On the solvability of a boundary value problem for p-Laplacian differential equations

Petio Kelevedjiev ${ }^{\boxtimes}$ and Silvestar Bojerikov

Technical University of Sofia, Branch Sliven
59 Burgasko Shousse Blvd, Sliven, 8800, Bulgaria

Received 13 September 2016, appeared 27 January 2017
Communicated by Paul Eloe

Abstract

Using barrier strip conditions, we study the existence of $C^{2}[0,1]$-solutions of the boundary value problem $\left(\phi_{p}\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, x^{\prime}\right), x(0)=A, x^{\prime}(1)=B$, where $\phi_{p}(s)=s|s|^{p-2}, p>2$. The question of the existence of positive monotone solutions is also affected.

Keywords: boundary value problem, second order differential equation, p-Laplacian, existence, sign conditions.
2010 Mathematics Subject Classification: 34B15, 34B18.

1 Introduction

This paper is devoted to the solvability of the boundary value problem (BVP)

$$
\begin{align*}
\left(\phi_{p}\left(x^{\prime}\right)\right)^{\prime} & =f\left(t, x, x^{\prime}\right), \quad t \in[0,1] \tag{1.1}\\
x(0) & =A, \quad x^{\prime}(1)=B \tag{1.2}
\end{align*}
$$

Here $\phi_{p}(s)=s|s|^{p-2}, p>2$, the scalar function $f(t, x, y)$ is defined for $(t, x, y) \in[0,1] \times D_{x} \times$ D_{y}, where the sets $D_{x}, D_{y} \subseteq \mathbf{R}$ may be bounded, and $B \geq 1$. Besides, f is continuous on a suitable subset of its domain.

The solvability of various singular and nonsingular BVPs with p-Laplacian has been studied, for example, in $[1-5,7-12,14]$. Conditions used in these works or do not allow the main nonlinearity to change sign, $[2,11]$, or impose a growth restriction on it, $[3,9,11]$, or require the existence of upper and lower solutions, $[1,3,5,8,9,12]$; other type conditions have been used in [7], where the main nonlinearity may changes its sign. As a rule, the obtained results guarantee the existence of positive solutions.

Another type of conditions have been used in [10] for studying the solvability of (1.1), (1.2) in the case $p \in(1,2)$. The existence of at least one positive and monotone $C^{2}[0,1]$-solution is established therein under the following barrier condition:

[^0]H. There are constants $L_{i}, F_{i}, i=1,2$, and a sufficiently small $\sigma>0$ such that
\[

$$
\begin{align*}
& F_{1} \geq F_{2}+\sigma, \quad F_{1}-\sigma>0, \quad L_{2}-\sigma \geq L_{1}, \\
& {[A-\sigma, L+\sigma] } \subseteq D_{x}, \quad\left[F_{2}, L_{2}\right] \subseteq D_{y}, \quad \text { where } L=L_{1}+|A|, \\
& f(t, x, y) \geq 0 \quad \text { for } \quad(t, x, y) \in[0,1] \times D_{x} \times\left[L_{1}, L_{2}\right], \tag{1.3}\\
& f(t, x, y) \leq 0 \quad \text { for } \quad(t, x, y) \in[0,1] \times D_{A} \times\left[F_{2}, F_{1}\right], \tag{1.4}
\end{align*}
$$
\]

where the constants m and M are, respectively, the minimum and the maximum of $f(t, x, p)$ on $[0,1] \times[A-\sigma, L+\sigma] \times\left[F_{1}-\sigma, L_{1}+\sigma\right]$ and $D_{A}=(-\infty, L] \cap D_{x}$.

