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Abstract. The authors present some new oscillation criteria for the third-order neutral
dynamic equation with distributed delays[

r(t)

([
x(t) +

∫ b

a
p(t, η)x [τ(t, η)]∆η

]∆∆
)α]∆

+
∫ d

c
q(t, ξ) f (x [φ(t, ξ)])∆ξ = 0

on a time scale T, where α is the quotient of odd positive integers. Using a Riccati
type transformation and a comparison technique, they establish some new sufficient
conditions to ensure that a solution x of this equation either oscillates or satisfies
limt→∞ x(t) = 0.
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1 Introduction

We are interested in the oscillatory behavior of third-order neutral dynamic equations with
continuously distributed delays of the form[

r(t)

([
x(t) +

∫ b

a
p(t, η)x [τ(t, η)]∆η

]∆∆
)α]∆

+
∫ d

c
q(t, ξ) f (x [φ(t, ξ)])∆ξ = 0 (1.1)

on an arbitrary time scale T, where α is a quotient of odd positive integers.
Dynamic equations on time scales have received a great deal of attention in the last twenty

years. We refer the reader to the monographs of Bohner and Peterson [2,3] and the survey pa-
per of Agarwal et al. [1] for background and details on the time scale calculus. The oscillatory
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and asymptotic behavior of solutions of dynamic equations is an active and important area of
research, and we refer the reader to the papers [7–11, 15, 16] as examples of recent results on
this topic. Oscillation results for dynamic equations with distributed delays are far less preva-
lent in the literature. For example, Candan [4] (also see Candan [5] and Chen and Liu [6])
studied the second-order neutral dynamic equation with distributed deviating arguments(

r(t)
(
(y(t) + p(t)y(τ(t)))∆

)γ)∆
+
∫ d

c
f (t, y[θ(t, ξ)])∆ξ = 0,

where γ > 0 is a ratio of odd positive integers and r(t) and p(t) are positive rd-continuous
functions defined on a time scale T, and he obtained some new sufficient conditions to ensure
the oscillation of all solutions.

To the best of our knowledge, there appears to be very little known about the oscilla-
tory and asymptotic behavior of solutions of third order neutral dynamic equations with
distributed delays. Şenel and Utku [16] (also see [13, 17]) have obtained some such results for
equation (1.1). Our purpose here is to establish some new oscillation criteria for this equation
different from those in [13, 16, 17] (see Remark 3.3 below) and to contribute to the growing
body of research on third order neutral delay dynamic equations in general and those with
distributed delays in particular.

We will make use of the following conditions where Crd denotes the class of rd-continuous
functions.

(H1) r ∈ Crd([t0, ∞)T, R+) and ∫ ∞

t0

(
1

r(t)

)1/α

∆t = ∞; (1.2)

(H2) q(t, ξ) ∈ Crd ([t0, ∞)T × [c, d], R+), p(t, η) ∈ Crd ([t0, ∞)T × [a, b], R), and 0 ≤ p(t) ≡∫ b
a p(t, η)∆η ≤ P < 1;

(H3) τ(t, η) ∈ Crd ([t0, ∞)T × [a, b], T) is nondecreasing in η,

τ(t, η) ≤ t, and lim
t→∞

min
η∈[a,b]

τ(t, η) = ∞;

(H4) φ(t, ξ) ∈ Crd ([t0, ∞)T × [c, d], T) is nondecreasing in ξ,

φ(t, ξ) ≤ t, and lim
t→∞

min
ξ∈[c,d]

φ(t, ξ) = ∞;

(H5) f ∈ C(R, R) satisfies u f (u) > 0 for x 6= 0 and there exist constants k > 0 and β ≤ α,
with β the ratio of odd positive integers, such that f (u)/uβ ≥ k for u 6= 0.

