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1.1 Introduction 

1.1.1 Insects for food and feed 

Due to the growing world population, the increasing urbanization and the rising income in emerging 

economies, the demand for animal-based food products is on the rise (Alexandratos and Bruinsma, 

2012). Approximately 26% of the world’s ice-free surface, which equals 75% of the total agricultural 

surface, is occupied for livestock production as pastures and crops cultured for feed. According to 

Gerber et al. (2013), about 14.5% of all anthropogenic greenhouse gas emissions could be allocated 

to livestock production. In addition, 8% of global human water use can be allocated to the livestock 

sector (Foley et al., 2011). Consequently, concerns about the environmental sustainability of the 

current animal-based food production are emerging (van Huis et al., 2013). Therefore, in order to 

meet the rising demand for agricultural products, alternative solutions need to be introduced. 

Entomophagy (the consumption of insects by humans) might contribute to meeting these 

requirements. Several insect species are nutritious (i.e. rich in animal protein and other nutrients), 

have a short life cycle compared to livestock and can be fed on agricultural by-products that are 

currently undervalued (van Huis et al., 2013; Dobermann et al., 2017).  

Besides a food source for humans, insects can also be used as an alternative feedstuff for livestock 

production. The scope of this thesis will be insects as a feedstuff and therefore, insects as food for 

direct human consumption will not be further discussed. Several interesting reviews and reports 

addressing this matter have been published during the last few years (van Huis et al., 2013; Dossey et 

al., 2016; Dobermann et al., 2017).  

1.1.2 Insects as a feedstuff 

As mentioned in 1.1.1, the livestock sector currently uses 75% of all agricultural land worldwide 

(Foley, 2011). Land availability, however, is an important limiting factor of agricultural production (de 

Vries and de Boer, 2010). Cultivation of crops allocated to livestock, like soybean, puts pressure on 
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land availability, particularly in tropical areas. Consequently, these areas are subjected to 

deforestation, threatening tropical forests that are reservoirs of biodiversity and provide key 

ecosystem services (Foley et al., 2011). The intensive monoculture of soybean in South-American 

countries like Brazil and Argentina has a devastating effect on habitats and biodiversity. In addition, 

mechanical weeding increases soil erosion, while intensive cultivation is responsible for severe 

mining of soil fertility (Steinfeld et al., 2006). Crop production for animal feed also largely contributes 

to the high water use of the livestock sector (Rumpold and Schlüter, 2013).  

In Europe, the most important protein rich ingredient for terrestrial animal feeds is soybean meal, 

which is the by-product of oil extracted soybeans. European livestock production highly depends on 

the import of this protein resource. The world soybean production for 2016/17 was 351.8 million 

metric tons of which only 2.6 million metric tons (i.e. 0.74% of the world production) was produced 

in the EU (EU, 2017a). As a result, 14.6 million metric tons of soybeans and 19.6 million metric tons of 

soybean meal was imported in the EU in 2017 (IndexMundi, 2017). Therefore, the European 

Parliament is concerned that this dependency could make the livestock sector in the EU vulnerable to 

price volatility and trade distortions (Figure 1). Consequently, feed prices may rise and as a result 

farmers’ production costs would increase, while the profitability of the sector would decrease (Van 

Krimpen et al., 2013). Moreover, feed costs already represent 60-70% of total animal production 

costs (van Huis, 2013).  
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Figure 1: Evolution of soybean meal market prices during the last decade (€/metric ton) (Finanzen, 
2017) 

 

Therefore, for the economic and ecological reasons mentioned above, the need for sustainable 

alternative protein sources for livestock, which could partly substitute soybean meal, is becoming 

increasingly urgent. According to FAO (2017a), the sustainability of the agricultural systems 

producing these alternative protein sources is based on 5 principles:  

 improvement of the efficiency in the use of resources  

 conservation, protection and enhancement of natural resources 

 protection and improvement of rural livelihoods, equity and social well-being  

 enhancement of the resilience of people, communities and ecosystems  

 effective and responsible governance mechanisms 

1.1.2.1 Alternative protein-rich feed ingredients 

Alternative protein sources for soybean meal are either of plant origin (e.g. grain legumes such as 

lupines and chick peas, and leaf proteins such as grass and sugar beet leaves), aquatic origin (e.g. 
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microalgae, seaweed and duckweed), microbial origin or derived from insects (van Krimpen et al., 

2013). In what follows, some of these alternatives will be briefly discussed.  

Grain legumes have the unique ability, like soybean, to fixate nitrogen. Most of the legumes contain 

approximately 21–25% crude protein. However, lupine has been reported to have a comparable 

protein content as soybean, up to 45–50% crude protein (Henchion et al., 2017). A disadvantage of 

lupine is that it contains anti-nutritional compounds, such as toxic, bitter tasting alkaloids which may 

reduce food intake. Cultivars with a lower alkaloid level have been developed, however, these breeds 

are more sensitive to several plant pests, such as the fungus Colletotrichum gloeosporiodes (Helsper 

et al., 2006). Other anti-nutritional compounds possibly present in grain legumes are protease 

inhibitors and lectins, which constitute part of the defensive mechanism of the seed and reduce the 

digestibility (Mikić et al., 2009). Consequently, in order to reduce these anti-nutritional compounds, 

energy consuming heat and pressure treatments (e.g. toasting, flaking, extrusion, expansion, 

pelletizing) will have to be applied, as is the case for soybean (Heuzé et al., 2017).  

Besides the cultivation of protein crops, plant proteins can also be resourced from left-over materials 

such as sugar beet leaves. The valorization of these side streams might increase the sustainability of 

protein production, however, due to the high water contents (90% moisture or more), energy 

consuming drying is necessary in order to concentrate the protein content and for purposes of 

preservation, storage and transport (van Krimpen et al., 2013). In addition, the fiber content of these 

plant materials is high and, therefore, an extraction step separating proteins from fibers, might 

increase their applicability in the diets of monogastrics (Chiesa and Gnansounou, 2011). Many plant 

protein sources, compared to protein sources from animal origin, do not contain all the essential 

amino acids in the required proportions. However, this could be compensated by feeding blends with 

cereals and by supplementation of synthetic amino acids, as is done for soybean based feeds 

(Henchion et al., 2017).  
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Duckweeds, free-floating vascular plants distributed around the world on fresh (or brackish) waters, 

can be high in protein and minerals, while the fiber content is low compared to terrestrial plants 

(Hasan et al., 2009). The crude protein content is very variable and can range from 7 up to 45% on 

DM basis, depending on the nitrogen availability in the water used for duckweed culture (Culley et 

al., 1981). Thus, under optimal conditions, protein-rich duckweeds could be produced which could 

compete with high quality protein sources such as soybean meal. However, given the high impact of 

the quality of the water used to culture duckweeds, contamination with pathogens, heavy metals 

and organic toxins are concerns related to duckweed farming (Iqbal, 1999). In addition, duckweeds 

may contain anti-nutritional factors such as oxalic acid (Goopy et al., 2003), phenolic compounds, 

tannins and saponins (Negesse et al., 2009). Since duckweeds are very high in moisture (92-95%), 

energy costs and practical aspects of drying should be considered (Holshof et al., 2009).  

Another group of aquatic organisms with potential as feedstuff are algae, a heterogeneous group 

with a complex taxonomy. Algae can be divided in two main types: the macroalgae (i.e. seaweeds), 

occupying the littoral zone, which can be of very large size, and the microalgae, small organisms 

which can be found in benthic and littoral habitats, throughout the oceans (i.e. phytoplankton) and 

fresh water (Hasan et al., 2009). Macroalgae have a highly variable composition, dependent of 

species, habitat, harvest time and environmental conditions such as light intensity time, temperature 

and nutrient concentration in water. Another important feature of fresh seaweeds is that the 

moisture content is high (70-90%) and, therefore, they need to be dried or consumed quickly 

(Mišurcová, 2012). Regarding feed safety, there could be the problem of concentration of inorganic 

elements from seawater which may contain heavy metals and other mineral contaminants. 

Therefore, concerning their content in trace elements, seaweeds for food and feed are subjected to 

national and international regulations (EU, 2011). 

Microalgae, like the other aquatic plant sources mentioned above, can vary substantially in 

composition. This could be due to genetic factors, culture conditions and the growth stage at harvest 

https://feedipedia.org/node/19134
https://www.feedipedia.org/node/21293
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(Becker, 2013a). It has been recommended that for applications in animal feed, mixtures of carefully 

selected microalgae are made to guarantee optimal growth because a particular alga may lack the 

nutrients that other species may contain (Yamaguchi, 1997; Becker, 2013a). Microalgae, of which the 

cyanobacterium spirulina (Arthrospira sp.) has the broadest range of applications, are already 

employed in commercial aquaculture (Becker, 2013a). They are usually rich in protein, with a content 

that can exceed 60% of DM (Garofalo, 2011). The amino acid composition is quite similar between 

species, and largely unaffected by the intrinsic and extrinsic factors mentioned above. In general, 

aspartic acid and glutamic acid occur in the highest concentrations, whereas cysteine, methionine, 

tryptophan, and histidine occur in the lowest concentrations (Becker, 2013a). Spiruline protein 

contains all essential amino acids and is superior to a typical plant protein, including that of legumes. 

Compared to animal proteins, however, the contents of lysine and the sulphur containing methionine 

and cysteine are lower (Garofalo, 2011). In addition, most microalgal species have a relatively thick 

cellulosic cell wall, which complicates digesting by monogastric species. Therefore, in order to make 

the algal protein accessible, treatments (e.g. boiling, high temperature drying or breaking of 

hydrogen bonds by phenol which requires detoxification afterwards) are necessary. However, the cell 

wall of spirulina does not represent a barrier to proteolytic enzymes, and this alga can be digested by 

monogastrics without previous physical or chemical rupture of the cell wall (Becker, 2013b).  

From the above mentioned alternatives, the majority had already been studied or was under 

investigation at the time this research started. According to FAO (van Huis et al., 2013), another 

alternative protein source, this time from animal origin, could be provided by insects. However, given 

that the number of studies concerning the rearing, nutritional value and feed safety hazards of 

insects as a feedstuff was limited at the time, more research was warranted. Therefore, our research 

focused on the potential of insects as an alternative feedstuff. However, we postulate that none of 

the mentioned alternative protein sources (including insects) is superior to any of the others and in 

the future a scenario of combining different alternatives will probably be necessary.  
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Insects generally have a high nutritional value (Table 1). They contain high amounts of protein, 

essential amino acids, fatty acids and micronutrients (e.g. copper, iron, zinc) (Verkerk et al., 2007; 

Rumpold and Schlüter, 2013; van Huis, 2013). The majority of the insects has a protein content 

exceeding 30% on dry matter (DM) basis (Verkerk et al., 2007; Premalatha et al., 2011; Veldkamp et 

al., 2012). Veldkamp et al. (2012) pointed out that the crude protein content of insects is in the same 

range as that of soybean meal. They also found that the amino acid profile of insects matches with 

the required essential amino acid profiles of growing pigs and broiler chickens. In general, insects 

contain high amounts of lysine, threonine and methionine, which are major limiting amino acids in 

cereal- and legume-based diets (Verkerk et al., 2007; van Huis, 2013). The protein digestibility of 

insects is influenced by the presence of an exoskeleton, as this contains non-digestible chitin 

(DeFoliart, 1992; Verkerk et al., 2007). However, recent studies conducted by De Marco et al. (2015) 

and Schiavone et al. (2017) showed that insect meals derived from the yellow mealworm, Tenebrio 

molitor (Coleoptera: Tenebrionidae), and the black soldier fly (BSF), Hermetia illucens (Diptera: 

Stratiomyidae), are valuable sources of apparent metabolizable energy and digestible amino acids for 

broiler chickens. Although insects are primarily seen as an alternative protein source, they are also 

high in fat (Verkerk et al., 2007; Veldkamp et al., 2012). Several studies indicate that traditional 

protein and fat sources commonly used in feed formulation can be replaced by insects without 

adverse effects on animal performance and product quality (Teotia and Miller, 1973; Newton et al., 

1977; Anand et al., 2008; Sealey et al., 2011).  
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Table 1: Nutritional composition of 2 insect species (T. molitor and H. illucens) compared to whole 

soybeans  

 
T. molitor H. illucens Soybean 

Dry matter (g/kg) 422 ± 63 400 ± 50 800 

Gross energy (MJ/kg DM) 28.7 ± 0.8 22.1 23.6 ± 0.4 

    

Crude protein (N x 6.25) (g/kg DM) 482 ± 47 421 ± 10 396 ± 14 

Alanine (g/kg DM) 38.5 ± 5.3 32.4 ± 3.4 17.0 ± 0.8 

Arginine (g/kg DM) 25.3 ± 5.3 23.6 ± 1.3 28.5 ± 1.2 

Aspartic acid (g/kg DM) 39.6 ± 9.0 46.3 ± 7.5 44.0 ± 1.6 

Cystine (g/kg DM) 4.2 0.4 5.9 ± 0.8 

Glutamic acid (g/kg DM) 59.7 ± 5.8 45.9 ± 10.1 70.5 ± 2.0 

Glycine (g/kg DM) 25.9 ± 4.8 24.0 ± 3.4 16.6 ± 0.4 

Histidine (g/kg DM) 18.0 ± 1.1 12.6 ± 4.2 10.3 ± 0.8 

Isoleucine (g/kg DM) 24.3 ± 2.6 21.5 ± 2.1 17.8 ± 0.8 

Leucine (g/kg DM) 45.4 ± 9.5 33.3 ± 2.5 29.7 ± 0.8 

Lysine (g/kg DM) 28.5 ± 4.2 27.8 ± 3.8 24.6 ± 0.8 

Methionine (g/kg DM) 7.9 ± 2.1 8.8 ± 1.3 5.5 ± 0.4 

Phenylalanine (g/kg DM) 21.1 ± 2.1 21.9 ± 1.7 19.8 ± 0.4 

Proline (g/kg DM) 35.9 ± 1.1 27.8 19.8 ± 1.2 

Serine (g/kg DM) 37.0 ± 18.5 13.1 ± 8.0 19.8 ± 0.8 

Threonine (g/kg DM) 21.1 ± 2.6 15.6 ± 7.2 15.4 ± 0.8 

Tryptophan (g/kg DM) 3.2 ± 2.6 2.1 5.1 ± 0.0 

Valine (g/kg DM) 39.1 ± 3.2 29.0 ± 5.5 18.6 ± 0.8 

    

Fat (g/kg DM) 402 ± 49 260 ± 83 214 ± 17 

C12:0 (g/kg Fatty acids) 5 ± 5 338 ± 108
* 

 

C16:0 (g/kg Fatty acids) 211 ± 67 161 ± 36
* 

113 ± 11 

C18:0 (g/kg Fatty acids) 27 ± 4 40 ± 18
* 

36 ± 3 

C18:1 (g/kg Fatty acids) 377 ± 87 208 ± 58
* 

229 ± 16 

C18:2 (g/kg Fatty acids) 274 ± 40 52 ± 23
* 

536 ± 17 

C18:3 (g/kg Fatty acids) 13 3 ± 3
* 

78 ± 10 

    

Ash (g/kg DM) 31 ± 7 206 ± 60 57 ± 4 

Calcium (g/kg DM) 2.7 ± 1.9 75.6 ± 17.1 3.2 ± 0.8 

Phosphorus (g/kg DM) 7.8 ± 3.7 9.0 ± 4.0 6.1 ± 0.6 

    

Crude fiber (g/kg DM) 51 ± 7 70 62 ± 13 

Means ± SD (values without SD originate from a single study); data from Feedipedia (2017) unless otherwise 
indicated; the applied analytical methods might differ among studies, however, given the limited amount of 
data for insects, the mean of all values is presented; 

*
Mean value from St-Hilaire et al., 2007; Li et al., 2011; 

Sealey et al., 2011; Zheng et al., 2012 
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The rearing of insects for feed purposes could also be interesting from a sustainability point of view. 

Insects may contribute to the improvement in efficiency of protein production (see sustainability 

principles according to FAO, mentioned above in section 1.1.2). The potential of insects lies in the 

high reproduction capacity (hundreds of eggs/female), growth rates (life cycles completed in several 

weeks), the potential to convert low-value biomass into high-value protein and the high feed 

conversion efficiency (van Huis et al., 2013). Regarding the latter, for BSF reared on chicken feed, 1.8 

kg of feed is needed to obtain 1 kg of weight increase (Oonincx et al., 2015). This feed conversion 

ratio is somewhat higher than the feed conversion ratio of modern broilers, though the comparison 

is not straightforward. During the present research, BSF will be reared on side streams, currently not 

considered as feed for livestock, whereas broilers are fed highly digestible feeds containing over 40% 

starch. A possible explanation for the high feed conversion efficiency of insects could be the fact that 

they do not have to spend energy to maintain their body temperature as they are poikilothermic 

animals (Premalatha et al., 2011; van Huis, 2013). Also given their better potential than farm animals 

to derive moisture from food, insects are expected to use low amounts of water (Rumpold and 

Schlüter, 2013). Further, insects have the potential to change the chemical composition and reduce 

the odor and total mass of animal manure and organic waste (Liu et al., 2008; Diener et al., 2009). 

However, the sustainability of insect production will to some extent depend on the applied rearing 

substrates (Lundy and Parella, 2015; Smetana et al., 2016). The most promising substrates, in terms 

of sustainability, consist of low value by-products from the agri-food chain with a good nutritional 

profile (e.g. dried distillers grain with solubles) or are based on the utilization of waste products with 

high environmental impact (e.g. manure or municipal organic waste) (Smetana et al., 2016). 

1.1.2.2 Feed safety and processing 

Inherent to the variety of substrates used for insect rearing, certain feed safety risks can emerge. 

These risks could be from microbiological origin (pathogenic bacteria, viruses, parasites, fungi and 

prions) or chemical origin (heavy metals, pesticides, mycotoxins, toxins produced or accumulated in 

insects, veterinary drugs, dioxins and dioxin-like PCBs, polycyclic aromatic hydrocarbons and 
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packaging migration contaminants) (EFSA, 2015). Most of the chemical risk factors could be 

contained by providing safe substrates to rear the insects, however, certain pathogens can develop 

during storage. Since insects are rich in nutrients and moisture, providing a favorable environment 

for microbial growth, processing will be a necessary step (Klunder et al., 2012). Processing is an 

important step in order to improve preservation and guarantee the safety of feedstuffs.  

To allow storage and transport, harvested insects must be stabilized in some way. In most cases, this 

is achieved by drying (van Huis et al., 2013). In order to prevent possible loss of quality, products 

should be freeze dried. Freeze-drying, however, is an energy consuming process. Van Campenhout et 

al. (2017) investigated the possibilities of industrial microwave drying as an alternative to freeze-

drying. They concluded that microwave drying is a valuable alternative to freeze-drying with a similar 

end product quality. Moreover, for microwave drying the treatment time is shorter than for freeze 

drying and browning of the product does not occur during storage afterwards. 

Raw insect materials, to be used as feed ingredient, may require heat treatment as is described in the 

EU legislation on animal by-products (EC 1069/2009, see 1.1.2.3). In the case of T. molitor, larvae are 

killed by blanching, which is a pasteurization treatment that kills vegetative cells whereas the 

number of spores is not affected (Vandeweyer et al., 2017). For BSF, harvested larvae are subjected 

to a heat treatment at 80 °C for 30 minutes (Personal communication of Heinrich Katz from the 

Hermetia Gruppe, Germany). Besides heat treatment, other technologies such as high hydrostatic 

pressure could be used in controlling pathogenic microorganisms. A study from Kashiri et al. (2017) 

investigated the usefulness of this technology for BSF larvae. Using a pressure of 400 MPa for 2.5 

minutes at 25°C, yeast and mold did not survive in the larval samples whereas total aerobic 

mesophilic microorganisms were reduced.  

The Hazard Analysis Critical Control Points (HACCP) system is recognized worldwide for quality 

assurance and controlling physical, chemical and biological hazards throughout the production 
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process. The implementation of HACCP throughout the insect supply chain could be crucial in the 

development of the insect production sector (van Huis et al., 2013).     
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1.1.2.3 Legislation 

The insect sector, specifically for feed production, has to comply with several types of legislation in 

the EU. In what follows, a short overview of the legislative status in the summer of 2017 is given.  

 EC 999/2001: Transmissible Spongiform Encephalopathies (TSE) regulation. This regulation 

prohibits the feeding of all animal proteins, processed (PAP) or not, with the exception of 

hydrolyzed protein. Consequently, insect proteins are not allowed as animal feed in the EU. 

In contrast, living insects, insect derived oils and hydrolyzed insect protein are allowed in 

animal feed. Since pet food is out of scope for this regulation, insect proteins are allowed for 

pet food (EU, 2001).  

 Directive 2013/56/EU has allowed the use of non-ruminant processed animal products (PAP) 

in aquaculture, including invertebrate material. However, registration of slaughterhouses for 

insect slaughter was required and therefore insects were still not allowed in fish feed (EU, 

2013).  

 Commission Regulation EU 2017/893 authorizes the use of insect proteins as fish feed. This 

permission is limited to 7 species (i.e. BSF, common housefly, yellow mealworm, lesser 

mealworm, house cricket, banded cricket and field cricket) (EU, 2017c). 

 According to Regulation EC 1069/2009 the insects can only be fed with ‘feed grade’ 

substrates which are allowed to be fed directly to farm animals. These substrates consist of 

vegetal origin materials or a limited number of animal origin materials, including fishmeal, 

blood products from non-ruminants, egg and eggs products, milk and milk based products, 

honey, rendered fats. In addition, for the production of protein, fat/oil and chitin, to be used 

in feed, raw insect materials are required to undergo processing in order to sufficiently 

reduce biological hazards (EU, 2009a).  

The International Platform of Insects for Food and Feed (IPIFF) states that on the medium-long term 

(2020), insect protein for poultry and pigs will be allowed. The main hurdle is that, for the moment, it 

cannot be proven that insect protein intended for pig or poultry feed, is not contaminated with pig or 
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poultry protein, respectively. The legislation might change, as soon as a reliable analytical method is 

available. The European Reference Laboratory for animal proteins in feedingstuffs has been working 

on the development of such a method since several years (IPIFF, 2017).  

1.1.3 The black soldier fly, Hermetia illucens 

The insect species with the highest potential for large-scale production are BSF, common housefly, 

Musca domestica (Diptera: Muscidae), and the mealworm species T. molitor and Alphitobus 

diaperinus (Coleoptera: Tenebrionidae). These species can potentially be used to upgrade low value 

side streams, of which globally an approximate amount of 1.3 billion metric tons per year are 

produced, into high value protein (Veldkamp et al., 2012; ABN AMRO, 2016). BSF larvae have already 

been formulated as a component of complete diets for poultry (Hale, 1973; De Marco et al., 2015, 

Schiavone et al., 2017), swine (Newton et al., 1977), and for several commercial fish species (Newton 

et al., 2005; St-Hilaire et al., 2007; Magalhães et al., 2017). They were found to support good growth 

and, therefore, it was generally concluded that BSF larvae can be a suitable protein source for animal 

feed. 

BSF naturally inhabits (sub)tropical and temperate regions of the Americas between 45° N and 40° S 

and has established in several areas outside of its geographical origin (May, 1961; Callan, 1974; Kim, 

1997; Üstüner et al., 2003). During its lifecycle, this holometabolous insect passes through several 

developmental stages (egg, 6 larval instars with the last being indicated as the “prepupal stage”, 

pupa and adult). Egg clusters are typically deposited in crevices or on surfaces above or adjacent to 

decaying organic matter, like manure. Hatching of eggs occurs in approximately 4 days (Tomberlin, 

2001). At optimal temperatures of 27.0-30.0 °C for larvae (Tomberlin et al., 2009) and 27.5-37.5 °C 

for adults (Booth and Sheppard, 1984), the larvae reach their maximum weight (dependent of the 

rearing substrate) in 2 to 3 weeks and the adult females show high fecundity (600-700 eggs/female) 

(Tomberlin, 2001). The last larval stage (prepupa) is brown in color and at this stage larvae stop 

feeding and empty their digestive tract. Then, the prepupae migrate in search of a dry and protected 
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site in preparation of metamorphosis. Under optimal conditions, the pupation (i.e. combined 

prepupal and pupal stage) takes about 2 weeks (Sheppard et al., 1994). The adults do not need to 

feed, are not known to transmit diseases, and rely on the nutrients stored from the larval stage 

(Diener, 2010). In Figure 2, the life cycle of BSF from the colony maintained at the Faculty of 

Bioscience Engineering of Ghent University is shown. Larvae were reared in a climate chamber on 

chicken feed at a temperature of 27 ± 1 °C and a relative humidity of 65 ± 5%, hatching adults were 

removed from the chamber and placed near a sunlit window at ambient conditions (25 ± 5 °C and 50 

± 10% RH). Table 2 presents an overview of the insect’s taxonomic placement.  

 

 

Figure 2: Life cycle of BSF 
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Table 2: Taxonomic placement of BSF 

Kingdom Animalia 

Subkingdom Bilateria 

Infrakingdom Protostomia 

Superphylum Ecdysozoa 

Phylum Arthropoda 

Subphylum Hexapoda 

Class Insecta 

Subclass Pterygota 

Infraclass Neoptera 

Superorder Holometabola 

Order Diptera 

Suborder Brachycera 

Infraorder Stratiomyomorpha 

Family Stratiomyidae 

Subfamily Hermetiinae 

Genus Hermetia Linnaeus 

Species Hermetia illucens Linnaeus 

 

 

1.2 Objectives and thesis outline 

In this Chapter 1, information is provided on the need for alternative ingredients for livestock 

production, and the potential of insects as a feedstuff, in particular BSF.  

In Chapter 2, aspects of the rearing and reproductive biology of the BSF are described. Detailed 

information on the small scale laboratory rearing of BSF in literature is limited (Sheppard et al., 2002, 

Nakamura et al., 2016) and, therefore, a thorough description of the rearing procedures for our 

colony at Ghent University is included. The rearing of BSF could be divided in two specific phases 

being, on one hand, the rearing of larvae in order to obtain larval biomass to be harvested and, on 
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the other hand, the production of fertile eggs in order to provide larvae. The latter phase involves the 

rather complicated, and understudied, mating and oviposition behavior of BSF adult females. 

Therefore, in order to provide more information, which could contribute to the optimization of the 

egg production, an experiment evaluating the fecundity of females of different weights was 

performed.  

  The specific objective of this experiment was: 

 To assess the effect of prepupal weight on the fecundity of the resulting females. 

o Hypothesis (H1): larger prepupae will develop into heavier flies with higher 

fecundity than their lighter counterparts. 

Concerning the production of larval biomass for animal feed, a wide variety of rearing substrates 

could be used. In order to be sustainable, the applied substrates should be side streams. The 

efficiency of insect production systems, their contribution to global protein supply and the associated 

environmental impact will largely depend on the quality of the insect diet (Lundy and Parrella, 2015; 

Smetana, 2016). However, the chemical composition of these substrates may have substantial effects 

on the growth and quality of the resulting larval/prepupae. In Chapters 3, 4 and 5 the effects of 

rearing substrate on the biology (Chapter 3) and chemical composition (Chapters 4 and 5) of BSF 

were assessed.  

In addition, given that information about possible risks associated with BSF production in Europe is 

limited and warranted (EFSA, 2015), environmental risks linked to the introduction of an exotic 

species (Chapter 3) and chemical feed safety hazards (Chapter 4) were evaluated.  
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The objectives for the respective chapters were: 

 To determine the cold hardiness of BSF under different circumstances and implications 

towards overwintering potential. 

o Hypothesis (H2): the (sub)tropical BSF is not able to survive northwestern 

European winters. 

o Hypothesis (H3): the cold tolerance of BSF will depend on developmental stage, 

rearing substrate and acclimation. 

 To assess the potential uptake and accumulation of heavy metals and pesticides from the 

rearing substrate by different larval stages of BSF (fifth instars and prepupae) and 

implications towards feed safety. 

o Hypothesis (H4): cadmium and pesticides with high log(Kow) value are most likely 

to accumulate. 

o Hypothesis (H5): lower concentrations of heavy metals and pesticides are 

present in the post-feeding prepupae compared to fifth instar larvae.  

The choice for heavy metals and pesticides was motivated by the specific nature of some of the 

substrates applied in our research (details provided in Chapters 4 and 5). In addition, for pesticides, 

to our knowledge, the number of studies is limited. Only Purschke et al. (2017) investigated 3 active 

substances.  

In Chapters 5 and 6, nutritional aspects of BSF prepupae as a feedstuff for terrestrial monogastric 

farm animals were assessed, with focus on piglets in Chapter 6. Chapter 5 presents a thorough 

nutritional analysis of BSF prepupae reared on various commercially available side stream substrates 

(i.e. catering waste, vegetable waste and biogas digestate). The objective of this chapter was: 
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 To Evaluate the production and nutritional composition of BSF prepupae reared on side 

streams of different composition.  

o Hypothesis (H6): the composition of the substrate will substantially affect the 

growth and composition of the resulting prepupae.  

o Hypothesis (H7): the effect of substrate on the composition of the prepupae will 

differ according to the nutrient considered.  

In Chapter 6, the nutritional value of BSF prepupae was further assessed using in vitro and in vivo 

experiments. Besides being a potential source of high value protein, BSF prepupae are also rich in fat, 

with levels ranging between 15 and 49% on DM basis. Notably, the fatty acid profile is, in general, 

high in the medium-chain fatty acid (MCFA) lauric acid (C12:0) (Makkar et al., 2014). MCFAs are well 

known for their antimicrobial effects on gut microbiota. Since in-feed antibiotics are banned in the 

EU and anticipating the withdrawal of zinc oxide at pharmacological doses and copper as growth 

promoter, there is an increasing need for reliable in-feed alternatives (EMA, 2017). Because of its 

high value protein and presumed antimicrobial effects, the weaner diets for piglets might be an 

interesting niche market for full-fat BSF products. The added value provided by the antimicrobial 

properties of the BSF fat could justify higher prices for BSF compared to soybean. Therefore, the 

objectives for this chapter were:  

 To assess the possible anti-microbial effects of BSF fat extracts in vitro. 

o Hypothesis (H8): BSF fat will inhibit the growth of gram positive bacteria given 

their richness in lauric acid.  

 To validate the results from the in vitro study by an in vivo experiment with weaned 

piglets and to validate the nutritional (protein and fat) value of this alternative feedstuff. 

o Hypothesis (H9): diets containing BSF fat will have an inhibitory effect on gram 

positive bacteria in the proximate small intestine of piglets. 
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o Hypothesis (H10): piglets reared on diets containing BSF will show no differences 

in performance compared to the control. 

In the concluding in vivo experiment, BSF prepupae, full-fat and defatted batches purchased from a 

commercial breeder (Hermetia Gruppe, Germany), were incorporated in the feed of early weaned 

piglets. The nutritional value of the prepupae was assessed by recording the piglets’ performance, 

evaluating the gut health and determining the digestibility. 

