
Social Semantic Search: 

A Case Study on Web 2.0 for Science 
 

Laurens De Vocht1, Selver Softic2, 

Ruben Verborgh1, Erik Mannens1, and Martin Ebner2 

 
1 imec - IDLab, Ghent University, 

Technologiepark-Zwijnaarde 15 9052 Ghent, Belgium. 

{firstname.lastname}@ugent.be 
2 Institute for Information Systems and Computer Media, Graz University of Technology, 

Inffeldgasse 16c 8010 Graz, Austria. 

{firstname.lastname}@tugraz.at 
 

 

Abstract. When researchers formulate search queries to find relevant content on the Web, those 

queries typically consist of keywords that can only be matched in the content or its metadata. 

The Web of Data extends this functionality by bringing structure and giving well-defined 

meaning to the content and it enables humans and machines to work together using controlled 

vocabularies. Due the high degree of mismatches between the structure of the content and the 

vocabularies in different sources, searching over multiple heterogeneous repositories of 

structured data is considered challenging. Therefore, we present a semantic search engine for 

researchers facilitating search in research related Linked Data. To facilitate high-precision 

interactive search, we annotated and interlinked structured research data with ontologies from 

various repositories in an effective semantic model. Furthermore, our system is adaptive as 

researchers can synchronize using new social media accounts and efficiently explore new 

datasets. 

 

Keywords: Web of Data, Linked Data, Social Media, Semantic Search, Digital Libraries, Web 
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1 Introduction 
The evolution of Web 2.0 enabled many users via wikis, blogs and other content 

publishing platforms to become the main content providers on the web. The Web 2.0 for Science, 

also known as Science 2.0 or Research 2.0 aims to adapt the Web 2.0 for researchers. It entails a 

set of tools and services which researchers use to discover resources, such as academic 

publications or events they might be interested in, as an alternative to traditional search engines 

(De Vocht et al., 2011). The tools and services are typically API’s, publishing feeds, search and 

discovery services and interfaces designed based on social profiles (Parra & Duval, 2010; 

Ullmann et al., 2010). Research 2.0 comprises interacting with information published on Social 

Media, online collaboration platforms and other Web 2.0 tools. These platforms find more and 

more uptake (Van Noorden, 2014). The data is available under the form of posts, threads, tags 

and user information is transferable into semantic form, since widely used and accepted 

vocabularies for these domains exist. Weaving microblogs into the Web of Data is interesting 
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from a researcher centric semantic search perspective. Twitter1, as exemplary microblog Social 

Media platform, can help resolving scientific citations (Weller et al., 2011). 

Studies on the use of microblogs like Twitter during conferences within the science 

community showed that researchers were using Twitter to discuss and asynchronously 

communicated on topics during conferences (Ebner et al., 2010) and in their everyday work 

(Reinhardt et al., 2009). A survey on Twitter use for scientific purposes (Letierce et al., 2010) 

showed that Twitter is not only a communication medium but also reliable source of data for 

scientific analysis, profiling tasks and trends detection (Tao et al., 2011; Mathioudakis & 

Koudas, 2010; Softic, Ebner et al., 2010). Twitter hashtags have an influence on the structuring 

of communication within Twitter as well as for community building (Laniado & Mika, 2010; 

Bakshy et al., 2011). 

However, the mass produced data remains in so-called ‘data silos’ bound to a specific 

platform or somewhere within databases. The access to these data sources is associated with 

specialized application interfaces (API’s) which requires specialized technical knowledge to 

retrieve the data in a desirable form. Many information public interest sources remain captured 

behind a so-called ‘walled garden’. Combining information resources over the walls leads to a 

high degree of mismatches between vocabulary and data structure of the different sources 

(Herzig & Tran, 2012). When users formulate a (Web) search in a certain context across multiple 

data sources, it often includes keywords. In many cases the semantic importance and meaning of 

the keyword is not considered. The keyword order and combination in a query affects the 

context, the precise goal of the search and thus the results. 

Mostly direct querying approaches were tried and applications were often built around a 

limited set of supported query patterns. Furthermore, queries are still hard to construct for end 

users or even developers, despite GUIs and advanced query builders. Vocabularies are getting 

more streamlined and linked data is maturing. This leads to much more possibilities compared to 

traditional keyword search. Therefore, we propose a semantic model that drives the search 

engine, and is optimized for this use case. The key variables that are important in this regard are 

the efficiency (performance and complexity) and the effectiveness (search precision) of the 

proposed engine and thus indirectly the model it implements. 

                                                 
1 http://www.twitter.com/ 



1.1 Research Questions 
Social semantic search combines concepts aimed at personalized information retrieval 

with well-defined services resolving case specific Web user needs. Understanding semantic 

search in the scope of information retrieval (IR) differs from the one in the Semantic Web 

community (Tran, Herzig & Ladwig, 2011). However, common to many semantic search 

approaches is using a ‘Semantic Model’ which includes (heterogeneous) data sources, a query 

mechanism and a matching framework. We investigate how researchers find the results by 

implementing an engine that enables them to interact with relevant data sources. It is relevant to 

measure if and how well the semantic model proves to be useful in tackling these issues. The 

following questions address a set of research questions by applying social semantic search to 

Research 2.0: 

 

1. How does the semantic (search) model reveal relations between resources 

interlinked in a scientific research context?. Our approach and evaluation illustrates 

how to apply these paradigms for semantic search within Research 2.0. 

2. How well does the implementation of a semantic model enable researchers to find 

people (researchers), documents (papers) and events (conferences)?, as well as some 

other related entities relevant for the context; 

3. How do researchers effectively search give a certain search context?, for instance 

detect conferences, based on their earlier activities on social media;  

4. How does the proposed engine perform compared to a relevant semantic baseline? 

 

1.2 Methodology 
The methodology focuses on the performance (efficiency), the user perception and 

information retrieval quality (effectiveness). Thereby we are testing (task-oriented) user 

experience and information retrieval aspects of each approach (such as search precision). We 

deduct as much as possible information out of the use case setting to address the research 

questions. Therefore, we implemented the semantic model specifically for the social semantic 

web search use case of research 2.0.  

