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1 Introduction

Given a symmetric (formally self-adjoint) differential expression M of order n > 2 and a
positive weight function w, we characterize all self-adjoint realizations of the equation

My = λw y on J = (a, b), −∞ ≤ a < b ≤ ∞ (1.1)

in the Hilbert space H = L2(J, w). (For the case n = 2, see the book [42].) A self-adjoint
realization of equation (1.1) is an operator S which satisfies

Smin ⊂ S = S∗ ⊂ Smax, (1.2)

where Smin and Smax are the minimal and maximal operators of (1.1). Clearly each such
operator S is an extension of Smin and a restriction of Smax. These operators S are generally
referred to as self-adjoint extensions of the minimal operator Smin but are characterized as
restrictions of the maximal operator Smax. How many independent restrictions on Dmax are
required? What are these restrictions?

BCorresponding author. Email: zettl@msn.com

http://www.math.u-szeged.hu/ejqtde/


2 X. Hao, M. Zhang, J. Sun and A. Zettl

The answer to the first question is well known and is given by the deficiency index d of
the minimal operator Smin.

An answer to the second question was found by Everitt and Markus in their monograph
[8], see also [9]. They characterized self-adjoint boundary conditions in terms of Lagrangian
subspaces of symplectic spaces using methods from symplectic algebra and geometry.

There are two other approaches to answering the second question. One of these uses the
method of ‘boundary triplets’ to determine self-adjoint operators in the Hilbert space H. This
approach has an extensive literature dating back to the middle of the 20th century but with
some major recent developments. See the papers by V. I. and M. I. Gorbachuk [13], Derkach,
Hassi, Malamud and de Snoo [5], Gorimov, Mikhailets and Pankrashkin [14], Kholkin [20],
Mogilevskii [22–26] and the book by Rofe-Beketov and Kholkin [33] with its 941 references.

Our approach uses the GKN (Galzman–Krein–Naimark) theorem. This theorem was so
named by Everitt and Zettl [11] in honor of the work of these authors for reasons given in
Section 9 of [11]. This approach also has an extensive literature dating back to the middle of
the 20th century and with some major recent developments. See the survey paper by Sun and
Zettl [43].

In this paper we characterize the self-adjoint operators S in H satisfying (1.2). This char-
acterization is based on LC solutions. These are solutions near an endpoint of equation (1.1)
for some real value of λ. In the maximal deficiency case d = n, all solutions of (1.1) are in H
for any λ, real or complex, and any solution basis for a real value of λ can be used to describe
all self-adjoint domains. In the minimal deficiency case d = 0 the operator Smin is self-adjoint
and has no proper self-adjoint extension.

In the much more difficult intermediate deficiency case, 0 < d < n, it is not clear which
solutions contribute to the determination of the singular self-adjoint domains and which ones
do not. Here we identify those which do contribute and call them LC solutions in analogy
with the case when d = n, particularly for n = 2 when we have the celebrated Weyl limit-circle
case. Solutions which lie in H but do not contribute to the characterization of the self-adjoint
domains are called LP solutions, again in analogy with the second order limit-point case when
there is no boundary condition needed at a limit-point endpoint to determine a self-adjoint
operator. However, in contrast to the second order case, for n > 2 a solution basis consists of
three types of solutions: LC, LP and those not in H and only the LC solutions contribute to
the characterization of the self-adjoint domains.

The construction of LC solutions is based on the assumption that for some real value of the
spectral parameter λ there exist d linearly independent solutions of equation (1.1) which are
square-integrable near each endpoint. It is well known that, if this assumption does hold, then
the essential spectrum of every self-adjoint extension S covers the whole real line (−∞, ∞). In
this case if there is an eigenvalue for some S, it is embedded in the essential spectrum. There
seems to be little known, other than examples, about boundary conditions which produce
such an eigenvalue, indeed these seem to be coincidental. Thus this is a ‘mild’ additional
assumption.

Our characterization reduces to that previously found by Wang–Sun–Zettl [37] for the
even order case with real coefficients and one regular endpoint and its extension by Hao–
Sun–Wang–Zettl [15] to the case when both endpoints are singular. The characterization in
both papers is given in terms of LC solutions. Such solutions were first constructed by Sun
[34] (without the additional assumption) using complex values of the spectral parameter λ. In
[15,37] real values of λ were used. This real λ characterization was achieved with a significant
modification of Sun’s method and led to obtaining information about the discrete, continuous,
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and essential spectrum of these operators [16,17,28,29,35]. It also led to general classification
results for self-adjoint boundary conditions as separated, coupled, and mixed. For n = 4
canonical forms for regular and singular self-adjoint boundary conditions for all three types
were found [18, 19].

This classification clarified a point made by Everitt and Markus in [8, 9] about nonreal
boundary conditions for self-adjoint operators S. They state:

“We provide an affirmative answer [. . . ] to a long standing open question concerning the existence
of real differential expressions of even order ≥ 4, for which there are non-real self-adjoint differential
operators specified by strictly separated boundary conditions [. . . ] This is somewhat surprising because
it is well known that for order n = 2 strictly separated conditions can produce only real operators
(that is, any given such complex conditions can always be replaced by corresponding real boundary
conditions.)”

