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Abstract

In	cogniVve	research,	speed	and	accuracy	are	two	important	aspects	of	performance.	

When	analyzed	separately,	these	performance	variables	someVmes	lead	to	contradictory	

conclusions	about	the	effect	of	a	manipulaVon.		To	avoid	such	conflicts,	several	measures	that	

integrate	speed	and	accuracy	have	been	proposed,	but	the	added	value	of	using	such	

measures	remains	unclear.		The	present	paper	compares	the	relaVve	uVlity	of	seven	integrated	

performance	measures,	namely	four	variaVons	on	a	binning	procedure	that		weights	response	

Vmes	of	correct	and	incorrect	trials	differently,	and	three	measures	that	combine	averaged	

speed	and	accuracy	scores.		The	properVes	of	these	integrated	measures	were	explored	in	

three	simulaVon	studies.		The	first	study	compared	three	binning	measures	and	showed	that	

one	measure	failed	to	grasp	the	performance	difference	between	two	condiVons.		The	second	

study	showed	that	the	sampling	distribuVons	of	the	measures	were	symmetric,	except	for	a	

strong	skewness	on	the	rate	correct	score.		The	third	study	varied	the	trade-off	and	the	effect	

sizes	of	speed	and	accuracy	in	four	different	combinaVons	of	size	and	direcVon	of	speed	and	

accuracy	effects.		These	studies	highlighted	some	further	shortcomings	of	the	binning	

measures.		The	combinaVon	measures	performed	well,	but	linear	integraVon	of	speed	and	

accuracy	and	rate	correct	score	were	most	efficient	in	detecVng	effects	and	accounVng	for	a	

larger	proporVon	of	the	variance.		The	paper	concludes	that	these	combinaVon	measures	are	

useful	provided	that	also	the	speed	and	accuracy	data	are	inspected.

Keywords:	Speed,	Accuracy,	Integrated	speed-accuracy	scoring
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Introduc-on

Research	on	human	performance	requires	paradigms	that	induce	changes	in	

performance	as	expressed	in	response	Vme,	accuracy	or	both.		For	example,	tasks	involving	

incompaVbility	are	typically	performed	slower	and	are	ocen	more	error-prone	than	tasks	with	

compaVble	sVmuli	and/or	responses	(Kornblum,	Hasbroucq,	&	Osman,	1990;	MacLeod,	1991;	

Stroop,	1935);	similarly,	situaVons	requiring	task	switching	lead	to	slower	responding	and/or	

increased	error	rates	(e.g.,	Kiesel	et	al.,	2010;	Vandierendonck,	Liefooghe,	&	Verbruggen,	

2010).		In	such	paradigms,	the	imposed	variaVons	may	have	different	effects	on	response	

speed	and	accuracy,	possibly	as	a	result	of	differences	in	the	speed-accuracy	balance.

Contradictory	findings	in	these	two	important	aspects	of	performance	might	be	avoided	

when	measurements	of	response	Vme	(RT)	and	accuracy	(proporVon	of	errors,	PE)	are	

integrated	into	a	single	measure.		IntegraVve	measures	that	have	been	proposed,	include	the	

inverse	efficiency	score	(IES,	Townsend	&	Ashby,	1978),	the	rate	correct	score	(RCS,	Woltz	&	

Was,	2006),	and	a	Bin	score,	i.e.,	a	score	based	on	parVVoning	the	RTs	in	the	data	set	into	bins	

(Hughes,	Linck,	Bowles,	Koeth,	&	BunVng,	2014).		Although	such	measures	have	occasionally	

been	used,	there	is	no	general	agreement	about	the	uVlity	of	such	integrated	measures	and	

their	efficiency	to	detect	performance	differences.		Bruyer	and	Brysbaert	(2011)	applied	the	

oldest	of	these	measures,	IES,	to	published	data	sets	and	obtained	mixed	results.		Only	when	

the	RTs	and	PEs	are	correlated	or	when	the	proporVons	of	errors	are	rather	low,	IES	seemed	to	

offer	some	help.		These	authors	advised	against	using	IES	without	also	inspecVng	RT	and	PE.		

Similar	conclusions	regarding	IES	followed	from	the	study	of	Hughes	et	al.	(2014).		These	

authors	applied	IES,	RCS	and	a	Bin	score	to	some	data	sets	and	concluded	that	RCS	and	the	Bin	

score	are	more	reliable	than	IES	and	the	single	measures	of	RT	and	PE.

The	lajer	findings	might	be	taken	to	indicate	that	by	using	RCS	or	the	Bin	score	all	our	

problems	are	solved.		Unfortunately,	nothing	is	further	from	the	truth.		In	fact,	

notwithstanding	the	good	news	reported	by	Hughes	et	al.,	some	important	problems	remain	
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to	be	solved.		First,	it	is	surprising	that	RCS	was	bejer	than	IES	in	the	Hughes	et	al.	study,	

because	they	are	both	a	raVo	of	correct	responses	and	correct	RTs	(IES)	or	all	RTs	(RCS).		

Second,	the	Bin	measure	proposed	by	Hughes	et	al.	(2014)	has	two	important	disadvantages:	

(1)	it	measures	the	performance	difference	between	two	condiVons	(e.g.,	the	switch	cost	or	

the	congruency	cost)	so	that	its	use	is	limited	to	situaVons	involving	a	single	contrast	between	

two	condiVons;	(2)	also,	and	more	importantly,	when	there	is	no	difference	between	the	two	

condiVons	(e.g.,	neither	RT	nor	PE	switch	cost),	the	Bin	score	yields	a	posiVve	number	that	is	

substanVally	larger	than	zero.		The	present	arVcle,	therefore,	rejoins	the	debate	about	

integrated	measures	of	latency	and	accuracy,	in	order	to	achieve	a	clearer	picture	regarding	

the	uVlity	of	integrated	performance	measures.		More	specifically,	improvements	on	the	Bin	

score	will	be	considered,	and	as	an	alternaVve	to	IES	and	RCS,	a	linear	combinaVon	of	RT	and	

PE	will	be	proposed.		These	measures	will	be	tested	on	the	basis	of	a	series	of	Monte	Carlo	

simulaVons.

Integrated	measures	of	RT	and	PE

Before	considering	integrated	measures	of	speed	and	accuracy	in	more	detail,	it	is	

important	to	delineate	the	focus	of	such	measures.		Indeed,	in	some	tasks,	typically	well-

learned	tasks,	it	may	be	hypothesized	that	speed	and	accuracy	of	performance	are	driven	by	

common	or	overlapping	processes.		Consequently,	when	the	response	process	is	speeded,	for	

example	by	instrucVons	or	by	the	presence	of	a	response	deadline,	responding	will	become	

more	error-prone,	with	the	occurrence	of	choking	under	pressure	as	an	extreme	case	(Beilock,	

Kulp,	Holt,	&	Carr,	2004).		However,	in	other	tasks,	speed	and	accuracy	relate	to	different	

underlying	mechanisms.		CategorizaVon	and	concept	learning	tasks	using	well-defined	

categories	provide	an	example	in	point.		In	such	a	task	(e.g.,	Trabasso	&	Bower,	1966),	errors	

are	indicaVve	of	a	state	of	not	yet	knowing	the	categorizaVon	rule.		The	occurrence	of	an	error	

signals	the	need	to	change	the	currently	tested	rule,	with	as	a	result	that	more	intricate	

processing	will	occur	acer	an	error	than	acer	a	correct	response	(e.g.,	White,	1972).		Speeding	
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up	responding	will	not	result	in	a	dramaVc	increase	of	the	number	of	errors,	but	it	may	

interfere	with	the	processes	involved	in	selecVng	a	new	rule	acer	an	error.		In	other	words,	in	

the	tasks	of	the	lajer	type,	integraVon	of	speed	and	accuracy	into	a	single	measure	would	not	

help	at	all	to	achieve	a	more	stable	and	informaVve	measurement	of	performance.		For	that	

reason,	the	present	scruVny	of	measures	that	integrate	speed	and	accuracy	scores	is	restricted	

to	tasks	for	which	it	can	reasonably	be	hypothesized	that	they—at	least	in	part—result	from	

shared	processes.

The	oldest	and	most	frequently	used	measure	that	integrates	RT	and	PE	is	the	inverse	

efficiency	score	or	IES	(Townsend	&	Ashby,	1978).		Its	definiVon	is	quite	simple,	namely

IES = RT
1-PE

	 	 	 (1)

where	RT	is	the	subject’s	average	(correct)	RT	of	the	condiVon,	and	PE	is	the	subject’s	

proporVon	of	errors	in	the	condiVon.		As	an	example,	if	average	correct	RT	is	500	ms,	and	the	

proporVon	of	errors	is	.10,	IES	will	be	500/(1-.10)	=	556.		IES	can	be	considered	as	the	RT	

corrected	for	the	amount	of	errors	commijed.

The	rate	correct	score	or	RCS	(Woltz	&	Was,	2006)	is	defined	as

RCS = c
RT∑

	 	 	 (2)

where	c	is	the	number	of	correct	responses	in	the	condiVon,	and	the	denominator	refers	to	

the	sum	of	all	RTs	in	the	set	of	trials	under	consideraVon.		If	there	are	100	trials	with	90	correct	

responses	and	the	average	RT	is	0.500	s,	RCS	=	90/50	=	1.81.		This	score	can	be	interpreted	as	

the	number	of	correct	responses	per	second	of	acVvity.
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The	Bin	score	cannot	be	expressed	in	a	simple	mathemaVcal	formula.		Its	calculaVon,	as	

defined	in	Hughes	et	al.	(2014),	assumes	that	there	are	two	condiVons,	basically	a	control	and	

an	experimental	condiVon	(e.g.,	task	repeVVon	and	task	switch	trials	to	esVmate	the	task	

switch	cost),	and	is	performed	by	execuVng	the	following	steps:

1. Over	all	parVcipants	and	all	trials	belonging	to	the	control	condiVon,	calculate	the	

average	RT	(RTc ).

2. Over	all	parVcipants	and	all	correct	trials	belonging	to	the	experimental	condiVon,	

calculate	RT−RTc ;	sort	all	these	values	from	small	to	large	and	calculate	the	deciles.		Each	

decile	consVtutes	a	bin;	these	bins	are	numbered	1	to	10.

3. For	each	parVcipant,	count	the	number	of	correct	difference	scores	(RT−RTc )	of	the	

experimental	condiVon	in	each	of	the	10	bins	(ni );	also	count	the	number	of	error	trials	

(ne )	and	assign	them	to	the	“bad”	bin.		The	score	can	then	be	calculated	as	follows:	

( ni
i=1

10

∑ × i)+ ne × 20 ,	where	i	is	the	number	of	the	bin	(1-10);	note	that	the	bad	bin	is	

assigned	a	weight	(or	penalty)	of	20.

4. The	obtained	score	expresses	the	size	of	the	difference	in	performance	(accuracy	and	

latency)	between	the	experimental	and	the	control	condiVon.		In	the	remainder	of	this	

arVcle,	the	score	calculated	following	these	steps,	will	be	referred	to	as	Bin-o	(bin-original).

At	this	point,	a	few	comments	about	this	calculaVon	procedure	are	in	order.		First,	the	

errors	commijed	in	the	control	condiVon	seem	to	be	ignored,	so	that	only	the	errors	

commijed	in	the	experimental	condiVon	are	part	of	the	difference	score.		Hence,	the	final	

score	does	not	properly	reflect	the	accuracy	difference	between	the	two	condiVons.		Second,	

the	final	score	does	not	only	express	the	difference	between	the	two	condiVons	but	also	the	
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variability	within	the	experimental	condiVon	(not	the	variability	within	the	control	condiVon).		

Third,	assume	that	there	is	absolutely	no	difference	in	performance	between	the	two	

condiVons	(repeVVon	and	switch):	same	mean	RT,	same	PE	and	same	RT	distribuVon.		If	the	

score	expresses	the	performance	difference	between	the	two	condiVons,	it	should	be	zero	(or	

very	close	to	zero).		In	fact,	the	score	will	sVll	be	substanVal.		This	can	be	seen	if	at	step	2,	

instead	of	the	difference	between	experimental	correct	RTs	and	average	control	RT,	the	

differences	between	the	correct	control	RTs	and	the	average	control	RT	are	calculated.		

Because	there	is	variability	within	the	control	condiVon,	the	final	score	will	not	be	zero,	but	

will	express	this	variability.		Fourth,	consider	two	experiments,	one	based	on	100	trials	and	

another	based	on	200	trials	per	condiVon.		The	Bin	scores	obtained	in	the	former	experiment	

will	be	much	smaller	than	the	Bin	scores	in	the	lajer	experiment,	because	the	score	is	not	

based	on	proporVons	of	responses	but	on	absolute	numbers	of	responses.

This	inspecVon	of	the	calculaVon	procedure	suggests	that	the	Bin-o	score	does	not	yield	

a	fair	esVmate	of	the	performance	difference	between	the	two	condiVons.		However,	based	on	

these	observaVons,	the	calculaVon	procedure	can	be	adapted	to	provide	a	score	with	

potenVally	bejer	measurement	properVes.		Here,	two	adaptaVons	are	proposed.		The	first	

adaptaVon	involves	the	following	changes:

1. At	step	1,	instead	of	taking	all	RTs	of	the	control	condiVon,	include	only	the	correct	

RTs	to	calculate	the	average	of	the	control	condiVon.

2. At	step	2,	calculate	the	difference	between	all	correct	RTs	over	all	trials	(both	control	

and	experimental	condiVons)	and	sort	them	in	10	bins.

3. At	step	3,	first	take	the	parVcipant’s	RT	differences	of	the	control	condiVon	and	count	

the	number	per	bin;	count	the	number	of	error	trials	in	the	control	condiVon	and	assign	

them	to	be	the	bad	bin.		Calculate	the	overall	score	as	defined	in	step	3	of	the	original	

procedure,	and	take	this	as	the	integrated	performance	measure	of	the	parVcipant	in	the	

control	condiVon.		Next,	do	the	same	for	the	experimental	condiVon.		Instead	of	a	
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difference	score,	now	two	scores	are	obtained,	one	for	each	condiVon.		A	difference	score	

can	be	obtained	by	subtracVng	the	control	score	from	the	experimental	score,	but	as	also	

argued	by	Hughes	et	al.,	this	has		a	number	of	disadvantages	(a.o.,	larger	variance)	and	is	

bejer	avoided.

This	adapted	procedure,	which	will	be	referred	to	as	Bin-a	(bin	adapted)	addresses	the	

first	three	potenVal	drawbacks	menVoned	in	response	to	the	procedure	to	calculate	Bin-o:	the	

errors	in	the	control	condiVon	are	no	longer	ignored,	the	RT	variability	in	the	control	condiVon	

is	accounted	for,	and	if	the	control	condiVon	and	the	experimental	condiVon	yield	the	same	or	

very	similar	scores,	it	is	possible	to	infer	the	absence	of	a	difference	between	the	two	

condiVons.		One	issue	remains:	if	there	is	a	difference	in	the	number	of	trials	between	

condiVons,	the	scores	will	not	be	comparable.

The	lajer	remark	can	be	addressed	in	a	further	adaptaVon	of	the	calculaVon	procedure,	

namely	by	adding	a	step	in	which	for	each	subject	the	response	count	per	bin	is	converted	to	a	

proporVon	per	bin.		No	other	changes	are	needed.		This	score	will	be	referred	to	as	Bin-p	(bin	

proporVonal)2.

Thus	far,	the	measures	considered	are	IES,	RCS,	Bin-o,	Bin-a,	and	Bin-p.		Whereas	the	

binning	scores	are	linear	combinaVons	of	RT	and	PE	measures,	IES	and	RCS	are	in	fact	non-

linear	measures;	these	scores	are	not	the	result	of	a	linear	combinaVon	of	RT	and	PE.		

Considering	that	in	cogniVve	psychology	mostly	staVsVcal	procedures	are	used	that	are	based	

on	the	(general)	linear	model,	a	new	integrated	measure	is	proposed	here	that	is	based	on	a	
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kept	at	20,	and	this	value	was	used	in	all	calculaVons	of	Bin	scores	in	this	arVcle.



linear	combinaVon	of	RT	and	PE.		This	linear	integrated	speed-accuracy	score	(LISAS)	is	defined	

as

LISAS = RTj +
sRT
sPE

× PE j 		 	 (3)

where	RTj is	the	parVcipant’s	mean	RT	in	condiVon	j,	PE j is	the	parVcipant’s	proporVon	of	

errors	in	condiVon	j,	sRT is	the	parVcipant’s	overall	RT	standard	deviaVon,	and	 sPE is	the	

parVcipant’s	overall	PE	standard	deviaVon.		WeighVng	of	the	PE	with	the	raVo	of	the	RT	and	PE	

standard	deviaVons	is	done	to	achieve	a	similar	weight	of	the	two	components,	RT	and	PE.		

