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Abstract

We study the maximum number of congruent triangles in finite arrangements of ` lines
in the Euclidean plane. Denote this number by f(`). We show that f(5) = 5 and that the
construction realizing this maximum is unique, f(6) = 8, and f(7) = 14. We also discuss
for which integers c there exist arrangements on ` lines with exactly c congruent triangles.
In parallel, we treat the case when the triangles are faces of the plane graph associated to
the arrangement (i.e. the interior of the triangle has empty intersection with every line in
the arrangement). Lastly, we formulate four conjectures.
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Math. Subj. Class.: 52C10, 52C30

1 Introduction
A problem from mathematical folklore asks for bounding four congruent triangles with
six matchsticks. This is easily done, and left to the reader. Quite naturally, one can ask
whether more congruent triangles may be formed by using the same six matchsticks. It
seems that this particular problem has not been treated in the literature. Our main focus
lies on constructing planar arrangements in which a fixed number ` of lines bound as many
congruent triangles as possible. For an excellent overview on arrangements and spreads,
see Grünbaum’s [11]. The results presented in this article are complementary to work of
Erdős and Purdy [4, 5] on sets of n points—see also [6].

In this paper, everything happens in R2. An arrangement (of lines) A shall be a finite
family of ` lines L1, . . . , L`. In the following, we will ignore the case when there exists
a point common to all lines, and thus assume that ` ≥ 3. Denote by A` the set of all
arrangements of ` lines.
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We associate to A ∈ A` a graph ΓA: the vertices of ΓA correspond to the intersection
points of lines from A and the edges of ΓA correspond to the line-segments between these
vertices. ΓA is a plane graph. The vertices, edges, and faces of ΓA are also said to belong
to A.

A triangle in A ∈ A` shall be the convex hull of the set of intersection points of three
non-concurrent pairwise non-parallel lines in A. Denote by FA the set of all triangles
in A. Whenever ∆1,∆2 ∈ FA are congruent we write ∆1 ∼ ∆2. Let FA1 , . . . , F

A
p

be the equivalence classes with respect to ∼ such that
∣∣FA1 ∣∣ ≥ . . . ≥

∣∣FAp ∣∣. Here, |M |
denotes the cardinal number of M . We call a triangle ∆ ∈ FA facial if it is a face of
ΓA, i.e. L ∩ int ∆ = ∅ for all L ∈ A. Let GA ⊂ FA be the set of all facial triangles in
A, and, as before, let GA1 , . . . , G

A
q be the equivalence classes with respect to ∼ such that∣∣GA1 ∣∣ ≥ . . . ≥ ∣∣GAq ∣∣. Put

f(`) = max
A∈A`

∣∣FA1 ∣∣ and g(`) = max
A∈A`

∣∣GA1 ∣∣ .
We shall also be considering restrictions relative to a certain arrangement A ∈ A`,

namely, for k ≤ `,

fA(k) = max
B⊂A,B∈Ak

∣∣FB1 ∣∣ and gA(k) = max
B⊂A,B∈Ak

∣∣GB1 ∣∣ .
We call an arrangement A ∈ A` f -optimal (g-optimal) if

∣∣FA1 ∣∣ = f(`) (|GA1 | = g(`)).
IfA is both f -optimal and g-optimal, we simply write optimal. A triangle from FA1 or GA1
is said to be good. Note that FA1 and GA1 need not be unique. In that case, one makes a
choice clearly defining FA1 and GA1 . The edges and angles of a good triangle will be called
good, too.

An arrangement is simple if no three lines are concurrent. The lines of an arrangement
are in general position if no two lines are parallel and no three lines are concurrent. Two
arrangements A and B are combinatorially equivalent if their associated graphs ΓA and
ΓB are isomorphic. (Note that, as mentioned above, we do not consider line arrangements
in which all lines meet in a single point.) A ∈ A` is c-unique if there exists no B ∈ A`

such that A and B are (a) not combinatorially equivalent and (b) |HA1 | = |HB1 |, where
H is F or G. In the same vein, we say that two arrangements A ∈ A` and B ∈ A` are
g-equivalent if A can be obtained from B by translation, rotation, reflection, and scaling.
A ∈ A` is g-unique if there exists no B ∈ A` such thatA and B are (a) not g-equivalent and
(b) |HA1 | = |HB1 |, where H is F or G. A few examples: Three lines in general position
yield an arrangement that is c-unique, but not g-unique; any arrangement on four lines
that forms exactly two congruent triangles is not c-unique (and thus cannot be g-unique);
finally, as we shall see in Theorem 3.5, the f -optimal arrangement from Figure 2 (b) is
g-unique (and thus c-unique).