In the final chapter, the research findings are discussed, conclusions are drawn and future 

perspectives for the commercial rearing of BSF as a feed ingredient are formulated.  
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2.1 Laboratory rearing system 

An important advantage of BSF with regard to industrial rearing is that this species is relatively easy 

to rear (van Huis et al., 2013). This is definitely the case when BSF is compared to species like crickets 

or locusts and the larval development of BSF is faster than that of other interesting species like 

Tenebrio molitor. Several researchers have studied certain aspects of BSF rearing (Tomberlin, 2001; 

Barry, 2004; Diener, 2010; Holmes, 2010; Gobbi, 2012; Oonincx, 2015) and practical information on 

BSF rearing systems is provided by various authors (Newton et al., 2005, Alvarez, 2009; Dortmans et 

al., 2017). However, at the onset of our research, the only detailed information on BSF rearing at a 

laboratory scale was provided by Sheppard et al. (2002). Therefore, the laboratory colony established 

in order to conduct our experiments is described in the first part of this chapter.  

A stock colony of BSF was established in May 2013 at the Department of Crop Protection of Ghent 

University, Belgium, using insects supplied by Millibeter BVBA, Antwerp, Belgium. The rearing 

methods were similar to those described by Sheppard et al. (2002) with several alterations. The 

immature life stages (eggs (Figure 3), larvae (Figure 4) and (pre)pupae (Figure 5)) were reared in the 

controlled environment of a climate chamber with a temperature of 27 ± 1 °C and 65 ± 5% relative 

humidity (RH) under complete darkness. The larvae were reared on a diet composed of 1/3 ground 

chicken feed pellets (Legkorrel TOTAL 77, Aveve, Belgium) and 2/3 distilled water, on weight basis, 

similar to the feed used by Diener et al. (2009). The emerging prepupae were allowed to self-harvest 

and settle in potting soil (Perspotgrond Groententeelt, STRUCTURAL Type 0, Belgium), which is a 

superior pupation substrate according to Holmes et al. (2013).  
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Figure 3: BSF egg clusters deposited in cardboard strips 

 

 

Figure 4: BSF larvae reared on moistened chicken feed 

 

 

Figure 5: BSF prepupae; left: self-harvesting; right: settling in potting soil 
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When flies started to emerge, they were transferred to 30 x 30 x 30 cm cages at a density of about 

150-200 flies per cage (BugDorm-1 Insect Rearing Cage, South-Korea). The cages were placed near a 

sunlit, south-oriented window, to induce mating and oviposition, at a temperature of 25 ± 5 °C and 

50 ± 10% RH (Figure 6). For mating, the flies from our laboratory colony mostly relied on sunlight. 

However, from November until April extra light was provided in the morning and evening using a 

quartz iodine lamp of 500 Watt (QVF415, Phillips), based on the findings of Zhang et al. (2010). In 

countries where sunlight is abundant throughout the whole year, cages could be positioned 

strategically in order to achieve maximum mating activity, without having to provide artificial 

lighting. According to Zhang et al. (2010), from Wuhan, Hubei, China where sunrise was at 

approximately 05:30 h, and sunset at 18:00 h during the experiments, 85% of mating was observed in 

the morning starting from 08:30 h and peaking at 10:00 h. The mating activity peaked at a light 

intensity of approximately 110 µmol m-2 s-1
, while mating almost completely ceased during midday 

when the light intensity was 200 µmol m-2 s-1. Interestingly, it could be observed that most of the 

mating activity of flies kept under artificial light, at constant light intensities and completely deprived 

of sunlight, could also be perceived in the morning.  

 

Figure 6: BSF adult rearing cages 
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During our research, preliminary experiments were carried out in a climate chamber with fluorescent 

tube light (FL40W T12, Philips) at different intensities (0-20,000 lx); however, the number of fertilized 

egg clusters was substantially lower than when direct sunlight was provided. Nakamura et al. (2016) 

observed that sunlight promoted greater fertility and hatchability than fluorescent lighting (40 Watt) 

supplemented with a 20 Watt LED lamp. However, Oonincx et al. (2016) showed that rearing systems 

with LED lamps emitting light of 365 nm, 450 nm and 515 nm in wavelength yielded more larvae than 

fluorescent lighting. In addition, different light intensities were tested and no differences were 

observed in terms of fertile egg production, which indicated that wavelength is a more important 

factor than light intensity.  

BSF flies do not need to feed since they rely on fat reserves built up during the larval stages 

(Sheppard et al., 2002). However, once every day, water was sprayed on the cages in order to allow 

uptake by the flies. It was shown by Tomberlin (2002) that the longevity of the flies prolonged 

substantially when water was offered. Contrarily to the findings of Sheppard et al. (2002) who 

recommended the use of large cages of 200 x 200 x 400 cm, satisfactory mating and oviposition was 

achieved in our laboratory colony using much smaller cages (30 x 30 x 30 cm). Similar findings were 

reported by Nakamura et al. (2016) who kept 100 flies in cages of 27 x 27 x 27 cm. The latter authors 

speculated that high density is an important factor in achieving mating and oviposition in a limited 

space. The mating behavior of BSF is still a complex phenomenon that needs further investigation in 

order to optimize indoor production systems. 

Different phases can be distinguished in the culture of BSF: the augmentation phase with emphasis 

on the reproduction (i.e. the production of eggs or young larvae) and the rearing phase of the larvae 

with emphasis on the production of larvae or prepupae to be harvested. Each phase has its own 

specific requirements and therefore separate facilities could be established (ABN AMRO, 2016). From 

our colony, it was observed that the nursery of young larvae is an important factor with a major 

influence on the further development of the larvae. Larvae that received biogas digestate, a poor 
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substrate in terms of nutritional composition (Chapter 5), needed 41 days from egg hatching to 

prepupae, while larvae that received chicken feed during the first week prior to digestate feeding 

only needed 24 days in total. In addition, flies that originated from larvae reared on digestate 

showed a high mortality and were, besides being smaller, less successful in reproducing.  

2.2 Characteristics of larval and pupal stages 

2.2.1 Introduction 

During immature development, the exoskeletons of insect larvae are replaced regularly. This process 

is called molting and divides the larval period into several discrete stages. The period between two 

successive molts is known as an instar. The total number of larval instars is widely variable across 

insect species (Esperk et al., 2007). According to the literature, BSF larvae go through 6 molting 

stages (Hall and Gerhardt, 2002). In addition, three studies determining the morphological 

characteristics of the developmental stages of BSF larvae have been conducted (May, 1961; Kim et 

al., 2010; Gobbi, 2012). However, the results differ substantially among the studies as well as from 

observations of our own laboratory colony. Therefore, since identification and discrimination of 

larval instars is important in order to conduct specific experiments (Chapter 3), morphological 

characteristics of the larval and pupal stages from our colony were determined 

2.2.2 Materials and methods 

Kim et al. (2010) identified larval instars based on the exuviae observed during the development of a 

cohort of larvae. These larvae were reared on Drosophila standard medium containing 62.4 g dry 

yeast, 84 g dextrose anhydrous, 40.8 g corn meal, 9.2 g agar, 5 ml honey, 14.6 ml of mold inhibitor 

(i.e. 50 ml of 10% p-hydroxybenzoic acid methyl ester in ethanol and 23 ml of propionic acid), and 1 L 

of distilled water. However, since BSF larvae are inhabiting a wet food source, this method is not 

practical, especially for the first instars of which the exuviae are hard to distinguish from the 
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substrate (own observations). According to Dyar (1890) there is a significant relation between the 

head capsule measurements (i.e. length and width) of the larvae and their developmental stage. For 

BSF, head capsule measurements were already described by May (1961), Kim et al. (2010) and Gobbi 

(2012). However, the obtained values differ substantially from each other and, therefore, head 

capsule measurements were performed on larval and pupal stages from our colony.  

Every day, from egg hatching until pupal development, samples were taken from the stock colony, 

weighed (Sartorius H110, ± 0.0001 g) and the head capsule widths and lengths were measured using 

a stereomicroscope (Leica S8AP0) (Figure 7). From these measurements, abrupt changes could be 

observed in time indicating transition to the following instar. For every instar, the mean of 30 

measurements was taken at the moment that every larva reached the specific instar (the appearance 

of more than 2 consecutive instars at the same time was never observed). Consequently, a 

development table with relevant morphological characteristics of the larval and pupal stages from 

our colony could be constructed (Table 3). 

 

Figure 7: head capsule measurements 

 

2.1.2 Results and discussion 

Although instar number is frequently considered to be fixed within species, variability in the number 

of instars is not exceptional. Common factors influencing the number of instars are temperature, 

humidity, photoperiod, quality and quantity of the diet, rearing density, physical condition, 
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inheritance, and gender (Esperk et al., 2007). In our colony, however, 6 larval instars were observed 

using head capsule measurements. Based on the findings by other authors (May, 1961: Kim et al., 

2010; Gobbi, 2012) this confirms that BSF larvae go through a fixed number of 6 molting stages. 

When the data from Table 3 are compared to those in the literature, differences could be observed. 

Head capsule length measurements obtained by Gobbi et al. (2012) are somewhat comparable to our 

data. However, these measurements differ from those obtained by May (1961). In addition, the head 

capsule width measurements observed by Kim et al. (2010) differ from our data, with the biggest 

differences situated in the first 4 instars. These differences suggest that head capsule measurements 

of the different instars of BSF larvae are dependent on the observed BSF population. For the 

mosquito Anopheles merus Donitz seasonal variations in larval head capsule widths could be 

observed. Mean head capsule widths were, for all larval instars, 4.8-7.9% smaller in the summer 

population compared to the winter population (Sueur and Sharp, 1991).  

 

 

 

 

 

 

 

 

 



 

Table 3: Characteristics (means ± SE) of larval and pupal stages of BSF (N=30) 

*The fresh weights are those recorded at the moment that all insects of the sampled batches were situated in the respective instar 

 Larval instar 
 

 

 L1 L2 L3 L4 L5 L6/Prepupa Pupa 

Duration (days) 1 ± 0.2 3 ± 0.2 6 ± 0.4 7 ± 0.4 8 ± 0.5 9 ± 0.4 10 ± 0.5 

Weight* (mg) 0.2 ± 0.01 3.8 ± 0.1 66.1 ± 0.3 134.2 ± 0.7 307.1 ± 0.9 229.2 ± 0.8 209.4 ± 0.6 

Head capsule width 

(mm) 0.155 ± 0.007 0.418 ± 0.001 0.745 ± 0.003 0.858 ± 0.003 1.015 ± 0.004 1.157 ± 0.006 0.888 ± 0.008 

Head capsule length 

(mm) 0.183 ± 0.008 0.557 ± 0.003 1.340 ± 0.004 1.679 ± 0.006 1.968 ± 0.007 2.052 ± 0.009 1.550 ± 0.010 
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2.3  Reproductive performance as affected by body size 

2.3.1 Introduction 

Ensuring good mating and reproduction of BSF adults is much more complicated than larval rearing. 

Mating aspects have been investigated by Tomberlin (2001), Zhang et al. (2010) and Oonincx et al. 

(2016), but the reproductive capacity of BSF females currently remains understudied. Fecundity, 

which is expressed as the number of eggs oviposited per female, can be influenced by various factors 

(e.g. diet and temperature) (Vandekerkhove, 2010). Darwin (1874) was the first to describe a positive 

correlation between female body size/weight and fecundity in animals: larger females have a higher 

egg production than smaller females of the same species. For many invertebrates this phenomenon 

has also been reported (Shine, 1988; Honěk, 1993; Preziosi and Fairbairn, 1996). For some species, 

however, there is no or even a negative correlation between body size/weight and fecundity 

(Jiménez-Pérez and Wang, 2004). For the grass moth Parapediasia teterella the reproduction is 

positively correlated with the weight of the females as long the weight is situated under the mean of 

the population. Once above this mean the correlation turns to negative (Marshall, 1990). A positive 

correlation between female body size/weight and fecundity has been shown for various Diptera 

species (Honěk, 1993). For Musca domestica, however, no significant differences were observed 

between the number of eggs laid by females belonging to different weight classes (Pastor et al., 

2011). Whether or not there is a correlation between female body size/weight and fecundity for BSF 

has not yet been reported. Therefore, in the second part of this chapter, possible differences in 

fecundity between BSF females belonging to different weight classes are assessed.  

For BSF it has not been documented whether or not there is a correlation between female body size 

and fecundity. Therefore, in the following experiment, prepupae of our colony were divided into 

three classes according to their body weight. For all classes the fecundity of the resulting adults was 

assessed and, in addition, the viability of their offspring was monitored until the prepupal stage. 
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Whereas many studies have investigated the influence of weight or size on the fecundity of insects, 

different methods have been applied to determine the fecundity. Some authors estimated the 

lifetime fecundity by dissecting females at a certain age. This method, however, has mostly been 

applied for species where the oogenesis is terminated in the early adult stage (i.e. pro-ovigenic 

species). For other species (i.e. synovigenic species), the female needs to be monitored during the 

complete lifespan in order to determine the lifetime fecundity (Leather, 1988). There are species for 

which the lifetime fecundity can be estimated by monitoring ovipositing females only during a certain 

period instead of their complete lifespan (Honĕk, 1993). The eggs of BSF females are deposited in 

one cluster during a single oviposition event (Tomberlin, 2001). Moreover, the eggs are easy to 

collect and, therefore, in this study the fecundity was determined without the need to perform 

dissections of the adult females. In addition, such dissections would not allow to discriminate 

fertilized from unfertilized eggs.  

2.3.2 Materials and methods 

Four hundred prepupae were collected from the stock colony, weighed individually (Sartorius H110, 

± 0.0001) ranked from light to heavy and subsequently divided into three classes of fresh body 

weight (with equal numbers of individuals). The prepupae were transferred to plastic containers (SPL 

Life Sciences, Type Insect Breeding Dish; 10 x 4 cm) filled with potting soil (Perspotgrond 

Groententeelt, STRUCTURAL TYPE 0) and placed in a climate chamber at 27 °C and 65% RH. After 15 

days, the first adults emerged and within 48 hours, for each weight class, 3 cages (BugDorm-1 Insect 

Rearing Cage; 30 x 30 x 30 cm) containing 9 or 10 adult females and 6 males per cage were set up. 

From colony observations it was deduced that one male could mate with multiple females and that 

the presence of too many males resulted in enhanced competition and thus might have a negative 

influence on the fertilization rate. The weight of the males was not considered and males were 

distributed randomly over the different female weight classes. The cages were placed in the 

proximity of a large sunlit window, in order to receive sufficient sunlight to induce mating. Room 
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temperature and RH were monitored using data loggers and the flies were provided with water 

sprayed on the cages twice every day. After three days, in each cage a dish was placed containing 

moistened compost, originating from decomposing garden waste, as an oviposition attractant; the 

dish was covered with cardboard strips to collect eggs. Two days later the first eggs were collected 

and fresh dishes with cardboard strips and compost were provided. This was repeated every 48 h and 

all females were monitored until they died.  

Complete egg clusters were removed from the cardboard strips and weighed (Sartorius H110, ± 

0.0001 g). Subsequently, 50 eggs were isolated from each cluster, hand counted and based on their 

joint weight the individual egg weight was determined. In this way, the total amount of eggs per 

cluster could be estimated. Based on this estimated individual egg weight, another group of about 50 

eggs was sampled from each egg cluster (in this case the eggs were not hand counted to prevent 

possible damage to the eggs) and placed in a climate chamber at 27 ± 1 °C and 65 ± 5% RH in order to 

monitor hatching. Finally, a third sample of about 200 eggs was taken from the remaining eggs of 

each cluster in order to determine prepupal weight of the offspring. One week after hatching of the 

latter egg sample, 50 larvae were randomly collected per cluster and reared on stock colony diet (50 

g of fresh diet every week) until they reached the prepupal stage. For every weight class, the 

emerging prepupae were pooled and the weights of the 75 first emerging prepupae were recorded. 

All data were analyzed using SPSS 22.0 (IBM Corp, 2013). One-Way ANOVA, followed by post hoc 

Tuckey (equal variances) or Tamhane (unequal variances) tests, was used when the data (i.e. 

prepupal weights of the first (Table 4) and second (Table 6) generations and the fecundity 

characteristics (Table 5)) were normally distributed, while otherwise Kruskal-Wallis tests followed by 

Mann-Whitney U tests were applied to compare the means. P-values below 0.05 were considered 

significant. 
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2.3.3 Results and discussion 

In order to assess the influence of the fresh body weight on the fecundity of the females, prepupae 

were divided into 3 weight classes: light, medium and heavy. There were significant differences in 

prepupal body weight between the different classes (χ²=354,667; df=2; P<0.001) (Table 4).  

Table 4: Mean body weight of BSF prepupae belonging to different weight classes 

Class N Weight (mg) Weight range (mg) 

Light 133 164.3 ± 0.1 c 111 – 185 

Medium 134 201.4 ± 0.1 b 185 – 219 

Heavy 134 249.4 ± 0.2 a 219 – 319 

Mean ± SE; values within the same column followed by a different letter are significantly               
different (P<0.05; Kruskal-Wallis followed by Mann-Whitney U tests); N= no. of sampled individuals 

 

The fecundity characteristics of BSF females for the 3 weight classes are displayed in Table 5. Only 

46% of the light females were able to produce viable eggs, while this number increased to 68% for 

the medium sized females and even reached 88% for the heavy females. The individual egg weights 

were not statistically different (F=0.698; df=2, 46; P=0.503) while the mean weights of the egg 

clusters displayed significant differences (F=3.615; df=2, 46; P=0.035). The mean cluster weights were 

substantially higher for medium sized females compared to light females (P=0.035). However, the 

heavy females did not lay heavier egg clusters compared to those of the medium (P=0.903) and even 

the light (P=0.118) group. The number of eggs per cluster was the highest for the medium sized 

group (F= 4.695; df=2, 46; P=0.014). The difference with the heavy group was not significant 

(P=0.623) but that with the light group was (P=0.011). From the obtained results it could be 

concluded that the lightest prepupae yielded adults with a substantially lower fecundity than those 

of the medium and heavy group. If the latter groups were compared, there were no differences in 

the total amount of eggs deposited per cluster and number of hatched larvae per fertile egg cluster. 
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However, the substantially higher number of fertile egg clusters deposited by the heaviest females 

indicated that they had a higher mating success than their lighter counterparts.  

Ovipositing BSF females of our population from all weight classes combined, laid on average 647 

eggs. Each egg cluster weighed on average 16 mg and the mean individual egg weight was 0.024 mg. 

These findings are in agreement with the data obtained by Tomberlin (2001). In addition, the 

longevity of the females in the latter study was also comparable to that of our colony with an 

average value of 9-10 days, while the largest females survived the longest. Since BSF adults from our 

colony did not receive additional food besides water, they relied on the fat reserves built up during 

the larval stages. The correlation between the weight of the flies and their fat content was not 

assessed during this study, but from the findings in Chapter 5 it can be deduced that heavier 

prepupae have a higher fat content. According to Oonincx et al. (2016) and Nakamura et al. (2016) 

providing a sugar solution substantially prolongs the longevity of BSF flies. However, since providing 

only water already maintained BSF adults long enough for successful reproduction, a sugar solution 

was not applied in our colony.  



 

 

 

 

 

 

 

Weight No. of females No. of egg clusters 
No. of hatched 

clusters 

No. of 

eggs/cluster*
1 

Cluster weight 

(mg)*
1 

Egg weight (mg)*
1 No. of hatched 

larvae/cluster*
2 

Light 28 19 13 532 ± 49 b 12.9 ± 1.1 b 0.0243 ± 0.0007 a 314 ± 29 b 

Medium 28 26 19 739 ± 47 a 17.1 ± 1.2 a 0.0231 ± 0.0010 a 333 ± 21 ab 

Heavy 18 16 15 669 ± 55 ab 16.4 ± 1.2 ab 0.0245 ± 0.0010 a 375 ± 31 a 

*Mean ± SE; values within the same column followed by a different letter are significantly different (P<0.05; 
1
One-Way ANOVA followed by Tukey tests; 2Kruskal-Wallis 

followed by Mann-Whitney U tests) 

 

Table 5: Fecundity characteristics of BSF females belonging to different weight classes 
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Larvae resulting from the collected egg clusters were reared until they reached the prepupal stage. 

Differences between development time and mortality among the weight classes were not observed. 

The weights of the prepupae originating from females of different weight classes are displayed in 

Table 6. There were significant differences between the prepupal weights (χ²= 42.225; df= 2; 

P<0.001). The heavy flies produced the heaviest prepupal offspring while the medium group 

produced prepupae which were significantly heavier than those originating from the light group. 

Table 6: Mean body weight of BSF prepupae originating from females of different weight classes 

*Mean ± SE; values within the same column followed by a different letter are significantly different (P<0.05; 
Kruskal-Wallis followed by Mann-Whitney U tests); N= no. of tested individuals 

 

The findings of this experiment could have interesting implications towards the commercial breeding 

of BSF. Based on our results, selective breeding programs in which the heaviest females are selected 

to reproduce in order to ameliorate the population performance, both for reproduction and larval 

production, might become a standard practice. However, since only one generation of females was 

tested, clear conclusions about the feasibility of selective breeding in BSF production cannot be 

drawn. Whether or not the prepupae originating from the heaviest flies would in turn develop into 

the most fertile flies is uncertain. In addition, selecting females solely based on one phenotypic trait 

(i.e. their weight) may overlook certain genetic factors which might also have an important influence 

on their fitness (e.g. resistance to diseases). In conclusion, more research is warranted in order to 

optimize future breeding programs for BSF.  

Class N Weight (mg)* Weight range (g) 

Light 75 162.1 ± 3.0 c 110 - 210 

Medium 75 189.4 ± 3.2 b 129 – 288 

Heavy 75 206.3 ± 4.0 a 131 – 295 
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3.1 Introduction 

Companies in several industrialized countries are interested in developing mass production facilities 

for the black soldier fly (van Huis et al., 2013). However, in many of these countries (e.g. western 

European countries) BSF is considered a non-native species (Leclercq, 1997). Large scale production 

of this insect would thus increase the probability of escape and establishment of this exotic species in 

the natural ecosystems of western Europe. The (un)intentional introduction and subsequent 

establishment of an exotic insect has been reported multiple times in western Europe. Over the last 

decade, examples include several accidentally imported plant pests (e.g. Anoplophora spp., Epitrix 

spp., Tuta absoluta (Meyrick)), but also carnivorous species introduced for biological control 

purposes (e.g. Harmonia axyridis (Pallas)) (DAISIE, 2006; Brown et al., 2011; EPPO Reporting Service, 

2017). When such exotic species become invasive, there may be negative effects on agricultural as 

well as natural ecosystems. Due to such mechanisms as competition, predation, herbivory and 

spread of diseases and parasites, invasive alien species (IAS) are presently considered to be one of 

the main causes of global diversity loss, alongside climate change, habitat destruction, pollution and 

overexploitation (Roy et al., 2011). It is worth noting that although BSF has established in several 

areas outside of its geographical origin in the Americas (May, 1961; Callan, 1974; Kim, 1997; Üstüner 

et al., 2003), the species has not been reported to become invasive so far.  

In order to assess the likelihood of a species to become invasive, an environmental risk assessment 

can be performed. An environmental risk assessment characterizes the probability and severity of 

possible harmful effects on the ecosystem, when exposed to stressors (Andersen et al., 2004). One 

part of this assessment for the introduction of species in temperate areas consists of the 

determination of the cold tolerance of the species, i.e. the ability of the species to survive winter 

conditions (van Lenteren et al., 2006; Bale, 2011; Maes et al., 2015). Since BSF naturally inhabits 

(sub)tropical and temperate regions of the Americas between 45° N and 40° S characterized by mild 

winters (Üstüner et al., 2003), it may seem unlikely for this species to survive the winters of 
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northwestern Europe (e.g. northern France, Belgium, The Netherlands, Germany, United Kingdom 

and Ireland). In the southern United States, the fly reportedly has only three generations per year 

(Sheppard et al., 1994), suggesting that the species uses some mechanisms to bridge unfavorable 

periods. Holmes et al. (2016) estimated that the lower temperature threshold for larval development 

is situated between 16 and 19 °C. However, populations of BSF were recently observed in the wild in 

areas with cold winters, including Germany (47° 33’ N) (Ssymank and Doczkal, 2010) and even the 

Czech republic (49° 55' N) (Rohacek and Hora, 2013) where larvae were discovered in the early 

spring, but it is not clear whether these populations have effectively established.  

So far, little is known about the capability of BSF to adapt to severe winter conditions. Insect species 

are traditionally divided in two main groups in terms of their ability to cope with subzero 

temperatures: freeze-tolerant and freeze-avoiding species. The major difference between these 

strategies is that freeze-tolerant species synthesize ice forming agents (proteins) to allow a safe 

extracellular freezing, whereas freeze-avoiding species remove all potential ice forming material, 

such as gut content, and produce polyol or protein antifreeze agents (Bale and Hayward, 2010). In 

many cases, however, insects perish due to prolonged exposure to above zero cold temperatures, 

rather than freezing, due to the accumulation of chilling injury. The associated thermotropic damage 

to the cell membranes may lead to metabolic imbalances and ultimately result in death (Lee, 2010). 

However, changes in membrane lipid composition can protect certain insect species from damage to 

their cells (Bale and Hayward, 2010). Thus, a diversity of cold tolerance mechanisms has evolved in 

insects to cope with both temperatures below and above 0°C (Bale, 1993). In addition, many insects 

have developed diapause mechanisms to deal with the unfavorable winter conditions (Bale and 

Hayward, 2010). Although there is evidence of diapause in the Stratiomyidae family (Rozkosny and 

Kovac, 1998), it is not known whether diapause occurs in BSF, and if so, what are the factors 

triggering the process. Further, overwintering in protected environments may allow insects to survive 

the cold, which is the case for H. axyridis (Berkvens et al., 2010). Populations of BSF might also 

overwinter indoors, like in heated stables, and larvae have been hypothesized to survive northern 
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winters in livestock manure (Rohacek and Hora, 2013). Finally, insects may migrate over longer 

distances to avoid cold winters (Urquhart and Urquhart, 1978), but to our knowledge there are no 

published data on such migratory behaviors in BSF.  

In a first attempt to investigate the potential of BSF to survive winters in northwestern Europe, the 

present study examined the cold tolerance of different developmental stages using the methodology 

developed by Hart et al. (2002). The cold tolerance of early instar larvae (second-third instars), late 

instar larvae (fourth-fifth instars), prepupae (sixth instars), pupae and adults was estimated in the 

laboratory, using the supercooling point (SCP) and lethal time (LTime) at 5 °C as parameters. The SCP 

is the temperature at which the body liquids freeze, ultimately leading to death, and therefore it is 

the absolute lowest limit of cold tolerance of a freeze avoiding insect (Koch et al., 2004). In order to 

assess the mortality due to chilling injury, lethal times (e.g. LTime50 or the time point at which 50% of 

the population is expected to die) can be calculated (Berkvens et al., 2010). Diet may significantly 

affect the physiology of insects and may alter their responses to climatic conditions, including cold 

temperatures (Maes et al., 2015). Larvae of the black soldier fly can be reared on a wide variety of 

organic substrates (Diener et al., 2009) and the insect's life history traits (Nguyen et al., 2013) as well 

as chemical composition (Chapter 5) are influenced by the rearing substrate. In addition, many 

species become acclimatized to winter conditions due to gradually decreasing temperatures during 

the autumn months (Hatherly et al., 2005, Maes et al., 2015). Therefore, the effects of larval rearing 

substrate and acclimation on the cold tolerance of BSF prepupae were assessed in separate 

experiments.  
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3.2 Materials and methods 

3.2.1 Insects 

The stock colony population, provided by Millibeter BVBA to Ghent University in 2013 (Chapter 2), 

originated from South Georgia, USA, and was shipped to Europe around 2010.  

3.2.2 Experiments 

In a first experiment the SCPs and the lethal times at 5 °C of different life stages were examined. A 

detailed description of the methods to determine SCP- and LTime-values is given below. Larvae of 

different instars, prepupae, pupae and adults used in this experiment were taken from the stock 

colony. Larval batches were the progeny of at least 30 females. Early instar (second-third instars) and 

late instar (fourth-fifth instars) larvae were distinguished based on head capsule measurements 

(Chapter 2). Prepupae were transferred to potting soil (Holmes et al., 2013) at 27 ± 1 °C and allowed 

to settle for 24 h before the experiment. Preliminary observations indicated that at 27 ± 1 °C 

prepupae start turning into pupae from the 6th day on after having settled in potting soil, and after 9 

days more than 90% have reached the pupal stage. The pupae used in the experiment were collected 

from the potting soil 9 days after they had been introduced to the medium as prepupae.  

 

To assess the effect of the larval rearing substrate on the SCP and LTime at 5 °C of prepupae, two 

substrates were selected in a second experiment: catering waste and biogas digestate. These 

substrates were selected given their potential in organic waste management programs with BSF and 

their disparity in terms of composition (Chapter 5). The digestate was selected as a model for a 

nutritionally poor waste stream whereas the catering waste was chosen as a nutrient rich waste 

stream. The catering waste consisted of a homogenized mixture of cooked vegetables (mainly 

potatoes, 25% on wet weight basis) and fish (50% on wet weight basis), thus providing a diet that 

was rich in digestible starch and protein. The biogas digestate, obtained from Trevi NV (Gentbrugge, 
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Belgium), resulted from anaerobic fermentation of vegetable waste by microorganisms. The 

digestate was centrifuged into a liquid and a solid fraction, with the latter being used in the 

experiment. This substrate was deprived of energy rich components (like starch and sugars) and 

therefore rich in fiber (Chapter 5). The two substrates were tested together with the chicken feed 

substrate used in the stock colony as a control. For each substrate, 3 replicates of 1000 larvae (7 days 

old) were reared up to the prepupal stage, during which period the larvae were provided with 1 kg of 

wet feed every week until the first prepupae were observed. 

 

In a third experiment, the effect of temperature acclimation on both the SCP and LTime at 5 °C of 

prepupae, reared on the chicken feed diet (i.e. originating from the stock colony), was assessed by 

keeping them at 16 ± 1 °C (as the temperature in between the rearing temperature of 27 ± 1 °C and 

the experimental temperature of 5 ± 0.5 °C) for 7 days from the day after the prepupae had settled in 

the potting soil to the start of the experiment. The values of SCP and LTime at 5 °C of acclimated 

insects were compared with those of a non-acclimated control, originating from the same rearing 

batch.  

As prepupae of BSF are known to migrate towards a suitable pupation substrate (e.g. soil) (Holmes et 

al., 2013), in the wild prepupae and pupae are expected to reside in the upper soil layer (i.e. top 10 

cm). To evaluate the relevance of our laboratory findings for the overwintering capacity of BSF 

prepupae in the field, soil temperature data at a depth of 10 cm during the winter months of 1994-

2014 in Melle, Belgium, were acquired from the Belgian Royal Meteorological Institute (RMI). 

