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Intersection theory and the Horn inequalities 
for invariant subspaces 

H . B E R C O V I C I a n d W . S. L I 

Communicated by L. Kerchy 

Abstract. We provide a direct, intersection theoretic, argument that the Jordan 
models of an operator of class Co, of its restriction to an invariant subspace, and 
of its compression to the orthogonal complement, satisfy a multiplicative form 
of the Horn inequalities, where 'inequality' is replaced by 'divisibility'. When 
one of these inequalities is saturated, we show that there exists a splitting of 
the operator into quasidirect summands which induces similar splittings for the 
restriction of the operator to the given invariant subspace and its compression 
to the orthogonal complement. The result is true even for operators acting on 
nonseparable Hilbert spaces. For such operators the usual Horn inequalities 
are supplemented so as to apply to all the Jordan blocks in the model. 

1. Introduction 

Consider a complex Hilbert space % and an operator T of class Co acting on it. It 
is known (see [3,23]) that T is quasisimilar to a uniquely determined Jordan model, 
that is, to an operator of the form 

0 S(0n), 
L<N<N 

where the sum is indexed by ordinal numbers n less than some cardinal H and each 9n 

is an inner function in the unit disk such that 9n divides 9m if card(m) < card(n). 
If % ' is an invariant subspace for T , the restriction T\H' and the compression 
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P-H"T\H", H" — H 9 W, are of class Co as well, and therefore they have Jordan 
models, say 

0 S(9'n) and 0 S{<%). 
l<n<N l<n<N 

(Note that the first ordinal in the sum is 1 rather than 0 as in [3]. This way of 
labeling the Jordan blocks is more convenient for stating the Horn inequalities.) It 
has been known for some time [5,6,18] that the functions {9 n , 9'n, 9'/ : 1 < n < H0} 
satisfy a version of the Littlewood-Richardson rule provided that 

oo 

/\en = i 
71=1 

and, due to results of [15,16], this is equivalent (in the case of finite multiplicity 
N) to saying that ¡1«=! 9n = Y\n=WnU): and that these functions satisfy a col-
lection of divisibility relations, analogous to the Horn inequalities. The collection 
of these divisibility relations is indexed by triples of Schubert cells in a Grassmann 
variety whose intersection has dimension zero. It is natural to ask whether a direct 
connection between these divisibility relations and intersection theory can be made. 
Indeed, in the context of finitely generated torsion modules over a principal ideal 
domain, such a connection was made in [10], and it is our purpose to extend that 
approach to the context of arbitrary Co operators. The result is that a sufficient 
number of these divisibility relations can be obtained from special invariant sub-
spaces M of T. More precisely, assume that T\M has cyclic multiplicity r < oo, 
set M' = M n H', M" = Pn»M, and let 

0 5 « ) , 0 5 « ) , 0 5 « ) 
77=1 77=1 77=1 

be the Jordan models of T\M, T\M', and Pm»T\M", respectively. It is known [3] 
that 

77=1 77=1 

where we use the notation p = 0 to indicate that the quotient of the inner functions 
p and 0 is a constant (necessarily of absolute value equal to 1). We show that M can 
be chosen in such a way that 11«= l + i s divisible by a product of the form E I « « , 
while the products E « i < > I l U i < divide E I « Iln=i d 'L respectively, thus 
establishing that 9in divides YTn=WjJkJ f o r c e r f c a i n indices {ki,£i,mi : i = 
1,2 , . . . , r } . Moreover, in case this last divisibility is an equality, we show that M 
is, in a weak sense, a reducing subspace for T, with similar statements about M' 
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and A i " . Two special cases of this result were proved in [7], but the methods of 
that paper do not seem to extend beyond the two classes of inequalities considered 
there. The existence of such (almost) reducing spaces is analogous to the existence 
of common reducing spaces for selfadjoint matrices whose sum saturates one of the 
Horn inequalities (see [12]). 

When the space % is separable, the summands S (0 n ) in the model of T are 
constant for n > Ho, which means that S(9n) acts on a space of dimension zero 
which can then be omitted from the sum. One may ask what form the divisibility 
relations take in the nonseparable case. The only additional relations state that 0n 

divides 9'n9'n when n > Ho- Just as in the case of the Horn relations, these divisibility 
relations can be obtained by exhibiting an invariant subspace M. for T which, in 
this case, is reducing in the usual sense for T and for Pu>. 

The divisibility relations we consider were studied earlier when H is finite di-
mensional. We refer to [24] for a survey of these results. The Littlewood-Richardson 
rule in this context and, indeed, in the case of finitely generated modules over a 
discrete valuation ring, was first proved in [13] (see also [20] for a different argu-
ment.) The basic ideas in this paper originated in the study of singular numbers for 
products of operators [8] and in the study of torsion modules over principal ideal 
domains [10]. The techniques we use are necessarily different, and they may obscure 
to some extent the essential simplicity of the arguments. 

The remainder of this paper is organized as follows. Section 2 contains some 
preliminaries about the class Co and intersection theory. In Section 3 we consider 
special invariant subspaces for operators of class Co with finite defect indices. In 
Section 4 we prove the Horn divisibility relations, first for contractions with finite 
multiplicity and then in general. The relations pertaining to 9n for n > Ho are 
established in Section 5. We conclude in Section 6 with a discussion of the 'inverse' 
problem: given Jordan operators 

^ = 0 S(FLN), J'= 0 S(ffn), J"= 0 S ( 0 , 
l < n < N l < n < N l<ra<N 

do there exist a Co operator T and an invariant subspace P' for T such that T , 
T\H', and P^±T\H'L are quasisimilar to J, J ' , and J", respectively? 

2. Preliminaries 

Recall [23] that an operator T acting on a complex Hilbert space % is a contraction 
if ||T|| < 1, and it is a completely nonunitary contraction if, in addition, T has 
no unitary restriction to any invariant subspace. Given a completely nonunitary 



238 H . B E R C O V I C I a n d W . S . L I 

contraction T on TL, the usual polynomial calculus p >—> p(T) extends to a functional 
calculus (discovered by Sz.-Nagy and Foias) defined on the algebra H°° of bounded 
analytic functions in the unit disk ID) = (A £ C : |A| < 1} . The operator T is of 
class Co if the ideal JT = {u £ H°° : u(T) — 0 } is not zero, in which case JT is 
a principal ideal generated by an inner function m / , uniquely determined up to a 
scalar factor and called the minimal function of T. 

The simplest operators of class Co are the Jordan blocks. Given an inner 
function 9 £ H°°, the Jordan block S(9) is obtained by compressing the unilateral 
shift S on the Hardy space H2 to its co-invariant subspace 

Ti(9) = H2 0 6H2. 

A Jordan operator is, as already indicated in the introduction, an operator of the 
form 

J= © S(9n), 
1 < n < K 

where N is a cardinal number (that is, the smallest ordinal of some cardinality) and, 
for each ordinal n, 8n is an inner function such that 9n\9m whenever card(n) > 
card(m). (We write p\tp to indicate that p is a divisor of ip in H°°.) In particular, 
every 9n divides 8\ which is in fact the minimal function of J. Note that, when 9 
is a constant inner function, we have H(9) = { 0 } , so summands with 9n = 1 do 
not contribute to the sum defining a Jordan operator. One is tempted to write J 
as a direct sum extended over the entire class of ordinal numbers (with 9n = 1 for 
sufficiently large n) , but this does not seem wise if set theoretical decorum is to be 
maintained. 

The class Co is completely classified by the relation of quasisimilarity. Two 
operators T,T' acting on A , A ' , respectively, are said to be quasisimilar if there 
exist continuous linear operators X: D D! and Y : H' ~H which are one-to-one, 
have dense ranges, and satisfy the following intertwining relations 

XT = T'X, TY = YT'. 

We write T ~ T' to indicate that T is quasisimilar to T". Quasisimliarity is a weaker 
relation than similarity, but it is just right for the class Co- The following result is 
[3, Theorem III.5.23]. 

Theorem 2.1. The quasisimilarity equivalence class of every operator of class Co 
contains a unique Jordan operator, called the Jordan model ofT. 

Given an operator T of class Co, we may occasionally write 9% for the inner 
functions in its Jordan model. In order to characterize these functions, we need 
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the concept of cyclic multiplicity for an operator T. This is a cardinal number pr 
defined as the smallest cardinality of a subset C C H with the property that the 
invariant subspace for T generated by C is the entire space H: 

H = \J{Tkh :heC,k>0}. 

Proposition 2.2. ([3, Corollary III.3.25]) Given an operator T of class Co on H, 
an inner function ip, and an ordinal number n > 1, the following statements are 
equivalent: 

(1) C - I L F -
(2) The cyclic multiplicity of the restriction T\p(T)H is at most card(n). 

