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1 Introduction

In recent years conditions for nonexistence of solutions to nonlinear partial differential equa-
tions and inequalities attract the attention of many mathematicians. This problem is not only
of interest of its own, but also has important mathematical and physical applications. In par-
ticular, Liouville type theorems of nonexistence of nontrivial positive solutions to nonlinear
equations in the whole space or half-space can be used for obtaining a priori estimates of
solutions to respective problems in bounded domains [1, 4].

In [5–7] (see also references therein) sufficient conditions for nonexistence of solutions
were obtained for different classes of nonlinear elliptic and parabolic inequalities using the
nonlinear capacity method developed by S. Pohozaev [8]. On the other hand, there ex-
ists an elaborated theory of partial differential equations with transformed argument due
to A. Skubachevskii [9]. But the problem of sufficient conditions for nonexistence of solutions
to respective inequalities with transformed argument remained open. Some special cases of
such problems were treated in [2, 3].

In this paper we obtain sufficient conditions for nonexistence of solutions to several classes
of elliptic and parabolic inequalities with transformed argument and for systems of elliptic
inequalities of this type.

The structure of the paper is as follows. In §2, we prove nonexistence theorems for semi-
linear elliptic inequalities of higher order; in §3, for quasilinear elliptic inequalities; in §4, for
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systems of quasilinear elliptic inequalities; and in §5, for nonlinear parabolic inequalities with
a shifted time argument.

The letter c with different subscripts or without them denotes positive constants that may
depend on the parameters of the inequalities and systems under consideration.

2 Semilinear elliptic inequalities

Let k ∈N. Consider a semilinear elliptic inequality

(−∆)ku(x) ≥ |u(g(x))|q (x ∈ Rn), (2.1)

where g ∈ C1(Rn; Rn) is a mapping such that

(g1) there exists a constant c > 0 such that |J−1
g (x)| ≥ c > 0 for all x ∈ Rn;

(g2) |g(x)| ≥ |x| for all x ∈ Rn.

Example 2.1. The dilatation transform g(x) = γx with any γ ∈ R such that |γ| > 1 satisfies
assumptions (g1) with c = |γ|−n and (g2).

Example 2.2. The rotation transform g(x) = Ax, where A is a n × n unitary matrix (and
therefore |g(x)| = |x| for all x ∈ Rn), satisfies assumptions (g1) with c = 1 and (g2).

In some situations assumption (g2) can be replaced by a weaker one:

(g’2) there exist constants c0 > 0 and ρ > 0 such that |g(x)| ≥ c0|x| for all x ∈ Rn \ Bρ(0).

Remark 2.3. We assume without loss of generality that c0 ≤ 1.

Example 2.4. The contraction transform g(x) = γx with 0 < |γ| ≤ 1 satisfies assumptions
(g1) with c = |γ|−n and (g’2) with c0 = |γ| and any ρ > 0.

Example 2.5. So does the shift transform g(x) = x − x0 for a fixed x0 ∈ Rn with c = 1,
c0 = 1/2 and ρ = 2|x0|.

Lemma 2.6. There exists a nonincreasing function ϕ(s) ≥ 0 in C2k[0, ∞), satisfying conditions

ϕ(s) =

{
1 (0 ≤ s ≤ 1),

0 (s ≥ 2),
(2.2)

and ∫ 2

1

|ϕ′(s)|q′

ϕq′−1(s)
ds < ∞, (2.3)

∫ 2

1

|∆k ϕ(s)|q′

ϕq′−1(s)
ds < ∞. (2.4)

Here and below q′ = q
q−1 .

Proof. Take ϕ(s) equal to (2− s)λ with a sufficiently large λ > 0 in a left neighborhood of 2
(see [7]).
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Theorem 2.7. Let either n ≤ 2k and q > 1, or n > 2k and 1 < q ≤ n
n−2k . Suppose that g satisfies

assumptions (g1) and (g2). Then inequality (2.1) has no nontrivial solutions u ∈ Lq,loc(R
n).