We considered using SPARQL2 benchmarks3, but it would not cover all implemented 

search functionality aspects. In the experience report (Uren et al., 2010) the authors: reflected 

about their experience over years on semantic search systems evaluation (i); concluded that such 

evaluations are generally small scale due the lack of appropriate resources and test collection, 

agreed performance criteria and independent performance judgment (ii); and proposed for future 

evaluation work: “developing extensible evaluation benchmarks and using logging parameters 

for evaluating individual components of search systems” (iii). Led by these findings and absence 

of adequate benchmarks that cover all facets of our approach we necessitated to define own 

user-centered methodology and benchmark for social semantic search (De Vocht et al., 2015). 

The goal of the methodology and benchmark is to design a search engine and evaluate it 

with certain queries and datasets against a relevant baseline. It aggregates above mentioned and 

other related approaches and optimizes aspects for use with interactive exploration, social data, 

Linked Open Data and end-user involvement. Therefore, the benchmark requires test-user input 

to define the queries and measure the engine’s efficiency and effectiveness. 

                                                 
2 https://www.w3.org/TR/rdf-sparql-query/ 
3 https://www.w3.org/wiki/RdfStoreBenchmarking 



2 Related Work 
Some efforts regarding semantic search worth mentioning are shown in Table 1, which 

includes the system names and the references mentioned in this section. 

 
Table 1 Overview on related work with their main contributions and key variables. 

System Reference Main Contribution Tested Data Sources Results Format Key Variables 

Our approach 

 

Iterative keyword search, reveal 
indirect connections between results 

Mendeley, Twitter, 

COLINDA, DBLP4, 
DBpedia5, GeoNames6 

Weighted graph 

based on the 
ranking 

Efficiency, 
Effectiveness 

EASE (Li et al., 2008)  

Adaptive keyword search, top-k 

ranking DBLife7, DBLP, IMDB8 List 

Efficiency, 

Accuracy 

Falcons 

(Gong Cheng and 

Yuzhong Qu, 2009) 

Keyword-based search system for 

linked data objects on the web 

DBpedia, GeoNames, web 

crawler List 

Quality,  

Number of clicks 

Hermes 

(Tran, Wang & 

Haase, 2009) 

Translating keyword queries to 

structured queries 

DBLP, Freebase9, 

DBPedia, semanticweb.org List 

Efficiency, 

Effectiveness 

RelFinder (Heim et al., 2009)  

Systematic analysis of relationships 

in knowledge bases DBpedia 

Subgraph with 

keywords  Interactivity 

LI (Li, 2012) Ranked top-k answers semanticweb.org 
Subgraph with 
keywords Effectiveness 

Mímir (Tablan et al., 2014)  

Combining full text search, 

structural annotation graph search, 

and SPARQL-based concept search 

Annotated documents in 

various use cases 

Multiple lists or 

sets 

Extensibility, 

Effectiveness 

S3 (Bonaque et al., 2016) 

Top-k keyword search taking into 

account the social, structured, and 

semantic dimensions 

Twitter, Vodkaster10 and 

Yelp11 List 

Efficiency, 

Qualitative 

Advantage 

SemFacet (Arenas et al., 2016) 

Faceted search in RDF, establish 
computational complexity, updating 

faceted interfaces: critical in the 

formulation of meaningful queries. Yago12 List Efficiency 

 

 

Hermes supports direct keyword translation, query expansion based upon SPARQL and 

is more generic as it does not focus on digital libraries and scientific research. It is a set-up with 

limited search personalization, this differentiates from our model. Our approach allows 

expanding the results using the paths among the matched keyword-entities over several 

iterations. Besides Hermes also EASE, Falcons and LI have been developed for retrieving 

semantic data from the Web. These engines primarily rely on keywords for the query 

specification. EASE is an XML-document based approach. Hermes also supports advanced 

querying capabilities, including basic SPARQL graph patterns. In general, the semantic matching 

frameworks within these search engines reside on graph pattern matching against Resource 

Description Framework 13  (RDF) data. LI introduced support for matching keywords within 

attributes and relations in the RDF data. The RelFinder tool extracts a graph covering 

relationships between two objects of interest and supports the systematic analysis of the 

                                                 
4 http://dblp.uni-trier.de/ 
5 http://dbpedia.org 
6 http://www.geonames.org 
7 (DeRose et al., 2007) 
8 http://www.imdb.com/interfaces 
9 https://developers.google.com/freebase/ 
10 http://www.vodkaster.com/ 
11 http://www.yelp.com/ 
12 http://www.yago-knowledge.org 
13 https://www.w3.org/TR/rdf-schema/ 



discovered relationships by providing highlighting, previewing, and filtering. RelFinder resides 

on optimized SPARQL queries built on client side and in case of uncertainty disambiguates the 

results by sorting them by relevance using the SPARQL “count” feature for ranking. Unlike 

RelFinder, we target non semantic web expert users. A restriction of RelFinder is that users must 

supply valid entry points, SPARQL endpoints and repositories to query on, which requires 

technical knowledge. 

The main contribution of Mímir lies besides advanced semantic search features in the 

natural text enrichment by first processing the documents containing it, making semantic search 

possible in non-structured documents. We work with structured data and assume that there are 

enough methods to convert unstructured documents into structured data and there is enough 

structured data present alread to meet the use case needs. In that regard our approach is more like 

S3 where the documents (such as messages on social media) are considered as ‘items’ and the 

relations between items and social connections defined in the (meta)data are being taken into 

account in their model. SemFacet added a theoretical foundation for faceted search over RDF 

data, evaluated its implementation in terms of query performance and collected qualitative 

statistics about the facets. 

Our approach does not only show the path between two related resources as a single 

(filtered on-demand) query result, it delivers multiple resource relations visualizations between 

the all found resources identifying their types and classes with the focus to the resource in center 

of the graph. By clicking on another resource the focus changes to the selection. All clicks are 

tracked and visualized as click path to show the user an overview over visited resources. The 

interface also includes paths and a query history. For ranking the results, our search solution 

considers two important aspects not offered by existing efforts; path distance to the selected 

resource (the proximity) and the pre-sets derived from the users’ profile on social media. 
 