F (`) (G(`)) is defined as the set of all integers u such that there exists an arrangement
on ` lines having exactly u congruent triangles (congruent facial triangles). We write [s..t]
for the set of all integers u with s ≤ u ≤ t, put H for F or G, and

h =

{
f if H = F,

g if H = G.

WheneverH(`) = [0..h(`)], we say thatH(`) is complete. In the following, we will tacitly
use the fact that G(`) ⊂ F (`). We call an arrangement A ∈ A` 1-extendable if there exists
a line L such that |HA∪L1 | = |HA1 |+ 1.
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2 Preparation
We briefly concern ourselves with the following question, since it will shorten later argu-
ments. What if we drop the condition that the triangles need to be congruent? Kobon Fu-
jimura asked in 1978 in his book “The Tokyo Puzzle” [8]—see also [10, pp. 170–171 and
178]—what the maximum number K(`) of facial (not necessarily congruent!) triangles re-
alisable by ` lines in the plane is. (Grünbaum treated this problem before Fujimura, but
he might have only been interested in arrangements in the projective plane [6].) Recently,
Bader and Clément [1], improving upon a result of Tamura, showed the following.

Lemma 2.1 (Bader and Clément).

K(`) ≤
⌊
`(`− 2)

3

⌋
− I{` : (` mod 6)∈{0,2}}(`),

where I denotes the indicator function.

Many arrangements have been constructed in order to find solutions to Fujimura’s prob-
lem. Fujimura himself gave an example which shows that K(7) ≥ 11, although it was
thought for many years that K(7) = 10. In 1996, Grabarchuk and Kabanovitch [13] gave
two 10-line, 25-triangle constructions, whereas Lemma 2.1 gives K(10) ≤ 26. Whether
K(10) is 25 or 26 is unknown. Other 10-line, 25-triangle arrangements were found inde-
pendently by Grünbaum [12, p. 400], Wajnberg, and Honma (see [15] for more details).
Good overviews of the best (i.e. the greatest number of triangles for a fixed number of
lines) known arrangements can be found in [14] and [15].

Table 1: Bounding K(`) for ` ≤ 12.

` 3 4 5 6 7 8 9 10 11 12

Bader-Clément bound 1 2 5 7 11 15 21 26 33 39

Best known arrangement 1 2 5 7 11 15 21 25 32 38

Füredi and Palásti [9] construct an arrangement proving K(`) ≥ `(` − 3)/3. See also
the article of Forge and Ramı́rez Alfonsı́n [7].

We continue with a series of lemmas. Lemma 2.2 is stated without its straightforward
proof, but we present the heptagonal case in Figure 1 and its caption.

Lemma 2.2. The ` lines bounding a regular `-gon determine exactly 2` congruent triangles
if ` ≥ 7, and therefore 2` ∈ F (`) and f(`) ≥ 2`. With the same construction we obtain for
` ≥ 5 that ` ∈ G(`) and g(`) ≥ `.

Lemma 2.3. Let A ∈ A` and h ∈ {f, g}. Then, for 3 ≤ k ≤ `− 1,

hA(`) ≤ `(`− 1)(`− 2)

k(k − 1)(k − 2)
· hA(k).

Proof. We observe that every subset of k < ` lines within the arrangement A cannot have
more than hA(k) good triangles (good in A). Counting all together, there are at most
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(
`
k

)
hA(k) good triangles, each appearing several times. Since each of them lies in

(
`−3
k−3
)

sub-arrangements of k lines, we obtain

hA(`) ≤
(
`
k

)
hA(k)(
`−3
k−3
) .

Thus, for each k we obtain an upper bound for hA(`).

Figure 1: Seven lines bounding a regular heptagon. This arrangement contains fourteen
congruent triangles: abe, acd, and their symmetric counterparts obtained by rotating around
the barycentre of the heptagon by 2πk/7 for k = 1, . . . , 6. This arrangement proves that
f(7) ≥ 14.

Lemma 2.4 is a direct consequence of Lemma 2.3.

Lemma 2.4. Let h ∈ {f, g}. Then

h(`) ≤ min
3≤k≤`−1

`(`− 1)(`− 2)

k(k − 1)(k − 2)
· h(k).