Defining the function

z(t) = x(t) +
∫ b

a
p(t, η)x [τ(t, η)]∆η, (1.3)

equation (1.1) can be written as[
r(t)

(
z∆∆(t)

)α]∆
+
∫ d

c
q(t, ξ) f (x [φ(t, ξ)])∆ξ = 0. (1.4)

A solution x(t) of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative, and it is non-oscillatory otherwise.
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2 Some preliminary lemmas

In order to prove our main results, we will make use of a special case of Keller’s chain rule
(see Bohner and Peterson [2, Theorem 1.90]), namely,

(zα(t))∆ = α

{∫ 1

0
[hzσ(t) + (1− h)z(t)]α−1 dh

}
z∆(t),

where z(t) is a delta differentiable function.
The following lemma is rather standard when studying the oscillatory behavior of solu-

tions of third order equations; its proof can easily be modeled, for example, after the one of
Hassan and Grace [13, Lemma 2.1], Şenel and Utku [16, Lemma 2.1], or many other authors.

Lemma 2.1. Assume that conditions (H1)–(H5) hold and let x(t) be a positive solution of (1.1) with
z(t) defined as in (1.3). Then for sufficiently large t, either

(I) z(t) > 0, z∆(t) > 0, z∆∆(t) > 0, and [r(t)(z∆∆(t))α]∆ < 0, or

(II) z(t) > 0, z∆(t) < 0, z∆∆(t) > 0 and [r(t)(z∆∆(t))α]∆ < 0.

Variations of the following lemma can be found, for example, in Hassan and Grace
[13, Lemma 2.10] and Şenel and Utku [16, Lemma 2.2], and their proofs can easily be adopted
to our situation.

Lemma 2.2. Assume that conditions (H1)–(H5) hold and let x(t) be an eventually positive solution of
(1.1) with z(t) satisfying property (II). If

∫ ∞

t0

∫ ∞

v

[
1

r(u)

∫ ∞

u
q(s)∆s

] 1
α

∆u∆v = ∞, (2.1)

where q(t) =
∫ d

c q(t, ξ)∆ξ, then limt→∞ x(t) = 0.

Remark 2.3. Clearly, analogous results hold for eventually negative solutions of equation (1.1).
In [16], the authors assumed that α = β, but that is not needed for the above two lemmas.

In the following two lemmas, we consider the second order dynamic equation(
r(t)(x∆(t))α

)∆
= cQ(t)xβ(h(t)), (2.2)

where c is a positive constant, and α, β, and r are as in (1.1), Q : T → R+ and h : T → T are
rd-continuous functions, h∆(t) ≥ 0, h(t) < t, and limt→∞ h(t) = ∞.

Lemma 2.4. Let condition (H1) hold. If

lim sup
t→∞

∫ t

h(t)
Q(s)

(∫ h(t)

h(s)
r−1/α(v)∆v

)β

∆s >

{
1/c, if β = α,

0, if β < α,
(2.3)

then all bounded solutions of equation (2.2) are oscillatory.
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Proof. Let x(t) be a bounded nonoscillatory solution of equation (2.2), say x(t) > 0 and
x(h(t)) > 0 for t ∈ [t1, ∞)T for some t1 ≥ t0. Then, there exists t2 ∈ [t1, ∞)T such that

x(t) > 0, x∆(t) < 0, and
(

r(t)(x∆(t))α
)∆
≥ 0 for t ∈ [t2, ∞)T. (2.4)

Now, for v ≥ u ≥ t2, we have

x(u)− x(v) = −
∫ v

u
x∆(τ)∆τ

= −
∫ v

u
r−1/α(τ)

(
r(τ)(x∆(τ))α

)1/α
∆τ

≥
(∫ v

u
r−1/α(τ)∆τ

)(
−r(v)(x∆(v))α

)1/α
. (2.5)

For t ≥ s ≥ t2, setting u = h(s) and v = h(t) in (2.5), we obtain

x(h(s)) ≥
(∫ h(t)

h(s)
r−1/α(τ)∆τ

)(
−r(h(t))(x∆(h(t)))α

)1/α
. (2.6)

Integrating (2.2) from h(t) ≥ t2 to t, we have

−r(h(t))(x∆(h(t)))α ≥ r(t)(x∆(t))α − r(h(t))(x∆(h(t)))α

=
∫ t

h(t)
cQ(s)xβ(h(s))∆s. (2.7)

Using (2.6) in (2.7) gives

−r(h(t))(x∆(h(t)))α ≥ c
∫ t

h(t)
Q(s)

(∫ h(t)

h(s)
r−1/α(τ)∆τ

)β

∆s
(
−r(h(t))(x∆(h(t)))α

)β/α
,

i.e.,
1
c

(
−r(h(t))(x∆(h(t)))α

)1− β
α ≥

∫ t

h(t)
Q(s)

(∫ h(t)

h(s)
r−1/α(τ)∆τ

)β

∆s. (2.8)

Taking the lim sup as t → ∞ of both sides of the above inequality, we see that if α = β, the
contradiction is clear.