3.2.3 Supercooling point 

The SCP was measured using a Picotech TC-08 thermocouple datalogger and a low temperature 

programmable Haake Phoenix II CP30 alcohol bath. Each thermocouple was led individually through 

the lid of a 1.5 mL Eppendorf tube. Each Eppendorf tube contained a single insect. The Eppendorf 
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tubes were placed individually in glass tubes which were immersed in the alcohol bath. The starting 

temperature was 27 ± 1 °C (rearing temperature). The insects were cooled at 0.5 °C/min until the 

thermocouple registered the release of exothermal heat, at which point the SCP is reached (Berkvens 

et al., 2010). Insects were weighed before being subjected to the experiments, using a Sartorius H110 

semi-microbalance (± 0.01mg). Emerging adults were sexed. This was done in order to check whether 

SCP was correlated with fresh body weight and gender. Forty replicates were done per treatment. 

3.2.4 Lethal time at 5 °C 

Individuals of the different life stages collected from the stock culture at 27 ± 1 °C (experiment 1), 

prepupae reared on different substrates (experiment 2) and acclimated versus non-acclimated 

prepupae (experiment 3) were placed per 10 individuals in 10 cm diameter insect breeding dishes 

(SPL Life Sciences, Korea). The dishes were transferred to incubators at 19 ± 1 °C and 12 ± 1 °C (Weiss 

ET 2028), and held there for 30 minutes each time to avoid possible mortality due to cold shock, 

before being finally transferred to an incubator set at 5 ± 0.5 °C (Weiss ET 2028). This short 

acclimation was not performed on the acclimated prepupae in experiment 3. Larvae (both early and 

late instars) collected from the stock culture to be used in the lethal time experiments were not 

provided with food during the experiment as preliminary tests showed that the availability of a feed 

substrate had no influence on their survival. Throughout their exposure to 5 ± 0.5 °C, the insects 

were kept in total darkness and relative humidity was not controlled. Three insect breeding dishes 

(10 individuals per dish) were taken from the incubator at 5 ± 0.5 °C at regular time intervals (i.e. 

every 24h), and subsequently placed in incubators at 12 ± 1 °C and 19 ± 1 °C, where they were held 

for 30 minutes each time, and then finally transferred to 27 ± 1 °C. From then onwards, the larvae 

were provided with chicken feed (i.e. the rearing diet of the stock culture) and kept there for 48 h, 

after which survival was monitored. Survival of prepupae and pupae was determined by monitoring 

adult emergence. The lethal time at 5 °C of eggs, both fresh and 3 days old, and adults was not 

studied in detail as no egg hatching was observed and all of the exposed adults died in less than 3 
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days during preliminary tests. According to Hatherly et al. (2005, 2008), Hughes et al. (2009) and 

Allen (2010), a strong positive correlation (R2=0.9299) exists between maximum field survival during 

northwestern European winters and survival at 5 °C measured under laboratory conditions for 9 

arthropod species:  

field survival (days) = 1.4906 * LTime50 (days) + 12.444  (Allen, 2010). 

3.2.5 Statistical analysis 

All data were analyzed using SPSS 22.0 (IBM Corp, 2013). For the SCPs and body weights (only for 

prepupae reared on different substrates) a Kolmogorov–Smirnov test was conducted to assess 

normality of the data. In case of normality, one-way ANOVA was used to analyze the data. 

Subsequently, depending on the outcome of a Levene-test, a Tukey (homoscedasticity) or Tamhane 

test (heteroscedasticity) was performed to separate the means. In case of not normally distributed 

data, a non-parametric Kruskal-Wallis test was used. When significant differences were detected, 

means were compared two by two using Mann-Whitney U tests. An unpaired t-test was used to 

check for differences in SCP between males and females, whereas correlation of this parameter with 

the body weight of the different stages prior to testing was investigated using regression analysis. P-

values below 0.05 were considered significant. Results from the lethal time experiments were 

analyzed with probit/logit analysis, which estimated the time necessary to kill 10, 50 and 90% of the 

population at a temperature of 5 °C. Significant differences were identified by non-overlapping 

fiducial limits (Hart et al., 2002).  
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3.3 Results 

3.3.1 Supercooling point 

There were significant differences in SCPs between the different life stages of BSF (χ2=90.245, df=4, 

P<0.001) (Table 7). The average SCP of the early instar larvae was 2.26 °C below that of the older 

larvae. The SCP of the prepupal stage was significantly lower compared to that of the larval stages 

(P<0.001). The pupal stage showed the lowest SCP of all tested stages (P<0.001). The SCP of the 

pupal stage was 2.17 °C, 6.42 °C and 4.16 °C lower than that of the prepupae, late and early instars, 

respectively. The SCP of the adults (males and females pooled) was similar to that of the early instar 

larvae (P=0.166), but differed from that of the other life stages tested (P<0.001). There was no 

significant linear relationship between the SCPs and body weights of the different stages (R²=0.063, 

P=0.129, N=38 for early instars; R²=0.045, P=0.226, N=34 for late instars; R²=0.044, P=0.197, N=39 for 

prepupae; R²=0.023, P=0.354, N=40 for pupae; R²=0.001, P=0.847, N=40 for adults). Moreover, the 

SCP was not affected by the gender of the adults (t=0.170, df=38, P=0.866).  

Table 7: Body weight and supercooling point (SCP) of different life stages of BSF 

Number of individuals tested; 
b
Means ± SE; 

c
Means within a column followed by different letters are 

significantly different (Mann-Whitney U Test, P<0.05) 

 

Life stage N
a 

Body weight (mg)
b
 SCP (°C)

b,c
 Range of SCP (°C) 

Early instar (L2-L3) 38 52 ± 5 -9.54 ± 0.46c -7.12 to -15.75 
 

Late instar (L4-L5) 34 207 ± 6 -7.28 ± 0.18d -5.40 to -11.30 
 

Prepupa 39 207 ± 5 -11.53 ± 0.36b -6.98 to -15.87 
 

Pupa 40 192 ± 4 -13.70 ± 0.43a -7.12 to -18.30 
 

Adult (sexes pooled) 40 96 ± 3 -10.00 ± 0.39c -4.96 to -14.84 

Male adult 25 92 ± 3 -10.05 ± 0.54 -4.96 to -14.84 

Female adult 15 108 ± 4 -9.91 ± 0.56 -6.95 to -13.61 
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Larval rearing substrate had a significant influence on the SCP of the ensuing prepupae (χ²=21.728; 

df=2; P<0.05) (Table 8). Prepupae reared on catering waste had the lowest SCP (-14.08 °C) as 

compared to those that had developed on the control substrate and biogas digestate (-12.36 °C and -

11.15 °C, respectively). There was no significant difference between the SCPs of the acclimated 

prepupae and the control batch (χ²=1.190; df= 1; P=0.275).  

Table 8: Body weight and supercooling point (SCP) of BSF prepupae as affected by diet or acclimation 

a
Number of individuals tested; 

b
Means ± SE; means within a column and a treatment (substrate or acclimation), 

followed by different letters are significantly different (Mann-Whitney U Test, P<0.05); 
c
Not determined 

 

Over all experiments, none of the exposed individuals survived the supercooling experiments. In the 

period from 1994-2014, the minimum soil temperature recorded in Melle, Belgium, was -3.3 °C which 

is well above the SCP of all life stages.  

3.3.2 Lethal time at 5 °C 

The lethal time values (LTime10, 50, 90) at 5 °C of the tested life stages of BSF are presented in Table 9. 

Significant differences were observed between the instars (Pearson χ² test for fitting probit model: 

χ²=58.19; df=51; P=0.228). Second to third instars were most vulnerable to low above-zero 

temperatures with only 50% surviving after 3.92 days. Based on non-overlapping 95% fiducial limits, 

the LTime50 of older larvae was significantly longer compared to that of the early instars. For the 

Treatment N
a 

Body weight (mg)
b
 SCP (°C)

b
 Range of SCP (°C) 

Substrate     

Control 36 220 ± 4a -12.36 ± 0.49b -5.19 to -16.81 

Digestate 38 84 ± 3b -11.15 ± 0.43c -6.11 to -16.22 

Catering waste 40 219 ± 4a -14.08 ± 0.39a -8.50 to -17.48 

     

Acclimation     

Control 38 Nd
c
 -11.11 ± 0.46a -6.59 to -16.37 

Acclimated 38 Nd -11.77 ± 0.44a -6.69 to -17.69 
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prepupal and pupal stage, half of the individuals were still alive after 7.01 and 6.66 days, respectively. 

Prepupae survived significantly longer at 5 °C than the previous stages with still 10% survival after 

10.90 days. The difference in survival at 5 °C between prepupae and pupae was not significant.  

Table 9: Lethal times [±95% fiducial limits] at 5 °C for different life stages of BSF 

Life stage Na Slope + SE LTime10 (days) LTime50 (days) LTime90 (days)  χ² 

Early instar 
(L2-L3) 

12 -3.55 + 0.21 2.39 [2.16-2.63]c 3.92 [3.61-4.24]c 6.41 [5.91-6.99]c 
 

58.19 

Late instar 
(L4-L5) 

12 -4.30 + 0.23 3.18 [2.89-3.47]b 5.21 [4.83-5.60]b 8.52 [7.89-9.25]b 
 

 

Prepupa 16 -4.94 + 0.25 4.07 [3.73-4.40]a 6.66 [6.25-7.09]a 10.90 [10.20-11.72]a 
 

 

Pupa 16 -5.07 + 0.25 4.28 [2.56-4.05]ab 7.01 [6.58-7.45]a 11.46 [10.73-12.32]a  

a
Number of sampling events (i.e. every 24h, 30 individuals were sampled); Lethal time values within a column; 

followed by different letters are significantly different (non-overlapping 95% fiducial limits) 

 

Larval rearing substrate had significant effects on the LTime of the ensuing prepupae (Pearson χ² test 

for fitting logit model: χ²=187.03; df=65; P<0.001) (Table 10). Prepupae that had developed on 

digestate showed the highest survival at 5 °C. After 14.09 days there still was a survival of 50%, while 

only 10% of the prepupae reared on the control substrate survived an exposure of 11.07 days. The 

average LTime50 of prepupae reared on catering waste was 9.56 days. Acclimation significantly 

affected the LTime of prepupae (Pearson χ² test for fitting probit model): χ²=64.35; df=33; P=0.001). 

The lethal time values (LTime10, 50, 90) at 5°C for acclimated versus non-acclimated prepupae are 

shown in Table 10.  
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Table 10: Lethal times [±95% fiducial limits] at 5 °C for BSF prepupae from different treatments 

Treatment N
a 

Slope + SE LTime10 (days) LTime50 (days) LTime90 (days) χ² 

Substrate       

Control 23 7.74 + 0.40 3.07 [2.48-3.67]c 5.83 [4.99-6.76]c 11.07 [9.49-13.21]c 
 

187.03 

Digestate 23 6.05 + 0.34 7.42 [6.20-8.56]a 14.09 [12.59-15.66]a 26.73 [23.67-30.95]a 
 

 

Catering waste 23 9.07 + 0.44 5.03 [4.11-5.93]b 9.56 [8.35-10.83]b 18.13 [15.88-21.15]b 
 

 

       

Acclimation       

Control 18 2.06 + 0.14 5.43 [3.04-7.23]b 14.37 [13.08-15.67]b 23.32 [21.50-25.74]b 
 

64.35 

Acclimated 18 3.30 + 0.18 14.11 [12.32-15.62]a 23.06 [21.54-24.89]a 32.01 [29.56-35.36]a 
 

 

a
Number of sampling events (i.e. every 24h, 30 individuals were sampled); Lethal time values within a column 

and a treatment (substrate or acclimation) followed by different letters are significantly different (non-
overlapping 95% fiducial limits) 

 

3.4 Discussion 

The present study provides a first insight into the capacity of BSF to survive the winters of 

northwestern Europe. Our experiments indicated significant differences in the SCPs of the insect's life 

stages. The difference in SCP of young versus older larvae may be related to their body size. Smaller-

sized insects generally have a lower SCP (Sømme, 1982; Johnston and Lee, 1990). As an alternative 

explanation, differences in gut content of the larvae may be responsible for the observed differences 

in SCPs: the lesser the gut content, the fewer potential ice forming particles are present and thus, the 

lower the SCP (Koch et al., 2004). Since the stadium duration of the combined second and third 

instars is shorter than that of the fourth and fifth instars (Kim et al., 2010), a higher proportion of the 

young larvae had probably just molted. During the molting process the gut of larvae and prepupae of 

BSF is partly voided (Sheppard et al., 1994; personal observations). Thus, fewer ice nucleating 

particles present in the gut of the tested batch of second-third instars may have made them less 

susceptible to freezing. The differences in SCP between the larval stages on the one hand and the 
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prepupal and pupal stages on the other could be related to the same principle. The latter non-

feeding stages likely had little gut content, making them less susceptible to freezing. This pattern of 

lower SCPs in non-feeding versus feeding stages has been documented in various insects (Salt, 1953; 

Leather et al., 1996; Duman, 2001; Koch et al., 2004). The difference in SCP between the prepupal 

and the pupal stage could be due to the presence of a puparium in the latter. This protecting 

structure reduces direct contact with moisture, resulting in a prevention or delay of freezing (Miller, 

2003).  

All individuals, irrespective of their developmental stage, eventually died when their SCP was 

reached. According to Bale (1993) and Lee (2010), this indicates that BSF may be a freeze-intolerant 

species. Bale (1993) pointed out that the majority of freeze-intolerant species may die before the SCP 

is reached as a result of cumulative chilling injury; the resulting damage to the cell membranes may 

lead to metabolic imbalances and ultimately result in death (Lee, 2010). Lethal time experiments at 5 

°C indicate that prepupae and pupae were the most cold tolerant life stages. Since no individual of 

any tested life stage survived for more than a few weeks at 5 °C, it can be suggested that BSF is 

susceptible to chilling injury.  

One parameter that could influence the cold hardiness of an insect is the diet on which it is reared 

(Maes et al., 2012; Maes et al., 2015). Diet can significantly affect the physiology of insects and 

consequently alter their responses to climatic conditions (Grenier and De Clercq, 2003). A diet rich in 

certain nutrients may be able to provide the insect with components that promote its cold hardiness 

(Specty et al., 2003; Maes et al., 2012; Maes et al., 2015). Molecules like the amino acid proline and 

the disacharide trehalose could help to preserve the cell structure by binding to cell membranes and 

consequently preventing the binding of water molecules (Doucet et al., 2009). Individuals used in our 

second experiment were reared on diverse food sources. From the supercooling experiments with 

the resulting prepupae, one might deduce a positive relationship between the nutritional value of 

the rearing substrate and the cold hardiness of the insect: prepupae reared on catering waste had a 
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lower SCP (-14.08 °C) than those reared on chicken feed (-12.36 °C), whereas the SCP of prepupae 

obtained on digestate was even higher (-11.15 °C). Since prepupae were used in this experiment, the 

presence of ice nucleating particles present in the gut was probably negligible. However, the insect 

hemolymph could contain ice nucleating proteins and there might be differences in hemolymph 

composition between prepupae reared on different substrates (Duman, 2001). The results of the 

LTime experiments do not show a positive correlation with the nutritional value of the rearing 

substrate since, contrarily, prepupae reared on the poorest substrate were the most cold hardy. 

Likewise, Maes et al. (2012; 2015) reported a positive relationship between supercooling ability and 

nutritional value of the diet in two insect predators, whereas lethal times appeared to be 

independent of the diet. In order to draw reliable conclusions concerning the winter survival of BSF, 

additional information should be taken into account and several caveats are to be considered to 

interpret the results of our study.  

Insects used in the first experiment were taken from a stock culture maintained under constant, 

optimal conditions and they were allowed only a short acclimation to decreasing temperature. In 

temperate regions insects in the field are subjected to varying temperatures due to seasonal 

variation. Here, many species become acclimatized to winter conditions due to gradually decreasing 

temperatures during the autumn months (Hatherly et al., 2005; Maes et al., 2015). The outcome of 

our LTime experiment suggests that there is a significant effect of acclimation on the cold tolerance 

of BSF prepupae. Moreover, given that the acclimation treatment in our experiment was rather short 

(i.e. 7 days) and done only at one temperature (16 °C being in between the optimal temperature of 

27 °C and the LTime-temperature of 5 °C), true autumn conditions may improve the cold hardiness of 

BSF in temperate regions to a greater extent than was found in our laboratory experiment (Hart et 

al., 2002; Maes et al., 2012; Maes et al., 2015). As prepupae of BSF need a suitable substrate for 

pupation (Holmes et al., 2013), a significant part of the insect's life cycle in the wild might take place 

in the upper soil layer. According to the Belgian RMI data from 1994-2014, the mean soil 
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temperature during winter (December–February) at a depth of 10 cm ranged from 1.9 to 5.3 °C. 

Since the LTime50 of acclimated prepupae at 5 °C was about 23 days, this would imply that prepupae 

settled in the soil are rather unlikely to survive the whole winter. Applying the relationship between 

LTime50 at 5 °C and field survival established by Allen (2010) (see section 3.2.4) to the data for the 

non-acclimated prepupae from our study, it can be predicted that BSF would not survive longer than 

34 days in the field during northwestern European winters. According to the same relationship, 

however, field survival of the acclimated prepupae would be over 46 days. When applying the 

classification proposed by Allen (2010), acclimated prepupae are situated in between the low risk 

and the medium risk group for establishment. Taking all of our data into consideration, it would thus 

be rather unlikely for BSF to permanently inhabit the cooler temperate climate regions of 

northwestern Europe. For instance, compared to the harlequin ladybird H.axyridis, that has 

successfully invaded western Europe and other temperate areas (Berkvens et al., 2010; Brown et al., 

2011), the SCP of BSF is rather high, while the LTime50 is substantially shorter (H. axyridis: SCP= -17.5 

°C; LTime50 at 0 °C= 18 to 24 weeks (Berkvens et al., 2010)). 

Another crucial factor that warrants further investigation is the diapause ability of the species or of 

its local populations. Insects in temperate areas usually have better cold hardiness in a diapausing 

state (Bale and Hayward, 2010). Diapause in insects can occur in different developmental stages, 

depending on the species, and can be triggered by various stimuli. In tropical insects, diapause 

induction is linked to changes in temperature, moisture, and more often to biotic factors like 

population density and food availability (Denlinger, 1986). Whereas in temperate regions day length 

appears to be the most important trigger of diapause, the effect of photoperiod in tropical insects is 

minimal because of the relatively constant day lengths in regions close to the equator (Bale and 

Hayward, 2010). Since BSF is widely distributed in the geographic range from 45° N to 40° S, its 

populations are subjected to variable day lengths. Therefore, it is not unlikely that progressive 

shortening of day length might trigger diapause in at least some geographic populations of BSF. 

Unfortunately, there is little or no information on diapause responses in BSF. So far, evidence of 
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diapause in the family of Stratiomyidae is restricted to only one species, the oriental soldier fly, 

Ptecticus flavifemoratus Rozkosny & Kovac, originating from Malaysia (Rozkosny and Kovac, 1998).  

Finally, it deserves emphasis that certain environments could prove to be suitable for certain life 

stages of BSF to bridge the winter months. Given that populations of BSF in the USA and elsewhere 

are closely associated with animal production facilities (Newton et al., 2005), it might be possible for 

the species to avoid low temperatures by overwintering indoors, like in pig or poultry stables where 

relatively high temperatures are maintained year round. Further, Rohacek and Hora (2013) reported 

that a larval population of the black soldier fly was found in livestock manure during the spring of 

2010 in the Czech Republic at a latitude of 49° N. Although the authors believed that this was 

probably only a transient population, this observation indicates the potential for BSF larvae or pupae 

to survive during winter by inhabiting specific hibernacula like manure, organic waste or compost 

heaps where temperature remains higher than in the surrounding environment due to bacterial 

activity.  

In conclusion, SCPs and lethal times observed in this laboratory study suggest that BSF is unlikely to 

survive winter in northwestern Europe. However, in order to reliably conclude on the potential of 

BSF to establish in northwestern Europe, further investigation on overwintering mechanisms in this 

species is warranted, with a focus on diapausing ability, indoor overwintering and migratory 

behaviors. 
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4.1 Introduction 

Verbeke et al. (2015) investigated the attitude of both farmers and consumers towards the use of 

insects in animal feed. Although insects were perceived by most responders to be an acceptable feed 

ingredient, some concerns have to be taken into account. An important concern of the general public 

was possible feed safety risks, originating from potential contamination of the insects with chemicals, 

pathogens and toxins. The EFSA opinion, published in 2015, on the use of insects in feed, stated that 

feed safety should be guaranteed and that much more research is needed. This is especially the case 

when the insects, like BSF larvae, are reared on waste streams. Low value waste streams such as 

manure, crop residues, decomposing fruits and vegetables, and biogas digestate might indeed 

contain substantial amounts of contaminants. The risks associated with the substrate applied for 

rearing could be either biological (e.g. pathogenic bacteria, viruses, parasites and fungi) or chemical 

(e.g. heavy metals, pesticides, mycotoxins, veterinary drugs, dioxins and PCBs) (EFSA, 2015). In this 

chapter, the presence of chemical contaminants (i.e. heavy metals and pesticides) in BSF larvae (i.e. 

fifth instars) and prepupae reared on prepared substrates was investigated. In contrast to pathogens 

and mycotoxins, which can also emerge during storage, the contamination of heavy metals and 

pesticides is solely determined by the rearing substrate. Therefore, given that our research focused 

on the effects of rearing substrates on BSF (Chapters 3,4 and 5), the substrate dependent 

contamination of BSF larvae with heavy metals and pesticides was investigated. Substrates like 

manure and biogas digestate might contain substantial amounts of heavy metals, while vegetable 

waste streams might be contaminated with pesticides. In addition, pesticides were chosen because 

these have been less addressed in previous research. 

In Chapter 5, an increased ash content is shown in prepupae reared on biogas digestate which could 

lead to potential heavy metal contamination of the insect material if the substrate was 

contaminated. In the first part of the current chapter, bioaccumulation factors for BSF fifth instars 

and prepupae reared on digestate were tested for arsenic (As), lead (Pb) and cadmium (Cd). Since it 
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has been shown that larvae of the BSF tend to accumulate Cd (Diener et al., 2015; van der Fels-Klerx 

et al., 2016), for this particular heavy metal a spiking of the substrate fed to the larvae was 

conducted in order to test the potential bioaccumulation at different concentrations. The 

background Cd concentration of the substrate was almost equal to the EU maximum for feed 

ingredients (2 mg/kg on a 88% DM basis), which is potentially hazardous if we consider the insects to 

be eaten (EFSA, 2015). In addition, two intermediate concentrations and the maximum concentration 

allowed in digestate (2, 4 and 6 mg/kg Cd respectively, expressed on as is basis) were investigated. To 

assess whether the Cd had actually been accumulated in the insect body or was just present in the 

gut, at the end of the larval development both fifth instars and prepupae were harvested (larvae 

empty their gut when entering the prepupal stage (May, 1961)). 

Whereas several studies have been published on the potential contamination of BSF with heavy 

metals (Charlton et al., 2015, Diener et al., 2015, van der Fels-Klerx et al., 2016), to our knowledge, 

only Purschke et al. (2017) investigated the impact of a limited spectrum of pesticides (only 3 active 

substances) on the composition of BSF fifth instars. In the latter study, the tested pesticides were 

neither accumulated in the larval tissue nor was the insect’s development significantly affected. 

However, Houbraken et al. (2016) showed the possibility of certain active substances to accumulate 

in the biomass of T. molitor larvae. Therefore, in the present study, the potential of chemical 

contamination was assessed for 12 active substances. The investigated active substances are 

commonly applied in fruit and vegetable cultivation and in preliminary experiments, a dose of 0.5 

mg/kg was tested for every substance, which is the residue level that could be expected when good 

agricultural practices are followed (FAO, 2017b). However, given that at this concentration almost no 

residues could be detected or quantified in the larvae, a 10-fold higher dose was chosen for the final 

experiment (5 mg/kg). For most active substances this concentration is either close to or above the 

maximum residue levels (MRLs) allowed on fruit and vegetables for human consumption (FAO, 

2017b). Another argument for testing this dose was that, in future, insects might potentially be used 

to valorize batches that were rejected for human consumption due to exceeding MRLs. Both short-
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term (24h) and long-term (2 weeks) exposure were evaluated and differences in contamination levels 

between fifth instars and prepupae of BSF were assessed.  

4.2 Materials and methods 

4.2.1 Heavy metal contamination in BSF larvae 

The biogas digestate that was used as a larval substrate was analyzed for As, Pb and Cd by ICP-OES 

(ISO 11885:2007). The preparation included incineration at 450 °C until the ash was grey to red-

brown followed by dissolving the ash in diluted nitric acid (7 M) (EN 13652:2001). In addition to the 

control treatment (0.5 mg/kg Cd), the substrate was spiked for Cd, by using cadmium chloride 

dissolved in distilled water, resulting in a total concentration of 2, 4 and 6 mg/kg Cd, expressed on 

wet basis since the substrate was provided to the insects on as is basis. These spiked substrates were 

also analyzed. Two thousand four hundred BSF larvae of 14 days old, reared on chicken feed, were 

randomly divided over the 4 treatments (0.5 mg/kg (i.e. unspiked control), 2 mg/kg Cd, 4 mg/kg Cd 

and 6 mg/kg Cd) and each treatment was replicated 3 times. Each replicate contained 200 larvae, 

reared for 7 days in a climate chamber at 27 ± 1 °C and 65 ± 5% RH. The larvae were weighed at the 

start and replicates were balanced, so that the total weight of the 200 larvae at the start of each 

treatment was between 19.9 and 20.0 g for every replicate. At the time of harvesting, the substrates 

were sieved, fifth instars and prepupae (which were already present) were separated and weighed 

and the mean number of prepupae was calculated. The collected fifth instars and prepupae were 

frozen and stored at -20 °C pending chemical analysis. Prior to analysis, the samples were freeze-

dried until constant weight. The As, Pb and Cd levels in the fifth instars and the prepupae of the 

control treatment were determined by ICP-OES (ISO 11885:2007). For the other treatments, only Cd 

levels were determined. The BAFs (bioaccumulation factors) for As, Pb and Cd were calculated on a 

DM basis (i.e. % in sample on DM / % in substrate on DM). 
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4.2.2 Pesticide contamination in BSF larvae 

A second experiment was set up to test bioaccumulation of pesticides. In this experiment, the 

substrates from Chapter 3: biogas digestate, catering waste and chicken feed were again used as 

substrates. A pesticide cocktail containing 12 active ingredients was mixed in each substrate in order 

to reach a concentration of 5 mg/kg on a wet basis for every active substance. The active substances 

(97.00-99.99% pure) were dissolved in acetone and this solution was dripped on the substrates with 

a pipette. The spiked substrates were kept under a hood overnight in order to evaporate all the 

acetone. The properties of the pesticides used are given in Table 11. The tested pesticides were both 

herbicides and fungicides which are commonly applied on fruit and vegetables and, therefore, 

possible risks for BSF rearing. The treatments for every substrate were control, short-term (24 h) and 

long-term (2 weeks) exposure to the pesticide cocktail (5 mg/kg), with 4 replicates per treatment. 

The insects were harvested in the fifth larval instar and the prepupal stage.  
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Table 11: Properties of the pesticides used for the contamination of the substrates (Tomlin, 2006) 

Name of pesticide Type of pesticide Log(Kow) (/) Water solubility (g/l) 
MRL feed 
(mg.kg

-1
) 

 

2,4-D 
 

Herbicide 
 

2.81 23.18 ( pH 7, 25 °C) 0.01
a 

Azoxystrobin Fungicide 2.5 6.00 (20 °C) 100.00
a 

Bentazone Fungicide -0.46 0.57 (20 °C, pH 7) 0.30
b 

Clopyralid Fungicide -2.63 9.00 (20 °C) / 

Cymoxanil Herbicide 4.7  0.80 ( pH 7, 25 °C) / 

Difenoconazole Fungicide 4.4 1.5x10
-2

 (25 °C ) / 

Fenpropimorph Fungicide 4.1 4.32x10
-4 

(20 °C, pH 7) 5.00
b 

Linuron Herbicide 3 0.08 (25 °C) / 

Metalaxyl Fungicide 1.71 26.00 (25 °C) / 

Pendimethalin Herbicide 5.18 3.30x10
-4

 (20 °C, pH 7) / 

Pyraclostrobin Fungicide 3.99 1.90 (20 °C) / 

Tebuconazole Fungicide 3.7 2.9x10
-2

 (20 °C, pH 7) 40.00
b 

MRLs according to Codex Alimentarius (FAO, 2017b): 
a
MRL for soybean fodder, 

b
MRL for wheat fodder 

 

For every replicate 100 6-day old larvae were weighed and placed in 10 cm diameter containers 

(Insect Breeding Dish, SPL Life Sciences, South-Korea). The total weight for all larvae at the start of 

the experiment was 2.3-2.4 g for every replicate. In the control and short-term toxicity treatments 

larvae of each replicate received 50 g of unspiked substrate. For the long-term treatment, 50 g of 

spiked substrate was given to the larvae and the containers were stored for one week in a climate 

chamber at 27 °C and 65% RH. Thereafter, insects in all treatments were offered again 50 g of fresh 

diet, added to the old diet, and were stored for another week in the climate chamber. Then, larvae 

from all containers were separated from the old substrate and were presented with 50 g of fresh 

feed. This time the replicates of the short-term treatment group also received spiked feed. After 24 
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hours, 30 fifth instars of each treatment group were sampled and placed in the freezer (-20 °C), while 

the rest was left in the substrate to develop into prepupae. The rearing procedure was similar for the 

three tested substrates. However, since the larvae fed the digestate grew very slow because of its 

poor nutritional quality, only fifth instars and no prepupae were sampled. In order to determine the 

pesticide concentration of the frozen insect samples, LC–MS/MS analyses were performed on a triple 

quadrupole system with ESI (Waters ACQUITY UPLC, Xevo TQD mass spectrometer). The extraction 

procedure used was based on the standard QuEChERS-method for the extraction of pesticides 

(Houbraken et al., 2016). The limits of detection (LOD) and quantification (LOQ) for the twelve active 

substances are given in Table 12.  

Table 12: Limit of detection (LOD) and limit of quantification (LOQ) of the 12 active ingredients in BSF  

Name of pesticide LOQ (mg/kg) LOD (mg/kg) 

2,4-D 0.005 0.0015 

Azoxystrobin 0.001 0.0003 

Bentazone 0.001 0.0003 

Clopyralid 0.005 0.0015 

Cymoxanil 0.001 0.0003  

Difenoconazole 0.001 0.0003 

Fenpropimorph 0.002 0.0006 

Linuron 0.001 0.0003 

Metalaxyl 0.001 0.0003 

Pendimethalin 0.001 0.0003 

Pyraclostrobin 0.001 0.0003 

Tebuconazole 0.001 0.0003 
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4.2.3 Statistical analysis 

All data were analyzed using SPSS 22.0 (IBM Corp, 2013). One-way ANOVA was used to compare the 

Cd levels among the fifth instars and prepupae reared at different concentrations (0.5 mg/kg (i.e. 

unspiked control), 2 mg/kg, 4 mg/kg and 6 mg/kg). The variances were analyzed using Levene tests 

and depending on the outcome, post hoc Tuckey (equal variances) or Tamhane (unequal variances) 

tests were applied. Student’s t-tests were applied to compare the Cd, Pb and As concentrations of 

fifth instars and prepupae in the unspiked control treatment and Cd levels of fifth instars and 

prepupae for every Cd treatment. All tests had a significance value of 0.05. 