Like	IES,	this	measure	yields	an	esVmate	of	RT	corrected	for	the	number	of	errors.		As	an	

example,	consider	an	average	correct	RT	of	500	with	a	standard	deviaVon	of	100,	and	an	error	

rate	of	.10	with	a	standard	deviaVon	of	.05,	LISAS	will	be	500	+	100/.05	x	.1	=	700.

The	properVes	of	these	six	integrated	measures	will	be	evaluated	in	three	studies	based	

on	Monte	Carlo	simulaVons.		The	first	study	focuses	on	the	alleged	shortcoming	of	Bin-o	and	

the	potenVal	advantages	of	Bin-a	and	Bin-p.		In	preview,	this	study	will	confirm	that	Bin-o	is	

not	a	useful	measure.		Because	selecVon	of	appropriate	measures	at	least	in	part	depends	on	

their	distribuVonal	properVes	and	how	well	these	fit	the	assumpVons	of	normality	ocen	

required	in	staVsVcal	procedures,	the	next	study	covers	these	distribuVonal	properVes,	and	

was	based	on	a	large	sample	of	arVficial	data.		As	it	is	well	known	that	the	balance	between	RT	

and	PE	can	be	deliberately	modified	by	speed-accuracy	trade-off	strategies,	Study	3	focuses	on	

the	role	of	speed-accuracy	trade-offs	in	a	variety	of	cases	with	similar	or	different	effects	for	RT	

and	PE.	

Study	1

In	view	of	the	alleged	drawbacks	and	the	potenVal	to	improve	measurement	with	the	

binning	method,	the	first	study	was	designed	to	evaluate	these	issues.		On	the	basis	of	a	set	of	

	 	 	 	 	 	 				Combined	scores	of	speed	and	accuracy			9



arVficial	data,	this	study	tested	whether	it	is	indeed	the	case	that	the	Bin-o	measure	fails	to	

adequately	and	fully	represent	the	size	of	the	difference	between	the	control	and	

experimental	condiVons.		As	the	two	adapted	measures	are	proposed	to	overcome	these	

shortcomings,	it	may	be	expected	that	these	measures	efficiently	capture	the	performance	

difference	between	the	experimental	and	the	control	condiVon.		However,	as	the	Bin-o	and	

Bin-a	measures	are	based	on	absolute	numbers	of	observaVons,	it	is	also	expected	that	both	

measures	would	yield	different	results	solely	due	to	the	number	of	observaVons	or	trials	

within	the	condiVons.		In	contrast,	Bin-p	is	based	on	proporVons	and	should	not	be	affected	by	

the	number	of	observaVons	per	condiVon.		All	these	different	aspects	were	implemented	in	a	

single	study,	by	means	of	a	design	encompassing	a	within-subject	factor	represenVng	a	

comparison	between	a	control	condiVon	(which	could	be	task	repeVVon,	congruence,	easier	

task,	etc.)	and	an	experimental	condiVon	(task	switch,	incongruence,	difficult	task,	...),	and	two	

between-subject	factors.		One	of	the	lajer	factors	represented	the	presence	or	absence	of	a	

performance	cost,	and	the	other	factor	involved	a	variaVon	of	the	number	of	trials	in	each	of	

the	condiVons	(high	versus	low	number	of	trials	in	both	condiVons).

Method

ArVficial	data	were	generated	for	a	2	(Cost	absent	or	present)	x	2	(Number	of	trials:	high	

or	low)	x	2	(Trial	type:	control	vs.	experimental)	factorial	design	with	repeated	measures	on	

the	last	factor.		For	the	within-subject	part	of	the	design,	the	following	structural	model	was	

defined:

Xij = µ +α i +π j + εij 	 	 (4)

where	µ is	the	overall	performance	mean,	α i refers	to	trial	type	(control	vs.	experimental),	π j

refers	to	the	preferred	performance	level	of	staVsVcal	subject	j,		and	εij 	refers	to	the	error	

term.		For	the	generaVon	of	the	RT	data,	µ = 500 ,	the	value	of	π j was	sampled	from	a	
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gaussian	distribuVon	with	zero-mean	and	standard	deviaVon	100,	and	the	value	of	α i was	zero	

in	the	cost-absent	condiVon,	and	-10	(control	trials)	or	+10	(experimental	trials)	when	a	cost	

was	present.		As	RT	data	have	typically	a	posiVve	skew,	the	error	term	was	generated	from	an	

exponenVally	modified	gaussian	distribuVon,	also	known	as	ex-gaussian	distribuVon,	which	is	

obtained	as	the	convoluVon	of	a	gaussian	and	an	exponenVal	distribuVon	(Heathcote,	Popiel,	

&	Mewhort,	1991;	Ratcliff,	1979;	Ratcliff	&	Murdock,	1976),	which	is	defined	as

f (t | µ;σ;τ ) = 1
τ (2Π)1/2

e
−( σ

2

2τ 2
+
t−µ
τ
)
× e(− y

2 /2)

−∞

(t−µ )/σ−(σ /τ )

∫ dy 	 	 (5)

where	t	is	the	Vme,	µ and	σ are	parameters	of	the	gaussian	distribuVon,	and	τ represents	the	

mean	and	standard	deviaVon	of	the	exponenVal	distribuVon.		The	mean	of	the	ex-gaussian	

distribuVon	is	µ + τ ,	its	variance	is	σ 2 + τ 2 ,	and	its	skewness	is	
2τ 3

(σ 2 + τ 2 )3/2
;	µ 	represents	the	

modus	of	the	distribuVon.		Ex-gaussian	distributed	random	numbers	were	generated	by	taking	

the	sum	of	a	gaussian	distributed	random	value	N(0,1)	and	an	exponenVally	distributed	

random	value.		The	lajer	was	obtained	from	a	uniformly	distributed	value	u	that	was	

transformed	according	to	the	following	formula:

− ln(u)×τ 	 	 (6)

with	τ = 1.5 .

For	the	generaVon	of	the	PE	data,	µ = .10 ,	π j was	sampled	from	a	gaussian	distribuVon	

with	standard	deviaVon	.04,	and	the	value	of	α i was	zero	in	the	cost-absent	condiVon	and	±.05	

when	a	cost	was	present.		A	uniformly	distributed	random	value	between	0	and	1	was	then	

sampled	and	compared	to	the	sum	µ +α i +π j 	to	decide	whether	the	current	response	was	
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correct	(0)	or	incorrect	(1).		In	the	condiVons	with	many	trials,	260	trials	were	registered	(130	

per	trial	type).		Only	130	trials	(65	per	trial	type)	were	registered	in	the	condiVons	with	few	

trials.		Each	of	the	cells	of	the	2	x	2	between-subjects	part	of	the	design	contained	30	staVsVcal	

subjects.

Results	and	Discussion

The	descripVve	staVsVcs	of	the	obtained	sample	of	arVficial	data	are	displayed	in	Table	

1.		This	table	contains	the	means	and	the	standard	deviaVons	of	RT,	PE,	Bin-o,	Bin-a,	and	Bin-p	

per	cell	of	the	design.		As	is	shown	in	Table	1,	the	RT	and	PE	means	did	not	differ	much	

between	the	Control	and	Experimental	condiVons	in	the	Cost	Absent	condiVons,	and	this	was	

also	the	case	for	the	Bin-a	and	Bin-p	means.		In	contrast,	these	four	measures	yielded	

performance	differences	between	the	two	trial	types	in	the	Cost	Present	condiVons.		In	the	

Cost	Absent	condiVon,	the	Bin-o	scores	were	large	and	only	slightly	smaller	than	in	the	Cost	

Present	condiVons.		An	effect	of	the	number	of	trials	per	condiVon	was	only	present	in	the	Bin-

o	and	Bin-a	measures.		These	observed	trends	were	tested	by	means	of	a	2	(Cost	Presence)	x	2	

(Number	of	Trials)	x	2	(Trial	Type)	ANOVA	applied	to	each	measure	separately	(except	for	Bin-o	

where	the	factor	Trial	Type	was	not	available,	as	this	is	a	difference	score).		The	results	of	these	

analyses	are	shown	in	Table	2.

Three	measures	showed	exactly	the	same	pajern	of	results,	namely	RT,	PE	and	Bin-p,	

with	a	significant	main	effect	of	Trial	Type	and	interacVon	of	this	factor	with	Cost	Presence,	

while	none	of	the	other	effects	ajained	significance.		In	other	words,	for	these	three	

measures,	the	difference	between	control	and	experimental	trials	was	significant,	but	only	in	

the	condiVons	where	a	trial	type	cost	was	present.		These	measures	did	not	vary	with	the	

number	of	registered	trials.		The	pajern	was	different	for	Bin-a:	in	addiVon	to	these	same	two	

effects,	Number	of	Trials	was	significant	and	interacted	with	these	two	significant	effects,	thus	

producing	a	significant	interacVon	of	Number	and	Trial	Type	and	a	significant	triple	interacVon.		

In	other	words,	like	RT,	PE	and	Bin-p,	the	Bin-a	measure	was	only	sensiVve	to	the	contrast	
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between	experimental	and	control	trials	when	a	trial	type	cost	was	present.		But	in	contrast	to	

these	three	measures,	Bin-a	was	sensiVve	to	the	number	of	trials	resulVng	in	higher	scores	in	

condiVons	with	more	trials	and	a	larger	trial	type	cost	when	more	trials	were	included.

For	Bin-o,	only	a	2	x	2	design	was	applicable,	and	this	analysis	revealed	significant	main	

effects	of	Cost	Presence	and	Number	of	Trials,	but	their	interacVon	was	not	significant.		This	

shows	that	Bin-o	scores	were	larger	when	a	cost	was	present	(M	=	1507)	than	no	cost	was	

present	(M	=	1374).		Similarly,	Bin-o	scores	were	also	higher	when	the	number	of	trials	was	

larger	(M	=	1951)	than	when	it	was	smaller	(M	=	929).	

To	further	assess	whether	the	combined	score	obtained	with	the	binning	procedure	

captures	the	differences	present	in	both	RT	and	PE	measures,	linear	mulVple	regression	

analyses	were	conducted	with	RT	and	PE	measures	as	predictors	and	each	of	the	binning	

measures	in	turn	as	dependent	variable.		As	the	binning	scores	are	based	on	a	sum	of	

weighted	RT	differences	addiVvely	combined	with	weighted	PE,	linear	regression	is	a	suitable	

technique	for	tesVng	the	relaVonship	between	these	measures	and	the	RT	and	PE	measures.		

The	RT	and	PE	averages	per	trial	type	of	all	staVsVcal	subjects	in	the	sample	were	the	

predictors	of	the	difference	between	the	experimental	and	control	trials	as	measured	by	the	

binning	measures.		Table	3	displays	the	results	of	these	regression	analyses:	for	each	bin	

measure	(dependent	variable),	the	t-values	associated	with	each	predictor	are	displayed	

together	with	the	mulVple	correlaVon	coefficient	and	the	coefficient	of	determinaVon.

In	line	with	the	criVcal	comments	formulated	in	the	introducVon	regarding	Bin-o,	it	

appears	that	the	PE	of	the	control	condiVon	is	indeed	not	at	all	related	to	the	Bin-o	score.		

Furthermore,	neither	the	experimental	RT	value	nor	the	control	RT	value	significantly	

contributes	to	the	Bin-o	difference	score	in	this	sample.		In	fact,	the	Bin-o	score	depends	to	a	

large	extent	on	the	proporVon	of	errors	commijed	in	the	experimental	or	difficult	condiVon	as 	

these	are	heavily	penalized.		One	could	have	expected	that	the	RT	scores	of	the	experimental	

trials	contributed	more	as	their	difference	to	the	overall	mean	control	RT	mean	is	taken	into	
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account	in	the	calculaVon,	but	this	expectaVon	was	not	confirmed	in	this	analysis.		To	further	

explore	this	observaVon,	another	regression	analysis	was	performed	in	which	the	RT	and	PE	

difference	score	between	the	experimental	and	the	control	condiVon	were	used	as	predictors	

of	the	binning	measures.		For	Bin-o	neither	of	these	differences	contributed	to	the	predicVon;	

the	mulVple	regression	coefficient	was	only	.08.		In	Bin-a	(R	=	.90)	and	Bin-p	(R	=	.99)	both	cost	

predictors	strongly	contributed	to	the	final	score.

This	first	study	fully	corroborates	the	alleged	shortcomings	of	Bin-o	as	an	integrated	

measure	of	performance.		The	Bin-o	measure	does	not	validly	combine	RT	and	PE	informaVon	

and	therefore	it	should	never	be	used.		The	adaptaVons	implemented	in	Bin-a	and	Bin-p,	on	

the	contrary,	seem	to	work.		Both	measures	validly	combine	RT	and	PE	scores,	but	Bin-a	suffers	

from	the	drawback	that	its	value	varies	with	the	number	of	observaVons.		By	taking	

proporVons	of	observaVons	instead	of	absolute	numbers,	Bin-p	seems	to	capture	well	the	two	

performance	components	without	any	of	the	drawbacks	observed	with	the	two	other	binning	

variants.

On	the	basis	of	the	findings	in	this	first	study,	the	Bin-o	measure	was	excluded	from	any	

further	evaluaVons.		It	should	further	be	noted	that	if	the	number	of	trials	in	the	condiVons	is	

kept	constant,	no	disVncVon	between	Bin-a	and	Bin-p	is	possible	because	it	can	be	shown	that	

in	every	condiVon	Bin-p	equals	Bin-a	divided	by	the	number	of	trials	in	the	condiVon.		For	that	

reason,	as	the	following	studies	in	the	paper	did	not	vary	the	number	of	observaVons	per	

condiVon,	Bin-a	and	Bin-p	were	treated	as	the	same	measure.		Its	uVlity	was	further	examined	

together	with	the	three	other	integrated	measures.		Because	most	staVsVcal	methods	that	are	

used	in	data	analysis	are	based	on	parVcular	assumpVons	about	the	distribuVon	of	the	

measurements	being	analyzed,	the	next	study	examined	the	major	characterisVcs	of	the	

probability	distribuVon	of	the	four	remaining	integrated	measures.
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Study	2

It	is	well	known	that	both	RT	and	PE	measures	show	deviaVons	from	the	normal	

distribuVon;	within	samples	obtained	from	one	or	more	subjects	(i.e.,	the	sample	distribuVon)	

RTs	are	usually	posiVvely	skewed	and	the	shape	of	the	PE	distribuVon	tends	to	vary	with	the	

average	percentage	of	errors.		When	these	measures	are	combined	to	form	an	integrated	

measure,	it	is	possible	that	the	integraVon	results	in	even	stronger	deviaVons	from	the	normal	

distribuVon.		In	order	to	examine	the	properVes	of	the	four	remaining	measures,	two	arVficial	

data	sets	were	generated	on	the	basis	of	the	model	described	in	equaVon	(4).		Because	it	is	

possible	that	the	results	differ	with	the	direcVon	of	the	effects,	two	subsets	were	produced,	

one	with	larger	RT	and	larger	PE	in	the	experimental	than	in	the	control	condiVon	(effects	in	

same	direcVon)	and	one	with	RT	and	PE	effects	in	opposing	direcVons,	namely	larger	RT	and	

smaller	PE	in	the	experimental	than	in	the	control	condiVon.

Method

Two	data	sets	of	1000	samples	based	on	20	staVsVcal	subjects	were	generated	on	the	

basis	of	equaVon	(4)	with	250	observaVons	in	the	control	condiVon	and	250	observaVons	in	

the	experimental	condiVon.		In	one	data	set	the	RT	and	PE	effects	were	in	the	same	direcVon	

with	longer	RTs	and	more	errors	in	the	experimental	condiVon;	in	the	other	data	set,	the	RTs	

were	also	longer	in	the	experimental	condiVon,	while	the	PEs	were	larger	in	the	control	

condiVon.		For	generaVng	the	RT	data,	α i was	±10,		µ 	was	500	and	π j 	was	sampled	from	a	

normal	distribuVon	with	zero	mean	and	a	standard	deviaVon	of	100.		Random	error	(σ ε )	was	

sampled	from	an	ex-gaussian	distribuVon	based	on	the	sum	of	a	gaussian	distributed	value	

N(0,1)	and	an	exponenVally	distributed	value	with	τ 	=	1.5;	the	obtained	value	was	then	

mulVplied	by	the	standard	deviaVon	of	the	RT	error	distribuVon	(100).		Thus	an	RT	value	was	

produced	for	each	trial.
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For	the	PE	data,	α i was	±.0145,	π j was	sampled	from	a	normal	distribuVon	with	zero	

mean	and	a	standard	deviaVon	of	.04.		Because	at	the	trial	level	errors	are	absent	(0)	or	

present	(1),	the	generated	value	was	compared	to	a	uniformly	distributed	random	number	to	

decide	whether	the	trial	was	correct	or	not.		The	RT	and	PE	values	for	α i were	selected	in	such		

a	way	that	the	obtained	effect	sizes	for	the	RT	and	PE	variables	were	on	average	about	equal.