3 Semantic Search Model 
Users interact with the semantic model and the data model through multiple interfaces. 

The interfaces bridges each component in the search infrastructure. The top level interface, the 

user interface, delivers an aggregated and enriched view. All exposed content follows a common 

pattern from an aligned model resulting in a semantically interpreted and refined research 

repository. 

 

3.1 Overview 
The Semantic Search Engine (components shown in Figure 1) resolves queries consisting 

of one or more research concepts with refined entities, represented in the model as “Data Seeds”. 

The Aligner allows configuring the interlinking of structured data, linked data (semantically 

described structured data) and Social Media data. The search interface allows researchers to 

browse and search for new research based on the researcher’s previous tracked history and 

traversed paths (such as bookmarks or saved searches). Researchers interact with the system 

indirectly by contributing and monitoring posts and shares on Social Media using several Web 

2.0 Tools. 

 



 
Figure 1 The system overview shows the key combination between the Aligner and the Semantic Search Engine as a 

bridge between the source data and researchers. 

The system takes into account all relevant researchers’ contributions to improve ranking 

found resources related to a search. Combining the Aligner and the Semantic Search Engine is an 

essential aspect for this infrastructure: the Aligner combines data from various heterogeneous 

sources configured in the Data Seeds and refines them for the Semantic Search Engine. The 

Semantic Search Engine parses queries and discovers relations between the resources. 

 

3.2 Vocabularies 
The Dublin Core vocabulary14 was used together with the Semantic Web for Research 

Communities15 (SWRC), the Semantically Interlinked Online Communities16 (SIOC) and the 

Friend-of-a-Friend17 (FOAF) ontology to describe the information on titles, authors, posts and 

descriptions. To describe tags, we used the Modular Unified Tagging Ontology (MUTO)18, it 

integrates many prior defined tag ontologies. The MUTO instances resolve interlinking between 

the tags and conference labels (De Vocht et al., 2014) in Conference Linked Data19 (COLINDA) 

(Softic & De Vocht et al., 2015). 

                                                 
14 http://dublincore.org/documents/dcmi-terms 
15 http://ontoware.org/swrc 
16 http://rdfs.org/sioc/spec/ 
17 http://xmlns.com/foaf/spec/ 
18 http://muto.socialtagging.org/core 
19 http://www.colinda.org 



3.3 Aligner 
The Aligner module combines different social and online tools, such as Twitter and 

Mendeley. It interlinks data provided by the users (when they are using these social and personal 

media tools) to existing (Linked) Open Data such as DBpedia, GeoNames, LinkedGeoData20, 

DBLP, and COLINDA. This interlinking allows enriching and connecting researchers to 

resources implicitly connected to them and thus initially not accessible. This allows to track 

communication on Social Media such as Twitter among researchers and relate it to publications 

and conferences. The Aligner module is optimized for Social Media and collaboration tools. 

Moreover, an important part of the alignment analysis, where access to restricted resources from 

users on Twitter and Mendeley is needed, happens on client-side. The results are aligned with the 

existing Linked Open Data. How and which components are integrated and implemented in the 

prototype is not the paper’s main focus. 

 

Profiler. When researchers sign up, they authorize access to their Twitter and/or 

Mendeley accounts. The Profiler extracts the timeline and followers of the user’s social account 

and then annotates them using the FOAF and SIOC vocabularies. We link their author’s profile 

to DBLP based on publication title and each publication’s Digital Object Identifier (DOI). 

Listing 1 shows how we combine these identifiers with all author names and use them to find 

matching author identifiers in DBLP for each publication. For each article in a Mendeley account 

linked to a subscribing researcher it checks the DOI and publication title in DBLP and retrieves 

the authors. If a match occurs, the articles are aligned using owl:sameAs. If all author names of 

the publication match, we interlink the Mendeley authors with the DBLP authors based on their 

URI’s. Because users linked their Twitter and Mendeley when signing up, the profiler links the 

author representation on DBLP with the author profile on Mendeley to the other social media 

user accounts and their contributions.  

                                                 
20 http://linkedgeodata.org 

 
alignArticle ( mendeleyArticle ) 
title = find ( mendeleyArticle , " dcterms : title ") 
articleAuthors = aligner . getAuthors ( title , article ) foreach 
( articleAuthors -> ( dblpArticle , authors )) 
 add ( mendeleyArticle , " owl : sameAs ", dblpArticle ) 
 foreach ( authors -> ( authorUri , authorName )) 
 add ( articleUri , " dcterms : creator ", authorUri )  

 persons = find (" foaf : name ", authorName ) 
 foreach ( persons -> person ) 

add ( person , " rdf : type ", " foaf : Person ") 
add ( person , " owl : sameAs ", uri ) 

 

Listing 1: Aligning research publications. 
 
annotateTag ( tag ) 
labels = store . find (tag , " rdfs : label "); 
foreach ( labels -> ( label )) 
foreach ( interlinkServices -> ( service )) 

meanings . add ( getMeaning( service , label ))  
store .add (tag , " muto : tagLabel ", literal ( label ))  
store .add (tag , " muto : tagMeans ", meanings ) 

 

Listing 2: Interlinking of tags 
 

 

We use the social profiles of each researcher to allow personalized searches. The user 

profile extends the search context given a set of keywords. The original Social Media data 

needed to generate user profiles reside in-memory. After profiling the original tweets are erased 

after at most seven days. The profiling and analysis results are kept and indexed. 

 



Interlinker. Interlinking uses several steps to align various sources. The first step is to 

define which Linked Data sets to use in which context, to identify the vocabularies in them and 

to define which resource to link with resources occurring in another dataset. If the dataset is not 

available as Linked Data, then we must select a vocabulary to annotate the data. The case of 

Social Media is particular because Social Media content often exists of small posts and shares 

which we analyzed based on: 

 

• URLs referring to and the content in it (enriched with recognized entities), 

• hashtags and mentions included, 

• entities occurring with the tweets. 