If β < α, the left hand side of (2.8) is positive and must decrease to zero as t increases in
order to prevent a contradiction to the positivity of x(t). This contradicts (2.3) and completes
the proof of the lemma.

Lemma 2.5. Let (H1) hold. If

lim sup
t→∞

∫ t

h(t)

(
1

r(u)

∫ t

u
Q(s)∆s

)1/α

∆u >

{
c−1/α, if β = α,

0, if β < α,
(2.9)

then all bounded solutions of equation (2.2) are oscillatory.

Proof. Let x(t) be a bounded nonoscillatory solution of equation (2.2), say x(t) > 0 and
x(h(t)) > 0 for t ∈ [t1, ∞)T for some t1 ≥ t0. As in the proof of Lemma 2.4, we obtain
(2.4). Integrating equation (2.2) from u to t ≥ u ≥ t2, we have

r(t)(x∆(t))α − r(u)(x∆(u))α =
∫ t

u
cQ(s)xβ(h(s))∆s,
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or

−x∆(u) ≥ c1/α

(
1

r(u)

∫ t

u
Q(s)∆s

)1/α

xβ/α(h(t)).

Integrating this inequality from h(t) to t, we obtain

x(h(t)) ≥ c1/α

[∫ t

h(t)

(
1

r(u)

∫ t

u
Q(s)∆s

)1/α

∆u

]
xβ/α(h(t)),

or

c−1/αx1−β/α(h(t)) ≥
∫ t

h(t)

(
1

r(u)

∫ t

u
Q(s)∆s

)1/α

∆u.

The remainder of the proof is similar to that of Lemma 2.4 and hence is omitted.

Remark 2.6. It follows from Lemmas 2.4 and 2.5 that equation (2.2) has no solution x(t)
satisfying x(t)x∆(t) < 0 for large t.

Lemma 2.7. Let conditions (H1)–(H5) hold and assume that x is an eventually positive solution of
equation (1.1) with the corresponding z satisfying Case (II) of Lemma 2.1. Then there exists θ > 1 with
Pθ < 1 such that either

x(t) ≥
(

1− Pθ

θ

)
z(t) (2.10)

for large t, or limt→∞ x(t) = 0.

Proof. Choose t1 ∈ T so that x(t) > 0 and x[τ(t, η)] > 0 for t ∈ [t1, ∞)T for some t1 ≥ t0. Since
z(t) satisfies Case (II) of Lemma 2.1, there exists a constant κ such that

lim
t→∞

z(t) = κ < ∞.

(i) If κ > 0, then there exists t2 ≥ t1 and θ > 1 with θP < 1 such that

κ < z(t) < κθ (2.11)

for t ∈ [t2, ∞)T. Now,

x(t) = z(t)−
∫ b

a
p(t, η)x [τ(t, η)]∆η,

and so

x(t) ≥ κ − κθP =

(
1− Pθ

θ

)
κθ

≥
(

1− Pθ

θ

)
z(t) for t ∈ [t2, ∞)T.

(ii) If κ = 0, then limt→∞ z(t) = 0. Since 0 < x(t) ≤ z(t) on [t2, ∞)T, limt→∞ x(t) = 0. This
completes the proof of the lemma.
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3 Main results

In this section, we establish some new criteria for the oscillation of equation (1.1). It will be
convenient to employ the following notations.

Let

q(t) =
∫ d

c
q(t, ξ)∆ξ, φ1(t) = φ(t, c), and φ2(t) = φ(t, d),

where φ(t, ξ) is given in (H4) and λ > 1 is a constant such that λφ2(t) ≤ t for t ∈ [t0, ∞)T. In
addition, let c1 = k(1− P)β and for any t1 ∈ [t0, ∞)T, let

R(t, t1) =
∫ t

t1

r−1/α(s)∆s,

u(t) =
(∫ t

t1

R(s, t1)∆s
)−1

,

and

η(t) =
[

θ1t + θ2

∫ t

t1

∫ u

t1

r−1/α(s)∆s∆u
]−1

for all t ∈ [t1, ∞)T and any positive constants θ1 and θ2.