Note again the shift rj + n + l compared to the corresponding statement in 
[3]. This is immaterial for transfinite n for which we have 9X+1 = 9X as well as 
card(n + 1) = card(n). One way to use this result is as follows. If 9 X ^ 1 for some 
finite n, then T has a restriction to some invariant subspace which is quasisimilar 
to the direct sum of n copies of S(p) for any nonconstant inner divisor p of Of). 
This follows from the fact that S(p) is unitarily equivalent to the restriction of 5 ( 0 ) 
to some invariant subspace provided that <p\ip. The (unique) invariant subspace 
in question is (tp/p)H2 Q tpH2. If 9X ^ 1 for some transfinite n, then T has a 
restriction which is quasisimilar to the direct sum of m copies of S(p), p\9x, where 
m is the smallest cardinal greater than n. Indeed m is precisely the cardinality of 
the set of ordinals {n' : card(n') = card(n)} . 

Another way to describe the structure of an operator in terms of its Jordan 
model is to use quasidirect decompositions of the Hilbert space. Let {H,}^j be 
a collection of closed subspaces of the Hilbert space H. We say that % is the 
quasidirect sum of the spaces { H i } m i if 

H = \jHi 
i£l 

and, for each j £ / , we have 

FYN = { ° > -

Given a quasidirect decomposition H = Ad V A f , we say that A/" is a quasidirect 
complement of Ad. 

Theorem 2.3. ([3, Theorem III.6.10]) Let T be an operator of class Co on %. For 
each ordinal n > 1, there exists an invariant subspace Hn C H such that T\T-ln is 
quasisimilar to S{9f{), andH is the quasidirect sum of the spaces {Hn}. In addition, 
TLn+i -L Hm+j if n and m are distinct limit ordinals and i,j < KQ. 
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We note again that we do not run into any set theory difficulties because 
7in = { 0 } for sufficiently large n. Since T\Hn has cyclic multiplicity equal to one 
when Tin f {0 } , we can select for each n a vector xn 6 Pn which is cyclic for T\Pn. 
A collection { x n } obtained this way will be called a Co-basis for the operator T. The 
vector Xi is also known as a maximal vector for T. Just like a linearly independent set 
in a vector space can be completed to a basis, a partial Co-basis can be completed 
to a Co-basis. We formulate the result for the case of finite multiplicity, in an 
essentially equivalent form. The proof is contained in [3, Theorem III.6.10]. The 
last statement follows from the main result of [2]. 

Proposition 2.4. Let T be an operator of class Co on P. Assume that k is a 
positive integer, and that AA C P is an invariant subspace for T such that T\A4 is 
quasisimilar to 

0 5 ( C ) -
n=1 

Then AA has a T-invariant quasidirect complement. If Af is such a complement of 
AA, the Jordan model of T\Af is 

05(C+fc). 
n>l 

If two T-invariant subspaces AA,Af are quasidirect complements of each other and 
if T\AA is quasisimilar to 

0 5 « ) , 
I = I 

where 1 < nx < n2 < • • • < nk < Ho, then T\Af is quasisimilar to 

0 5 ( C ) -
n£{n i,n2,-..,nk} 

In the case of operators of finite multiplicity it is somewhat easier to verify 
that a system of vectors is a Co-basis. 

Proposition 2.5. Let T be an operator of class Co on P and let S(6n) be 
the Jordan model ofT. Assume that the vectors {hn}%=1 C P satisfy the following 
properties: 

(1) The smallest invariant subspace for T containing {hn}ff=1 is P. 
(2) 9n{T)hn = 0. 

Then {hn}^=1 is a Co-basis for T. 
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Proof. Denote by TLn the cyclic space for T generated by hn. Condition (2) implies 
that T j A n ~ S(pn) for some inner divisor pn of Bn. Choose injective operators 
with dense ranges Xn: TL(pn) —> TLn such that 

(T\Hn)Xn = XnS(pn), N = 1 ,2 , . . . , JV , 

and define X: H(<pn) -> A by 

N N 

X(ui © U2 © •' ' © UN) — Xnun, UI © U2 © • • • © UN £ @ U{PN)-
n = 1 n = l 

Then X has dense range, and [3, Theorem VI.3.16] implies that I I „ = i d i -
vides r in=i Tn- It follows that ipn = 6n, n — 1 , 2 , . . . , A , and a second appli-
cation of [3, Theorem VI.3.16] implies that X is one-to-one as well. In fact, 
X implements an isomorphism between the lattices of invariant subspaces of 
0 n = i si<Pn) = ® n = i a n d T v i a t h e m a P M ~XM, and this implies 
immediately the conclusion of the proposition. 

There is a natural way to transform a Co-basis into another. We recall that 
the algebraic adjoint (or cofactor matrix) of an N x N matrix A is a matrix 

¿ A d 
such that 

¿ ¿ A d = A K d A = ^ ( ¿ ) / j V j 

where In denotes the identity matrix of size N. Given functions u, v £ H°°, at least 
one of which is nonzero, we denote by u A v their greatest common inner divisor. 

Corollary 2.6. LetT be an operator of class Co onH with Jordan model ®„=1 S(6n), 
and let {hn}p=i CH be a Co-basis for T. Consider functions { u n m } ( / m = 1 c H°° 
with the following properties: 

(1) 61 A det [u n m ]^ i m = 1 = 1 . 
(2) 6m/6n divides unm ifn>m. 

Then the vectors 
N 

K = Y , unm(T)hm, n= 1 , 2 , . . . .AT, 
M = 1 

also form a Co-basis for T. 

Proof. Denote by [ u n m ] ^ m = 1 the algebraic adjoint of the matrix [ itn m ]^T O = 1 , and 
set g = det [u n T O ]^ m = 1 so that 

N 

Tvnmumk = g5ik, i,k = 1 , 2 , . . . , N. 
3 = 1 
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We have 
N 

J2vnm{T)tim = g(T)hn, n— 1,2,..., N, 
T=I 

so that the invariant subspace for T generated by { « } « = I contains g(T)TL. Con-
dition (1) implies that g(T) has dense range, and therefore this invariant subspace 
is %. The corollary follows from Proposition 2.5 once we show that 6m(T)h'm = 0. 
Indeed, since 0k\6m for k > m, 

777—1 
em(T)h'm = £ umn(T)6m(T)hn. 

77=1 

Condition (2) implies that 3„|u m „3 m and therefore all the terms in the sum above 
vanish. • 

There is yet another quasidirect decomposition which serves as a substitute 
for the primary decomposition of torsion modules over a principal ideal domain. 
The following result is easily obtained from [3, Theorem II.4.6]. 

Proposition 2.7. Consider an operator T of class Co on a Hilbert space %. Assume 
that the minimal function mx is factored as a product 

mT= 7 I 7 2 /N 

of inner functions such that 7J A 7 j = 1 for i / j, and set TJ = TOX¡Tj for j — 
1,2,... ,n. Then % is the quasidirect sum of the invariant subspaces 

T~tj = j = 1,2,... ,n. 

If M. is an invariant subspace for T, we have 

Fj(T)M = Mf\Tj(TyH, j = l,2,...,n, 

and M is the quasidirect sum of the spaces Mj — Tj(T)M.. Moreover, M. has an 
invariant quasidirect complement in H if and only if each A4j has an invariant 
quasidirect complement in Hj. 

The decomposition of m x to which this proposition is applied arises as follows. 

Lemma 2.8. (1) Consider functions m, fx, /2,..., fk € H°° such that m is inner. 
There exist pairwise relative prime inner functions 71,72, ••• ,777 in H°° with the 
property that m = 7172 • • • 777 and the set of inner functions 

{ / 1 A 7I, A 7 J , . . . , fk A 7 I } 
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is totally ordered by divisibility for i = 1,2,..., n. 
(2) Consider inner functions 9i, 02, • • •, 0N € H°° such that 9j+i\9j for j = 

1,2,..., N - 1. There exists a factorization 9\ — 7172 • • • 7n into pairwise relatively 
prime inner factors with the following property: if w is a nonconstant inner factor 
of 7fc for some k = 1 , 2 , . . . , n and 9j A qk is not constant for some j = 2,..., N, 
then 

u AOj A7FE ^ 1. 

Proof. For the proof, it suffices to consider the case when m is either a Blaschke 
product or a singular inner function. We only treat the case when 

m(A) = exp 
/•27T 

Jo 

A + e* 
dp(t) A G 

/ 0 A - e1 

where p is a singular measure on the interval [0, 27T). We have then 
®27r \ _L pit "I 

-thj(t)dp(t) , A € D , j = 1 ,2 . 
A — 6 

( f j A m)(A) = exp if 
lJ 0 

, k, 

where the functions h j : [0,2?r) [0,1] are Borel measurable. There is a Borel 
partition [0,2n) = (JCT Aa indexed by the permutations a of { 1 , 2 , . . . , k] such that 

K(i)(t) < K(2){t) <•••< K(k)(t), t G Aa, 

for each a . We write the function m as the product of the inner functions 

A + e i4 
7<t(A) = exp [/ 

Ja, 

• dp(t) A G 
ia„ A - e" 

This decomposition satisfies the conclusion of (1). For (2), we assume again that 
the functions 0j are singular, so that 

0j (A) = exp 
. ,2* 

•Jo A 
A + e41 

pit J hj(t) dp(t) A G P , j = 1 , 2 . . . , / V , 

where the Borel functions hj are such that 

1 = hi > h2 > • • • > hN > 0. 