 

After we extracted the URLs, hashtags, entities and mentions from each post in Social 

Media, we checked each of those against the Linked Open Data Cloud. COLINDA is used for 

matching conference hashtags, LinkedGeoData and GeoNames for locations, DBpedia for 

general concepts such as persons, places and events. DBpedia is well-connected to the 

GeoNames and DBLP which makes it a valuable source for search space expansion with more 

information about categories like cities and countries, persons or institutions. We give an 

example for the hashtags: after loading the interlink services (e.g. 

"colinda","geonames","dbpedia","dblp") from a configfile in a list interlinkServices, we do for 

each unique tag occurring in a microblogpost the actions listed in Listing 2. 

Combining these approaches enriches tweets with Linked Data and is a good way to 

achieve optimal meaning. Entities occurring in the resources shared via the tweets lead to the 

best results (Abel et al., 2011). However, we have found in earlier research work that also the 

hashtags have consistent enough meaning for interlinking (Laniado & Mika, 2010). 

 

Extracter. Most research information is unavailable as RDF, but available in relational 

databases as tables or spreadsheets. To make this data available in RDF we use two types of 

processes: (i) pre-defined (static) annotations using the resource provider’s API to load the 

information from the data repository; and (ii) dynamic mapping between the ontology and the 

data repository. Each time when a certain source provides access to their structured content, the 

Aligner makes sure that provided content is converted conform our data model. Therefore, it 

selects configured properties and maps them using the supported vocabularies and triplifies 

them. 

 

3.4 Semantic Search Engine 
This module refines the aligned data, parses queries against it and ranks matched 

resulting resources. The Pathfinder module retrieves resources via the Indexer module. The 

Indexer pre-optimizes and stores each resource by URI and label to serve them. We have used an 

implementation that relies on our earlier work finding paths (De Vocht & Coppens et al., 2013). 

For all data sources we make sure that we describe the semantic model using mapped and 

applied vocabularies so we can expose them using a uniform interface and representation, such 

as RDF. The engine processes keywords by first doing the keyword-to-resource mapping. With 

each user action, researchers can input keywords and interact with results over several iterations, 

the query translation within the search engine is triggered. 



4 Ranking of Results 
Ranking resources and relationships in the Web of Data differs from traditional document 

ranking because semantic search engines can take into account the meaning of the relations 

between resources in the results and others not included. Aleman-Meza et al. demonstrated the 

effectiveness of a ranking approach that distinguishes between statistical and semantic metrics 

(Aleman-Meza et al., 2005). They used proximity to the search context as an important metric. 

Because it is critical for the success of an interactive tool for research (Marchionini, 2006), the 

ranking should take into account the discovery of newer unexpected relations. This has been 

applied in SemRank, which is a method for scoring semantic relations in search results and 

configuring how high the most unpredictable, unlikely paths should be ranked (Anyanwu et al., 

2005). Daoud et al. have shown the effectiveness of a personalized graph-based ranking model 

(Daoud et al., 2010).  

By considering cross links between graphs and distances between nodes, we achieve 

personalization by affecting the original resource ranking. Pintado et al. identified relationships, 

using dynamical an statistical analysis, between classes and objects and used metrics to quantify 

these relationships in order to express them in terms of object affinity in a Software Engineering 

context (Pintado, 1995). Their goal and interface is similar to ours and the introduced concept 

‘affinities’ is characterized by high levels sharing of similar properties and relations. Therefore, 

we apply this concept as a base for defining our ranking approach. 

 

4.1 Pre-Ranking 
 Before we rank the relations between resources, the candidate resources to be included 

in relations are pre-ranked. The pre-ranking take into account “popularity” and “rarity”, essential 

components in the PageRank algorithm (Page et al., 1999), and is used to sort candidate related 

nodes in the proposed engine. The implementation takes these relations into account by using the 

Jaccard-coefficient to measure the dissimilarity and to assign a random-walk based weight, 

which ranks more rare resources higher, thereby guaranteeing that paths between resources 

prefer specific relations over general ones. 

 

4.2 Affinity Ranking 
 We identified three important criteria for ranking in a search engine according to our 

semantic model: (i) proximity to the search context RC ; (ii) personalization RP  and (iii) 

discovering newer unexpected relations, the novelty RN , because we want to exceed predictable 

fact retrieval. Alternatively, we quantify the relationships to help researchers focus. These 

metrics are always executed between an object pair. The path between them represents whether 

they are directly connected or not. The results are limited and optimized according this ranking 

mechanism. 

This section gives an overview on important semantic ranking criteria and explain why 

they are useful for our affinity ranking approach and discuss how they contribute to measuring 

affinity for a resource RA . We define this hybrid ranking criterion as:  

 RpRnRcR PwNwCwA ***= 
 (1) 

where we make sure that the weights are normalized to an application global configured constant 
k : 

 pnc wwwk =
 (2) 



 For each criterion users can configure a weight w , this can be used to optimize the focus on 

resources. In our evaluation we show the effectiveness of our search infrastructure with the 

presented ranking criterion and make a distinction between a personalized ( cp ww =
) and 

anonymous search case (
0=pw

). The proximity to the search context RC  is a main indicator of 

affinity. Novelty RN  and personalization RP  then refine the ranking further. It is very 

important that the weights in the affinity criterion RA  are accurately configured. Novelty 

becomes more important when differences in type of relations are essential, so nw
 should be 

relatively high. The amount of personalization can be taken into account as well by making pw
 

greater than 0 , in the order of magnitude of cw
. All weights are relative to the proximity, which 

always is taken into account (
0>cw

). The weights depend on the application and the goal of the 

use case. 