Theorem 3.1. Let conditions (H1)–(H5) hold and assume there exists a positive, nondecreasing, delta-
differentiable function g(t) such that, for any positive constants c2 and c3 and T > T1 ≥ t0, we
have

lim sup
t→∞

∫ t

T

[
c1c2ηβ(s)g(s)q(s)− (α/β)α

(α + 1)α+1

(
(g∆(s))+

)α+1

(γ(s)g(s)R(s, T1))
α

]
∆s = ∞ (3.1)

for t ∈ [T, ∞)T, where (g∆(t))+ = max
{

0, g∆(t)
}

, and

γ(t) =

{
1, if β = α,

c3(ησ(t))
α−β

α , if β < α.
(3.2)

If condition (2.3) or (2.9) holds with

Q(t) = φ
β
2 (t)q(t), c = k

(
(1− Pθ)(λ− 1)

θ

)β

, and h(t) = λφ2(t), (3.3)

then a solution x of equation (1.1) either oscillates or satisfies limt→∞ x(t) = 0.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0 for t ∈ [t1, ∞)T, x(τ(t, η)) > 0
for (t, η) ∈ [t1, ∞)T × [a, b], and x(φ(t, ξ)) > 0 for (t, ξ) ∈ [t1, ∞)T × [c, d] for some t1 ∈
[t0, ∞)T. We need to show that x(t)→ 0 as t→ ∞.

Define the function z as in (1.3). From Lemma 2.1, we can easily see that

[
r(t)

(
z∆∆(t)

)α]∆
< 0 and z∆∆(t) > 0 for t ∈ [t1, ∞)T,

and either z∆(t) > 0 or z∆(t) < 0 for t ∈ [t2, ∞)T for some t2 ≥ t1.
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Assume z∆(t) > 0 on [t2, ∞)T. Then,

x(t) = z(t)−
∫ b

a
p(t, η)x [τ(t, η)]∆η

≥ z(t)−
∫ b

a
p(t, η)z [τ(t, η)]∆η

≥ z(t)− z [τ(t, b)]
∫ b

a
p(t, η)∆η

≥
(

1−
∫ b

a
p(t, η)∆η

)
z(t)

≥ (1− P) z(t). (3.4)

Using (3.4), (H4), and (H5) in (1.4), we obtain[
r(t)

(
z∆∆(t)

)α]∆
= −

∫ d

c
q(t, ξ) f (x [φ(t, ξ)])∆ξ

≤ −k (1− P)β
∫ d

c
q(t, ξ)zβ (φ(t, ξ))∆ξ

≤ −c1q(t)zβ(φ1(t)). (3.5)

Define the function w(t) by

w(t) = g(t)
r(t)

(
z∆∆(t)

)α

zβ(t)
. (3.6)

Then,

w∆(t) =
g(t)
zβ(t)

(
r(t)

(
z∆∆(t)

)α)∆
+
(

r(t)
(

z∆∆(t)
)α)σ

(
g(t)
zβ(t)

)∆

≤ −c1g(t)q(t)
(

z(φ1(t))
z(t)

)β

+ g∆(t)

(
r(t)

(
z∆∆(t)

)α
)σ

zβ(σ(t))

− g(t)

(
r(t)

(
z∆∆(t)

)α
)σ

(zβ(t))∆

zβ(t)zβ(σ(t))
. (3.7)

Since r(t)
(
z∆∆(t)

)α is strictly decreasing on [t2, ∞)T, we have

z∆(t) ≥ z∆(t)− z∆(t2)

=
∫ t

t2

(
r(s)

(
z∆∆(s)

)α
)1/α

r1/α(s)
∆s

≥
(

r(t)
(

z∆∆(t)
)α)1/α ∫ t

t2

r−1/α(s)∆s

= R(t, t2)r1/α(t)z∆∆(t) (3.8)

for t ∈ [t2, ∞)T.
From the fact that z(t) is increasing and r(t)

(
z∆∆(t)

)α is strictly decreasing on [t2, ∞)T,
there exist positive constants b and b1 such that

z(φ1(t)) ≥ b (3.9)
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and
r(t)

(
z∆∆(t)

)α
≤ b1 (3.10)

for t ∈ [t2, ∞)T. Integrating the last inequality twice from t2 to t, we obtain

z(t) ≤ z(t2) + (t− t2)z∆(t2) + b1/α
1

∫ t

t2

∫ s

t2

r−1/α(u)∆u∆s.