Results	and	Discussion

Mean,	standard	deviaVon	and	skewness	were	calculated	for	each	measure	separately	

per	condiVon	within	each	of	the	samples	of	both	data	sets.		Within	both	data	sets,	the	values	

of	these	staVsVcs	varied	over	the	samples.		Averages	of	these	staVsVcs	over	the	1000	samples	

in	each	data	set	yield	an	esVmate	of	these	staVsVcs	in	the	sample	of	samples	(i.e.,	the	

sampling	distribuVon).		These	averaged	results	are	shown	in	Table	4.		However,	the	quesVon	

addressed	in	this	study	concerns,	the	sample	distribuVons,	and	in	parVcular	the	skewness	of	

each	measure	in	the	samples.		Therefore,	Table	4	also	displays	the	95%	confidence	interval	of	

the	skewness	over	all	the	samples.		

Table	4	shows	that	the	skewness	of	the	sample	RT	distribuVons	varied	from	strongly	

negaVve	to	strongly	posiVve,	with	an	average	near	to	zero,	in	both	data	sets.		Due	to	averaging	

the	RTs	per	subject,	the	RT	distribuVon	becomes	more	symmetric	at	the	level	of	the	sample,	

conform	to	the	central	limit	theorem.		Instead	of	simply	adding	all	the	RTs,	the	Vincent	adding	

procedure	(for	more	details	see	Heathcote	et	al.,	1991;	Ratcliff,	1979)	could	have	been	used.		

However,	as	this	is	not	a	common	pracVce,	the	standard	methodology	for	aggregaVng	data	

was	used	in	these	simulaVons.

Within	the	data	set	with	effects	in	the	same	direcVon,	in	each	sample	and	for	each	

measure	the	means	differed	between	the	two	condiVons.		Within	the	data	set	with	opposing	

effects,	clear	differences	were	present	for	correct	RT	and	all	RT,	PE,	and	the	Bin	measures,	but	
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not	for	IES,	RCS	and	LISAS.		In	the	lajer	three	measures,	the	opposing	effects	seemed	to	

balance	each	other	out.	

A	first	noteworthy	observaVon	concerns	the	absence	of	clear	differences	between	the	

standard	deviaVons	of	the	integrated	measures	across	the	two	samples.		In	other	words,	

whether	the	composing	effects	go	in	the	same	direcVon	or	in	opposite	direcVons	does	not	

majer	much	for	the	standard	deviaVons	of	the	integrated	measures.		The	other	noteworthy	

observaVon	relates	to	the	variaVons	in	skewness	of	the	distribuVon	of	the	different	measures.		

As	already	indicated,	for	RT,	skewness	varied	widely	over	the	samples,	but	was	on	average	

rather	close	to	zero	(lijle	or	no	skewness).		The	PE	distribuVon	was	posiVvely	skewed	to	

similar	extents	in	both	data	sets,	with	more	samples	showing	posiVve	skew	than	samples	

showing	negaVve	skew;	overall,	the	deviaVon	from	zero	was	rather	small.		Within	the	

integrated	measures,	skewness	was	close	to	zero	for	Bin-p,	IES	and	LISAS.	RCS,	finally	was	

more	strongly	posiVvely	skewed	in	both	samples,	with	a	small	proporVon	of	the	samples	

showing	some	degree	of	negaVve	skewness	and	the	majority	of	samples	showing	large	to	very	

large	degrees	of	posiVve	skewness.		Closer	inspecVon	of	the	data	revealed	that	the	cases	with	

small	or	even	negaVve	skewness	in	RCS	were	obtained	from	samples	with	very	strong	posiVve	

RT	skewness3.		Figure	1	shows	the	shape	of	the	distribuVons	for	each	of	the	measures	and	

confirms	the	presence	of	some	asymmetry	in	RCS	and	PE.

It	may	seem	surprising	that	even	with	small	deviaVons	from	symmetry	in	the	RT	and	PE	

measures,	RCS	is	the	only	integrated	measure	showing	an	important	degree	of	skewness.		In	

fact,	this	feature	is	inherent	to	the	way	RCS	is	calculated,	namely	as	the	raVo	of	the	proporVon	

of	correct	responses	to	the	response	Vme.		A	simple	example	can	clarify	this.		Consider	three	

cases	with	the	same	proporVon	correct	responses,	namely	0.9	and	with	RTs	of	0.6,	0.7,	and	0.8	
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seconds;	the	respecVve	RCS	values	are	1.5,	1.29	and	1.13.		Although	the	RT	difference	steps	

have	the	same	size	(0.1),	the	steps	from	the	smaller	to	the	larger	RCS	values	increase	(0.16	for	

the	step	from	the	smallest	to	the	central	value	and	0.21	for	the	next	step).		This	example	

shows	that	with	increasing	RCS	values	the	spread	between	the	values	increases	even	though	

no	such	difference	in	spread	is	present	in	RT	and	PE	(or	1-PE).		That	the	posiVve	skew	in	RCS	is	

related	to	the	calculaVon	is	also	confirmed	by	the	fact	that	the	distribuVon	of	1/IES	is	posiVvely	

skewed	while	the	distribuVon	of	IES	is	not.

IrrespecVve	of	whether	the	integrated	effects	are	in	the	same	or	in	opposing	direcVons,	

the	overall	means	(as	can	easily	be	inferred	from	Table	4)	and	the	standard	deviaVons	of	the	

integrated	measures	are	not	affected	much.		Only	with	respect	to	skewness	some	variaVons	

occurred	across	the	different	measures.		Of	the	two	basic	measures,	only	PE	showed	some	

small	posiVve	skewness,	and	like	the	RT	measure,	all	integrated	measures,	except	RCS,	yielded	

a	skewness	close	to	zero.		The	RCS	measure,	in	contrast,	showed	a	stronger	posiVve	skewness.

An	addiVonal	consideraVon	concerns	the	binning	measures:	due	to	the	way	these	

measures	are	calculated,	their	properVes	are	dependent	on	the	complete	sample	because	all	

the	observaVons	in	the	sample	are	used	to	define	the	bins,	from	which	the	scores	per	subject	

are	derived.		The	lajer	property	consVtutes	an	important	potenVal	drawback	for	these	

measures,	because	the	score	of	a	parVcular	subject	in	the	context	of	one	sample	may	be	

strongly	different	from	the	score	based	on	the	same	performance	but	calculated	in	the	context	

of	another	sample.		Evidently,	this	should	never	be	the	case,	because	staVsVcal	applicaVons	

assume	that		subjects	are	sampled	and	scored	independently	from	one	another.

In	order	to	test	whether	it	would	be	pracVcal	to	calculate	bin-scores	using	only	the	RT	

and	PE	scores	of	the	individual,	the	Bin-p	scores	for	the	two	samples	were	calculated	using	

only	the	data	available	per	staVsVcal	subject.		The	findings	are	shown	in	Table	4	on	the	row	

labeled	Bin-i	(Bin-p,	with	individual-based	scoring)	and	in	Figure	1	in	the	panel	labeled	Bin-i.	

Clearly,	the	averages	were	quite	similar	to	those	based	on	the	complete	sample	and	the	
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standard	deviaVons	were	much	smaller.		Yet,	the	individual-based	scores	yielded	a	small	

posiVve	skewness	(also	visible	in	the	slightly	longer	rightward	tail	in	Figure	1).		To	further	

explore	the	similarity	between	the	individual-based	and	sample-based	measures,	product-

moment	correlaVons	were	calculated	between	the	two	sets	of	scores	over	the	enVre	sample.		

The	correlaVons	were	very	similar:	.431	for	effects	in	the	same	direcVon,	.430	for	effects	in	the	

opposing	direcVon	(p	<	.001).		This	suggests	that	there	may	be	some	promise	in	the	usage	of	

individual-based	Bin	scores,	although	it	is	not	clear	to	which	extent	the	individual-based	scores	

are	more	noisy	than	the	sample-based	scores.		In	order	to	further	explore	these	

characterisVcs,	the	Bin-i	measure	was	also	included	in	the	following	studies.

In	conclusion,	Study	2	shows	that	the	integrated	measures	closely	approach	the	normal	

distribuVon.		In	the	present	study,	RCS	showed	a	rather	strong	posiVve	skewness	over	the	

range	of	samples	available.		That	may	be	a	drawback	in	parVcular	applicaVons,	but	this	is	no	

reason	to	exclude	this	measure	from	the	evaluaVon	performed	in	the	following	two	studies.		

As	this	skewness	which	is	situated	at	the	level	of	the	sampling	distribuVon	was	restricted	to	

samples	with	a	rather	strong	negaVve	RT	skewness,	there	is	no	impediment	to	the	usage	of	the	

RCS	measure	as	long	as	the	distribuVons	of	RT,	PE	and	RCS	are	checked	for	symmetry.		In	fact,	

it	is	safe	to	perform	these	check	for	any	measure	that	is	being	used.	

Study	3

Acer	the	assessment	of	the	distribuVonal	properVes	of	the	integrated	measures,	the	

next	study	addresses	the	central	quesVon	regarding	the	potenVal	advantages	of	using	

integrated	measures.		This	concerns	two	quesVons.		First,	is	each	of	the	integrated	measures	

capable	of	detecVng	significant	effects	when	RT	and/or	PE	effects	are	present	but	vary	in	

strength,	and	if	so	how	good	is	this	detecVon	performance?		Second,	do	the	integrated	

measures	account	for	a	larger	proporVon	of	the	variance	than	each	of	the	composing	

measures	do,	and	if	so,	to	which	extent?		Importantly,	some	integrated	measures	of	

performance	may	be	more	sensiVve	to	variaVons	in	the	balance	of	the	two	components,	RT	
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and	PE.		For	that	reason	speed-accuracy	trade-off	(SAT),	effect	size	of	the	experimental-control	

contrast	in	RT	and	PE,	and	the	direcVon	of	the	RT	and	PE	effects	were	varied	over	four	Monte	

Carlo	simulaVons:	one	with	RT	and	PE	effects	in	the	same	direcVon,	one	with	no	PE	effects,	

one	without	RT	effects,	and	one	with	RT	and	PE	effects	in	opposing	direcVons.		The	inclusion	of	

the	variaVon	of	the	speed-accuracy	trade-off	strategy	(trading	speed	for	accuracy,	no	trade-off,	

or	trading	accuracy	for	speed)	has	also	the	addiVonal	advantage	that	the	degree	of	covariance	

between	speed	and	accuracy	is	varied.

Method

ArVficial	data	were	generated	for	a	within-subject	factor	contrasVng	a	control	(or	easy)	

and	an	experimental	(or	difficult)	condiVon.		The	data	were	generated	on	the	basis	of	the	same	

structural	model	as	in	Studies	1	and	2	(see	EquaVon	4).		This	within-subject	factor	was	

combined	with	a	between-subject	factor	with	three	levels	represenVng	variaVons	in	the	

speed-accuracy	trade-off	strategy.		The	three	trade-off	strategies	were:	trade	speed	for	

accuracy,	balanced	speed	and	accuracy,	and	trade	accuracy	for	speed.		In	the	balanced	

condiVon,	the	structural	model	was	applied	independently	to	both	measures	resulVng	in	near-

zero	correlaVon	between	RT	and	PE.		Trading	speed	for	accuracy	was	achieved	by	increasing	

the	RT	and	decreasing	PE	acer	an	error,	while	gradually	reversing	this	effect	acer	a	correct	

answer.		As	short	RTs	occur	less	ocen	with	errors,	this	augments	the	correlaVon	between	RT	

and	PE.		Trading	accuracy	for	speed	was	achieved	in	a	similar	way	by	increasing	PE	and	

decreasing	RT	acer	a	correct	answer,	while	gradually	reversing	this	effect	acer	an	error.		As	

incorrect	answers	are	less	ocen	associated	with	longer	RT,	this	also	leads	to	a	posiVve	

correlaVon	between	RT	and	PE.

Thus,	the	complete	design	involved	a	3	(SAT:	speed-accuracy	trade-off)	x	2	(Trial	Type)	

factorial	combinaVon	with	repeated	measures	on	the	last	factor.		The	between-subject	factor	

represenVng	the	three	trade-off	strategies	was	not	expected	to	interact	with	the	within-
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subject	factor,	because	the	strategies	were	applied	irrespecVve	of	the	trial	type	and	are	thus	

expected	to	have	the	same	effects	with	the	two	trial	types.	

This	3	x	2	design	was	used	in	each	of	the	four	simulaVons	that	varied	the	RT	and	PE	

effects.		These	simulaVons	involved	1000	samples	each.		Every	sample	contained	10	staVsVcal	

subjects	per	SAT	condiVon;	each	condiVon	involved	10	blocks	of	65	trials	(the	first	trial	of	each	

block	was	not	included	in	the	data	analyses).		In	each	staVsVcal	subject,	the	effect	size	

implemented	was	sampled	from	a	pre-specified	range	for	the	within-subject	factor	as	specified	

in	the	structural	model	of	equaVon	4	(see	Table	5	for	details).		In	one	simulaVon	(case	A)	the	

RT	and	PE	effects	occurred	in	the	same	direcVon;	the	second	simulaVon	(case	B)	had	variable	

RT	effect	sizes	but	no	PE	effects;	the	third	simulaVon	(case	C)	contained	variable	PE	effect	sizes	

but	no	RT	effects;	the	fourth	and	final	simulaVon	(case	D)	included	RT	and	PE	effects	in	

opposing	direcVons.		The	distribuVon	of	the	effect	sizes	used	in	each	simulaVon	case	are	

displayed	in	Table	6.

Results	and	Discussion

Descrip-ve	Sta-s-cs.

Before	looking	into	the	results	relevant	to	the	present	research	quesVon,	the	data	are	

summarized.		The	means	and	standard	deviaVons	of	the	sampling	distribuVons	collected	in	

each	of	the	four	simulaVon	cases	are	displayed	in	Tables	7-10	for	the	four	variaVons	in	RT/PE	

effects	(cases	A-D).		These	tables	show	the	(correct)	RT	data	and	PE	data,	as	well	as	the	means	

and	standard	deviaVons	of	the	integrated	measures	(Bin-p,	Bin-i,	IES,	RCS,	and	LISAS).		These	

tables	show	that	the	SAT	condiVons	had	the	intended	effects	on	both	RT	and	PE	with	longer	RT	

and	lower	PE	than	the	neutral	or	balanced	condiVon	when	speed	was	traded	for	accuracy.		

Likewise,	RT	was	shorter	and	PE	was	larger	than	in	the	neutral	condiVon	when	accuracy	was	

traded	for	speed.		The	effect	of	Trial	type	was	also	clearly	present	but	variable	over	the	four	

simulaVon	cases.		For	all	five	integrated	measures,	the	tables	show	that	in	the	four	simulaVon	

cases,	the	averages	were	consistent	with	an	effect	of	Trial	Type,	but	the	size	of	the	difference	
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between	control	and	experimental	condiVon	varied	over	the	four	cases.		CorrelaVons	between	

RT	and	PE	varied	between	.56	and	.67	(p	<	.001)	in	the	trade-speed	condiVons,	between	.16	

and	.25	(p	<	.001)	in	the	trade-accuracy	condiVons,	and	between	-.03	and	.02	(p	>	.33)	in	the	

neutral	condiVons.

In	each	of	the	1000	samples	of	the	four	simulaVon	cases,	the	3	(SAT)	x	2	(Trial	Type)	

design	was	subjected	to	analyses	of	variance.		All	these	analyses	were	performed	separately	

for	each	measure	because	the	measures	use	different	metric.		Table	11	displays	the	average	

effect	size	(parVal	eta-squared)	related	to	Trial	type	for	each	of	the	integrated	measures	in	all	

four	simulaVon	cases.		The	table	shows	that	the	effect	sizes	for	RT	and	PE	were	quite	similar	in	

cases	A	and	D,	while	the	PE	effect	size	was	near	zero	in	case	B,	and	the	effect	size	of	RT	was	

near	zero	in	case	C.		This	confirms	that	the	scheme	used	for	the	data	generaVon	worked	fine.		