 Proximity. In our case, the proximity to the context marks the number of relations 

found in a path between two resources, that belong to the search context. The context can be 

initiated by a user profile if the user so desires. Found resources can be related to it to 

personalize the ranking. In an anonymous search, the relationships binding the resources that 

represent the researchers input query keywords determine the context. We measure “proximity” - 

how semantically related resources are. Objects being close in one context can seem quite 

unrelated in another context. Distance between the resources (path length) offer a different 

perspective on this ranking criterion for the context. The further the distance between two 

resources is, the less related they are, since the increasing distance between the two resources 

also brings with it the fact that they do not relate to each other, but have common intermediate 

resources which relate to them both. This on its own does not guarantee a high quality relation 

between the two resources at the start and end of the path. 

After we have defined the resources and relations belonging to the context C  we define 

for each other resource R , outside the context, the proximity criterion RC  such that  

 ),(= RCdistanced  (3) 

 where ),( RCdistance  is the weighted optimized shortest distance between any resource kC
 in 

the context and R , as computed by the search engine. We use d  to normalize the expression 

and then look for each relationship iR
 in the path between C  and R  whether it belongs to the 

context or not. The path between C  and R  can be noted as: 
),...,,...,( RRC ik .  

 







CR

CR
x

i

i

i
:0,

:1,
=

 (4) 
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x

C
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d

i
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
1

0==
 (5) 

 The distance d  is at least 1 . The context consists of the mapped keywords, the relations 

between those resources and their properties. 

Novelty. In research, unexpected discoveries make interacting with the search results 

more interesting. Affinity with resources in research is affected by new discoveries and always 

searching within the same kind of resources and relationships does not guarantee it. We want to 



encourage sudden paradigm shifts in paths. More shifts lead to higher novelty. This means that if 

a path switches from relations that describe people to relations that describe countries, the 

novelty score will be high, depending on how different the new paradigm is from the original 

and how many shifts there are. 

We compute novelty RN  for a resource R  along the relations belonging to the path 

from the nearest resource c  of the search context C . We need to define the domain iD
 for a 

relationship iR
, typically these are all other predicates for which there exists a connection to, 

such that  

 











1

1

:0,

:1,
=

ii

ii

i
DR

DR
n
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 which means that we check whether iR
 belongs to the domain of the previous relation 1iR

. 

Except for the first relationship we can thus compute the novelty of the relation belonging to the 

path between C  and R .  

 1
=

1

1=






d

n

N
i

d

i
R

 (7) 

 We note that 1=RN  if none of the relations in the domain of the previous relation and 0=RN  

if all relations belong to the same domain. 

Personalization. To ensure a personal ranking we need to connect the found resources 

with the researcher’s profile. Both are represented as Linked Data graphs. We merge the graph of 

resources and the graph of the user profile through common concepts and cross links connecting 

the two graphs. Even in anonymous search sessions, we optimize the ranking of the results 

according to the users search context defined by the input keywords and selected resource 

representations. 

We define u  as a property of the user U . We compute the personalization criterion RP  

for a resource R  as the averaged sum of all properties of R  related to the personalized context, 

which consists of the properties u  of the user U , resulting in following equations:  

 
),(= uRdistancedu  (8) 

 where the distance ud
 between R  and u  is computed along the path between R  and u .  

 u

u
d

R
1

=

 (9) 

 The inverse distance 
0=uR

 if there is no path. We compute RP  by iterating over each Uu .  

 ||
=

U

R

P
u

Uu
R




 (10) 



5 Evaluation 
We consider non-Linked Data domain experts to be the typical users in the Research 2.0 

case. Another user group are domain experts, they are likely to have an understanding of the data 

structure and content in their domain, and bring this knowledge to guide both browsing research 

and targeted searches. This section provides information about the measures, datasets and reports 

on the applied and executed benchmark results for the experimental setup we implemented for 

our use case. 

 

5.1 Measures 
We measure the efficiency and effectiveness to obtain insight in how well the proposed 

engine performs and its individual components interact. 

Efficiency. The efficiency learns how the engine with its implementation E  behave 

when parsing queries, such as the test set Q . The efficiency is divided in three independent 

sub-measures: quality (i), complexity (ii) and performance (iii). The quality indicates how much 

relations between concepts after translating the keyword queries were found. Complexity and 

performance focus on time and space (memory-usage) requirements for executing the translation 

and finding these relations. 

Effectiveness. Effectiveness E  on the other hand indicates the overall perception of the 

results by the users taking into account expert-user feedback. This is expressed as the search 

precision P  (Powers, 2011).  

 
objectsretrieved

objectsrelevant
P

#

#
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 (11) 

The reason why we have measured precision but not recall is because computing relevant results 

for the entire dataset is complex due to its size and dynamic nature ( D ). However, we compute 

the relevance for each result set. Each query 
Qqi   delivers a different number of relevant 

results, which makes the mean average precision MAP  an important measure. The aim of this 

averaging technique is to summarize the effectiveness of a specific ranking algorithm over the 

query collection Q .  
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 where iA
 is the number of actions taken by the user when resolving the query iq

 and )(kP  is 

the precision in the result set after user action ka
 in search iteration 1k  via the interface V  

and )(krel  equals to 1 if there are relevant documents after ka
 and 0  otherwise. As a result, 

the items contained in )(kP  are k  (where 0>k ) steps away from the matched keyword search 

context items (0)P .  
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5.2 Queries 
 We have collected for the evaluation typical keyword queries that have been asked by 



the the use case target group ( 36=N users) (Dimou et al., 2014), both researchers and 

innovation policy makers - all in the information and communication science field, against the 

system during the “usefulness” evaluation. They judged their experience with search interface on 

a Likert-Scale with values (Strongly Disagree, Disagree, Undecided, Agree, Strongly Agree). 

The evaluation result is shown in Table 2. According to users, the interface is meant primarily to 

serve as an exploration interface which makes our approach focused more on the user experience 

and less on classical search issues.  

 
Table 2 The short survey on the perceived usefulness results. 