3 Results
3.1 Bounds for the general case

Proposition 3.1. Let h ∈ {f, g}, consider A ∈ A` and B ∈ Ak, and assume that a good
triangle of A is similar to a good triangle of B. Furthermore, A and B each contain two
lines intersecting in the boundary of the respective convex hulls of V (ΓA) and V (ΓB) and
forming the same good angle. Then h(`+ k − 2) ≥ h(`) + h(k).

Proof. We scale B to B′ such that the good triangles of B′ are congruent with the good
triangles ofA. Consider the convex hull CA (CB′ ) of the intersection points ofA (B′). Let
pA (pB′ ) be an intersection point of A (B′) lying on the boundary of the convex polygon
CA (CB′ ) and incident with a good angle αA (αB′ ) of A (B′) such that αA = αB′ . Denote
with LA1 and LA2 (LB

′

1 and LB
′

2 ) two of the lines of A (B′) intersecting at pA (pB′ ) and
forming the angle αA (αB′). We can now identify LA1 with LB

′

1 and LA2 with LB
′

2 such that
an arrangement C is obtained in which, seeingA and B′ as sub-arrangements of C, no good
triangle lies in both A and B′. (Note that the number of good triangles in C may be larger
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than the sum of the number of good triangles in A and B′, see e.g. Figure 8, in which the
arrangements from Figures 1 and 5 (b) are joined: the original arrangements have 14 and 8
good triangles, respectively, but the new arrangement has 26.)

We write f̃(`) if we consider the values of f(`) only for arrangements whose good
triangles are not right triangles.

Proposition 3.2. f̃(`+ 1) ≤ f̃(`) + 3(`− 1) and f(`+ 1) ≤ f(`) + 4(`− 1).

Proof. Let L be a line being added to A ∈ A`. If A has the property that
∣∣FA1 ∣∣ =

∣∣FA2 ∣∣,
then consider henceforth only the triangles in FA1 , as well as their edges, to be good. We
denote the lengths of good edges with a, b, and c.

There are at most ` − 1 triangles with an edge of length a on L: there are at most `/2
lines of one of the two lines needed to make a good triangle with an edge on L, each of
these lines is part of at most two triangles with an edge of length a on L, and it is impossible
for there to be exactly `/2 of them each of which is part of exactly two triangles. Since this
can be applied analogously for edges of length b and c, we have f̃(`+1) = f̃(`)+3(`−1).

For good triangles that are right triangles, we argue in the same manner and obtain that
for each of the three types of good edge (i.e. of length a, b or c) there are at most 4(`−1)/3
triangles with a good edge of that type on L.

Proposition 3.3. f̃(`) ≤ `(`− 1) and f(`) ≤ 4`(`− 1)/3.

Proof. The idea is the same as the one used in the proof of Proposition 3.2. In the case of
non-right triangles, we have established that on each line in A there are at most 3(` − 1)
good edges. By multiplying this with `, we obtain an upper bound for the number of good
edges inA. Now we divide by three (as there are three edges to each triangle) and have the
desired bound. The case of right triangles is settled analogously.

All angles in A ∈ A` equal to one of the angles of a good triangle which is not a right
triangle will be called non-right angles.

Proposition 3.4. f̃(`) ≤ 2`(`− 2)/3 for simple arrangements.

Proof. Consider a simple arrangementA on ` lines admitting a good triangle which is not a
right triangle. Let V (ΓA) = V , and write Vk for the set of vertices of degree k. As no three
lines are concurrent, in ΓA there exist only vertices of degree 2, 3, or 4. Trivially, around
a vertex of degree 2 at most one non-right angle resides. Around a vertex of degree 3
likewise (as π/2 is a right angle, and the sum of two non-right angles must be strictly
smaller than π), and around a vertex of degree 4 there may be at most two non-right angles.

Thus, in A, we have as an upper bound for the maximum number of non-right angles
|V2|+ |V3|+2 · |V4| = |V |+ |V4|. We have |V | ≤ `(`−1)/2. Also |V4| ≤ |V |−`, because
on every line the first and the last vertex belong to V2 ∪V3, but any such vertex may appear
as first or last vertex on two lines of A. Thus, the bound is `2 − 2`. For odd ` ≥ 5, this
bound is best possible: for the ` lines bounding a regular `-gon we have |V2| = `, |V3| = 0,
and |V4| = `(`−3)/2. One non-right angle cannot lie in more than two triangles which are
not right triangles, and every triangle requires three angles, whence, the final bound. (In
fact, no good angle can lie in more than two good triangles.)
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3.2 ` ≤ 5

We have f(3) = g(3) = 1 and f(4) = g(4) = 2, and F (3), G(3), F (4), and G(4) are
complete. We leave the easy proofs to the reader, but mention that in the 4-line case there
exist exactly three combinatorially different solutions with two congruent triangles (these
coincide for the g-optimal and the f -optimal case): one with three concurrent lines, one
with two parallel lines, and one in general position.