It is clear from [38] that such conditions occur naturally and explicitly for regular and singular
problems for all n = 2k, k > 1. Furthermore, the analysis of Wang, Sun and Zettl [38] shows that
it is not the order of the equation which is the relevant factor for the existence of non-real separated
self-adjoint boundary conditions but the number of boundary conditions. If there is only one, regular
or singular, separated boundary condition at a given endpoint, as must be the case for n = 2, then
it can always be replaced by an equivalent real condition. On the other hand if there are two or more
separated conditions at a given regular or singular endpoint, then some of these are not equivalent to
real conditions.

In [40] Yao–Sun–Zettl found a 1–1 correspondence between the EM symplectic geome-
try characterization [8] and the HSWZ Hilbert space characterization [15] thereby creating
a ‘bridge’ for the study of differential operators using methods of symplectic algebra and
geometry.

Our proof is in the spirit of the proofs in [15, 37] but there are some significant differences
between even and odd order differential operators and real and complex coefficients. In
particular, although our construction uses solutions for real λ these solutions cannot be chosen
to be real valued in contrast to the even order case with real coefficients.

We believe our characterization will also yield information about the spectrum of these
operators including the odd order ones. We plan to investigate this in a subsequent paper.

See the survey paper [43] for more information about self-adjoint ordinary differential
operators in Hilbert space, additional references, historical comments, etc.

John von Neumann
“[. . . ] when America’s National Academy of Science asked shortly before his death what he thought

were his three greatest achievements [. . . ] Johnny replied to the academy that he considered his most
important contributions to have been on the theory of self-adjoint operators in Hilbert space, and on the
mathematical foundations of quantum theory and the ergotic theorem.”

Macrae’s biography of John von Neumann [31]

Applications
“From the point of view of applications, the most important single class of operators are the differential
operators. The study of these operators is complicated by the fact that they are necessarily unbounded.
Consequently, the problem of choosing a domain for a differential operator is by no means trivial; [. . . ]
for unbounded operators the choice of domains can be quite crucial”.

Dunford–Schwartz, Vol. II ([6, p. 1278])

The organization of the paper is as follows: this introduction is followed by a brief discus-
sion of the basic theory of first order systems of differential equations and their relationship
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to very general n-th order scalar equations in Section 2. Section 3 contains the statement of
the characterization. The proof is given in Section 4 along with several other results, some of
which we believe are of independent interest. In particular the decomposition of the maximal
domain:

Dmax(a, b) = Dmin(a, b)u span{u1, . . . , uma}u span{v1, . . . , vmb} (1.3)

here u1, . . . , uma , v1, . . . , vmb are the LC solutions at a, b, respectively. This is the ode version of
the abstract von Neumann formula for the adjoint of a symmetric operator in Hilbert space. It
plays a critical role the proof of the characterization of self-adjoint operators and, we believe,
will be useful in the study of other classes of operators in Hilbert space.

2 Preliminaries

In this section we summarize some basic facts about general symmetric quasi-differential
equations of even and odd order with real or complex coefficients for the convenience of the
reader. For a comprehensive discussion of these equations and their relationship to the classi-
cal symmetric (formally self-adjoint) case discussed in the well known books by Coddington
and Levinson [4] and Dunford and Schwartz [6] as well as to the ‘special’ symmetric quasi-
differential expressions studied in Naimark [30], as well as additional references, historical
remarks and other comments, notation, definitions, etc., the reader is referred to the recent
survey article by Sun and Zettl [43].

These expressions generate symmetric differential operators in the Hilbert space L2(J, w)

and it is these operators and their self-adjoint extensions which are studied here.

Definition 2.1. Let J = (a, b), −∞ ≤ a < b ≤ ∞. For w ∈ Lloc(J, R), w > 0 a.e. in J,
L2(J, w) denotes the Hilbert space of functions f : J → C satisfying

∫
J | f |

2w < ∞ with inner
product ( f , g)w =

∫
J f g w. Such a w is called a ‘weight function’. Here Lloc(J, R) denotes

the real valued functions which are Lebesgue-integrable on every compact subinterval of J
and L(J, R) denotes the real valued functions which are Lebesgue-integrable on the whole
interval J.

Notation 2.2. Let R denote the real numbers, C the complex numbers, N = {1, 2, 3, . . . }, N0 =

{0, 1, 2, 3, . . . }, N2 = {2, 3, 4, . . . }, J = (a, b) for −∞ ≤ a < b ≤ ∞, Mnk(X) the n× k matrices
with entries from X, Mn(X) = Mnk(X) when n = k, Mn1(X) is also denoted by Xn; L(J, R) and
L(J, C) the Lebesgue integrable real and complex valued functions on J, respectively, Lloc(J, R)

and Lloc(J, C) the real and complex valued functions which are Lebesgue integrable on all
compact subintervals of J, respectively. We also use Lloc(J) = Lloc(J, C) and L(J) = L(J, C).
ACloc(J) denotes the complex valued functions which are absolutely continuous on compact
subintervals of J and AC(J) denotes the absolutely continuous functions on J, Cj(J) denotes
the complex functions on J which have j continuous derivatives. D(A) denotes the domain of
the operator A.