Proof. Assume for contradiction that a nontrivial solutions of (2.1) does exist. Let 0 < R < ∞
(in particular, the case R = 1 is possible). The function

ϕR(x) = ϕ

(
|x|
R

)
,

where ϕ(s) is from Lemma 2.6, will be used as a test function for inequality (2.1). Multiplying
both sides of (2.1) by the test function ϕR and integrating by parts 2k times, we get∫

Rn
|u(x)| · |∆k ϕR(x)| dx ≥

∫
Rn
|u(g(x))|q ϕR(x) dx. (2.5)

Using (g1), (g2), and the monotonicity of ϕR, one can estimate the right-hand side of (2.5)
from below as∫

Rn
|u(g(x))|q ϕR(x) dx =

∫
Rn
|u(x)|q ϕR(g−1(x))|J−1

g (x)| dx ≥ c
∫

Rn
|u(x)|q ϕR(x) dx. (2.6)

On the other hand, applying the parametric Young inequality to the left-hand side of (2.5), we
get ∫

Rn
|u(x)| ·

∣∣∣∆k ϕR(x)
∣∣∣ dx

≤ c
2

∫
Rn
|u(x)|q ϕR(x) dx + c1

∫
Rn

∣∣∣∆k ϕR(x)
∣∣∣q′ ϕ

1−q′
R (x) dx

=
c
2

∫
Rn
|u(x)|q ϕR(x) dx + c1Rn−2kq′

∫
Rn

∣∣∣∆k ϕ1(x)
∣∣∣q′ ϕ

1−q′
1 (x) dx

=
c
2

∫
Rn
|u(x)|q ϕR(x) dx + c2Rn−2kq′

(2.7)

with some constants c1, c2 > 0. Combining (2.5)–(2.7), we have

c
2

∫
Rn
|u(x)|q ϕR(x) dx ≤ c2Rn−2kq′ .

Restricting the integration domain in the left-hand side of the inequality, we obtain

c
2

∫
BR(0)

|u(x)|q dx ≤ c2Rn−2kq′ .

Taking R→ ∞, we get a contradiction for n− 2kq′ < 0, which proves the theorem in all cases
except the critical one (where n− 2kq′ = 0).

In the critical case we get ∫
Rn
|u(x)|q dx < ∞

and hence ∫
supp ∆k ϕR

|u(x)|q dx ≤
∫

B2R(0)\BR(0)
|u(x)|q dx → 0 as R→ ∞.

But (2.5), (2.6) and the Hölder inequality imply

c
∫

BR(0)
|u(x)|q dx ≤

(∫
supp ∆k ϕR

|u(x)|q dx
) 1

q

·
(∫

supp ∆k ϕR

∣∣∣∆k ϕR(x)
∣∣∣q′ ϕ

1−q′
R (x) dx

) 1
q′

(2.8)
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and therefore ∫
BR(0)

|u(x)|q dx ≤ c
(∫

supp ∆k ϕR

|u(x)|q dx
) 1

q

→ 0 as R→ ∞

since the second factor on the right-hand side of (2.8) can be estimated from above by c2Rn−2kq′

as before, where n− 2kq′ = 0. Thus for a nontrivial u we obtain a contradiction in this case as
well. This completes the proof.

Theorem 2.8. Let either n ≤ 2k and q > 1, or n > 2k and 1 < q ≤ n
n−2k . Suppose that g satisfies

assumptions (g1) and (g’2). Then inequality (2.1) has no nontrivial solutions u ∈ Lq,loc(R
n) such that

lρ := lim
R→∞

∫
B2R(0)

|u(x)|q dx∫
Bc0R(0)\Bρ(0)

|u(x)|q dx
< ∞ (2.9)

(in particular, u ∈ Lq(Rn)).

Proof. Similarly to estimate (2.6), for R > ρ we get∫
Rn
|u(g(x))|q ϕR(x) dx =

∫
Rn
|u(x)|q ϕR(g−1(x))|J−1

g (x)| dx

≥ c
∫

Rn\Bρ(0)
|u(x)|q ϕR

(
x
c0

)
dx ≥ c

∫
Bc0R(0)\Bρ(0)

|u(x)|q dx.
(2.10)

Then (2.5) and (2.7)–(2.10) imply∫
Bc0R(0)\Bρ(0)

|u(x)|q dx ≤ c1

∫
B2R(0)

|u(x)|q dx + c2Rn−2kq′ ,

where c1, c2 > 0, and the constant c1 can be chosen arbitrarily small. Hence by assumption
(2.9) for c1 < 1

2lρ+1 and sufficiently large R we have∫
Bc0R(0)\Bρ(0)

|u(x)|q dx ≤ 2c2Rn−2kq′ ,

i.e., the conclusion of Theorem 2.7 for any subcritical q remains valid in this case as well. The
critical case can be treated similarly to the previous theorem.