Define now Borel sets Bk = {t G [0, 2Tr) : hk[t) > hk+i{t) = 0 } , k = 1 , 2 , . . . , TV, 
using the convention hw+i = 0 in the definition of BN. The functions 

„it 
7fc(A) = exp [ \ + e,t dp(t) 

L JB K A - E J 
A G B, k = 1,2 ..., N, 

satisfy the requirements of (2) with n = TV. The case of Blaschke products is treated 
similarly, with the functions hj being replaced by the functions 17(A) representing 
the order of A G B as a zero of Oj. _ 
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We need more precise information about the construction of the Jordan model 
for operators T of class Co for which I — T*T has finite rank N. Such operators are 
said to be of class Co(N); they are constructed as follows. Consider an inner function 
© on the unit disk whose values are complex N x N matrices. Thus, ||©(A)|| < 1 
for every A G D, and the boundary values ©(£) are unitary matrices for almost 
every ( 6 l = 3D. Such a function determines a multiplication operator MQ on 
the space H2 <g> C N , and the space MQ[H2 0 C N ] is invariant for the shift S <g> IcN 
of multiplicity N . As in the case TV = 1, we write 

-AT 1 H(Q) = [H2 ® C A ] 6 Mq[H ® C 

and denote by 5 ( 9 ) the compression of 5 ® Ic N to H(Q) . The operator 5 ( 9 ) 
constructed this way is of class Co(N') for some N' < N, and every operator of 
class Co(TV) is unitarily equivalent to 5 ( 9 ) for some function © with the above 
properties. The Jordan model of 5 ( 9 ) can be obtained directly by finding an 
analogue of the Smith normal form for the matrix © [21,22], We recall the basic 
definitions. Assume that A and B are two p x q matrices with elements from H°°. 
We say that A is quasiequivalent to B if, for any inner function cj, there exist 
matrices X, Y over H°° of sizes p x p,q x q, respectively, such that 

XA = BY (2.1) 

and the functions det(X) , det(Y) are relatively prime to u , that is, neither of them 
has any nonconstant common inner factors with u>. Despite the asymmetry in the 
definition, quasiequivalence is an equivalence relation. Indeed, equation (2.1) implies 
the relation 

X1B = AY1, 

where Xx = d e t ( Y ) X A d and Yx = de t (A )T A d . According to [22], every p x q matrix 
A over H°° is quasiequivalent to a matrix of the form 

OX 0 0 ••• 0 

0 02 0 ••• 0 

0 0 03 ••• 0 

0 0 0 

where the functions 9i,02, • • •, 9m\n{p,q} are inner or zero and satisfy 9n+i\9n. These 
functions are uniquely determined except for scalar factors of absolute value 1. None 
of the functions 9n is zero if A has a nonzero minor of order min{p, q}. This result 
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can be applied to an inner N x N matrix 0 to yield inner functions 6\, 92, •. . , On 
such that 9n+i\9n for n= 1 , 2 , . . . , TV - 1, and TV x N matrices X, Y over H°° such 
that 

ex = Ye' 
and d e t ( X ) , det (Y) are relatively prime to 9\, where © ' is the diagonal matrix with 
diagonal entries 9i,92,...,9n- The conditions on the determinants above can be 
written as 

d e t ( X ) A 0 i = det (Y) A 0i = 1. 

Denote by y\, y2,..., yx the columns of the matrix Y, which can be viewed as 
vectors in H2 ®CN. In other words, yn = Y(l®en), where { e n } A = 1 is the standard 
basis in CN. Then the results of [21] say that 6» f ( e ) = 9n for n = 1 , 2 , . . . , TV, and the 
vectors {P-W(©)j/n}^L1 form a Co-basis for 5 ( 9 ) . Note incidentally that 5 ( 9 ) need 
not have multiplicity equal to TV. Indeed, the last few of the functions 9n could be 
constant, and the corresponding vectors in the Co-basis would be 0. The following 
lemma provides a formulation of the Co-basis property in terms of the vectors yn. 

Lemma 2.9. With the above notation, assume that {un}^=1 C H°° and 
N 
Y,unyneMe[H2®CN}. (2.2) 
71=1 

Then 9n\un for n = 1 , 2 , . . . , TV. 

Proof. Observe that 

71=1 71=1 71=1 N 71=1 71 

and (2.2) implies that 

X J 2 ^ ® E N £ H 2 ® C N 

„ — i N 71=1 

because Mq is one-to-one. Therefore 

d e t ( X ) Y^®en= XAdX Y^®eneH2® CN 

as well, so that 9n\undet(X) for all n. Since 9n A det(X)|0i A de t (X ) = 1, we 
conclude that 07i|tt7i, as claimed. 
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We use repeatedly the following result about operators of class Co with finite 
multiplicity. The proof follows from [3, Proposition VII.6.9]. 

Proposition 2.10. Let T be an operator of class Co on TL with pr < + o o , let T' be 
a completely nonunitary contraction on %'. and let X: —i % be a linear operator 
with dense range such that XT' = TX. Then every invariant subspace M. for T is 
of the form XM', where MI is an invariant subspace for T'. IfT\M has a cyclic 
vector, then it also has a cyclic vector of the form Xh! with hi e . 

It is useful to consider more general invariant subspaces of S ® I^n . These are 
characterized by the Beurling-Lax-Halmos theorem [23, Theorem V.3.3J. 

Theorem 2.11. Consider an invariant subspace K. c H2 <g> CN for S ® IcN. There 
exist an integer r < N and an inner function $ with values N xr complex matrices 
so that £ = Ms,[H2 ® Cr]. 

The fact that $ is inner implies that it has nonzero minors of order r, and there-
fore quasidiagonalization produces a matrix with r inner functions . . . ,ifT 

on the main diagonal. We call the number r the rank of the invariant subspace K., 
and observe that r is simply the multiplicity of the unilateral shift S ® IcN |/C. We 
also use the notation 

d(K) — lp2 ' ' ' ifr 

for the product of these functions. The function d(K) is inner, and it is uniquely 
determined up to a scalar factor. In the special case when K. is of maximum rank 
r = N, we have 

d(/C) EE det(tf). 

More generally, if V is a unilateral shift of finite multiplicity on a space M. 
and K. C M is an invariant subspace for V, we can define an inner function 

by noting that V is unitarily equivalent to S ® IcN for some N, and identifying 
K. with the range of an inner function as above. The multiplicative property of 
determinants implies that 

dM(C) = dM(K,)dtc(C) 

if £ C /C are invariant subspaces of rank TV of V . 

Lemma 2.12. Let V be a unilateral shift of finite multiplicity on a space fA, and 
let K, C M be an invariant subspace. The following conditions are equivalent: 
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(1) dM(K) £ 1. 
(2) There exist an inner function p £ H°° and a vector f £ M\fC such that 

p(V)f £ K. 

Proof. We assume without loss of generality that V - S <g> IcN for some N £ N, 
and that K. = M<y[H2 ® C r ] for some r £ { 1 , 2 , . . . ,1V} and some inner N x r 
matrix \I/. Choose square matrices X, Y over H°° such that det(W) A dM(tC) = 
det (Y) A dM(K) = 1 and VX = YW, where W has inner entries 0 i , 0 2 , • • • ,Vv 
on the main diagonal, zero entries elsewhere, and tpj+x\ipj for j = 1 , 2 , . . . ,r - 1. 
Denote by yx, • • •, 2/r the columns of the matrix Y, and denote by ex, e 2 , . . . , er 

the standard basis in C r , which we also view as a subspace of CN. Condition (1) is 
equivalent to 0 i ^ 1. Assume first that ipx ^ 1, and observe that 

ipi{V)yx = 0i2/i = Y « (8> e i ) = YV'(1 ® e i ) = <g> e i ) 

belongs to the space K, but yx £ /C, as can be seen by repeating the proof of Lemma 
2.9. Thus (1) implies (2). Conversely, assume that ipx = 1 and a vector f £ H2<%CN 

satisfies pf £ K. for some inner function p, say pf = <1<h for some /i € H2 ® C r . 
Note that the matrices X, Y above can now be chosen so that their determinants 
are relatively prime to p, and can be chosen to simply be the matrix representing 
the inclusion Cr cCN. We have 

pdet(X)f = tf d e t ( X ) h = VXXAdh - YV'XAdh, 

so that multiplying by Y A d yields 

pdet {X)YAdf = det(Y)WXAdh. 

Apply now the matrix X © IcN-T to both sides to obtain 

(X © ICN-R)det{X)YAdpf - de t (X ) d e t ( Y ) * ' h . 