Let J = (a, b) be an interval with −∞ ≤ a < b ≤ ∞ and let n > 2 be a positive integer
(even or odd). Let

Zn(J) :=
{

Q = (qrs)
n
r,s=1, qr,r+1 6= 0 a.e. on J, q−1

r,r+1 ∈ Lloc(J), 1 ≤ r ≤ n− 1,

qrs = 0 a.e. on J, 2 ≤ r + 1 < s ≤ n; qrs ∈ Lloc(J), s 6= r + 1, 1 ≤ r ≤ n− 1
}

. (2.1)
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For Q ∈ Zn(J) we define
V0 := {y : J → C, y is measurable} (2.2)

and
y[0] := y (y ∈ V0). (2.3)

Inductively, for r = 1, . . . , n, we define

Vr =
{

y ∈ Vr−1 : y[r−1] ∈ (ACloc(J))
}

, (2.4)

y[r] = q−1
r,r+1

{
y[r−1]′ −

r

∑
s=1

qrsy[s−1]

}
(y ∈ Vr), (2.5)

where qn,n+1 := 1, and ACloc(J) denotes the set of complex valued functions which are abso-
lutely continuous on all compact subintervals of J. Finally we set

M y = MQ y := iny[n] on J, (y ∈ Vn, i =
√
−1). (2.6)

The expression M = MQ is called the quasi-differential expression associated with Q. For
Vn we also use the notations V(M) and D(Q). The function y[r] (0 ≤ r ≤ n) is called the
r-th quasi-derivative of y. Since the quasi-derivative depends on Q, we sometimes write y[r]Q

instead of y[r].

Remark 2.3. The operator M : D(Q)→ Lloc(J) is linear.

Remark 2.4. Note that the differential expression MQ in equation (2.6) requires only local
integrability assumptions on the coefficients (2.1).

The initial value problem associated with Y′ = AY + F has a unique solution.

Proposition 2.5. For each F ∈ (Lloc(J))n, each α in J and each C ∈ Cn there is a unique Y ∈
(ACloc(J))n such that

Y′ = AY + F and Y(α) = C. (2.7)

Proof. See Chapter 1 in [42].

From Proposition 2.5, we immediately infer the following corollary.

Corollary 2.6. For each f ∈ Lloc(I), each α ∈ J and c0, . . . , cn−1 ∈ C there is a unique y ∈ D(Q)

such that
y[n] = f and y[r](α) = cr (r = 0, . . . , n− 1). (2.8)

If f ∈ L(J), J is bounded and all components of Q are in L(J), then y ∈ AC(J).

Definition 2.7 (Regular endpoints). Let Q ∈ Zn(J), J = (a, b). The expression M = MQ is said
to be regular at a if for some c, a < c < b, we have

q−1
r,r+1 ∈ L(a, c), r = 1, . . . , n− 1;

qrs ∈ L(a, c), 1 ≤ r, s ≤ n, s 6= r + 1.

Similarly the endpoint b is regular if for some c, a < c < b, we have

q−1
r,r+1 ∈ L(c, b), r = 1, . . . , n− 1;

qrs ∈ L(c, b), 1 ≤ r, s ≤ n, s 6= r + 1.
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Note that, from (2.1) it follows that if the above hold for some c ∈ J then they hold for any
c ∈ J. We say that M is regular on J, or just M is regular, if M is regular at both endpoints.
Equation (1.1) is regular at a if M is regular at a and w is integrable at a, i.e. there is a c ∈ (a, b)
such that w ∈ L(a, c). Similarly for the endpoint b. We say that equation (1.1) is regular if it is
regular at both endpoints.

Next we give the definition of symmetric quasi-differential expressions and indicate how
they are are constructed. For examples and illustrations see [43].

Definition 2.8. Let Q ∈ Zn(J) and let M = MQ be defined as (2.6). Assume that

Q = −E−1
n Q∗En, where En = ((−1)rδr,n+1−s)

n
r,s=1. (2.9)

Then we call Q an L-symmetric matrix and M = MQ is called a symmetric differential expres-
sion.

Definition 2.9. The symplectic matrix

Ek = ((−1)rδr,k+1−s)
k
r,s=1, k = 2, 3, 4, 5, . . . (2.10)

plays an important role in the theory of self-adjoint differential operators.

Next we define the maximal and minimal differential operators.

Definition 2.10. Let Q ∈ Zn(J) satisfy (2.9) and let M = MQ be the corresponding differential
symmetric differential expression.The maximal operator Smax generated by M is defined by

Dmax =
{

u ∈ L2(J, w) : u[0], u[1], . . . , u[n−1] are absolutely continuous in (a, b),

and w−1Mu ∈ L2(J, w)
}

,

Smaxu = w−1Mu, u ∈ Dmax.