Further we consider the inequality

(−∆)ku(x) ≥ |Du(g(x))|q (x ∈ Rn). (2.11)

Theorem 2.9. Let either n ≤ 2k− 1 and q > 1, or n > 2k− 1 and 1 < q ≤ n
n−2k+1 . Suppose that g

satisfies assumptions (g1) and (g2). Then inequality (2.11) has no nontrivial solutions u ∈W1
q,loc(R

n).

Proof. Multiplying both sides of (2.11) by the test function ϕR and integrating by parts 2k− 1
times, we get ∫

Rn
(Du(x), D(∆k−1ϕR(x))) dx ≥

∫
Rn
|Du(g(x))|q ϕR(x) dx,

which implies ∫
Rn
|Du(x)| · |D(∆k−1ϕR(x))| dx ≥

∫
Rn
|Du(g(x))|q ϕR(x) dx. (2.12)
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Using (g1) and (g2), we can estimate the right-hand side of (2.12) from below as∫
Rn
|Du(g(x))|q ϕR(x) dx =

∫
Rn
|Du(x)|q ϕR(g−1(x))|J−1

g (x)| dx

≥ c
∫

Rn
|Du(x)|q ϕR(x) dx.

(2.13)

On the other hand, applying the parametric Young inequality to the left-hand side of (2.12),
we get ∫

Rn
|Du(x)| ·

∣∣∣D(∆k−1ϕR(x))
∣∣∣ dx

≤ c
2

∫
Rn
|Du(x)|q ϕR(x) dx + c1

∫
Rn

∣∣∣D(∆k−1ϕR(x))
∣∣∣q′ ϕ

1−q′
R (x) dx

≤ c
2

∫
Rn
|Du(x)|q ϕR(x) dx + c2Rn−(2k−1)q′

(2.14)

with some constants c1, c2 > 0. Combining (2.12)–(2.14), we have

c
2

∫
Rn
|Du(x)|q ϕR(x) dx ≤ c2Rn−(2k−1)q′ .

Restricting the integration domain in the left-hand side of the inequality, we obtain

c
2

∫
BR(0)

|Du(x)|q dx ≤ c2Rn−(2k−1)q′ .

Taking R → ∞, we get a contradiction for n− (2k− 1)q′ < 0. The critical case can be treated
similarly to the previous theorems.

Theorem 2.10. Let either n ≤ 2k− 1 and q > 1, or n > 2k− 1 and 1 < q ≤ n
n−2k+1 . Suppose that g

satisfies assumptions (g1) and (g’2). Then inequality (2.11) has no nontrivial solutions u ∈W1
q,loc(R

n)

such that

mρ := lim
R→∞

∫
B2R(0)

|Du(x)|q dx∫
Bc0R(0)\Bρ(0)

|Du(x)|q dx
< ∞ (2.15)

(in particular, u ∈W1
q (R

n)).

Proof. It is similar to that of Theorem 2.8.

3 Quasilinear elliptic inequalities

Further consider the inequality

− ∆pu(x) ≥ uq(g(x)) (x ∈ Rn), (3.1)

where g ∈ C1(Rn; Rn) satisfies assumptions (g1) and (g’2).

Theorem 3.1. Let p > 1 and p − 1 < q ≤ n(p−1)
n−p . Suppose that g satisfies assumptions (g1) and

(g’2). Then inequality (3.1) has no nontrivial nonnegative solutions u ∈W1
p,loc(R

n) ∩ Lq,loc(R
n).
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Proof. We use the same test functions ϕR as in the previous section. Choose λ so that 1− p <

λ < 0. Multiplying both sides of (3.1) by uλ(x)ϕR(x), integrating by parts, and applying the
parametric Young inequality with η > 0, we get

λ
∫

Rn
uλ−1(x)|Du(x)|p ϕR(x) dx +

∫
Rn

uλ(x)|Du(x)|p−1|DϕR(x)| dx

≥
∫

Rn
uq(g(x))uλ(x)ϕR(x) dx

≥ cη

∫
Rn

uq+λ(g(x))ϕR(x) dx− η
∫

Rn
uq+λ(x)ϕR(x) dx.

