will be used” and “is a model of a system
that shows the system in the environment in which it
will operate, and thus it helps in presenting exactly
what the system is expected to do” (Section 3.1). In
another (see the description in Table 1) the CIM is
described in system-free terms.

There are some papers that tackle related issues;
for example, a series of papers (by some of the current
authors) where indexicality and the related theme of
epistemology in enterprise models are explicitly
discussed (Partridge, 1996), (Partridge, 2002a),
(Partridge, 2002b) and (Partridge, Mitchell and De
Cesare, 2012). This paper focusses explicitly on the
de re – de se distinction in CIM level business.

1.7 Understanding System Dependence

While it is relatively easy to identify system
dependent (and independent) data, we have not been
able to find any research that analyses and explains
this specific phenomenon in the Conceptual
Modelling literature. One obvious reason is that, from
the perspective of Conceptual Modelling, this system
dependence could be regarded as a given, as the code
is expected to run on, and so already relativized to,
the system; hence there is no need to explicitly
introduce it.

However, there has been extensive discussion of
almost the same phenomenon in the philosophy and
linguistics literature. Since Frege (Frege, 1997) and
more recently, Perry (Perry, 1979) and Lewis (Lewis,
1979) (among others) there has been significant work
done in philosophy and linguistics on formalizing
pure indexicals – ‘I’, ‘here’ and ‘now’ – also known
as de se (Latin ‘of oneself’) or the deitic centre. A
commonplace of this work is that there are cases
where the pure indexicals are essential, ones where
they cannot be completely translated into non-
indexical de re (Latin ‘about objects’) knowledge
(Perry, 1979). A standard approach, in so far as there
is one, to formalising these indexicals is to regard the
formalization as relative to a context that includes the
deitic centre.

In areas where the role of the pure indexical might
be expected to be prominent – such as pervasive
computing (where there is a focus on context-
location) and agent computing (where there are
multiple deitic centres) – a short-term pragmatic
approach is taken where the use of pure indexicals is
avoided by using non-indexical identifiers.

2 THE PHILOSOPHICAL DE SE

Philosophy and linguistics have developed a good
understanding of what differentiates the pure (de se)
indexical and (de re) non-indexical that we can
exploit for our analysis of system dependence. A
characteristic of pure (de se) indexical uses is that the
reference (and truth) of a sentence can shift from use
to use. For instance, if John and Mary both utter the
sentence ‘I am hungry’, the two utterances refer to
different things; that (in de re non-indexical terms)
‘Mary is hungry (now)’ and ‘John is hungry (now)’.
And there is no (logical) inconsistency in one of the
utterances being true and the other false. This does
not happen with non-indexical de re uses. So, for
example, the reference (and truth) of the sentence
‘Mary is hungry at time t’ does not change whoever,

wherever and whenever it is uttered - each utterance
has exactly the same content.

There is a sense in which John and Mary utter the
same ‘I am hungry’ sentence. In this paper, we will
do this by saying they have the same character;
broadly following the distinction between content and
character in (Kaplan, 1989), where the same pure (de
se) indexical utterance types have the same character,
but their content (and so truth) depends upon a
context – in this case who utters the sentence.
Whereas (de re) non-indexical sentences always have
the same content. Sentences with character (and so a
context) are clearly more complicated to integrate
properly than ones without.

2.1 The Essential (Indexical)

As the example shows, it is true that the content of
pure (de se) indexical sentences can be translated into
(de re) non-indexical sentences. But what Perry
(Perry, 1979) and others have shown is that the
translations are not complete as there is an essential
core of de se knowledge that cannot be translated. A
neat way of illustrating this is with a situation where
someone has de re knowledge of what is happening,
but has not made the link to the corresponding de se
indexed knowledge. The unexpectedness of this has
provided authors with a useful literary device. In
Chapter 3 – ‘Pooh and Piglet Go Hunting and Nearly
Catch a Woozle’ – of the children’s book Winnie-the-
Pooh (Milne, 1926), Winnie-the-Pooh follows the
tracks of what he thinks might be a Woozle, until he
realizes that he has been ‘Foolish and Deluded’ and
that the tracks are his own. In this case, it is initially
true for an observer to say ‘Winnie-the-Pooh is
following his own tracks’ but not initially for Winnie-
the-Pooh (himself) to say that ‘Winnie-the-Pooh is
following his own tracks’ – as he believes that he is
following someone else.