InteresVngly,	the	average	effect	sizes	of	all	the	integrated	measures	were	larger	than	those	of	

both	RT	and	PE	when	these	effects	were	in	the	same	direcVon	(case	A),	while	they	were	lower	

than	the	largest	effect	size	of	either	RT	or	PE	in	the	other	three	cases.		More	specifically,	the	

effect	sizes	of	the	integrated	measures	were	lower	than	the	effect	size	of	the	only	effecVve	

component	measure	in	the	cases	where	only	one	component	varied	(RT	in	case	B	and	PE	in	

case	C).		It	is	also	worthwhile	to	note	that	in	case	D	the	integrated	measures	sVll	succeeded	in	

achieving	some	explanatory	power,	although	it	could	be	expected	that	in	the	case	with	

opposite	RT	and	PE	effects,	these	effects	would	balance	each	other	out.

Efficiency	of	RT	and	PE	integra-on.

By	comparing	significant	effects	in	RT	and	PE	on	the	one	hand,	and	an	integrated	

measure	on	the	other	hand,	it	is	possible	to	assess	how	well	the	integrated	measure	is	capable	

of	detecVng	an	effect,	given	that	the	effect	is	present	with	some	strength	in	the	RT	and	PE	

measures.		As	the	size	of	each	effect	in	RT	and	PE	varies	over	the	samples,	it	may	be	expected	

that	as	the	effect	size	of	RT	and	PE	in	the	sample	considered	increases,	the	probability	for	an	

integrated	measure	to	detect	the	effect	also	increases.		This	capability	to	detect	effects	as	
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significant	given	effects	of	a	parVcular	size	in	the	RT	and	PE	data,	will	be	referred	to	as	the	

detecVon	efficiency,	which	can	be	defined	as

E =
Ni

Ne

	 	 (7)

where	E	is	the	efficiency	of	detecVon,	Ne is	the	number	of	samples	in	which	the	RT	and	PE	

measures	find	an	effect	of	some	size	e,	and	Ni is	the	number	of	samples	in	which	the	

integrated	measure	detects	a	significant	effect.		The	degree	of	efficiency	is	expected	to	

increase	with	the	strength	of	the	relaVonship,	i.e.,	the	effect	size	present	in	RT	and	PE.		Five	

levels	of	effect	size	for	RT	and	PE	were	defined	using	parVal	eta-squared	(ηp
2 )	by	parVVoning	

the	samples	into	five	subsets.		The	first	level	contains	the	samples	in	which	both	effect	sizes	

were	smaller	than	.2	(this	is	the	only	level	where	nonsignificant	effects	could	occur).		The	

second	level	contains	the	samples	in	which	both	effect	sizes	were	smaller	than	.4	acer	

excluding	the	samples	of	level	1.		Similarly,	the	levels	3,	4	and	5	contain	the	samples	with	both	

effect	sizes	smaller	than	respecVvely	.6,	.8	and	1.0,	acer	excluding	the	samples	already	

assigned	to	the	previous	levels.		As	an	example,	when	in	a	parVcular	sample	the	effect	size	for	

RT	is	.42	and	the	effect	size	for	PE	.24,	this	sample	will	be	assigned	to	level	3	(both	are	too	

large	for	level	1,	only	the	PE	effect	saVsfies	the	criterion	for	level	2,	but	both	saVsfy	the	

criterion	for	level	3).		The	number	of	samples	at	each	level	and	the	average	effect	size	over	

both	measures	in	each	sample	are	displayed	in	Table	12	for	each	of	the	four	simulaVon	cases.		

This	table	shows	that	the	average	effect	size	increases	as	the	level	increases.		As	can	be	

expected	from	the	example	given,	the	averages	tend	to	be	lower	than	the	nominal	limits	used	

to	the	define	the	parVVoning	because	the	effect	sizes	of	PE	and	RT	are	randomly	sampled.

The	detecVon	efficiency	of	the	integrated	measures	was	calculated	for	each	of	these	

effect	size	levels	by	taking	the	raVo	of	the	number	of	samples	in	which	the	integrated	measure	
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detected	a	significant	effect	(p	<	.05)4	and	the	number	of	samples	included	at	that	level	in	line	

with	equaVon	(7).		Figure	2	displays	the	detecVon	efficiency	of	the	five	integrated	measures	in	

the	study	as	a	funcVon	of	the	effect	size	levels	of	the	between-subject	effect	for	each	of	the	

four	simulaVon	cases.

The	pajern	of	findings	was	very	similar	across	the	four	cases	(the	four	panels	of	Figure	

2).		Most	striking	is	the	observaVon	that	the	trend	of	the	Bin-i	measures	deviated	from	the	

trend	displayed	by	the	other	measures:	in	contrast	to	the	other	integrated	measures	the	trend	

for	Bin-i	detecVon	efficiency	was	to	decrease	with	the	level	of	the	RT	and	PE	effect	size.		As	can	

be	seen	in	Tables	7-10,	the	Bin-i	averages	tended	to	be	larger	in	Trade-accuracy	than	in	the	

Trade-speed	condiVon	of	the	SAT	manipulaVon,	suggesVng	that	the	gain	in	accuracy	

compensated	the	loss	of	speed,	but	the	gain	in	speed	did	not	seem	to	compensate	the	loss	in	

accuracy	in	this	integrated	measure.		As	this	measure	is	calculated	on	the	basis	of	bins	derived	

from	the	individual’s	data,	the	end	result	may	be	less	reliable	than	the	end	result	obtained	in	

the	Bin-p	measure	which	is	derived	from	sample-based	bins.		InteresVngly,	Bin-p,	IES,	and	RCS	

showed	an	increased	probability	of	detecVng	a	significant	SAT	effect	as	its	effect	size	in	RT	and	

PE	increased	whereas	LISAS	showed	100%	detecVon	of	the	effect	at	each	effect	size	level.		It	is	

also	noteworthy	that	LISAS,	RCS	and	IES	were	be	able	to	detect	the	effect	with	an	overall	

probability	of	respecVvely	1.00,	0.99	and	0.96,	but	Bin-p	was	far	less	efficient	(overall	

probability	less	than	.30).		It	thus	seems	that	the	Bin	measures	were	not	very	efficient	at	

detecVng	the	between-subject	effect.		Overall,	the	Bin-p	detecVon	probabiliVes	were	quite	

low,	and	the	Bin-i	detecVon	rates	dropped	as	the	RT	and	PE	effect	size	increased.	IES,	RCS	and	

LISAS	were	very	efficient	as	they	detected	almost	all	the	effects	at	all	levels	of	effect	size.	
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Moreover,	note	that	the	pajern	as	well	as	the	level	of	performance	was	the	same	in	the	four	

simulaVon	cases	for	all	the	measures.

The	detecVon	efficiency	of	the	five	integrated	measures	with	respect	to	the	within-

subject	effect	is	shown	in	Figure	3.		In	panel	A	(simulaVon	case	A:	RT	and	PE	effects	in	the	same	

direcVon),	the	detecVon	efficiency	of	all	five	measures	increased	with	the	effect	size	level	of	RT	

and	PE,	and	almost	perfect	detecVon	performance	was	reached	(.98-.99)	as	levels	1	and	2	

contained	only	few	cases.		Panel	B	(simulaVon	case	B:	only	RT	effects)	shows	that	detecVon	

capability	for	each	measure	also	increased	with	the	effect	size	of	RT	and	PE.		However,	large	

differences	were	observed	among	the	measures.		The	best	performance	was	achieved	by	LISAS	

(overall	.83).		RCS	(.82),	and	IES	(.78),	while	Bin-p	(.71)	and	Bin-i	(.75)	ajained	lower	levels	but	

were	sVll	very	efficient.		For	all	measures,	performance	increased	monotonically	with	effect	

size	level.		In	Panel	C	(simulaVon	case	C:	only	PE	effects)	all	measures	ajained	a	high	level	of	

performance	from	level	3	on	(at	least	.90).		The	spread	between	the	curves	was	large	at	level	2.		

In	this	simulaVon	case,	overall	best	performance	was	achieved	by	Bin-p	(.87)	and	Bin-i	(.86),	

followed	by	LISAS	(.83),	IES	(.80),	and	RCS	(.78).		All	five	measures	ajained	a	detecVon	

efficiency	above	.50	from	level	2	on,	except	RCS	(.48	at	level	2).		In	Panel	D	(simulaVon	case	D:	

opposing	RT	and	PE	effects),	the	pajern	was	quite	different	in	shape	from	the	three	other	

panels	with	some	crossing-over	of	the	lines	in	the	graph	and	a	non-monotonic	trend	for	all	the	

measures,	except	RCS	and	LISAS.		Averaged	over	all	measures,	detecVon	rate	was	not	higher	at	

level	5	than	at	level	4.		At	these	two	levels,	all	five	measures	performed	quite	well	(.60	

detecVon	or	more),	and	achieved	medium	detecVon	performance	at	level	3.		Average	

detecVon	rates	were	very	close	together	with	the	highest	score	for	Bin-p	(.57	overall)	followed	

by		Bin-i	(.54),	and	LISAS	(.51);	RCS	(.47)	and	IES	(.46)	ajained	the	poorest	average.		Given	that	

in	this	parVcular	case	the	RT	and	PE	effects	were	in	opposing	direcVons,	it	may	be	considered	

that	the	performance	of	all	five	measures	was	at	a	remarkably	good	level.	
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Propor-on	of	explained	variance

Apart	from	knowing	that	the	integrated	measures	are	efficient	in	detecVng	an	effect	

when	an	effect	is	present	in	one	or	both	composing	measures,	it	is	also	important	to	know	

whether	an	integrated	measure	accounts	for	a	larger	amount	of	the	variance	than	each	of	the	

composing	measures	do.		This	was	invesVgated	by	assessing	the	proporVon	of	samples	in	

which	the	effect	size	associated	with	Trial	type	was	larger	than	the	largest	effect	size	of	RT	or	

PE.		Table	13	displays	these	proporVons	for	the	five	integrated	measures	in	each	simulaVon	

case.		The	table	shows	that,	except	for	IES,	the	integrated	measures	achieved	this	in	.48	(RCS)	

to	.62	(LISAS)	of	the	samples	when	the	RT	and	PE	effects	were	in	the	same	direcVon.		In	the	

other	simulaVon	cases,	the	integrated	measures	rarely	ajained	a	higher	effect	size	than	RT	

and	PE	(up	to	.16	in	case	B	for	LISAS;	up	to	.29	in	case	C	for	Bin-p;	and	not	higher	than	.025	in	

case	D	again	for	Bin-p).		In	other	words,	when	only	one	of	the	two	components	had	an	effect	

(either	RT	or	PE,	cases	B	and	C)	the	integrated	measures	did	not	frequently	achieve	a	much	

higher	effect	size	than	that	single	component,	but	when	the	effects	were	in	opposite	

direcVons,	the	integrated	measures	very	rarely	achieved	a	higher	effect	size	than	the	

components	did.		It	is	nevertheless	remarkable	that	the	binning	measures	performed	

extremely	well	in	Case	C	as	well	with	respect	to	the	proporVon	of	samples	in	which	a	higher	

effect	size	than	RT	and	PE	was	obtained	as	in	the	detecVon	efficiency	scores	(Figure	3).		In	

combinaVon	with	a	rather	poor	performance	in	Case	B,	this	may	be	ajributed	to	the	high	

penalty	which	is	applied	to	errors	in	the	binning	measures,	thus	creaVng	a	bias	towards	

detecVon	of	PE-related	effects.

Summary

The	present	study	varied	the	size	and	the	direcVon	of	the	effects	of	RT	and	PE	while	

keeping	the	average	effect	sizes	of	these	measures	in	balance.		The	efficiency	of	the	integrated	

measures	at	detecVng	the	RT	and	PE	effects	present	was	tested	both	at	the	level	of	the	SAT	

manipulaVon	(between	subjects)	and	the	difficulty	of	the	task	(within	subjects).		With	respect	
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to	the	SAT	manipulaVon,	the	binning	measures	by	and	large	failed	to	detect	the	very	strong	RT	

and	PE	effects,	while	the	other	integrated	measures	performed	excellently	(see	Figure	2).		In	

contrast,	all	measures	performed	excellently	in	the	detecVon	of	the	within-subject	effects	in	

simulaVon	case	A.		They	all	detected	an	effect	in	more	than	98%	of	the	samples	and	the	

obtained	effect	sizes	were	larger	than	the	RT	and	PE	effects	in	about	half	of	the	cases,	except	

for	IES	(Table	13).		Efficiency	dropped	dramaVcally	but	was	sVll	very	good	when	only	one	of	the	

basic	effects	RT	or	PE	was	present;	the	frequency	of	larger	effect	sizes	than	those	of	either	RT	

or	PE	were	far	less	frequent	but	sVll	substanVal	for	RCS	and	LISAS	in	case	B	(only	RT)	and	for	

Bin-p,	Bin-i	and	LISAS	in	case	C	(only	PE).		Finally,	in	case	D	(opposing	effects),	detecVon	

efficiency	was	more	variable,	especially	at	higher	RT	and	PE	effect	levels,	and	rarely	ever	an	

integrated	measure	achieved	a	larger	effect	size	than	RT	and	PE.		Nevertheless,	even	in	the	

lajer	case,	most	of	the	measures	obtained	quite	good	detecVon	efficiency	at	the	higher	RT/PE	

effect	sizes.		It	is	possible,	though,	that	this	rather	good	performance	is	due	to	the	fact	that	the	

effect	sizes	varied	from	sample	to	sample	in	such	a	way	that	a	weak	RT	effect	may	be	

combined	with	a	strong	PE	effect	in	the	other	direcVon	or	vice	versa.		

General	Discussion

Many	experimental	paradigms	in	cognitive	psychology	rely	on	both	speed	and	accuracy	

of	performance.		To	the	extent	that	speed	and	accuracy	are	the	result	of	common	or	

overlapping	processes,	these	paradigms	could	benefit	from	the	availability	of	valid	

performance	measures	that	integrate	speed	and	accuracy	aspects	of	performance.		Following	

up	on	recent	research	about	the	advantages	of	such	integrated	measures,	and	in	particular	the	

binning	measure	proposed	by	Hughes	et	al.	(2014),	the	present	paper	investigated	the	

usefulness	of	some	measures	that	integrate	speed	and	accuracy	of	performance	into	one	

single	score.		Several	integrated	measures	were	compared	in	three	studies,	namely	four	

measures	based	on	the	binning	procedure,	Bin-o	(the	original	binning	procedure	proposed	by	

Hughes	et	al.),	Bin-a	(an	adapted	version	avoiding	some	of	the	potential	shortcomings	of	Bin-
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o),	Bin-p	(a	further	adaptation	based	on	proportions	rather	than	absolute	numbers),	and	Bin-i	

(the	same	as	Bin-p	but	based	on	a	binning	of	the	subject’s	own	data	only),	and	three	measures	

that	combine	RT	and	PE	scores	in	a	more	direct	way,	namely	IES	(Eq.	1;	Townsend	&	Ashby,	

1978),	RCS	(Eq.	2;	Woltz	&	Was,	2006),	and	a	new	linear	combination	labeled	LISAS	(Eq.	3).		All	

studies	used	artificially	generated	data	to	evaluate	the	usefulness	of	these	measures	under	

strictly	controlled	conditions.		All	the	data	were	generated	on	the	basis	of	a	simple	model	

based	on	a	within-subject	factor	representing	the	comparison	of	a	control	and	an	experimental	

condition.

Proper-es	of	Integrated	Measures:	General	Summary

Table	14	summarizes	the	main	findings.		The	table	contains	the	answers	to	a	series	of	

simple	yes/no	questions	about	each	integrated	measure.		The	first	question	concerns	the	

validity	of	the	measures:	do	the	measures	provide	a	score	based	on	information	from	both	

components,	RT	and	PE?		Although	IES,	RCS	and	LISAS	quite	transparently	combine	RT	and	PE	

information,	the	question	was	raised	because	of	a	number	of	considerations	that	were	

provoked	by	the	rather	complex	calculation	procedure	used	for	the	binning	measures.		Study	

1,	which	was	designed	to	clarify	this	issue,	showed	that	the	Bin-o	measure	indeed	lacks	validity	

as	only	RT	and	PE	information	from	the	experimental	condition	is	used	to	calculate	a	

difference	score	between	the	control	and	the	experimental	condition.		As	a	consequence,	Bin-

o	is	not	capable	of	detecting	the	absence	of	a	difference	between	the	two	conditions	and	if	a	

difference	exists	the	measure	expresses	only	the	occurrence	of	errors	and	the	variability	in	

speed	within	the	experimental	condition5.		Hence,	Bin-o	is	not	a	valid	measure.		It	is	

remarkable	that	Hughes	et	al.	(2014)	report	several	studies	without	testing	the	construct	

validity	of	the	measure.		Study	1	also	showed	that	the	other	binning	measures	did	not	suffer	

from	these	shortcomings	and	can	basically	be	considered	as	measures	that	combine	RT	and	PE	
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into	a	score	that	validly	represents	both	components.		However,	Study	1	also	showed	that	like	

Bin-o,	the	Bin-a	measure	varies	with	the	number	of	trials	in	the	experiment,	which	impedes	

fair	comparisons	across	experiments	or	conditions	with	unequal	numbers	of	trials.		