The minimal operator Smin can be defined by

Smin = S∗max.

The next lemma justifies this definition.

Lemma 2.11. Let Smin and Smax be defined as above. Then Smin and Smax are closed, densely defined,
symmetric operators in H. Furthermore S∗min = Smax.

Proof. See [39].

Lemma 2.12. Suppose M is regular at c. Then for any y ∈ Dmax the limits

y[r](c) = lim
t→c

y[r](c)

exist and are finite, r = 0, . . . , n − 1. In particular this holds at any regular endpoint and at each
interior point of J. At an endpoint the limit is the appropriate one sided limit.

Proof. See [30] or [39]. Although this lemma is more general than the corresponding result in
these references, the same method of proof can be used here.
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Notation 2.13. Let a < c < b. Below we will also consider equation (2.6) and the operators
generated by it on the intervals (a, c) and (c, b). Note that if Q ∈ Zn(J), then it follows that
Q ∈ Zn(a, c), Q ∈ Zn(c, b) and we can study equation (2.6) on (a, c) and (c, b) as well as
on J = (a, b). Also (2.9) holds on (a, c) and on (c, b). In particular the minimal and maximal
operators are defined on these two subintervals and we can also study the operator theory
generated by (2.6) in the Hilbert spaces L2((a, c), w) and L2((c, b), w). Below we will use the
notation Smin(I), Smax(I) for the minimal and maximal operators on the interval I for I =

(a, c), I = (c, b), I = (a, b) = J. The interval J = (a, b) may be omitted when it is clear from
the context. So we make the following definition.

Definition 2.14. Let a < c < b. Let d+a , d+b denote the dimension of the solution space of
My = i wy lying in L2(a, c, w) and L2(c, b, w), respectively, and let d−a , d−b denote the dimension
of the solution space of My = −i wy lying in L2(a, c, w) and L2(c, b, w), respectively. Then d+a
and d−a are called the positive deficiency index and the negative deficiency index of Smin(a, c),
respectively. Similarly for d+b and d−b . Also d+, d− denote the deficiency indices of Smin(a, b);
these are the dimensions of the solution spaces of My = i wy, My = −i wy lying in L2(a, b, w).
If d+a = d−a , then the common value is denoted by da and is called the deficiency index of
Smin(a, c), or the deficiency index at a. Similarly for db. Note that da, db are independent of c.
If d+ = d−, then we denote the common value by d and call it the deficiency index of Smin(a, b)
or of Smin.

The relationships between da, db and d are well known and given in the next lemma along
with some additional information.

Lemma 2.15. For d+a , d+b , d−a , d−b , d+, d−, da, db defined as Definition 2.14, we have

(1) d+ = d+a + d+b − n, d− = d−a + d−b − n;

(2) if d+a = d−a = da, d+b = d−b = db, then [ n+1
2 ] ≤ da, db ≤ n;

(3) the minimal operator Smin has self-adjoint extensions in H if and only if d+ = d−, in this case
we let d = d+ = d−. In the even order case, if d has the minimum value, then Smin is self-
adjoint with no proper self-adjoint extension; in all other cases Smin has an uncountable number
of self-adjoint extensions, i.e. there are an uncountable number of operators S in H satisfying

Smin ⊂ S = S∗ ⊂ Smax.

These are the operators we characterize in this paper in terms of two-point boundary conditions.

Proof. This is well known, e.g. see the book [39].

Remark 2.16. Let a < c < b. Below we assume that d+a = d−a = da, d+b = d−b = db and that
for some λa ∈ R there exist da linearly independent solutions of (1.1) lying in L2(a, c, w) and
that for some λb ∈ R there exist db linearly independent solutions of (1.1) lying in L2(c, b, w).
(If this holds for some a < c < b then it holds for every such c.) This is a weak assumption
because if there is no such λa, then (it is well known that) the essential spectrum of S is
(−∞, ∞) for every self-adjoint realization S. Similarly for λb. In this case if some self-adjoint
realization S has an eigenvalue it is embedded in the essential spectrum. We believe that the
boundary conditions determining such embedded eigenvalues are coincidental. Except for
examples there seems to be little known about such embedded eigenvalues.
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In the study of boundary value problems the Lagrange identity is fundamental. Next we
define the Lagrange bracket.

Definition 2.17. Define

[y, z] = in
n−1

∑
r=0

(−1)n+1−r z̄[n−r−1]y[r] = −inZ∗EnY,

where

Y =


y

y[1]
...

y[n−1]

 , Z =


z

z[1]
...

z[n−1]

 .

Then [·, ·] is called a Lagrange bracket.

Lemma 2.18 (The Lagrange identity). Let Q ∈ Zn(J) and E := ((−1)rδr,n+1−s)
n
r,s=1. Let M = MQ

be the corresponding differential expression. Let the quasi-derivative y, y[1], . . . , y[n−1] be defined as
above. Then for any y, z ∈ D(Q), we have

zMy− (Mz)y = [y, z]′. (2.11)

Proof. See [29].