Let us recall, the strips $[0,1] \times\left[L_{1}, L_{2}\right]$ and $[0,1] \times\left[F_{2}, F_{1}\right]$ are called "barrier" because they limit the values of the first derivatives of all $C^{2}[0,1]$-solution of (1.1), (1.2) between themselves. Recently, it was shown in [13] that conditions of form (1.3) and (1.4) guarantee $C^{1}[0,1]$-solutions to the ϕ-Laplacian equation

$$
\left(\phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, x^{\prime}\right), \quad t \in(0,1)
$$

with boundary conditions (1.2), where $\phi: \mathbf{R} \rightarrow \mathbf{R}$ is an increasing homeomorphism and $f:[0,1] \times \mathbf{R}^{2} \rightarrow \mathbf{R}$ is continuous.

It turned out that the cases $1<p<2$ and $p>2$ require different technical approaches for the use of \mathbf{H} for studying the solvability of (1.1), (1.2). So, in the present paper we show that \mathbf{H} with the additional requirement

$$
\begin{equation*}
B-M \geq F_{1} \tag{1.5}
\end{equation*}
$$

guarantees the existence of at least one monotone, and positive in the case $A \geq 0, C^{2}[0,1]$ solution to (1.1), (1.2) with $p>2$. In fact, our main result is the following.

Theorem 1.1. Let \mathbf{H} and (1.5) hold, and $f(t, x, y)$ be continuous on the set $[0,1] \times[A-\sigma, L+\sigma]$ $\times\left[F_{1}-\sigma, L_{1}+\sigma\right]$. Then BVP (1.1), (1.2) has at least one strictly increasing solution in $C^{2}[0,1]$ for each $p \in(2, \infty)$.

The paper is organized as follows. In Section 2 we present preliminaries needed to formulate the Topological Transversality Theorem, which is our basic tool, and prove auxiliary results. In Section 3 we give the proof of Theorem 1.1, formulate a corollary and give an example.

2 Fixed point theorem, auxiliary results

Let K be a convex subset of a Banach space E and $U \subset K$ be open in K. Let $\mathbf{L}_{\partial u}(\bar{U}, K)$ be the set of compact maps from \bar{U} to K which are fixed point free on ∂U; here, as usual, \bar{U} and ∂U are the closure of U and boundary of U in K.

A map F in $\mathbf{L}_{\partial U}(\bar{U}, K)$ is essential if every map G in $\mathbf{L}_{\partial U}(\bar{U}, K)$ such that $G / \partial U=F / \partial U$ has a fixed point in U. It is clear, in particular, every essential map has a fixed point in U.

The following fixed point theorem due to A. Granas et al. [6].

Theorem 2.1 (Topological transversality theorem). Suppose:
(i) $F, G: \bar{U} \rightarrow K$ are compact maps;
(ii) $G \in \mathbf{L}_{\partial u}(\bar{U}, K)$ is essential;
(iii) $H(x, \lambda), \lambda \in[0,1]$, is a compact homotopy joining G and F, i.e. $H(x, 0)=G(x)$ and $H(x, 1)=$ $F(x)$;
(iv) $H(x, \lambda), \lambda \in[0,1]$, is fixed point free on ∂U.

Then $H(x, \lambda), \lambda \in[0,1]$, has at least one fixed point in U and in particular there is a $x_{0} \in U$ such that $x_{0}=F\left(x_{0}\right)$.

The following results is important for our consideration. It can be found also in [6].
Theorem 2.2. Let $l \in U$ be fixed and $F \in \mathbf{L}_{\partial u}(\bar{U}, K)$ be the constant map $F(x)=l$ for $x \in \bar{U}$. Then F is essential.