(3.2)

Since −∆pu ≥ 0, u satisfies the weak Harnack inequality∫
B2R(0)

uq+λ(x) dx ≤ cRn inf
x∈BR(0)

uq+λ(x)

and by iteration∫
B2R(0)

uq+λ(x) dx ≤ cRn inf
x∈Bc0R(0)

uq+λ(x) ≤ c
∫

Bc0R(0)
uq+λ(x) dx,

possibly with a different c > 0 (see [10]). Therefore∫
Rn

uq+λ(x)ϕR(g−1(x))|J−1
g (x)| dx ≥ c

∫
Bc0R(0)

uq+λ(x) dx

≥ c
∫

B2R(0)
uq+λ(x) dx ≥ c

∫
Rn

uq+λ(x)ϕR(x) dx.
(3.3)

For a sufficiently small η > 0 (note that cη → +∞ as η → +0), we can estimate the right-hand
side of (3.2) from below, since due to (g1), (g’2), and (3.3)

cη

∫
Rn

uq+λ(g(x))ϕR(x) dx− η
∫

Rn
uq+λ(x)ϕR(x) dx

= cη

∫
Rn

uq+λ(x)ϕR(g−1(x))|J−1
g (x)| dx− η

∫
Rn

uq+λ(x)ϕR(x) dx

≥ (cηc− η)
∫

Rn
uq+λ(x)ϕR(x) dx ≥ c1

∫
Bc0R(0)\Bρ(0)

uq+λ(x) dx

≥ c2

∫
B2R(0)\Bρ(0)

uq+λ(x) dx

(3.4)

with some constants c1, c2 > 0.
On the other hand, applying the parametric Young inequality with exponents p

p−1 and p
to the integrand at the left-hand side of (3.2) represented as

(pεϕR)
p−1

p u
(λ−1)(p−1)

p · (pεϕR)
1−p

p |DϕR|

with 0 < ε < |λ|, and then applying it again with exponents q+λ
λ+p−1 and q+λ

q−p+1 (note that these
exponents are greater than 1 for a sufficiently small |λ| due to the assumption q > p− 1) to
uλ+p−1(x)|DϕR(x)|p ϕ

1−p
R (x) represented as

(
c2(q + λ)

2(λ + p− 1)
ϕR

) λ+p−1
q+λ

uλ+p−1 ·
(

c2(q + λ)

2(λ + p− 1)
ϕR

)− λ+p−1
q+λ

|DϕR|p ϕ
1−p
R ,
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we get

λ
∫

Rn
uλ−1(x)|Du(x)|p ϕR(x) dx +

∫
Rn

uλ(x)|Du(x)|p−1|DϕR(x)| dx

≤ (λ + ε)
∫

Rn
uλ−1(x)|Du(x)|p ϕR(x) dx + c3(ε)

∫
Rn

uλ+p−1(x)|DϕR(x)|p ϕ
1−p
R (x) dx

≤ (λ + ε)
∫

Rn
uλ−1(x)|Du(x)|p ϕR(x) dx +

c2

2

∫
Rn

uq+λ(x)ϕR(x) dx

+ c4(ε)
∫

Rn
|DϕR(x)|

p(q+λ)
q−p+1 ϕ

1− p(q+λ)
q−p+1

R (x) dx ≤ (λ + ε)
∫

Rn
uλ−1(x)|Du(x)|p ϕR(x) dx

+
c2

2

∫
Rn

uq+λ(x)ϕR(x) dx + c5(ε)Rn− p(q+λ)
q−p+1

(3.5)

with some constants ε, c3(ε), c4(ε), c5(ε) > 0. Combining (3.2)–(3.5), we have

c2

2

∫
B2R(0)\Bρ(0)

uq+λ(x)ϕR(x) dx ≤ c5(ε)Rn− p(q+λ)
q−p+1 .

Choosing λ sufficiently close to 0 and taking R → ∞, we obtain a contradiction for n −
pq

q−p+1 < 0, i.e., p− 1 < q < n(p−1)
n−p . The critical case can be treated similarly to the previous

theorems.