Regarding the pesticide experiment, for each substrate, the contents of all active substances present 

in the fifth instars were compared with those of the prepupae within the same treatment group 

(control, short-term or long-term) using Student’s t-tests. The same tests were applied to compare 

the fifth instars or prepupae of one treatment with the respective stages in another treatment. If a 

certain value was beneath the limit of detection (<LOD) or limit of quantification (<LOQ), one-sample 

t-tests comparing to ½ LOD or ½ LOQ were used. The weights of the fifth instars within each 

substrate group were compared among treatments using one-way ANOVA. Levene tests were 

applied to analyze the variances and depending on the outcome, Tuckey (equal variances) or 

Tamhane (unequal variances) post hoc tests were used. All tests had a significance value of 0.05. 

4.3 Results 

4.3.1 Heavy metal contamination in BSF larvae 

The spiking with Cd did not affect the survival of BSF fifth instars as in all treatments 99-100% 

survived. However, the rate of development to the prepupal stage decreased with increasing Cd 

concentrations in the substrate (Table 13). The unspiked control contained 0.5 mg/kg Cd, 4.8 mg/kg 

Pb and 2.7 mg/kg As on wet basis. The DM content of the substrate being 208 g/kg, the blank thus 
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contained 2 mg/kg Cd, 18 mg/kg Pb and 11 mg/kg As on an 88% DM basis. Weights and DM contents 

of fifth instars and prepupae are presented in Table 13, while the respective heavy metal contents 

are shown in Table 14. In the latter table, the values for Cd, Pb and As are expressed on an 88% DM 

basis in order to compare them with threshold values for whole feeds and feed ingredients (EFSA, 

2015). If the Cd levels in the wet digestate were 2 mg/kg or higher, the levels of both fifth instars and 

prepupae kept increasing accordingly with the concentration in the substrate (ANOVA across 

concentrations for fifth instars: F=253.948, df=3, P<0.001; prepupae: F=205.225, df=3, P<0.001). The 

BAFs in Table 15 show that only Cd accumulated starting from a concentration of 2 mg/kg in a wet 

substrate (corresponding to 10 mg/kg on DM basis). This accumulation was only witnessed in fifth 

instars since the values for prepupae are all around 1 (e.g. at a Cd concentration of 4 mg/kg in the 

substrate, the BAF of the fifth instars was 1.98 while that of the prepupae was only 0.91 (t=9.381, 

df=4, P=0.001)). 

Table 13: Fresh weight and DM content (mean ± SD; weights expressed per individual in mg) of BSF 

fifth instars and prepupae reared on digestate spiked with different concentrations of Cd (mg/kg as 

is) 

 Fifth instars Prepupae % developed 
prepupae 

 Weight  % DM Weight % DM  

0.5 mg/kg Cd  90.0 ± 3.2aA 27.1 ± 1.0aB
 

88.2 ± 1.0aA 34.0 ± 0.2aA 66.4 ± 5.0a 

2.0 mg/kg Cd 92.0 ± 1.6aA
 

26.4 ± 0.3aB
 

84.8 ± 2.5bB 34.0 ± 0.4aA 60.5 ± 2.0ab 

4.0 mg/kg Cd 95.0 ± 4.3aA
 

26.7 ± 0.3aB
 

83.5 ± 2.0bB
 

33.8 ± 0.4aA 58.1 ± 3.8ab 

6.0 mg/kg Cd 95.0 ± 2.4aA
 

27.0 ± 0.2aB
 

85.5 ± 2.5abB
 

33.8 ± 0.1aA 51.5 ± 7.4b 

Means ± SD; means within a column followed by different lowercase letters are significantly different (P<0.05); 

means within a stage (fifth instars or prepupae) followed by different uppercase letters (weight or % DM) are 

significantly different (P<0.05);  
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Table 14: Concentrations of Cd, Pb and As in BSF fifth instars and prepupae (mg/kg on 88% DM basis) 

reared on biogas digestate spiked with different Cd concentrations (mg/kg as is)  

 Fifth instars  Prepupae 

 Cd Pb As  Cd Pb As 

0.5 mg/kg Cd 1.9 ± 0.2dA 1.1 ± 0.1A <0.37  1.3 ± 0.2cB 0.4 ± 0.1B <0.37 

2.0 mg/kg Cd 15.5 ± 0.5cA    8.9 ± 0.3bB   

4.0 mg/kg Cd 31.0 ± 2.2bA    14.3 ± 2.1abB   

6.0 mg/kg Cd 47.7 ± 3.6aA    23.3 ± 0.4aB   

Means ± SD; means within a column followed by different lowercase letters are significantly different (P<0.05); 

means within a stage (fifth instars or prepupae) followed by different uppercase letters are significantly 

different (P<0.05) 

 

Table 15: Bioaccumulation factors (% in sample on DM/% in substrate on DM) of BSF fifth instars and 

prepupae reared on biogas digestate spiked with different Cd concentrations (mg/kg as is) 

 Fifth instars  Prepupae 

 Cd Pb As  Cd Pb As 

0.5 mg/kg Cd 0.98 ± 0.09bA 0.05 ± 0.00A <0.03  0.64 ± 0.11bB 0.02 ± 0.00B <0.03 

2.0 mg/kg Cd 1.74 ± 0.05aA    1.00 ± 0.07aB   

4.0 mg/kg Cd 1.98 ± 0.14aA    0.91 ± 0.13abB   

6.0 mg/kg Cd 1.91 ± 0.15aA    0.94 ± 0.02abB   

Means ± SD; means within a column followed by different lowercase letters are significantly different (P<0.05); 

means within a stage (fifth instars or prepupae) followed by different uppercase letters are significantly 

different (P<0.05) 

 

4.3.2 Pesticide contamination in BSF larvae  

The survival and final weight data of fifth instars reared on different substrates and subjected to 

different pesticide exposure regimes is displayed in Table 16. Long-term exposure to a cocktail of 

pesticides at a concentration of 5 mg/kg did not affect the survival of the fifth instars. However, fifth 

instars reared on catering waste with a 2 week exposure to the pesticides were significantly heavier 

than fifth instars reared on the same substrate without pesticides or exposed only for a 24 h period.  
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Table 16: Fresh weights and survival of 100 BSF larvae reared on different substrates and according 

to different exposure regimes to a cocktail of 12 active substances 

 Control Short-term Long-term 

 Survival (%) Weight (g) Survival (%) Weight (g) Survival (%) Weight (g) 

Chicken feed 99 ± 1  19.4 ± 0.4a 99 ± 1 20.1 ± 0.3a 98 ± 1 18.9 ± 0,2a 

Catering waste 98 ± 2 16.2 ± 0.9b 99 ± 1 16.6 ± 0.4b 99 ± 1 21.9 ± 0.7a 

Digestate 93 ± 3 4.8 ± 0.4a 97 ± 3 4.9 ± 0.4a 96 ± 1 4.4 ± 0.3a 

Means ± SD; means within a column followed by different letters are significantly different (P<0.05); there were 

no significant differences (P<0.05) between the means of the survival  

 

The concentrations of active substances present in fifth instars and prepupae are shown in Tables 17, 

18 and 19 for chicken feed, catering waste and digestate, respectively. In these tables, the values for 

the control treatments are not shown since these were all <LOD. The active substances 2,4-D, 

clopyralid and pyraclostrobin were not detected in fifth instars fed on any of the substrates. For most 

active substances, the concentrations in the fifth instars were significantly higher than those in the 

prepupae. When fifth instars of the short-term treatments are compared to those of the 

corresponding long-term treatments, only a few active substances showed differences. However, 

these differences are not consistent across substrates. For example, fenpropimorph and 

pendimethalin are the active substances found in the highest concentrations for fifth instars across 

all substrates. However, for fifth instars reared on digestate the concentrations found in the short-

term treatment group are significantly lower than those in the long-term treatment (fenpropimorph: 

t=-2.833, df=6, P=0.030; pendimethalin: t=-2.546, df=6, P=0.044) whereas for fifth instars reared on 

catering waste the opposite is found (fenpropimorph: t=3.958, df=6, P=0.007; pendimethalin: 

t=3.113, df=6 , P=0.042).  
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Table 17: Pesticide concentrations of BSF fifth instars and prepupae (in mg/kg) reared on chicken 

feed and exposed for 24 h (short-term) or 2 weeks (long-term) to a cocktail of pesticides at a 

concentration of 5 mg/kg for each component 

 Short-term  Long-term 

 Fifth instars  Prepupae  Fifth instars Prepupae 

2,4-D <LOD <LOD  <LOD <LOD 

Azoxystrobin 0.104 ± 0.034aA 0.079 ± 0.009aA 
 

0.129 ± 0.010aA 0.118 ± 0.044aA 

Bentazone <LOD <LOD 
 

<LOD <LOD 

Clopyralid <LOD <LOD 
 

<LOD <LOD 

Cymoxanil <LOD <LOD 
 

<LOD <LOD 

Difenoconazole 0.224 ± 0.074aA <LODb 
 

0.228 ± 0.036aA <LODb 

Fenpropimorph 1.376 ± 0.467aA <LODb 
 

1.502 ± 0.164aA <LODb 

Linuron 0.105 ± 0.044aA 0.086 ± 0.006aA 
 

0.134 ± 0.025aA 0.108 ± 0.049aA 

Metalaxyl <LOQ <LOQ 
 

<LOQ <LOQ 

Pendimethalin 0.747 ± 0.226aA 0.037 ± 0.025bA 
 

0.865 ± 0.084aA 0.060 ± 0.009bA 

Pyraclostrobin <LOD <LOD 
 

<LOD <LOD 

Tebuconazole 0.213 ± 0.059aA  0.065 ± 0.015bA 
 

0.243 ± 0.036aA 0.066 ± 0.009bA 

Means ± SD; means within a row and regime (short-term or long-term) followed by different lowercase letters 
are significantly different (P<0.05); means within a row and stage (fifth instars or prepupae) followed by 
different uppercase letters are significantly different (P<0.05); LOD: limit of detection; LOQ: limit of 
quantification 
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Table 18: Pesticide concentrations of BSF fifth instars and prepupae (in mg/kg) reared on catering 

waste and exposed for 24 h (short-term) or 2 weeks (long-term) to a cocktail of pesticides at a 

concentration of 5 mg/kg for each component 

 Short-term  Long-term 

 Fifth instars Prepupae  Fifth instars Prepupae 

2,4-D <LOD <LOD  <LOD <LOD 

Azoxystrobin 0.317 ± 0.083aA 0.125 ± 0.068bA  0.386 ± 0.050aA 0.115 ± 0.041bA 

Bentazone <LOQ <LOQ  0.069 ± 0.019a <LODa 

Clopyralid <LOD <LOD 
 

<LOD <LOD 

Cymoxanil 0.182 ± 0.030aA  <LODb  0.216 ± 0.034aA <LODb 

Difenoconazole 0.383 ± 0.058aA 0.086 ± 0.033bA  0.293 ± 0.016aA 0.054 ± 0.024bA  

Fenpropimorph 1.410 ± 0.259aA 0.325 ± 0.145bA  0.893 ± 0.035aB 0.163 ± 0.065bA 

Linuron 0.324 ± 0.065aB 0.132 ± 0.060bA  0.487 ± 0.087aA 0.122 ± 0.046bA 

Metalaxyl 0.247 ± 0.040aA 0.106 ± 0.061bA  0.314 ± 0.044aA 0.081 ± 0.017bA 

Pendimethalin 1.337 ± 0.218aA <LODb  0.983 ± 0.066aB <LODb 

Pyraclostrobin <LOD <LOD 
 

<LOD <LOD 

Tebuconazole 0.473 ± 0.064aA 0.161 ± 0.069bA  0.528 ± 0.053aA 0.154 ± 0.074bA 

Means ± SD; means within a row and regime (short-term or long-term) followed by different lowercase letters 

are significantly different (P<0.05); means within a row and stage (fifth instars or prepupae) followed by 

different uppercase letters are significantly different (P<0.05); LOD: limit of detection; LOQ: limit of 

quantification 
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Table 19: Pesticide concentrations of fifth instars (in mg/kg) reared on biogas digestate and exposed 

for 24 h (short-term) or 2 weeks (long-term) to a cocktail of pesticides at a concentration of 5 mg/kg 

for each component 

 Short-term 
 

Long-term 

2,4-D <LOD  <LOD 

Azoxystrobin 0.492 ± 0.172a 
 

0.650 ± 0.054a 

Bentazone <LOQ  <LOQ 

Clopyralid <LOD  <LOD 

Cymoxanil <LOD  <LOD 

Difenoconazole 1.180 ± 0.236a 
 

1.455 ± 0.036a 

Fenpropimorph 3.491 ± 0.661b 
 

4.467 ± 0.194a 

Linuron 0.408 ± 0.190a 
 

0.541 ± 0.069a 

Metalaxyl 0.145 ± 0.174a 
 

0.268 ± 0.016a 

Pendimethanil 3.008 ± 0.553b 
 

3.753 ± 0.194a  

Pyraclostrobin <LOD  <LOD 

Tebuconazole 0.835 ± 0.222a 
 

1.112 ± 0.048a 

Means ± SD; means within a row followed by different letters are significantly different (P<0.05); LOD: limit of 

detection; LOQ: limit of quantification 

 

4.4 Discussion 

If insects were to be considered as farm animals in the EU, biogas digestate could not be used as a 

substrate since Pb and As levels are expected to exceed the maximum limits (EFSA, 2015). Moreover, 

if manure had been fermented, the biogas digestate would contain probably even more heavy metals 

than the batch tested in our research. From Table 14, it can be deduced that only fifth instars and 

prepupae reared on the blank (i.e. non-spiked) substrate contained Cd levels below the 2 mg/kg Cd 

threshold for feed ingredients. In the present study, significant bioaccumulation of Cd was only 
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observed in fifth instars, but not in prepupae, starting from a substrate concentration of 2 mg/kg as 

is. The BAFs calculated in the present study are much lower than those obtained by Tschirner and 

Simon (2015), van der Fels-Klerx et al. (2016) and Purschke et al. (2017). In these studies, BAF values 

of 6.1 to 9.5 were observed. However, Diener et al. (2015) observed a maximum BAF for Cd of 2.8. 

Diener et al. (2015) was the only study where both fifth instars and prepupae were investigated. In 

contrast to our results where prepupae contained substantially less Cd than fifth instars, Diener et al. 

(2015) obtained comparable BAFs for both life stages of BSF. However, in the latter study Cd 

concentration in adults was significantly lower than in prepupae. The authors assumed that the 

reason for this was that the insects defecate before pupation or shortly after adult emergence. They 

hypothesized that defecation had not occurred during the 1-3 day period in which the insects had 

entered the prepupal stage, explaining the high concentrations in the prepupae. Prepupae from our 

study were about the same age as those in Diener et al. (2015). However, based on our results, 

defecation is a plausible explanation for the relatively low Cd content of the prepupae compared to 

fifth instars in our study. Moreover, from dissections of prepupae that were less than 2 days in this 

stage, we observed that at this point the prepupae had no gut content (Chapter 7). In the present 

study, As did not accumulate which is in compliance with the literature (van der Fels-Klerx et al., 

2016; Purschke et al., 2017). Pb, on the other hand, accumulated in BSF in the studies by Tschirner 

and Simon (2015), van der Fels-Klerx et al. (2016) and Purschke et al. (2017) while this was not the 

case in the present study and Diener et al. (2015). 

In terms of feed safety, there is a consensus among studies that Cd can be a risk factor. According to 

Craig et al. (1999), Cd2+ ions are able to pass through Ca2+ channels and enter the cells. Because 

larvae of the BSF are, in general, high in calcium (Chapter 5), they might be more prone to Cd 

accumulation compared to other insect species. Moreover, according to van der Fels-Klerx et al. 

(2016), Diptera species could be classified as macroconcentrators of Cd in which the Cd storage 

capacity is increased due to increased metallothionein levels. Consequently, substrates used for the 

production of BSF larvae should contain less Cd than the 2 mg/kg maximum limit for feed ingredients 
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in order to be safe (EFSA, 2015). In addition, the levels of other metals which possibly induce 

metallothionein expression (e.g. zinc) and, therefore, might increase the Cd accumulation, should be 

controlled. Prepupae from the present study were safer to use in animal feed than fifth instars. 

However, given that the BAFs for prepupae are around 1, a BSF rearing substrate should still contain 

no more than 2 mg/kg Cd to produce feed grade prepupae with Cd levels below this limit. Differences 

in the accumulation of Cd might be due to the form in which the Cd was present in the substrate. In 

this study, cadmium chloride dissolved in distilled water was used whereas the other studies used 

2% HNO3 solutions.  

In contrast to the observed Cd accumulation, none of the tested active substances from the pesticide 

experiment accumulated over a two-week exposure period. Moreover, larval development was 

unaffected, even after a long-term exposure to a pesticide cocktail with 12 active substances at a 

concentration of 5 mg/kg. This result could in part be expected given that none of the tested 

pesticides were insecticides. In a preliminary experiment, BSF larvae were exposed to different 

concentrations of the commonly applied neonicotinoid imidacloprid during a period of 48 h. As long 

as the concentration of the substrate was 1 mg/kg or lower, the larvae were unaffected. However, at 

a concentration of 10 mg/kg 15% of the larvae died within 48 h while another 30% showed very little 

activity, indicating that their death was imminent. In contrast, in the present study, larvae reared on 

catering waste and exposed for 2 weeks to fungicides and herbicides, grew substantially bigger than 

the pesticide free control larvae reared on the same substrate. It is speculated that some fungicides 

may have eliminated certain organisms present in the substrate which were likely to compete with 

the larvae for nutrients. In addition, this could also mean that less energy was allocated by the insect 

to the production of antimicrobial peptides while on the other hand more could be invested in the 

production of body mass (Otvos, 2000). However, it should be noted that certain fungicides might 

have a negative influence on the gut microbiota of insects. This was shown for the honey bee (Apis 

mellifera L.) by Pettis et al. (2013) who found an increased probability of infection with the gut 

parasite Nosema ceranae in bees that consumed pollen with a high fungicide load. 
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The pesticides that were the most abundant in BSF fifth instars across substrates were the herbicide 

pendimethalin and the fungicide fenpropimorph. These active substances are both characterized by a 

high log(Kow) and a very low water solubility (Table 11). According to Houbraken et al. (2016), in T. 

molitor larvae pesticides with higher log(Kow) values were taken up more easily. In contrast, the 

excretion rate after 24 h of starvation was lower with higher log(Kow) values. In the present study, 

however, prepupae contained substantially less pendimethalin and fenpropimorph than the 

corresponding fifth instars, which suggests a high excretion rate for these active substances with high 

log(Kow) values. In addition, different metabolic processes might be involved for these active 

substances (e.g. biotransformation and degradation) (Houbraken et al., 2016). None of the pesticides 

detected in fifth instars and prepupae of the present study reached values above the MRL for feed 

ingredients (Table 11). Only fifth instars reared on digestate which were long-term exposed to 5 

mg/kg fenpropimorph showed a value close to the MRL (i.e. 4.5 versus 5 mg/kg for MRL). 

Differences between fifth instars reared on different substrates could be observed. Fifth instars 

reared on chicken feed contained traces of only 6 active substances (Table 17) while those reared on 

digestate (Table 19) and catering waste (Table 18) contained 7 and 8 active substances, respectively. 

In fifth instars reared on digestate, substantially higher doses of active substances were found 

compared to fifth instars reared on the other substrates. A possible explanation for this can be the 

difference in chemical composition (Chapter 5). Fifth instars reared on digestate were substantially 

lower in fat and given that there is no bioaccumulation, most of the pesticides were situated in the 

gut. The percentage of the total body mass represented by gut content was probably higher for these 

fifth instars and therefore the doses of the active substances present were relatively higher too. In 

addition, other substrate specific factors (e.g. pH, water binding capacity,…) might also play a role. 

In conclusion, it can be assumed that pesticide contamination of BSF larvae reared on substrates 

which are currently allowed as feedstuff is highly unlikely. Moreover, the 5 mg/kg concentration used 

in the present experiment was about 10 times higher than what could be expected from good 
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agricultural practices (GAP) (FAO, 2017b). However, when in the future the European legislation 

(Chapter 1) would change for insects and other substrates would be allowed, monitoring these 

substrates for the presence of active substances with high log(Kow) values is recommended. 

Concerning heavy metals, monitoring substrates for Cd will be necessary whereas the risks for Pb and 

As are lower. However, besides the highly poisoneous Cd, Pb and As, other essential trace elements 

associated with specific substrates might accumulate in the larval biomass. For example, manure, a 

natural BSF substrate, could contain substantial levels of zinc (Zn) and copper (Cu). About Cu, to our 

knowledge, nothing has been published, however, Diener et al. (2015) investigated the potential 

bioaccumulation for Zn. They observed that Zn did accumulate, however, in contrast to Cd, the BAF 

for Zn decreased with increasing concentration in the substrate, which suggests active regulation of 

Zn within the body.  
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5.1 Introduction 

BSF larvae contain high amounts of energy, protein and essential amino acids, fat and fatty acids, and 

minerals (Makkar et al., 2014). Therefore, they have already been formulated as a component of 

complete diets for poultry, swine and for several commercial fish species (Newton et al., 1977; Sealey 

et al., 2011; Kroeckel et al., 2012; De Marco et al., 2015; Devic et al., 2017; Magalhães et al., 2017). 

They were found to support good growth and, therefore, it was generally concluded that BSF larvae 

can be a suitable protein source for animal feed.  

Previously, it was demonstrated that the fat and ash content of BSF larvae were extremely variable 

depending on the type of manure they were fed on (Newton, et al., 1977; Sheppard et al., 2002; 

Newton et al., 2005). For proper application in least cost formulation software, it is of paramount 

importance to understand the factors that contribute to the variation in nutritional value (Chapter 7). 

Moreover, BSF is a particularly interesting species for the purpose of upgrading low value side 

streams of which the composition differs substantially. However, so far, an in-depth analysis of the 

nutritional value of BSF larvae reared on commercially available vegetable side streams has not been 

reported. 

In this study, larvae of BSF were grown on three different vegetable waste substrates and a chicken 

feed diet, as a high quality reference substrate. The nutritional composition of the resulting prepupae 

was determined. As compared to the previous larval stages, the prepupae might offer two 

advantages: 1/ the prepupa empties its digestive tract, reducing the risk to carry pathogenic 

microorganisms and chemical contaminants (Chapter 4), and 2/ the prepupal migrating behavior 

offers opportunities for harvesting in a scaled-up rearing system (Chapter 7). In order to evaluate the 

nutritional value for monogastric farm animals, the proximate and nutrient composition of the 

prepupae were investigated and relations with substrate composition were established. 
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5.2 Materials and methods 

5.2.1 Rearing and harvesting 

Four different substrates were tested for their effects on the growth performance and composition 

of BSF larvae: chicken feed, vegetable waste, biogas digestate and catering waste. The chicken feed 

was a layer hen feed containing 155 g/kg crude protein, on as is basis (Legkorrel TOTAL 77, Aveve 

Veevoeding, Belgium) which was also used to rear the stock colony (Chapter 2). Fresh vegetable 

waste was obtained from Ardo NV (Ardooie, Belgium), a company processing fruit and vegetables. 

The vegetable waste was a mixture of carrots, peas, salsify and celery. This waste is anaerobically 

fermented for energy production on the same site by Trevi NV (Belgium). The digestate resulting 

from this biogas fermentation was centrifuged into a liquid and a solid fraction; the latter was used 

as a substrate in this experiment (Chapters 3 and 4). Catering waste was obtained from a student 

restaurant at Ghent University and contained leftover cooked potatoes, rice, pasta and vegetables 

from one day (different composition than in Chapters 3 and 4). In accordance to EC Regulation No 

1069/09 (EU, 2009a), none of the substrates, tested in this chapter, contained animal products 

(Chapter 1). Both the restaurant waste and vegetable waste substrates were thoroughly 

homogenized using a blender. Besides homogenization of the quality, this procedure also improved 

the structure of the substrates in terms of habitat for the larvae and better accessibility of nutrients. 

The structure of the biogas digestate was deemed optimal for the larvae and, therefore, this 

substrate was not blended. Water was added to the chicken feed (70 mL/100 g of substrate) in order 

to guarantee an optimal moisture content for growth of the larvae. This was not necessary for the 

other substrates, since their moisture content was deemed sufficient for optimal larval growth. All 

side streams were kept at -20 °C and, every feeding event, portions were thawed prior to being fed 

to the larvae.  
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About 1000 of 6-8 day old BSF larvae were placed in quadruplicate onto 600 g fresh (i.e. wet) 

material of each substrate in plastic buckets. The buckets (5.5 L) were screened with fine-mesh 

cotton gauze and covered with a lid provided with a single ventilation hole. The buckets were placed 

in a climatic chamber set at a temperature of 27 ± 1 °C and a relative humidity of 65 ± 5%. The larvae 

were subjected to a feeding regime of 600 g fresh material every 3 days, until they reached the 

prepupal stage. All larvae and prepupae were harvested six days after the first prepupae had 

appeared, which was about 2-3 weeks after the start of the experiment. After sieving the substrate, 

prepupae were collected manually using forceps. The remaining larvae were placed back in the same 

bucket and provided with fresh substrate. All prepupae were collected in three or four times with six-

day intervals following the above procedure. The collected prepupae were washed with tap water 

and frozen at -20 °C overnight. Then, they were vacuum packed and stored at -20 °C. Samples of 

fresh substrate were also collected, vacuum packed and stored at -20 °C pending chemical analysis. 

Total prepupal biomass was recorded per bucket and single harvest. Prior to analysis, prepupae and 

substrate material were freeze-dried until constant weight. While freeze-drying may result in less 

complete moisture removal compared to oven drying, this difference is minimal and freeze-drying 

guarantees a better preservation of nutrients. Since no significant differences were observed in 

prepupal yield (wet weight) and DM content between the buckets of a particular substrate, the 

freeze-dried prepupal biomass of the buckets was pooled per substrate. This pooling was done to 

obtain a sufficient amount of material to perform the numerous analyses.  

5.2.2 Proximate analyses 

The proximate analyses consisted of analytical determinations of water (moisture), crude protein, 

crude fat (ether extract), crude ash and crude fiber (Greenfield and Southgate, 2003). Moisture 

content was determined by difference after freeze-drying. Crude ash was determined by incineration 

at 550 °C for 4 h in a combustion oven (ISO 5984:2002). Total nitrogen content was determined by 

the Dumas method (ISO 16634-1:2008). Crude protein content in substrates and prepupae were 
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calculated by multiplying total N with 6.25. According to Finke (2007) this factor is acceptable for 

estimating the true protein content of most insect species. However, since the exoskeleton of insects 

contains chitin, a nitrogen-containing polysaccharide, this may lead to an overestimation of the crude 

protein content (Diener et al., 2009). Therefore, the chitin content was analyzed using the procedure 

described in Liu et al. (2012). In addition, the nitrogen content of the chitin fraction was determined 

and by subtracting the chitin nitrogen from the total nitrogen in the prepupae and multiplying this 

value with 6.25, protein values were corrected. Ether extract (EE), a measure for crude fat, was 

analyzed gravimetrically after extraction with diethyl ether with a Soxhlet system (ISO 6492:1999). 

Before Soxhlet extraction, hydrolysis with HCl 3 M at 100 °C for 60 minutes was performed. All these 

analyses were done in duplicate. 

The content of soluble, insoluble and total dietary fiber in the substrates was determined using the 

Megazyme total dietary fiber assay procedure k-tdfr 05/12 (Megazyme, 2012). This method is a 

simplified modification of the AACC total dietary fiber (TDF) method, 32-05.01, and the AACC 

soluble/insoluble dietary fiber method (for oat products), 32-21.0. These analyses were performed in 

single.  

The non-fiber carbohydrate fraction was estimated by subtracting the sum of the other components 

from 100.  

5.2.3 Amino acid, fatty acid and mineral composition 

Amino acid, fatty acid and mineral composition was determined on freeze-dried prepupae and 

substrate material (single analyses). Amino acid composition of protein bound amino acids was 

determined by HPLC performed on oxidized and hydrolyzed samples, following the procedure in 

2009/152/EC. In addition, tryptophan was determined separately, since this amino acid is destroyed 

during acid hydrolysis (EU, 2009b). Fatty acid composition was assessed by gas chromatography (GC) 

following the procedure described by Raes et al. (2001) on the Soxhlet extracted fraction. The 
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mineral composition was determined by ICP-OES (ISO 11885:2007)). The preparation included 

incineration at 450 °C until the ash was grey to red-brown followed by dissolving the ash in diluted 

nitric acid (7 M) (EN 13652:2001). The extraction of iron was performed separately using aqua regia 

(ISO 15587-1:2002).  

5.2.4 Statistical analysis 

All data were analyzed using SPSS 22.0 (IBM Corp, 2013). One-way ANOVA was used to analyze the 

data of the harvested prepupal biomass (wet weight) and moisture content. A post hoc Tukey 

(homoscedasticity) or Tamhane test (heteroscedasticity), based on the outcome of a Levene-test, 

was performed to separate the means. To compare the mean development periods from the 

inoculation of the buckets until emergence of the first prepupae, a non-parametric Kruskal-Wallis 

test was used. When significant differences were detected, means were compared using Mann-

Whitney U tests. Correlations of the composition of the substrates with that of the prepupae were 

tested using regression analysis. P-values below 0.05 were considered statistically significant. 

5.3 Results 

5.3.1 Larval development and prepupal yield 

Larvae reared on chicken feed developed at the highest rate (Table 20). After 12 days the first 

prepupae were observed in buckets containing chicken feed, whereas on vegetable waste and biogas 

digestate it took 15 days for the first prepupae to emerge. Larvae reared on catering waste 

developed the slowest with prepupae emerging not before 18 days. In addition, on the latter 

substrate it took approximately 4 weeks for all larvae to develop into prepupae, which was about 1 

week longer than on the other substrates. The amount of substrate (on DM basis) supplied to the 

larvae per bucket prior to the first harvest was 930 g, 1259 g, 534 g and 1019 g for chicken feed, 

catering waste, vegetable waste and digestate, respectively.  
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5.3.2 Chemical composition of prepupae and substrates 

The DM content of the offered substrates was comparable for 3 of the 4 substrates with values 

between 243 and 262 g/kg (Table 21). Only the vegetable waste was substantially higher in moisture 

with a DM value of 127 g/kg. However, contents of protein, ash and fiber were highly variable among 

the substrates. The EE contents of the substrates were rather low (21–62 g/kg DM) with the 

exception of catering waste (139 g/kg DM). The chicken feed, vegetable waste and catering waste 

contained high amounts of non-fiber carbohydrates (425, 449 and 618 g/kg DM, respectively), 

whereas the digestate was almost completely deprived of non-fiber carbohydrates. 