Fortunately,	the	usage	of	Bin-a	can	be	avoided:	in	conditions	with	equal	numbers	the	Bin-a	

scores	vary	linearly	with	the	Bin-p	scores	which	are	based	on	the	same	data,	except	that	the	

calculation	is	based	on	proportions	rather	than	absolute	numbers.		For	that	reason,	Bin-a	was	

not	further	included	in	the	present	studies.		Moreover,	given	that	Bin-p	captures	the	same	

information	without	limiting	the	comparability	of	the	obtained	scoring,	Bin-a	should	be	

avoided	as	well.The	second	question	mentioned	in	Table	14	relates	to	the	statistical	properties	

of	the	(sampling)	distributions	of	the	remaining	measures,	i.e.,	after	exclusion	of	Bin-o	and	Bin-

a.		Study	2	showed	that	overall	mean,	standard	deviation	and	skewness	of	the	sampling	

distributions	of	RT,	PE,	and	the	integrated	measures	did	not	vary	much	between	a	variation	

with	RT	and	PE	effects	in	the	same	direction	and	a	variation	with	RT	and	PE	effects	in	opposing	

directions.		This	study	also	showed	that	the	degree	of	skewness	of	all	measures	widely	varied	

over	the	samples,	with	a	bias	toward	positive	skewness	for	RCS	especially	in	samples	with	low	

positive	and	negative	skew	in	the	RT	distribution.		Although,	the	asymmetry	in	the	RCS	

distribution	may	be	a	matter	of	concern	when	it	does	occur,	it	is	not	a	sufficient	basis	to	

completely	reject	this	measure.		Depending	on	the	sample	at	hand,	deviations	from	symmetry	

may	occur	in	all	measures.

In	relation	to	the	occurrence	of	asymmetry	in	the	distributions	of	RCS	and	occasionally	

in	some	of	the	other	measures,	one	could	consider	the	possibility	of	always	checking	the	

skewness	in	the	sample	at	hand.		Unfortunately,	the	skewness	measure	is	quite	sensitive	to	

outliers	and	is	in	general	only	stable	when	it	is	calculated	on	a	very	large	number	of	

observations.		Hence,	estimates	of	the	degree	of	skewness	in	samples	of	the	size	usually	taken	

in	cognitive	research	may	be	expected	to	be	rather	unreliable,	and	consequently	there	is	not	

much	need	for	concern,	except	for	samples	that	yield	clearly	asymmetric	distributions.
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The	three	next	questions	displayed	in	Table	14	were	tested	in	Study	3	and	they	concern	

two	important	properties	of	integrated	measures,	namely	(1)	to	what	extent	do	they	recover	

the	effects	present	in	the	component	measures	and	(2)	do	they	account	for	more	of	the	

variance	than	each	of	the	components	and	to	what	extent?			These	two	properties	correspond	

to	the	detection	efficiency	of	these	measures	(Eq.	7)	and	to	the	degree	to	which	they	account	

for	more	of	the	variance	than	the	component	measures	do.		Two	of	the	questions	in	Table	14	

address	detection	efficiency.		The	first	of	these	questions	concerns	the	efficiency	with	which	

the	control-experimental	contrast	is	detected	conditional	on	the	presence	of	a	contrast	effect	

in	RT	and/or	PE.		The	table	shows	that	all	five	integrated	measures	are	quite	successful	in	this	

respect.		Indeed	Figure	3	shows	that	irrespective	of	whether	the	RT	and	PE	effects	are	in	the	

same	or	opposing	directions,	or	whether	one	of	these	effects	is	absent,	all	the	integrated	

measures	report	an	integrated	effect	and	the	likelihood	of	detection	generally	increases	with	

the	size	of	the	effect	in	the	components,	except	for	large	PE	and	RT	effect	sizes	in	opposing	

directions.		Although	all	the	measures	pass	this	test,	some	of	the	measures	are	more	efficient	

than	others,	but	which	ones	are	more	efficient	depends	on	a	number	of	factors.		I	come	back	

to	this	point	later	in	this	General	Discussion.

The	second	efficiency	question	concerns	how	well	the	integrated	measures	detect	

contrasts	in	variables	orthogonal	to	the	main	contrast.		In	Study	3,	this	concerned	the	

variations	in	trade-off	strategy.		This	factor	had	really	big	effects	in	RT	and	PE,	and	only	IES,	RCS	

and	LISAS	were	capable	of	extracting	this	information.		The	two	binning	measures	(Bin-p	and	

Bin-i)	dramatically	failed	to	do	so	(Figure	2).

The	second	desirable	property	of	integrated	measures	concerns	its	added	value,	namely	

the	extent	to	which	more	of	the	variance	is	accounted	for	than	by	the	component	measures.		

Table	14	shows	the	answers	in	the	column	labeled	“Added	Value?”.		When	the	RT	and	PE	

effects	were	in	the	same	direction,	the	integrated	measures,	except	IES,	were	very	efficient	in	

accounting	for	an	even	bigger	amount	of	the	variance	than	the	maximum	achieved	by	the	
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components.		In	all	the	other	cases,	the	integrated	measures	were	less	successful.		In	cases	

with	opposing	RT	and	PE	effects,	the	integrated	measures	rarely	ever	accounted	for	a	larger	

proportion	of	the	variance	than	the	components.		In	the	cases	where	only	one	of	the	two	

components	had	an	effect,	the	integrated	measures	accounted	for	a	larger	part	of	the	variance	

than	the	effective	component	in	a	rather	small	part	of	the	samples,	except	for	the	binning	

measures	in	the	case	with	only	a	PE	effect.		This	exception	can	probably	be	accounted	for	by	

assuming	that	these	measures	assign	a	larger	weight	to	the	PE	component,	which	is	directly	

related	to	the	next	question.

The	final	issue	addressed	in	Table	14	concerns	the	question	whether	the	two	

components,	RT	and	PE,	are	represented	in	a	balanced	way	in	the	integrated	measures.		In	

particular	in	the	cases	with	unbalanced	and	opposing	effects,	Study	3	provided	some	

indications	that	the	binning	measures	are	more	sensitive	to	the	PE	than	to	the	RT	effect,	

probably	because	of	the	high	penalty	applied	to	errors.	

Poten-al	Limita-ons	of	the	Present	Studies

Before	drawing	any	conclusions	from	this	comparaVve	overview	of	the	properVes	of	the	

diverse	integrated	measures,	it	is	important	to	first	discuss	the	potenVal	limitaVons	of	the	

present	simulaVons.		Two	issues	may	be	of	importance:	the	adequacy	of	using	Monte	Carlo	

simulaVons,	and	the	adequacy	of	the	present	methodology.

The	main	issue	at	stake	here	is	whether	it	is	appropriate	to	use	Monte	Carlo	simulaVons	

rather	than	reanalyzing	relevant	exisVng	data.		Monte	Carlo	simulaVon	has	several	advantages	

over	the	usage	of	exisVng	data.		First,	it	is	possible	to	obtain	large	numbers	of	samples	without	

too	much	effort.		Second,	the	samples	can	all	be	replicaVons	of	the	same	basic	design.		Third,	

the	simplest	possible	design	can	be	used	so	that	the	data	are	not	obscured	by	other	factors	

that	could	result	in	strategic	adaptaVons	in	real	subjects.		For	all	these	reasons,	the	present	

paper	completely	relies	on	simulaVons.
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A	related	concern	is	whether	the	most	adequate	choices	have	been	made	for	the	

present	studies.		The	main	quesVon	addressed	in	the	present	paper	concerns	the	uVlity	of	

integrated	measures	of	speed	and	accuracy.		The	simplest	design	in	which	this	can	be	

implemented	is	by	using	a	contrast	between	a	control	and	an	experimental	condiVon	which	

differ	from	each	in	speed	and/or	accuracy.		The	model	in	EquaVon	4	defines	this	simple	

situaVon.		In	order	to	achieve	as	much	realism	as	possible	it	was	further	assumed	that	subjects	

differ	from	each	other	in	their	personal	speed	and	accuracy	(π j )	in	Eq.	(4).		In	order	to	check	

on	strategic	effects	of	speed-accuracy	trade-off,	Study	3	also	included	trade-off	strategy	as	a	

factor.

One	design	choice	which	may	raise	some	concern	relates	to	the	decision	to	ensure	that	

the	PE	and	RT	effect	sizes	were	of	a	comparable	size.		One	could	indeed	object	that	in	pracVce	

it	will	never	occur	that	opposing	RT	and	PE	effects	will	be	equally	strong,	and	that	exactly	in	

these	imbalanced	cases	an	integrated	measure	may	be	useful	to	obtain	a	clear	picture	of	the	

basic	findings.		Nevertheless,	if	an	integrated	measure	is	biased	towards	one	of	the	

components,	how	would	it	be	possible	to	detect	this	bias	if	the	same	component	has	also	a	

stronger	effect	size	in	the	sample.		Hence,	usage	of	a	design	in	which	RT	and	PE	effects	were	as	

much	possible	in	balance	is	the	best	way	to	find	out	about	biased	weighVng	of	the	

components.	

U-lity	of	the	Integrated	Measures

Keeping	in	mind	the	summary	of	the	findings	thus	far	and	the	consideraVons	regarding	

potenVal	limitaVons	of	the	present	series	of	simulaVons,	it	is	now	Vme	to	turn	to	the	main	

issue	that	moVvated	the	present	study,	namely	the	quesVon	concerning	the	uVlity	of	using	

integrated	speed-accuracy	measures.		It	should	already	be	clear	by	now	that	there	is	no	simple	

yes/no	answer	to	the	quesVon	whether	the	usage	of	such	measures	has	advantages.		Several	

factors	may	play	a	moderaVng	role.		The	factors	that	will	be	considered	concern	the	implicit	
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bias	of	integrated	measures,	the	uVlity	of	integraVng	speed	and	accuracy	when	they	have	

opposing	effects,	the	uVlity	when	only	one	of	the	components	yields	clear	effects,	and	the	

uVlity	when	the	effects	reinforce	each	other.		In	the	elaboraVon	of	each	of	these	condiVons	it	

is	not	only	useful	to	try	to	come	to	a	general	answer,	in	most	cases	it	will	also	be	useful	to	

check	whether	some	measures	are	more	suitable	for	the	specific	condiVon	under	discussion.	

Does	it	majer	whether	an	integrated	measure	is	biased	towards	one	of	the	

components?		Assume	for	the	sake	of	the	argument,	that	it	does	not	majer	whether	an	

integrated	measure	is	biased	towards	one	of	the	components,	and	that	there	exists	a	measure	

M	that	validly	integrates	RT	and	PE	performance	into	a	single	measure.		Further	assume	that	

this	measure	is	biased	towards	PE.		If	the	PE	effect	is	rather	weak	in	the	sample,	the	chance	

that	M	shows	a	significant	effect	would	be	rather	small	and	the	study	would	be	bound	to	

conclude	that	in	this	case,	there	is	no	integrated	effect	of	speed	and	accuracy.		On	the	

contrary,	if	the	PE	effect	in	the	study	is	rather	strong,	the	study	would	be	likely	to	conclude	the	

opposite.		Next,	consider	the	possibility	that	M	is	biased	towards	RT:	if	the	RT	effect	is	weak,	

the	measure	is	likely	not	to	detect	an	integrated	effect,	whereas	if	the	RT	effect	in	the	study	is	

strong,	this	measure	would	be	likely	to	detect	an	integrated	speed-accuracy	effect.		In	other	

words,	if	one	does	not	know	with	some	degree	of	certainty	what	the	implicit	weights	of	the	

measure	are,	it	is	difficult	to	trust	any	of	the	effects	detected	by	the	measure	when	the	

opposing	effects	are	not	in	balance.	

What	could	the	researcher	do	then?		In	fact,	there	are	only	two	options.		The	first	option	

is	that	the	researcher	of	such	a	study	decides	on	the	weights	given	to	the	two	components	RT	

and	PE.		As	long	as	this	is	not	an	arbitrary	choice	but	a	well	motivated	choice	based	on	

theoretical	considerations,	this	could	be	acceptable	to	the	scientific	community.		The	second	

option,	and	in	my	view	the	best	one,	is	to	give	equal	weight	to	the	two	components,	RT	and	

PE.
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Is	such	a	control	over	the	weights	of	the	components	possible?		In	the	three	direct	

measures	it	is.		For	example	in	IES,	it	is	possible	to	mulVply	the	numerator	of	Eq.	(1)	by	a	factor	

k	(k	>	0)	so	as	to	give	a	smaller	(k	<	1)	or	a	larger	weight	(k	>	1)	to	the	RT	component.		Similar	

operaVons	are	possible	for	RCS	and	LISAS.		Can	this	also	be	done	for	the	binning	measures?		As	

the	Bin-p	and	Bin-i	scores	are	obtained	as	the	sum	of	the	proporVon	of	RT	differences	in	each	

of	the	ten	bins	on	the	one	hand	and	the	proporVon	of	errors	weighted	by	20	on	the	other	

hand,	a	change	in	the	weight	assigned	to	the	proporVon	of	errors	should	do	the	trick.		

However,		in	order	to	do	this	properly,	it	is	necessary	to	find	the	“neutral”	point,	i.e.,	the	value	

at	which	the	RT	and	the	PE	component	are	given	equal	weight.		If	such	a	neutral	point	exists,	it	

is	possible	to	find	it	in	the	context	of	a	simulaVon	study	covering	a	large	set	of	samples.		

Unfortunately,	this	value	would	probably	depend	on	the	combinaVon(s)	of	RT	and	PE	effect	

size	used	in	the	simulaVon.		The	result	would	therefore	not	be	generalizable	to	other	

situaVons.		Hence,	each	researcher	who	wishes	to	use	a	Bin	measure	and	prefers	to	control	the	

weight	balance,	would	first	have	to	run	a	simulaVon	to	find	out	about	the	neutral	point.		It	can	

be	done,	but	it	is	not	very	pracVcal.		Consequently,		it	seems	that	only	the	integrated	measures	

based	on	a	mathemaVcally	transparent	combinaVon	of	the	two	components	leave	room	for	

the	researcher	to	change	the	relaVve	weights	assigned	to	the	two	components.

Thus	far,	it	can	be	concluded	that	it	is	important	to	know	about	the	bias	implicitly	

present	in	the	integrated	measure	if	it	is	to	be	useful.		Yet,	the	quesVon	remains	whether	

integrated	measures	can	be	useful	when	the	effects	of	speed	and	accuracy	are	contradictory.				

It	can	be	argued	that	in	such	a	situaVon,	the	most	important	informaVon	is	available	in	the	RT	

and	PE	effects	themselves,	and	that	an	integraVon	of	these	two	sources	of	informaVon	can	

only	be	meaningful	if	there	is	some	theoreVcal	or	empirical	basis	to	calculate	a	weighted	

average	of	the	two	components	or	if	that	is	not	possible	to	make	an	integraVon	that	gives	

equal	weight	to	their	effects	(not	necessarily	to	the	components	themselves).		This	opposing	

effect	situaVon	is	probably	the	most	important	one	that	can	be	encountered.		Clearly,	a	neat	
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conclusion	will	only	be	possible	if,	on	the	one	hand,	there	is	some	difference	in	effect	sizes	in	

the	sample	and	this	difference	can	be	trusted,	and	on	the	other	hand,	a	fair	integrated	

measure	is	applied.

In	situations	where	only	one	of	the	two	components	has	a	clear	and	reliable	effect,	an	

integration	of	the	two	components	may	be	useful,	especially	if	it	helps	to	account	for	a	larger	

proportion	of	the	variance.		In	the	simulations	of	Study	3,	the	design	ensured	that	the	RT	or	PE	

effects	were	effectively	zero	in	the	population	from	which	the	artificial	data	were	sampled.		In	

practice,	this	translates	to	situations	where	there	is	a	significant	RT	effect	joined	with	a	

nonsignificant	PE	effect,	or	vice	versa,	a	significant	PE	effect	joined	with	a	nonsignificant	RT	

effect.		These	are	two	interesting,	but	quite	different	cases,	which	are	therefore	discussed	

separately.