Further, we need the following fact.
Proposition 2.3. Let the constants B and M be such that $B \geq 1$ and $B>M>0$. Then

$$
(B-M)^{r} \leq B^{r}-M \quad \text { for } r \in[1, \infty) .
$$

Proof. The inequality is evident for $r=1$. For $M \in(0, B)$ consider the function $g(r)=$ $(B-M)^{r}-B^{r}+M, r \in(1, \infty)$. First, let $B-M \in(0,1)$. Then $\ln (B-M)<0$ and so

$$
g^{\prime}(r)=(B-M)^{r} \ln (B-M)-B^{r} \ln B<0 \quad \text { for } r \in \mathbf{R} .
$$

Next, assume $B-M=1$. Now we get

$$
g^{\prime}(r)=-(1+M)^{r} \ln (1+M)<0 \quad \text { for } r \in \mathbf{R} .
$$

Finally, let $B-M \in(1, \infty)$. In this case from $B>B-M>0$ we have $B^{r} \geq(B-M)^{r}$ for $r \in[0, \infty)$ and so

$$
g^{\prime}(r) \leq B^{r} \ln (B-M)-B^{r} \ln B=B^{r} \ln \frac{B-M}{B}<0 \quad \text { for } r \in[0, \infty) .
$$

In summary, we have proved that $g^{\prime}(r)<0$ for each $r \in[0, \infty)$. Then, the result follows from the fact that $g(1)=0$.

Let us emphasize explicitly that we conduct the rest consideration of this section for an arbitrary fixed $p>2$.

For $\lambda \in[0,1]$ consider the family of BVPs

$$
\begin{cases}\left(\phi_{p}\left(x^{\prime}\right)\right)^{\prime}=\lambda f\left(t, x, x^{\prime}\right), & t \in[0,1], \tag{2.1}\\ x(0)=A, x^{\prime}(1)=B, & B \geq 1,\end{cases}
$$

where $f:[0,1] \times D_{x} \times D_{y} \rightarrow \mathbf{R}, D_{x}, D_{y} \subseteq \mathbf{R}$. Since

$$
\phi_{p}(s)=s|s|^{p-2}= \begin{cases}s^{p-1}, & s \geq 0 \\ -(-s)^{p-1}, & s<0\end{cases}
$$

we have

$$
\phi_{p}^{\prime}(s)=\left\{\begin{array}{ll}
(p-1) s^{p-2}, & s \geq 0 \\
(p-1)(-s)^{p-2}, & s<0
\end{array}=(p-1)|s|^{p-2}\right.
$$

and $\left(\phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=(p-1)\left|x^{\prime}(t)\right|^{p-2} x^{\prime \prime}(t)$, if $x^{\prime \prime}(t)$ exists. So, we can write (2.1) as

$$
\left\{\begin{array}{l}
(p-1)\left|x^{\prime}(t)\right|^{p-2} x^{\prime \prime}(t)=\lambda f\left(t, x, x^{\prime}\right), t \in[0,1], \tag{2.1'}\\
x(0)=A, x^{\prime}(1)=B .
\end{array}\right.
$$

For convenience set

$$
m_{p}=\frac{m}{(p-1)\left(F_{1}-\sigma\right)^{p-2}} \quad \text { and } \quad M_{p}=\frac{M}{(p-1)\left(F_{1}-\sigma\right)^{p-2}},
$$

where F_{1}, σ, m and M are as in \mathbf{H}.
The next result gives a priori bounds for the $C^{2}[0,1]$-solutions of family (2.1') (as well as of (2.1)).

Lemma 2.4. Let \mathbf{H} hold and $x \in C^{2}[0,1]$ be a solution to family (2.1'). Then

$$
A \leq x(t) \leq L, F_{1} \leq x^{\prime}(t) \leq L_{1} \text { and } m_{p} \leq x^{\prime \prime}(t) \leq M_{p} \text { for } t \in[0,1] .
$$

Proof. The proof of the bounds for x and x^{\prime} is the same as the corresponding part of the proof of [10, Lemma 3.1], but we will state it for completeness. So, assume on the contrary that

$$
\begin{equation*}
x^{\prime}(t) \leq L_{1} \quad \text { for } t \in[0,1] \tag{2.2}
\end{equation*}
$$

is not true. Then, $x^{\prime}(1)=B \leq L_{1}$ together with $x^{\prime} \in C[0,1]$ implies that

$$
S_{+}=\left\{t \in[0,1]: L_{1}<x^{\prime}(t) \leq L_{2}\right\}
$$

is not empty. Moreover, there exists an interval $[\alpha, \beta] \subset S_{+}$with the property

$$
\begin{equation*}
x^{\prime}(\alpha)>x^{\prime}(\beta) . \tag{2.3}
\end{equation*}
$$