Table 20: Development time (starting from feeding organic waste, days), harvested biomass (g wet 

weight) and proximate composition of BSF prepupae reared on different substrates  

 
Chicken feed Digestate Vegetable waste Catering waste 

Development time
* 

12.3 ± 0.5a 15.0 ± 0.0b 15.5 ± 1.0b 19.0 ± 0.8c 

Harvested biomass
* 

219.8 ± 7.8a 90.8 ± 3.6c 140.3 ± 4.4b 154.1 ± 5.1b 

Moisture
*x

 613 ± 8a 614 ± 29a 590 ± 10a 619 ± 9a 

Crude protein
0
 412 (0.6) 422 (1.4) 399 (0.2) 431 (0.6) 

Chitin
0 

62 (2.8) 56 (1.5) 57 (1.8) 67 (1.3) 

Chitin corrected 
protein

0 388 401 377 407 

Ether extract
0
 336 (0.4) 218 (0.5) 371 (1.1) 386 (2.3) 

Crude ash
0
 100 (1.0) 197 (0.3) 96 (0.7) 27 (0.3) 

*
Means ± standard deviation within a row followed by different letters are significantly different (P<0.05);      

x
 

g/kg as is; 
0
Means (and coefficients of variation) in g/kg DM 

 

The DM content of prepupal biomass was comparable among the treatments, ranging between 381 

and 410 g/kg. This was also the case for the protein content (399–431 g/kg DM) (Table 20). In 

contrast, EE and ash contents were significantly affected by the rearing substrate. Prepupae reared 
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on digestate were low in EE (218 g/kg DM) and high in ash (197 g/kg DM) compared to those reared 

on the unfermented vegetable waste (371 g/kg DM EE and 96 g/kg DM ash). The chitin content was 

comparable for prepupae among the substrates, ranging between 56 and 67 g/kg DM. The chitin 

extracts contained between 60–62 g N/kg, which is comparable with commercial chitin used as a 

standard by Liu et al. (2012) but lower than the content in pure chitin (Diener et al., 2009). The 

corrected protein values were between 377-407 g/kg DM. 

Table 21: Proximate composition of the substrates used to rear BSF larvae  

 
Chicken feed Digestate 

Vegetable 
waste 

Catering waste 

 Moisture
a
 742 (0.0) 757 (0.2) 873 (0.3) 738 (0.7) 

Crude protein
b
 175 (1.0) 246 (0.3) 86 (0.9) 157 (6.1) 

Ether extract
b
 53 (0.8) 62 (0.5) 21 (13.5) 139 (0.5) 

Crude ash
b
 115 (0.2) 299 (0.3) 108 (2.3) 45 (0.9) 

Soluble fiber
c 

57 5 5 0 

Insoluble fiber
c 

175 381 331 41 

Total dietary fiber
c 

232 386 336 41 

Non-fiber carbohydrates 425 7 449 618 

a
Means (and coefficients of variation) in g/kg as is; 

b
Means (and coefficients of variation) in g/kg DM; 

c
Single 

analyses in g/kg DM 

 

The difference in proximate composition between prepupae reared on catering waste and those 

reared on vegetable waste was substantially smaller than the difference between the respective 

substrates. Moreover, the development of BSF larvae on vegetable waste was faster than on catering 

waste and less substrate had to be fed (on DM basis). However, the final harvest of prepupal biomass 

was higher for insects reared on catering waste. 

There was no significant correlation between protein and EE contents of the substrate and those of 

the prepupae (R²=0.349; P=0.409 for protein and R²=0.054; P=0.768 for EE). However, a high 
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correlation was observed between the ash contents of substrates and prepupae (R²=0.954; P=0.023). 

A high correlation was also found between the EE content of the prepupae and the non-fiber 

carbohydrate content of the substrate (R²=0.942; P=0.030). 

5.3.3 Amino acid, fatty acid and mineral composition 

The most prevalent essential amino acids in the prepupal biomass were lysine, valine and arginine, 

with levels between 20 and 30 g/kg DM (Table 22). Despite substantial differences in amino acid 

composition of the substrates, differences in amino acid content of prepupae reared on different 

substrates were small. Lysine levels were between 23.4 and 25.7 g/kg DM and all prepupae 

contained between 15.4 and 16.8 g/kg DM of threonine. The contents of isoleucine and valine 

ranged from 17.2 to 19.1 g/kg DM and from 24.1 to 28.2 g/kg DM, respectively. Levels of other (semi) 

essential amino acids were 7.1 to 8.6 g/kg DM for methionine, 5.4 to 6.7 g/kg DM for tryptophan and 

19.9 to 20.3 g/kg DM for arginine. 
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Table 22: Amino acid profile of the tested substrates (Subst.) and BSF prepupae (Prep.) (g/kg DM) 

 
Chicken feed Digestate Vegetable waste Catering waste 

 
Subst. Prep. Subst. Prep. Subst. Prep. Subst. Prep. 

Alanine 8.6 25.2 12.5 24.3 3.7 24.2 6.6 27.8 

Arginine 10.6 20.3 9.6 20.3 5.0 20.0 7.3 19.9 

Aspartate 14.4 37.8 21.7 33.6 15.6 35.9 14.5 36.9 

Cystine 2.8 2.5 2.2 2.4 0.6 2.1 2.0 2.2 

Glutamic acid 33.0 41.9 27.0 39.8 7.8 41.3 33.2 45.8 

Glycine 7.7 22.6 10.6 22.6 3.0 22.2 6.0 25.2 

Histidine 4.1 13.6 3.6 13.5 1.4 12.4 3.6 13.8 

Isoleucine 6.5 17.2 9.8 18.4 2.8 17.3 6.0 19.1 

Leucine 13.8 28.6 15.5 29.5 4.6 28.0 11.1 30.6 

Lysine 7.1 23.4 10.3 25.7 3.8 22.6 6.9 23.0 

Methionine 3.1 7.6 4.1 8.7 1.0 7.6 2.8 7.1 

Phenylalanine 8.2 17.0 9.7 18.7 2.9 16.3 6.8 16.4 

Proline 10.4 22.5 8.3 22.1 2.9 21.4 10.9 25.1 

Serine 7.7 16.6 8.0 15.5 2.8 15.0 6.9 15.9 

Threonine 6.4 16.4 9.5 16.8 2.8 15.4 5.5 16.2 

Tryptophan 1.5 6.7 1.6 6.2 0.9 5.8 1.8 5.4 

Valine 7.9 24.1 11.7 24.9 3.4 24.8 7.3 28.2 
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The fatty acid composition of the prepupae was largely composed of saturated fatty acids (648–828 

g/kg fatty acid methyl esters (= FAME) (Table 23). Whereas prepupae fed digestate contained only 

648 g/kg FAME saturated fatty acids, those reared on the other substrates contained 774–828 g/kg 

FAME. The EE of the former group was also rich in monounsaturated fatty acids as compared to the 

other prepupae (191 vs. 95–120 g/kg FAME). The levels of n-6 polyunsaturated fatty acids (PUFA) of 

the prepupae ranged between 46 and 120 g/kg FAME, whereas the levels of n-3 PUFA were rather 

low, ranging from 9 to 23 g/kg FAME. The fatty acid profile of the prepupae was characterized by 

high levels of C12:0. The EE of prepupae reared on chicken feed, vegetable waste and catering waste 

contained at least 573 g C12:0 kg-1 FAME, whereas prepupae fed digestate contained only 437 g 

C12:0 kg-1 FAME. Prepupae reared on digestate contained a significant amount of branched chain 

fatty acids.  
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Table 23: Fatty acid composition of the tested substrates (Subst.) and BSF prepupae (Prep.) (g/kg 

fatty acid methyl esters) 

 Chicken feed Digestate Vegetable waste Catering waste 

 Subst. Prep. Subst. Prep. Subst. Prep. Subst. Prep. 

C10:0 1.4 14.3 8.5 11.7 2.3 16.3 13.3 20.3 

C12:0 14.5 573.5 97.5 436.5 21.3 608.9 154.9 575.6 

C14:0 3.3 73.4 43.1 68.7 12.8 94.8 59.0 71.4 

C16:0 160.0 96.5 236.3 101.2 305.2 87.0 231.2 102.9 

C18:0 25.1 13.6 38.5 17.5 31.8 11.1 67.5 9.8 

SFA 214.6 774.4 483.2 648.2 406.8 828.0 540.5 782.9 

Iso and anteiso 0.5 1.0 80.3 64.6 4.6 7.1 6.0 2.9 

C16:1 2.0 19.7 8.8 75.8 15.3 29.3 17.2 33.4 

c9C18:1 239.6 75.4 119.3 79.3 66.0 56.6 251.3 79.7 

c11C18:1 8.4 2.3 35.7 23.2 28.3 3.3 99.0 1.2 

MUFA 255.3 100.1 189.8 190.8 119.6 95.4 289.4 119.9 

C18:2n-6 499.9 115.5 163.5 79.0 312.2 45.2 138.3 78.3 

n-6 PUFA 501.0 115.9 175.6 80.4 319.3 46.2 142.4 80.0 

C18:3n-3 24.3 7.0 17.3 8.3 116.4 13.7 16.3 11.0 

C18:4n-3 0.5 0.7 0.8 6.5 4.4 8.7 2.1 0.5 

C20:5n-3 0.2 0.6 1.3 1.1 1.3 0.1 0.7 2.3 

C22:6n-3 3.2 0.1 35.0 0.2 15.0 0.1 1.4 0.1 

n-3 PUFA 28.5 8.6 71.1 16.0 149.7 23.3 21.8 14.3 
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Calcium levels were very variable ranging between 66 g/kg DM for prepupae reared on digestate and 

1 g/kg DM for those fed on catering waste (Table 24). Comparable differences were also observed in 

the respective substrates (16 vs. 1 g/kg DM). However, the calcium content of the prepupae was not 

always linked to that of their respective substrates (R2=0.179; P=0.581). For example, the calcium 

content of prepupae fed chicken feed was equal to that of prepupae reared on vegetable waste (29 

g/kg DM), while the calcium levels of the respective substrates were markedly different (29 vs. 7 g/kg 

DM, respectively). The contents of the other minerals were all within a small range. Phosphorus 

levels ranged between 4.0 and 5.0 g/kg DM while the potassium contents were between 5.9 and 6.8 

g/kg DM. The iron content of the prepupae was variable but was not related to that in the substrate 

(R2=0.511; P=0.285).  

Table 24: Mineral composition of the tested substrates (Subst.) and BSF prepupae (Prep.) (g/kg DM) 

 Chicken feed Digestate Vegetable waste Catering waste 

 
Subst. Prep. Subst. Prep. Subst. Prep. Subst. Prep. 

Ca 29.49 28.70 15.55 66.15 6.83 28.72 1.41 1.23 

Cu 0.03 0.01 0.02 0.01 0.01 0.01 0.00 0.01 

Fe 0.29 0.35 23.59 0.43 1.06 0.11 0.42 0.11 

K 7.31 6.16 11.3 6.75 10.65 5.94 8.04 5.98 

Mg 2.57 2.65 4.98 3.13 1.49 2.46 0.53 2.11 

Mn 0.09 0.22 0.19 0.38 0.05 0.24 0.01 0.02 

Na 1.62 0.67 6.32 0.89 8.39 0.60 8.12 0.68 

P 5.56 4.99 15.35 4.44 2.39 4.04 2.37 4.08 

S 0.73 0.20 4.54 0.31 1.11 0.18 0.51 0.11 

Zn 0.12 0.16 0.10 0.05 0.07 0.07 0.02 0.07 
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5.4 Discussion 

In this study, the influence of the proximate and nutrient composition of the rearing substrate on 

that of BSF prepupae was investigated. The substrates used were commonly available vegetable 

waste streams and a high quality chicken feed as a reference. The total biomass of the harvested 

prepupae differed substantially among the four tested substrates. The total prepupal biomass was 

highest for chicken feed, and lowest for biogas fermentation digestate. Our results on digestate are 

comparable with those obtained by Li et al. (2011) for prepupae reared on dairy manure. The 1200 

larvae inoculated in their experiment produced only 70.8 g prepupal biomass compared to the 90.8 g 

from the initial 1000 larvae in our study. On the other hand, the amount of dairy manure fed to the 

BSF larvae by Li et al. (2011) was substantially lower than the amount of digestate used in our study 

(582 vs. 1019 g DM). The slow development of larvae reared on catering waste may be due to the 

high amount of grease in the substrate, which could be observed on top of the substrates in the 

rearing buckets. According to Barry (2004) grease is difficult to process for BSF larvae, leading to a 

prolongation of their developmental time. Fresh vegetable waste showed to be the most favorable 

substrate in terms of substrate biomass fed (533.8 g DM) versus prepupal biomass harvested (140.3 g 

DM). Since natural populations of BSF are adapted to decompose decaying organic materials (food 

waste, rotting fruit, plant litter, manure, etc.), this material is probably preferred.  

In this study, the state of decomposition of the substrates was not monitored during the experiment. 

However, keeping these initially fresh organic materials with high moisture content at a temperature 

of 27 °C and 65% RH, will, even on the short term, have lead to a substantial degree of decay. 

Consequently, more nutrients would have become readily available for the larvae to digest. 

However, the interaction between different organisms associated with decay (e.g. microorganisms 

and fly maggots) is currently not well understood. Weatherbee et al. (2017) characterized microbial 

communities present on swine carcasses over time. They observed that, besides a change in relative 

abundance of the microbial taxa over time, also the species composition of the maggot community 
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(i.e. 3 species of blowfly belonging to the Calliphoridae family) present on the carcass evolved, 

suggesting a significant interaction between the microbes and insect larvae. Tomberlin et al. (2005) 

reported that blowflies are the primary colonizers of carrion during the summer in Georgia and South 

Carolina, US, whereas BSF females started to deposite their eggs after 6 days of decomposition. 

Concerning the microbiome in the gut of BSF larvae, Boccazzi et al. (2017) showed that the 

composition of the fungal communities (i.e. different yeast and mold genera) was dependent of the 

rearing substrate. Interestingly, their results showed that BSF larvae reared on heat treated catering 

waste (which could be compared to the batch of cooked catering waste from our research) 

possessed a greater diversity of fungal species compared to those reared on chicken feed.  

The values for the protein content of the BSF prepupae are within the range of those reported in the 

literature (400-440 g/kg DM), whereas the variability in EE and ash contents could also be anticipated 

based on earlier reports (Makkar et al., 2014). However, the protein content may have been 

overestimated by about 20-25 g/kg because of the presence of chitin in the prepupae. The chitin 

contents of the prepupae in this study are slightly lower than the contents reported in the literature, 

ranging from 75 up to 87 g/kg DM (Diener et al., 2009; Finke, 2013). This might be due to differences 

in the applied methodology. The presence of chitin in a commercial BSF meal may be of interest since 

chitin has been reported to negatively influence nutrient digestibility even at low inclusion levels in 

some fish species and in poultry (Olsen et al., 2006; De Marco et al., 2015). The differences in EE 

content can likely be explained by a higher synthesis of fatty acids, mainly C12:0, in larvae reared on 

energy dense substrates. Chicken feed and vegetable waste contained high levels of non-fiber 

carbohydrates whereas catering waste was rich in both non-fiber carbohydrates and EE. On the 

contrary, almost no non-fiber carbohydrates were present in the biogas fermentation digestate. This 

could be anticipated since most of the carbohydrates were likely used by microorganisms 

transforming them into methane during the fermentation process. From the nature of the rearing 

substrates used in the present experiment, it could be deduced that most of the non-fiber 

carbohydrates present were starches, whereas the amounts of easy digestible sugars were probably 
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much lower. However, the composition and the structure of the starches are, besides their absolute 

amounts, of equal importance concerning the digestibility. The starch in the catering waste substrate 

was probably the most easy to digest given the high content of boiled potatoes, rice and pasta 

(Garcia-Alonso and Goni, 2000). The starch from the vegetable waste was probably less digestible in 

pure form, however, by blending everything into a puree like mixture, the digestibility could be 

altered. Given that the chicken feed control was rich in cereals, which had been grinded and 

pelletized during the production process, a high starch digestibility could be expected from this 

substrate (Svihus et al., 2005).  

The amino acid composition of the BSF prepupae is similar to that reported in the literature for most 

amino acids, including those with relevance for animal feed, like lysine, isoleucine, threonine, valine 

and methionine (Newton et al., 1977; Newton et al., 2005; St-Hilaire et al., 2007; Sealey et al., 2011). 

Moreover, the levels of these essential amino acids in BSF prepupae appeared to be sufficient to 

comply with requirements for pigs and poultry (CVB, 2012; NRC, 2012). The possible deficiency in 

methionine + cystine and threonine reported by Makkar et al. (2014) was not reflected in the amino 

acid profiles of the prepupae in our study. For tryptophan, another essential amino acid for pigs and 

poultry, only few data are available in the literature. Newton et al. (1977; 2005) suggested a 

substantial variability in levels of tryptophan (2.0–5.9 g/kg DM) in BSF prepupae reared on different 

substrates. However, such a variation was much less pronounced in the prepupae harvested in the 

present study, containing between 5.4 and 6.7 g tryptophan kg-1 DM. In addition, this small range 

was observed for all amino acids of all prepupae in our study, suggesting that rearing substrate had 

no substantial influence on the amino acid composition of the prepupae. When the values of 

essential amino acids in BSF prepupae are compared with those of soybean meal with a similar crude 

protein content (440 g/kg DM), the profiles appear to be largely consistent (NRC, 2012). Moreover, if 

BSF prepupae would be defatted, which is the case for soybean meal, crude protein levels of over 

60% could be reached. Consequently, such defatted prepupal meal would have an amino acid 

composition superior to that of soybean meal.  
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The fatty acid profiles of the prepupae are in line with those reported by several authors (St-Hilaire et 

al., 2007; Sealey et al., 2011; Finke, 2013). When comparing the fatty acid profile of the prepupae 

with that of the respective substrates they had developed in, it appears that the substrate only 

partially affects the fatty acid profile of the prepupae. Interestingly, lipids of the harvested prepupae 

were mainly composed of C12:0, even when the substrate contained this fatty acid only in trace 

amounts. This suggests that C12:0 in BSF was synthesized from other nutrients present in the 

substrate, such as carbohydrates (starch and sugars). This conversion of carbohydrates, which are a 

major component in the diet of various insect species, into lipids stored in their fat body, has been 

well documented (Venkatesh et al., 1980; Inagaki and Yamashita, 1986; Briegel, 1990). Interestingly, 

appreciable amounts of branched chain fatty acids were found in prepupae reared on digestate. 

These fatty acids are mainly synthetized by bacteria and fungi suggesting that they originated from 

the anaerobic bacteria from the biogas fermentation (Ruess et al., 2002; Vlaeminck et al., 2006).  

A further element that can be mentioned in favor of the inclusion of BSF prepupae in poultry and pig 

feed, given their richness in C12:0, is the faster and more efficient absorption and metabolism of 

medium chain fatty acids (MCFA) compared to long chain fatty acids (LCFA) and their nutraceutical 

potential (Mohana Devi and Kim, 2014). Skrivanova et al. (2006) showed that C12:0 had the highest 

activity against Clostridium perfringens. as compared to other MCFA. Furthermore, it had the lowest 

impact on the beneficial Lactobacilli. This mechanism could optimize performance and health of pigs 

and poultry by management of the microbiota in the upper part of the small intestine, which is 

dominated by gram-positive bacteria. Even though these results have been obtained with specific 

fatty acid supplementation, the proposed effects can be mimicked with natural sources of these fatty 

acids such as insect meals. As in-feed antibiotics are banned in the EU since January 2006 (regulation 

EC/1831/2003) there is an increasing need for reliable in-feed antibiotic alternatives (EMA, 2017). On 

the other hand, the high fat content of the prepupae could limit their application as a feed 

ingredient. Therefore, it could be interesting to partially extract the fat from the prepupal meal. 

Thus, a sufficient amount of C12:0 rich fat could be kept in the feed creating added value compared 
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to soybean meal, while the extracted part could be useful as a high quality oil product, for example 

for the production of biodiesel (Li et al., 2011). 

Calcium levels in BSF prepupae from our experiments were rather low compared to the levels 

reported by Makkar et al. (2014) only prepupae reared on digestate contained a value situated 

between the range reported in the latter study (50–86 g/kg DM). The high ash content of prepupae 

reared on the digestate compared to those reared on catering waste was mainly due to a much 

higher level of calcium in the prepupae. However, Finke (2013) reported a more similar value to that 

of prepupae reared on catering waste (6 g/kg DM). As indicated in 5.2.3., there was no correlation 

between the calcium content of the substrate and that of the reared prepupae. Given that BSF has a 

mineralized exoskeleton with most of the calcium present in the form of calcium carbonate (Finke, 

2013), other substrate specific factors besides calcium content, such as pH, might be of importance 

for the construction of the exoskeleton, as is shown for marine arthropods (Taylor et al., 2015). 

However, this can only be hypothesized since it was not monitored during the present research. The 

prepupal contents of other minerals with importance for animal feed, such as phosphorus, potassium 

and magnesium, appear to be unaffected by the rearing substrate. Moreover, phosphorus levels are 

in compliance with the requirements of pigs and poultry (CVB, 2012; NRC, 2012). On the other hand, 

a high ash content could also be undesirable for the use of BSF prepupae as an ingredient in a feed 

formulation. Since calcium levels of prepupae reared on digestate are well above the 

recommendations for pigs and even layer hens (CVB, 2012; NRC, 2012), using these prepupae could 

have certain drawbacks. This may be a concern especially in feed formulations for young animals like 

piglets. High feed calcium levels may increase the stomach pH, increasing the risk of bacterial 

infection (Lawlor et al., 2005). Moreover, extracting fat from the prepupae, as suggested above, 

would raise their mineral content even more. However, prepupae reared on energy rich substrates 

with a low content of ash and fiber, like the catering waste, appear to have a very low ash content 

making them more suitable as a feed ingredient.  
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In conclusion, our findings indicate that a rearing system of BSF larvae on vegetable waste streams 

could deliver a high quality insect resource with potential for being incorporated in animal feed. The 

quality of this resource would be constant in terms of crude protein content and amino acid profile, 

irrespective of the type of waste material the larvae were offered. However, fat and ash contents 

appear to be dependent on the rearing substrate. Larvae reared on energy dense substrates turn into 

prepupae with a high fat content, which is most rich in MCFA. This fat could provide an added value 

to the BSF prepupae in comparison to conventional feed resources. Future research should focus on 

how these prepupae can be incorporated in a feed formulation.  
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6.1 Introduction 

Prepupae of the BSF are a potential source of high value protein that could be incorporated in feed 

for monogastrics. They are also rich in fat, with levels ranging between 15 and 49% on DM basis 

(Makkar et al., 2014). Notably, the fatty acid profile of BSF prepupae is, in general, high in the 

medium-chain fatty acid (MCFA) lauric acid (C12:0). The fat of prepupae reared on organic waste 

streams with high amounts of starch contains up to 60% lauric acid (Chapter 5). MCFAs are well 

known for their antimicrobial effects on gut microbiota, while lauric acid is particularly active against 

Gram positive bacteria (Dierick et al., 2002a; Skrivanova et al., 2005). As in-feed antibiotics are 

banned in the EU since January 2006 (EU, 2003) and anticipating the withdrawal of zinc oxide at 

pharmacological doses and copper as a growth promoter, there is an increasing need for reliable in-

feed alternatives (EMA, 2017). Therefore, the possible antimicrobial effects of BSF fat could provide 

an important added value when complete larvae/prepupae are used as a protein source in the feed 

of monogastrics. Exploiting this added value will probably be required if BSF larvae/prepupae are 

ever to be competitive with soybean meal as a conventional protein source, since soybean offers 

lower marginal protein costs when included in monogastric feeds (ABN AMRO, 2016).  

 

A niche that could be particularly interesting for BSF containing feeds is the rearing phase of weaner 

piglets. Weaning at early age (3 to 4 weeks) exposes these piglets to multiple stressors (both 

nutritional and environmental) which results in a reduced feed intake, gut alterations and reduced 

digestive capacity, frequently associated with the proliferation of pathogens, such as 

enteropathogenic E. coli. (Aumaître et al., 1995; Thacker, 1999). In order to prevent this, diets are 

enriched with antimicrobial feed additives. Since early weaned piglets are prone to bacterial 

infections, in the present study the effects of BSF prepupal fat on porcine gut microbiota were 

assessed using in vitro incubations simulating the digestion in the proximal small intestine of piglets. 

Next, an in vivo trial was conducted to investigate the effects of the inclusion of BSF prepupae on the 
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gut microbiota and function (i.e. gut health, daily gain, feed intake and digestibility) of weaned 

piglets. For this purpose, early weaned piglets were reared on diets either containing full-fat or 

defatted BSF prepupae, and compared to piglets reared on a control feed containing soybean as a 

conventional protein source, allowing to differentiate the effects of the protein and fat within BSF 

prepupae.  

 

6.2 Materials and methods 

6.2.1 Animal ethics statement 

The study was conducted in accordance with the European recommendations for the protection of 

animals used for agricultural research (EU Directive 91/630/EEG and 98/58/EG). 

6.2.2 In vitro assessment of the antimicrobial properties of BSF fat  

Fat from freeze dried prepupae reared at Ghent University on chicken feed (Chapter 2) was extracted 

with diethyl ether (ISO 6492:1999), and the MCFA profile was determined by GC (Dierick et al., 

2002a). Different amounts of BSF fat (0.20, 0.50, 1.00, and 1.50 g/100 mL medium) were added to an 

incubation medium, next to a blank treatment that did not contain added BSF fat. The medium 

contained a synthetic diet (corn starch, dextrose, casein, soy oil, pectin, mucin, vitamin/mineral 

premix and bile salts), inert cellulose (AlphacelTM, MP Biomedicals, LLC, 900453), phosphate buffer 

(pH 5), and fresh microbiota from one donor piglet (Michiels et al., 2009). For the collection of 

microbiota, the content of the small intestine was quantitatively collected and centrifuged (10 min, 

1500 x g). The supernatant (kept at 4 °C), containing a suspension of luminal bacteria, was used as 

inoculum in the incubation medium, which was incubated at 37 °C for 4 h. Since C12:0 could be 

present as a free fatty acid and/or as a glyceride bonded fatty acid in the BSF fat, microbial lipase was 

added or not to the medium (Dierick et al., 2002a). Additional treatments were included, testing free 

C12:0 as a positive control (0.12, 0.29, 0.58 and 0.87 g/100 mL medium), corresponding to the levels 

of C12:0 provided by the prepupae in the incubations. 
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Bacterial counts (viable counts, log10 CFU/mL) of aliquots taken at the end of the incubations were 

performed using selective media following the ring plate technique (Van Der Heyde and Henderickx, 

1963) (Figure 8). Therefore, serial 10-fold dilutions were made using a sterilized peptone solution (1 g 

peptone + 0.4 g agar + 8.5 g NaCl in 1 L distilled water). The selective media were Eosin Methylene 

Blue agar (coliforms), Slanetz & Bartley (D-streptococci), Rogosa agar + acetic acid (lactobacilli) and 

Reinforced Clostridial agar + hemine (total anaerobic bacteria). The experiment was performed in 

triplicate using inocula from different piglets during different incubations. Inherently, the inocula 

were not standardised and may differ between replicate incubations. This is taken into account in the 

statistical evaluation taking replicate as a blocking factor (see section 6.2.4). In addition, it should be 

noted that the piglets providing the inocula, received the same feed and were kept under similar 

conditions.  

 

 

Figure 8: Ring plate with dilution scheme 
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6.2.3 Inclusion of full-fat and defatted BSF in the diet of weaned piglets 

6.2.3.1 Dietary treatments 

Batches of full-fat and defatted BSF originating from the same BSF culture were obtained from 

Hermetia Deutschland GmbH & Co KG (Baruth/Mark, Germany). The prepupae were heat treated at 

80 °C for 30 minutes and air dried. Defatted BSF meal was obtained after mechanical extraction (no 

solvent was used). The analyzed nutrient composition of full-fat and defatted BSF is given in Table 25. 

Diet formulation was based on analyzed values when possible, however, for apparent ileal 

digestibility values of amino acids (Kortelainen et al., 2014), the net energy for pigs and digestible 

phosphorus, literature data and assumptions based on fishmeal and animal meal were applied (Table 

26). The net energy for pigs was approximated by using the general formula for net energy reported 

in CVB (2011) (formula F.V09), using results from proximate analysis and digestibility coefficients for 

crude protein and ether extract derived from animal resources fish and animal meal. 
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Table 25: Analyzed chemical composition (%) and gross energy (MJ/kg) of BSF prepupae used in the 

experiment with weaned piglets 

Nutrient Full-fat BSF
1
  Defatted BSF

1
 

Formulation 
requirements 

Dry matter 97.30 96.58  

Gross energy 24.27 18.31  

Crude protein (N x 6.25) 40.88 60.69 17.20 

Ether extract 40.99 7.97 5.20 < X < 5.50 

Saturated fatty acids 29.58 4.95  

Lauric acid (C12:0) 23.38 2.78  

Mono-unsaturated fatty acids 
(MUFA) 

4.82 1.36  

Poly unsaturated fatty acids 
(PUFA) 

2.41 0.73  

n-6 PUFA 2.15 0.65  

n-3 PUFA 0.26 0.07 >0.10 

Ash 4.98 8.07 <5.50 

Sodium 0.08 0.14  

Potassium 1.14 1.93  

Chloride 0.27 0.42  

Magnesium 0.33 0.51  

Calcium 0.55 0.95 0.66 

Phosphorus 0.93 1.46  

Alanine 2.81 4.37  

Arginine 1.72 2.55  

Aspartic acid 3.03 4.58  

Cystine 0.31 0.47  

Glutamic acid 4.24 6.33  

Glycine 1.94 2.96  

Histidine 1.03 1.53  

Isoleucine 1.47 2.34  

Leucine 2.42 3.76  

Lysine 1.93 2.96  

Methionine + Cystine 0.49 0.72  

Phenylalanine 1.29 2.00  

Proline 2.28 3.36  

Serine 1.57 2.08  

Threonine 1.37 2.01  

Tryptophan 0.45 0.71  

Valine 2.08 3.33  
1
The batches of full-fat and defatted BSF were obtained from Hermetia Deutschland GmgH & Co KG (An der 

Birkenpfuhlheide 10, 15837 Baruth/Mar, Deutschland). The larvae were heat treated at 80 °C for 30 minutes, 
air dried. Defatted BSF was obtained after mechanical extraction (no hexane). 
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Table 26: Nutrient composition (in %, unless otherwise stated) of BSF prepupae and restrictions used 

in formulation of diet for weaned piglets 

Nutrient 
Full-fat 

BSF 
Defatted BSF Reference 

Formulation 
requirements 

Digestible phosphorus 0.70 1.10 
Assumption (P digestibility of 

fishmeal: 75.0%) 
0.31 

Ca / dig. P 0.79 0.86 Calculated 2.10 < X <2.15 

Na + K - Cl (meq/100g) 40.89 43.45 Analyzed and calculated 19.50 

Net Energy pigs (MJ/kg) 16.54 8.37 
Assumptions based on 

fishmeal and animal meal 
(CVB, 2011)  

9.94  

AID Lysine 1.53 2.35 
Analyzed and calculated 

using digestibility value of 
Kortelainen et al. (2014)

 
1.10 

AID (Methionine + Cystine) / 
AID Lysine 

0.37 0.36 
Analyzed and calculated 

using digestibility value of 
Kortelainen et al. (2014)

 
0.59 

AID Isoleucine / AID Lysine 0.88 0.91 
Analyzed and calculated 

using digestibility value of 
Kortelainen et al. (2014)

 
0.51 

AID Threonine / AID Lysine 0.71 0.68 
Analyzed and calculated 

using digestibility value of 
Kortelainen et al. (2014)

 
0.62 

AID Tryptophan / AID Lysine 0.22 0.23 
Analyzed and assumed ileal 
digestibility value of 76.5% 

(fishmeal) 
0.21 

AID Valine / AID Lysine 1.24 1.29 
Analyzed and calculated 

using digestibility value of 
Kortelainen et al. (2014)

 
0.68 

 

 

The animal trial consisted of four dietary treatments (Table 27). The control diet (CON) was a pre-

starter diet for weaners, including a digestibility marker (Celite 545 coarse, source of 4 mol/L HCl 

insoluble ash), excluding supplementary organic acids and at copper and zinc levels beyond animal 

requirements. Experimental diets (BSF4, BSF8 and DF-BSF) were formulated by adding different 
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levels of full-fat and defatted BSF into the control diet, i.e. 4% full-fat BSF (BSF4), 8% full-fat BSF 

(BSF8) and defatted BSF in an amount supplying a similar level of protein to the diet as BSF8 (DF-BSF). 