Further we consider the inequality

− ∆pu(x) ≥ |Du(g(x))|q (x ∈ Rn). (3.6)

Theorem 3.2. Let p − 1 < q ≤ n(p−1)
n−1 . Suppose that g satisfies assumptions (g1) and (g2). Then

inequality (3.6) has no nontrivial nonnegative solutions u ∈W1
p,loc(R

n) ∩W1
q,loc(R

n).

Proof. Multiplying both parts of (3.6) by the test function ϕR and integrating by parts, we get∫
Rn
|Du(x)|p−2(Du(x), DϕR(x))) dx ≥

∫
Rn
|Du(g(x))|q ϕR(x) dx,

which implies ∫
Rn
|Du(x)|p−1 · |DϕR(x)| dx ≥

∫
Rn
|Du(g(x))|q ϕR(x) dx. (3.7)

Using (g1) and (g2), one can estimate the right-hand side of (3.7) from below as∫
Rn
|Du(g(x))|q ϕR(x) dx =

∫
Rn
|Du(x)|q ϕR(g−1(x))|J−1

g (x)| dx

≥ c0

∫
Rn
|Du(x)|q ϕR(x) dx.

(3.8)

On the other hand, applying the Hölder inequality to the left-hand side of (3.7), we obtain∫
Rn
|Du(x)| · |DϕR(x)| dx

≤
(∫

Rn
|Du(x)|q ϕR(x) dx

) p−1
q
(∫

Rn
|DϕR(x)|

q
q−p+1 ϕ

1− q
q−p+1

R (x) dx
) q−p+1

q

.
(3.9)

Combining (3.7)–(3.9), we have∫
Rn
|Du(x)|q ϕR(x) dx ≤ c1

∫
B2R(0)

|DϕR(x)|
q

q−p+1 ϕ
1− q

q−p+1
R (x) dx
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and hence ∫
BR(0)

|Du(x)|q dx ≤ c2Rn− q
q−p+1

with some constants c1, c2 > 0. Taking R → ∞, we obtain a contradiction for n− q
q−p+1 < 0.

The critical case can be treated similarly to the previous theorems.

Remark 3.3. If g satisfies (g’2) instead of (g2), a version of Theorem 3.2 can be proven for
a class of solutions that satisfy (2.15) (in particular, u ∈ W1

p,loc(R
n) ∩W1

q (R
n)) similarly to

Theorems 2.8 and 2.10.

4 Systems of quasilinear elliptic inequalities

Now consider a system of quasilinear elliptic inequalities{
−∆pu(x) ≥ vq1(g1(x)) (x ∈ Rn),

−∆qv(x) ≥ up1(g2(x)) (x ∈ Rn),
(4.1)

where g1, g2 ∈ C1(Rn; Rn) are mappings that satisfy (g1) and (g’2).
Introduce the quantities

σ1 = n− qq1

q1 − q + 1
,

σ2 = n− pp1

p1 − p + 1
,

σ = σ1(p− 1)(q1 − q + 1) + σ2q1(p1 − p + 1),

τ = σ1 p1(q1 − q + 1) + σ2(q− 1)(p1 − p + 1).

(4.2)

Then there holds the following.

Theorem 4.1. Let p, q, p1, q1 > 1, p− 1 < p1, q− 1 < q1, and min(σ, τ) ≤ 0. Suppose that g1 and
g2 satisfy assumptions (g1) and (g’2). Then system (4.1) has no nontrivial nonnegative solutions

(u, v) ∈ (W1
p,loc(R

n) ∩ Lp1,loc(R
n))× (W1

q,loc(R
n) ∩ Lq1,loc(R

n)).

Proof. Assume that there exists (u, v) – a nontrivial nonnegative solution of system (4.1). Let
{ϕR} be the same family of test functions as in Sections 2 and 3.