Lemma 2.19. For any y, z in Dmax we have∫ b

a

{
zMy− yMz

}
= [y, z](b)− [y, z](a),

where [y, z](b) = limt→b[y, z](t), and [y, z](a) = limt→a, t ∈ (a, b). Thus [·, ·](s) exists as a finite
limit for s = a, b.

Proof. This follows by integrating (2.11).

The finite limits guaranteed by Lemma 2.19 play a fundamental role in the characterization
of the self-adjoint domains given below.

Corollary 2.20. If M y = λw y and M z = λw z on some interval (a, b), then [y, z] is constant on
(a, b). In particular, if λ is real and M y = λw y, Mz = λwz on some interval (a, b), then [y, z] is
constant on (a, b).

Proof. This follows directly from (2.11).

Remark 2.21. For real λ, the solutions of (1.1) are not, in general, real-valued. However, the
Lagrange bracket of two linearly independent solutions of (1.1) for real λ is a constant. For n
even and real coefficients, if there are d linearly independent solutions of (1.1) in H, then there
are d linearly independent real-valued solutions in H. This is one of the important differences
between the equation (1.1) studied here and the equations studied in [15, 37].

Following Everitt and Zettl [10] we call the next lemma, the Naimark patching lemma or
just the patching lemma. Our version of it is more general than that given by Naimark [30]
but the method of proof is the same.
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Lemma 2.22 (Naimark patching lemma). Let Q ∈ Zn(J) and assume that M is regular on J. Let
α0, . . . , αn−1, β0, . . . , βn−1 ∈ C. Then there is a function y ∈ Dmax such that

y[r](a) = αr, y[r](b) = βr (r = 0, . . . , n− 1).

Corollary 2.23. Let a < c < d < b and α0, . . . , αn−1, β0, . . . , βn−1 ∈ C. Then there is a y ∈ Dmax

such that y has compact support in J and satisfies :

y[r](c) = αr, y[r](d) = βr (r = 0, . . . , n− 1).

Proof. The patching lemma gives a function y1 on [c, d] with the desired properties. Let c1, d1

with a < c1 < c < d < d1 < b. Then use the patching lemma again to find y2 on (c1, c) and y3

on (d, d1) such that

y[r]2 (c1) = 0, y[r]2 (c) = αr, y[r]3 (d) = βr, y[r]3 (d1) = 0 (r = 0, . . . , n− 1).

Now set

y(x) :=


y1(x) for x ∈ [c, d]

y2(x) for x ∈ (c1, c)

y3(x) for x ∈ (d, d1)

0 for x ∈ I \ (c1, d1).

Clearly y has compact support in J. Since the quasi-derivatives at c1, c, d, d1 coincide on both
sides, y ∈ Dmax follows.

Corollary 2.24. Let a1 < · · · < ak ∈ J, where a1 and ak can also be regular endpoints. Let αjr ∈
C, (j = 1, . . . , k; r = 0, . . . , n− 1). Then there is a y ∈ Dmax such that

y[r](aj) = αjr (j = 1, . . . , k; r = 0, . . . , n− 1).

Proof. This follows from repeated applications of the previous corollary.

3 Self-adjoint domains

The next theorem characterizes the domains D(S) for all S satisfying (1.2).

Theorem 3.1. Let Q ∈ Zn(J), J = (a, b), −∞ ≤ a < b ≤ ∞, n > 2, a < c < b. Suppose Q satisfies
(2.9) and let M = MQ be constructed as above. Suppose da = d+a = d−a , db = d+b = d−b and let
mb = 2db − n; ma = 2da − n. Then

(1) M is a symmetric differential expression.

(2) d = da + db − n.

(3) Assume there exists a λb ∈ R such that (1.1) has db linearly independent solutions lying in
Hb = L2((c, b), w). Then there exist solutions vj, j = 1, . . . , mb, of (1.1) with λ = λb lying in
Hb such that the mb ×mb matrix

V = ([vi, vj](b)), 1 ≤ i, j ≤ mb

= −in


0 0 0 0 −1
0 0 0 1 0
...

...
...

...
...

0 1 0 0 0
−1 0 0 0 0


mb×mb

= −inEmb

(3.1)
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is nonsingular and
[vj, y](b) = 0, j = mb + 1, . . . , db. (3.2)

for all y ∈ Dmax(c, b).

(4) Assume there exists a λa ∈ R such that (1.1) has da linearly independent solutions lying in
Ha = L2((a, c), w). Then there exist solutions uj, j = 1, . . . , ma, of (1.1) with λ = λa lying in
Ha such that the ma ×ma matrix

U = [ui, uj](a), 1 ≤ i, j ≤ ma

= −in


0 0 0 0 −1
0 0 0 1 0
...

...
...

...
...

0 1 0 0 0
−1 0 0 0 0


ma×ma

= −inEma

(3.3)

is nonsingular and
[uj, y](a) = 0, j = ma + 1, . . . , da. (3.4)

for all y ∈ Dmax(a, c).

(5) The solutions u1, u2, . . . , uda can be extended to (a, b) such that the extended functions, also
denoted by u1, . . . , uda , satisfy uj ∈ Dmax(a, b) and uj is identically zero in a left neighborhood
of b, j = 1, . . . , da.