Thus, there exists a constant b2 > 0 such that

z(t) ≤ b2η−1(t) for t ∈ [t3, ∞)T (3.11)

for some t3 ≥ t2. From (3.9) and (3.11), it is easy to see that

z(φ1(t))
z(t)

≥ b3η(t) for t ∈ [t3, ∞)T, (3.12)

where b3 := b/b2.
Applying Keller’s chain rule, we have(

zβ(t)
)∆

= βz∆(t)
∫ 1

0

[
z(t) + hµ(t)z∆(t)

]β−1
dh

≥
{

β(zσ(t))β−1z∆(t), 0 < β ≤ 1,

β(z(t))β−1z∆(t), β > 1.
(3.13)

Using (3.12) and (3.13) in (3.7) implies

w∆(t) ≤ −c1c2ηβ(t)g(t)q(t) + g∆(t)
(

w(t)
g(t)

)σ

− βg(t)
z∆(t)
zσ(t)

(
w(t)
g(t)

)σ

, (3.14)

for either case of β, where c2 = bβ
3 . From (3.8) and (3.14), we then have

w∆(t) ≤ −c1c2ηβ(t)g(t)q(t) + g∆(t)
(

w(t)
g(t)

)σ

− βg(t)R(t, t2)

((
w(t)
g(t)

)σ) α+1
α

(zσ(t))
β−α

α (3.15)

for t ∈ [t3, ∞)T.
Now, if β = α, then (zσ(t))

β−α
α = 1. On the other hand, if β < α, then using the fact that

r(t)
(
z∆∆(t)

)α is decreasing on [t3, ∞)T, we can again obtain (3.11) as above. Hence,

(zσ(t))
β−α

α ≥ c3 (η
σ(t))

α−β
α for all t ∈ [t3, ∞)T,

where c3 = (b2)
β−α

α . Hence, for β ≤ α, from the definition of γ(t) in (3.2), we have

w∆(t) ≤ −c1c2ηβ(t)g(t)q(t) + g∆(t)
(

w(t)
g(t)

)σ

− βg(t)R(t, t2)γ(t)
((

w(t)
g(t)

)σ) α+1
α

(3.16)

for t ∈ [t3, ∞)T.
Taking λ = α+1

α > 1,

X = (βγ(t)g(t))1/λ R1/λ(t, t2)

(
w(t)
g(t)

)σ

,
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and
Y = λ−α

(
g∆(t)

)α [
(βγ(t)g(t))−1/λ R−1/λ(t, t2)

]α
,

we see that X ≥ 0 and Y ≥ 0 and so we can apply the inequality (see [12])

λXYλ−1 − Xλ ≤ (λ− 1)Yλ

to obtain

βγ(t)g(t)R(t, t2)

((
w(t)
g(t)

)σ) α+1
α

− g∆(t)
(

w(t)
g(t)

)σ

≥ −
( α

β )
α(g∆(t))α+1

(α + 1)α+1(γ(t)g(t)R(t, t2))α
(3.17)

for t ∈ [t3, ∞)T. Substituting (3.17) into (3.16) gives

w∆(t) ≤ −c1c2ηβ(t)g(t)q(t) +
( α

β )
α(
(

g∆(t)
)
+
)α+1

(α + 1)α+1(γ(t)g(t)R(t, t2))α
.

Integrating this inequality from t3 to t yields∫ t

t3

[
c1c2ηβ(s)g(s)q(s)−

( α
β )

α(
(

g∆(s)
)
+
)α+1

(α + 1)α+1(γ(s)g(s)R(s, t2))α

]
∆s ≤ w(t3)− w(t) ≤ w(t3).

Taking the lim sup of both sides of this inequality as t → ∞, we obtain a contradiction to
condition (3.1). Therefore, z∆(t) < 0 on [t2, ∞)T.