Multiplying the first inequality (4.1) by uλ
ε ϕR and the second one by vλ

ε ϕR, where uε =

u + ε, vε = v + ε, ε > 0 and max{1− p, 1− q} < λ < 0, we get∫
vq1(g1(x))uλ

ε (x)ϕR(x) dx ≤ λ
∫
|Du|puλ−1

ε ϕR dx +
∫
|Du|p−1|DϕR|uλ

ε dx,∫
up1(g2(x))vλ

ε (x)ϕR(x) dx ≤ λ
∫
|Dv|qvλ−1

ε ϕR dx +
∫
|Dv|q−1|DϕR|vλ

ε dx,

which can be rewritten as (note that |λ| = −λ since λ < 0)∫
vq1(g1(x))uλ

ε (x)ϕR(x) dx + |λ|
∫
|Du|puλ−1

ε ϕR dx ≤
∫
|Du|p−1|DϕR|uλ

ε dx, (4.3)∫
up1(g2(x))vλ

ε (x)ϕR(x) dx + |λ|
∫
|Dv|qvλ−1

ε ϕR dx ≤
∫
|Dv|q−1|DϕR|vλ

ε dx. (4.4)
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Here and below we omit the argument x if it is the only one in a certain integral, and Rn if it
is the integration domain. Application of the Young inequality to the right-hand sides of the
obtained relations results in∫

vq1(g1(x))uλ
ε (x)ϕR(x) dx +

|λ|
2

∫
|Du|puλ−1

ε ϕR dx ≤ cλ

∫ |DϕR|p

ϕ
p−1
R

uλ+p−1
ε dx, (4.5)

∫
up1(g2(x))vλ

ε (x)ϕR(x) dx +
|λ|
2

∫
|Dv|qvλ−1

ε ϕR dx ≤ dλ

∫ |DϕR|q

ϕ
q−1
R

vλ+q−1
ε dx, (4.6)

where constants cλ and dλ depend only on p, q, and λ. Further, multiplying each inequality
(4.1) by ϕR and integrating by parts, we obtain

∫
vq1(g1(x))ϕR(x) dx ≤

(∫
|Du|puλ−1

ε ϕR dx
) p−1

p
(∫ |DϕR|p

ϕ
p−1
R

u(1−λ)(p−1)
ε dx

) 1
p

, (4.7)

∫
up1(g2(x))ϕR(x) dx ≤

(∫
|Dv|qvλ−1

ε ϕR dx
) q−1

q
(∫ |DϕR|q

ϕ
q−1
R

v(1−λ)(q−1)
ε dx

) 1
q

. (4.8)

Note that the integrals on the left-hand sides of these inequalities can be estimated from
below by

∫
B2R(0)

vq1(x) dx and
∫

B2R(0)
up1(x) dx (with some positive multiplicative constants)

respectively, similarly to the proofs of Theorems 2.7 and 3.1. Thus, combining (4.5)–(4.8) and
taking ε→ 0, we arrive to a priori estimates

∫
B2R(0)

vq1 dx ≤ Dλ

(∫ |DϕR|p

ϕ
p−1
R

uλ+p−1 dx

) p−1
p
(∫ |DϕR|p

ϕ
p−1
R

u(1−λ)(p−1) dx

) 1
p

, (4.9)

∫
B2R(0)

up1 dx ≤ Eλ

(∫ |DϕR|q

ϕ
q−1
R

vλ+q−1 dx

) q−1
q
(∫ |DϕR|q

ϕ
q−1
R

v(1−λ)(q−1) dx

) 1
q

, (4.10)

where Dλ and Eλ > 0 depend only on p, q, and λ.
Apply the Hölder inequality with exponent r > 1 to the first integral on the right-hand

side of (4.9):(∫ |DϕR|p

ϕ
p−1
R

uλ+p−1 dx

) p−1
p

≤
(∫

u(λ+p−1)r ϕR dx
) p−1

pr
(
|DϕR|pr′

ϕ
pr′−1
R

dx

) p−1
pr′

, (4.11)

where
1
r
+

1
r′

= 1.

Choosing the exponent r so that (λ + p− 1)r = p1, from (4.9) and (4.11) we get∫
B2R(0)

vq1 dx

≤ Dλ

(∫
up1 ϕR dx

) p−1
pr
(∫ |DϕR|pr′

ϕ
pr′−1
R

dx

) p−1
pr′
(∫ |DϕR|p

ϕ
p−1
R

u(1−λ)(p−1) dx

) 1
p

.
(4.12)

Applying the Hölder inequality with exponent y > 1 to the last integral on the right-hand
side of (4.12), we obtain

∫ |DϕR|p

ϕ
p−1
R

u(1−λ)(p−1) dx ≤
(∫

u(1−λ)(p−1)y ϕR dx
) 1

y
(∫ |DϕR|py′

ϕ
py′−1
R

dx

) 1
y′

, (4.13)
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where 1
y +

1
y′ = 1.