(6) The solutions v1, v2, . . . , vdb can be extended to (a, b) such that the extended functions, also
denoted by v1, . . . , vdb , satisfy vj ∈ Dmax(a, b) and vj is identically zero in a right neighborhood
of a, j = 1, . . . , db.

(7) A linear submanifold D(S) of Dmax(a, b) is the domain of a self-adjoint extension S satisfying
(1.2) if and only if there exists a complex d×ma matrix A and a complex d×mb matrix B such
that the following three conditions hold:

(8)
rank[A : B] = d; (3.5)

(9)
AEma A∗ = BEmb B∗; (3.6)

(10)

D(S) =

{
y ∈ Dmax : A

(
[y,u1](a)

...
[y,uma ](a)

)
+ B

(
[y,v1](b)

...
[y,vmb ](b)

)
=

(
0
...
0

)}
. (3.7)

Recall that by Lemma 2.19 the brackets [y, uj](a), j = 1, . . . , ma; [y, vj](b), j = 1, . . . , mb exist
as finite limits.

Proof. This will be given in Section 4.

Although Theorem 3.1 is stated for the case when both endpoints are singular it reduces to
the cases when one or both endpoints are regular. The proofs of these corollaries are similar
to the proofs given in [37] and [15] for the even order case with real coefficients and therefore
omitted.
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Corollary 3.2. Let the hypotheses and notation of Theorem 3.1 hold and assume the endpoint a is
regular. Then da = n, assumption (4) holds and

D(S) =

{
y ∈ Dmax : A

(
y[0](a)

...
y[n−1](a)

)
+ B

(
[y,v1](b)

...
[y,vmb ](b)

)
=

(
0
...
0

)}
. (3.8)

Corollary 3.3. Let the hypotheses and notation of Theorem 3.1 hold and assume the endpoint b is
regular. Then db = n, assumption (3) holds and

D(S) =

{
y ∈ Dmax : A

(
[y,u1](a)

...
[y,uma ](a)

)
+ B

(
y[0](b)

...
y[n−1](b)

)
=

(
0
...
0

)}
. (3.9)

Corollary 3.4. Let the hypotheses and notation of Theorem 3.1 hold and assume that both endpoints
are regular. Then da = db = n, assumptions (3) and (4) hold and

D(S) =

{
y ∈ Dmax : A

(
y[0](a)

...
y[n−1](a)

)
+ B

(
y[0](b)

...
y[n−1](b)

)
=

(
0
...
0

)}
. (3.10)

Corollaries 3.2 and 3.3 were proven by Wang–Sun–Zettl [37] for the case when n = 2k,
k > 1, and real coefficients. Also the construction (and definition) of LC solutions is given in
this paper.

Theorem 3.1 was proven by Hao–Sun–Wang–Zettl in [15] for the case when n = 2k, k > 1,
and real coefficients.

Corollary 3.4 can be found in Naimark’s book [30] for the case when n = 2k, k > 1, the
coefficients are real, and Q has the special form

Q =



1 0 0 0 0
1 0 0 0

q3,4 0 0
q43 1 0

q52 1
q61


(3.11)

when n = 6 and similar forms for n = 4, 6, 8, 10, . . . ; all entries not shown are 0.

Remark 3.5. Although the general appearance of the self-adjoint boundary conditions (3.5),
(3.6), (3.7) is the same for n even and odd there are some major differences in the self-adjoint
operators and their spectrum for these two cases. For example in the odd order case the the
minimal operator Smin, and therefore all of its extensions, is unbounded above and below. In
the even order case when both endpoints are regular and the leading coefficient is positive
Smin is bounded below and unbounded above. In the singular even order case with positive
leading coefficient Smin is unbounded above and may or may not be bounded below. See [28],
[29], [21]; also see [43].

Definition 3.6. We call the solutions u1, . . . , uma and v1, . . . , vmb LC solutions at a and b, respec-
tively. The solutions uma+1 , . . . , uda and vmb+1, . . . , vdb are called LP solutions at a and b, respec-
tively. The other solutions from a solution basis of My = λawy on (a, c) are not in L2((a, c), w)

and have no role in the characterization. Similar remarks apply for the endpoint b. Thus by
Theorem 3.1 the LC solutions contribute to the determination of the self-adjoint boundary
conditions and the LP solutions do not contribute due to (3.2) and (3.4). (The solutions not in
L2(J, w) do not play any role in the maximal domain decomposition nor in the characterization
of the self-adjoint domains.)
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4 Proof and other results

In this section we prove Theorem 3.1. This proof uses the well known GKN Theorem, which
we state next for the convenience of the reader, and a decomposition of the maximal domain
which we believe is of independent interest.