If x(t) 6→ 0 as t→ ∞, then from Lemma 2.7, we see that (2.10) holds. Using this in equation
(1.1), we obtain [

r(t)
(

z∆∆(t)
)α]∆

= −
∫ d

c
q(t, ξ) f (x [φ(t, ξ)])∆ξ

≤ −k
∫ d

c
q(t, ξ)xβ [φ(t, ξ)]∆ξ

≤ −k
(

1− Pθ

θ

)β ∫ d

c
q(t, ξ)zβ [φ(t, ξ)]∆ξ.

Noting that z(t) satisfies (II) in Lemma 2.1, condition (H4) implies[
r(t)

(
z∆∆(t)

)α]∆
≤ −k

(
1− Pθ

θ

)β

zβ [φ(t, d)]
∫ d

c
q(t, ξ)∆ξ

= −k
(

1− Pθ

θ

)β

q(t)zβ [φ2(t)] (3.18)

for t ∈ [t2, ∞)T. Now, for v ≥ u ≥ t2,

z(u)− z(v) = −
∫ v

u
z∆(τ)∆τ ≥ (v− u)(−z∆(v)).

Setting u = φ2(t) and v = λφ2(t), and using the facts that λ > 1 and λφ2(t) < t, we obtain

z(φ2(t)) ≥ (λ− 1) φ2(t)(−z∆(λφ2(t))) for t ∈ [t2, ∞)T. (3.19)

From (3.19) and (3.18), we have(
r(t)

(
y∆(t)

)α)∆
≥ k

(
1− Pθ

θ

)β

(λ− 1)β φ
β
2 (t)q(t)y

β[λφ2(t)] = cQ(t)yβ[λφ2(t)]

for t ∈ [t2, ∞)T, where 0 < y(t) = −z∆(t) on [t2, ∞)T. Now y∆(t) = −z∆∆(t) < 0, so y(t) is
bounded. If we now proceed as in the proofs of Lemmas 2.4 and 2.5, we obtain contradictions.
Hence, x(t)→ 0 as t→ ∞, and this completes the proof of the theorem.
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Remark 3.2. (i) In case ∫ t

t0

∫ s

t0

r−1/α(u)∆u∆s ≥ t,

we may take

η(t) =
[

c
∫ t

t0

∫ s

t0

r−1/α(u)∆u∆s
]−1

where c > 0 is a constant.

(ii) In case ∫ t

t0

∫ s

t0

r−1/α(u)∆u∆s ≤ t,

we may take
η(t) = [c∗t]−1 where c∗ > 0 is a constant.

Remark 3.3. In [16], the authors require condition (2.1) to hold and made use of Lemma 2.2
to show that in the case where z∆ < 0, a nonoscillatory solution must converge to zero. Here
we use either condition (2.3) or (2.9), and with the help of Lemma 2.7 are able to produce the
same conclusion. Note also that in [16] the authors require α = β which we do not here.

Theorem 3.4. Let the hypotheses of Theorem 3.1 hold with condition (2.3) or (2.9) replaced by (2.1).
Then a solution x of (1.1) either oscillates or satisfies limt→∞ x(t) = 0.

Proof. The proof follows from that of Theorem 3.1 and Lemma 2.2, and hence is omitted.

The following corollaries are immediate.

Corollary 3.5. Let condition (3.1) in Theorems 3.1 and 3.2 be replaced by

lim sup
t→∞

∫ t

T
ηβ(s)g(s)q(s)∆s = ∞ (3.20)

and

lim sup
t→∞

∫ t

T

(
(g∆(s))+

)α+1

(γ(s)g(s)R(s, T1))
α ∆s < ∞ (3.21)

for T > T1 ≥ t0. Then the conclusions of Theorems 3.1 and 3.2 hold.

Corollary 3.6. Assume that conditions (H1)–(H5) hold. If

lim sup
t→∞

∫ t

T
ηβ(s)q(s)∆s = ∞ (3.22)

for t ≥ T > t0 and condition (2.3) or (2.9) holds with Q and h defined as in Theorem 3.1, then a
solution x of (1.1) either oscillates or satisfies limt→∞ x(t) = 0.

Proof. This is just Theorem 3.1 with g(t) = 1.