We now focus on the first interesting case: ` = 5.

Figure 2: (a) shows a 5-line arrangement with four congruent triangles constructed as fol-
lows. Two lines L1, L2 orthogonal to a third line L3 are considered. Let the intersection
points be p1 and p2, resp. A fourth and fifth line are considered such that their intersection
point is the midpoint of the line-segment p1p2 and the angle each forms with L3 is π/4.
(b) depicts the five lines bounding a regular pentagon. This arrangement contains ten trian-
gles, distributed among two congruence classes of size 5 each.

Theorem 3.5. (i) We have f(5) = g(5) = 5 while F (5) and G(5) are complete. Further-
more, the arrangement from Figure 2 (b) is (ii) optimal, and (iii) g-unique among f -optimal
and g-optimal 5-line arrangements.

Proof. Figure 2 (b) shows that g(5) ≥ 5 (whence, f(5) ≥ 5), with which Lemma 2.1
implies g(5) = 5. f(5) = 5 follows from Lemma 2.4 (with k = 4). We now discuss G(5).
We have G(4) = [0..2] ⊂ G(5). Consider the four lines bounding a square and add the
two lines containing the square’s diagonals. By removing one of the four original lines, we
have shown that 3 ∈ G(5). Together with the arrangements from Figure 2, we have that
G(5) is complete since g(5) = 5. Thus, (i) is proven. (ii) follows directly from (i).

We now prove (iii). First, we show that the arrangement from Figure 2 (b) is c-unique.
We use the database provided in Christ’s Dissertation [3, Chapter 3.2.5]. (A visualisation
of Christ’s results is available in [2]. Note that this does not coincide with Grünbaum’s
isomorphism types of arrangements given in [11, p. 5], since Grünbaum discusses the issue
in the projective plane, while here we treat the situation in the Euclidean plane.) Among
arrangements of five lines in general position, there are exactly six combinatorially different
ones, shown in Figure 3. The arrangement in Figure 2 (b) belongs to the combinatorial
class (A).

Only the arrangements in (A) contain five facial triangles, i.e. triangles which are faces
in the associated graph. We leave to the reader the straightforward proof that among ar-
rangements with five lines not in general position (i.e. containing two parallel lines or three
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Figure 3: Representations of the six combinatorially different arrangements of five lines in
general position.

concurrent lines), there is none featuring five facial triangles. Note that the occurrence of
more triangles is impossible due to Lemma 2.1.

We now turn to the case in which triangles are not facial. Let us denote a line-segment
between two points x, y with xy and its length with L(xy). We will use the following.

Remark. The sum of the measures α and β of two good angles is π if and only if α =
β = π/2.

We write ∆ijk for the triangle with vertices pi, pj , pk. We will tacitly make use of the
fact that if in a given arrangement a triangle ∆ is strictly contained in a triangle ∆′, then
∆ � ∆′ and so ∆ and ∆′ cannot lie in the same congruence class.

(B) We have ∆012 ⊂ ∆149 ∩∆136 (so ∆149 � ∆012 � ∆136), ∆345 ⊂ ∆149 ∩∆248,
∆569 ⊂ ∆136 ∩∆237 ∩∆578, ∆578 ⊂ ∆237, ∆067 ⊂ ∆237, ∆089 ⊂ ∆248 ∩∆237 ∩∆067.
Due to these inclusion relations, only the following set of triangles may form a congruence
class of size 5: {∆149,∆136,∆248,∆578,∆067}. Assume it is indeed a congruence class.
Thus, all angles around p6 are right. We apply the Remark to the angles surrounding p6.
Combining this with ∆136 ∼ ∆067 and p0p6 ( p1p6, we have L(p6p7) = L(p1p6),
L(p0p6) = L(p3p6), and L(p0p7) = L(p1p3). p1p3 is the hypothenuse in ∆136, but as
p1p4 is an edge of ∆149 and ∆149 ∼ ∆136 we obtain a contradiction, since L(p1p4) >
L(p1p3).