The examples are taken as clear evidence that one
cannot always translate de se indexical knowledge
completely into de re knowledge. As David Lewis
(Lewis, 1979) puts it, the content of de re and de se
knowledge is like a map and the untranslatable kernel
of de se indexical knowledge is like an ‘I am here’
arrow marking where one is on the map. The de re
map can be made as detailed as one wishes, but it still
will not show the de se arrow. The map tells one about
the nature of the world; the arrow tells you, in
addition, where you are in that world. If one extends
this analogy to multiple agents, then the potential for
interoperability issues becomes clear; their de se ‘I
am here’ knowledge obviously cannot be directly
passed between them, it needs to be translated.

As the various authors (rightly) claim, the mere
possibility that this can happen is sufficient to show

that de re knowledge, by itself, is unable to
encompass all de se knowledge. What is needed to
link the two types of knowledge is what Holton
(Holton, 2015) calls, breakthrough knowledge: a
piece of knowledge that enables the two types to be
connected. When Winnie-the-Pooh realizes that the
tracks are his, he acquires breakthrough knowledge
that enables him to connect the two bodies of
knowledge and integrate them.

3 DE SE KNOWLEDGE IN
ENTERPRISE SYSTEMS

Enterprise systems differ from people; not least in
that they are artefacts. Despite the difference, there is
a similar de se – de re distinction. One illustration of
this is the ease with which we can recreate a similar
example. Consider an enterprise system that takes as
input event logs and outputs an analysis of them.
Assume that, when producing the enterprise model
for this system a design choice was made to exclude
processing that checks whether the logs are for the
system doing the processing. Now consider a
situation where this system sometimes consumes its
own event logs. In this case, the system is playing the
same kind of role as Winnie-the-Pooh tracking the
Woozle. It has a reasonably complete picture of the
event logs, but does not have the breakthrough
knowledge that could link some of these to itself. The
problem is not one of principle. The designers of the
system could just have easily designed processing
that makes the link – and probably would do if there
were a requirement, such as its own event log needing
to trigger an action.

3.1 Bank Example

We now move on to illustrating how this affects
enterprise models and to do this we need to look at a
different, more extended, example; one that takes
advantage of the artefactual nature of these systems.
The example aims to illustrate the essentiality of the
de se for (system) agency, and also the different
nature of de re and de se data, by showing how one is
directly interoperable (in the sense introduced earlier)
while the other is not. In other words, we will examine
whether the different types of data can be copied
directly from one standard package system to another
without causing an operational error.

3.1.1 A Naïve Neutral Modelling Notation

Our aim with the models used in this example is to
show the de se and de re data embedded in enterprise
systems. We want to avoid any kind of commitment
to a particular style of CIM modelling to avoid any
possibility that this implicitly makes some
assumptions. Hence we have chosen to use a simple
naïve modelling notation with minimal assumptions.

3.1.2 De re view – no de se deitic core

Figure 1 shows a de re view of the example. It shows
three banks that we assume (for simplicity) deal in
three currencies. They hold correspondent accounts
with each other to facilitate the transfer of funds; only
the US Dollar accounts are shown in the figure. For
this example, we consider just the two transactions
across these accounts shown in the figure.

In this example, we include two processes
associated with correspondent accounts:
1. The administrator of the account is responsible

for keeping a master record of the account
transactions (and its balance) and reporting any
transactions to its owner.

2. The owner of the account is responsible for
keeping a copy record of the account transactions
(and its balance) based upon transactions
reported from its administrator.