First	consider	the	situation	with	nonsignificant	PE	effects.		Is	the	usage	of	an	integrated	

speed-accuracy	measure	useful	in	such	a	situation?		In	research	with	paradigms	were	the	focus	

is	usually	on	RT	measures	(because	they	have	better	statistical	properties	than	PE	measures),	

most	researchers	will	not	care	much	about	such	outcomes.		In	particular,	researchers	will	not	

bother	about	nonsignificant	PE	effects	if	the	means	are	in	the	expected	direction	but	are	not	

significantly	different.		The	fact	that	the	researchers	have	no	knowledge	of	a	suitable	measure	

to	integrate	both	effects	so	as	to	achieve	a	more	solid	statistical	conclusion	may	be	at	the	basis	

of	the	choices	being	made.		Indeed,	until	recently	only	one	integrated	measure	was	more	

widely	known,	namely	IES.		As	the	present	article	shows,	today,	there	are	at	least	five	

measures	from	which	a	choice	can	be	made.		Could	or	should	this	make	a	difference?		The	

present	paper	shows	that	some	of	these	measures	are	useful	in	this	particular	context.		Study	

3	showed	that	in	such	situations,	detection	efficiency	was	high	for	LISAS	(83%	overall)	and	RCS	

(82%),	and	that	these	measures	also	accounted	for	more	variance	than	the	components	in	

respectively	16%	and	13%	of	the	samples.		These	two	measures	are	obviously	useful	in		

situations	with	weak	PE	effects,	bearing	in	mind	that	the	RCS	distribution	may	be	skewed.
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The	situation	with	nonsignificant	RT	effects	is	quite	different.		Many	researchers	will	

prefer	not	to	trust	the	absence	of	any	robust	RT	effects	and	will	be	reluctant	to	conclude	

anything	from	significant	PE	effects.		Again	usage	of	an	integrated	measure	may	be	considered	

here.		However,	in	view	of	the	possibility	that	some	measures	give	more	weight	to	PE	than	to	

RT	information,	it	is	possible	that	an	integrated	measure	will	not	be	able	to	extend	the	

information	beyond	the	significant	PE	effect.		This	suspicion	is	strengthened	by	the	finding	(see	

Panel	C	of	Figure	3)	that	the	more	biased	measures	(Bin-p	and	Bin-i)	achieve	the	best	detection	

rates.		However,	also	in	these	situations,	LISAS	and	RCS,	and	to	a	lesser	extent	IES,	hold	some	

promise.		All	three	measures	attained	a	sufficiently	high	detection	efficiency	(respectively	83,	

78,	and	80%)	while	accounting	for	more	of	the	variance	in	some	of	the	samples	(13%	for	LISAS	

and	RCS;	8%	for	IES).		Hence,	to	the	extent	that	the	RT	effects	are	not	really	zero	as	in	the	

present	simulations,	but	have	some	weak	significant	effects,	it	might	be	worthwhile	to	

consider	the	usage	of	one	of	these	three	integrated	measures	which	do	not	show	strong	biases	

towards	one	of	the	components.

The	results	of	Study	3	show	that	the	integrated	measures	are	in	general	most	

performant	in	situations	where	the	RT	and	PE	effects	are	clearly	present	and	point	into	the	

same	direction.		This	is	also	the	kind	of	situation	in	which	researchers,	in	general,	do	not	feel	

the	need	to	use	integrated	measures.		After	all,	this	kind	of	situation	raises	few	concerns	

because	both	RT	and	PE	have	effects	that	support	the	same	conclusion.		Yet,	this	is	exactly	the	

situation	in	which	the	integrated	measures	attained	the	highest	levels	of	detection	efficiency	

and	accounted	for	more	of	the	variance	in	a	high	proportion	of	all	samples.		It	is	also	the	kind	

of	situation	in	which	the	potential	biases	towards	one	or	the	other	component	are	least	

obvious	and	are	least	likely	to	lead	to	incorrect	conclusions.		In	fact,	all	five	integrated	

measures	detected	the	effects	in	almost	100%	of	the	samples,	and	they	accounted	for	more	of	

the	variance	than	the	component	measures	in	about	50%	of	the	samples,	except	for	IES	which	

was	successful	in	only	15%	of	the	samples,	while	LISAS	did	so	in	even	more	than	60%	of	the	
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samples.		Once	more,	it	seems	that	some	of	the	integrated	measures	may	be	helpful	to	reach	

unambiguous	conclusions	more	often	than	is	possible	with	separate	RT	and	PE	measures.		It	

should	be	stressed,	though,	that	also	in	this	kind	of	situation,	some	of	the	measures	are	more	

useful.

In	consideration	of	all	the	issues	discussed	thus	far	and	of	the	summary	of	the	findings	

schematized	in	Table	14,	it	seems	fair	to	conclude	that	there	are	several	reasons	to	avoid	the	

usage	of	the	binning	measures.		First,	they	require	a	quite	elaborate	calculation	procedure.		

Secondly,	the	binning	measures	result	in	an	imbalanced	combination	of	PE	and	RT	variation,	

which	can	only	be	rectified	by	extensive	additional	calculations.		Third,	when	the	design	in	

which	they	are	used	also	contains	other	factors	in	addition	to	the	main	contrast,	it	is	quite	

likely	that	they	will	fail	to	detect	even	large	effects	associated	with	these	other	factors.		

Fourth,	as	mentioned	at	the	occasion	of	Study	2,	the	Bin-p	measure	requires	the	data	from	the	

complete	sample	which	raises	some	doubts	about	the	independence	of	the	scores	per	subject.		

Yet,	this	can	be	avoided	by	using	Bin-i	instead,	but	the	stability	of	this	measure	will	require	

large	numbers	of	trials	per	condition.

Thus	only	IES,	RCS	and	LISAS	are	left	for	further	consideration.		These	three	measures	

are	all	valid,	and	allow	the	researcher	to	vary	the	weights	assigned	to	the	speed	and	accuracy	

components	in	calculating	the	measure.		Nevertheless,	these	three	measures	differ	from	each	

other	in	the	efficiency	with	which	they	can	recover	effects	present	in	the	two	components	and	

the	extent	to	which	they	can	account	for	more	of	the	systematic	variance	than	the	component	

RT	and	PE	measures	can.		Table	14	indicates	that	IES	would	best	be	avoided	because	it	rather	

infrequently	succeeds	in	accounting	for	a	larger	proportion	of	the	variance	than	the	RT	and	PE	

measures	account	for.		The	findings	of	Study	3	further	show	that	LISAS	better	recovers	the	

experimental-control	contrast	as	well	as	the	effect	of	a	factor	orthogonal	to	this	contrast	than	

RCS	does.		In	its	turn,	RCS	has	a	higher	detection	efficiency	than	IES.		In	sum,	if	one	wants	to	

maximize	the	chances	of	finding	a	reliable	integrated	speed-accuracy	effect,	there	are	better	
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choices	than	IES,	even	though	IES	is	a	valid	measure	and	the	results	obtained	by	using	IES	are	

expected	to	be	trustworthy.		To	the	extent	that	skewness	of	the	distribution	is	considered	to	

be	a	contra-indication,	the	RCS	measure	should	be	avoided.

The	present	simulations	do	not	only	support	suggestions	about	which	integrated	

measures	are	more	efficient	than	the	others,	by	varying	the	direction	of	the	RT	and	PE	effects,	

information	is	also	obtained	about	the	situations	in	which	integrated	measures	may	or	may	

not	be	useful.		The	introduction	already	explained	that	not	all	experiments	that	involve	speed	

and	accuracy	can	take	advantage	from	integrated	speed	and	accuracy	performance	scoring.		

When	there	is	no	reason	to	assume	that	speed	and	accuracy	are	driven	by	the	same	or	by	

overlapping	processes,	it	would	seem	counterproductive	to	use	integrated	speed-accuracy	

scores.		For	example,	when	testing	the	hypothesis	that	in	dual-task	situations	the	speed	of	

performance	is	slowed	due	to	the	coordination	of	the	two	tasks,	while	errors	are	produced	

when	the	capacity	limit	for	processing	information	is	exceeded,	integrated	measures	are	

better	not	considered.		In	contrast,	when	it	is	warranted	to	assume	that	speed	and	accuracy	

have	a	common	basis,	integrated	scoring	may	be	considered.		However,	the	results	of	Study	3	

show	that	the	decision	to	use	such	measurements	requires	an	inspection	of	the	speed	and	

accuracy	data.		More	than	an	advice	(as	formulated	by	Bruyer	&	Brysbaert,	2011),	it	is	in	fact	a	

necessity.		When	RT	and	PE	effects	are	observed	to	be	in	the	same	direction,	much	can	be	

gained	by	using	one	of	the	better	integrated	measures.		Even	when	only	one	of	the	two	effects	

attains	significance	and	the	differences	point	in	the	same	direction,	usage	of	integrated	

measures	may	still	be	advantageous.		However,	when	the	PE	and	RT	effects	are	in	opposing	

directions	and	they	are	of	equal	strength,	not	much	is	to	be	gained	from	the	usage	of	

integrated	measures.		Therefore,	it	is	a	necessity	to	always	test	the	component	effects,	RT	and	

PE,	before	calling	on	integrated	scoring.
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Conclusion

When	speed	and	accuracy	rely	on	common	processes	and	when	the	effects	of	speed	and	

error	rate	are	showing	differences	in	the	same	direcVon,	the	measures	that	directly	integrate	

RT	and	PE	can	be	useful.		However,	it	remains	necessary	to	always	first	test	the	direcVon	of	the	

RT	and	PE	effects.		Under	these	condiVons,	two	measures,	namely	LISAS	and	RCS,	are	likely	to	

be	advantageous	by	yielding	an	integrated	effect	size	that	recovers	the	informaVon	present	in	

both	component	measures	and	accounVng	for	a	larger	proporVon	of	the	variance	than	these	

component	measures	do.		Usage	of	IES	in	these	circumstances	will	not	lead	to	invalid	results,	

but	the	likelihood	of	being	advantageous	is	much	smaller.		For	many	reasons	explained	in	this	

arVcle,	the	binning	measures	are	bejer	avoided.
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Figure	Cap-ons

Figure	1.		Histograms	of	the	distribuVons	of	all	the	measures	in	the	control	condiVon	of	

the	data	set	with	effects	in	the	same	direcVon	based	on	all	the	observaVons	in	the	1000	

samples	of	the	data	set.		Each	bar	in	the	histogram	shows	the	frequency	(scaled	per	1000)	in	

intervals	of	0.5	standard	deviaVons;	the	central	bar	(0)	displays	observaVons	in	the	interval	0.5	

standard	deviaVon	below	and	above	the	mean.		The	distribuVons	in	the	other	experimental	

condiVon	and	in	both	condiVons	of	the	other	data	are	almost	idenVcal,	and	are	therefore	not	

displayed.

Figure	2.		Probability	of	detecVng	the	between-subject	effect	of	SAT	by	each	of	the	

integrated	measures	as	a	funcVon	of	the	effect	size	of	the	RT	and	PE	effect	in	the	four	

simulated	cases	(A:	RT	and	PE	effects	in	the	same	direcVon;	B:	no	PE	effects;	C:	no	RT	effects,	

and	D:	effects	in	opposing	direcVons).		Five	levels	of	effect	size	(ηp
2 )	were	disVnguished	as	

explained	in	the	text.		As	all	the	RT	and	PE	effect	sizes	were	at	levels	4	and	5,	only	these	levels	

are	shown	in	the	graph.	

Figure	3.		Probability	of	detecVng	the	within-subject	effects	by	each	of	the	integrated	

measures	as	a	funcVon	of	the	effect	size	of	the	RT	and	PE	effect	in	each	of	the	simulated	cases	

(A:	same	direcVon	effects	for	RT	and	PE;	B:	no	PE	effects;	C:	no	RT	effects;	D:	opposing	effects).		

Five	levels	of	effect	size	(ηp
2 )	were	disVnguished,	as	explained	in	the	text.
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Table	1.		Means	(standard	deviaVons	between	brackets)	of	the	measures	RT,	PE,	Bin-o,	Bin-a,	

and	Bin-p	as	a	funcVon	of	the	cells	of	the	design	of	the	simulated	2	(Cost	Presence)	x	2	

(Number	of	trials)	x	2	(Trial	type)	factorial	design	in	Study	1.

Cost	AbsentCost	AbsentCost	AbsentCost	Absent Cost	PresentCost	PresentCost	PresentCost	Present

ManyMany FewFew ManyMany FewFew

Ca E C E C E C E

RT
599
(101)

596
(100)

572
(102)

568
(101)

578
(107)

600
(108)

562
(129)

586
(130)

PE
0.105
(.035)

0.113
(.045)

0.104
(.036)

0.106
(.046)

0.053
(.046)

0.149
(.049)

0.050
(.042)

0.154
(.046)

Bin-ob
1879
(412)
1879
(412)

869
(198)
869
(198)

2024
(394)
2024
(394)

989
(235)
989
(235)

Bin-a
1860
(452)

1878
(412)

871
(208)

869
(198)

1569
(431)

2024
(393)

741
(277)

989
(235)

Bin-pc
7.15
(1.74)

7.22
(1.58)

6.70
(1.60)

6.69
(1.52)

6.03
(1.66)

7.79
(1.51)

5.70
(2.13)

7.61
(1.81)

a	The	lejers	C	and	E	refer	to	the	control	and	experimental	trial	types.

b	The	Bin-o	measure	expresses	a	difference	between	the	control	and	the	experimental	condiVon	and	

has	therefore	only	only	value	for	the	factor	of	Trial	type.

c	Note	that	the	Bin-p	averages	can	be	derived	from	the	Bin-a	averages	by	dividing	the	lajer	by	the	

number	of	trials	(260	in	the	condiVons	with	many	trials	and	130	in	the	condiVons	with	few	trials).

a	The	lejers	C	and	E	refer	to	the	control	and	experimental	trial	types.

b	The	Bin-o	measure	expresses	a	difference	between	the	control	and	the	experimental	condiVon	and	

has	therefore	only	only	value	for	the	factor	of	Trial	type.

c	Note	that	the	Bin-p	averages	can	be	derived	from	the	Bin-a	averages	by	dividing	the	lajer	by	the	

number	of	trials	(260	in	the	condiVons	with	many	trials	and	130	in	the	condiVons	with	few	trials).

a	The	lejers	C	and	E	refer	to	the	control	and	experimental	trial	types.

b	The	Bin-o	measure	expresses	a	difference	between	the	control	and	the	experimental	condiVon	and	

has	therefore	only	only	value	for	the	factor	of	Trial	type.

c	Note	that	the	Bin-p	averages	can	be	derived	from	the	Bin-a	averages	by	dividing	the	lajer	by	the	

number	of	trials	(260	in	the	condiVons	with	many	trials	and	130	in	the	condiVons	with	few	trials).

a	The	lejers	C	and	E	refer	to	the	control	and	experimental	trial	types.

b	The	Bin-o	measure	expresses	a	difference	between	the	control	and	the	experimental	condiVon	and	

has	therefore	only	only	value	for	the	factor	of	Trial	type.

c	Note	that	the	Bin-p	averages	can	be	derived	from	the	Bin-a	averages	by	dividing	the	lajer	by	the	

number	of	trials	(260	in	the	condiVons	with	many	trials	and	130	in	the	condiVons	with	few	trials).

a	The	lejers	C	and	E	refer	to	the	control	and	experimental	trial	types.

b	The	Bin-o	measure	expresses	a	difference	between	the	control	and	the	experimental	condiVon	and	

has	therefore	only	only	value	for	the	factor	of	Trial	type.

c	Note	that	the	Bin-p	averages	can	be	derived	from	the	Bin-a	averages	by	dividing	the	lajer	by	the	

number	of	trials	(260	in	the	condiVons	with	many	trials	and	130	in	the	condiVons	with	few	trials).

a	The	lejers	C	and	E	refer	to	the	control	and	experimental	trial	types.

b	The	Bin-o	measure	expresses	a	difference	between	the	control	and	the	experimental	condiVon	and	

has	therefore	only	only	value	for	the	factor	of	Trial	type.

c	Note	that	the	Bin-p	averages	can	be	derived	from	the	Bin-a	averages	by	dividing	the	lajer	by	the	

number	of	trials	(260	in	the	condiVons	with	many	trials	and	130	in	the	condiVons	with	few	trials).

a	The	lejers	C	and	E	refer	to	the	control	and	experimental	trial	types.

b	The	Bin-o	measure	expresses	a	difference	between	the	control	and	the	experimental	condiVon	and	

has	therefore	only	only	value	for	the	factor	of	Trial	type.

c	Note	that	the	Bin-p	averages	can	be	derived	from	the	Bin-a	averages	by	dividing	the	lajer	by	the	

number	of	trials	(260	in	the	condiVons	with	many	trials	and	130	in	the	condiVons	with	few	trials).

a	The	lejers	C	and	E	refer	to	the	control	and	experimental	trial	types.

b	The	Bin-o	measure	expresses	a	difference	between	the	control	and	the	experimental	condiVon	and	

has	therefore	only	only	value	for	the	factor	of	Trial	type.

c	Note	that	the	Bin-p	averages	can	be	derived	from	the	Bin-a	averages	by	dividing	the	lajer	by	the	

number	of	trials	(260	in	the	condiVons	with	many	trials	and	130	in	the	condiVons	with	few	trials).

a	The	lejers	C	and	E	refer	to	the	control	and	experimental	trial	types.

b	The	Bin-o	measure	expresses	a	difference	between	the	control	and	the	experimental	condiVon	and	

has	therefore	only	only	value	for	the	factor	of	Trial	type.

c	Note	that	the	Bin-p	averages	can	be	derived	from	the	Bin-a	averages	by	dividing	the	lajer	by	the	

number	of	trials	(260	in	the	condiVons	with	many	trials	and	130	in	the	condiVons	with	few	trials).
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Table	2.		Results	of	the	analyses	of	variance	applied	to	the	measures	RT,	PE,	Bin-o,	Bin-a	

and	Bin-p	in	Study	1	on	the	basis	of	a	2	x	2	x	2	factorial	design.		The	table	displays	the	value	of	

the	F-test	,	its	probability	level	and	the	effect	size	expressed	in	parVal	eta-squared.
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Table	3.		Results	of	the	regression	analyses	with	RT	and	PE	scores	on	control	and	

experimental	trials	as	predictors	of	the	cost	scored	by	the	binning	measures:	t-values,	and	

coefficient	of	determinaVon	(R2).