 Answer   Score   Variance 

. Explore   4.00   2.00 

. Discover   3.89   1.65 

. Search   3.42   1.70 

. Analyse   3.05   1.72 

. Clarify   3.00   1.78 

. Tell stories   2.35  1.62 
 

 

For the evaluation, we restricted our tests to 10 queries which are answerable by the data 

sets we indexed. These are shown in Table 3. These queries cover some commonly used search 

terms within a researcher context: Search for an event ( 101,2,3,4,9,Q
), a person, author or group of 

authors ( 9,101,5,6,7,8,Q
) or scientific resources ( 101,2,3,6,9,Q

).  

 
Table 3 Selected queries by test-users, keywords matching to loaded user profiles are underlined. 

 #   Keywords 
1Q    LDOW, Bizer  

2Q    ISWC2012, Lyon, France,  

3Q
   ISWC2008, Linked Data, Germany  

4Q    Linked Data, WWW2012 

5Q
   Selver Softic, Semantic Web, Michael 

Hausenblas  
6Q
   Selver Softic, Linked Data, Information 

Retrieval  
7Q

   Laurens De Vocht, Selver Softic  

8Q
   Laurens De Vocht, Selver Softic, 2011  

9Q
   Laurens De Vocht, Linked Data, 

WWW2013  
10Q

   Chris Bizer, WWW2013, ISWC2010  

 

 

Each search runs through the following scenario: users enter the first keyword and select 

the matching result that is resolving their search focus at least one step forward. The users view 



selected results and can expand them at any time except when the research selects the 

suggestions from a typeahead interface. Parallel with this selecting and narrowing down the 

scope, our engine finds relations between the resources and reflects the context. Additionally, 

neighbours which match the selection are found. In the case that users logged in via their Twitter 

account or Mendeley account or both at same time, their research profiles personalize the 

boundaries of the search space. 

 

5.3 Experimental Setup 
We developed a topological radial graph interface (De Vocht et al., 2013). It focuses on 

mainstream users who do not understand the RDF model or have knowledge about Linked Data 

technologies. An example query for the Semantic Relations between the resources Linked Data, 

WWW2012 is explained in Figure 2, it demonstrates the interface for querying with a single 

search input field, the visualized relations between found resources and the search track 

(previous searches). Researchers can use this interface to explore and define searches without 

users having to manipulate different criteria values. 

 

 
Figure 2 We see in the series of seven screenshots that the logged in user, represented as a triangle encircled with a dashed 

line (1, 2), is focused in the center. After searching for “Linked Data” (3), the selected article match, encircled with dots, 

and other 

5.3.1 Datasets 

 The datasets used in our experiment, combine existing Linked Open Data sets: DBpedia, 

DBLP and GeoNames interlinked with research oriented datasets such as COLINDA and a 

Social Linked Data set containing information about conferences and the researchers’ social 

profiles from Twitter and Mendeley and the data they generated. For the evaluation we use 

COLINDA to resolve the connections between GeoNames, DBpedia and DBLP since it has links 

to these three Linked Datasets. Further it serves as a conference entity resolver for social data 

used with the user profiles from Twitter and Mendeley. Table 4 highlights statistics on the used 

datasets. 



Table 4 Linked Data used within the search experiments. 

 Dataset   #Triples   #Instances   #Literals 

DBpedia   332 089 989   27 127 750   161 710 008  

DBLP (L3S)   95 263 081   13 173 372   17 564 126  

COLINDA   143 535   15 788   70 334  

Social LD   41 438   7 344   15 350  

 

 

5.3.2 Index Configuration 

 Table 5 shows the indexed datasets’ statistics. The total time for building all indices for 

all the data sources is about 6 hours (throughout all the experiments, we use a 8-core 

single-machine server with 16GB RAM running Ubuntu 12.04 LTS). The properties type and 

label are indexed, because they are required for each Linked Data entity described in RDF21 and 

allow retrieving entities by label and disambiguating them by type. The indices contain a special 

type of field ntriple that makes use of the SIREn Lucene/Solr plugin that allows executing 

star-shaped queries on the resulting Linked Data (Delbru et al., 2012). Star-shaped queries are 

essential to find neighbouring entities for each entity and to find paths between non-adjacent 

nodes. 

 
Table 5 Resulting index properties based on input datasets. 

 Index   #Resources (K)   Temp Space (MB)  Size (MB)  

DBpedia   28 384   38 000   30 000  

COLINDA + 

DBLP (L3S)  

 3 307   15 000   12 000  

Social LD   7   5   170  

 

 

To ensure maximal scalability and optimal use of available resources, we use simple, but 

effective measures based on topical and structural features of the entities in the search engine. 

Relations are computed between pairs in a subgraph of the larger dataset. Every resulting relation 

as a path between entities are examined for ranking. Entities belonging to a specific search 

context are requested. Since the result set might be very large, this “targeted” exploration of 

relations is essential for the efficiency and scalability. 

 

5.3.3 Resource Alignment 

 Our earlier results, for several user profile types using Twitter and Mendeley to varying 

degrees, indicate sensitivity, precision and accuracy when linking tags, authors and articles to 

conferences (De Vocht et al., 2014). Conference tags were better recognized than other tags, this 

is not surprising because we optimized our model for this task. We never obtained false positives 

when interlinking authors and articles. When we interlinked followed users on Twitter as 

authors, we encountered a high amount of negatives. All found links of users as authors were 

correct but there is room for reducing false negatives. 

                                                 
21 http://www.w3.org/2009/12/rdf-ws/papers/ws17 



6 Results 
We have evaluated the efficiency and effectiveness of the proposed semantic engine and 

our environment in terms productivity. Therefore, we executed consecutive benchmarks and 

each time we tweaked the back-end performance. We tested the retrieval quality with the test 

queries shown in Table 2. The carried out user questionnaires and expert feedback rounds 

identified the functional needs of the search infrastructure in the original use case (De Vocht et 

al., 2011). 

 

6.1 Efficiency 
 In order to measure the efficiency our approach, we stored data about all executed 

queries: source, destination, all the path hops with the links between them and the execution 

time. We qualify the combined datasets and our algorithm by measuring the average path length 

and the resolved paths. A found path is relevant if it belongs or has entities relevant to the search 

context. We measured the hit-rate, execution time distribution and path lengths for a test set. 