So, for example, when, as part of the first transfer,
a payment is made from Account No. 1234, its
administrator, MegaBank, is responsible for

recording this and advising its owner, GigaBank, so
they can record this.

Nowadays, banks delegate these responsibilities
to computer systems. Let us assume – as shown in
Figure 1 – that the banks in our example all use
instances of the same (notional) banking package,
Bancology (hence they are a standard scenario and so
easily illustrate direct interoperability or its lack).

This gives us enough data to recreate a similar
type of issue to that found in the earlier de se
examples. Assume that the Bancology system’s data
structures follow the de re view laid out in Figure 1.

Now consider one of the system instances –
Mega-Bancology, say. The instance has no way of
knowing who owns it and so what responsibilities it
has been delegated. What can the system do to
ascertain how to process either transaction? Given the
information at hand, it cannot work out whether it has
administration or owning responsibility for either leg
of the transfer – or neither.

3.1.3 Minimal de se deitic core

Only when the system is given the additional
breakthrough self-ascription information – shown in
Figure 2 – can it work out what to do. In this case, if
the system is given the de se data that it is the
individual (system) Mega-Bancology, then it can
infer it ‘works’ for MegaBank, where MegaBank is
an administrator or owner, and carry out the relevant
processes. The other systems would need information
with the same character, but content relative to
themselves. This recapitulates the essentiality of the

Figure 1: The de re view.

de se for agency. As an aside, this level of self-
awareness is uncommon in enterprise systems. They
tend to have data structures closer to those described
in the next section.

3.1.4 More typical de se view – deitic
neighbourhood

In practice, banks tend to classify the correspondent
accounts in their books relative to themselves (that is,
in de se mode) as either nostro (Italian for ‘ours’)
when they own the account and vostro (Italian for
‘yours’) when they administer the account. Table 2
shows this for the example’s accounts. It also shows
a related classification - counterparty nostro; this is
the nostro account of the (trading) counterparty. As
one can see, sometime this is, and sometimes is not, a
correspondent account of the bank.

Let us now assume that the Bancology system has
been designed to use de se nostro and vostro
classifications for correspondence accounts – and
also use (non-vostro) counterparty nostros: this
involves introducing agent-relative types for these.
This is a common design choice. We illustrate this
using the Giga-Bancology instance in Figure 3.
Firstly, note this has a deitic centre “I” with its link to
GigaBank (this plays the same role as the earlier
breakthrough I-mapping in Figure 2) – often implicit
in enterprise systems or recorded on a configuration
table.

There are several differences between the de se
and de re views. The Banks type is agent-relative,
unlike the earlier de re view, and excludes the system-

owning bank. The correspondent bank accounts are
divided into more specific agent-relative types.
Nostro accounts are those correspondent accounts
where the system-owning bank is the owner. Vostro
accounts are those correspondent accounts where it is
the administrator. In this agent-relative context, there
is no absolute requirement for keeping a record in
each ‘row’ of GigaBank’s role – so the account owner
is dropped for the nostro type and the account
administrator from the vostro type – as these are
always the owner of the system. Its (non-vostro)
counterparty nostro accounts are the nostro accounts
of its counterparties, where these are not already
vostro accounts. From MegaBank’s perspective, its
Account No. 5678 is a nostro account. As MegaBank
is a counterparty of Gigabank, this account is
technically a counterparty nostro account (as shown
in Table 1), however it is excluded so that the agent-
relative types do not overlap.

This agent-relative perspective simplifies the
processing, which can be rewritten as follows:

The system is responsible for
1. Keeping a master record of the vostro account

transactions (and its balance) and reporting any
transactions to its owner.

2. Keeping a copy record of the nostro account
transactions (and its balance) based upon
transactions reported from its administrator.

Table 2: Perspectives on nostro-vostro and counterparty nostro.