Then, by the fundamental theorem of calculus applied to x^{\prime}, (2.3) implies that there is a $\gamma \in$ (α, β) such that

$$
x^{\prime \prime}(\gamma)<0 .
$$

We have $\left(\gamma, x(\gamma), x^{\prime}(\gamma)\right) \in S_{+} \times D_{x} \times\left(L_{1}, L_{2}\right]$, which yields

$$
f\left(\gamma, x(\gamma), x^{\prime}(\gamma)\right) \geq 0,
$$

by (1.3). Then,

$$
0>(p-1)\left|x^{\prime}(\gamma)\right|^{p-2} x^{\prime \prime}(\gamma)=\lambda f\left(\gamma, x(\gamma), x^{\prime}(\gamma)\right) \geq 0 \quad \text { for } \lambda \in[0,1],
$$

a contradiction. Thus, (2.2) is true.
By the mean value theorem, for each $t \in(0,1]$ there exists $\xi \in(0, t)$ such that $x(t)-x(0)=$ $x^{\prime}(\xi) t$, which yields

$$
x(t) \leq L \quad \text { for } t \in[0,1] .
$$

Arguing as above and using (1.4), we establish $x^{\prime}(t) \geq F_{1}$ for all $t \in[0,1]$ and, as a consequence, $x(t) \geq A$ on $[0,1]$.

To reach the bounds for $x^{\prime \prime}(t)$ from

$$
x^{\prime}(t)>F_{1}-\sigma>0, \quad t \in[0,1]
$$

we obtain firstly

$$
0<\frac{1}{(p-1)\left(x^{\prime}(t)\right)^{p-2}} \leq \frac{1}{(p-1)\left(F_{1}-\sigma\right)^{p-2}} .
$$

Next, multiplying both sides of this inequality by $\lambda M \geq 0$ and $\lambda m \leq 0$, for $t \in[0,1]$ obtain respectively

$$
\frac{\lambda M}{(p-1)\left(x^{\prime}(t)\right)^{p-2}} \leq \frac{\lambda M}{(p-1)\left(F_{1}-\sigma\right)^{p-2}} \leq \frac{M}{(p-1)\left(F_{1}-\sigma\right)^{p-2}}=M_{p}
$$

and

$$
\frac{\lambda m}{(p-1)\left(x^{\prime}(t)\right)^{p-2}} \geq \frac{\lambda m}{(p-1)\left(F_{1}-\sigma\right)^{p-2}} \geq \frac{m}{(p-1)\left(F_{1}-\sigma\right)^{p-2}}=m_{p}
$$

from $f\left(t, x, L_{1}\right) \geq 0$ for $(t, x) \in[0,1] \times[A-\sigma, L+\sigma]$ and $f\left(t, x, F_{1}\right) \leq 0$ for $(t, x) \in[0,1]$ $\times[A-\sigma, L+\sigma]$, it follows that $M \geq 0$ and $m \leq 0$.

On the other hand,

$$
m \leq f\left(t, x(t), x^{\prime}(t)\right) \leq M \quad \text { for } t \in[0,1]
$$

since $\left(x(t), x^{\prime}(t)\right) \in[A, L] \times\left[F_{1}, L_{1}\right]$ for each $t \in[0,1]$. Multiplying the last inequality by $\lambda(p-1)^{-1}\left(x^{\prime}(t)\right)^{2-p} \geq 0, \lambda, t \in[0,1]$, we arrive to