In other words, since p A (de t (A) det (Y) ) = 1, p divides all the components of 
the vector tf'/i, and this simply means that h/p £ H2 <g> C r . We conclude that 
/ = d>(h/p) does belong to /C, thus showing that property (2) does not hold. Thus 
(2) implies (1). a 

Corollary 2.13. Let V be a shift of finite multiplicity on a Hilbert space M, and 
let K. be an invariant subspace for V such that dM(IC) = 1 and V\K has multi-
plicity r. Fix an inner function uj £ H°°. There exist vectors hx, h2, • • •, hr £ K. 
with the following property: if the functions ux,u2, • • • ,ur £ H°° are such that 

uAv)hi e "(V)M, then u\u.j for all j = 1 , 2 , . . . , r. 
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Proof. We assume with no loss of generality that V = S <g> IcN on M = H2 <g> CN, 
and Q = Mq,[H2 ® C r ] for some inner function 4». We apply quasiequivalence to 
obtain square matrices X, Y over Hx such that T V = Y T ' and d e t ( V ) A W E 
det (Y) A w e 1, where T ' is the matrix representing the inclusion C r C CN. W e 
claim that the columns hx, h2,..., hr of the matrix Y T ' satisfy the required property. 
Indeed, the equation h3 = Y T ' ( 1 g> e3) = T V ( 1 ® e3) shows that h3 € AC. Assume 
now that ujhj — uh for some h E H2 ® CN, where the coefficients u3 belong 
to H°°. We have 

r r r 
det (Y) Y « j ® ej = YmY Y Uj ® c j = Y A d Y uihi = 

i=I ¿= I j=I 

and the divisibility ui\uj follows because det(Y) A u> = 1. B 

Subspaces K. with dM(IC) = 1 are obtained as follows. Consider the field of 
fractions D of H°°. That is © = {p/ip : tp E H00,^ E H°° \ { 0 } } ; recall that 
H2 C A unilateral shift V of finite multiplicity on A4 turns Ai into a module 
over H°°, and this module is contained in the finite dimensional vector space DM 
over D. Indeed, D(H2 ® CN) = D ® CN = DN, thus showing that dim® (©.Ad) 
equals the multiplicity of V. 

Lemma 2.14. Let V be a shift of finite multiplicity on a Hilbert space M, and let 
Q C DM be a D-vector subspace. Then K = QtlM is closed in M, it is invariant 
for V, and dM (AC) = 1. Conversely, every invariant subspace K C M such that 
dA<(AC) = 1 satisfies the relation AC = (©AC) n Ad. 

Proof. We assume without loss of generality that V = S ® I^n so that 

N 

DM = D®Cn = ®ei ui,u2,...,uN E ©j. 
3 = 1 

The vector space Q is defined by a finite number of linear equations of the form 

N 

YaiuJ=0' (2-3) 
3 = 1 

with coefficients a3 E D. The solution set of such an equation is not modified if 
we multiply all the coefficients by the same function in H°° \ { 0 } . We can thus 
assume that otj E H°° for all j. It follows that AC = Q n (H2 <g> CN) consists of those 
vectors J Z j l i u3 ® e3 for which the functions u3 E H2 satisfy all the equations (2.3) 
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defining Q, an therefore K. is indeed closed. Finally, K. is easily seen not to satisfy 
property (2) of Lemma 2.12. 

Assume now that dm (A) = 1 for some invariant space K. C H2 ® CN. Clearly, 
/C C (D1C) fl Ad, so it suffices to prove the opposite inclusion. Consider a vector 
h G (S/C) n Ad, so there exist p G H°°, if G H°° \ {0}, and k G K. such that 
h = (p/ip)k. Factor ip = ipiip2, where ipi is inner and ip2 is outer. We have 

ipiip2h = iph = pk G A, 

and therefore i/j2h G K. by Lemma 2.12. Since ip2 is outer, there exists a sequence 
{ « „ } ^ = 1 C H°° such that limn_,00 unip2 = 1 in the weak* topology of H°°. This 
implies that limn-xx, unip2h = h in H2 <g> CN, and therefore h G A. 

The following result is useful when we want to replace a linear combination 
with coefficients in D by another one with coefficients in H°°. It is a stronger 
property which cyclic vectors for an operator of class Co have. 

Lemma 2.15. Consider an operator T of class Co on a Hilbert space H, a cyclic 
vector h G % for T, and an inner function ui. For every vector k G P there exist 
functions a, (3 G H°° such that /3 A w = 1 and a(T)h = (3(T)k. 

Proof. Let S(9) be the Jordan model of T, and let X: P P(6) be an injective 
operator with dense range such that XT = S(6)X. If a,/3 G H°°, we have 

a(S(0))Xh = Xa(T)h, /3(S(6))Xk = Xfi(T)k. 

Th equality a(T)h = ¡3(T)k is equivalent to 

a(S(G))Xh = P(S(0))Xk (2.4) 

because X is one-to-one. Since Xh is a cyclic vector for S(6), this observation 
shows that it suffices to prove the lemma when T = S(6). In this case the functions 
h,k S H2 can be written as h = ¡3/+ and k = a/j for some functions a, (3,7 G H°° 
such that 7 is outer. The equation (2.4) is satisfied with this choice of a and (3. 
Moreover, the fact that h is a cyclic vector for S(9) amounts to the equality f3f\8 = 1. 
Equation (2.4) remains valid if (3 is replaced by ¡3 + td for some scalar t G C. It is 
known [3, Theorem III.1.14] that for t in a dense Gs set, we have (¡3 + t6) AWE 1. 
The lemma follows. 

We continue with one useful result from intersection theory. Consider an 
arbitrary field D and a vector space L over D of dimension N < +00. Given 
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an integer r 6 {1 ,2 , . . . , TV}, the Grassmann variety G(L, r) consists of all vector 
subspaces M C L of dimension r. A complete flag in L is a collection 

£ = {£0 C Si C • • • C £ N } 

of subspaces of L such that dim® (5/) = i for i = 0 ,1 , . . . , N. Assume that £ is a 
complete flag and 

I = {¿i < ¿2 < • • • < ir] 

is a subset of (1 ,2 , . . . , N}. The Schubert variety &(£, I) is the subset of G(L, r) 
consisting of those subspaces M for which 

dim®(M D£ix) > x, x = 1,2,... ,r. 

The Littlewood-Richardson rule provides a test to determine whether the intersec-
tion of three Schubert varieties &(£,I) , &(F,J) , and &(Q,K) is nonempty. More 
precisely, assume that the three sets I,J,K C ( 1 , 2 , . . . , N} satisfy the equation 

T 

Y^* + j* + 4 - 3i) = 2r(iV - r). 
X = 1 

Then one associates to the triple (I, J, K) a nonnegative integer c/j*- with the 
property that 

e{£,i)ne(T,j)n&(g,K) (2.5) 
contains generically CIJK elements in case D is algebraically closed. For general D, 
one can still state that the intersection (2.5) contains at least one element when 
CIJK - 1 ; s e e [ 9 ] . 

3. Invariant subspaces related to Schubert varieties 

In this section we fix an operator T of class Co with finite defect numbers. As seen 
above, we can assume that T = 5 (0 ) , where 0 is an inner function with values 
N x A matrices. The Jordan model of T has the form S(9n), where it may 
happen that the last few functions 9n axe constant. Denote by hi, h2, •. •, h/v a 
Co-basis for T, where hn = 0 if 9n is constant. We study invariant subspaces for T 
of the form where 7Z C H2 <g) CN is an invariant subspace for 5 <g> IQN 
such that d(lZ) = 1. For the remainder of the paper, 3? denotes the field of fractions 
of H°°. 

Lemma 3.1. Fixm,r £ { 1 , 2 , . . . , N } such thatr < m. Assume that Q C D®CN is 
a U-vector space of dimension r contained in the ID-linear span of {hi,h2,..., hm}, 
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set 11 = Q n (H2 <8 CN), and K. = [Pn{e)P]~. If the Jordan model of T\K is 
0 k i ^(«n) then 9m\ar. 

Proof. Observe that (S 8 IQN)\P has cyclic multiplicity r. Projecting onto K. a 
cyclic set for (S ® IcN)\P yields a cyclic set for T|/C, and therefore < r- Thus, 
indeed, the Jordan model of T\1Z consists of at most r summands. The lemma is 
vacuously satisfied if 6m = 1, so we assume that is not the case. We show next that 
it suffices to prove the lemma in the special case m = N. Denote by £ the S-linear 
span of {hi, h2, • • •, hm}, and set 

£+=£D (H2®Cn), V = (S®Icn)\£+. 

The operator A = PH(&) I k satisfies the intertwining relation 

AV = TA, 

and therefore the restriction B = A\H', where H' — £+ Q ker(A), intertwines the 
compression X" of V to H' and T, that is 

BT' = TB. 

Moreover, B is one-to-one and its range contains hx,h2,... ,hm. It is easy to see now 
that T' ~ 0 k I S(6n). Indeed, T" is an operator of class Co (to) so its Jordan model 
contains at most m summands S(pn), and pn\9n because X" is quasisimilar to a 
restriction of X. On the other hand, 9n\pn, n = 1 ,2 , . . . , m, because the restriction 
of X to its invariant subspace generated by {hx,h2,..., hm} is quasisimilar to a 
restriction of X'. Set now P' = Q n £+ and K! = [PWP'}~• W e h a v e BK-' c ^ and 
therefore the Jordan model 0 k i S(a'n) of X'|/C' satisfies a'n\an for n — 1 ,2 , . . . , r. 
It suffices therefore to show that 9m\a.'T. This concludes our reduction to the case 
m = N. 