Next, we establish the following results.

Theorem 3.7. Let conditions (H1)–(H5) hold and assume that either condition (2.3) or (2.9) holds
with Q and h given in (3.3). If there exists a positive non-decreasing delta differentiable function g(t)
such that for any positive constants c2 and c4 and any T ≥ t0,

lim sup
t→∞

∫ t

T

[
c1c2ηβ(s)g(s)q(s)− γ1(s)uα(s)g∆(s)

]
∆s = ∞ (3.23)



Third-order neutral dynamic equations with distributed delay 11

for t ∈ [T, ∞)T, where

γ1(t) =

{
1, if β = α,

c4ηβ−α(t), if β < α,
(3.24)

then a solution x of equation (1.1) either oscillates or satisfies limt→∞ x(t) = 0.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0 for t ∈ [t1, ∞)T for
some t1 ≥ t0. Proceeding as in the proof of Theorem 3.1 in the case where z∆ > 0, we again
obtain inequality (3.15) which becomes

w∆(t) ≤ −c1c2ηβ(t)g(t)q(t) + g∆(t)
(

w(t)
g(t)

)σ

= −c1c2ηβ(t)g(t)q(t) + g∆(t)
(

r(t)(z∆∆(t))α

zβ(t)

)σ

≤ −c1c2ηβ(t)g(t)q(t) + r(t)g∆(t)
(

z∆∆(t)
z(t)

)α

zα−β(t) (3.25)

for t ∈ [t3, ∞)T. Integrating inequality (3.8) from t3 to t, we see that there exists a t4 ≥ t3 such
that

z(t) ≥
(∫ t

t3

R(s, t2)∆s
)

r1/α(t)z∆∆(t) for t ∈ [t4, ∞)T, (3.26)

or (
z∆∆(t)

z(t)

)α

≤ (u(t))α

r(t)
for t ∈ [t4, ∞)T. (3.27)

Then (3.27) and (3.25) yield

w∆(t) ≤ −c1c2ηβ(t)g(t)q(t) + g∆(t)uα(t)zα−β(t) (3.28)

for t ∈ [t4, ∞)T.
If β = α, zα−β(t) = 1. If β < α, from (3.11), we have

zα−β(t) ≤ c4ηβ−α(t) for t ∈ [t4, ∞)T, (3.29)

where c4 = bα−β
2 . Using (3.29) in (3.28), we obtain

w∆(t) ≤ −c1c2ηβ(t)g(t)q(t) + γ1(t)g∆(t)uα(t) for t ∈ [t4, ∞)T.

The remainder of the proof is similar to that of Theorem 3.1 and we omit the details.

Theorem 3.8. Let conditions (H1)–(H5) hold and assume that condition (2.3) or (2.9) holds with Q
and h given in (3.3). If

lim sup
t→∞

∫ t

φ1(t)
q(s)u−β(φ1(s))∆s >

1
c1

, for β = α, (3.30)

and

lim
t→∞

∫ t

φ1(t)
q(s)u−β(φ1(s))∆s = ∞, for β < α, (3.31)

then a solution x of equation (1.1) either oscillates or satisfies limt→∞ x(t) = 0.
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Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0 for t ∈ [t1, ∞)T. Proceed as in
the proof of Theorems 3.1 and 3.7 to obtain inequalities (3.5) and (3.26).

Using (3.26) in (3.5) gives

y∆(t) + c1q(t)u−β(φ1(t))yβ/α(φ1(t)) ≤ 0 for t ∈ [t3, ∞)T, (3.32)

where y(t) = r(t)
(
z∆∆(t)

)α. Integrating (3.32) from φ1(t) ≥ t3 to t easily gives∫ t

φ1(t)
q(s)u−β(φ1(s))∆s ≤ 1

c1
y1−β/α(φ1(t)).

Now, if β = α, taking lim sup as t → ∞, we get a contradiction to condition (3.30); if β < α,
taking lim as t→ ∞, we obtain a contradiction to condition (3.31) due to the fact that y(t) is a
decreasing function. This completes the proof of the theorem.

We conclude this paper by pointing out the fact that our results are new even for the case
T = R, i.e., the continuous case, and T = Z, i.e., the discrete case.