Account MegaBank perspective GigaBank perspective NanoBank perspective
1234 Vostro (and GigaBank Counterparty

Nostro)
Nostro GigaBank Counterparty

Nostro
5678 Nostro Vostro (and MegaBank

Counterparty Nostro)
MegaBank Counterparty
Nostro

9012 Vostro (and NanoBank
Counterparty Nostro)

NanoBank Counterparty Nostro Nostro

Figure 2: Breakthrough I-mapping extension.

The agents’ different responsibilities to these
accounts result in different types of information in
them. The vostro accounts contain the master record
of the transactions and balances – so the balance is
authoritative. The nostro accounts are copies of the
master records and so, while intended to be complete
(include all transactions) they are less authoritative –
they rely on good and timely information from the
administrator. Finally, the (non-vostro) counterparty
nostro accounts are not complete, as the agent will
typically not know all (or even most) of the
transactions – hence it makes no sense to even
calculate a balance.

Now we show the Mega-Bancology instance in
the same Bancology structure in Figure 4.

This, as expected, has the same character
(structure) with very different content. One obvious
example is the deitic centre, which links to GigaBank
rather than, as in Figure 3, to MegaBank. Another
interesting difference is that there are no (non-vostro)
counterparty nostro accounts in Figure 4 as
MegaBank’s counterparty nostro accounts are all
vostro accounts.

This clearly shows that the same de re data is
being viewed differently by different agents. For
example, there is literally no correspondent account

row in common in these two agent views: none of
these are classified in the same way. This illustrates
how taking a fully-fledged agent-relative view (with
agent-relative types) leads to each agent dividing up
their view of the world (correspondent accounts) in a
different way. But what is interesting here is that
though the data is different, the metadata or schema
is the same. This works in a similar way to language
indexicals. The agent-relative view encoded in the
enterprise layer of the system enables agents to build
views with the same ‘character’ (see earlier (Kaplan,
1989) definition) but different content. In enterprise
system terms, using an agent-relative view does not
hinder agents with similar views from reusing the
same view. Package software trades on this, enabling
a standard agent-relative character to be reused by
many agents. Clearly agent-neutral metadata
structures can also be reused. But, maybe less
obviously, an agent-relative character cannot be
reused for a different character.

3.2 Comparing the Two ‘Models’

As already noted a few times, it is possible to translate
between some – probably most – de se and de re

Figure 3: A more typical view - Giga-Bancology.

(agent-relative and agent-neutral) data. The only
intractable element is the deitic centre. The two types
of model – the minimal deitic core in Figure 1 & 2
combined and the maximal deitic core in Figures 3
and 4 above – illustrate two design extremes this
translation offers. The ‘minimal deitic core’ model
has a minimal agent-neutral core - “I”. The ‘maximal
deitic core’ model is pragmatically maximal agent-
relative. Later in the paper, we will revisit these
design choices, when considering the enterprise
(model) architecture.

3.3 Direct Interoperability Test for
Agent-Relative Data

Reuse and interoperability are usually important
design considerations in system design; semantic
reuse and interoperability are usually important
design considerations in enterprise (model) level
system design. Here we consider direct
interoperability as an instrument for distinguishing
between agent-neutral and agent-relative data within
systems (and so the equivalent enterprise models).
This shows the different interoperability
characteristics of agent-neutral and agent-relative
components of the design – which, later in the paper,
we use to motivate architectural design choices.

As we have already established that systems with
agency have necessarily agent-relative components.
These agent-relative components can be reused in a
new implementation of the system, with a different

agent, provided the character requirements are the
same – even though they lead to different content.
This reuse of the components is not compromised by
these changes in content, as it works with character.
Direct interoperability however is sensitive to content
– so it provides a good instrument for distinguishing
between agent-neutral and agent-relative data.

The direct interoperability test, in the simple
cases, takes a type from two (or more) systems with
the same data structures and merges their content.
Obviously, in more complex cases, where there are
dependencies between types, a network of types may
need to be selected and then the merge may turn out
to be less simple. However, we have mostly simple
cases here. It then loads the merged content back into
the source systems and sees whether there is any
operational difference. If there is, this indicates that
there is de se content.