RT-C RT-E PE-C PE-E R2

Bin-o 0.51 0.38 0.01 2.80 0.35

Bin-a -3.64 3.50 -11.52 12.89 0.82

Bin-p -13.69 12.92 -41.58 46.37 0.98

Note.	The	columns	RT-C,	RT-E,	PE-C,	PE-E	contain	the	t-values	(df	=	115)	of	respecVvely	RT	in	control,	

RT	in	experimental,	PE	in	control,	and	PE	in	experimental	trials	as	predictors	of	the	cost	observed	on	

the	measures	in	the	rows	(for	Bin-o,	the	binning	score;	for	Bin-a	and	Bin-p	the	difference	of	these	

scores	in	the	control	and	experimental	trials).		The	probability	of	all	reported	t-values	was	<	.001,	

except	for	the	t-values	with	respect	to	the	Bin-o	score,	where	only	the	PE-E	predictor	reached	

significance	(p	<	.01).

Note.	The	columns	RT-C,	RT-E,	PE-C,	PE-E	contain	the	t-values	(df	=	115)	of	respecVvely	RT	in	control,	

RT	in	experimental,	PE	in	control,	and	PE	in	experimental	trials	as	predictors	of	the	cost	observed	on	

the	measures	in	the	rows	(for	Bin-o,	the	binning	score;	for	Bin-a	and	Bin-p	the	difference	of	these	

scores	in	the	control	and	experimental	trials).		The	probability	of	all	reported	t-values	was	<	.001,	

except	for	the	t-values	with	respect	to	the	Bin-o	score,	where	only	the	PE-E	predictor	reached	

significance	(p	<	.01).

Note.	The	columns	RT-C,	RT-E,	PE-C,	PE-E	contain	the	t-values	(df	=	115)	of	respecVvely	RT	in	control,	

RT	in	experimental,	PE	in	control,	and	PE	in	experimental	trials	as	predictors	of	the	cost	observed	on	

the	measures	in	the	rows	(for	Bin-o,	the	binning	score;	for	Bin-a	and	Bin-p	the	difference	of	these	

scores	in	the	control	and	experimental	trials).		The	probability	of	all	reported	t-values	was	<	.001,	

except	for	the	t-values	with	respect	to	the	Bin-o	score,	where	only	the	PE-E	predictor	reached	

significance	(p	<	.01).

Note.	The	columns	RT-C,	RT-E,	PE-C,	PE-E	contain	the	t-values	(df	=	115)	of	respecVvely	RT	in	control,	

RT	in	experimental,	PE	in	control,	and	PE	in	experimental	trials	as	predictors	of	the	cost	observed	on	

the	measures	in	the	rows	(for	Bin-o,	the	binning	score;	for	Bin-a	and	Bin-p	the	difference	of	these	

scores	in	the	control	and	experimental	trials).		The	probability	of	all	reported	t-values	was	<	.001,	

except	for	the	t-values	with	respect	to	the	Bin-o	score,	where	only	the	PE-E	predictor	reached	

significance	(p	<	.01).

Note.	The	columns	RT-C,	RT-E,	PE-C,	PE-E	contain	the	t-values	(df	=	115)	of	respecVvely	RT	in	control,	

RT	in	experimental,	PE	in	control,	and	PE	in	experimental	trials	as	predictors	of	the	cost	observed	on	

the	measures	in	the	rows	(for	Bin-o,	the	binning	score;	for	Bin-a	and	Bin-p	the	difference	of	these	

scores	in	the	control	and	experimental	trials).		The	probability	of	all	reported	t-values	was	<	.001,	

except	for	the	t-values	with	respect	to	the	Bin-o	score,	where	only	the	PE-E	predictor	reached	

significance	(p	<	.01).

Note.	The	columns	RT-C,	RT-E,	PE-C,	PE-E	contain	the	t-values	(df	=	115)	of	respecVvely	RT	in	control,	

RT	in	experimental,	PE	in	control,	and	PE	in	experimental	trials	as	predictors	of	the	cost	observed	on	

the	measures	in	the	rows	(for	Bin-o,	the	binning	score;	for	Bin-a	and	Bin-p	the	difference	of	these	

scores	in	the	control	and	experimental	trials).		The	probability	of	all	reported	t-values	was	<	.001,	

except	for	the	t-values	with	respect	to	the	Bin-o	score,	where	only	the	PE-E	predictor	reached	

significance	(p	<	.01).
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Table	4.		Averages	of	the	means,	standard	deviaVons	and	skewness	values	and	95%	

confidence	interval	of	the	skewness	values	of	RT,	PE,	Bin-p,	IES,	RCS,	and	LISAS	in	the	control	

and	the	experimental	condiVon	in	the	two	data	sets	of	Study	2.

Same	DirecVon	EffectsSame	DirecVon	EffectsSame	DirecVon	EffectsSame	DirecVon	Effects Opposing	DirecVon	EffectsOpposing	DirecVon	EffectsOpposing	DirecVon	EffectsOpposing	DirecVon	Effects

M SD

SkewnessSkewnessSkewness

M SD

SkewnessSkewnessSkewness

M SD
0.025 M 0.975

M SD
0.025 M 0.975

Correct	
RT

Ca 640 100 -0.967 -0.001 1.076 640 100 -0.961 0.024 1.076Correct	
RT E 660 100 -1.021 -0.004 1.101 660 100 -0.973 0.020 1.074

All	RT
C 640 99 -0.974 0.001 1.052 640 100 -0.971 0.023 1.084

All	RT
E 660 99 -1.011 -0.005 1.134 660 100 -0.981 0.017 1.073

PE
C 0.086 0.043 -0.618 0.218 1.180 0.116 0.045 -0.827 0.165 1.144

PE
E 0.116 0.044 -0.776 0.141 1.097 0.087 0.043 -0.707 0.194 1.190

Bin-p
C 6.61 1.49 -0.870 -0.036 0.832 7.05 1.45 -0.880 -0.013 0.876

Bin-p
E 7.30 1.45 -0.981 -0.111 0.794 6.89 1.48 -0.914 -0.068 0.821

Bin-ib
C 6.57 0.64 -0.647 0.204 1.157 7.00 0.67 -0.735 0.153 1.145

Bin-ib
E 7.31 0.65 -0.827 0.125 1.087 6.90 0.63 -0.731 0.180 1.109

IES
C 702 115 -0.926 0.062 1.127 726 119 -0.912 0.108 1.193

IES
E 748 120 -0.918 0.063 1.148 724 115 -0.975 0.095 1.116

RCS
C 1.47 0.26 -0.385 0.754 2.246 1.42 0.25 -0.394 0.709 2.373

RCS
E 1.37 0.24 -0.416 0.738 2.229 1.42 0.24 -0.443 0.693 2.291

LISAS
C 689 102 -0.979 -0.008 1.063 709 101 -0.977 0.027 1.035

LISAS
E 728 102 -1.038 -0.012 1.111 710 102 -1.090 0.016 1.067

a	The	lejers	C	and	E	refer	to	respecVvely	control	and	experimental	condiVon.	

b	Bin-i	refers	to	the	Bin-p	measure	calculated	on	the	data	of	one	single	subject	instead	of	the	

data	available	in	the	complete	sample.

a	The	lejers	C	and	E	refer	to	respecVvely	control	and	experimental	condiVon.	

b	Bin-i	refers	to	the	Bin-p	measure	calculated	on	the	data	of	one	single	subject	instead	of	the	

data	available	in	the	complete	sample.

a	The	lejers	C	and	E	refer	to	respecVvely	control	and	experimental	condiVon.	

b	Bin-i	refers	to	the	Bin-p	measure	calculated	on	the	data	of	one	single	subject	instead	of	the	

data	available	in	the	complete	sample.

a	The	lejers	C	and	E	refer	to	respecVvely	control	and	experimental	condiVon.	

b	Bin-i	refers	to	the	Bin-p	measure	calculated	on	the	data	of	one	single	subject	instead	of	the	

data	available	in	the	complete	sample.

a	The	lejers	C	and	E	refer	to	respecVvely	control	and	experimental	condiVon.	

b	Bin-i	refers	to	the	Bin-p	measure	calculated	on	the	data	of	one	single	subject	instead	of	the	

data	available	in	the	complete	sample.

a	The	lejers	C	and	E	refer	to	respecVvely	control	and	experimental	condiVon.	

b	Bin-i	refers	to	the	Bin-p	measure	calculated	on	the	data	of	one	single	subject	instead	of	the	

data	available	in	the	complete	sample.

a	The	lejers	C	and	E	refer	to	respecVvely	control	and	experimental	condiVon.	

b	Bin-i	refers	to	the	Bin-p	measure	calculated	on	the	data	of	one	single	subject	instead	of	the	

data	available	in	the	complete	sample.

a	The	lejers	C	and	E	refer	to	respecVvely	control	and	experimental	condiVon.	

b	Bin-i	refers	to	the	Bin-p	measure	calculated	on	the	data	of	one	single	subject	instead	of	the	

data	available	in	the	complete	sample.

a	The	lejers	C	and	E	refer	to	respecVvely	control	and	experimental	condiVon.	

b	Bin-i	refers	to	the	Bin-p	measure	calculated	on	the	data	of	one	single	subject	instead	of	the	

data	available	in	the	complete	sample.

a	The	lejers	C	and	E	refer	to	respecVvely	control	and	experimental	condiVon.	

b	Bin-i	refers	to	the	Bin-p	measure	calculated	on	the	data	of	one	single	subject	instead	of	the	

data	available	in	the	complete	sample.

a	The	lejers	C	and	E	refer	to	respecVvely	control	and	experimental	condiVon.	

b	Bin-i	refers	to	the	Bin-p	measure	calculated	on	the	data	of	one	single	subject	instead	of	the	

data	available	in	the	complete	sample.
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Table	5.		Effect	size	parameters	used	in	the	simulaVons	of	Study	3

Parameter Label RT PE

µ 500 0.10

α i Trial	Type 40 0.06

π j Subject 50 0.15

σ ε
2 Error	variance 19600 0.05

Note.		Except	for	µ and	σ ε2 ,	the	values	specify	the	maximum	absolute	value	the	parameter	could	take.	

In	every	staVsVcal	subject,	a	value	between	0	and	the	value	given	in	the	table	was	randomly	selected	

from	a	gaussian	distribuVon	for	π j 	,	and	from	a	uniform	distribuVon	for	α i .		To	saVsfy	the	

assumpVons	of	a	fixed	effects	model	that	Σα i = 0 ,	the	sampled	(posiVve	value)	was	used	for	one	level	

and	the	negaVve	of	the	value	was	used	for	the	other	level.		RT	data	were	sampled	from	an	ex-gaussian	

distribuVon	as	in	Studies	1	and	2.

Note.		Except	for	µ and	σ ε2 ,	the	values	specify	the	maximum	absolute	value	the	parameter	could	take.	

In	every	staVsVcal	subject,	a	value	between	0	and	the	value	given	in	the	table	was	randomly	selected	

from	a	gaussian	distribuVon	for	π j 	,	and	from	a	uniform	distribuVon	for	α i .		To	saVsfy	the	

assumpVons	of	a	fixed	effects	model	that	Σα i = 0 ,	the	sampled	(posiVve	value)	was	used	for	one	level	

and	the	negaVve	of	the	value	was	used	for	the	other	level.		RT	data	were	sampled	from	an	ex-gaussian	

distribuVon	as	in	Studies	1	and	2.

Note.		Except	for	µ and	σ ε2 ,	the	values	specify	the	maximum	absolute	value	the	parameter	could	take.	

In	every	staVsVcal	subject,	a	value	between	0	and	the	value	given	in	the	table	was	randomly	selected	

from	a	gaussian	distribuVon	for	π j 	,	and	from	a	uniform	distribuVon	for	α i .		To	saVsfy	the	

assumpVons	of	a	fixed	effects	model	that	Σα i = 0 ,	the	sampled	(posiVve	value)	was	used	for	one	level	

and	the	negaVve	of	the	value	was	used	for	the	other	level.		RT	data	were	sampled	from	an	ex-gaussian	

distribuVon	as	in	Studies	1	and	2.

Note.		Except	for	µ and	σ ε2 ,	the	values	specify	the	maximum	absolute	value	the	parameter	could	take.	

In	every	staVsVcal	subject,	a	value	between	0	and	the	value	given	in	the	table	was	randomly	selected	

from	a	gaussian	distribuVon	for	π j 	,	and	from	a	uniform	distribuVon	for	α i .		To	saVsfy	the	

assumpVons	of	a	fixed	effects	model	that	Σα i = 0 ,	the	sampled	(posiVve	value)	was	used	for	one	level	

and	the	negaVve	of	the	value	was	used	for	the	other	level.		RT	data	were	sampled	from	an	ex-gaussian	

distribuVon	as	in	Studies	1	and	2.
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Table	6.		Confidence	interval	and	median	of	the	absolute	value	of	the	effect	sizes	sampled	for	

RT	and	PE	in	the	four	simulaVon	cases	in	Study	3.

RT	effect	sizeRT	effect	sizeRT	effect	size PE	effect	sizePE	effect	sizePE	effect	size

0.025 0.50 0.975 0.025 0.50 0.975

Case	A 0.99 20.03 38.56 0.002 0.032 0.058

Case	B 0.78 20.75 39.04 0 0 0

Case	C 0 0 0 0.001 0.032 0.059

Case	D 0.998 21.24 39.08 0.002 0.032 0.059

Note.		The	table	displays	the	95%	percent	confidence	interval	of	the	effect	sizes	sampled	for	the	data	

generaVon	in	the	four	simulaVon	cases.		The	values	given	are	the	points	in	the	distribuVon	with	a	

probability	of	.025,	.5	(median)	and	.975.

Note.		The	table	displays	the	95%	percent	confidence	interval	of	the	effect	sizes	sampled	for	the	data	

generaVon	in	the	four	simulaVon	cases.		The	values	given	are	the	points	in	the	distribuVon	with	a	

probability	of	.025,	.5	(median)	and	.975.

Note.		The	table	displays	the	95%	percent	confidence	interval	of	the	effect	sizes	sampled	for	the	data	

generaVon	in	the	four	simulaVon	cases.		The	values	given	are	the	points	in	the	distribuVon	with	a	

probability	of	.025,	.5	(median)	and	.975.

Note.		The	table	displays	the	95%	percent	confidence	interval	of	the	effect	sizes	sampled	for	the	data	

generaVon	in	the	four	simulaVon	cases.		The	values	given	are	the	points	in	the	distribuVon	with	a	

probability	of	.025,	.5	(median)	and	.975.

Note.		The	table	displays	the	95%	percent	confidence	interval	of	the	effect	sizes	sampled	for	the	data	

generaVon	in	the	four	simulaVon	cases.		The	values	given	are	the	points	in	the	distribuVon	with	a	

probability	of	.025,	.5	(median)	and	.975.