Diets CON, BSF4, BSF8 and DF-BSF were identical with respect to all nutrients with restrictions in the 

linear programming formulation, thus providing equal amounts of the most important nutrients. 

Batches of barley, corn, wheat, toasted soybeans, soybean meal 49CP, oat flakes and sweet whey 

powder were analyzed for crude protein, and herewith amino acid and digestible amino acid levels 

were corrected. Matrix values for other nutrients and ingredients were provided by DSM Nutritional 

Products Belgium (updated matrix by January 2016, Deinze, Belgium). Feeds were first prepared as a 

batch, and subsequently pelletized on a Labor Monoroll Pellet Mill (2 mm die) after steam 

conditioning at 70 °C during 45 seconds. Feed samples of all diets were collected at the moment of 

feed preparation and proximate analyses together with analyses of important nutrients were 

performed (Tables 27 and 28). 
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Table 27: Ingredients of the diets used in the experiment with weaned piglets 

 
CON BSF4 BSF8 DF-BSF 

Ingredients, % 

 Barley 25.00 25.00 25.00 25.00 

 Corn 18.73 20.16 21.31 21.52 

 Wheat 12.00 12.00 12.00 12.00 

 Soybean meal CP49 11.31 12.21 13.15 10.55 

 Toasted soybeans 12.00 6.000  3.351 

 Full-fat BSF 
 

4.000 8.000  

 Defatted BSF  
  

 5.420 

 Oat flakes 8.000 8.000 8.000 8.000 

 Sweet whey powder 4.000 4.000 4.000 4.000 

 Lactose 1.539 1.539 1.539 1.539 

 Soybean oil 0.848 0.475 0.337 2.000 

 Premix Min &ViCON
1
  1.000 1.000 1.000 1.000 

 Sugar beet pulp 1.000 1.000 1.000 1.000 

 Monocalciumphosphate 0.959 0.857 0.757 0.741 

 Limestone 0.929 0.946 0.962 0.952 

 L-lysine HCl 0.525 0.555 0.583 0.588 

 Salt 0.240 0.240 0.240 0.240 

 DL-methionine 0.233 0.243 0.253 0.258 

 L-threonine 0.225 0.231 0.236 0.243 

 L-valine 0.142 0.124 0.106 0.103 

 L-tryptophan 0.073 0.078 0.082 0.081 

 Sodium bicarbonate 0.244 0.344 0.443 0.417 

 Celite 545 coarse 1.000 1.000 1.000 1.000 
1
Providing per kg of diet: vit A (retinyl acetate), 15000 IU; vit D3 (cholecalciferol), 2000 IU; vit E (all-rac-alfa-

tocopherylacetate), 50.0 mg; vit K3 (menadion), 4.0 mg; vit B1 (thiamine mononitrate), 3.1 mg; vit B2 
(riboflavine), 8.0 mg; vit B3 (calcium-D-pantothenate), 20 mg; vit B6 (pyridoxine hydrochloride), 6.0 mg; vit B12 
(cyanocobalamine), 50.0 µg; vit PP (niacinamide), 40.0 mg; folic acid, 2.0 mg; biotin, 0.3 mg; betaine anhydrate, 
285 mg; endo-1,4-beta-glucanase E3.2.1.4, 250 TGU; endo-1,4-beta-xylanase E3.2.1.8, 560 TXU; Cu 
(copper(II)sulphate pentahydrate), 15.0 mg; Zn (zincsulphate), 110 mg; Fe (iron(II)sulphate monohydrate), 100 
mg; Mn (manganese(II)oxide), 48.0 mg; I (calciumjodate anhydrate), 1.9 mg; Se (sodium selenite), 200 µg; Se 
(selenomethionine produced by Saccharomyces cerevisae NCYC-R397), E306 extract of vegetable oils rich in 
tocopherols, tocopherols, 228 mg; 100 µg; clinoptioliet, 1.64 g, aromatic compounds, 72 mg;  
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Table 28: Chemical composition of the diets used in the experiment with weaned piglets 

 CON BSF4 BSF8 DF-BSF 

Analyzed chemical composition 
(unless otherwise stated) 

    

 Dry matter, % 88.40 88.50 88.90 89.20 

 Crude protein, % 16.80 16.70 16.80 16.80 

 Ether extract, % 4.90 5.00 5.30 4.80 

 Lauric acid (total), % 0.01 0.78 1.58 0.18 

 Lauric acid (free), % 0.01 0.36 0.54 0.08 

 Lactose, %
1
 4.50 4.50 4.50 4.50 

 Starch + sugars, %
1
 44.44 44.85 45.06 45.21 

 Crude ash, % 6.00 6.00 5.90 6.00 

 Crude fiber, % 3.60 3.70 3.60 3.50 

 Calcium, %
1
 0.66 0.66 0.66 0.66 

 Digestible phosphorus, %
1
 0.31 0.31 0.31 0.31 

 NE Pigs (kcal) , %
1
 2370 2370 2380 2370 

 Lysine, % 1.24 1.22 1.22 1.23 

 Threonine, % 0.81 0.79 0.80 0.80 

 Methionine, % 0.44 0.45 0.45 0.45 

 Cystine, % 0.29 0.28 0.27 0.27 

 Valine, % 0.88 0.86 0.84 0.85 
1
Calculated content 

6.2.3.2 Animal trial 

Fifty-six weaned piglets (males and females, weaned on 21 days of age; 6.178 ± 0.562 kg) were 

assigned to the 4 treatments. Each treatment was replicated in 7 pens of 2 pigs per pen (n=7 for all 

measurements). The experiment lasted for 15 days. The piglets originated from 7 litters and were 

assigned to the treatments according to litter, gender and weight. In concreto, the study design 

contained 7 blocks, referring to the origin (litter) of the piglets. In each block, each treatment was 

replicated once. All piglets in a single block originated from one litter and were assigned to the pens 

so that each pen had one male and one female, and pen body weights were similar. Pigs were 

housed in a piglet unit (2.10 m²/pen) with full slatted floors, conventional ventilation scheme, with 

an ambient temperature of 30 ± 1 °C and a 24 h light schedule up to day 5 post weaning. From day 6 
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up to day 15, ambient temperature was linearly adjusted to 28 ± 1 °C. The pigs were weighed at day 

0, 5 and at the end of the trial, i.e. day 15. For each period (day 0-5, 5-15 and total period, day 0-15), 

the performance (i.e. average daily gain (ADG)), average daily feed intake (ADFI) and feed to gain 

ratio (F:G) were recorded. 

6.2.3.3 Sampling and data acquisition  

From each pen, one piglet (piglet with weaning weight closest to average weaning weight of that 

block) was used for tissue sampling. Piglets were stunned by electrocution, and exsanguinated. 

Immediately thereafter, their abdomen was opened to collect the digesta and intestinal sections. 

Digesta of the stomach, the first 3 m of the small intestine and of the area stretching from 4 m to 1 m 

proximal to the ileo-cecal valve, were quantitatively collected. The pH and weight of the fresh digesta 

were determined in each section, 1 g of digesta was used to count the bacteria by plating (same 

bacterial groups as for the in vitro assessment) and 5 g was sampled and stored at -20 °C for pending 

MCFA analysis (Dierick et al., 2002a). The rest of the digesta was freeze-dried to determine the DM 

content. Subsequently, the dry matter was used to determine 4 mol/L HCl insoluble ash as a marker 

for digestibility. The degree of absorption of MCFA (C6:0 to C10:0) in these sections could then be 

calculated by the indicator method (Dierick et al., 2002b). Small intestinal segments (5 cm) at 3 m 

distal to the pylorus and 3 m proximal to the ileo-caecal valve were excised and used for villus height 

and crypt depth measurements (segments were flushed with saline and immersed in formaline) 

(Michiels et al., 2010). Digesta of the last meter of the small intestine and the last 15 cm of the 

rectum were collected and pooled per treatment and then freeze-dried to determine DM content of 

digesta. The DM was used to determine 4 mol/L HCl insoluble ash as a marker for digestibility and for 

proximate analyses (gross energy, DM, crude protein and EE). The total ileal and fecal apparent 

digestibility of gross energy, DM, crude protein and EE was calculated for the ileal and rectum 

samples, respectively. Digestibility of nutrient (gross energy, DM, crude protein and EE) in % was 

calculated as [1 - ( nutrient in digesta/nutrient in diet) x (4 mol/L HCl insoluble ash in diet/4 mol/L HCl 

insoluble ash in digesta)] (Kortelainen et al., 2014). 
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6.2.3.4 Feed and digesta analyses 

DM content was determined by oven drying at 103 °C until constant weight (ISO 6496:1999). 

Determination of gross energy values was done using the bomb calorimeter method (ISO 9831:1998). 

Crude ash was analyzed by incineration at 550 °C for 4 h in a combustion oven (ISO 5984:2002). Total 

nitrogen (N) content was determined by the Kjeldahl method (ISO 5983-1:2005). Crude protein 

content was calculated by multiplying total N with 6.25. Ether extract (EE), a measure for crude fat, 

was analyzed gravimetrically after extraction with diethyl ether with a Soxhlet system (ISO 

6492:1999). Crude fiber content was determined using the method with intermediate filtration (ISO 

6865:2000). Amino acid composition of protein bound amino acids was determined by HPLC 

performed on hydrolyzed and oxidized samples (ISO 13903:2005). Tryptophan was determined using 

a separate analysis, since this amino acid is destroyed by acid hydrolysis (ISO 13904:2016). Fatty acid 

composition (without C12:0) was assessed by preparation of methyl esters (ISO/TS 17764-1:2002) 

followed by GC (ISO/TS 17764-2:2002). For C12:0, both bonded and free, the method described by 

Dierick et al. (2002a) was applied. The calcium and phosphorus content was determined by ICP-OES 

(ISO 11885:2007). The samples were prepared by incineration at 450 °C until the ash was grey to red-

brown, subsequently followed by dissolving the ash in diluted nitric acid (7 M).  

6.2.4. Statistical analyses  

The data were analyzed using SPSS 22.0 (IBM Corp, 2013). For the in vitro study, a general linear 

model (GLM) with 2 fixed factors (treatment and concentration) and replicate as blocking factor, 

excluding the control from the data set, was applied (De Smet et al., 2016). To allow comparing the 

effect of treatment or concentration versus the control, a GLM was applied with one fixed factor 

(treatment or concentration) and replicate as blocking factor. In case of significance (P<0.05), 

composite means were compared by the Tukey test. 

The performance data, pH values, C12:0 concentrations, bacterial counts and histo-morphological 

measurements, obtained from the in vivo experiment, were statistically analyzed using a GLM with 
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treatment as fixed factor and block as random factor. In case of significant differences (P<0.05), the 

Tukey test was used to compare the means.  

6.3 Results 

6.3.1. In vitro assessment of the antimicrobial properties of BSF fat 

The content of C12:0 in prepupal fat was 57.9 g/100 g EE. The levels of other MCFAs (i.e. C6:0 – 

C10:0) were negligible. All prepupal treatments failed to reduce the counts of coliforms and total 

anaerobic bacteria, as compared to the blank (P<0.05) (Table 29). However, inhibition of the growth 

of lactobacilli and D-streptococci was observed. The addition of lipase enhanced the antimicrobial 

effects of prepupal fat at inclusion levels of 0.50 and 1.00 g/100 mL (corresponding to 0.29 and 0.58 g 

C12:0/100 mL, respectively) against both lactobacilli and D-streptococci. However, at the highest 

inclusion level of 1.50 g fat/100 mL (0.87 g C12:0/100 mL) the addition of lipase did not further 

reduce counts of lactobacilli. The maximum suppression observed for lactobacilli was 1.4 log10 

CFU/mL compared to the blank. For D-streptococci about 2.2 log reduction was recorded for 

prepupal fat + lipase at a concentration of 1.50 g fat/100 mL. The corresponding control treatment 

(pure C12:0 at a concentration of 0.87 g/100 mL) resulted in a 2.6 log reduction compared to the 

blank.  
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Table 29: Effect of treatment and concentration on the microbial counts (log10 CFU/mL) in the in vitro 

incubations simulating the upper small intestine  

Treatment Concentration 

(% C12:0) 
No. Coliforms Streptococci Lactobacilli Total anaerobes 

Mean values       

Blank before incubation  3 1.93 5.46 6.33 5.44 

Blank after incubation  3 5.44 5.85 6.64 6.32 

Prepupal fat 0.12 3 4.90 5.75 6.15 6.22 

 0.29 3 5.18 5.33 6.02 6.02 

 0.58 3 5.30 5.01 5.64 5.84 

 0.87 3 5.06 4.09 5.27 6.14 

Prepupal fat + lipase 0.12 3 5.37 5.49 5.98 6.51 

 0.29 3 5.23 4.64 5.43 6.25 

 0.58 3 5.29 4.03 5.37 6.16 

 0.87 3 5.21 3.68 5.23 6.01 

Pure C12:0 0.12 3 4.77 5.73 6.21 6.20 

 0.29 3 5.27 4.81 5.51 6.01 

 0.58 3 4.89 3.64 4.95 5.63 

 0.87 3 5.11 3.26 4.52 5.52 

Composite mean values       

Prepupal fat  12 5.11 5.05
b 

5.77
a 

6.05
b 

Prepupal fat + lipase  12 5.27 4.46
a 

5.50
1a 

6.23
b 

Pure C12:0  12 5.01 4.36
a
 5.30

1a 
5.84

a 

 0.12 9 5.01 5.66
z 

6.12
z 

6.31
y 

 0.29 9 5.23 4.93
y 

5.65
1y 

6.09
xy 

 0.58 9 5.16 4.23
1x 

5.32
1xy

 5.87
x 

 0.87 9 5.13 3.68
1x 

5.01
1x 

5.89
x 

General linear model (excluding the control)     

RMSE  0.292 0.444 0.224 0.217 

P-value treatment  0.105 0.001 <0.001 0.001 

P-value concentration  0.475 <0.001 <0.001 0.001 

P-value treatment x concentration  0.396 0.210 0.010 0.142 

a,b
Mean values for the treatments with different letters are significantly different at P<0.05 following GLM. 

x-z
Mean values for the concentration effect with different letters are significantly different at P<0.05 following 

GLM. 
1
Mean value different from the blank following GLM for testing the effect of treatment and concentration 

separately. 
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6.3.2 Inclusion of full-fat and defatted BSF in the diet of weaned piglets 

Performance data are displayed in Table 30. None of the parameters show significant differences 

between treatments. Dietary C12:0 levels were reflected in MCFA contents in the different 

compartments of the digestive tract (Table 31, P<0.05), although cumulative absorption in different 

compartments did not differ between treatments containing BSF prepupal material. In contrast, pH 

of contents was not affected by treatment. Concerning bacterial counts, no differences could be 

observed for the counts of coliforms and total anaerobic bacteria (P>0.05; data not displayed). Based 

on the outcome of the in vitro experiment, differences between the diets could be expected for 

lactobacilli and D-streptococci (Table 31). 

 

Table 30: Effect of dietary treatment on performances of weaned piglets (n=7)1 

 CON BSF4 BSF8 DF-BSF RMSE P-value 

Average daily gain (g/day) 

Day 0-5 27 26 28 41 66.4 0.973 

Day 5-15 221 202 199 215 48.1 0.884 

Day 0-15 174 143 143 157 41.1 0.668 

Average daily feed intake (g/day) 

Day 0-5 121 161 135 143 64.5 0.690 

Day 5-15 299 292 250 262 58.2 0.299 

Day 0-15 236 248 205 225 47.8 0.450 

Feed:gain ratio2 

Day 5-15 1.36 1.24 1.30 1.23 0.333 0.122 

Day 0-15 1.48 1.49 1.58 1.43 0.446 0.216 

1
CON is the control diet, diets BSF4, BSF8 and DF-BSF contained 4% full-fat BSF, 8% full-fat BSF and defatted BSF 

in an amount providing similar nitrogen to the diet as BSF8, respectively; 
2
F:G for period d0-5 not given. 
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Table 31: Effect of dietary treatments on pH, lauric acid (C12:0) and bacterial counts in the different 

compartments of the digestive tract (n=7)1,2 

   CON BSF4 BSF8 DF-BSF RMSE P-value 

Stomach 

pH 3.94 3.75 3.77 3.82 0.577 0.634 

C12:0 Content (%) 0.001d 0.094b 0.212a 0.021c 0.1260 <0.001 

Cumulative absorption (%) ND
3 

58.3 57.3 59.9   

Lactobacilli (log10 CFU/mL) 8.37 8.31 7.90 8.44 0.499 0.213 

D-Streptococci (log10 CFU/mL) 8.27 8.21 7.97 8.25 0.376 0.659 

Proximal small intestine 

pH 5.56 5.78 5.67 5.83 0.352 0.458 

C12:0 Content (%) 0.000b 0.017ab 0.026a 0.009b 0.1265 0.005 

Lactobacilli (log10 CFU/mL) 7.73 7.53 7.39 7.82 0.376 0.179 

D-Streptococci (log10 CFU/mL) 7.74 7.24 7.27 7.67 0.591 0.299 

Distal small intestine 

pH   6.52 6.59 6.64 6.58 0.583 0.982 

C12:0 Content (%) 0.000c 0.007ab 0.012a 0.002bc 0.0441 0.001 

Lactobacilli (log10 CFU/mL)  8.68 8.57 8.64 8.62  0.655  0.997 

D-Streptococci (log10 CFU/mL)  8.65 8.62 8.57 8.38  0.577  0.802 

1
CON is the control diet, diets BSF4, BSF8 and DF-BSF contained 4% full-fat BSF, 8% full-fat BSF and defatted BSF 

in an amount providing similar nitrogen to the diet as BSF8, respectively; 
2
Values with different letters within a 

row per intestinal compartment are different, P<0.05. 
3
Not determined. 

 

However, the observed decrease in log10 CFU/mL in the stomach and the upper small intestine (SI1) 

of piglets that were fed diets with increasing C12:0 content was not significant (P>0.05). The histo-

morphological measurements of segments at 3 m distal to the pylorus (proximal jejunum) and 3 m 

proximal to the ileo-cecal valve (distal jejunum) (Table 32) did not indicate significant effects. An 

overview of the digestibility data can be found in Table 33. Inclusion of defatted BSF resulted in equal 

or higher ileal digestibility of nutrients as compared to the control, whereas use of full-fat BSF 
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reduced ileal energy digestibility. Ileal crude protein digestibility was higher with 4% full-fat and 

defatted BSF prepupae in the diet compared to the control (73.3% and 69.7% for BSF4 and DF-BSF vs. 

67.4% for CON, respectively). 

 

Table 32: Effect of treatments on villus height (μm), crypt depth (μm) and ratio villus height:crypt 

depth at different sites of the digestive tract (n=7)1 

  CON BSF4 BSF8 DF-BSF RMSE P-value 

Proximal jejunum 

Villus height 

  

428 

 

427 

 

432 

 

427 

 

24.6 

 

0.949 

Crypt depth 108 114 113 110 8.9 0.721 

Villus height:crypt depth 4.0 3.8 4.0 3.9 0.32 0.416 

Distal jejunum 

Villus height  426 424 428 430 19.1 0.803 

Crypt depth 107 106 109 108 5.3 0.887 

Villus height:crypt depth 4.0 4.0 4.0 4.1 0.20 0.379 

1
CON is the control diet, diets BSF4, BSF8 and DF-BSF contained 4% full-fat BSF, 8% full-fat BSF and defatted BSF 

in an amount providing similar nitrogen to the diet as BSF8, respectively; 
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Table 33: Effect of treatments on apparent ileal and total tract digestibility of nutrients (%) in 

weaned piglets fed the experimental diets1,2 

  CON BSF4 BSF8 DF-BSF 

Apparent ileal digestibility 

DM 

  

64.6 

 

63.0 

 

64.9 

 

66.4 

Gross energy  71.4 68.1 69.9 71.5 

EE  78.3 77.1 80.1 80.3 

Crude protein  69.7 73.3 67.4 73.3 

Apparent total tract digestibility 

DM 

  

80.6 

 

80.9 

 

81.5 

 

81.4 

Gross energy  83.4 84.1 83.4 82.9 

EE  78.2 77.3 80.3 77.9 

Crude protein  76.8 77.4 77.6 78.3 

1
CON is the control diet, diets BSF4, BSF8 and DF-BSF contained 4% full-fat BSF, 8% full-fat BSF and defatted BSF 

in an amount providing similar nitrogen to the diet as BSF8, respectively; 
2
Measurements were done on pooled 

samples per treatment 
 

6.4 Discussion 

According to the literature, lauric acid-containing fats could be a means to control Gram positive 

infections (Skrivanova et al., 2005). Despite the fact that the mode of action of MCFAs like C12:0 is 

not fully understood, it is known that their antimicrobial activity is related to the reduction of pH, as 

well as to their ability to dissociate (Roth and Kirchgessner, 1998). Undissociated forms of MCFAs can 

penetrate the lipid membrane of the bacterial cell and subsequently dissociate within the cytoplasm. 

As the targeted bacteria struggle to maintain a neutral pH, by exporting excess protons, the cellular 

ATP is consumed resulting in the depletion of energy and ultimately leading to the death of the cell 

(Ricke, 2003). In our in vitro assessment, the high amount of C12:0 in the BSF fat extracts resulted in 

substantial antimicrobial effects against D-streptococci, while no significant effects were recorded for 

coliforms. Skrivanova et al. (2006) observed in an assay with free C12:0, that the Gram positive 
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Clostridium perfringens was suppressed while the Gram negative E. coli and Salmonella spp. were 

less affected. This could be anticipated given that Gram positive bacteria appear to be more 

susceptible to compounds interfering with the ion transport across the cell membrane (Nagaraja, 

1995). In fact, most antimicrobial feed additives are substances active against Gram positive bacteria 

(Brander, 1982). The antimicrobial effects of BSF fat could provide an important added value when 

complete prepupae are used as a protein source in the feed of monogastrics.  

 

From previous in vitro incubations conducted in our laboratory (Dierick et al., 2002b), it was deduced 

that a concentration causing at least 1 log10 CFU/mL reduction (i.e. equivalent to at least a 10 fold 

reduction in microbial numbers) could result in meaningful suppression of the gut bacteria under in 

vivo conditions and consequently, have impact on health and performance of piglets. This is due to 

the fact that, for young animals, a bacterial overload can be negative in terms of competition for 

nutrients, production of toxic metabolites, deconjugation of bile acids, increased inflammation and 

increased mucosal turnover (Anderson et al., 1999; Gaskins et al., 2002). Considering the in vitro 

results of the present study this would imply that, under in vivo conditions, a dose of at least 0.58 g 

C12:0/100 mL should be present in the proximal part of the small intestine to reduce lactobacilli and 

D-streptococci. However, from the concentration of 1.58 g C12:0/100 g feed in diet BSF8, only 0.21 g 

was left in the stomach while the upper small intestine (SI1) contained 0.03 g C12:0/100 g. Despite 

these seemingly inadequate concentrations, the bacterial counts of D-streptococci in the SI1 of 

piglets fed BSF8 showed a 0.5 log difference with those of the CON piglets, who received negligible 

amounts of C12:0. Moreover, even for piglets fed only 0.78 g C12/100 g feed (BSF4), this 0.5 log 

reduction compared to CON was observed. These findings suggest an effect of the prepupal fat on 

the microbial community in the gut of piglets. However, since the differences were not statistically 

significant, this observation need to be interpreted with caution and verified in further research. 

Nonetheless, the results suggest that when higher concentrations of the prepupal C12:0 reach the 

targeted sites, the antimicrobial activity could be enhanced. In the small intestine, the antimicrobial 
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effect of free MCFAs is restricted because of rapid absorption. Therefore, triacylglycerols of MCFAs 

may be suitable alternatives to free MCFAs (Dierick et al., 2002a), on the condition that there is 

sufficient lipolytic activity. If not, exogenous lipase could be added to the feed. From the in vitro 

study, the effect of lipase in the incubation medium on the bacterial counts indicates that a 

substantial amount of C12:0 is bonded in glycerides. However, the diets in our in vivo trial already 

contained a high amount of free C12:0 (34 – 46% of the total C12:0 content; Table 28). This could be 

due to endogenous lipase activity of the various feedstuffs applied in the diet preparation (which 

depends on treatment, cultivar, storage time and conditions, etc.). The release of C12:0 might be 

advantageous during storage because it could reduce the growth of microbial contaminants (Dierick 

and Decuypere, 2002). However, the additional lipolytic activity in the stomach of the piglets appears 

to be strong and comparable to the results obtained by Dierick et al. (2002b). Therefore, most of the 

C12:0 from the feed was absorbed too early (57 – 60% already in the stomach; Table 31) and could 

not reach the sites where it would find optimal conditions to inhibit bacterial growth. These targeted 

sites are situated in the proximal small intestine with pH conditions from 4.0 to 6.0, since the pKa of 

C12:0 is about 5.3 (Skrivanova et al., 2005). Under these conditions, most of the C12:0 will be 

undissociated, and consequently it can freely penetrate through the semipermeable peptidoglycan 

membrane of the Gram positive bacteria into the cytoplasm (Dierick et al., 2002a).  

 

In addition to direct effects on intestinal microbiota, MCFAs could have several other positive effects 

on gut health. In the case of hypotrophic villi caused by malnutrition, MCFAs have been shown to 

improve the intestinal morphology and function, through their beneficial effects on crypt cell 

renewal (Galluser et al., 1993; Jenkins and Thompson, 1993). In this study, however, the histo-

morphology of the small intestine did not indicate any differences between piglets subjected to the 

different diets. Since the histo-morphology of piglets reared on the conventional diet CON was 

already optimal, no further improvement was to be expected in the gut of the MCFA fed piglets. In 

addition to MCFAs in the fat, there might be other components in the insect biomass that could 
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suppress bacterial growth. It is known that insects produce a wide range of antimicrobial peptides 

(Otvos, 2000; Li et al., 2012). However, no difference in bacterial counts was observed between CON 

and DF-BSF, where defatted prepupae were an important protein source. Since antimicrobial 

peptides are mostly produced by insects as a reaction against invading pathogens, they were 

probably not present in the current batches. Moreover, even if they had been present, the instability 

of these antimicrobial peptides outside the insect hemolymph would have them being easily 

degraded in the intestinal lumen (Otvos, 2000).  

 

Besides assessing the possible added value of BSF fat as an alternative antimicrobial agent, the 

current in vivo study focused on the performance of piglets reared on insect-containing diets. Despite 

the fact that there were no statistical differences between the ADG values of the different 

treatments, piglets reared on the full-fat insect diets (BSF4 and BSF8) gained slightly less weight 

compared to CON and DF-BSF reared piglets (respectively 18 and 9% less). In addition, the piglets 

that received the diet with the highest insect inclusion (BSF8) have consumed the least amount of 

feed (13% less than CON). This might be due to a reduced palatability because of the presence of a 

substantial amount of free MCFAs in the feed (Dierick et al., 2002a). Strategies for improving the 

palatability of diets could be including flavourings (EU Register of Feed Additives, category 2b) and 

using fresh palatable ingredients such as dairy products. According to Newton et al. (1977), a diet 

containing 33% of full-fat BSF prepupae was equally palatable to 6-week-old piglets (weaned at 4 

weeks of age) as a soybean based diet. To our knowledge, the only study reporting the performance 

of pigs reared on BSF diets was conducted by Newton et al. (2005). In the latter study, dried BSF 

prepupae meal was fed to early weaned pigs as a substitute for dried plasma. During the first 

growing stage, the control diet contained 5% dried plasma and this was compared to diets containing 

increasing amounts of BSF (i.e. a diet with 2.5% BSF and 2.5% plasma and a diet with 5% BSF and 0% 

plasma). The diet with equal amounts of plasma and BSF resulted in a slightly better performance 

(+4% gain and +9% feed efficiency) compared to the control. In the present study only the first 15 
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days were assessed. The immediate post-weaning period is most critical, and generally significantly 

determines performances in following stages. As performance was not affected by BSF inclusion in 

our study, it can be suggested that adverse effects during later life are not to be expected. 

 

In Newton et al. (1977), the apparent fecal digestibility of macronutrients (DM, crude protein and EE) 

for piglets reared on a 33% BSF diet is compared with conventionally (i.e. with soybean) reared 

piglets. In contrast to our study, the DM digestibility in Newton et al. (1977) was substantially lower 

for the BSF diet (78 vs. 85% for the conventional diet). The values for protein (76 vs. 77%, resp.) were 

almost the same and correspond to the values obtained in our study (78% for an 8% BSF diet and 

77% for a 0% BSF diet). Contrarily, the apparent ileal digestibility, calculated in our study, was higher 

for the conventional diet compared to the 8% BSF diet. However, the highest ileal protein digestibility 

values were recorded for the diets containing 4% full-fat (BSF4) and defatted (DF-BSF) prepupal meal. 

This indicates that providing a limited amount of BSF protein might have a positive effect on the 

protein digestibility of the diet. However, this effect became negative when a higher amount of BSF 

protein was provided. The ether extract digestibility assessed by Newton et al. (1977) was much 

higher for the BSF diet (84%) compared to the control (73%). Since the BSF diet in the latter study 

contained 33% of full-fat prepupae, the main part of the fat consisted of lauric acid. This MCFA is 

more easily absorbed than the long chain fatty acids present in soybean (Dierick et al., 2002a). In our 

experiment, the maximum lauric acid inclusion (i.e. 30% of the total fat) was present in the 8% BSF 

diet. However, no substantial differences were observed in ether extract digestibility between the 

different treatments. Concerning the digestibility, it should be stated that the data originated from 

pooled samples and, therefore, only indications could be provided since no statistical tests could be 

applied.  