Theorem 4.1 (GKN). Let Q ∈ Zn(J), J = (a, b), −∞ ≤ a < b ≤ ∞, n > 2, a < c < b. Assume Q
satisfies (2.9) and let M = MQ be constructed as above. Let Smin and Smax be defined as above. Then a
linear submanifold D(S) of Dmax is the domain of a self-adjoint extension S of Smin if and only if there
exist functions w1, w2, . . . , wd in Dmax satisfying the following conditions:

(i) w1, w2, . . . , wd are linearly independent modulo Dmin;

(ii) [wi, wj](b)− [wi, wj](a) = 0, i, j = 1, . . . , d;

(iii) D(S) = {y ∈ Dmax : [y, wj](b)− [y, wj](a) = 0, j = 1, . . . , d}.

Here [·, ·] denotes the Lagrange bracket associated with (1.1) and d is the deficiency index of Smin.

Proof. This is well known, see [43].

The GKN characterization depends on the maximal domain functions wj, j = 1, . . . , d.
These functions depend on the coefficients of the differential equation and this dependence is
implicit and complicated.

Our construction of LC solutions u1, . . . , uma , v1, . . . , vmb leads to a new decomposition of
the maximal domain.

Theorem 4.2. Let the hypotheses and notation of Theorem 3.1 hold. Let uj, j = 1, . . . , ma and vj, j =
1, . . . , mb be LC solutions given by Theorem 3.1. Then

Dmax(a, b) = Dmin(a, b)u span{u1, . . . , uma}u span{v1, . . . , vmb}. (4.1)

Proof. By Von Neumann’s formula, dim Dmax(a, b)/Dmin(a, b) ≤ 2d. From Theorem 3.1 and
the observation that the matrices U and V are nonsingular it follows that u1, . . . , uma and
v1, . . . , vmb are linearly independent mod(Dmin(a, b)), since ma + mb = 2(da + db − n) = 2d,
therefore dim Dmax(a, b)/ Dmin(a, b) ≥ 2d, completing the proof.

In view of the wide interest in the case when endpoint is regular we give the decomposition
(4.1) for that case as a corollary.

Corollary 4.3. Let the hypotheses and notation of Theorem 3.1 hold and assume the endpoint a is
regular, a < c < b, λ ∈ R. Then

Dmax = Dmin+̇ span{z1, . . . , zn}+̇ span{v1, . . . , vmb}. (4.2)
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where zj ∈ Dmax(a, b), j = 1, . . . , n such that zj(t) = 0 for t ≥ c, j = 1, . . . , n and


[z1, z1](a) [z2, z1](a) · · · [zn−1, z1](a) [zn, z1](a)
[z1, z2](a) [z2, z2](a) · · · [zn−1, z2](a) [zn, z2](a)

...
...

. . .
...

...
[z1, zn](a) [z2, zn](a) · · · [zn−1, zn](a) [zn, zn](a)



=


0 0 · · · 0 −1
0 · · · 0 1 0
...

...
...

0 −1 0 · · · 0
(−1)n 0 · · · 0 0

 = En.

Such functions zj exist by the Patching Lemma and the fact that for each i = 1, . . . , n the values z[j]i (a)
can be assigned arbitrarily.

A similar result holds if the endpoint b is regular.

Before we prove Corollary 4.3, firstly, we state the Sun decomposition theorem [34].

Theorem 4.4 (Sun). Assume that the endpoint a is regular while the endpoint b maybe singular. Let
a < c < b. Let mb = 2db − n and λ ∈ C, Im(λ) 6= 0. Then there exist solutions φj, j = 1, . . . , mb of
My = λwy on (c, b) such that the mb ×mb matrix [φi, φj](b), 1 ≤ i, j ≤ mb is nonsingular and there
exist solutions z1, z2, . . . , zn on (a, c) such that

Dmax = Dmin u span{z1, z2, . . . , zn}u span{φ1, φ2, . . . , φmb}. (4.3)

Proof. The proof given in [34] for a more restricted class of equations My = λwy can be easily
adapted to the more general equations considered here.

Next we give a proof of Corollary 4.3.

Proof. If n = 2k, although we do not assume that the coefficients are real, the proof given in
[37] for real coefficients can readily be adapted to prove Corollary 4.3 in the even order case
and is therefore omitted.

If n = 2k + 1, we let θ1, . . . , θdb be db linearly independent solutions of (1.1) for some real λ.
By (4.1) there exist yj ∈ Dmin and ris, kij ∈ C such that

θi = yi +
n

∑
s=1

riszs +
mb

∑
j=1

kijφj, i = 1, . . . , db. (4.4)

From this it follows that

([θh, θl ](b))1≤h,l≤db =

([
mb

∑
j=1

khjφj,
mb

∑
j=1

kl jφj

]
(b)

)
= F([φi, φj](b))1≤i,j≤mb F∗, F = (kij)db×mb .

(4.5)

Hence
rank([θh, θl ](b))1≤h,l≤db ≤ mb. (4.6)

By Corollary 2.20 we know that,
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([θh, θl ](b))db×db = ([θh, θl ](a))db×db = −inG∗EnG (4.7)

where

G =


θ1(a) · · · θdb(a)

...
. . .

...
θ
[n−1]
1 (a) · · · θ

[n−1]
db

(a)

 .