Represent the space 1Z as 

P = My [H2 8 C r ] 

for some inner N x r matrix As noted in Lemma 2.14, + is quasiequivalent to 
the constant matrix J representing the inclusion C r C CN. Fix square matrices 
X, Y over H°° such that 

VX = YJ 

and det(X) A 9^ = det(Y) A 9M = 1, and denote by yn = Y(1 8 en) G P, n = 
1 ,2 , . . . , r, the columns of Y. We claim that, given functions ux, u2,..., ur G H°° 
such that 

r 
£ u n ( T ) P w ( e ) y „ = 0 , 
n=l 
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it follows that 9n\un for n = 1 ,2 , . . . , r. Indeed, the relation above is equivalent to 
Hn=i unVn £ Mq[H2 <S> C n ] . We use now the fact that 9jy divides all the entries 
of © to conclude that 

1 r 1 r 

— y j ( Y ® = j y E € H * 0 £ N -
71=1 71=1 

Multiplying by F A d , we see that 

9 n tl 
The relation 9w\un follows because det(Y) A9n = 1. The conclusion of the lemma 
follows by showing that T|AC has a restriction quasisimilar to 

S ( 9 N ) ® S ( 9 N ) ® - . - ® S ( 9 N ) . 
" V ' 

r times 

Indeed, denote by 0 „ an inner function satisfying 

I>NH°° — {IF € H°° : TP(T)Pn{6]yn = 0 } , n = 1 ,2 , . . . , r. 

The invariant subspace AC' C AC for T generated by the vectors 

kn = {ipn/0N)(T)PH(e)y„, n = 1 , 2 . . . , r, 

is such that 
T\K' ~ S(9N) ® S(9N) © • • • © S{9N) . 

s V ' 
r times 

This is seen by noting that k\,k2,... ,kr form a Co-basis for T\TC. A 

Lemma 3.2. Fix m,p,r e { 1 , 2 , . . . , N} with r < p < N - m, let QcD<g>CN be 
a subspace of dimension r, and let zi, z2,... ,zr € Q be given by 

m+p 
ze = E ue,nhn, i-l,2,...,r, 

71=1 

where all the coefficients U(>n are in H°°. Set TZ = Q fl (H2 <g> C ^ ) , and AC = 
[Ppi(&)TZy • Assume that: 

(1) 9M+1 = 9M+2 = • • • = 9M+P and 9M/9mjri is not constant. 
( 2 ) Every nonconstant inner factor ui of 9M+\ satisfies ui A ( 9 M / 9 M + 1 ) ^ 1 . 
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(3) The Jordan model of T\K, is 

S(9m+1) © S(9m+1) © • • • © S(9m+i). 

r times 

(4) The vectors we = Pfe^ze, 1= 1 , 2 , . . . , r, form a Co-basis for T\K. 
(5) The set consisting of all inner functions of the form 

9n A det 
U2,ji u2,n • • • u2,j. 

u 

where s £ { 1 , 2 , . . . , r } and n, ji,j2,..., js € ( 1 , 2 . . . , N}, is totally ordered 
by divisibility. 

Then there exist integers m + l<ji<j2<---<jr<m + p such that 

d e tKhJ/?,fc=i A 0 m + i = 1. 

Proof. The hypothesis implies that 9m+i(T)we = 0 or, equivalently, 

m+p 

n — 0, I = 1 ,2 , . . . ,r. 
71=1 

Since { / i n } A = 1 form a Co-basis for T, we conclude that 9n\9m+\Ue,n for all n, in 
particular ue,n is divisible by 6m/6m+i for n = 1 , 2 , . . . , m and i = 1 , 2 , . . . , r. Let 
s £ { 0 , 1 , . . . , r } be largest with the property that there exist 

such that 

m+l<ji<j2<---<js<m + p 

d e t [ U *Jm]? ,m=l A $771+1 = 1, 

and assume to get a contradiction that s < r. Consider indeterminates 
^l,£2, • • • >£s+i a n d write the determinant 

det 

uhh 
u+h 

Us,j 1 

ul,h 
U2,h 

U S , J 2 

Vs + l .J, U.S+1 ,J2 

Ubjs 
U2J, 

i i 
i 2 

us+l,j, is+1 

s+1 

r=1 
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The coefficients ai £ H°° are determinants of size s, and 

Û + H A 0 M + I = 1. ( 3 . 1 ) 

The vector 
s + l m+p 

z = Y aeze = Y @nhn 
1=1 n = l 

has coefficients 
S + l 

0n=YaeUe'n> n = 1,2,... ,N, 
e=i 

which are determinants of order s + l. Note that fin — 0 if n £ {ji,j2, • • • ,js} 
and 9m/6m+i divides fin for n £ {1 ,2 , . . . . m). For other values of n, the func-
tion fin A 9m+p is not constant by the definition of s. Conditions (2) and (5) im-
ply now that there exists a nonconstant inner function <j such that uj\fin A 9m+1 
for all n = 1 ,2 , . . . ,m + p. Thus the vector Z/UJ belongs to Q n (H 2 <g> CN), 
and therefore P^q^Z/CJ) £ K,. This in turn implies that P-H(e)\{9m+il<W)Z) = 

9m+l(T)Pn(B){z/u)=Q, so 

9Jn±lz = g « - ± 1 e M [H2 Q ciV] 

or 
s + l 
Y ( 9 m + i / " ) ( T ) a e ( T ) w e = 0. 
e=i 

Assumption (4) implies that 9m+i\(9m+i/uj)ai, that is, w\ai for I = 1 ,2 , . . . , s + 1. 
This however contradicts (3.1) when I = s + 1, thus concluding the proof. 

Define £n to be the 35-linear span of {h\,h2,... ,hn} when 1 < n < N and 
hn f 0. The nonzero vectors hn are linearly independent over 3D because they 
from a Co basis for T, and therefore dim® £n = n. This sequence of spaces can 
be supplemented to form a complete flag £ by defining appropriate spaces £n of 
dimension n when hn= 0. 

Lemma 3.3. Assume that n £ {1,2,... ,N} is such that 9n ^ 1. Then 

[PH{e)(£nn(H2®CN))}-

is equal to the smallest invariant subspace forT containing the vectors fti, /i2, • ? h n . 
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Proof. Clearly the space M = [ « ( 0 ) ( k fi (H2 8 C k ) ) ] - contains the vectors 
hx,h2,... ,hn. To conclude the proof, it suffices to show that these vectors form 
a Co-basis for T\M. The operator T\A4 has multiplicity at most n, as seen at 
the beginning of the proof of Lemma 3.1. Thus the Jordan model of T\M is of 
the form 0™=i k + j ) with Pj\9j for j = 1,2, . . . ,n. On the other hand, 9j\ipj for 
j = 1, 2 , . . . , n because M. contains the subset {hx, h2, • • •, hn} of the Co-basis of T. 
The conclusion follows immediately from Proposition 2.5. 

Proposition 3.4. Fix a positive integer r < N, a subset 

7 = < ¿2 < • • • < + } C {1 ,2 , . . . , TV}, 

and a subspace Q £ ©(£, I). Set 11= Q n (H2 8 CN) and K. = [Pn{e)P]~. Then: 
(1) The space K. is invariant for T = 5 (0 ) , and T\tC has cyclic multiplicity less 

than or equal to r. 
(2) If the Jordan model ofT\K. is 5 « ) © S(fi2) © • • • © S(fir), then k divides 

/3X for x = 1, 2 , . . . , r. 
(3) If fix = k for all x = 1,2, . . . , r , then K. has a T-invariant quasidirect 

complement £ in H(Q) such that T\£ ~ S(9i). 

Proof. We recall that 5 8 IcN is a unilateral shift of multiplicity r, and therefore 
it has cyclic multiplicity r as well. Projecting onto H(@) a cyclic set of r elements 
for 5 8 I C " \ { Q H (H2 8 CN)) we obtain a cyclic set for 5(0)|fc, and this yields (1). 

For the proofs of (2) and (3) we need some preparation. For each x £ 
{1 ,2 , . . . , r } , choose a subspace Qx C Q i l f ^ such that dim® Qx = x. The subspace 
P-X = Qx H (H2 8 CN) is invariant for 5 8 IcN, and (5 8 IcN)\PX has multiplicity 
equal to x. Also set K,x = [ P B ( e ) k ] _ • When r > 1, we may assume that 

QX C Qx+i, thus PX C PX+I and K.X C FCX+I, x = 1 ,2 , . . . , r - 1. (3.2) 

To prove (2), it suffices to consider the case when 9¿x ^ 1 . Denote by 

S(fif) © S(fi2) © • • • © S(fix) 

the Jordan model of T\K,X, x = 1 ,2 , . . . , r. An application of Lemma 3.1 to the space 
Qx shows that 9ix \fix, and (2) follows because f£x C K,r = K. and thus fix\fix = fix. 

As we observed above, we have 

k I k Ik, k I k Ik, • • •, k I k Ik , x = 1 ,2 , . . . , r - 1. 