4 OPEN QUESTIONS FOR
AGENTOLOGY METHODOLOGY
AND ARCHITECTURE

A system’s enterprise concerns – and so its enterprise
model – can involve representations from both de re
and de se perspectives. When one starts regimenting
the de re perspective a natural result is an ‘ontology’
– including, at least, a list of the things that exist
(Partridge, 2002a), (Partridge, Mitchell and De

Figure 4: Another more typical view - Mega-Bancology.

Cesare, 2012). Given that the deitic centre is an agent,
we have proposed calling its regimented perspective
an ‘agentology’.

It should be clear now that where an enterprise
system has agency (that is, when it can do something),
it will have an irreducible deitic centre and so an
underlying agentology – which can be exposed by
regimentation. During the development of the system,
if an enterprise model were produced then one would
expect it to represent this deitic centre. As the bank
example illustrates, in the deitic neighbourhood the
system could have either de se or de re types. In the
deitic outskirts, the types naturally lose any de se
character; in the example, the type ‘currencies’
illustrates this.

This brings into focus two related architectural
concerns relating to the ontology and agentology
models (which are typically not considered) –
• Inter-relationships: when the system has agency,

there is no choice but to include the agentology
in the enterprise model; how this should be done?
Should the agentology or ontology be modelled
separately or together? And if separately in what
order? More radically, if one has an agentology,
is there a need for an ontology?

• Content allocation: given that there is a range of
knowledge that can be represented using either a
de se or de re perspective; how should this choice
be made? What knowledge should be in one,
what in the other?

While we have established that an agentology is
essential for agentive systems, we have not done the
same for an ontology. One can regard the deitic
outskirts as neutral with regard to de se and de re
perspectives as they appear the same in both. If one
does, then the de se (agentology) models in the bank
example can be regarded as de re free, which suggests
that one could, at one extreme, have a pure
agentology enterprise model with no ontology.

On the other hand, for non-agentive systems, such
as pure reporting systems, there is no requirement for
de se knowledge. In these cases, the agentology
model is not required.

Given the growing scale and inter-connectedness
of enterprise systems, interoperability and reuse
(more specifically, reuse across agent-relative
characters) are influential requirements. And with
larger systems, as well as inter-system
interoperability and reuse, there is intra-system
interoperability and reuse to consider. We think these
considerations should drive a preference for a de re
approach, one that aims for a model closer to the other
extreme, where the de se perspective is minimized as
far as possible to the deitic centre - and the deitic
neighbourhood is modelled from a de re perspective.
This is not to deny that, given the range of possible

scenarios, there will be situations where a de se
maximising approach makes sense, but there would
have to be requirements that trump the need for
interoperability and reuse.

The preference for agent-neutral forms does not
always mean a binary choice. One could develop a
single agent-neutral template model and use this to
generate consistent, different agent-relative
perspectives, simplifying interoperability. There will
undoubtedly be cases similar to the three layer ANSI-
SPARC model, where the core persisted data is in de
re form and this is translated on-the-fly into a de se
perspective for presentation to the users. The bank
example illustrates how this might happen: the data
could be persisted in simple de re correspondent
accounts and translated into nostro and vostro
accounts when required for specific users.

In greenfield development, the ontology is likely
to have a wider breadth of reuse than the agent-
relative agentology. This suggests a preference for
building the ontology section of the enterprise model
first and then the agentology section. So, both in
terms of de se or de re preference and the order of
construction, there are good pragmatic reasons for an
'Ontology First', or 'Ontology then Agentology'
approach. Similar concerns apply to some types of
brownfield projects, such as legacy system
modernization.