$$
m_{p} \leq \frac{\lambda m}{(p-1)\left(x^{\prime}(t)\right)^{p-2}} \leq \frac{\lambda f\left(t, x(t), x^{\prime}(t)\right)}{(p-1)\left(x^{\prime}(t)\right)^{p-2}} \leq \frac{\lambda M}{(p-1)\left|x^{\prime}(t)\right|^{p-2}} \leq M_{p}
$$

for all $\lambda, t \in[0,1]$, from where, keeping in mind that $x^{\prime}(t)>0$ on $[0,1]$, we get

$$
m_{p} \leq \frac{\lambda f\left(t, x(t), x^{\prime}(t)\right)}{(p-1)\left|x^{\prime}(t)\right|^{p-2}} \leq M_{p} \quad \text { for all } \lambda, t \in[0,1]
$$

which yields the required bounds for $x^{\prime \prime}(t)$.
Now, introduce sets

$$
C_{+}^{1}[0,1]=\left\{x \in C^{1}[0,1]: x(t)>0 \text { on }[0,1], x(1)=\phi_{p}(B)\right\}
$$

and, in case that \mathbf{H} holds,

$$
V=\left\{x \in C^{1}[0,1]: A-\sigma \leq x \leq L+\sigma, F_{1}-\sigma \leq x^{\prime} \leq L_{1}+\sigma\right\} .
$$

Introduce also the map $\Lambda_{\lambda}: V \rightarrow C_{+}^{1}[0,1]$ defined by

$$
\Lambda_{\lambda} x=\lambda \int_{1}^{t} f\left(s, x(s), x^{\prime}(s)\right) d s+\phi_{p}(B) \quad \text { for } \lambda \in[0,1] .
$$

Lemma 2.5. Let \mathbf{H} hold and

$$
\begin{equation*}
f(t, x, y) \in C\left([0,1] \times[A-\sigma, L+\sigma] \times\left[F_{1}-\sigma, L_{1}+\sigma\right]\right) \tag{2.4}
\end{equation*}
$$

Then $\Lambda_{\lambda}, \lambda \in[0,1]$, is well defined and continuous.

Proof. Clearly, because of (2.4), $\left(\Lambda_{\lambda} x\right)^{\prime}(t)=\lambda f\left(t, x(t), x^{\prime}(t)\right), x \in V$, is continuous on [0,1] for each $\lambda \in[0,1]$. Next, observe that for each $x \in V$ we have

$$
\lambda f\left(t, x(t), x^{\prime}(t)\right) \leq \lambda M \leq M \quad \text { for } \lambda, t \in[0,1]
$$

Integrating this inequality from 1 to $t, t \in[0,1)$, we get

$$
\lambda \int_{1}^{t} f\left(s, x(s), x^{\prime}(s)\right) d s \geq M(t-1), \quad t \in[0,1]
$$

from where it follows

$$
\lambda \int_{1}^{t} f\left(s, x(s), x^{\prime}(s)\right) d s \geq-M, \quad t \in[0,1]
$$

and

$$
-M+\phi_{p}(B) \leq\left(\Lambda_{\lambda} x\right)(t), \quad t \in[0,1]
$$

By (1.5) and Proposition 2.3, we have

$$
0<\left(F_{1}-\sigma\right)^{p-1}<(B-M)^{p-1} \leq-M+B^{p-1}=-M+\phi_{p}(B)
$$

and then,

$$
0<\left(F_{1}-\sigma\right)^{p-1}<\left(\Lambda_{\lambda} x\right)(t), \quad t \in[0,1]
$$

Obviously, $\left(\Lambda_{\lambda} x\right)(1)=\phi_{p}(B)$. Finally, (2.4) implies that the map $\Lambda_{\lambda}, \lambda \in[0,1]$, is continuous on V.