 

So far, most studies evaluating BSF as a feed ingredient were performed in poultry and fish (St-Hilaire 

et al., 2007; De Marco et al., 2015; Borgogno et al., 2016; Cullere et al., 2016). Our trial with piglets 
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showed that piglet feed may contain a considerable amount of either full-fat or defatted BSF 

prepupae without causing adverse effects on performance. However, more research is warranted in 

order to draw reliable conclusions. The piglet feed in the present study contained up to 8% BSF, 

replacing toasted soybeans by 100% compared to a control diet. However, the current prices for 

soybean products are much lower than those of BSF products (ABN AMRO, 2016). As the results from 

our in vitro study indicate that the prepupal fat has potential as an antimicrobial agent, future 

research should further focus on exploring the added value of whole BSF prepupae compared to 

conventional protein sources. An additional aspect that needs to be addressed is the optimization of 

the insect rearing systems. Further upscaling, mechanization and automatization would allow 

decreasing the production cost which may lead to lower market prices for these insect materials. This 

would ultimately improve the competitiveness and the economic perspective of insect meals as 

sustainable feedstuffs (ABN AMRO, 2016). 
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7.1 Alternative feed ingredients  

In this dissertation, BSF prepupae were investigated as a potential alternative feed ingredient for 

monogastric farm animals. The main reasons for the need for alternative feed ingredients in Europe 

are :  

 the dependency on the import of protein resources (i.e. soybean products). This could make 

the livestock sector in the EU vulnerable to possible price volatility and trade distortions (van 

Krimpen et al., 2013). 

 the increasing demand for feed resources in the world increases competition between 

Europe and emerging economies (e.g. China) and consequently feed prices may rise (Fefac, 

2016). 

 feed costs represent 60-70% of total animal production costs. Therefore, the profitability of 

the livestock sector is strongly affected by price changes of feed resources (van Huis., 2013). 

 the negative environmental impact associated with soybean culture. There are indications 

that insect production would require less land and water than soybean cultivation and in the 

case of BSF, organic side streams could be processed, resulting in a reduced nutrient load for 

the environment (van Huis and Oonincx, 2017). However, comparing the environmental 

impact of industrial BSF production to soybean culture is currently not possible. To our 

knowledge, the insect producing sector is still in the upscaling phase and, therefore, reliable 

environmental impact studies could not be completed yet, despite efforts by several 

researchers (Oonincx, 2015; Roffeis et al., 2015; Smetana et al., 2016).  

The compound feed production in the EU for 2016 was 50 million metric tons for pigs and 54 million 

metric tons for poultry. Even if only 1% of the piglet feed in Belgium and the Netherlands would 

consist of BSF, there would be a demand for 17,000 metric tons of insect material (Fefac, 2017). 

Given that the estimated world production of BSF in 2016 was only 14,000 metric tons, it is clear that 
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the production capacity needs to be enhanced substantially in order to become meaningful (ABN 

AMRO, 2016). In addition, soybean products could be further replaced in the future by a combination 

of BSF and other protein rich ingredients such as grain legumes (e.g. lupines and chick peas), leaf 

proteins (e.g. grass and sugar beet leaves) and aquatic organisms (e.g. microalgae, seaweed and 

duckweed). Enhancing the production of soybean on European soil could also be an option (van 

Krimpen et al., 2013). According to van Krimpen et al. (2013), homegrown European soybean has the 

best potential to replace imported soybean in the long term, under the condition that the production 

capacity is enhanced to at least 5 metric tons/ha. Given that the maximum yield in the US currently is 

less than 4 metric tons/ha (Langemeier, 2016), this will be a significant challenge for European 

producers. In addition, given that most of the arable land in Europe is already occupied, the 

cultivation of soybean would have to compete with other crops (IndexMundi, 2017).  

As previously stated, insects like BSF could be used to improve the valorization of organic side 

streams. Insects could be sinks for components like nitrogen and phosphorus which otherwise would 

be emitted to the environment. In addition, the insects use these side streams to build up their 

protein and fat rich body mass. As a result, added value is created twice, both in an ecological and 

economic way. From an ecological point of view, potentially harmful side streams are processed by 

the insects whereas the need for importing nutrients is reduced (Veldkamp et al., 2012; van Huis et 

al., 2013). Introducing exotic insect species in Europe for this purpose might, however, entail certain 

ecological risks (Chapter 3). Our study showed that in the case of BSF, establishment in temperate 

regions with cold winters is rather unlikely. In addition, established populations of the species in 

southern Europe displayed no invasiveness, despite being present for decades. As to the economics, 

the costs associated with side streams (e.g. transport, processing,…) are compensated by generating 

a valuable product. In addition, the need for overseas feedstuffs is reduced (Veldkamp et al., 2012; 

van Huis et al., 2013).  
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There are many types of side streams, some of which are more suitable than others to optimally rear 

insects in a safe way. In this chapter, potential substrates for large scale BSF rearing are explored and 

the optimal stage for harvesting is discussed. This information could be useful for the industrial 

production of BSF. Further, the state of the art and future perspectives concerning legislation and 

economics as related to the mass production of insects for feed are discussed. In addition to 

economics (i.e. price), the other important parameter for least cost compound feed formulation, 

being nutritional value of BSF prepupae, is discussed.  

7.2 Choice of substrate 

Throughout the research chapters of the thesis (Chapters 3, 4 and 5) different substrates have been 

tested for the rearing of BSF. As concluded in Chapter 5, a high non-fiber carbohydrate substrate 

gives the larvae the opportunity to develop fast and to synthesize the necessary body fat. The 

substrate that resulted in the largest growth and prepupal yield, disregarding the chicken feed 

control, was catering waste. However, our study indicates that a good substrate for BSF should not 

contain too much fat. In Chapters 3 and 4, there was no difference in the development time and the 

prepupal yield of larvae reared on catering waste versus those from the control. This batch of 

catering waste contained less fat than the one used in Chapter 5, where a substantially longer 

development and a lower prepupal yield were recorded compared to the control. This variable 

response of BSF to catering waste was also described by Barry (2004) who investigated different 

batches of this type of substrate. Consequently, for the purpose of large scale rearing of BSF using 

catering waste, it would be desirable that the provided batches of the rearing substrate are 

somewhat similar in terms of composition and structure in order to obtain a consistent larval 

production. Alternatively, quality control of the rearing substrate would allow to balance the 

substrate for the nutritional needs of the larvae by adding specific ingredients and nutrients. 

However, no clear data are available yet on the nutritional requirements of the growing larvae. 
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From Chapter 5, it could be deduced that on a vegetable waste substrate, containing less starch and 

fat and more fiber than the catering waste, a similar amount of prepupal biomass was obtained. The 

problem, however, is that the vegetable waste had a much higher water content than the other 

substrates (only 12% DM compared to 25% of the other substrates). This might have some practical 

implications for commercial rearing systems of BSF. It means that, despite the lower feed conversion 

ratio (kg feed/kg increase in body weight) expressed on DM basis for BSF reared on the vegetable 

waste compared to the drier catering waste (data not published), a considerable mass of water is 

provided by the fresh vegetable waste in the rearing facility. Therefore, the dimensions of these 

facilities should be very large in order to produce a sufficient amount of larvae. In Chapter 5, a 

reduction of only 9% of the wet vegetable waste was observed, indicating that a substantial amount 

of the substrate fed to the larvae was not consumed. It should be stated that the feeding regime in 

this experiment could be considered as excessive in order to guarantee ad libitum feeding. However, 

given that the insects are living in their food substrate, there always will be a need for offering more 

substrate than they can consume. In Diener et al. (2009) optimal feeding rates were determined for 

BSF reared on chicken feed. The optimal feeding rate corresponded to 60% of residual material. This 

material contained feces but also a substantial amount of unconsumed feed. This is confirmed by a 

release on the website of Co-Prot (www.co-prot.com), a BSF producing company that discontinued 

its activities in 2015:  

"First, to produce 1 ton of dry insect meal, one will need about 15-20 tons of fresh (wet) organic 

waste of high quality. So to produce a 40 foot container of insect meal, one will need 400 tons of fresh 

waste. That requires a huge logistical operation of waste collection sorting and transport. This 

practically means that primary operation of such a company is waste management, and secondary 

activity is protein production." 

Drying might be an option to remove part of the water, however, this will consume energy and the 

process might damage the structure of the material. Moisture content is not the only important 
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parameter for optimal growth of BSF larvae. The structure of the substrate is actually more crucial 

since the larvae prefer a semi-solid puree like substrate in which water and nutrients are easily 

accessible (own observations and personal communication of Dennis Oonincx). The larvae are not 

able to degrade fiber rich materials and have difficulties to process solid food, therefore, substrate 

preparations (e.g. cooking, mashing, grinding, …) might be necessary. In addition, the degree of 

decomposition of the rearing substrate plays an important role since BSF larvae are detritivores by 

nature (Chapter 5). The inability of BSF larvae to digest fiber has important consequences towards 

the suitability of the substrate. High fiber substrates like biogas digestate and dairy manure might be 

suitable for BSF development, but even at high feeding rates, the prepupal yields are poor. In 

addition, it is very unlikely that these substrates will ever be allowed to rear insects intended for the 

food chain (EFSA, 2015). From the findings concerning the chemical safety reported in Chapter 4, it is 

highly advisable that these substrates are screened thoroughly for possible contaminants (mainly 

heavy metals).  

For the mass rearing of BSF, using highly nutritional substrates such as catering waste is advised in 

order to obtain adequate numbers of fertile flies which are successful in mating and producing viable 

offspring (Chapter 2). Prepupae reared on catering waste are also more cold tolerant than those 

reared on chicken feed (Chapter 3). This might be an interesting trait for the purpose of storing and 

transporting live prepupae at low temperatures. For the moment, catering waste is not allowed as a 

substrate for insects based on EU Regulation No. 1069/2009 (Chapter 1). However, the EU is taking 

action to tackle the problem of wasting food since around 88 million metric tons of food are wasted 

annually in the EU, with associated costs estimated at € 143 billion (EU, 2017). Allowing catering 

waste to be fed to insects, intended as a feed source for pigs and poultry, could be a part of the 

solution.  
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7.3 Optimal harvesting stage 

In Chapters 5 and 6, BSF larvae harvested in their prepupal stage were used for the experiments. The 

reason for this was that these prepupae have little or no gut content and consequently, 

contamination with intestinal material was substantially lower. This has been described in the 

literature (May, 1961) and was confirmed by the differences in contamination level between fifth 

instar larvae and prepupae observed in the present study (Chapter 4). Moreover, from dissections 

performed during this research, it has been shown that the gut of BSF prepupae disintegrates already 

during the first 24 h in this stage (Figure 9). Consequently, no gut system could be found after this 

point in time (Figure 10). On the other hand, when fifth instar larvae were dissected, a very long gut 

system, folded multiple times from the head to the anus and with a straight length of about 5 times 

the larval body size, could be observed (Figure 11). When the gut is filled, its weight is about 25% of 

the total larval wet weight (own observations).  

 

Figure 9: Gut system of a BSF prepupa, less than 24 h in this stage 
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Figure 10: Dissected BSF prepupa, longer than 24 h in this stage 

 

 

 

Figure 11: Gut system of a fifth instar BSF larva 
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Commercial companies (Millibeter, Envirovlight, Protix,… personal communications) are not willing to 

wait for the prepupal stage and harvest the larvae in the fourth to fifth instar. Besides the shortening 

of the life cycle, the lower body weight of the prepupae is an important reason for this. However, 

from observations in our research, it can be deduced that the weight difference between larvae and 

prepupae is mainly due to the absence of gut content in the prepupae. In addition, prepupae have a 

DM content of about 5-10% higher than fifth instar larvae which could reduce potential drying costs. 

The difference in nutritional composition between larvae and prepupae is minimal (own 

observations). In our colony, prepupae were slightly higher in protein (38% vs. 36% on DM basis), 

lower in fat (33% vs. 35%) and had a higher DM content (33% vs. 40%) than fifth instar larvae. 

Prepupae contained 6% chitin while fifth instars contained 5% on DM basis. 

Harvesting BSF fifth instars requires sieving from the substrate while the migration properties of 

prepupae could be used to develop a self-harvesting system (Newton et al., 2005; Alvarez, 2012). 

This system can easily be applied on a small laboratory scale (observations from our own colony and 

personal communication with Dennis Oonincx) since only a limited number has to be collected in 

order to maintain the colony or to perform experiments. However, in order to collect all prepupae to 

record the total yield in Chapter 5, sieving was necessary. In addition, the rate of development into 

prepupae can be quite variable (depending on substrate, larval density, temperature and other 

unknown factors) and thus unpredictable (own observations), making this stage less interesting to 

harvest in automated rearing systems. On the other hand, Newton et al. (2005) developed a pilot 

installation using self-harvesting where the migration of the prepupae is facilitated by ramps. In 

Europe, the largest producer of BSF is the German company Hermetia Gruppe (www.hermetia.de). 

Since this company is selling BSF in the prepupal stage rather than larvae, it is possible that the self-

harvesting principle is applied here. However, due to confidentiality, this could not be verified.  

In conclusion, it could be stated that waiting for the prepupal stage is only necessary when substrates 

are used which are likely to be contaminated and/or in systems where self-harvesting is optimized. 
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Contamination of larvae could also be prevented by allowing the larvae to empty their guts through 

fasting. This practice is generally applied in commercial mealworm rearing (van Huis et al., 2013).  

7.4 Use of BSF in animal feeds 

Whether or not BSF will ever become a common feed ingredient for monogastric farm animals which 

could be incorporated in least cost formulation will largely depend on two factors:  

 quality (i.e. consistency of nutritional composition and value) 

 economic viability of insect rearing systems which would lead to competitive prices 

7.4.1 Quality 

Nutritional quality (i.e. the ability to match the animal requirements) is the first parameter of 

importance when using a feedstuff in feed formulation. From Chapter 5, it is clear that in the case of 

BSF prepupae, the quality in terms of nutritional composition is dependent of the applied rearing 

substrate. Protein content and amino acid composition of prepupae were less affected by rearing 

substrate than fat and ash content and composition. The batch of prepupae used in the piglet feed in 

Chapter 6 contained more than 400 g fat/kg DM and less than 50 g ash/kg DM (Table 25) suggesting 

that these prepupae were reared on a diet comparable to the catering waste (Chapter 5) in terms of 

value for the larvae. From Tables 27 and 28 it could be observed that by raising the full-fat BSF 

prepupae content from 4 to 8%, the total fat content in the compound feed raised from 5.0 to 5.3%. 

Therefore, the 5.5% upper limit for fat in the formulation (Table 25) would be exceeded when more 

than 10% full-fat BSF would be incorporated. Omitting all soybean oil from the formulation could 

make it possible to incorporate more full-fat prepupae. However, given that BSF fat is very low in n-3 

PUFAs this is not advised. Prepupae reared on digestate might be incorporated in the formulation at 

higher levels without exceeding the fat limit. However, the high calcium content of these prepupae, 

which might be interesting for laying hens, would restrict their use in piglet feed (Chapter 5).  
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The apparent ileal digestibility coefficients (AIDCs) of amino acids are important parameters for 

formulation. In our study, these values were not determined for BSF in piglet feed and, to our 

knowledge, so far, only Kortelainen et al. (2014) reported these values. In Table 34 an overview is 

provided of important AIDCs of BSF compared to soybean with emphasis on formulation for pigs and 

broilers.  

Table 34: Apparant ileal digestibility coefficients (%) for amino acids applied in formulation software 

 Pigs   Broilers 

 

BSF
1
  

(19% fat, 
 63% protein)

 

Toasted full-
fat soybeans

2
 

(20% fat, 38% 
protein 

Soybean meal
2
 

(1.5% fat,  
48% protein) 

  
BSF

3 

 (18% fat,  
55% protein) 

 
Soybean meal

4
 

(1.5 % fat, 
 49% protein) 

Cystine  43 70 79  44 - 

Isoleucine  92 75 87  83 87 

Lysine  79 79 87  80 91 

Methionine 89 75 88  83 92 

Threonine  79 71 80  73 82 

Valine  92 73 83  90 86 

1
Kortelainen et al. (2014); 

2
NRC (2012); 

3
Schiavone et al. (2017) ; 

4
Huang et al. (2007) 

 

The AIDCs for lysine in BSF are, both for pigs (79%) and broilers (80%), substantially lower than the 

respective coefficients for soybean meal (87% and 90%) (Table 34). Moreover, the AIDCs for the 

sulfur-containing cystine are very low for BSF (43% for pigs and 44% for broilers). Concerning pigs, 

this could be compensated by the other sulfur-containing amino acid methionine of which BSF (89%) 

has an AIDC comparable to soybean meal (88%). However, from Table 26 it could be observed that 

the combined levels of methionine and cystine in BSF are insufficient given that the sum of the 

apparent ileal digestible (AID) methionine and the AID cystine divided by the AID lysine is beneath 

the 0.59 requirement for AID (methionine + cystine)/AID lysine. In contrast, for the other amino acids 

this ratio is well above the suggested requirements. Moreover, for valine and isoleucine (both 92%) 

the AIDCs are higher than those of soybean meal (83% and 87%, respectively). 
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For the 8% BSF containing diet in Chapter 6, toasted soybeans, a common ingredient in piglet feed, 

were for 100% replaced by full-fat BSF. Replacing toasted soybeans could be particularly interesting 

given that the AIDCs for most amino acids are lower than the AIDCs of BSF (Table 34). However, given 

that for both broilers (De Marco et al., 2015; Schiavone et al., 2017) and pigs (Kortelainen et al., 

2014) the number of studies reporting the AIDCs for amino acids of BSF products is limited, more 

research is warranted. Moreover, the results obtained by De Marco et al. (2015) differed 

substantially from those by Schiavone et al. (2017), while two different BSF batches tested by 

Kortelainen et al. (2014) had different AIDCs. These findings suggest that the AIDCs for amino acids of 

BSF products could be dependent of certain factors such as composition and treatment (e.g. drying, 

fat extraction method,…). 

7.4.2 Economics 

For the moment the prices of BSF products (full-fat larvae/prepupae or defatted meal) are far too 

high in comparison to traditional protein sources for these products to be selected in compound feed 

formulations based on least-cost linear programming (Table 35). The only product of which the price 

is more or less comparable to BSF meal is soy protein concentrate. This product is made for specific 

animal feed products, mainly intended for young animals (chicks and piglets) and fish (Nordic Soya, 

2017). Soy protein concentrate has a protein content comparable with defatted BSF meal (Table 35). 

However, both products are probably not entirely interchangeable because of differences in the 

composition and nutritional value. Defatted BSF meal still contains about 8% fat (Chapter 6) while 

soy protein concentrate contains only about 1.5% fat (Sodrugestvo, 2017). In addition, the protein 

digestibility of low fat BSF meal, reported by Schiavone et al. (2017) for broiler chicks, is lower than 

that of soy protein concentrate (Huang et al., 2007). BSF digestibility might be enhanced by extrusion 

which is performed for soy protein concentrate under pressure, moist conditions (20-30%) and high 

temperature (120-180 °C) (U.S. Soybean Export Council, 2008). Whether this technique could be 

useful for BSF needs investigation. A study conducted by Ottoboni et al. (2017) showed the feasibility 
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of extrusion of different wheat/BSF mixtures. However, the in vitro protein digestibility of these 

mixtures was not improved by the extrusion process. Furthermore, including the extrusion process 

would increase the prices of BSF meal even more.  

Table 35: Prices of raw and processed protein sources for animal feed 

Protein source 

Price of full-fat 

dry product 

(€/kg) 

Price of 

defatted 

meal (€/kg) 

Protein content 

of defatted 

meal (%) 

Reference 

BSF larvae/prepupae 3.80 4.00 63 Hermetia Gruppe (June 2017) 

Fishmeal 0.98-1.15  / 65 IndexMundi (January-June 2017) 

Soybean  0.30-0.36 0.29-0.34 49
 

IndexMundi (January-June 2017) 

Soy protein 

concentrate
 

/ 3.67 62 ABN AMRO (December 2016) 

 

As indicated in the discussion of Chapter 6, the weaner diets for piglets might be an interesting niche 

market for full-fat BSF products. The added value provided by the antimicrobial properties of the BSF 

fat could justify higher prices for BSF compared to soybean. However, from Table 35 it can be 

observed that full-fat BSF is over 10 times more expensive than soybean meal and, therefore, the 

added value of the BSF fat will be insufficient. In addition, the true value of the antimicrobial effects 

of BSF in the gastro-intestinal system of piglets could still not be fully assessed since the results of the 

in vivo study (chapter 6) were inconclusive.  

Compared to soybean meal, fishmeal is currently about 3 times as expensive and thus, BSF might be 

more a substitute for fishmeal. In addition, both in the EU and North America, the aquaculture 

market has recently been opened for BSF products (Chapter 1). The aquaculture sector is 
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continuously growing and using increasing amounts of fishmeal. Given that fishmeal predominantly 

originates from unsustainable fishery activities, the need for alternatives is imminent (van Huis et al., 

2013). In case of BSF, the potential for becoming an alternative feed ingredient for aquaculture 

systems has been demonstrated by multiple authors (Sealey et al., 2011; Kroeckel et al., 2012; Devic 

et al., 2017; Magalhães et al., 2017; Zhou et al., 2017) 

A substantial increase in the production of BSF through upscaling, mechanization and automation will 

be necessary to reduce BSF prices. The latter two factors will reduce the currently high labor costs, 

which are mostly associated with harvesting (ABN AMRO, 2016). The substrate used for BSF rearing 

will also have an important influence on the price. The lower the economic value, and consequently 

the price of the substrate, the better; however, as discussed before, these substrates must be of 

sufficient nutritional quality in order to guarantee efficient BSF production. In the case of catering 

waste, the substrate considered the most interesting in our study, most of the material is now 

allocated to biogas fermentation, composting, incineration or ends up at landfills. These applications, 

however, are not preferred by most sectors since gate fees are raised for disposal whereas the 

generation of financial return is limited compared to valorization as a feedstuff (EU, 2017b).  

According to Dortmans et al. (2017), the economic viability of BSF rearing will also depend on the 

potential revenue from waste processing (tipping fees), sales revenue from harvested whole larvae 

and products derived from larvae like protein meal and larval oil, and the market value of the waste 

residue as soil amendment or its potential use in a biogas plant. Given that the optimal rearing of BSF 

requires temperatures of at least 25 °C, year round production in areas with cold winters will come 

with high energy costs. To reduce these costs, heat generated by friction of dense larval populations 

might be applied (Alvarez, 2012).  

7.4.3 Application in least cost formulation 

In order to give an example of the application of BSF in least cost formulation (BESTMIX, adifo 

software; Maldegem, Belgium), the control diet and nutritional constraints given in Tables 27 and 28 
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(Chapter 6) were used as starting point. First, the control diet from Chapter 6 was optimized for 

minimum price using commodity prices for feedstuffs and feed ingredients of September 2017 

(source Vanden Avenne, Izegem, Belgium) (Table 36). Initially, in Chapter 6 the amount of toasted 

soybeans was fixed at 12%, whereas the cereals barley, wheat and oat flakes were fixed at 25, 12 and 

8%, respectively, in the diet. In the first optimization, the amount of toasted soybeans was not kept 

fixed because it is assumed that BSF sources will replace mainly soybean products. Hence, the 

optimized control diet in Table 36 contains less toasted soybeans while amounts of other ingredients 

that were not fixed also slightly changed. The control diet in Table 36 is thus the cheapest diet using 

the ingredients offered for formulation. Next, the software calculates the entry price of the BSF 

sources, in case it is offered as potential ingredient. It was estimated that the maximum price for full-

fat BSF, with feeding value as in Chapter 6, in order to be incorporated in the feed (i.e. the entry 

price) is € 563.36/metric ton (Table 36). As soon as the price of full-fat BSF would drop beneath this 

level, about 5.2% of this ingredient would be incorporated in the feed. In addition, toasted soybeans 

would be omitted from the feed. In the case of defatted BSF, the entry price is € 476.22/metric ton 

and about 4% would be incorporated. It is clear that these entry prices are much lower than the BSF 

prices presented in Table 34. Therefore, as indicated in section 7.4.2, BSF products still have a long 

way to go to become competitive with conventional feedstuffs.  
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Table 36: Least cost formulation of piglet feeds with or without BSF products at the price levels of 

September 2017 (fixed crude protein levels of 17.2%) 

 

Price (€/metric 

ton) 
Control 

Including full-fat 

BSF 

Including 

defatted BSF 

Ingredients (%)  
  

 

BARLEY 154 25.000 25.000 25.000 

CORN 186 20.064 21.972 22.259 

WHEAT 163 12.000 12.000 12.000 

SOYBEAN MEAL CP49 300 14.059 15.702 14.703 

TOASTED SOYBEANS 398 8.392 0.000 4.528 

FULL-FAT BSF   0.000 5.170  

DEFATTED BSF   0.000 
 

3.985 

OAT FLAKES 350 8.000 8.000 8.000 

SWEET WHEYPOWDER 820 4.000 4.000 4.000 

LACTOSE 850 1.539 1.539 1.539 

SOYBEAN OIL 780 1.408 1.025 2.500 

PREMIX TRACE MIN &VIT  1.500 1.000 1.000 1.000 

SUGAR BEET PULP 167 1.000 1.000 1.000 

MONOCALCIUM PHOSPHATE 1400 0.957 0.857 0.796 

LIME 700 0.930 0.951 0.947 

L-LYSINE HCl 1400 0.517 0.553 0.559 

SALT 100 0.240 0.240 0.240 

DL-METHIONINE 2500 0.228 0.243 0.244 

L-THREONINE 1500 0.221 0.227 0.231 

L-VALINE 6330 0.134 0.109 0.102 

L-TRYPTOPHAN 8880 0.072 0.078 0.078 

SODIUM BICARBONATE 500 0.241 0.370 0.366 

 
 

  
 

Price Feed (€/metric ton)  324.97 324.97 324.97 

Entry Price BSF (€/metric ton)   563.36 476.22 
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In the previous scenario (Table 36), the crude protein level of the diets was fixed at 17.2% which was 

also the case for all the diets applied in Chapter 6. In order to further optimize the price in the least 

cost formulation, protein levels could be allowed to fluctuate in the diet. Consequently, the more 

expensive synthetic amino acids would be less interesting since more essential amino acids could be 

delivered by cheaper crude protein sources (e.g. BSF products). In Table 37, the control diet from 

Table 36 is recalculated by least cost formulation by allowing the crude protein to fluctuate above a 

minimum value of 16%, and maintaining levels of the digestible essential amino acids lysine, 

methione+cystine, threonine, tryptophane, and valine. In this scenario, the total feed price decreases 

to € 317.44/metric ton, with a crude protein level of 18.64%. When allowing higher crude protein 

levels, the entry price for full-fat BSF increases to € 627.15/metric ton. This means that allowing 

higher crude protein levels is more favorable for BSF sources, though in this scenario the amount of 

full-fat BSF that would be incorporated is only 1.5%. In the case of defatted BSF, about 1% of BSF 

would be incorporated at an entry price of € 423.40/metric ton which is less favorable compared to 

the fixed protein scenario. It could be observed that in the second scenario, soybean meal is favored 

above other protein sources.  
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Table 37: Least cost formulation of piglet feeds with or without BSF products at the price levels of 

September 2017 (fluctuating crude protein levels) 

 
Control Including full-fat BSF Including defatted BSF 

Ingredients (%) 
  

 

BARLEY 25.000 25.000 25.000 

CORN 16.566 16.538 16.376 

WHEAT 12.000 12.000 12.000 

SOYBEAN MEAL CP49 22.149 23.613 21.366 

TOASTED SOYBEANS 3.382 0.000 3.439 

FULL-FAT BSF  0.000 1.515  

DEFATTED BSF  0.000 
 

0.979 

OAT FLAKES 8.000 8.000 8.000 

SWEET WHEYPOWDER 4.000 4.000 4.000 

LACTOSE 1.539 1.539 1.539 

SOYBEAN OIL 2.500 2.500 2.500 

PREMIX TRACE MIN &VIT  1.000 1.000 1.000 

SUGAR BEET PULP 1.000 1.000 1.000 

MONOCALCIUM PHOSPHATE 0.905 0.859 0.860 

LIME 0.924 0.951 0.928 

L-LYSINE HCl 0.517 0.357 0.365 

SALT 0.240 0.240 0.240 

DL-METHIONINE 0.228 0.175 0.180 

L-THREONINE 0.152 0.144 0.149 

L-VALINE 0.046 0.026 0.102 

L-TRYPTOPHAN 0.049 0.047 0.032 

SODIUM BICARBONATE 0.000 0.000 0.000 

    

Protein (%) 18.64 18.87 18.84 

Price Feed (€/metric ton) 317.44 317.44 317.44 

Entry Price BSF (€/metric ton)  627.15 423.40 
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It should be stated that the above simulated scenarios provide only simplified examples of least cost 

formulation with BSF products. In addition, a lot of factors are uncertain such as the true nutritional 

value of BSF products which was partially based on literature and values for fishmeal and animal 

meal during our research (Table 26), and can be variable as shown in Chapter 5. Concerning the 

second scenario (Table 37), it should be noted that most nutritionists formulating weaner diets in 

Western Europe would recommend crude protein levels between 16.5 and 17.5% (Orffa, personal 

communication), and complying with animal requirements for digestible essential amino acids. 

Higher crude protein levels might influence microbial profiles in the gastrointestinal tract of weaned 

piglets, which might negatively affect the gut health (Heo et al., 2012). Analogue to minerals like 

calcium (Chapter 5), exceeding crude protein levels might increase gastric pH, allowing proliferation 

of deleterious microorganisms (Bolduan et al., 1988; Lawlor et al., 2005). In addition, as the digestive 

system of weaner piglets is not yet fully developed to sufficiently digest and absorb dietary proteins, 

feeding a high protein diet might cause protein maldigestion (Högberg and Lindberg, 2004). As a 

result, increasing amounts of undigested crude protein are present in the large intestine where 

microbial fermentation of this undigested dietary protein can provoke post-weaning diarrhoea by 

contributing to an increased production of indole, branched-chain fatty acids, ammonia, biogenic 

amines and phenols (Bolduan et al., 1988; Pluske et al., 2002).  

7.4.4 Legislation 

In Chapter 1, section 1.1.2.3, the legislative status of insects for animal feed in the EU was explained. 

In what follows, the current situation for BSF worldwide is described. In the EU, BSF is one of the 

species which are allowed as a feedstuff for aquaculture since the summer of 2017. In North 

America, the Canadian Food Inspection Agency approved whole dried BSF larvae as a feed ingredient 

for poultry broilers in 2016. In addition, feeding BSF to Salmonid fish is allowed both in the US (2016) 

and Canada (2017) (Enterra, 2017). However, in the US, the Association of American Feed Control 

Officers (AAFCO) approved dried BSF larvae under the condition that they were reared exclusively on 
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feed grade materials, which is comparable to the situation in the EU. In addition, the dried larvae 

must contain at least 34% crude protein and 32% fat on an as-fed basis (AAFCO, 2016). From a global 

perspective, the Codex Alimentarius, a United Nations list containing what is considered “food or 

feed”, does not contain insects, except as impurities that contaminate food (FAO, 2017b). 