(C) We have ∆012 ⊂ ∆134∩∆268∩∆378, ∆134∪∆239 ⊂ ∆378, ∆457∪∆056 ⊂ ∆158,
∆049 ⊂ ∆158∩∆239∩∆378∩∆056, ∆679 ⊂ ∆158∩∆268∩∆457. There is no congruence
class of size 5.
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(D) We have ∆012 ⊂ ∆149 ⊂ ∆156, ∆234 ⊂ ∆039 ⊂ ∆378, ∆457 ∪ ∆068 ⊂ ∆258,
∆679 ⊂ ∆258 ∩∆457 ∩∆068. Once more, all congruence classes have size at most 4.

(E) We have ∆129 ⊂ ∆138 ⊂ ∆145, ∆237 ⊂ ∆246, ∆034 ⊂ ∆058 ⊂ ∆067, ∆789 ⊂
∆237 ∩∆246 ∩∆569. As above.

(F) We have ∆012 ⊂ ∆139 ⊂ ∆145, ∆238 ∪ ∆056 ⊂ ∆246, ∆678 ⊂ ∆579 ⊂ ∆347,
∆089 ⊂ ∆238 ∩∆246 ∩∆056. As above.

Let us show that in a 5-line arrangement A containing two parallel lines or three con-
current lines, no more than four congruent triangles can be achieved. We first assume that
A contains parallel lines L1, L2. If there exists a line L3 parallel to L1, we are done, as in
A there are only at most three triples of lines forming triangles. Thus, w.l.o.g. we are in the
situation that a third line, L3, intersects L1 and L2. Now assume that a fourth line, L4, is
parallel to L3. Note that L1, L2, L3, L4 bound zero triangles. In this situation, a fifth line
generates at most four new triangles. Thus, L4 cannot be parallel to L3. We have proven
that a 5-line arrangement containing three parallel lines or two parallel pairs of parallel
lines cannot have more than four congruent triangles.

Denote the open strip bounded by L1 and L2 with S, and the complement of its closure
by T . Also, let T1 and T2 be the connected components of T . In the light of above para-
graph, there are three cases (see Figure 4): either (a) L4 is concurrent with L1 and L3 in a
point x lying in the closure of T1, (b) L4 intersects L3 in S, or (c) L4 intersects L3 in T2.
Denote with L5 the fifth line of A. We know that L5 is not parallel to any of the existing
four lines. We write ∆ijk for the triangle bounded by the lines Li, Lj , Lk.

Figure 4: Cases (a)–(c) occurring in the proof of Theorem 3.5.

(a): If x ∈ L5, then the five lines would bound only three triangles, so we can assume
x /∈ L5.

Case 1: L5 intersects both L3 and L4 in S. We have six triangles, but ∆345 = ∆234 ∩
∆145 and ∆245 ⊂ ∆235, so the maximum number of congruent triangles is three.

Case 2: L5 intersects L4 in S and L5 intersects L3 in T1∪T2. Six triangles appear. Sub-
case 2.1: L3 and L5 intersect in T1. But then we have ∆135 ⊂ ∆345 ⊂ ∆235. Subcase 2.2:
L3 and L5 intersect in T2. Here, ∆235 ⊂ ∆345 ⊂ ∆135, so once more five congruent
triangles cannot occur. (If L5 intersects L3 in S and L4 in T2, then we are, combinatorially,
in the situation treated in Subcase 2.2.)

Case 3: L5 is concurrent with L2 and L3. Subcase 3.1: All intersection points lie in the
closure of S. Five triangles appear, but among them one is a subset of another. Subcase 3.2:
L4 and L5 intersect in T2. We apply the same argument as before. Subcase 3.3: L4 and L5

intersect in T1. Once more five triangles occur, but one is contained in another.
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Case 4: L5 intersects L3 and L4 in points p and p′, respectively, which do not lie in S
(since this was covered in Cases 1 and 2). Subcase 4.1: If p and p′ lie in T1, six triangles
appear, but ∆345 ⊂ ∆135 ⊂ ∆235. Subcase 4.2: If p and p′ lie in T2, again six triangles
occur, but ∆245 ⊂ ∆235 ⊂ ∆135. Subcase 4.3: If p ∈ T1 and p′ ∈ T2, six triangles
are present in the arrangement, but ∆245 ⊂ ∆145 ⊂ ∆345, so at most four triangles are
congruent.