Further, introduce the sets

$$
\begin{aligned}
C_{B C}^{2}[0,1] & =\left\{x \in C^{2}[0,1]: x(0)=A, x^{\prime}(1)=B\right\} \\
K & =\left\{x \in C_{B C}^{2}[0,1]: x^{\prime}(t)>0 \text { on }[0,1]\right\}
\end{aligned}
$$

and the $\operatorname{map} \Phi_{p}: K \rightarrow C_{+}^{1}[0,1]$ defined by $\Phi_{p} x=\phi_{p}\left(x^{\prime}\right)$.
Lemma 2.6. The map Φ_{p} is well defined and continuous.
Proof. For each $x \in K$ we have $x^{\prime}(t)>0, t \in[0,1]$. Then,

$$
\begin{equation*}
\left(\Phi_{p} x\right)(t)=x^{\prime}(t)\left|x^{\prime}(t)\right|^{p-2}=x^{\prime}(t)^{p-1}>0 \quad \text { on }[0,1] \tag{2.5}
\end{equation*}
$$

and, obviously, $\left(\Phi_{p} x\right)^{\prime}(t)=(p-1)\left(x^{\prime}(t)\right)^{p-2} x^{\prime \prime}(t)$ is continuous on $[0,1]$. Also, $\left(\Phi_{p} x\right)(1)=$ $x^{\prime}(1)\left|x^{\prime}(1)\right|^{p-2}=\phi_{p}(B)$. So, $\Phi_{p} x \in C_{+}^{1}[0,1]$. The continuity of Φ_{p} follows from $x^{\prime} \in C[0,1]$ and (2.5).

It is well known that the inverse function of $\phi_{p}(s)$ is $\phi_{q}(s)=s|s|^{q-2}, q^{-1}+p^{-1}=1, p>1$. Using it, we introduce the map $\Phi_{q}: C_{+}^{1}[0,1] \rightarrow K$, defined by

$$
\left(\Phi_{q} y\right)(t)=\int_{0}^{t} \phi_{q}(y(s)) d s+A, \quad t \in[0,1]
$$

But, for $y \in C_{+}^{1}[0,1]$ we have $y(t)>0$ on $[0,1]$ and so

$$
\left(\Phi_{q} y\right)(t)=\int_{0}^{t}(y(s))^{\frac{1}{p-1}} d s+A, \quad t \in[0,1]
$$

Lemma 2.7. The map $\Phi_{q}: C_{+}^{1}[0,1] \rightarrow K$ is well defined, the inverse map of Φ_{p} and continuous.
Proof. For each fixed $y \in C_{+}^{1}[0,1]$ we get a unique $x(t)=\left(\Phi_{q} y\right)(t)=\int_{0}^{t}(y(s))^{\frac{1}{p-1}} d s+A$. In fact, to establish the veracity of the first two assertions, we have to show that $x \in K$ or, what is the same, to show that x is a unique $C^{2}[0,1]$-solution to the BVP

$$
\begin{equation*}
x^{\prime}\left|x^{\prime}\right|^{p-2}=y, \quad t \in[0,1], \quad x(0)=A, \quad x^{\prime}(1)=B \tag{2.6}
\end{equation*}
$$

with $x^{\prime}(t)>0$ on $[0,1]$.
The last follows immediately from $x^{\prime}(t)=(y(t))^{\frac{1}{p-1}}$ on $[0,1]$. Then, $x^{\prime}\left|x^{\prime}\right|^{p-2}=\left(x^{\prime}(t)\right)^{p-1}=$ $y(t)$ for $t \in[0,1]$. Besides, $x^{\prime}(1)=(y(1))^{\frac{1}{p-1}}=\left(\phi_{p}(B)\right)^{\frac{1}{p-1}}=B$ and $x(0)=A$. Now, the continuity of $y^{\prime}(t)$ and $y(t)>0$ on $[0,1]$ imply that

$$
x^{\prime \prime}(t)=\frac{1}{p-1}(y(t))^{\frac{2-p}{p-1}} y^{\prime}(t)
$$

exists and is continuous on $[0,1]$. Thus, $x(t)$ is a solution to (2.6) and is in $C^{2}[0,1]$.
To complete the proof we just have to observe that the continuity of Φ_{q} follows from the continuity of $y^{1 /(p-1)}(t)$ on $[0,1]$.