If the hypothesis of (3) is satisfied, that is, fix = 9ix for x = 1,2, . . . ,r, we must 
have 

k = k , J = l , 2 , . . . , x , 
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for x = 1 ,2 , . . . , r. Thus the Jordan model of T\JCX is precisely 

S ( 0 i l ) 0 S ( 0 i a ) © " - © S ( 0 i J 

for x € {1 ,2 , . . . , r}. The case in which = 1 reduces to the same statement with 
r replaced by r — 1, and therefore an inductive argument allows us to assume that 
6ir y 1 for the remainder of the proof. A repeated application of Proposition 2.4 
shows that we can find vectors 

uq € ACi, w2 £ K>2,..., wr € ACr = AC, 

such that {n;i, w2, • • •, wx} is a Co-basis for T|ACX, x = 1,2,... ,r. Moreover, we may 
assume that these vectors are of the form 

*x 
wx = Yux,j(T)hi> x = 3,2,...,r, (3.3) 

j=1 

where all the uxj E H°°. This can be seen as follows. We have 

tCxc[Pne)(£i*r)(H2®CN))}-, 

and according to Lemma 3.3, the space on the right is the invariant subspace for T 
generated by {h\,h2,... ,hix}. Denote by the cyclic subspace for T generated 
by hi, and let 

Y : {Pn(B)(eix n (H2 ® C " ) ) ] -
i=1 

be defined by 

3=1 3=1 

An application of Proposition 2.10 shows that the vector wx can be chosen to belong 
to the range of X, thus wx = YJjLi vj f ° r some vectors v3 E %j, j = 1,2,... ,ix. 
Lemma 2.15 provides functions {o.j,i3jYj=i c H°° such that a3 A = 1 and 
aj(T)vj = f3j(T)hj for j = 1 ,2 , . . . , i x . The vector wx can then be replaced by 
a(T)wx, where a = aia2 - • • a^, and this vector satisfies (3.3) with uX 3 = afi3, 
j = 1 ,2 , . . . ,ix. For convenience, we write uxj — 0 if j = ix + 1 , . . . , N. Observe 
also that the condition 0ix (T)w x = 0 is equivalent to 

Y0iAT)ux,3(T)h3 = 0 
3=1 
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and the fact that {hj} is a Co-basis for T implies that 93\9%xux] for j = 
1,2 , . . . ,ix. In other words, 

9 • 
x I

u

x,j> j = 1, 2 , . . . , x = 1, 2 , . . . , r. 

At this point we need to make a reduction to a special case, namely, we can 
assume that the collection consisting of all inner functions of the form 

Adet 

"1,7 "1,7 ••• "1,7 
"2,7 "2,7 • • • "2,7 

S,3s -I 
where 1 < s < r, 1 < j < N, and 1 < ji < j2 < • • • < js < A and of the inner 
functions 

9j/9j+1, n = l,2,...,N-l, 

is totally ordered by divisibility and, for every nonconstant inner factor w of 9\ we 
have u A 9j f 1, j = 1,2,... ,N — 1, unless 9j itself is constant. This is accomplished 
as follows. Use Lemma 2.8 to find a decomposition of 9\ = tut into a product 

9i = 7172 •••In 

of relatively prime inner factors with the property that the collection consisting of 
all inner functions of the form 

7f A 9j A det 

"1,7 "1,7 
"2,7 "2,7 

" i ,7 
"2,7 

"s,7-i 

• < js < N and of the inner where 1 < s < r, 1 < j < N, and 1 < j i < j2 < 
functions 

7f A (9j/9j+i) ,j = l,2,...,N—l, 
is totally ordered by divisibility, and such that condition (2) of that lemma is 
satisfied as well. Setting Ff = $1/7/, Proposition 2.7 shows that it suffices to 
show that [re(T)lZ}~ has an invariant quasidirect complement in [r/(T)7f(0)]~ for 
t — 1,2 , . . . ,n. In order to do this, we replace T|[r/(T)'H(0)]_ by a quasisimilar 
operator as follows. Define Ae: H2 ® CN [ r / (T)A(0) ] _ by setting 

Aeh = Pn{e)(Teh). 
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We have TAp = AP(S®IcN), so that the injective operator BP|[(ii2®CAr)eker(j4^)] 
satisfies 

TBp = BpTp, 

where Tp is the compression of S ® IcN to Pp = (H2 ® CN) © ker(A^). It fol-
lows immediately that Tp is an operator of class Co and, since the range of Bp 
is dense in [r>(T)ft(0)]- , Tp is quasisimilar to T|[r̂ (T)P(e)]". The vectors 
PHihi, Pueh2,..., PHlhN form a Co-basis for Tp because the vectors 

BpPuphj = Tp(T)hj 

form a Co-basis for T^T^T)?^©) ] - . Define next a subspace Kf C Pp as the 
invariant subspace for Tp generated by P-ntwx, x = 1,2, . . . , r . Then [BpK,e]~ = 
[rp(T)K]- and the vectors PBewx•. x = 1,2,. . . ,r, form a Co-basis for Tp\K.e. We 
see that it suffices to show that Kf has an invariant quasi-complement in Pp. The 
spaces fCe and Pp are entirely analogous to the original spaces K. and P, and they 
have the additional divisibility properties outlined above. Of course, 6, A +p = Oj'. 
Thus it suffices to prove (3) under these additional divisibility conditions. This 
is accomplished by showing that the vectors {wx}rx=l and a set F C { h j o f 
cardinality N — r form a Co-basis for T. The quasidirect complement of JC is then 
the invariant subspace for T generated by F. Divide the functions {0^ } x = 1 into 
equivalence classes, that is, find integers 0 = ro < ri < r2 < • • • < rp = r such 
that 6ix = 0ix+l when rk-i < x <rk and 1 < i < p, but 9ix+, /0ix is not constant 
if x = rk, 1 < k < p. We apply Lemma 3.2 to the S-vector space generated by 
{wxYxk=rk_1+i t o obtain indices { jm}„ = r f c _ 1 + i with the property that 0jm = 6»irfc 

for rk-i + 1 <m<rk, and the function 

is relatively prime to 0lr , and therefore to 6\ because of the divisibility assumptions 
we made about 6\, d2,..., ON- The proof of (3) is now completed by showing that 
the set 

A = {wp}rp=1 U {hj : j i {ji, j2, • • •, jr}} 

is a Co-basis for T. In other words, this basis is obtained by replacing each hje by 
the corresponding vector wp. It is clear however that the set A is obtained from 
the Co-basis {hj}jLx by the process described in Corollary 2.6. This concludes the 
proof of (3) and of the proposition. 

The preceding proposition shows that, for certain flags £ and for spaces Q £ 
&(£, ! ) , the invariant subspace M = [PN(E)(Q © (H2 ® C ^ ) ) ] - has the property 
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that T\M has a 'large' Jordan model. Next we produce flags £ with the property 
that the Jordan models of operators of the form T\M are 'small' if Q G &(£, I). 
Some preparation is needed first. 

Lemma 3.5. Consider a factorization 

9(A) = 9"(A)©'(A), A S » , 

where 9 ' and 9 " are inner functions. Write 

H(G) = H' ®H", 

where 
H' = Me»[H2 ® C*] 9 Me[H2 ® CN} = Me"H(9') 

is T-invariant and H" = H(Q"). Let Q c 2 ® C^ be a D-vector space, and define 
invariant subspaces 

M = [Pn{e)(Qn(H2®CN))}-, 

M' = [Pw{QPMe»[H2 ®<CN]))-, 

M" = [Pn»(QP(H2® C N ) ) ] - , 

forT, T = T\W, and T" = PW>T\H", respectively. Then we have 

M" = [PH"M]~ and M' = M D H'. 

Proof. The first equality and the inclusion 

M' C M n W 

follow directly from the definitions of M,M', and M"• For the opposite inclusion, 
note that the set of vectors h' G M C\H' of the form PU(E)Q for some q G QF\(H2 ® 

CN) is dense in MnH' by Proposition 2.10. Consider such a vector h' = Pu(e)Q, 
and observe that q - h' G Me[H2 <®CN] so that 

q G H' + Me[H2 ® CN} c Me»[H2 ® CN]. 

It follows that h! G M', and this concludes the proof. 

The preceding lemma is applied in the proofs of Proposition 3.7 and Theo-
rem 4.1. For the first application, we recall that any inner multiple lj of 6\ is a 
scalar multiple of 9 , that is, there exists an inner function Cl such that 

9(A)il(A) = LO(X)IcN , X G O. (3.4) 

Of course, the operator S(LJIcN) is unitarily equivalent to the orthogonal sum of 
N copies of S(UJ). 
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Lemma 3.6. Let OJ £ H°° be an inner multiple of 9X. Then there exist bounded 
vectors yx, y2,. •., VN S H2 8 CN such that: 

(!) PH(wiCN)YI,P-H.(u,ICN)Y2, •••, P-U(WIcN)VN form a C0-basis for S(u>) 8 LCN , 

(2) k ( e ) 2 / i , pH(0)y2, •••, Pu{Q)yN form a C0-basis for T = 5 ( 6 ) , and 
(3) PH(wicN){QNyN),P-H{wicN)((>N-iyN-\), • • • ,P-H(.wicN)(0\yi) form a Co-basis 

for the restriction of S 8 LcN to Me[H2 8 CN] © [LOH2 8 C A ] . 