Choosing y in (4.13) so that (1− λ)(p− 1)y = p1 and taking into account (4.12), we get the
estimate

∫
B2R(0)

vq1 dx ≤ Dλ

(∫
B2R(0)

up1 dx
) p−1

pr + 1
py
(∫ |DϕR|pr′

ϕ
pr′−1
R

dx

) p−1
pr′
(∫ |DϕR|py′

ϕ
py′−1
R

dx

) 1
py′

, (4.14)

where the exponents r and y are chosen so that
1
y
+

1
y′

= 1, (1− λ)(p− 1)y = p1,

1
r
+

1
r′

= 1, (λ + p− 1)r = p1.

(4.15)

Note that this choice of r > 1 and y > 1 is possible due to our assumptions on p and p1

provided that λ < 0 is sufficiently small in absolute value. Similarly, choosing s and z such
that 

1
z
+

1
z′

= 1, (1− λ)(q− 1)z = q1,

1
s
+

1
s′

= 1, (λ + q− 1)s = q1,

(4.16)

and estimating the right-hand side of (4.10) by the Hölder inequality, we get

∫
B2R(0)

up1 dx≤ Eλ

(∫
B2R(0)

vq1 dx
) q−1

qs + 1
qz
(∫ |DϕR|qs′

ϕ
qs′−1
R

dx

) q−1
qs′
(∫ |DϕR|qz′

ϕ
qz′−1
R

dx

) 1
qz′

. (4.17)

Combining (4.14) and (4.17), we finally arrive at

(∫
B2R(0)

vq1 dx
)1−µν

≤ DλEν
λ

(∫ |DϕR|qs′

ϕ
qs′−1
R

dx

) ν(q−1)
qs′
(∫ |DϕR|qz′

ϕ
qz′−1
R

dx

) ν
qz′

×
(∫ |DϕR|pr′

ϕ
pr′−1
R

dx

) p−1
pr′
(∫ |DϕR|py′

ϕ
py′−1
R

dx

) 1
py′

(4.18)

and (∫
B2R(0)

up1 dx
)1−µν

≤ EλDµ
λ

(∫ |DϕR|pr′

ϕ
pr′−1
R

dx

) µ(p−1)
pr′

(∫ |DϕR|py′

ϕ
py′−1
R

dx

) µ

py′

×
(∫ |DϕR|qs′

ϕ
qs′−1
R

dx

) q−1
qs′
(∫ |DϕR|qz′

ϕ
qz′−1
R

dx

) 1
qz′

,

(4.19)

where

µ :=
q− 1

qs
+

1
qz

, ν :=
p− 1

pr
+

1
py

. (4.20)

Simple calculations using (4.15) and (4.16) yield explicit values of µ and ν, namely,

µ =
q− 1

q1
, ν =

p− 1
p1

. (4.21)



On nonexistence of solutions 11

Our assumptions imply that the exponents on the left-hand side of (4.18) and (4.19) are such
that

1− µν =
p1q1 − (p− 1)(q− 1)

p1q1
> 0.

Thus from (4.19) we have∫
B2R(0)

vq1 dx ≤ CR
σ

p1q1−(p−1)(q−1) ,
∫

B2R(0)
up1 dx ≤ CR

τ
p1q1−(p−1)(q−1) . (4.22)

Taking R→ ∞ in (4.22), under the hypotheses of the theorem we arrive at a contradiction,
which completes the proof.

Similarly one can consider a system{
−∆pu(x) ≥ |Dv(g(x))|q1 (x ∈ Rn),

−∆qv(x) ≥ |Du(g(x))|p1 (x ∈ Rn),
(4.23)

where p, q, p1, q1 > 1 and p− 1 < p1, q− 1 < q1.
Introduce the quantities

σ = n− (p1 + p− 1)q1

p1q1 − (p− 1)(q− 1)
,

τ = n− (q1 + q− 1)p1

p1q1 − (p− 1)(q− 1)
.