3 Proof of main result

Proof of Theorem 1.1. We will prove the assertion for an arbitrary fixed $p>2$. Introduce the set

$$
U=\left\{x \in K: A-\sigma<x<L+\sigma, F_{1}-\sigma<x^{\prime}<L_{1}+\sigma, m_{p}-\sigma<x^{\prime \prime}(t)<M_{p}+\sigma\right\}
$$

and consider the homotopy

$$
H_{\lambda}: \bar{U} \times[0,1] \rightarrow K
$$

defined by $H_{\lambda}(x):=\Phi_{q} \Lambda_{\lambda} j$, where $j: \bar{U} \rightarrow C^{1}[0,1]$ is the embedding $j x=x$. To show that all assumptions of Theorem 2.1 are fulfilled observe firstly that U is an open subset of K, and K is a convex subset of the Banach space $C^{2}[0,1]$. For the fixed points of $H_{\lambda}, \lambda \in[0,1]$, we have

$$
\Phi_{q} \Lambda_{\lambda} j(x)=x
$$

and

$$
\Phi_{p} x=\Lambda_{\lambda} j(x)
$$

which is the operator form of the family

$$
\left\{\begin{array}{l}
\phi_{p}\left(x^{\prime}\right)=\lambda \int_{1}^{t} f\left(s, x(s), x^{\prime}(s)\right) d s+\phi_{p}(B), t \in(0,1) \tag{3.1}\\
x(0)=A, x^{\prime}(1)=B
\end{array}\right.
$$

Thus, the fixed points of H_{λ} coincide with the $C^{2}[0,1]$-solutions of (3.1). But, it is obvious that each $C^{2}[0,1]$-solution of (3.1) is a $C^{2}[0,1]$-solution of (2.1). So, all conclusions of Lemma 2.4 are valid in particular and for the $C^{2}[0,1]$-solutions of (3.1) which allow us to conclude that the $C^{2}[0,1]$-solutions of (3.1) do not belong to ∂U and so the homotopy is fixed point free on ∂U. On the other hand, it is well known that j is completely continuous, that is, it maps each bounded set to a compact one. Thus, $j(\bar{U})$ is a compact set. Besides, it is clear that $j(\bar{U}) \subset V$. Then, according to Lemma $2.5, \Lambda_{\lambda}(j(\bar{U})) \subseteq C_{+}^{1}[0,1]$ is compact. Finally, the set
$\Phi_{q}\left(\Lambda_{\lambda}(j(\bar{U})) \subset K\right.$ is compact, by Lemma 2.7. So, the homotopy is compact. Now, since for $x \in \bar{U}$ we have $\Lambda_{0} j(x)=\phi_{p}(B)=B^{p-1}$, the map H_{0} maps each $x \in \bar{U}$ to the unique solution $l=B t+A \in K$ to the BVP

$$
\begin{aligned}
x^{\prime} & =B, \quad t \in(0,1) \\
x(0) & =A, \quad x^{\prime}(1)=B,
\end{aligned}
$$

i.e., it is a constant map and so is essential, by Theorem 2.2. So, we can apply Theorem 2.1. It infers that the map $H_{1}(x)$ has a fixed point in U. It is easy to see that it is a $C^{2}[0,1]$-solution of the BVPs of families (3.1) and (2.1) obtained for $\lambda=1$ and, what is the same, of (1.1), (1.2).

An elementary consequence of the just proved theorem is the following.
Corollary 3.1. Let $A \geq 0, \mathbf{H}$ and (1.5) hold, and $f(t, x, y)$ be continuous for $(t, x, y) \in[0,1] \times$ $[A-\sigma, L+\sigma] \times\left[F_{1}-\sigma, L_{1}+\sigma\right]$. Then for each $p>2$ BVP (1.1), (1.2) has at least one strictly increasing solution in $C^{2}[0,1]$ with positive values on $(0,1]$.