Proof. Denote by 0 ' the diagonal matrix with diagonal entries 9x,...,9n. AS 
noted earlier, 0 and 0 ' are quasiequivalent. Choose N x N matrices X, Y over 7700 

such that ©A" = YQ' and det(A) A a; = det(Y) A W E 1, and let yd = Y(1 8 e/), 
j = 1 , . . . , N, be the columns of Y. We claim that these vectors satisfy the conclusion 
of the lemma. Indeed, (2) follows from Lemma 2.9 while (1) follows from the same 
lemma because (w 8 7c,v)Y = Y(u> 8 7 cn). Finally, we observe that the vectors 
P-H(u,icN)(0jyj) belong to Me[H2®CN}e[uiH2®CN] because 9jyj = 077(186/) for 
j = 1 , . . . , N. Moreover, these vectors form a Co-basis for the S(LO) 8 7cJV-invariant 
subspace M they generate. To conclude the proof of (3) we need to show that 
M = A7©[772 8 <CN] e [OJH2 8 CN] and for this purpose it suffices to verify that 
the restrictions of S(UJ) 8 7cN to these two subspaces have the same Jordan model. 
This follows from the main result of [4]. 

For our result on 'small' invariant subspaces, we fix an inner multiple lo £ H°° 
of 92, a sequence { y n } U i satisfying the conclusion of Lemma 3.6, and denote by 
P the complete flag in D 8 CN defined by letting Pn be the space generated by 
{yN, VN-I, • • •, yN-n+i} for n = 1 ,2 , . . . , N. The choice of ui insures that all the 
functions u>/9n are divisible by 0\. 

Proposition 3.7. Fix a positive integer r <N, a subset 

I = {¿1 < 12 < • • • < ir} C {1, 2, . . . , N}, 

and a subspace Q £ 6(P, I). Set 11= Q n (H2 8 CN) and K = [Pn{e)H]-. Then: 
(1) The space K. is invariant for T = 5 ( 0 ) , and T\fC has cyclic multiplicity less 

than or equal to r. 
(2) If the Jordan model of T\K is 5(ai) ffi S(a2) © • • • © S(ar), then ax divides 

k + i - i r + 1 _ x for x = 1 ,2 , . . . , r. 
(3) If ax = k + i - i r + i _ x for all x = 1 ,2 , . . . , r, then K, has a T-invariant quasidi-

rect complement £ in R(Q) such that T\£ ~ 5(0j). 

Proof. Using (3.4) and the notation in Lemma 3.5, with LOIcN,FI, 0 playing the 
roles of 0 , 0 ' , 0 " , respectively, we have AC = M " . Continuing with that notation, 
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we claim that the compression of S <g> / c n to the space M has Jordan model 

S(w) © S{uj) © • • • © S(w). „ ' 
r times 

Indeed, apply Proposition 3.4 with S(OJ) <3 ICN in place of T to deduce that this 
Jordan model has the form 5(71) © 5(72) © • • • © S(7r) where all the functions 7, 
are divisible by UJ. However, these functions must also divide the minimal function 
of S(ui) (81 7cw which is w, and therefore jj = co for j = 1 ,2 , . . . , r. 

Next we observe that 

r = S(u) ® I c I [H{u) ® C N ] © A ( 0 ) 

is an operator of class Co with Jordan model 

s(cj/eN) © s(oj/eN-1) © • • • © s(w/0i), 

where the summands are written in this order so that this is a Jordan operator. 
Indeed, this follows from [4]. We can now apply Proposition 3.4 with T' and (S ® 
IcN)\MQ[H2 <g> C w ] in place of T and S 0 / c n to deduce that the Jordan model of 
T'\M' is of the form S{fii) © S(fi2) ©•'••© S{fir) with the property that cu/0N+i_ix 

divides fix for a; = 1,2, . . . , r . It follows from [4] that the Jordan model of the 
compression of T to M © M' has Jordan model S(c*i) ®S(a2) © • • • © S(ar), where 
a r + i - x f i x = UJ for x = 1 ,2 , . . . , r. We deduce that a r +i_ x = w /fix divides 

u> 
— — = 0 J V + 1 - 7 
W / P J V + 1 - 7 

or, equivalently, ax\0N+1-ir+1_x for x = 1 ,2 , . . . , r. Parts (1) and (2) of the state-
ment follow now once we prove that T\M" — T\K, is quasisimilar to the compression 
of T to M 9 M'. In fact, an operator X which is one-to-one with dense range and 
intertwines these two operators is obtained by setting X = © M'. The 
claimed properties of X follow readily from Lemma 3.5. 

Assume finally that a x = 0 N + 1 - i r + 1 _ x for a; = l , 2 , . . . , r . We have then 
FIX = W/6N+I-X for x — 1 ,2 , . . . , r. The proof of Proposition 3.4(3) can now be 
applied with V in place of T and Me[H2 <g> C^] in place of H2 ®CN. Following 
that argument, and recalling that P w ( 6 N + 1 - j y N + i - j ) form a C0-basis for T', we 
first produce a Co-basis wi,w2,..., wr for T'\M' such that 

N 

wx — Pw Y x = 1,2,... ,r, 
3=1 
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with uxj9jZj £ Q, coefficients uxj £ H°° such that uxj = 0 for j = 
1,2,... ,N + 1 - ix and 8N+x_Xx/9] divides uxj for j > N — ix. We now apply 
a reduction which allows us to assume that a family of inner functions is totally 
ordered by divisibility. We partition I into subsets IX,I2,...,IP with the property 
that 9n+i~, = Ow+i-i' if and only if i and i' belong to the same Ik, and apply the 
arguments in the proof of Proposition 3.4 to find minors of the form 

det[uxb]jv+i-xe/fc,N+i-jeJfc 

which are relatively prime to 9X. Here Jk and Ik have the same cardinality, and 
8N+\-J = 8N+X-i for i E Ik and j € Jk. The functions 

vx • 'J-^-ux'3 e N+l-ij, 

belong again to H°°, and thus we can define vectors wx,w2,... ,wr E P(Q) by 
setting 

N 

™x = Ph(Q) Y2Vx'iyj> x = l,2,...,r. 
3 = 1 

Since J^jLi VxPJi> e 2 , these vectors actually belong to M" = fC, and they form a 
Co-basis for T\>C. The argument is now concluded by observing that the set 

p 
{u-,x}rx=1 U [P-HieM •• j € {1 ,2 , . . . , TV} \ |J Jq) 

9=1 

is a Co-basis for T, so that an invariant quasidirect complement for K. is generated 
by the vectors 

p 

{Pnmyj - j e {1,2,...,TV}\ y Jqy m 
9=1 

4. The Horn inequalities 

In this section we consider an integer TV and three sets I,J,Kc {1 ,2 , . . . , TV}, each 
containing r < TV elements, such that Cjjg = 1, where 

J = { N + l - j : j e J } , K — {TV + 1 — k : k £ K}. 

The Horn inequalities associated with such triples of sets are sufficient to imply all 
the Horn inequalities associated with sets I, J, K such that Cjj^ > 0 (see [1] or 
[17]). Our main result is as follows. 
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Theorem 4.1. Assume that T is an operator of class Co on H, H' is an invariant 
subspace for T, H" = He H', and 

nn \T' * 

T = 
0 T " . 

is the matrix ofT corresponding to the orthogonal decomposition H = H' ®H" • Let 

0 S(0n), 0 s(o'n), 0 5 ( 0 
l < n < N l < n < N l < n < N 

be the Jordan models of T,T', and T", respectively. Let I,J,K C {1,2, ...,N} 
be sets of cardinality r < N such that Cjj^ = 1. Then there exists an invariant 
subspace M for T with the following properties. 

(1) The cyclic mutiplicity ofT\M is at most r, and its Jordan model © } = 1 S(F3X) 

is such that 6,x\px for x — 1 , 2 , . . . , r . 
(2) The Jordan model S(P'X) ofT\M', where M' = MC\H' is such that 

p'x\6'jJorx = l,2,...,r. 
(3) The Jordan model ©p=1 S(p'J) ofT\M", where M" = PW>M, is such that 

P'f\ei for x = 1,2,...,r. 
(4) nx=i/Sx = rix=i(M)-

We conclude that 

E M i n n * 
i€I jeJ k€K 

IfY\ieI6i = Y\jeJ Q'3Y[keK then M (respectively, M',M") has a T-invariant 
(respectively, T'-invariant, T"-invariant) quasidirect complement in H (respectively, 
H,H"). 