5 FUTURE WORK

There are a couple of areas for immediate future
work. Firstly, if one accepts that the agentology
should be minimal, this raises the question of how
minimal it can be. There are several precedents to
follow. Lewis (Lewis, 1979), himself following a
suggestion of Quine, considers possible worlds
centred on a designated individual, or time-slice of an
individual to characterize the deitic ‘now’. The idea
is, as David Chalmers (Chalmers, 2006) puts it, ‘We
can think of the centre of the world as representing
the perspective of the speaker within the world’. In
(Partridge, 1996) one of the authors introduces the
system perspective and ‘dynamical’ (as their
reference shifts) ‘now’ and ‘here’ event objects. This
indicates that the deitic centre (I, here and now) is
probably a reasonable base. Though as noted above,
there may be a need to define derived de se
perspectives (such as nostro and vostro accounts) to
support user views.

Secondly, it makes sense to clearly differentiate
the two perspectives in the model, which raises the
question of the relations between the perspectives.
There seems to be a need for a kind of identity
mapping, such as that in Figure 2. What other kinds

of mappings are needed? For example, can an object
in the agentology be represented as an instance of a
type in the ontology, and if so, how does this differ
from the ontology-bound instantiation relation?
These and similar questions need to be answered to
provide a rigorous enterprise model.

6 SUMMARY AND
CONCLUSIONS

The paper aimed to bring some clarity to
requirements for de se and de re perspectives in
enterprise models. As well as clarifying what these
perspectives are – and that these two perspectives are
distinct – it has provided good reasons for thinking
that a typical (agentive) enterprise model cannot be
just a de re perspective, that it needs to include a de
se perspective as well. It has proposed good
pragmatic reasons, based upon interoperability and
reuse requirements, for an 'Ontology First', or
'Ontology then Agentology' approach both in terms of
de se or de re preference and the order of construction.

REFERENCES

Chalmers, D. (2006) 'The foundations of two-dimensional
semantics', in Manuel García-Carpintero and Josep
Macià (ed.) Two-dimensional semantics. New York:
Oxford University Press, pp. 55-140.

Frege, G. (1997) 'Thought', in Beaney, M. (ed.) The Frege
Reader. Oxford: Blackwell, pp. 325-345.

Holton, R. (2015) 'Primitive Self-Ascription: Lewis on the
De Se', in Loewer, B. and Schaffer, J. (eds.) A
Companion to David Lewis. John Wiley & Sons, pp.
399.

Kaplan, D. (1989) 'Demonstratives', in Joseph Almog,
John Perry and Howard Wettstein (eds.) Themes From
Kaplan. Oxford University Press, pp. 481-563.

Lewis, D. (1979) 'Attitudes de dicto and de se', The
philosophical review, 88(4), pp. 513-543.

Milne, A.A. (1926) Winnie-the-Pooh. London: Methuen.
Object Management Group (2014) MDA Guide rev. 2.0.
Object Management Group (2003) MDA Guide Version

1.0.1.
ORMSC (ORMSC Draft) The MDA Foundation Model.
Partridge, C. (2002a) LADSEB-CNR - Technical report

05/02 - The Role of Ontology in Integrating
Semantically Heterogeneous Databases. Padova, Italy:
LADSEB CNR.

Partridge, C. (2002b) 'The Role of Ontology in Semantic
Integration', Second International Workshop on
Semantics of Enterprise Integration at OOPSLA 2002.
Seattle: .

Partridge, C. (1996) Business Objects: Re - Engineering
for Re - Use. 1st Edition edn. Oxford: Butterworth
Heinemann.

Partridge, C., Mitchell, A. and De Cesare, S. (2012)
'Guidelines for Developing Ontological Architectures
in Modelling and Simulation', in Tolk, A. (ed.)
Ontology, Epistemology, and Teleology for Modeling
and Simulation: Philosophical Foundations for
Intelligent M&S Applications. First edn. Berlin,
Heidelberg: Springer, pp. 27-57.

Perry, J. (1979) 'The problem of the essential indexical',
Noûs, 13(1), pp. 3-21.

Pressman, R.S. (2005) Software engineering: a
practitioner's approach. Palgrave Macmillan.