Note.		The	table	displays	the	95%	percent	confidence	interval	of	the	effect	sizes	sampled	for	the	data	

generaVon	in	the	four	simulaVon	cases.		The	values	given	are	the	points	in	the	distribuVon	with	a	

probability	of	.025,	.5	(median)	and	.975.

Note.		The	table	displays	the	95%	percent	confidence	interval	of	the	effect	sizes	sampled	for	the	data	

generaVon	in	the	four	simulaVon	cases.		The	values	given	are	the	points	in	the	distribuVon	with	a	

probability	of	.025,	.5	(median)	and	.975.
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Table	7.		Means	(standard	deviaVons	between	brackets)	of	the	sampling	distribuVons	based	on	

1000	samples	for	RT,	PE,	Bin-p,	Bin-i,	IES,	RCS,	and	LISAS	in	the	simulaVon	case	with	RT	

and	PE	effects	in	the	same	direcVon	(case	A).

Trade	SpeedTrade	Speed NeutralNeutral Trade	AccuracyTrade	Accuracy

Control Experimental Control Experimental Control Experimental

RT 751	(27) 795	(27) 691	(20) 731	(21) 421	(21) 460	(21)

PE .076	(.031) .121	(.037) .104	(.038) .149	(.042) .178	(.044) .234	(.047)

Bin-p 7.63	(0.55) 8.53	(0.60) 7.35	(0.57) 8.34	(0.61) 6.22	(0.73) 7.40	(0.77)

Bin-i 6.39	(0.48) 7.42	(0.54) 6.77	(0.57) 7.85	(0.62) 7.87	(0.65) 9.05	(0.67)

IES 828	(58) 929	(72) 787	(46) 882	(58) 530	(48) 629	(62)

RCS 1.22	(.08) 1.11	(.08) 1.30	(.07) 1.17	(.07) 1.95	(.15) 1.67	(.13)

LISAS 825	(44) 903	(46) 757	(29) 833	(31) 538	(34) 613	(34)
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Table	8.		Means	(standard	deviaVons	between	brackets)	of	the	sampling	distribuVons	based	on	

1000	samples	for	RT,	PE,	Bin-p,	Bin-i,	IES,	RCS,	and	LISAS	in	the	simulaVon	case	with	RT	

but	no	PE	effects	(case	B).

Trade	SpeedTrade	Speed NeutralNeutral Trade	AccuracyTrade	Accuracy

Control Experimental Control Experimental Control Experimental

RT 754	(26) 794	(27) 689	(21) 730	(21) 419	(20) 459	(21)

PE .098	(.032) .099	(.032) .124	(.038) .124	(.038) .203	(.042) .203	(.042)

Bin-p 7.90	(0.56) 8.27	(0.53) 7.61	(0.57) 8.00	(0.55) 6.63	(0.71) 6.90	(0.70)

Bin-i 6.69	(0.49) 7.12	(0.46) 7.05	(0.57) 7.50	(0.55) 8.23	(0.64) 8.62	(0.61)

IES 856	(61) 901	(62) 805	(49) 852	(50) 548	(48) 599	(52)

RCS 1.20	(.08) 1.14	(.07) 1.28	(.07) 1.21	(.06) 1.91	(.15) 1.74	(.13)

LISAS 842	(44) 883	(44) 771	(30) 811	(29) 552	(32) 592	(33)
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Table	9.		Means	(standard	deviaVons	between	brackets)	of	the	sampling	distribuVons	based	on	

1000	samples	for	RT,	PE,	Bin-p,	Bin-i,	IES,	RCS,	and	LISAS	in	the	simulaVon	case	with	PE	but	no	

RT	effects	(case	C).

Trade	SpeedTrade	Speed NeutralNeutral Trade	AccuracyTrade	Accuracy

Control Experimental Control Experimental Control Experimental

RT 772	(23) 776	(23) 710	(17) 710	(17) 439	(18) 440	(18)

PE .077	(.029) .123	(.037) .102	(.037) .149	(.041) .173	(.044) .231	(.048)

Bin-p 7.84	(0.49) 8.39	(0.59) 7.51	(0.55) 8.15	(0.60) 6.28	(0.74) 7.20	(0.79)

Bin-i 6.62	(0.42) 7.23	(0.53) 6.96	(0.54) 7.63	(0.60) 8.01	(0.64) 8.81	(0.69)

IES 852	(53) 909	(68) 807	(45) 858	(54) 551	(47) 599	(58)

RCS 1.19	(.07) 1.14	(.07) 1.27	(.06) 1.21	(.07) 1.88	(.14) 1.76	(.15)

LISAS 846	(40) 884	(44) 774	(27) 813	(29) 553	(33) 591	(33)
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Table	10.		Means	(standard	deviaVons	between	brackets)	of	the	sampling	distribuVons	based	

on	1000	samples	for	RT,	PE,	Bin-p,	Bin-i,	IES,	RCS,	and	LISAS	in	the	simulaVon	case	with	RT	and	

PE	effects	in	opposing	direcVons	(case	D).

Trade	SpeedTrade	Speed NeutralNeutral Trade	AccuracyTrade	Accuracy

Control Experimental Control Experimental Control Experimental

RT 755	(25) 791	(25) 690	(21) 731	(20) 419	(21) 459	(20)

PE .121	(.035) .075	(.030) .150	(.041) .103	(.035) .235	(.047) .176	(.042)

Bin-p 8.17	(0.58) 7.98	(0.50) 7.98	(0.61) 7.70	(0.53) 7.14	(0.79) 6.46	(0.70)

Bin-i 6.99	(0.52) 6.80	(0.44) 7.43	(0.62) 7.19	(0.52) 8.67	(0.70) 8.24	(0.61)

IES 882	(65) 870	(57) 834	(55) 830	(46) 574	(57) 577	(48)

RCS 1.18	(.08) 1.16	(.07) 1.24	(.07) 1.23	(.06) 1.84	(.16) 1.79	(.13)

LISAS 863	(44) 865	(41) 794	(31) 795	(29) 573	(34) 575	(33)
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Table	11.		Average	(standard	deviaVons	within	brackets)	effect	size	(ηp
2 )	of	Trial	type	

obtained	with	RT,	PE,	Bin-p,	Bin-i,	IES,	RCS,	and	LISAS	in	each	of	the	four	simulaVon	cases	(A-D)	

of	Study	3.

Case	A Case	B Case	C Case	D

RT .67	(.28) .65	(.30) .04	(.05) .64	(.30)

PE .58	(.25) .03	(.05) .59	(.26) .60	(.24)

Bin-p .75	(.18) .39	(.25) .57	(.26) .39	(.26)

Bin-i .77	(.17) .46	(.27) .55	(.25) .36	(.25)

IES .69	(.17) .50	(.28) .43	(.22) .30	(.24)

RCS .76	(.18) .54	(.27) .45	(.25) .32	(.25)

LISAS .79	(.16) .59	(.30) .50	(.25) .36	(.27)

Note.	Case	A	has	RT	and	PE	effects	in	the	same	direcVon,	B	has	no	PE	effects,	C	has	no	RT	effects,	and	

D	has	RT	and	PE	effects	in	opposing	direcVons.

Note.	Case	A	has	RT	and	PE	effects	in	the	same	direcVon,	B	has	no	PE	effects,	C	has	no	RT	effects,	and	

D	has	RT	and	PE	effects	in	opposing	direcVons.

Note.	Case	A	has	RT	and	PE	effects	in	the	same	direcVon,	B	has	no	PE	effects,	C	has	no	RT	effects,	and	

D	has	RT	and	PE	effects	in	opposing	direcVons.

Note.	Case	A	has	RT	and	PE	effects	in	the	same	direcVon,	B	has	no	PE	effects,	C	has	no	RT	effects,	and	

D	has	RT	and	PE	effects	in	opposing	direcVons.

Note.	Case	A	has	RT	and	PE	effects	in	the	same	direcVon,	B	has	no	PE	effects,	C	has	no	RT	effects,	and	

D	has	RT	and	PE	effects	in	opposing	direcVons.
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Table	12.		Average	effect	size	(ηp
2 )	of	RT	and	PE	effects	at	each	of	the	five	effect	size	levels,	and	

number	of	samples	(between	brackets)	at	each	level	in	Study	3.

1 2 3 4 5

Case	A

Between .0	(0) .0	(0) .0	(0) .49	(48) .53	(952)

Case	A Within .07	(15) .21	(28) .38	(71) .57	(346) .73	(540)Case	A

InteracVon .07	(829) .17	(161) .25	(10) .0	(0) .0	(0)

Case	B

Between .0	(0) .0	(0) .0	(0) .49	(47) .52	(953)

Case	B Within .05	(143) .17	(86) .28	(101) .37	(201) .46	(469)Case	B

InteracVon .06	(905) .16	(93) .21	(2) .0	(0) .0	(0)

Case	C

Between .0	(0) .0	(0) .0	(0) .48	(58) .52	(942)

Case	C Within .05	(128) .17	(87) .28	(140) .38	(498) .45	(147)Case	C

InteracVon .06	(827) .17	(168) .30	(5) .0	(0) .0	(0)

Case	D

Between .0	(0) .0	(0) .0	(0) .49	(43) .53	(957)

Case	D Within .07	(20) .22	(31) .37	(66) .57	(341) .72	(542)Case	D

InteracVon .07	(815) .17	(179) .28	(6) .0	(0) .0	(0)

Note.		The	numbers	between	brackets	add	up	to	1000	for	all	the	effects.Note.		The	numbers	between	brackets	add	up	to	1000	for	all	the	effects.Note.		The	numbers	between	brackets	add	up	to	1000	for	all	the	effects.Note.		The	numbers	between	brackets	add	up	to	1000	for	all	the	effects.Note.		The	numbers	between	brackets	add	up	to	1000	for	all	the	effects.Note.		The	numbers	between	brackets	add	up	to	1000	for	all	the	effects.Note.		The	numbers	between	brackets	add	up	to	1000	for	all	the	effects.
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Table	13.		ProporVon	of	samples	in	which	the	integrated	measures	obtained	a	larger	

effect	size	for	the	factor	control	versus	experimental	condiVon	than	the	maximum	shown	by	

the	composing	RT	and	PE	measures.

Case	A Case	B Case	C Case	D

Bin-p 0.487 0.039 0.287 0.024

Bin-i 0.553 0.058 0.195 0.014

IES 0.154 0.047 0.032 0.004

RCS 0.480 0.134 0.076 0.008

LISAS 0.619 0.160 0.126 0.015
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Table	14.		Summary	of	the	findings	of	the	seven	integrated	measures	studied	in	the	present	

paper.

Measure Valid? Symmetric?
Contrast	
Efficient?

Other	
Efficient?

Added	
Value? Balance?

Bin-o − NA NA NA NA NA

Bin-a 0 NA NA NA NA NA

Bin-p + + + − + −

Bin-i + + + − + −

IES + + + + − +

RCS + − + + + +

LISAS + + + + + +

The	body	of	the	table	summarizes	the	properVes	regarding	validity	of	the	measure	(Valid?),	whether	

the	sampling	distribuVon	is	symmetric	rather	than	skewed	(Symmetric?),	whether	the	measure	

efficiently	detects	a	contrast	when	it	is	present	in	RT	and	PE	(Contrast	Efficient?),	whether	the	

measure	efficiently	detects	an	effect	in	a	variable	outside	the	contrast	(Other	Efficient?),	whether	the	

measure	accounts	for	a	larger	part	of	the	variance	than	the	components	(Added	Value?),	and	whether	

the	two	components	are	integrated	in	a	balanced	way	(Balance?).		Each	cell	contains	either	a	minus	

sign	(property	not	present),	a	plus	sign	(property	present),	a	zero	(property	only	partly	present),	or	the	

indicaVon	“NA”	(not	applicable).

The	body	of	the	table	summarizes	the	properVes	regarding	validity	of	the	measure	(Valid?),	whether	

the	sampling	distribuVon	is	symmetric	rather	than	skewed	(Symmetric?),	whether	the	measure	

efficiently	detects	a	contrast	when	it	is	present	in	RT	and	PE	(Contrast	Efficient?),	whether	the	

measure	efficiently	detects	an	effect	in	a	variable	outside	the	contrast	(Other	Efficient?),	whether	the	

measure	accounts	for	a	larger	part	of	the	variance	than	the	components	(Added	Value?),	and	whether	

the	two	components	are	integrated	in	a	balanced	way	(Balance?).		Each	cell	contains	either	a	minus	

sign	(property	not	present),	a	plus	sign	(property	present),	a	zero	(property	only	partly	present),	or	the	

indicaVon	“NA”	(not	applicable).

The	body	of	the	table	summarizes	the	properVes	regarding	validity	of	the	measure	(Valid?),	whether	

the	sampling	distribuVon	is	symmetric	rather	than	skewed	(Symmetric?),	whether	the	measure	

efficiently	detects	a	contrast	when	it	is	present	in	RT	and	PE	(Contrast	Efficient?),	whether	the	

measure	efficiently	detects	an	effect	in	a	variable	outside	the	contrast	(Other	Efficient?),	whether	the	

measure	accounts	for	a	larger	part	of	the	variance	than	the	components	(Added	Value?),	and	whether	

the	two	components	are	integrated	in	a	balanced	way	(Balance?).		Each	cell	contains	either	a	minus	

sign	(property	not	present),	a	plus	sign	(property	present),	a	zero	(property	only	partly	present),	or	the	

indicaVon	“NA”	(not	applicable).

The	body	of	the	table	summarizes	the	properVes	regarding	validity	of	the	measure	(Valid?),	whether	

the	sampling	distribuVon	is	symmetric	rather	than	skewed	(Symmetric?),	whether	the	measure	

efficiently	detects	a	contrast	when	it	is	present	in	RT	and	PE	(Contrast	Efficient?),	whether	the	

measure	efficiently	detects	an	effect	in	a	variable	outside	the	contrast	(Other	Efficient?),	whether	the	

measure	accounts	for	a	larger	part	of	the	variance	than	the	components	(Added	Value?),	and	whether	

the	two	components	are	integrated	in	a	balanced	way	(Balance?).		Each	cell	contains	either	a	minus	

sign	(property	not	present),	a	plus	sign	(property	present),	a	zero	(property	only	partly	present),	or	the	

indicaVon	“NA”	(not	applicable).

The	body	of	the	table	summarizes	the	properVes	regarding	validity	of	the	measure	(Valid?),	whether	

the	sampling	distribuVon	is	symmetric	rather	than	skewed	(Symmetric?),	whether	the	measure	

efficiently	detects	a	contrast	when	it	is	present	in	RT	and	PE	(Contrast	Efficient?),	whether	the	

measure	efficiently	detects	an	effect	in	a	variable	outside	the	contrast	(Other	Efficient?),	whether	the	

measure	accounts	for	a	larger	part	of	the	variance	than	the	components	(Added	Value?),	and	whether	

the	two	components	are	integrated	in	a	balanced	way	(Balance?).		Each	cell	contains	either	a	minus	

sign	(property	not	present),	a	plus	sign	(property	present),	a	zero	(property	only	partly	present),	or	the	

indicaVon	“NA”	(not	applicable).

The	body	of	the	table	summarizes	the	properVes	regarding	validity	of	the	measure	(Valid?),	whether	

the	sampling	distribuVon	is	symmetric	rather	than	skewed	(Symmetric?),	whether	the	measure	

efficiently	detects	a	contrast	when	it	is	present	in	RT	and	PE	(Contrast	Efficient?),	whether	the	

measure	efficiently	detects	an	effect	in	a	variable	outside	the	contrast	(Other	Efficient?),	whether	the	

measure	accounts	for	a	larger	part	of	the	variance	than	the	components	(Added	Value?),	and	whether	

the	two	components	are	integrated	in	a	balanced	way	(Balance?).		Each	cell	contains	either	a	minus	

sign	(property	not	present),	a	plus	sign	(property	present),	a	zero	(property	only	partly	present),	or	the	

indicaVon	“NA”	(not	applicable).

The	body	of	the	table	summarizes	the	properVes	regarding	validity	of	the	measure	(Valid?),	whether	

the	sampling	distribuVon	is	symmetric	rather	than	skewed	(Symmetric?),	whether	the	measure	

efficiently	detects	a	contrast	when	it	is	present	in	RT	and	PE	(Contrast	Efficient?),	whether	the	

measure	efficiently	detects	an	effect	in	a	variable	outside	the	contrast	(Other	Efficient?),	whether	the	

measure	accounts	for	a	larger	part	of	the	variance	than	the	components	(Added	Value?),	and	whether	

the	two	components	are	integrated	in	a	balanced	way	(Balance?).		Each	cell	contains	either	a	minus	

sign	(property	not	present),	a	plus	sign	(property	present),	a	zero	(property	only	partly	present),	or	the	

indicaVon	“NA”	(not	applicable).
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