(4.24)

Then one has

Theorem 4.2. Let min(σ, τ) ≤ 0. Then system (4.23) has no nontrivial solutions.

We leave the proof to the interested reader.

5 Nonlinear parabolic inequalities

Now let τ > 0. Consider the semilinear parabolic inequality

∂u(x, t)
∂t

+ (−∆)ku(x, t) ≥ |u(x, g(t))|q (x ∈ Rn; t ∈ R+) (5.1)

with initial condition
u(x, 0) = u0(x) (x ∈ Rn), (5.2)

where u0 ∈ C(Rn) is a function that satisfies the condition∫
Rn

u0(x) dx ≥ 0, (5.3)

and g : R+ → R+ is a continuous function such that

(g3) t ≤ g(t) and g′(t) ≥ 1 for any t ≥ 0.

Let 0 < R, T < ∞. We will use as a test function the product of two functions

Φ(x, t) = ϕ

(
|x|
R

)
· ϕ
(

t
T

)
,

where the function ϕ(s) is the one from Lemma 2.6.
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Theorem 5.1. Problem (5.1)–(5.2) with u0 that satisfies (5.3) and g that satisfies (g3) has no nontrivial
solutions if 1 < q ≤ 1 + 2k

n .

Proof. Multiplying both sides of (5.1) by the test function Φ and integrating by parts, we get

−
∫

Rn
u0(x)Φ(x, 0) dx +

∫ ∞

0

∫
Rn
|u(x, t)| ·

∣∣∣∣∂Φ(x, t)
∂t

∣∣∣∣ dx dt

+
∫ ∞

0

∫
Rn
|u(x, t)| ·

∣∣∣∆kΦ(x, t)
∣∣∣ dx dt

≥
∫ ∞

0

∫
Rn
|u(x, g(t))|qΦ(x, t) dx.

(5.4)

Since the function ϕ(t/T) monotonically decreases, using (g3) and the monotonic decay of
Φ(x, t) in t for each x ∈ Rn, one can estimate the right-hand side of (5.4) from below as∫ ∞

0

∫
Rn
|u(x, g(t))|qΦ(x, t) dx dt =

∫ ∞

0

∫
Rn
|u(x, t)|qΦ(x, g−1(t))(g−1)′(t) dx dt

≥
∫ ∞

0

∫
Rn
|u(x, t)|qΦ(x, t) dx dt.

(5.5)

On the other hand, applying the parametric Young inequality and Lemma 2.6 to the second
and third terms of the left-hand side of (5.4), we obtain∫ ∞

0

∫
Rn
|u(x, t)| ·

∣∣∣∣∂Φ(x, t)
∂t

∣∣∣∣ dx dt

≤ 1
4

∫ ∞

0

∫
Rn
|u(x, t)|qΦ(x, t) dx dt + c1

∫ ∞

0

∫
Rn

∣∣∣∣∂Φ(x, t)
∂t

∣∣∣∣q′ Φ1−q′(x, t) dx dt

≤ 1
4

∫ ∞

0

∫
Rn
|u(x, t)|qΦ(x, t) dx dt + c2RnT1−q′

(5.6)

and ∫ ∞

0

∫
Rn
|u(x, t)| ·

∣∣∣∆kΦ(x, t)
∣∣∣ dx dt

≤ 1
4

∫ ∞

0

∫
Rn
|u(x, t)|qΦ(x, t) dx dt + c3

∫ ∞

0

∫
Rn

∣∣∣∆kΦ(x, t)
∣∣∣q′ Φ1−q′(x, t) dx dt

≤ 1
4

∫ ∞

0

∫
Rn
|u(x, t)|qΦ(x, t) dx dt + c4Rn−2kq′T

(5.7)

with some constants c1, . . . , c4 > 0. Combining (5.4)–(5.7) and taking into account (5.3), we
have

1
2

∫ ∞

0

∫
Rn
|u(x, t)|qΦ(x, t) dx dt ≤ c2RnT1−q′ + c4Rn−2kq′T.

Taking T = R2k and R → ∞, we obtain a contradiction for n − 2k(q′ − 1) < 0, i.e., for
1 < q < 1 + 2k

n . The critical case can be considered similarly to the previous theorems.
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