Finally, we give an example to illustrate our results.

Example 3.9. The dynamic equation(
x(t) +

∫ 3

2

1
t2 x

(
η +

t
3

)
∆η

)∆∆∆

+
∫ 2

1

2t2

ξσ(ξ)
x
(

ξ +
t
4

)
∆ξ = 0, t ∈ [6, ∞)T, (3.33)

is a special case of (1.1) with r(t) = 1, a = 2, b = 3, p(t, η) = 1
t2 , τ(t, η) = η + t

3 , α = β = 1,
c = 1, d = 2, q(t, ξ) = 2t2

ξσ(ξ)
, f (x) = x, and φ(t, ξ) = ξ + t

4 .
Since ∫ ∞

t0

(
1

r(t)

)1/α

∆t =
∫ ∞

6
∆t = ∞ and

∫ b

a
p(t, η)∆η =

∫ 3

2

1
t2 ∆η < 1,

conditions (H1) and (H2) hold. It is also clear that (H3)–(H5) hold.
We see that∫ t

6

∫ u

6
r−1/α(s)∆s∆u =

∫ t

6

∫ u

6
∆s∆u =

∫ t

6
(u− 6)∆u ≤

∫ t

6
u∆u ≤

∫ t

6
(u + σ(u))∆u = t2 − 36 ≤ t2,

so for positive constants θ1 and θ2,

θ1t + θ2

∫ t

6

∫ u

6
r−1/α(s)∆s∆u ≤ θ1t + θ2t2.

Hence,

η(t) =
[

θ1t + θ2

∫ t

6

∫ u

6
r−1/α(s)∆s∆u

]−1

≥ 1
θ1t + θ2t2 ≥

1
(θ1 + θ2) t2 .

We also have

R(t, t1) = t− t1 and q(t) =
∫ d

c
q(t, ξ)∆ξ =

∫ 2

1

2t2

ξσ(ξ)
∆ξ = 2t2

∫ 2

1

(
−1

ξ

)∆

∆ξ = t2.

Condition (3.1) with g(s) = 1 and T > T1 ≥ 6 becomes

lim sup
t→∞

∫ t

T

[
c1c2ηβ(s)g(s)q(s)− (α/β)α

(α + 1)α+1

(
(g∆(s))+

)α+1

(γ(s)g(s)R(s, T1))
α

]
∆s

≥ lim sup
t→∞

∫ t

T
c1c2

1
(θ1 + θ2) s2 s2∆s = lim sup

t→∞

∫ t

T

c1c2

(θ1 + θ2)
∆s = ∞.
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Finally we show that (2.3) holds. Let λ = 4
3 . Since h(t) = λφ2(t) = 4

3 (2 + t
4 ) ≤ t on [6, ∞)T,

and Q(t) = φ
β
2 q(t) = φ(t, d)q(t) = (2 + t

4 )q(t) = (2 + t
4 )t

2, we have

∫ t

h(t)
Q(s)

(∫ h(t)

h(s)
r−1/α(v)∆v

)β

∆s =
∫ t

4
3 (2+

t
4 )

(
2 +

s
4

)
s2

(∫ 4
3 (2+

t
4 )

4
3 (2+

s
4 )

∆v

)
∆s

=
∫ t

4
3 (2+

t
4 )

1
3

(
2 +

s
4

)
s2(t− s)∆s

≥
∫ t

4
3 (2+

t
4 )

1
3
(t− s)∆s

≥ 1
3

∫ t

4
3 (2+

t
4 )

(
t−
[

s + σ(s)
2

])
∆s

=
1
3

∫ t

4
3 (2+

t
4 )

t∆s− 1
6

∫ t

4
3 (2+

t
4 )
(s + σ(s))∆s

=
1
3

∫ t

4
3 (2+

t
4 )

t∆s− 1
6

∫ t

4
3 (2+

t
4 )
(s2)∆∆s

= 2(t2 − 8t + 16)/27.

Hence,

lim sup
t→∞

∫ t

h(t)
Q(s)

(∫ h(t)

h(s)
r−1/α(v)∆v

)β

∆s = ∞,

so the conditions of Theorem 3.1 hold, and a solution x of equation (3.33) either oscillates or
satisfies limt→∞ x(t) = 0.
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