Case 5: L5 is concurrent with L2 and L4. Subcase 5.1: All intersection points lie in the
closure of S. Subcase 5.1 coincides with Subcase 3.1. Subcase 5.2: L3 and L5 intersect in
T2. But then we are in the same situation as Subcase 3.2.

(b) Let L3 and L4 intersect in y. We know that L5 is not parallel to L1. If y ∈
L5, we obtain six triangles. However, either ∆135 ∪ ∆145 = ∆134 and symmetrically
∆235 ∪∆245 = ∆234 or ∆134 ∪∆145 = ∆135 and ∆245 ∪∆234 = ∆235. In either case,
the largest congruence class has cardinality at most four. We have treated the cases when
L5 is concurrent with L1 and L3, L1 and L4, L2 and L3, or L2 and L4 in (i). We split
the remaining cases into four cases according to where the intersection points of L5 with
L3 and L4 lie. In each situation, inclusions are given which make the occurrence of a
congruence class of cardinality at least five impossible.

Case 1: Both intersection points lie in S. However, we then have ∆135 ⊂ ∆145,
∆345 = ∆134 ∩∆235, and ∆234 ⊂ ∆245.

Case 2: The intersection points of L5 with L3 and L4 lie in T1 and T2, respectively.
Then ∆135 ∪∆245 ⊂ ∆345, ∆135 ∪∆234 ⊂ ∆235, and ∆134 ∪∆245 ⊂ ∆145.

Case 3: The intersection points of L5 with L3 and L4 lie in T1 and S, respectively. We
have ∆135 ⊂ ∆345 ⊂ ∆235, ∆245 ⊂ ∆234, and ∆134 ⊂ ∆145.

Case 4: Both intersection points lie in T1. Then ∆234 ⊂ ∆235, ∆135 = ∆235 ∩∆145,
and ∆134 ⊂ ∆145 ⊂ ∆245.

As situation (c) uses very similar arguments, we skip it.
We have shown that no two lines in A are parallel. Assume now that three lines

L1, L2, L3 of A intersect at a point q. If L4 contains q as well, the largest congruence
class which may be formed by a fifth line has size 2. So q /∈ L4 and L4 is not parallel
to any of L1, L2, L3. W.l.o.g. let the intersection point of L4 with L2 lie between the in-
tersection point of L4 with L1 and the intersection point of L4 with L3. If there are two
coincidences (of three lines)—it is easy to see that there cannot be more—we have three
combinatorially different cases. W.l.o.g., in each of them L1, L4, and L5 shall be concur-
rent. We denote this intersection point with a, and the intersection point of L5 with L2 and
L3 with b and c, respectively. We differentiate the three cases by the order in which the
intersection points occur on L5.

Case 1: a− c− b (or equivalently b− c− a): Eight triangles occur. However, we have
∆124 ∪∆234 = ∆134 ⊂ ∆345 and ∆135 ∪∆235 = ∆125 ⊂ ∆245. Thus, no five triangles
can be congruent.

Case 2: b − a − c (or equivalently c − a − b): Again, eight triangles appear, but
∆245 ∪∆124 = ∆125, ∆125 ∪∆135 = ∆235, ∆234 ∪∆124 = ∆134, and ∆134 ∪∆135 =
∆345.

Case 3: a− b− c (or equivalently c− b− a): ∆124 ∩∆135 = ∆125, ∆235 ⊂ ∆234, and
∆245 ⊂ ∆345. Furthermore, every triangle is contained in ∆134.

We are left with the case that there is exactly one coincidence of three lines (namely
in q). Once more, several cases occur. We leave them to the reader—treating them is a
straightforward task in exactly the same spirit as above paragraphs.
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Finally, we prove that the construction from Figure 2 (b) is indeed g-unique. Consider
five lines bounding a pentagon P such that we obtain an arrangement A in combinatorial
class (A). This implies that no two lines in A are parallel. Combinatorially, there are two
types of triangles in P : those sharing exactly two vertices (and thus an edge) with P , and
those sharing exactly one vertex with P . Due to straightforward inclusion arguments, all
triangles in a congruence class of size 5 are of the same type.

Consider the first type, and let ∆ be one of these five congruent facial triangles. Denote
the angles of ∆ incident with a vertex of P with α and β. Applying successively the fact
that no two lines in A are parallel, we obtain that α = β, so ∆ is isosceles. This implies
that all angles of P must be equal, and since P is a pentagon, the angles of P measure 3π/5
each. Thus α = 2π/5—in particular, ∆ is not equilateral. Hence, the sides of P must have
equal length, so P is a regular pentagon.