We illustrate this result by the following example.
Example 3.2. Consider the BVP

$$
\begin{gathered}
\left(\phi_{p}\left(x^{\prime}\right)\right)^{\prime}=\frac{\left(2 x^{\prime}-1\right)\left(x^{\prime}-10\right)}{\sqrt{x+1}+100}, \quad t \in(0,1), \\
x(0)=2, \quad x^{\prime}(1)=5
\end{gathered}
$$

where $p>2$ is fixed.
It is easy to check that \mathbf{H} holds for $F_{2}=1, F_{1}=2.1, L_{1}=11.9, L_{2}=13$ and $\sigma=0.1$; moreover, we can take $L=14, m=-0.5$ and $M=0.5$. The function $f(t, x, y)=\frac{(2 y-1)(y-10)}{\sqrt{x+1}+100}$ is continuous for $(t, x, y) \in[0,1] \times[2,14] \times[2.1,11.9]$. Thus, we can apply Corollary 3.1 to conclude that this BVP has a positive strictly increasing solution in $C^{2}[0,1]$.

References

[1] R. P. Agarwal, H. Lü, D. O'Regan, An upper and lower solution method for the onedimensional singular p-Laplacian, Mem. Differential Equations Math. Phys. 28(2003), 13-31. MR1986715
[2] R. P. Agarwal, H. Lü, D. O'Regan, Positive solutions for the singular p-Laplace equation, Houston J. Math. 31(2005), 1207-1220. MR2175432
[3] R. P. Agarwal, D. Cao, H. Lü, D. O’Regan, Existence and multiplicity of positive solutions for singular semipositone p-Laplacian equations, Canad. J. Math. 58(2006), 449-475. MR2223452
[4] A. Cabada, J. Cid, M. Tvrdý, A generalized anti-maximum principle for the periodic onedimensional p-Laplacian with sign-changing potential, Nonlinear Anal. 72(2010), 34363446. MR2587376
[5] C. De Coster, Pairs of positive solutions for the one-dimensional p-Laplacian, Nonlinear Anal. 23(1994), 669-681. MR1297285
[6] A. Granas, R. B. Guenther, J.W. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. (Rozprawy Mat.) 244(1985), 128 pp. MR808227
[7] Y. Guo, J. Tian, Two positive solutions for second-order quasilinear differential equation boundary value problems with sign changing nonlinearities, J. Comput. Appl. Math. 169(2004), 345-357. MR2072883
[8] D. Jiang, Upper and lower solutions method and a singular superlinear boundary value problem for the one-dimensional p-Laplacian, Comput. Math. Appl. 42(2001), 927-940. MR1846197
[9] D. Jiang, P. Y. H. Pang, R. P. Agarwal, Nonresonant singular boundary value problems for the one-dimensional p-Laplacian, Dynam. Systems Appl. 11(2002), 449-457. MR1946135
[10] P. Kelevedjiev, S. Tersian, The barrier strip technique for a boundary value problem with p-Laplacian, Electron. J. Differential Equations 2013, No. 28, 1-18. MR3020244
[11] H. Lü, C. Zhong, A note on singular nonlinear boundary value problems for onedimensional p-Laplacian, Applied Math. Letters 14(2001), 189-194. MR1808264; url
[12] H. Lü, D. O'Regan, R. P. Agarwal, Triple solutions for the one-dimensional p-Laplacian, Glasnik Mathematički 38(2003), 273-284. MR2052746
[13] R. Ma, L. Zhang, R. Liv, Existence results for nonlinear problems with ϕ-Laplacian, Electron. J. Qual. Theory Differ. Equ. 2015, No. 22, 1-7. MR3346933; url
[14] Z. L. Wei, Existence of positive solutions for n th-order p-Laplacian singular super-linear boundary value problems, Appl. Math. Lett. 50(2015), 133-140. MR3378960; url

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: keleved@mailcity.com