Quality. The queries 1Q  to 10Q
 were translated into 576 pathfinding queries between 

pairs of resources of wich 400 were connected. The hitrate is about 76%, which is high, 

considering the small number of resources that had to be checked compared to the the entire 

dataset size (31.6M resources). Checking a resource means retrieving the resource from the 

index and identifying the linked resources (neighbours). 

 

 
Figure 3 There are an unexpected low number of paths with length 3 and 5. 

The calculated path lengths are between 0  and 8  hops, a clear majority is between 4  

and 6  hops as shown in Figure 3. Paths of length 3 and 5 hava an unexpectedly low occurence. 

This due to the focused nature of the search queries and the resulting manageable number of 

pathfinding queries. The average path length is close to 4 . 

Complexity. Figure 4 and Figure 5 show the time and space complexity. Except for path 

with length of 3 . The average complexities do not increase obviously linearly or exponentially.  



 
Figure 4 Time complexity on a logarithmic scale. 

 
Figure 5 Space complexity. 

The current results were more volatile and had pinpointed unexpected deviations with 

path lengths 3 and 5. This is because the queries were not randomly chosen, the number of 

queries was much smaller and the dataset is not homogeneous. Some paths hop between datasets 

while others do not. These peculiarities could not occur in the original evaluation where we 

isolated the pathfinding module with a single index (DBpedia) loaded (De Vocht & Coppens et 

al., 2013). This finding is neither ‘good or bad’, but it is noteworthy that the selection and the 

nature of datasets does impact the path length distribution and influences time and space 

complexity. 

Performance. The algorithm’s performance is promising, even though the configuration 

was not optimized for speed,but for quality, and was run for the evaluation on a single server, the 

algorithm found over 25% of paths in a couple of seconds. Within 30 seconds it found already 



results for over 50% of the path queries. However, there is room for improvement as the more 

complex queries take much more time to execute. Resolving a keyword and retrieving the 

matching entities happened instantly. Figure 6 shows the execution time distribution. The search 

interface and the search engine execute the necessary queries asynchronously and in parallel. 

While executing the queries – and results are coming in – the user can start exploring. 

 

 
Figure 6 More than half of the relations are found in 30 seconds. 

6.2 Effectiveness 
Based on the recommendations and insights after initial test runs, we re-evaluated our 

approach with a specific focus on independent query result judgments and we compared it to a 

state-of-the art baseline aiming at confirmation of our achieved good results on retrieval. 

 

6.2.1 Baseline 

 Virtuoso is one of the most common triple stores. It has support for the - non-standard 

SPARQL - transitive paths and has its own built-in index for text search (via the bif:contains 

property). In many projects dealing with the same amount of data(sets) as we did, it would be the 

de-facto choice. Therefore we consider it as a baseline for our solution. For the benchmarks we 

used version 6.1.3127. We compare this way, executing the same ‘underlying’ SPARQL 

transitive queries and also the keyword queries. 

Two expert-users independently evaluated the baseline results. To verify if the judgment 

across both is similar enough to be considered we checked the F-Measure (or positive specific 

agreement) of 0.68 and the chance corrected agreement (or inter-rater agreement): 0.62=  

(where always 1<<1  ).. According to Landis et al. (Landis & Koch, 1977) this level of 

agreement is substantial. 

The mean average precision, MAP for the baseline is 0.52. 

 



 
Figure 7 Precision results of the baseline for the test queries. 

The results delivered by the inter rater agreement and baseline approach confirm our 

assumption about very solid retrieval responsiveness with traditional SPARQL queries, except 

the results from P(2) on are quite low. 

 

6.2.2 Proposed Engine 

To assess the effectiveness of query translation, the same expert users measured the 

precision and the mean average precision over all queries to evaluate that the search algorithm 

used in our search engine returns enough high quality relevant results for researchers to achieve 

their research goals effectively. There was a F-Measure (or positive specific agreement) of 0.90 

and a chance corrected agreement (or inter-rater agreement): 0.82= . According to Landis et 

al. (Landis & Koch, 1977) this agreement level is almost perfect. 

In order to assess our search system we measured the precision of the results for the 

queries in Table 2. To determine the relevance of each resource we relied on expert judgment 

and we verified expected results against the system’s output according to the ranking 

mechanism. We defined what the expected outcome scenario was based on familiarizing with 

each of the visualized keyword searches and than having an expert compare the system’s output 

against the predefined scenario by checking each visualized item one by one after each 

expansion. 

Additionally, within the measurements we used personalized data to generate a user 

profile and project the expected search results. This extension is specifically important in the 

case of queries with Selver Softic and Laurens De Vocht, where we loaded these test user 

profiles. We measured effectiveness using the search interface specified in subsection 5.7.3 and 

as described in subsection 5.6. 

We judged each result to enable a more accurate evaluation of the context driven aspect. 

Personalized queries 5Q
- 9Q

 have been strictly evaluated: A found resource is irrelivant if it is 

without direct relation to the persons or event or topic specified by keyword, even if it is in wider 

context relevant (for instance a co-author that corresponds to the person but does not fit to the 

specified event). 

Figure 8 shows the precision over queries. With exception of 1Q , 4Q  and 10Q
, queries 

with preloaded profile data ( 5Q
- 9Q

) deliver more precise results than anonymous queries. This 

difference is because the main focus of queries 5Q
- 9Q

 is a person which resolves good within 

key mapping step, thus following results keep the average precision high. Queries 1Q , 4Q  and 



10Q
 have very high precision since they have broader focus which includes more relevant 

results. Also the keyword choice matches with the linked dataset instances within COLINDA 

and DBLP. The Mean average precision MAP overall as expected reaches the score of 0.60 

which is high but not surprising since the resources within the linked datasets are well-connected 

and all used datasets interlinked. The MAP we measured in is 8% higher than in baseline case. 