We treat the second case. We see each triangle of the second type as the union of three
faces (of ΓA): the pentagon P , which lies in all five triangles, and two facial triangles.
Since certain pairs of triangles of the second type share a facial triangle, there are at most
two congruence classes C1 and C2 of facial triangles. Assume C1 6= C2. Thus, there exists
a triangle ∆ of second type containing a facial triangle in C1 and a facial triangle in C2. By
considering all five congruent triangles of second type, a contradiction is obtained, since
necessarily one of these triangles will contain only triangles from either C1 or C2 and thus,
it cannot be congruent to ∆. We have proven that all facial triangles are congruent. Now
we may argue as in the preceding paragraph.

3.3 ` = 6

Figure 5: (a) This arrangement is due to Tudor Zamfirescu and shows that 7 ∈ F (6).
To the five lines bounding a regular pentagon a sixth line is added which is parallel to
one of the five lines such that seven congruent triangles are present. (b) This arrangement
proves that 8 ∈ F (6) and f(6) ≥ 8. In Theorem 3.6 we show that in fact f(6) = 8. The
arrangement is obtained by considering six of the seven lines bounding a regular heptagon.

Theorem 3.6. We have f(6) = 8, 6 ≤ g(6) ≤ 7, F (6) is complete, and [0..6] ⊂ G(6).

Proof. The arrangement from Figure 5 (b) proves that f(6) ≥ 8. Theorem 3.5 (iii) states
that there is exactly one f -optimal arrangement on five lines, shown in Figure 2 (b). We
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call this arrangement P . We now show that one cannot produce an arrangement on six
lines which has P as a sub-arrangement and features eight (or more) congruent triangles.
Assume there exists such an arrangement A. Denote the lines of P by L1, . . . , L5, and the
line added to P in order to obtain A by L.

First we prove that the addition of L cannot create a “new” congruence class (i.e. a
class the triangles of which are non-congruent to every triangle present in P) of congruent
triangles of cardinality at least 8. At least one of the angles π/5, 2π/5, 3π/5, 4π/5 is good
in both P andA, since every triangle bounded by L has at least one angle in P . Among all
angles in A, each of the aforementioned four angles appears at least ten times in five pairs
of opposite angles, since P is a sub-arrangement of A. Thus, L forms at least three copies
of the angle α with the lines L1, . . . , L5, where α ∈ {π/5, 2π/5, 3π/5, 4π/5} is fixed. But
since the Li’s are pairwise non-parallel, this is only possible if L is parallel to some Li.
But then the addition of L to P yields at most six new triangles—too few.

Take the two congruence classes FP1 and FP2 such that the triangles in FP1 are facial in
P , and notice that FP = FP1 ∪FP2 and |FP1 | = |FP2 | = 5. Thus, L must add at least three
triangles to FP1 or FP2 . As π/5 belongs to triangles in FP1 as well as triangles in FP2 , π/5
is a good angle in A, so L makes this angle with a line of P , whence, L is parallel to some
Li, say L1. Among all possible positions of L, only three provide new triangles congruent
either to a good triangle in FP1 or to a good triangle in FP2 , see Figure 6. The number of
those new triangles is 1, 1, 2, respectively.

Figure 6: The three essentially different arrangements of five lines bounding a regular
pentagon together with a sixth line parallel to one of the five lines forming at least six
congruent triangles.

We conclude that in an arrangement on six lines which is f -optimal, every sub-arrange-
ment on five lines contains at most four good triangles. With this in mind, by applying
Lemma 2.3 (with k = 5), we obtain the desired f(6) = 8. Lemmas 2.1 and 2.2 yield the
bounds on g(6).

Theorem 3.5 (i) and the Star of David (which proves that 6 ∈ G(6)) imply that [0..6] ⊂
G(6). Together with the arrangements from Figure 5, we are done.

Among arrangements on six lines bounding exactly six congruent facial triangles, we
found three combinatorially non-equivalent ones. (It is unknown whether these are all.)
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In the general case, the solution from Figure 5 (b) seems to be unique; see Conjecture 4.1
(which states that g(6) = 6) in the final section.

3.4 ` = 7

Theorem 3.7. We have f(7) = 14, 9 ≤ g(7) ≤ 11, [0..10] ∪ {14} ⊂ F (7), and [0..9] ⊂
G(7).