Since rank En = n and rank G = d, we have

rank([θh, θl ](b))db×db ≥ rank G∗ + rank(EnG)− n

= rank G∗ + rank G− n

= 2db − n = mb.

Hence
rank([θh, θl ](b))db×db = mb.

By (4.7) we have
([θh, θl ](b))∗1≤h,l≤db

= −([θh, θl ](b))1≤h,l≤db , (4.8)

that is ([θh, θl ](b))1≤h,l≤db is a skew-Hermitian matrix.
Therefore there exists a nonsingular complex matrix P = (pij)db×db such that

P∗([θh, θl ](b))1≤h,l≤db P = −in



−1
1

. . .
0mb×(n−db)

1
−1

0(n−db)×mb
0(n−db)×(n−db)


, (4.9)

Where i =
√
−1.

Let  v1
...

vdb

 = P∗

 θ1
...

θdb

 . (4.10)

Then vi, i = 1, . . . , db, are linearly independent solutions of (1.1) satisfying

([vh, vl ](b))1≤h,l≤db = −in



−1
1

. . .
0mb×(n−db)

1
−1

0(n−db)×mb
0(n−db)×(n−db)


. (4.11)

By (4.10) and (4.5), we have

([vh, vl ](b))1≤h,l≤mb = (P1)([θi, θj](b))1≤i,j≤mb P∗1
= (P1F)([φi, φj](b))1≤i,j≤mb(P1F)∗, P1 = (pij)

∗
1≤i≤db,1≤j≤mb

.
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Hence P1F = M = (mij)mb×mb is nonsingular.
By (4.4) and (4.10) , we get

vj =
db

∑
i=1

p̄ijθi

=
db

∑
i=1

p̄ij

(
yi +

n

∑
s=1

diszs +
mb

∑
i=1

kisφs

)

=
db

∑
i=1

p̄ijyi +
db

∑
i=1

n

∑
s=1

p̄ijdiszs +
db

∑
i=1

mb

∑
s=1

p̄ijkisφs

=
db

∑
i=1

p̄ijyi +
db

∑
i=1

n

∑
s=1

p̄ijdiszs +
mb

∑
s=1

mjsφs, j = 1, . . . , mb

Therefore we have unique solutions

φj = ỹj +
n

∑
i=1

b̃jizi +
mb

∑
s=1

c̃jsvs, j = 1, . . . , mb, (4.12)

where ỹj ∈ Dmin, b̃ji, c̃js ∈ C.
Substituting φj defined in Theorem 4.4 by (4.12), we conclude that

Dmax = Dmin+̇ span{z1, z2, . . . , zn}+̇ span{v1, v2, . . . , vmb}.

Next we give the proof of Theorem 3.1.

Proof. Part (3) follows from (4.11). The proof of part (4) is similar.
Next we prove parts (7)–(10).

Sufficiency. Let the matrices A and B satisfy the conditions (3.5) and (3.6) of Theorem 3.1. We
prove that D(S) defined by the condition (3.7) is the domain of a self-adjoint extension S of
Smin by showing that conditions (i), (ii), (iii) of the GKN Theorem are satisfied.

Let
A = −(aij)d×ma , B = (bij)d×mb .

wi =
ma

∑
j=1

aij uj +
mb

∑
j=1

bijvj, i = 1, . . . , d. (4.13)

By direct computation it follows that (iii) holds, i.e.,

[y, wi](b)− [y, wi](a) = 0, i = 1, . . . , d.

Note that
([wi, wj](a))T

d×d = AUT A∗ = in AEma A∗.

Similarly
(([wi, wj](b))T

d×d = inBEmb B∗.

Therefore
([wi, wj]

b
a)

T = inBEmb B∗ − in AEma A∗ = 0.

The proof that (i) and (ii) hold is similar to the proof of Theorem 5.1 in [15] and hence
omitted.
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Necessity. Let D(S) be the domain of a self-adjoint extension S of Smin. By the GKN Theorem
there exist w1, . . . , wd ∈ Dmax satisfying the conditions (i), (ii), (iii). From (4.1) we get

wi = ŷi0 +
ma

∑
j=1

aijuj +
mb

∑
j=1

bijvj, (4.14)

where ŷi0 ∈ Dmin, aij, bij ∈ C.
Let

A = −(āij)d×ma , B = (b̄ij)d×mb ,

Then  [y, w1](a)
...

[y, wd](a)

 =


[y, ∑ma

j=1 a1juj](a)
...

[y, ∑ma
j=1 adjuj](a)

 = −A

 [y, u1](a)
...

[y, uma ](a)

 ,

 [y, w1](b)
...

[y, wd](b)

 =


[y, ∑mb

j=1 b1jvj](b)
...

[y, ∑mb
j=1 bdjvj](b)

 = B

 [y, v1](b)
...

[y, vmb ](b)

 .

Hence condition (iii) of the GKN Theorem is equivalent to (3.10).
The proof that A, B satisfy (3.5), (3.6) of Theorem 3.1 is similar to the proof of Theorem 5.1

in [15] and hence omitted.
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