This first impression strengthens our first evaluation and brings us more near to the confirmation 

of hypothesis. Figure 8 shows the precision results of the queries for each path length. As 

expected, the precision decreases with the length of paths in most cases. As the path finding 

progresses over extended links relation to the core concept is becoming weaker. It is promising 

that the first step of keyword search as well the path finding results of length one deliver always 

the results that exceed the value of the mean average precision. 

 

 
Figure 8 Precision of the proposed engine for the test queries over different path lengths. 

6.2.3 Comparative Analysis 

We compared the precision of both result sets. We have the baseline, Virtuoso, vs. our 

proposed semantic engine. While we could just average the expert results or choose one of the 

results as a reference we detect the overall tendencies that reoccur since the inter-rater agreement 

is sufficiently high, but we also learn about the cases where they disagree (Demeester et al., 

2014). Therefore, we looked at two scenarios: a strict scenario (both need to agree on relevancy, 

Figure 9) and a tolerant scenario (at least one needs to judge a result relevant, Figure 10). 

To be able to compare the results we included precision that makes sense until a certain 

level. Our engine did not contain any items beyond a certain level, (3)P  in most cases, this 

means that the displayed results are all contained within a range of 3  steps from the matched 

search keyword context. The baseline results are very low from (4)P , a couple of resources at 

this distance from the search context were considered relevant and at (5)P  there are no results 

either. We choose an strict and tolerant scenario where we either require both experts to judge an 

element relevant or not. We computed the difference between the precision expressed as 
baselineproposed PPP  =

. 

 



 
Figure 9 The strict delta precision is overall better for the proposed engine except 5Q

 and 8Q
. The better results at 

(2)P
 is remarkable. 

Overall we see the tendency that the proposed engine performs more precise or on par 

(very little difference) with the baseline, except for 5Q
 and 8Q

. 8Q
 because of the failed 

interpretation by our engine of 2011. In either case the precision is moderate. 

 

 
Figure 10 The tolerant delta precision is overall similar to the strict delta precision, but where the proposed engine’s 

precision is a bit less distinct and the results 2Q
, 3Q

 and 9Q
 have less precision compared to baseline and the strict 

delta precision. 

In the tolerant scenario we detect overall similar results, but they are more clear-cut, 

except for 2Q , 3Q
 and 9Q

. Mainly due to improved results for (0)P  and (1)P  for the 

baseline. In 2Q , which was on par in the strict case, scores here better for the baseline, because 

at (1)P  one of the reviewers thinks the baseline is more precise. 2Q  is a tricky query because, 

ISWC2012 did not take place in Lyon,France, depending on the exact results that were given to 

query and their relation to the other terms, it is left open to interpretation. The difference is even 

more distinct for 9Q
, the baseline scored better in the strict case. This is because we found there 



a larger part of the results at (1)P  relevant. 9Q
 is contains a topic keyword, so it is not trivial 

for an (expert) user to judge whether the results matching this keyword were relevant to both of 

the keywords or not. We also see in 32 QQ 
 that the judgment of (0)P  is on par in the tolerant 

case but much worse for the proposed engine, this is because that the expert users did not agree 

about the relevance of the keyword mapping in the proposed engine. There is a strong similarity 

of the results of 1Q , 4Q , 6Q
, 7Q

 and 8Q
. These are also the cases where the proposed engine 

has the highest precision, this finding is backed with a strong agreement between the raters for 

both systems. 

 

7 PhD Contribution 
 

 The work in this paper connects to the broader scope of my PhD by explaining the 

efficiency and effectiveness trade-offs for query processing for a semantic search use case. The 

presented semantic search model forms a bridge between the content from a user’s perspective 

and the representation as linked data. 

 

Overview. Formulating search queries from a users’ point of view is difficult in case of 

linked data sources, because they contain many different relationships and are often described by 

a wide variety of vocabularies. Because most users cannot realistically construct their intended 

search query correctly at the first attempt, they benefit from an environment in which they can 

iteratively refine what they are searching for. Therefore, my PhD proposes a set of techniques to 

develop semantic search engines that drive this kind of environments and implements them for 

several use cases and measures the performance and the effect on the search precision. 

 

Discussion. The semantic search model contributes to data authenticity by guaranteeing 

that the final output towards the user has useful results in the application domain. Because the 

model works with a linked data structure, this method is applicable to other domains if it is 

structured by adapting the chosen vocabularies according to the datasets used.  

In semantic search scenarios, intermediary link dynamics leading to relevant discoveries 

are important to take into account. Therefore, the evaluation did not only focus on pure 

information retrieval metrics, such as precision (which is more biased towards the final results), 

but also highlighted how the search effectiveness was gradually influenced by the user’s actions.  

In terms of effectiveness, the proposed engine is more precise for well-defined query 

contexts, i.e. consisting of keywords in which the meaning is unambiguous, for example when a 

specific conference, author or publication are combined in a search. On the other hand when 

there are inconsistencies or vague terms, such as topics or years, even mismatches in the query 

context, expert users disagree about the effectiveness.  

In terms of efficiency, facilitating exploration and search across semantically aligned data 

sources is feasible as the evaluation showed that with a linear execution time complexity (scaling 

with increasing number of hops between resources) and an optimized space complexity, the 

presented approach is able to outperform the raw SPARQL baseline in query contexts that are 

well-defined, i.e. consist of keywords in which the meaning is unambiguous, for example when a 

specific conference, author or publication are combined in a search. The typical alternative – 

constructing separate search queries for each of those sources – is a laborious task. 

 



Future work. Two aspects to further investigate are: generalization and scalability.  

Generalization: looking into the impact on the behavior and best practices when 

extending the existing data selection with data from other relevant scientific archives or from 

non-technical areas to enrich it with sources for a specific topic. For instance, integrate Life 

Science archives like PubMed22 and other scientific publication archives like BibBase23. More 

variation could introduce the need for more vocabularies which in turn might lead to more 

complicated queries. 

Scalability: while the current implementation is able to handle the search queries and 

interlinking on a single machine, possibilities for upscaling and distributing need to be 

investigated so the engine can be deployed to support more concurrent users and bigger datasets. 
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