Consequently, insects are prevented to become a legally well-accepted feedstuff worldwide (Wang 

and Shelomi, 2017). 

7.5 Conclusions 

In the following, the hypotheses from Chapter 1 (section 1.2) are evaluated: 

 

 H1: larger prepupae will develop into heavier flies with higher fecundity than their lighter 

counterparts.  

 this was indeed the case, the heaviest females were especially more successful in mating 

 H2: the (sub)tropical BSF is not able to survive northwestern European winters. 

 it could be assumed that it is indeed unlikely for BSF to survive our winter conditions 

outdoors.  

 H3: the cold tolerance of BSF will depend on developmental stage, rearing substrate and 

acclimation. 

 all three parameters had a substantial influence on the cold tolerance of BSF. 

 H4: cadmium and pesticides with high log(Kow) value are most likely to accumulate. 

 cadmium did accumulate, whereas this was not the case for any of the pesticides. 

However, pendimethalin and fenpropimorph have high log(Kow) values and were indeed the 

most abundant active substances in the larvae.  
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 H5: lower concentrations of heavy metals and pesticides are present in the post-feeding 

prepupae compared to fifth instar larvae. 

 this was the case for all chemicals tested, suggesting that most of them were situated in 

the gut. 

 H6: the composition of the substrate will substantially affect the growth and composition of 

the resulting prepupae.  

 this was indeed the case as expected because of the diverse nature of the substrates. 

 H7: the effect of substrate on the composition of the prepupae will differ according to the 

nutrient considered. 

 differences for minerals and fat and fatty acids were much more pronounced than those 

for protein and amino acids. 

 H8: BSF fat will inhibit the growth of gram positive bacteria given their richness in lauric acid. 

 BSF fat extracts did inhibit the growth of lactobacilli and, even more important, D-

streptococci.  

 H9: diets containing BSF fat will have an inhibitory effect on gram positive bacteria in the 

proximate small intestine of piglets. 

 our results only provide indications which were not statistically significant. 

 H10: piglets reared on diets containing BSF will show no differences in performance 

compared to the control. 

 there were no substantial differences between the BSF diets and the control.  

Since there were no significant differences in gut health, consequently, no differences could 

be expected for performance given that all the diets were formulated iso-nutritionally.  

 

The findings from this research, combined with all the valuable information generated by the high 

number of studies published during the past few years, confirm that BSF larvae/prepupae are indeed 

an interesting alternative feed ingredient for monogastric farm animals in terms of nutritional 
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composition and value. In addition, the number of publications about the feed safety aspects of BSF 

larvae reared on side streams is increasing. Consequently, under the impulse of IPIFF, the European 

legislative hurdles for industrial BSF production as a feedstuff are gradually being removed and are 

expected to be completely resolved by the early 2020’s. However, the biggest challenge for the BSF 

producers will be to produce adequate volumes at reasonable cost in order to place their products 

on the market at prices which are competitive with conventional feed ingredients like soybean meal.  

7.6 Future perspectives 

The number of publications addressing the potential of BSF as an alternative feed ingredient is 

expanding rapidly. However, more research is still warranted: 

 most publications focus on the nutritional value of BSF for aquaculture. This information is 

currently the most interesting given that the aquaculture market has recently opened up for 

BSF protein products. However, in order to support the permission to use BSF for terrestrial 

monogastrics, more research is warranted. In addition, the more data are provided, the 

faster the legislation might change. While the number of studies for poultry is growing, to 

our knowledge, only Newton et al. (1977), Kortelainen et al. (2014) and our research 

investigated the nutritional value for pigs. 

 as previously mentioned, multiple companies are trying to upscale, mechanize and 

automatize their BSF production. Consequently, the research becomes more practice 

oriented and ins increasingly done at R&D departments of companies. However, 

independent researchers might still have a role to play in the future and contribute to the 

improvement of BSF rearing. For example, the complex behavior of the adult flies and 

possible triggers for the migratory behavior of prepupae are still understudied.  

 in order to speed up the legal permission to place BSF protein products on the market for 

poultry and pigs, more studies about the possible cross contamination from the rearing 



  General discussion  

145 

 

substrate is warranted. Possible contamination of BSF with heavy metals, pesticides and 

mycotoxins has been assessed and current insights suggest that only heavy metals (i.e. 

cadmium) might be a risk factor. However, more research is warranted for the latter two 

contaminants and according to EFSA (2015) other potential chemicals hazards are PCB’s, 

dioxins, veterinary drugs and hormones. In addition, information is lacking about the 

potential transmission of pathogens (e.g. bacteria and viruses).  

 given that large scale BSF rearing, to our knowledge, is currently still under development, 

accurate Life Cycle Assessments mapping the sustainability of the production process in 

comparison to traditional systems could not yet be performed. However, with data from 

developing companies researchers could simulate possible scenarios and subsequently 

provide feedback to these companies on how to develop more sustainable systems. 
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European livestock production highly depends on the import of protein resources, which puts this 

sector in a vulnerable position towards competing (emerging) economies. In addition, cultivation of 

crops allocated to livestock, like soybean, puts pressure on land availability and biodiversity, 

particularly in fragile tropical areas. Therefore, the need for alternative protein sources for livestock 

is high. Such an alternative protein source could be provided by insects. Species belonging to this 

very diverse class of arthropods can be sources of energy, protein and essential amino acids, fat and 

fatty acids and micronutrients (e.g. copper, iron, zinc). One of the species with a high potential for 

large-scale production is the black soldier fly (BSF) (Hermetia illucens L.), originating from the 

Americas. In the present dissertation, BSF was thoroughly investigated through assessing the rearing 

aspects, its potential as a feedstuff for monogastric farm animals and possible risks regarding feed 

safety and introduction of alien species in Europe. 

Mating and reproduction of BSF adults are complicated aspects of BSF rearing which are currently 

understudied. The reproductive capacity can be expressed as the fecundity, which is the number of 

eggs oviposited per female, and can be influenced by various factors. Therefore, possible differences 

in fecundity between BSF females, originating from prepupae divided into 3 different classes based 

on their weight, were assessed. It was observed that 46% of the females belonging to the lightest 

class (i.e. females originating from the lightest class of prepupae which developed into the lightest 

females, this was also the case for the other weight classes) were able to produce hatching eggs. This 

number increased to 68% for intermediate sized females and reached 88% for the heaviest females. 

The higher number of hatched egg clusters deposited by the heaviest females indicated that these 

females mated more successfully than their lighter counterparts. Individual egg weights did not differ 

statistically, whereas the number of eggs per cluster was highest for intermediate females, but not 

statistically different from the heaviest females, and lowest for the lightest females. Moreover, less 

larvae hatched from egg clusters deposited by the lightest females compared to those from the other 

weight classes. These results suggest that fecundity might be positively correlated with female 

weight. In addition, a positive correlation existed between the weight of prepupae of the first 
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generation and those of the second generation. The findings of this experiment might have 

interesting implications towards the development of selective breeding programs for BSF. However, 

in order to draw reliable conclusions, multiple generations would need to be assessed.  

Industrial production in regions where the BSF is not native, like northwestern Europe, could lead to 

permanent establishment, which might entail environmental risks. In temperate climates, 

establishment depends on the insect's ability to overwinter. Therefore, the insect’s cold hardiness 

was assessed by determining the supercooling point (SCP), the temperature at which body liquids 

freeze, and lower lethal time at 5 °C (LTime10,50,90), the time point at which 50% of the population is 

expected to die, for different life stages. As diet or acclimation can influence cold hardiness, 

prepupae reared on different substrates and acclimated prepupae were tested in separate 

experiments. The SCP ranged from -7.3 °C for late instar larvae to -13.7 °C for pupae. Prepupae 

reared on catering waste had a lower SCP compared to a control diet composed of chicken feed (-

14.1 °C vs. -12.4 °C, respectively) whereas the SCP was unaffected by acclimation. Based on the 

LTime, prepupae and pupae were the most cold hardy life stages. Acclimated prepupae were most 

cold tolerant with an LTime50 of 23 days. Based on an empirical relationship between LTime50 and 

field survival of various arthropods, it was predicted that BSF prepupae would survive about 47 days 

in the field during northwestern European winters. The results from this laboratory study suggest 

that BSF is rather unlikely to overwinter in northwestern Europe. However, caution is warranted 

given that diet and acclimation can influence the insect's cold hardiness and the insect might survive 

in the field in a diapausing state or in protected hibernacula. 

In 2015, EFSA published an opinion regarding feed safety aspects of the application of insects in feed. 

Possible risks associated with substrates used for BSF rearing could be either biological (e.g. 

pathogenic bacteria, viruses, fungi and parasites) or chemical (e.g. heavy metals, mycotoxins, 

pesticides, veterinary drugs, PCBs and dioxins). In our research, the presence of chemical 

contaminants (i.e. heavy metals and pesticides) in BSF larvae reared on contaminated substrates was 
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investigated. In the first part, bioaccumulation factors for BSF fifth instars and prepupae reared on 

biogas digestate were tested for arsenic (As), lead (Pb) and cadmium (Cd). In addition, for Cd a 

spiking of the substrate was conducted in order to test the potential bioaccumulation at different 

concentrations (i.e. 0.5 mg/kg, 2 mg/kg, 4 mg/kg and 6 mg/kg Cd). In the second part, the potential 

of pesticide contamination of BSF reared on chicken feed, biogas digestate and catering waste (all 

substrates were spiked) was assessed for 12 active substances (2,4-D, azoxystrobin, bentazone, 

clopyralid, cymoxanil, difenoconazole, fenpropimorph, linuron, metalaxyl, pendimethalin, 

pyraclostrobin and tebuconazole). These pesticides are commonly applied in fruit and vegetable 

cultivation and the applied dose was 5 mg/kg for each active substance. Both short-term (24h) and 

long-term (2 weeks) exposure were evaluated and differences between fifth instars and prepupae 

were assessed. Concerning heavy metals, significant bioaccumulation of Cd was observed in fifth 

instars, but not in prepupae, starting from a substrate concentration of 2 mg/kg. In contrast, Pb and 

As did not accumulate while none of the tested active substances from the pesticide experiment 

accumulated. In addition, none of the active substances detected in fifth instars and prepupae 

reached values above the MRL for feed ingredients. The fungicide fenpropimorph and the herbicide 

pendimethalin were the most abundant pesticides in BSF fifth instars across substrates. These active 

substances are both characterized by high log(Kow) values (4.1 and 5.2, respectively) and a very low 

water solubility. Prepupae, on the other hand, contained substantially less of these pesticides than 

the corresponding fifth instars, indicating a high excretion rate for these pesticides. In addition, BSF 

fifth instars reared on different substrates displayed differences in the number and concentration of 

detected active substances. Fifth instars reared on biogas digestate contained the highest 

concentrations of pesticides. A possible explanation could be that, because these pesticides were 

mainly found in the gut, the proportion of gut content relative to the total body mass was higher in 

these larvae compared to the fatter larvae reared on substrates with a higher nutritional value. 

However, other substrate specific factors (e.g. pH, water binding capacity,…) might also play a role.  
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BSF larvae are able to convert a wide range of organic side streams into high quality biomass, which 

can be processed into animal feed. In our research, BSF larvae were grown on four different 

substrates: chicken feed, vegetable waste, biogas digestate, and catering waste. The fresh or 

moistened substrates were inoculated with 6-8 day old larvae and placed in incubators at 27 °C. At 

the end of larval development, prepupae were collected. Samples of prepupae and the tested 

substrates were freeze-dried and proximate, amino acid, fatty acid and mineral analyses were 

performed. Relatively small differences were observed in protein content (399 – 431 g/kg DM) and 

amino acid profiles of the prepupae across rearing substrates, whereas ether extract (EE) and ash 

contents differed substantially. Prepupae reared on digestate were low in EE and high in ash (218 

and 197 g/kg DM respectively) compared to those reared on vegetable waste (371 and 96 g/kg DM 

respectively), chicken feed (336 and 100 g/kg DM respectively) and catering waste (386 and 27 g/kg 

DM respectively). The difference in nutrient composition between prepupae reared on catering 

waste and those reared on vegetable waste was substantially smaller than the difference between 

their respective substrates (159 vs. 92 g protein/kg DM, 139 vs. 21 g EE/kg DM and 41 vs. 336 g 

fiber/kg DM, for catering waste and vegetable waste substrates, respectively). The prepupal fatty 

acid profiles were characterised by high levels of lauric acid (C12:0) in all treatments. The prepupae 

reared on chicken feed, vegetable waste and catering waste contained 600 g C12:0/kg fatty acid 

methyl esters (FAME), whereas prepupae fed digestate contained 440 g C12:0/kg FAME. The 

differences in fatty acid composition can likely be explained by a higher synthesis of fatty acids in 

prepupae reared on energy dense substrates. In conclusion, protein content and quality were high 

and comparable for prepupae reared on different substrates, suggesting that BSF could be an 

interesting alternative protein source for monogastrics. However, differences in EE and ash content 

as a function of substrate have to be considered when incorporating BSF in animal feed. 

Subsequently in the last research part, gut antimicrobial effects and nutritional value of BSF 

prepupae for weaned piglets were evaluated. Since prepupal fat has high amounts of the 

antimicrobial C12:0, the effects of BSF fat on the porcine gut microbiota were assessed in vitro by 
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simulating digestion in the upper small intestine of piglets. Different amounts of BSF fat were added 

to an incubation medium, which contained a synthetic diet, a phosphate buffer (pH 5) and a 

microbial inoculum from one donor piglet. The medium was incubated at 37 °C for 4 h. Using 

selective media, coliforms, D-streptococci, lactobacilli and total anaerobic bacteria were counted on 

aliquots taken at the end of the incubations. Next, weaned piglets were reared on diets including full-

fat (4 and 8%) and defatted (5.4%, providing equal amounts of protein as 8% full-fat BSF) BSF 

prepupae and compared to a control diet (i.e. with soybean as a source of protein and fat). Besides 

the effects on gut microbiota, selected gut health parameters were investigated, performance was 

recorded and digestibility of the diets was calculated. In vitro, the prepupal fat at 0.58 g C12:0/100 

mL suppressed the growth of lactobacilli, but the most substantial antibacterial effects were 

recorded against D-streptococci. At the highest inclusion level (equivalent to 0.87 g C12:0/100 mL), 

around 2 log reductions of D-streptococci were observed. From the animal trial, only 0.5 log 

reductions were observed for D-streptococci in the gut of piglets fed full-fat BSF containing diets. No 

differences were recorded for daily gain, feed intake and feed to gain ratio among treatments. The 

apparent fecal digestibility of the control feed did not differ significantly to that of the insect-

containing feed (protein digestibility between 77 and 78% for all treatments). Whereas the ileal 

protein digestibility of the 8% full-fat BSF diet (67.4%) was slightly lower than that of the control 

(69.7%), the values for the 4% full-fat and the defatted BSF diets were higher (73.3%). In conclusion, 

our trial with piglets showed that a substantial amount of soybean products (meal and/or toasted 

beans) can be replaced by BSF without adverse effects on performance. However, given that the 

current price of BSF prepupae is substantially higher than that of soybean, future research should 

focus on exploring the potential added value of BSF compared to conventional protein sources. 

Finally, a general discussion of the findings is presented and future perspectives are given. It is 

concluded that BSF larvae/prepupae reared on various side streams could be an interesting 

alternative feed ingredient for piglets in terms of nutritional composition and feeding value. 

However, the substrate used for BSF rearing could affect its biology (e.g. development into adult, 
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fecundity, cold tolerance,…), yield and composition, with implications for its nutritional value and/or 

feed safety. The biggest challenge for the BSF industry will be to sell its products at market prices 

which are competitive with conventional feed ingredients.  
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De veehouderij in Europa is grotendeels afhankelijk van de invoer van eiwitrijke grondstoffen, wat de 

sector in een zwakke positie plaatst ten opzichte van (opkomende) concurrerende economieën. 

Bovendien bedreigt de teelt van gewassen ten behoeve van de veeteelt, zoals soja, de 

landbeschikbaarheid en de biodiversiteit, vooral in kwetsbare tropische gebieden. Daarom is er een 

hoge nood aan alternatieve eiwitbronnen zoals insecten. Soorten die behoren tot deze zeer diverse 

klasse der Arthropoden zouden bronnen van energie, eiwit en essentiële aminozuren, vet en 

vetzuren en micronutriënten (bv. koper, ijzer en zink) kunnen zijn. Eén van de veelbelovende soorten 

voor productie op grote schaal is de zwarte wapenvlieg (BSF) (Hermetia illucens L.), afkomstig uit 

Amerika. In deze dissertatie werd BSF grondig onderzocht op gebied van: kweekaspecten, het 

potentieel als grondstof voor voeders van monogastrische landbouwhuisdieren en de mogelijke 

risico’s voor de voedselveiligheid en de introductie van exotische soorten. 

Paring en ovipositie van BSF adulten zijn gecompliceerde kweekaspecten die momenteel nog te 

weinig bestudeerd zijn. De voortplantingscapaciteit kan uitgedrukt worden als de fecunditeit, welke 

het aantal eitjes afgelegd per wijfje is, en beïnvloed wordt door verschillende factoren. In deze studie 

werden mogelijke verschillen in fecunditeit tussen BSF wijfjes, afkomstig van prepoppen verdeeld 

over 3 verschillende klassen gebaseerd op hun gewicht, geëvalueerd. Uit de resultaten bleek dat 46% 

van de wijfjes afkomstig van de lichtste klasse van prepoppen (dewelke ook uitgroeiden tot de 

lichtste wijfjes, analoog voor de andere klassen) in staat waren om uitkomende ei-clusters te leggen. 

Dit aantal verhoogde tot 68% voor de intermediaire klasse en bereikte 88% voor de zwaarste klasse. 

Het hoger aantal uitgekomen ei-clusters bij de zwaarste klasse duidde erop dat deze wijfjes 

succesvoller waren bij de paring dan hun lichtere soortgenoten. De individuele ei-gewichten 

verschilden niet statistisch terwijl het aantal eitjes per cluster het hoogst was voor intermediaire 

wijfjes, doch niet statistisch verschillende van de zwaarste wijfjes, en het laagst voor de lichtste 

wijfjes. Bovendien kwamen er minder larven uit de ei-clusters gelegd door de lichtste wijfjes in 

vergelijking met de andere gewichtsklassen. Deze resultaten suggereren dat fecunditeit mogelijks 

positief gecorreleerd is met het gewicht van de wijfjes. Bovendien bestond er een positieve correlatie 
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tussen het gewicht van de prepoppen van de 1ste generatie en deze van de 2de generatie. De 

bevindingen uit dit experiment zouden interessante implicaties kunnen hebben naar de ontwikkeling 

van selectieve veredelingsprogramma’s toe.  

Industriële productie in de regio’s waar BSF niet inheems is, zoals noordwest Europa, zou kunnen 

leiden tot permanente vestiging van deze exotisch soort, wat risico’s voor het milieu zou kunnen 

inhouden. In gematigde klimaatzones hangt de al dan niet vestiging af van het vermogen van het 

insect om de winter te overleven. De koude-hardheid werd onderzocht door middel van de bepaling 

van het onderkoelingspunt (OKP), de temperatuur waarbij lichaamsvloeistoffen bevriezen, en de 

onderste letale tijd bij 5 °C (LTijd10,50,90), het moment waarop 10, 50 of 90% van de populatie 

verwacht wordt te sterven, van verschillende levensstadia. Aangezien dieet en acclimatisatie invloed 

kunnen hebben op de koude-hardheid werden prepoppen gekweekt op verschillende substraten en 

geacclimatiseerde prepoppen getest in gescheiden experimenten. Het OKP varieerde van -7,3 °C voor 

larven behorende tot het 4de en 5de stadium tot -13,7 °C voor poppen. Prepoppen gekweekt op 

cateringafval hadden een lager OKP vergeleken met een controle dieet bestaande uit kippenvoer (-

14,1 °C vs. -12,4 °C, respectievelijk) terwijl het OKP niet beïnvloed werd door acclimatisatie. 

Gebaseerd op de LTijd bleek dat prepoppen en poppen de meest koude-tolerante stadia waren. 

Geacclimatiseerde prepoppen waren het meeste koude-tolerant met een LTiid50 van 23 dagen. 

Gebaseerd op een empirische relatie tussen de LTijd50 en de overleving in het veld voor verschillende 

arthropoden werd voorspeld dat BSF prepoppen ongeveer 47 dagen zouden overleven in het veld 

tijdens noordwest Europese winters. De resultaten van deze laboratoriumstudie suggereren dat de 

kans klein is dat BSF ooit overwintert in noordwest Europa. Voorzichtigheid is echter geboden 

gegeven dat dieet en acclimatisatie een invloed kunnen hebben op de koude-hardheid en bovendien 

zou het insect kunnen overleven in een staat van diapause of in beschermde hibernacula.  

In 2015 werd door EFSA een opinie gepubliceerd over de voedselveiligheidsaspecten van het gebruik 

van insecten in voeders. Mogelijke risico’s geassocieerd met bepaalde substraten die gebruikt 
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worden voor de BSF kweek kunnen enerzijds biologisch zijn van aard (bv. pathogene bacteriën, 

virussen, schimmels en parasieten) of anderzijds chemisch (bv. zware metalen, mycotoxines, 

pesticiden, geneesmiddelen, PCB’s en dioxines). In ons onderzoek werd de aanwezigheid van 

chemische contaminanten (zijnde zware metalen en pesticiden) in BSF larven gekweekt op 

gecontamineerd substraten onderzocht. In het eerste deel werden bioaccumulatiefactoren voor 5de 

stadium larven en prepoppen gekweekt op biogas digestaat getest voor arsenicum (As), lood (Pb) en 

cadmium (Cd). Voor Cd werd een spiking van het substraat uitgevoerd bij verschillende concentraties 

(0,5 mg/kg, 2 mg/kg, 4 mg/kg en 6 mg/kg Cd). In het 2de deel werd het potentieel van 

pesticidecontaminatie van BSF gekweekt op kippenvoer, biogas digestaat en cateringafval (telkens 

gespiked) met 12 actieve stoffen (2,4-D, azoxystrobin, bentazone, clopyralid, cymoxanil, 

difenoconazole, fenpropimorph, linuron, metalaxyl, pendimethalin, pyraclostrobin and tebuconazole) 

getest. Deze pesticiden worden algemeen toegepast in fruit- en groenteteelt en de toegepaste dosis 

was 5 mg/kg voor elke actieve stof. Blootstelling zowel op korte (24h) als op lange (2 weken) termijn 

werden geëvalueerd en verschillen tussen 5de stadium larven en prepoppen werden onderzocht. 

Betreffende de zware metalen werd er significante bioaccumulatie van Cd geobserveerd in 5de 

stadium larven, maar niet in prepoppen, vanaf een substraatconcentratie van 2 mg/kg. Pb en As 

accumuleerden daarentegen niet terwijl ook geen enkele actieve stof van het pesticiden experiment 

accumuleerde. Bovendien werd voor geen enkele actieve stof, gedetecteerd in 5de stadium larven en 

prepoppen, de MRL voor voederingrediënten overschreden. Het fungicide fenpropimorph en de 

herbicide pendimethalin werden het meest teruggevonden in 5de stadium larven over de 

verschillende substraten heen. Deze actieve stoffen worden beide gekarakteriseerd door hoge 

log(Kow) waarden (respectievelijk 4,1 en 5,2) en zeer lage wateroplosbaarheid. Prepoppen bevatten 

daarentegen aanzienlijk minder van deze pesticiden ten opzichte van de corresponderende 5de 

stadium larven wat wijst op een hoge graad van excretie voor deze pesticiden. Er werden ook 

verschillen waargenomen voor het aantal gedetecteerde pesticiden en hun concentratie tussen 5de 

stadium larven gekweekt op de verschillende substraten. 5de stadium larven gekweekt op biogas 



  Samenvatting  

159 

 

digestaat bevatten de hoogste concentraties aan actieve stoffen. Een mogelijke verklaring hiervoor 

zou kunnen zijn dat, aangezien deze pesticiden voornamelijk in de darm werden teruggevonden, de 

proportie aan darminhoud relatief ten opzichte van de totale lichaamsmassa hoger was in deze 

larven in vergelijking met de vettere larven gekweekt op substraten met een hogere 

voedingswaarde. Andere substraat specifieke factoren (zoals pH, waterbindend vermogen,…) zouden 

hierin echter ook een rol kunnen spelen.  

BSF larven zijn in staat om een brede waaier aan organische zijstromen om te zetten in biomassa van 

hoge kwaliteit dewelke kan worden aangewend in diervoeder. In ons onderzoek werden BSF larven 

gekweekt op 4 verschillende substraten: kippenvoer, groenteafval, biogas digestaat en cateringafval. 

De verse of bevochtigde substraten werden geïnoculeerd met 6-8 dagen oude larven en geplaatst in 

incubators bij 27 °C. Aan het einde van de larvale ontwikkeling werden prepoppen verzameld. Stalen 

van deze prepoppen en de geteste substraten werden gevriesdroogd en weende, aminozuur-, 

vetzuur- en mineralenanalyses werden uitgevoerd. Relatief kleine verschillen werden geobserveerd 

in eiwitgehalte (399 – 431 g/kg droge stof (DS)) en aminozuurprofielen van prepoppen gekweekt op 

de verschillende substraten terwijl het ether extract (EE) en as gehalten duidelijk verschilden. 

Prepoppen gekweekt op digestaat waren laag in EE en hoog in as (respectievelijk 218 en 197 g/kg DS) 

vergeleken met deze gekweekt op groenteafval (respectievelijk 371 en 96 g/kg DS), kippenvoer 

(respectievelijk 336 en 100 g/kg DS) en cateringafval (respectievelijk 386 en 27 g/kg DS). Het verschil 

in nutriëntensamenstelling tussen prepoppen gekweekt op cateringafval en deze gekweekt op 

groenteafval was merkelijk kleiner dan de verschillen tussen de respectievelijke substraten (159 vs. 

92 g eiwit/kg DS, 139 vs. 21 g EE/kg DS en 41 vs. 336 g vezel/kg DS, respectievelijk voor cateringafval- 

en groenteafvalsubstraten). De vetzuurprofielen van de prepoppen werden gekarakteriseerd door 

hoge hoeveelheden aan laurinezuur (C12:0) in alle behandelingen. De prepoppen gekweekt op 

kippenvoer, groenteafval en cateringafval bevatten ongeveer 600 g C12:0/kg vetzuurmethylesters 

terwijl deze gekweekt op digestaat 440 g C12:0/kg vetzuurmethylesters bevatten. De verschillen in 

vetzuursamenstelling zouden kunnen verklaard worden door een hogere mate van vetzuursynthese 
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in de prepoppen gekweekt op energiedichte substraten. Er kan geconcludeerd worden dat 

eiwitgehalte en –kwaliteit vergelijkbaar waren voor prepoppen gekweekt op verschillende substraten 

wat suggereert dat BSF een interessante alternatieve eiwitbron zou kunnen zijn. Hoe dan ook, voor 

de incorporatie van BSF in diervoeders dient rekening gehouden te worden met mogelijke verschillen 

in EE en as in functie van het substraat.  

Vervolgens werden in het laatste deel van dit onderzoek antimicrobiële effecten in het gastro-

intestinaal stelsel en de voedingswaarde van BSF prepoppen voor gespeende biggen geëvalueerd. 

Aangezien het vet van de prepoppen rijk is aan het antimicrobiële C12:0, werden de effecten van BSF 

vet op microbiota in het gastro-intestinaal stelsel van biggen in vitro getest door middel van simulatie 

van de vertering in het eerste deel van de dunne darm. Verschillende hoeveelheden BSF vet werden 

toegevoegd aan een incubatiemedium bestaande uit een synthetisch dieet, een fosfaatbuffer (pH 5) 

en een microbieel inoculum afkomstig van één donorbig. Het medium werd geïncubeerd bij 37 °C 

gedurende 4 u. Gebruikmakende van selectieve media werden coliformen, D-streptococcen, 

lactobacillen en het totale aantal anaerobe bacteriën geteld op uitgeplate stalen genomen aan het 

einde van de incubaties. Vervolgens werden gespeende biggen gevoederd met diëten met volvette (4 

en 8%) en ontvette (5,4%, waardoor evenveel eiwit werd aangebracht als bij 8% volvette) BSF 

prepoppen en vergeleken met een controledieet (i.e. met soja als eiwit- en vetbron). Naast de 

effecten op darmmicrobiota werden ook andere darmgezondheidsparameters onderzocht, werden 

de prestaties opgevolgd en de verteerbaarheid van de diëten berekend. Het prepopvet onderdrukte 

in vitro, bij een concentratie van 0,58 g C12:0/100 mL, de groei van lactobacillen, maar de grootste 

antimicrobiële effecten werden waargenomen tegen D-streptococcen. Bij de hoogste dosis 

(equivalent aan 0,87 g C12:0/100 mL) werden reducties van ongeveer 2 log eenheden geobserveerd. 

Bij de dierproef werden echter maximale reducties van 0,5 log eenheden geobserveerd voor D-

streptococcen in het gastro-intestinaal stelsel van biggen gevoederd met volvette BSF. Er werden 

geen verschillen opgetekend tussen de behandelingen voor de dagelijkse gewichtsaanzet, 

voederinname en de verhouding van voederinname over gewichtsaanzet. De schijnbare fecale 
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verteerbaarheid van het controledieet verschilde niet significant van deze van de insecten 

bevattende diëten (eiwitverteerbaarheid tussen 77 en 78% voor alle behandelingen). Terwijl de ileale 

eiwitverteerbaarheid van het 8% volvette BSF dieet (67,4%) iets lager was dan deze van de controle 

(69,7%), waren de waarden voor het 4% volvette en het ontvette BSF dieet hoger (73,3%). Onze 

studie toonde aan dat een aanzienlijk deel van de sojaproducten (schroot en/of geroosterde bonen) 

vervangen zouden kunnen worden door BSF zonder negatieve effecten op de dierprestaties. 

Aangezien de huidige prijs voor BSF prepoppen aanzienlijk hoger is dan deze voor soja afgeleide 

producten, zal er in de toekomst nog onderzoek moeten gebeuren naar de toegevoegde waarde van 

BSF ten opzichte van conventionele eiwitbronnen. 

Tenslotte werd een algemene discussie gepresenteerd over de bevindingen en werden 

toekomstperspectieven meegegeven. Het kan geconcludeerd worden dat BSF larven/prepoppen 

gekweekt op verschillende zijstromen een interessant alternatief ingrediënt voor biggen zouden 

kunnen zijn in termen van nutritionele samenstelling en voederwaarde. Men dient echter wel 

rekening te houden met het gegeven dat het gebruikte substraat voor BSF kweek invloed kan hebben 

op de biologie (vb. ontwikkeling tot adult, fecunditeit, koude-tolerantie,…), de opbrengst en de 

samenstelling met implicaties naar de voedingswaarde en/of de voedselveiligheid toe. De grootste 

uitdaging voor de BSF industrie zal zijn om hun producten te verkopen aan marktprijzen dewelke 

kunnen concurreren met conventionele voederingrediënten. 
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