Proof. By Theorem 3.6, f(6) = 8. Thus, by Lemma 2.2 and Lemma 2.4 (with k = 6),
f(7) = 14. For g(7), the lower bound is given by the construction in Figure 7 (a) (by
deleting the line marked h), the upper bound by Lemma 2.1.

Since the Star of David is 1-extendable, we have 7 ∈ G(7). Removing the line marked
h in Figures 7 (a) and (b) shows that 9 ∈ G(7) and 8 ∈ G(7), resp. Thus, [0..9] ⊂ G(7).
By considering seven of the eight lines bounding a regular octagon, we obtain 10 ∈ F (7).
Together with Lemma 2.2, we have [0..10] ∪ {14} ⊂ F (7).

Figure 7: (a) An arrangement proving 12 ∈ G(8). Deleting the line marked h shows that
9 ∈ G(7). (b) An arrangement showing 11 ∈ G(8). Deleting h yields 8 ∈ G(7). (c) This
arrangement proves that g(10) ≥ 20.

3.5 ` = 8

Theorem 3.8. We have 16 ≤ f(8) ≤ 22, 12 ≤ g(8) ≤ 15, [0..16] \ {13} ⊂ F (8) and
[0..12] ⊂ G(8).

Proof. Lemma 2.2 implies the lower bound for f(8), Theorem 3.7 and Lemma 2.4 (with
k = 7) the upper bound. For g(8), the lower bound is given by the arrangement from
Figure 7 (a), the upper bound by Lemma 2.1.

Figures 7 (a) and (b) show that {11, 12} ⊂ G(8). This, Theorem 3.7 and the fact
that the arrangement from Figure 7 (a) minus the line marked h is 1-extendable (which
proves that 10 ∈ G(8)) yield [0..12] ⊂ G(8). Applying Lemmas 2.2 and 2.4, we obtain
[0..16] \ {13} ⊂ F (8).

3.6 9 ≤ ` ≤ 12

As the techniques for proving the following results are very similar to what has been shown,
we skip them. A notable exception is the construction from Figure 8.
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Theorem 3.9. We have

18 ≤ f(9) ≤ 33, 15 ≤ g(9) ≤ 21, [0..18] ⊂ F (9), [0..15] ⊂ G(9),

21 ≤ f(10) ≤ 48, 20 ≤ g(10) ≤ 26, [0..21] ⊂ F (10), [0..20] ⊂ G(10),

26 ≤ f(11) ≤ 66, 23 ≤ g(11) ≤ 33, [0..26] ⊂ F (11), [0..23] ⊂ G(11),

and

32 ≤ f(12) ≤ 88, 26 ≤ g(12) ≤ 39, [0..28] ∪ {32} ⊂ F (12), [0..26] ⊂ G(12).

h

Figure 8: An arrangement proving f(11) ≥ 26. It is obtained by joining the two arrange-
ments from Figures 1 and 5 (b) with the technique described in the proof of Proposition 3.1,
i.e. such that the two arrangements share a pair of lines (forming the same good angle) in
the new arrangement. Deleting the line marked h, one obtains f(10) ≥ 21. By completing
the left regular heptagon, we obtain f(12) ≥ 32.

3.7 Summary

Consider ` ≤ 12 lines in the Euclidean plane, and let f(`) and g(`) be defined as in the
Introduction. Then we have the following bounds.

Table 2: Bounding f(`) and g(`) for ` ≤ 12.

` 3 4 5 6 7 8 9 10 11 12

f(`) ≥ 1 2 5 8 14 16 18 21 26 32

f(`) ≤ 1 2 5 8 14 22 33 48 66 88

g(`) ≥ 1 2 5 6 9 12 15 20 23 26

g(`) ≤ 1 2 5 7 11 15 21 26 33 39

We were also able to prove that f(13) ≥ 37, f(14) ≥ 44, f(15) ≥ 50, f(16) ≥ 56,
and f(17) ≥ 61.
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4 Conjectures
Conjecture 4.1. g(6) = 6.

If Conjecture 4.1 is true, we would have g(7) ≤ 10.

Conjecture 4.2. g(7) = 9.

If Conjecture 4.2 is true, we would have g(8) ≤ 14.

Conjecture 4.3. The f -optimal arrangements on 6 and 7 lines (consider Figures 5 (b)
and 1, resp.) are g-unique.

Conjecture 4.4. (a) F (7) is not complete, but (b) for every `, G(`) is complete.
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