Proof. The key case to consider is that in which T has cyclic multiplicity at most 
equal to N. In this case we can replace T by any operator of class C0 which 
is quasisimilax to it. Indeed, quasisimilarity between operators of class Co with 
finite multiplicity allows one to identify their lattices of invariant subspaces (see 
[3, Proposition VII.1.21]). We can then assume that T = 5 (9 ) , where 9 is an TV x N 
inner function, H = H(9), H" = H{9"), and H' = Me»H{9') for some inner 
factorization 9 = 9 " 9 ' . Propositions 3.4 and 3.7 allow us to choose three complete 
flags 5, T, G in DN = © ® CN such that, given a space Q G 6 (5 ,1) (respectively, 
6 ( F , J), 6(G, K)) the restriction of T (respectively, T' , T") to [Pn(Qr\{H2®CN))}-
(respectively, [Pw{QPMe"{H2®CN))}-, [Pn"(Qn(H2®>CN))}-) has Jordan model 
©X=1 S(PX) (respectively, S(F3'X), © ¡ = 1 5(/?}')) satisfying 6IX\PX (respectively, 
/3'X\Q'JX, PX\0KX) for x = 1,2, . . . ,r. The assumption that c / j / f = 1 implies now that 
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we can find a space Q in the intersection 

e{£j)ne(F,J)ns(g,K), 

and this yields,immediately statements (1), (2), and (3). Statement (4) follows from 
[3, Theorem VI.3.16] and the fact that T"\M" is quasisimilar to the compression of 
T\M to the space A t e At'. If n i e / k = ] l j e J YlkeK °k then, of course, fix = 0ix, 
fi'x = 9'jx, and fi'f = 9'f for x = 1 ,2, . . . , r, and the existence of invariant quasidirect 
complements follows from part (3) of Propositions 3.4 and 3.7. 

We consider next an operator T of class Co with finite multiplicity N' > N. 
This case reduces to the previous one as follows. The sets I, J, K are also contained 
in {1 ,2 , . . . , N'}, and setting 

J = {N' + l - j : j e J } , K = {N' + 1 - jfc : k £ K}, 

we still have = 1. (This fact is verified using the Littlewood Richardson rule 
for partitions. More generally, CJ-J^ = see [11,12].) Therefore the preceding 
argument works simply replacing N by TV. 

Finally, assume that T has infinite multiplicity, and consider quasidirect de-
compositions 

H = V Hn, H' = V U"= V K, 
l<n<N l<n<N l<n<N 

into invariant spaces for T,T',T", respectively, such that T\Hn ~ S(9n), T'\Wn ~ 
S(9'n), and T"\U"a ~ S(9'J) for all n < K. The invariant subspace U for T generated 
by the spaces TLn,'H'ri,'Hn for 1 < n < N has the property that T\H has finite 
multiplicity. We can therefore apply the theorem, already proved for the case of 
operatorsjvith finite multiplicity, with T\H in place of T, = D H in place of 

and H" = He H! in place of H". We obtain a T|A-invariant subspace M CH 
which satisfies requirements (1-4) of the theorem. Indeed, the first N functions in 
thejlordan model of T\H are still 9\, 92, • • • ,9N, and similar observations hold for 
T\H' and the compression of T to H". It remains to verify the final assertion of the 
theorem. Assume therefore that ]~[ieJ 9{ = [ { ^ j 9'3 YlkeK - W e already know that 
A1 has a T|7f-invariant quasidirect complement in A. Setting N' = there 
exists a quasidirect decomposition 

N' 

n = V Un 
n= 1 

into invariant subspaces for T such that T\Hn ~ S(9n) for n = 1,2, . . . , N, and 

M = \J%i-
iei 
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Proposition 2.4 allows us to construct an invariant subspace C for T such that 

N N 

u = Cy \J Hn, £n [ V ^ n ] ={0} 
n = l n—1 

An invariant quasidirect complement for M is then given by 

£V \J Rn. 
n&I 

Similar arguments show the existence of invariant quasidirect complements for M.' 
and M". 

5. Operators on nonseparable spaces 

With the notation of Theorem 4.1, we show that 6p\0'p9p for ft > Ho- This relation 
can also be established by exhibiting an appropriate invariant subspace for T, but 
in this case the subspace can be chosen to be reducing for T, as well as for the 
invariant subspace R'. 

Theorem 5.1. Assume that T is an operator of class Co Oft bC} bt is an invariant 
subspace for T, R" = R © R', and 

T * 
0 T" 

is the matrix ofT corresponding to the orthogonal decomposition R = R' © R". Let 

0 s(en), 0 s(k), 0 ¿TO 
l < n < N l < n < N l < n < N 

be the Jordan models ofT,T', and T", respectively. Fix an ordinal fi > Ho- There 
exist separable reducing spaces A4,M',A4" for T,T", T", respectively, such that 
M = M'®M" and the Jordan models ofT\M, T'\M', andT"\M" are orthogonal 
sums of countably many copies of S(0p), S(0'p), and S(6p), respectively. In particular, 
9p\0'p0'p. . 

Proof. We may assume without loss of generality that dp ^ 1. Consider quasidirect 
decompositions 

H = \J Rnt R' = \J R'n, R" — \J R'/, 
l<n<M l<n<N l<n<N 
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into invariant spaces for T,T,T", respectively, such that T\Pn ~ S(9n), T'\P'n ~ 
S(0'n), and T"\P'f ~ S(0'f) for all n < N. Denote by 3 the cardinality of/3, and let A 
be the smallest subspace of P which reduces both T and the orthogonal projection 
Pw and contains all the spaces Pn,P'n,'H'fl for n < 3. Since 3 is transfinite and 
each Tin is separable, it follows that the space A has dimension at most Moreover, 
the first Ko inner functions in the Jordan model of T|/CX axe equal to Op, and similar 
statements hold for V\P! n A x and T"\P" D A x . Indeed, the minimal function of 
T|/CX divides dp because P^x [Vcard(n)>3 "^«j i s dense in A x . On the other hand, 
the multiplicity of T|[<^(T)AX]- is at least 3 if p is an inner function which does 
not divide Op. Thus the Jordan model of T|AX contains at least 3 summands equal 
to S(9p). Choose invariant subspaces £ , £ ' , £ " for T\K.X, T'\P'f\K.x, T"\P" n A x , 
respectively, such that the Jordan models of the three restrictions are orthogonal 
sums of countably many copies of S(9p),S(0'p), and S(9p), respectively. The desired 
space M is obtained as the smallest subspace containing C U £ U C" which reduces 
both T and Pw. We then define M' = MDP' and M" = MOP". The space M is 
separable, and the Jordan model ® 1 < n < N o S(pn) satisfies pn\9p (because Op is the 
minimal function of T|AX and A x D M) and 9p\pn (because M D C). Thus T\M. 
has the desired Jordan model. Similar arguments determine the Jordan models of 
T\M' and T"\M". 

6. Comments on the inverse problem 

Let T be an operator of class C0 on P. let W be an invariant subspace for T, set 
P" = P © P', and let 

\T> * 1 
T = 

[ 0 T" 

be the matrix of T corresponding to the orthogonal decomposition P = P' © P". 
Assume further that 

J = 0 S O U j'= 0 S(9'n), J"= 0 5 ( 0 (6.1) 
l < n < N l < n < M 1 < « < N 

are the Jordan models of T, T', and T", respectively. We have seen that the func-
tions {6n, 6'n, #n}i<n<N a r e subject to a collection of 'inequalities' of the form 
r w 0i\FIj€ J Il/cea: f°r some finite equipotent sets 7, J, K C {1 ,2 , . . . } , and 
also that 9n\9'n9n if n > H0. Other necessary conditions are that 0'n\6n and 0f\9n 

for 1 < n < H. A natural question is whether these conditions on J, J', J" are 
sufficient for the existence of an operator T of class CQ and of an invariant subspace 
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R! for T such that T ~ J, T\R' ~ J', and PW±T\R,A- ~ J". The answer is in the 
negative: if pr < N < oo, we have 6n = 1 for n > N and the models also satisfy 
the 'determinant' condition 

n k = ] } ( « ) • 
n = l n = l 

In this special case (with 0n = 1 if n > N), the relations outlined above are in fact 
sufficient for the existence of T and R' (see [18,19] and, for the algebraic case, [14] or 
[20]). An appropriate substitute for the determinant condition has not been found 
in the case of infinite multiplicity. We argue that, at least, the problem reduces to 
the separable case. 

Proposition 6.1. Let J, J', and J" be Jordan operators given by (6.1). Assume that: 
(1) 9n = k 6'n = 9(, and 9'/ = 9'{ for all n < N0, 
(2) 9'n\9n and 6'/\9n for all n < K, and 
(3) 9n\9'n9l for all n < K. 

Then there exists an operator T of class Co and an invariant subspace R' for 
T such that T~J, T\R' ~ J ' , and P^^R'1- ~ J " . 

Proof. Define T = J on R = ©!<n<N S(0n) and R! = © ! < „ < « « , where for 
every ordinal number written as n = m + k with m a limit ordinal and k < Ho we 
set 

n , = i {0n/0'n)H2 © 9nH2, if k is even, 
n \{9n/6'f)H2e9nH2, if k is odd. 

It is easy to verify that these objects satisfy the requirements of the proposition. 

This proposition shows that there is no need for more elaborate conditions 
on the functions 9n for n > H0. It also reduces the inverse problem, which remains 
open, to the separable case. 
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